WO2018082670A1 - 通信方法、装置、网络设备及终端 - Google Patents

通信方法、装置、网络设备及终端 Download PDF

Info

Publication number
WO2018082670A1
WO2018082670A1 PCT/CN2017/109383 CN2017109383W WO2018082670A1 WO 2018082670 A1 WO2018082670 A1 WO 2018082670A1 CN 2017109383 W CN2017109383 W CN 2017109383W WO 2018082670 A1 WO2018082670 A1 WO 2018082670A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
reference signal
information
beam information
antenna port
Prior art date
Application number
PCT/CN2017/109383
Other languages
English (en)
French (fr)
Inventor
王婷
窦圣跃
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867226.7A priority Critical patent/EP3537619A4/en
Priority to CN201780075202.4A priority patent/CN110036617B/zh
Priority to JP2019523599A priority patent/JP6844914B2/ja
Priority to BR112019008716A priority patent/BR112019008716A2/pt
Priority to CA3042834A priority patent/CA3042834C/en
Publication of WO2018082670A1 publication Critical patent/WO2018082670A1/zh
Priority to US16/288,823 priority patent/US11128349B2/en
Priority to US17/468,275 priority patent/US11546020B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method, apparatus, network device, and terminal.
  • CoMP Coordination Multiple Point
  • the signal may come from a plurality of different transmission points (TRP).
  • TRP transmission points
  • QCL Quasi-Co-Location
  • the reference signal concept such as a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and the terminal can estimate large-scale feature parameters according to the CRS/CSI-RS.
  • the large-scale feature parameters include one or more of delay spread, Doppler spread, Doppler shift, average channel gain, and average delay.
  • the antenna port QCL is introduced in order to support CoMP.
  • the antenna port QCL characterizes that the signal transmitted by the antenna port will pass the same large-scale fading and have the same large-scale characteristic parameters. For example, when the QCL relationship is satisfied between the antenna port A and the antenna port B, it means that the channel large-scale characteristic parameter estimated by the signal on the antenna port A is also suitable for the signal on the antenna port B.
  • a physical downlink shared channel (PDSCH) is received from the cooperative base station, and a new transmission is defined in R11.
  • the mode (transmission mode 10) mainly introduces a physical downlink shared channel data resource mapping and a quasi-co-location indicator (PQI) to indicate that the base station transmitting the PDSCH and the corresponding channel are large. Antenna ports with consistent scale characteristics.
  • all ports of the Demodulation Reference Symbol (DMRS) corresponding to the PDSCH received by the terminal are QCL, that is, the antenna port 7-port 14 is quasi-co-located. Therefore, according to the PQI, the terminal maps the QCL configuration information by using the PDSCH data resource unit configured by the Radio Resource Control (RRC), and can learn the radio channel parameters corresponding to the DMRS to be used for demodulating the PDSCH.
  • RRC Radio Resource Control
  • the same TRP may be configured with a large-scale array structure of multi-antenna panels, and different antennas formed by different antenna panels have different large-scale characteristics (large-scale characteristics except delay spread, and more
  • large-scale characteristics large-scale characteristics except delay spread, and more
  • Doppler shift, average channel gain, and average delay it also includes angle of arrival (AOA), angle of arrival spread (AAS), and exit angle (angle).
  • AOD angle of departure spread
  • ADS angle of departure spread
  • the antenna port for transmitting signals may be non-QCL for the same TRP, and QCL is configured according to the PQI indication method described above.
  • the terminal cannot estimate large-scale feature parameters based on the information.
  • Large-scale characteristic parameters of different beams are not The same may refer to one or more of the above-mentioned large-scale characteristic parameters.
  • the embodiment of the present application provides a communication method and device, and in particular, a method and device for transmitting and receiving quasi-co-location information, a network device, and a terminal, so that the terminal can determine a beam having a QCL relationship with a reference signal antenna port. And accurately estimate the large-scale characteristics of the channel.
  • a QCL information transmission and reception method In a first aspect, a QCL information transmission and reception method is provided.
  • a network device sends the determined QCL beam information to a terminal, where the QCL beam information includes beam information having a QCL relationship with a reference signal antenna port.
  • the terminal may determine a beam having a QCL relationship with the reference signal antenna port according to the beam information included in the QCL indication information and having a QCL relationship with the reference signal antenna port, thereby determining that the beam passes through the beam.
  • the transmitted transmitted reference signal is used to estimate the large-scale characteristics of the channel based on the determined transmitted reference signal.
  • the reference signal may be a demodulation reference signal, or a channel state information reference signal, or other reference signals, which is not limited herein.
  • the QCL beam information may be a beam identification, or may be beam antenna port information or other beam related information.
  • the beam identification information may be a beam synchronization signal identifier.
  • the beam may include a transmit beam and a receive beam.
  • the transmit beam refers to a distribution of signal strengths formed in different directions of space after the signal is transmitted through the antenna.
  • the receiving beam refers to a signal intensity distribution of a wireless signal received from an antenna in different directions in space.
  • the beam may be a beam-related signal such as a beam identification reference signal, a beam reference signal, a beam scanning reference signal, or a beam synchronization signal.
  • the foregoing determining that the beam having the QCL relationship with the reference signal antenna port may refer to the foregoing physical beam, or the beam identification reference signal, the beam reference signal, the beam scanning reference signal, or the beam synchronization signal, etc. mentioned above.
  • the transmitted reference signal transmitted by the beam may be one or more of beam-related signals, such as a beam identification reference signal, a beam reference signal, a beam scanning reference signal, or a beam synchronization signal, which are transmitted through the foregoing physical beam. And may also refer to one or more of beam-related reference signals, beam reference signals, beam scan reference signals, or beam-synchronization signals, and other beam-related signals corresponding to the beam information.
  • the network device sends QCL beam information through radio resource control RRC signaling.
  • the QCL beam information includes at least one set of QCL beam information.
  • the network device sends at least one set of QCL beam information to the terminal through RRC signaling, and can indicate the QCL beam information applicable to the reference signal currently used by the terminal by using the downlink control information, and the QCL beam information applicable to the currently used reference signal refers to the reference signal antenna port. Beam information with QCL relationship.
  • adding QCL beam information to the original QCL indication information in the RRC signaling may be implemented in the following two manners:
  • the QCL beam information is added to the data resource mapping QCL configuration information to add parameter information for indicating that the QCL beam information is added in the RRC signaling in the physical layer protocol.
  • the QCL beam information is added to the configuration parameters of the non-zero power CSI-RS to indicate the QCL beam information of the CSI-RS.
  • the QCL beam information having a QCL relationship with the DMRS antenna port is included in the CSI-RS resource configuration information corresponding to the configuration parameter identifier of the non-zero power CSI-RS. QCL beam information.
  • the network device may determine, according to the time domain resource and/or the frequency domain resource used by the reference signal antenna port, the reference signal antenna port on the time domain resource and/or the frequency domain resource.
  • the QCL beam information of the QCL relationship and sends the QCL beam information with the QCL relationship to the reference signal antenna port on the time domain resource and/or the frequency domain resource to the terminal.
  • the network device may send at least one of a time domain QCL beam information list, a frequency domain QCL beam information list, and a time-frequency domain QCL beam information list to the terminal.
  • the terminal receives the frequency domain QCL beam information list sent by the network device, and can determine the QCL beam of the reference signal in different frequency bands, and perform large-scale characteristic estimation of the channel on different frequency bands.
  • the terminal receives the time domain QCL beam list sent by the network device, and can determine the QCL beam of the reference signal in different subframes or time slots or other time units, thereby performing channel large on different subframes or time slots or other time units. Estimation of scale characteristics.
  • the terminal receives the time-frequency domain QCL beam information list sent by the network device, and can determine the QCL beam of the reference signal in different time-frequency domain resources, and then perform large-scale characteristic estimation of the channel in different time-frequency domains.
  • the network device can transmit the QCL beam information through the DCI information.
  • the QCL beam information sent by the network device through the DCI information may be beam information having a QCL relationship with an antenna port of a reference signal used by the terminal to transmit data.
  • the terminal can accurately determine the beam having the QCL relationship with the reference signal antenna port of the current transmission data and the transmitted reference signal sent by the determined beam according to the received DCI information, and further
  • the channel large-scale characteristic estimation can be performed according to the determined transmitted reference signal. For example, a large-scale characteristic of the reference signal antenna port can be determined based on the determined beam having a QCL relationship with the reference signal antenna port.
  • a communication device which has the function of implementing the network device involved in the above first aspect, and the function may be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device includes a processing unit and a sending unit, and the functions of the processing unit and the sending unit may correspond to the method steps, and details are not described herein.
  • a communication device in a third aspect, is provided, and the receiving device of the quasi-co-location information has a function of implementing the terminal involved in the foregoing first aspect, and the function may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device includes a receiving unit and a processing unit, and the functions of the receiving unit and the processing unit may correspond to the method steps, and details are not described herein.
  • a network device comprising a processor, a memory, and a transceiver,
  • the memory is configured to store instructions for executing the memory stored instructions to control transceivers to receive and transmit signals, and when the processor executes the instructions stored by the memory, the network device is configured to: Any one of the methods involved in the network device as described in the first aspect is completed.
  • a terminal including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the terminal is used to complete Any of the methods involved in the terminal as described in the first aspect.
  • a computer storage medium for storing instructions that, when executed, can perform any of the methods involved in the foregoing terminal or network device.
  • the seventh aspect provides a communication system, including a terminal and a network device, where the network device is the network device involved in the foregoing fourth aspect, and the terminal is the terminal involved in the foregoing fifth aspect.
  • the network device provided by the present application has a function of implementing the behavior of the network device in the above method aspect, and includes means for performing the steps or functions described in the above method aspect.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the network device described above includes one or more processors configured to support the network device to perform corresponding functions in the methods described above.
  • one or more memories may be included, the memory being for coupling with a processor, which stores necessary programs and/or instructions of the network device, and further, may also save data.
  • the one or more memories may be integrated with the processor or may be separate from the processor.
  • the network device described above includes one or more processors and communication units.
  • the one or more processors are configured to support the network device to perform corresponding functions in the above methods. For example, the QCL beam information is determined.
  • the communication unit is configured to support the network device to communicate with other devices to implement receiving and/or transmitting functions. For example, the QCL beam information generated by the processor is transmitted.
  • the network device may further include one or more memories for coupling with the processor, which save program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the network device may be a base station, a gNB or a TRP, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the network device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the present application also provides an apparatus having a function for implementing terminal behavior in aspects of the above method, including means for performing the steps or functions described in the above method aspects.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the above apparatus includes one or more processors configured to support the apparatus to perform the corresponding functions of the terminal in the above method.
  • one or more memories may be included, the memory being used for coupling with a processor, which stores necessary programs and/or instructions of the device, and further, may also save data.
  • the one or more memories may be integrated with the processor or may be separate from the processor.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the terminal in the above method. For example, a beam having a QCL relationship with a reference signal antenna port is determined.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, receiving QCL beam information.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the network device sends the determined QCL beam information to the terminal, where the QCL beam information includes beam information having a QCL relationship with the reference signal antenna port.
  • the terminal may determine a beam having a QCL relationship with the reference signal antenna port according to the beam information included in the QCL indication information and having a QCL relationship with the reference signal antenna port, thereby determining that the beam passes through the beam.
  • the transmitted transmitted reference signal is used to estimate the large-scale characteristics of the channel based on the determined transmitted reference signal.
  • FIG. 1A to FIG. 1B are schematic diagrams showing a beam formed by four antenna panels in a TRP according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of communication between a network device and a terminal
  • FIG. 3 is a simplified schematic diagram of the internal structure of a network device and a terminal
  • FIG. 4 is a flowchart of a method for implementing configuration of QCL information according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an apparatus for sending QCL information according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an apparatus for receiving QCL information according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • a network device which may be referred to as a radio access network (RAN) device, is a device that connects a terminal to a wireless network, including but not limited to: an evolved Node B (evolved Node B, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), and home base station (for example) , Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU), Wireless Fidelity (WIFI) Access Point (AP), Transmission and receiver point (TRP) Or transmission point, TP) and so on.
  • RAN radio access network
  • the network device may be 5G, such as a base station gNB, a baseband unit (BBU), or a data unit (DU) in an NR (new radio) system.
  • the gNB may include a control unit (CU) and a DU, and may further include an RU (radio unit).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU implements the functions of RRC (radio resource control), PDCP (packet data convergence protocol) layer, and DU implements RLC ( Radio link control, MAC (media access control) and PHY (physical) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements RLC ( Radio link control, MAC (media access control) and PHY (physical) layer functions.
  • high-level signaling such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture. It is considered to be sent by DU, or DU+RU.
  • a terminal is a device that provides voice and/or data connectivity to a user, and may include various handheld devices having wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other processes connected to a wireless modem.
  • Equipment and various forms of User Equipment (UE), Mobile Station (MS), Terminal equipment, transmission and receiver point (TRP or transmission point, TP), and so on.
  • UE User Equipment
  • MS Mobile Station
  • TRP transmission and receiver point
  • TP transmission point
  • the interaction in this application refers to the process in which the two parties exchange information with each other.
  • the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the method, network device and terminal for configuring quasi-co-location information provided by the embodiments of the present application can be applied to a new radio (NR) communication technology, where the NR refers to a new generation radio access network technology, which can be applied to Future evolution networks, such as 5G communication systems.
  • NR new radio
  • the method, the network device and the terminal for configuring the quasi-co-location information provided in the embodiment of the present application are also applicable to a wireless communication system such as Wireless Fidelity (WIFI) and LTE, and can also be applied to a wired network such as a fixed network.
  • WIFI Wireless Fidelity
  • LTE Long Term Evolution
  • the wireless communication system is a network that provides wireless communication functions.
  • the wireless communication system can employ different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), and time division multiple access (TDMA).
  • Code division multiple access CDMA
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • Frequency division multiple access (FDMA) orthogonal frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network.
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network includes a universal mobile communication system (universal mobile communication system).
  • a typical 4G network includes a long term evolution (LTE) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (E-).
  • E- evolved universal terrestrial radio access network
  • UTRAN Universal Terrestriality
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that with the development of the technology, the technical solutions provided by the embodiments of the present application can be applied to other wireless communication networks, such as a 4.5G or 5G network, or other non-cellular communication networks. For the sake of brevity, the embodiment of the present application sometimes refers to a wireless communication network as a network.
  • a cellular communication network is a type of wireless communication network that uses a cellular wireless networking method in terminal devices and networks.
  • the devices are connected by wireless channels, so that users can communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • the same TRP may be configured with a large-scale array structure of multiple antenna panels. Different antenna panels may form multiple beams for transmitting signals, so the channel characteristics of different beams of the transmitted signals are different, which leads to the antenna.
  • the QCL is different if the port numbers are the same.
  • the network device may transmit signals with the same antenna port number under different beams, and the network device may send different beam signals for different beams, such as beam identification reference signals, beam reference signals, beams. Scan a reference signal or a beam synchronization signal, and the like.
  • FIG. 1A and FIG. 1B show a schematic diagram of forming a beam by including four antenna panels in one TRP.
  • each of the four antenna panels independently forms a beam, and each antenna panel forms a different beam, and antenna ports of four different beam transmitting signals may be non-QCL.
  • FIG. 1B four antenna panels form a beam together, but since the beams formed by the four antenna panels are differently precoded so that the directivity of each beam is different, the antenna port transmitting the signal may also be non-QCL.
  • the embodiment of the present application provides a method for configuring QCL information, in which the network device sends the determined QCL beam information to the terminal, where the QCL beam information includes beam information having a QCL relationship with the reference signal antenna port.
  • the terminal may determine a beam having a QCL relationship with the reference signal antenna port according to the beam information included in the QCL indication information and having a QCL relationship with the reference signal antenna port, thereby determining that the beam passes through the beam.
  • the transmitted transmitted reference signal is used to estimate the large-scale characteristics of the channel based on the determined transmitted reference signal.
  • the large-scale characteristics may be delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • the reference signal involved in the embodiment of the present application includes but is not limited to a Demodulation Reference Symbol (DMRS), and may also be a Channel State Information-Reference Signal (CSI-RS). , or other reference information, no restrictions here.
  • DMRS Demodulation Reference Symbol
  • CSI-RS Channel State Information-Reference Signal
  • the beam involved in the embodiment of the present application refers to a beam that is transmitted or received by at least one antenna port to perform amplitude and/or phase weighting, or may be formed by other methods, such as adjusting an antenna.
  • the relevant parameters of the unit form the beam.
  • the beam may include a transmit beam and a receive beam.
  • the transmit beam refers to a distribution of signal strengths formed in different directions of space after the signal is transmitted through the antenna.
  • the receiving beam refers to a signal intensity distribution of a wireless signal received from an antenna in different directions in space.
  • the signal processing at the receiving end can be weighted and synthesized by each signal received by the multi-antenna array element to form a desired ideal signal. From the perspective of the antenna pattern, this is equivalent to forming a beam on a prescribed direction. For example, the original omnidirectional reception pattern is converted into a lobe pattern with zero points and maximum pointing. The same principle applies to the transmitting end. Amplitude and phase adjustment of the antenna element feed can form a pattern of the desired shape.
  • the wireless signals from the transmitting end to the receiving end correspond to the same spatial streams, which are transmitted through multiple paths.
  • a certain algorithm is used to process the received signals of multiple antennas, so that the signal-to-noise ratio of the receiving end can be significantly improved. Better signal quality is achieved even at the receiving end.
  • the beam involved in the embodiment of the present application may be a beam identification reference signal, a beam reference signal, a beam scanning reference signal, or a beam synchronization signal.
  • the method or apparatus in the embodiments of the present application may be applied between a network device and a terminal (such as a base station and a user equipment), and also applicable to a network device and a network device (such as a macro base station and a micro base station, a macro base station, and The micro base station, the micro base station and the micro base station communicate, or the terminal device and the terminal device (such as a terminal to terminal (D2D) scenario) communicate.
  • the QCL information transmission and reception method in the embodiment of the present application is applicable to both the QCL indication information of the beam when the signal is transmitted, and the QCL indication information of the beam when the signal is received.
  • the communication between the network device and the terminal is taken as an example for description.
  • FIG. 2 is a schematic structural diagram of a communication system composed of a network device and a terminal.
  • Figure 3 shows a simplified schematic diagram of the internal structure of the network device and terminal.
  • Example network devices may include an antenna array, a duplexer, a Transmit (TX), and a Receiver (RX) (sometimes, TX and RX are collectively referred to as Transmit Receive (TRX)), and Baseband processing section.
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include Power Amplifier (PA), Digital to Analog Converter (DAC) and frequency converter.
  • DAC Digital to Analog Converter
  • RX can include low noise. (Low Noise Amplifier, LNA), Analog to Digital Converter (ADC) and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the network device may further include a control portion for performing multi-user scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
  • Example terminals may include an antenna, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • TX transmitter
  • RX receiver
  • the terminal has a single antenna. It can be understood that the terminal can also have multiple antennas (ie, an antenna array).
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include PA, DAC and inverter.
  • RX can include LNA, ADC and inverter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • FIG. 4 is a schematic flowchart of a method for configuring quasi-co-location information according to an embodiment of the present application. As shown in FIG. 4, the method includes:
  • the network device determines QCL beam information, where the QCL beam information includes beam information having a quasi-co-located QCL relationship with the reference signal antenna port.
  • the QCL beam information in the embodiment of the present application may be a beam identifier, or may be beam antenna port information or other beam-related information.
  • the QCL beam information refers to beam information that has a QCL relationship with a reference signal antenna port.
  • the QCL beam information may be multiple or one.
  • S102 The network device sends QCL beam information, and the terminal receives the QCL beam information.
  • the terminal may determine a beam having a QCL relationship with the reference signal antenna port according to the beam information included in the QCL beam information and having a quasi-co-located QCL relationship with the reference signal antenna port.
  • the transmitted reference signal transmitted through the beam may be determined, and the channel large-scale characteristic estimation is performed according to the determined transmitted reference signal.
  • the network device configures beam information with a quasi-co-located QCL relationship with the reference signal antenna port, and transmits a beam corresponding to the beam information and a reference signal corresponding to the reference signal antenna port, and the terminal receives the beam.
  • Information, beams, and reference signals are described as an example.
  • the network device is configured to have beam information of a quasi-co-located QCL relationship with the reference signal antenna port, and the terminal receives the beam information, and transmits a beam corresponding to the beam information and a reference signal corresponding to the reference signal antenna port. . In this way, the network device can determine the channel large-scale characteristics of the received reference signal based on the beam.
  • the network device configures beam information with a quasi-co-located QCL relationship with the reference signal antenna port, and transmits a beam corresponding to the beam information; the terminal receives the beam information and the beam, and transmits the reference signal antenna The reference signal corresponding to the port. In this way, the terminal can determine the channel large-scale characteristic of the transmitted reference signal according to the beam. This design can be applied to scenarios where the channel has reciprocity.
  • the network device configures beam information with a reference signal antenna port having a quasi-co-located QCL relationship; the terminal receives the beam information, and transmits a beam corresponding to the beam information; and the network device sends the reference signal antenna port. Corresponding reference signal.
  • the network device can determine the channel large-scale characteristics of the transmitted reference signal according to the beam. This design can be applied to scenarios where the channel has reciprocity.
  • the terminal sends beam information with a quasi-co-located QCL relationship with the reference signal antenna port to the network device, and transmits a beam corresponding to the beam information and a reference signal corresponding to the reference signal antenna port, and the network device Receiving the beam information, the beam corresponding to the beam information and a reference signal corresponding to the reference signal antenna port.
  • the network device can determine the channel large-scale characteristics of the received reference signal based on the beam.
  • the terminal transmits beam information having a quasi-co-located QCL relationship with the reference signal antenna port to the network device, and transmits a beam corresponding to the beam information, and the network device Receiving the beam information and the beam corresponding to the beam information, and transmitting a reference signal corresponding to the reference signal antenna port.
  • the network device can determine the channel large-scale characteristics of the transmitted reference signal according to the beam. This design can be applied to scenarios where the channel has reciprocity.
  • the beam information having a quasi-co-located QCL relationship with the reference signal antenna port is predefined by the protocol.
  • the reference signal antenna port and the beam information in the terminal and the network device have a QCL relationship.
  • Correspondence information can be configured without configuration).
  • the beam corresponding to the beam information may be sent by the network device to the terminal, or may be sent by the terminal to the network device.
  • the reference signal corresponding to the reference signal antenna port may be sent by the network device to the terminal, or may be sent by the terminal to the network device.
  • the solution in the embodiment of the present application can also be applied to the above possible designs.
  • the corresponding devices (such as network devices, terminals, communication chips, etc.) provided in the embodiments of the present application may also have corresponding changes, and are not described herein.
  • the network device may configure the QCL beam information by using the RRC signaling sent to the terminal.
  • the QCL indication information including the QCL beam information may be configured in the RRC signaling.
  • the terminal receives the QCL beam information sent by the network device by using RRC signaling.
  • the terminal parses the RRC signaling to obtain the QCL beam information.
  • the beam having the QCL relationship with the reference signal antenna port can be determined, and the channel large-scale characteristic is performed. estimate.
  • the large-scale characteristics of the reference signal antenna port can be determined based on the determined beam having a QCL relationship with the reference signal antenna port.
  • the QCL beam information may be added to the original QCL indication information in the RRC signaling.
  • the original QCL indication information refers to the QCL indication information that is configured before the QCL information configuration method provided by the embodiment of the present application, and does not include the QCL beam information.
  • signaling of the original QCL indication information in the RRC signaling may be configured as follows:
  • the PDSCH-RE-MappingQCL-Config indicates the physical downlink shared channel data resource mapping QCL configuration parameter in the signaling of the original QCL indication information.
  • the pdsch-RE-MappingQCL-ConfigId-r11 indicates that the physical downlink shared channel data resource mapping QCL configuration parameter includes a physical downlink shared channel data resource mapping QCL configuration identifier.
  • the PDSCH-RE-MappingQCL-ConfigId-r11 indicates that the value of the physical downlink shared channel data resource mapping QCL configuration identifier is PDSCH-RE-MappingQCL-ConfigId-r11.
  • qcl-CSI-RS-ConfigNZPId indicates the configuration identifier of the Non Zero Power (NZP) CSI-RS having a QCL relationship with the data antenna port.
  • the added QCL beam information in the original QCL indication information may be beam identification information, beam antenna port information, or other beam-related information.
  • the beam identification information may be beam synchronization signal identification information.
  • the signaling for adding the QCL beam information in the original QCL indication information in the RRC signaling may be configured as follows:
  • the signaling of the QCL indication information in the foregoing RRC signaling is compared with the signaling of the original QCL indication information, and the QCL beam information is added, and the added QCL beam information is Qcl-beam-ConfigId or qcl-beam-RS ports, where Qcl -beam-ConfigId represents beam identification information having a QCL relationship, and qcl-beam-RS ports represents beam antenna port information having a QCL relationship.
  • multiple sets (at least one group) of QCL beam information may be added to the original QCL indication to configure multiple sets of QCL beam information with a QCL relationship for the reference signal in the same TRP.
  • the network device may use the Downlink Control Information (DCI) to indicate the QCL beam applicable to the reference signal currently used by the terminal.
  • DCI Downlink Control Information
  • the QCL beam to which the reference signal currently used refers to the beam information having a QCL relationship with the reference signal antenna port.
  • the terminal receives the at least one set of QCL beam information sent by the network device by using RRC signaling, and determines, according to the DCI indication, a QCL beam that is applicable to the currently used reference signal.
  • the DCI used to indicate the terminal QCL beam information may be referred to as a first DCI.
  • adding QCL beam information to the original QCL indication information in the RRC signaling may be implemented in the following two manners:
  • the QCL beam information is added in the data source mapping (PDSCH RE Mapping) QCL configuration information to add parameter information for indicating that the QCL beam information is added in the RRC signaling in the physical layer protocol.
  • PDSCH RE Mapping data source mapping
  • QCL beam information is added to a configuration parameter of a Non Zero Power (NZP) CSI-RS to indicate QCL beam information of the CSI-RS.
  • NZP Non Zero Power
  • the implementation process of adding QCL beam information in the data resource mapping QCL configuration parameter is first described by taking the reference signal as the DMRS as an example.
  • the network device may set QCL beam information with a QCL relationship with the DMRS antenna port of the terminal to send data in the configuration parameters of the PDSCH RE Mapping and the PDSCH antenna port QCL, where the QCL beam information includes the QCL beam identifier and the QCL. Beam antenna port information or other beam related information.
  • the network device sends a QCL beam information indicating a QCL relationship with the DMRS antenna port of the data to be sent to the terminal, and the terminal obtains a beam having a QCL relationship with the DMRS antenna port of the transmitted data, thereby determining that the beam is transmitted through the beam.
  • the transmitted reference signal is used to estimate the large-scale characteristics of the channel based on the determined transmitted reference signal.
  • An example of the configuration parameters of the PDSCH RE mapping and the PDSCH antenna port QCL after the addition of the QCL beam information in the embodiment of the present application is as follows, wherein the added QCL beam information is Qcl-beam-ConfigId or qcl-beam-RS ports, where Qcl- beam-ConfigId indicates beam identification information of a specific QCL relationship, and qcl-beam-RS ports indicates antenna port information of a beam having a QCL relationship:
  • Zero Power (ZP) CSI-RS configuration identifier csi-RS-ConfigZPId-r11
  • the number of configuration parameters of the original PDSCH RE mapping and the PDSCH antenna port QCL is limited, it may not be sufficient to meet the requirement of adding QCL beam information in the configuration parameters of the PDSCH RE mapping and the PDSCH antenna port QCL, so the DCI needs to be extended.
  • the bits used to indicate the configuration parameters of the PDSCH RE Mapping and the PDSCH antenna port QCL to ensure that there are enough bits to indicate increased QCL beam information. For example, it is assumed that the network device can currently configure four different PDSCH RE mapping and PDSCH antenna port QCL configuration parameter sets for the terminal.
  • the current network device can form four beams, there can be four parameter sets under each beam, that is, A total of 16 PDSCH RE Mapping and configuration parameters of the PDSCH antenna port QCL are required. Therefore, it is necessary to expand the bit of the configuration parameter indication field in the DCI for indicating the PDSCH RE mapping and the PDSCH antenna port QCL to at least 4 bits to indicate the configuration parameters of the 16 PDSCH RE Mapping and the PDSCH antenna port QCL.
  • the configuration parameters of the PDSCH RE Mapping and the PDSCH antenna port QCL may be indicated by using an indication manner in which the bit of the DCI indication field shown in Table 1 is 4 bits:
  • the following describes the process of adding QCL beam identification information or QCL beam antenna port information to the configuration parameters of the NZP CSI-RS by taking the reference signal as a CSI-RS as an example.
  • QCL beam information may be added to the NZP CSI-RS resource configuration information (CSI-RS-ConfigNZP) in the QCL indication information of the RRC signaling, where the QCL beam information is used to indicate that the CSI-RS antenna port has QCL beam identification information, QCL beam antenna port information or other beam related information of the QCL relationship to implement an indication of QCL beam information of a reference signal (e.g., CSI-RS) used by the terminal.
  • the QCL beam information may be added to the NZP CSI-RS resource configuration information, and the specific signaling may be configured as follows:
  • the QCL beam information is added to the NZP CSI-RS configuration identifier (csi-RS-ConfigNZPId) of the NZP CSI-RS resource configuration information (CSI-RS-ConfigNZP), and the added QCL beam information signaling is Qcl-beam- ConfigId or qcl-beam-RS ports, where Qcl-beam-ConfigId represents beam identification information of a specific QCL relationship, and qcl-beam-RS ports represents antenna port information of a beam having a QCL relationship.
  • the network device currently configures, by using RRC signaling, multiple CSI-RS resource configuration information for one TRP for the terminal, and each CSI-RS resource configuration information corresponds to one CSI-RS-ConfigNZPId, and the CSI-RS is indicated.
  • the terminal can obtain the CRS antenna port corresponding to the DMRS, thereby determining the CRS signal and performing large-scale estimation of the channel.
  • the CSI-RS resource configuration information corresponding to the CSI-RS-ConfigNZPId of the QCL beam information may be used to indicate the QCL beam information of the DMRS, and the DMRS antenna port has The QCL beam information of the QCL relationship is QCL beam information included in the CSI-RS resource configuration information corresponding to the CSI-RS-ConfigNZPId.
  • the terminal may determine the beam information that has a QCL relationship with the DMRS according to the QCL beam information in the CSI-RS resource configuration information corresponding to the CSI-RS-ConfigNZPId.
  • the beam signal is determined and an estimate of the large-scale characteristics of the channel is performed.
  • the CSI-RS resource configuration information corresponding to the CSI-RS-ConfigNZPId of the QCL beam information may be sent through RRC signaling, and the QCL beam information having the QCL relationship with the DMRS antenna port may indicate the PDSCH through the DCI.
  • the configuration parameters of the RE Mapping and PDSCH antenna port QCL indicate the CSI-RS-ConfigNZPId determination in the PDSCH RE Mapping and the configuration parameters of the PDSCH antenna port QCL indicated in the domain.
  • the network device may determine, according to the time domain resource and/or the frequency domain resource used by the reference signal antenna port, the reference signal antenna port on the time domain resource and/or the frequency domain resource.
  • the QCL beam information has a QCL relationship, and sends the QCL beam information with the QCL relationship to the reference signal antenna port on the time domain resource and/or the frequency domain resource to the terminal.
  • the terminal receives the QCL beam information that is sent by the network device and has a QCL relationship with the reference signal antenna port on the time domain resource and/or the frequency domain resource.
  • the network device may add QCL beam information to the frequency domain resources in the frequency domain list used by the reference signal, and form a frequency domain QCL beam list of the reference signal.
  • the frequency domain QCL beam information list includes at least one QCL beam information having a QCL relationship with a reference signal antenna port on at least one frequency domain resource.
  • the network device may also add QCL beam information for the time domain resources in the time domain list used by the reference signal and form a time domain QCL beam list of the reference signals.
  • the time domain QCL beam information list includes at least one QCL beam information having a QCL relationship with a reference signal antenna port on at least one time domain resource.
  • the network device may also add QCL beam information for the time-frequency domain resources in the time-frequency domain resource list used by the reference signal, and form a time-frequency domain QCL beam list of the reference signal.
  • the time-frequency domain QCL beam information list includes at least one QCL beam information having a QCL relationship with a reference signal antenna port on at least one time-frequency domain resource.
  • the time-frequency domain resource refers to a time domain resource and a frequency domain resource having a one-to-one correspondence.
  • the specific configuration manners of configuring the time domain list, the time domain QCL beam list, the frequency domain QCL beam list, and the time-frequency domain QCL beam list in the embodiment of the present application may be configured as follows: :
  • frequencyConfigList is used to indicate frequency domain location information
  • subframeConfigList is used to indicate time domain location information
  • time-frequencyConfigList is used to indicate time-frequency domain location information.
  • the QCL beam information is added to the configuration identifier (csi-RS-ConfigNZPId) of the NZP CSI-RS of the resource configuration information (CSI-RS-ConfigNZP), and the added QCL beam information is Qcl-beam-ConfigId-List or qcl-beam- RS ports-List. among them,
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List corresponds to frequencyConfigList
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List represents a frequency domain QCL beam list.
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List corresponds to subframeConfigList
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List represents a time domain QCL beam list.
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List corresponds to time-frequencyConfigList
  • Qcl-beam-ConfigId-List or qcl-beam-RS ports-List represents a time-frequency domain QCL beam list.
  • the network device sends at least one of a time domain QCL beam information list, a frequency domain QCL beam information list, and a time-frequency domain QCL beam information list to the terminal.
  • the terminal receives at least one of a time domain QCL beam information list, a frequency domain QCL beam information list, and a time frequency domain QCL beam information list sent by the network device.
  • the terminal may determine the QCL beam of the reference signal in different frequency bands, and then perform large-scale characteristic estimation of the channel on different frequency bands.
  • the terminal may determine the QCL beam of the reference signal in different subframes or time slots or other time units, and then in different subframes or time slots or other The large-scale characteristic estimation of the channel is performed on the time unit.
  • the terminal may determine the QCL beam of the reference signal in different time-frequency domain resources, and then perform large-scale characteristic estimation of the channel in different time-frequency domains.
  • the network device may send the configured RRC signaling to the terminal, and after receiving the RRC signaling, the terminal may determine the QCL beam information through the QCL beam information.
  • the network device may also configure the QCL beam information for the terminal in the following manner:
  • the network device may send the QCL beam information through the DCI information.
  • the QCL beam information may be added to the DCI information sent by the network device to the terminal, and the DCI with the QCL beam information added may be sent to the terminal.
  • the terminal receives the QCL beam information having a QCL relationship with the reference signal antenna port through the DCI.
  • the signaling configuration manner of adding QCL beam information in the DCI in the embodiment of the present application may be configured as follows:
  • QCL beam information is added, and the added QCL beam information is qcl_beam_ConfigId.
  • the qcl_beam_ConfigId may be a beam ID or a beam RS port.
  • the DCI including the QCL indication information that is sent by the network device to the terminal may be referred to as a second DCI.
  • the QCL beam information added in the second DCI in the embodiment of the present application refers to beam information having a QCL relationship with an antenna port of a reference signal used by the terminal to transmit data.
  • the terminal After the terminal sends the second DCI to the terminal, the terminal connects The received second DCI can accurately determine a beam having a QCL relationship with the reference signal antenna port of the currently transmitted data and the transmitted reference signal sent by the determined beam, and further, according to the determined transmitted reference signal, Perform large-scale characteristic estimation of the channel.
  • first, second and the like in the specification and claims of the embodiments of the present application and the drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the order, for example, the first DCI and the second DCI referred to in the foregoing embodiments of the present application are only for convenience of description and distinguishing different thresholds, and do not constitute a limitation on DCI. It is to be understood that the data so used may be interchanged where appropriate, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the terminal and the network device.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 5 shows a schematic structural diagram of an apparatus 100 for transmitting QCL information provided by an embodiment of the present application.
  • the apparatus 100 for transmitting QCL information includes a processing unit 101 and a transmitting unit 102.
  • the processing unit 101 is configured to determine QCL beam information, where the QCL beam information includes beam information having a quasi-co-located QCL relationship with the reference signal antenna port.
  • the sending unit 102 is configured to send the QCL beam information determined by the processing unit 101.
  • the QCL beam information may include at least one of beam identification information and beam antenna port information.
  • the sending unit 102 may send the QCL beam information in the following manner:
  • the QCL beam information includes at least one group of QCL beam information, transmitting the at least one set of QCL beam information by using radio resource control RRC signaling.
  • the QCL beam information may be set in the data resource mapping QCL configuration information and/or the non-zero power channel state information reference signal configuration information.
  • the processing unit 101 may determine, according to the time domain resource and/or the frequency domain resource used by the reference signal antenna port to transmit the reference signal, the QCL with the reference signal antenna port on the time domain resource and/or the frequency domain resource. Relational QCL beam information.
  • the sending unit 102 sends the QCL beam information that has a QCL relationship with a reference signal antenna port on a time domain resource and/or a frequency domain resource.
  • the sending unit 102 may send at least one of a time domain QCL beam information list, a frequency domain QCL beam information list, and a time-frequency domain QCL beam information list.
  • the time domain QCL beam information list includes at least one QCL beam information having a QCL relationship with a reference signal antenna port on at least one time domain resource.
  • the frequency domain QCL beam information list includes at least one QCL beam information having a QCL relationship with a reference signal antenna port on at least one frequency domain resource.
  • the time-frequency domain QCL beam information list includes reference signals on at least one time-frequency domain resource
  • the antenna port has at least one QCL beam information in a QCL relationship.
  • the sending unit 102 may further send the QCL beam information that has a QCL relationship with the reference signal antenna port by using downlink control information DCI.
  • the beam identification information is beam synchronization signal identification information.
  • the beam is a beam identification reference signal, a beam reference signal, a beam scanning reference signal or a beam synchronization signal.
  • the processing unit 101 may be a processor or a controller.
  • the sending unit 102 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the apparatus 100 for transmitting QCL information may be the network device shown in FIG. 6.
  • the network device shown in FIG. 6 may be a base station.
  • FIG. 6 is a schematic structural diagram of a network device 1000 according to an embodiment of the present application.
  • network device 1000 includes a processor 1001 and a transmitter 1002.
  • the processor 1001 may also be a controller, and is represented as “controller/processor 1001” in FIG. 6 .
  • the processor 1001 is configured to support a network device to perform the functions of the network device involved in the QCL beam information transmission and reception method.
  • the transmitter 1002 is configured to support a function of a network device to transmit QCL beam information.
  • the network device can also include a memory 1003 and a bus 1004 for coupling with the processor 1001 that retains program instructions and data necessary for the network device.
  • the processor 1001, the memory 1003, and the transmitter 1002 are connected by a bus system 1004.
  • the memory 1003 is configured to store an instruction
  • the processor 1001 is configured to execute an instruction stored by the memory 1003 to control the transmitter 1002 to send a signal. In the above method, the step of the network device performing the corresponding function
  • the device 100 for transmitting the QCL information and the network device 1000 are referred to the foregoing method or other embodiments. The description of these contents is not described here.
  • FIG. 7 is a schematic structural diagram of an apparatus 200 for receiving QCL information provided by an embodiment of the present application.
  • the apparatus 200 for receiving QCL information includes a receiving unit 201 and a processing unit 202.
  • the receiving unit 201 is configured to receive QCL beam information that is sent by the network device, where the QCL beam information includes beam information that has a QCL relationship with the reference signal antenna port.
  • the processing unit 202 is configured to determine, according to beam information of the QCL beam information received by the receiving unit 201 that has a QCL relationship with the reference signal antenna port, a beam having a QCL relationship with the reference signal antenna port, and Determining the transmitted reference signal transmitted through the beam, and performing channel large-scale characteristic estimation according to the determined transmitted reference signal.
  • the processing unit 202 is configured to determine, according to beam information that is QCL-related to the reference signal antenna port included in the QCL beam information received by the receiving unit 201, a beam having a QCL relationship with the reference signal antenna port. .
  • the processing unit 202 is further configured to:
  • the receiving unit 201 receives the at least one group of QCL beam information sent by the network device by using RRC signaling.
  • the QCL beam information may be set in the data resource mapping QCL configuration information and/or the non-zero power channel state information reference signal configuration information.
  • the QCL beam information having a QCL relationship with the reference signal antenna port is determined by the network device according to the time domain resource and/or the frequency domain resource used for transmitting the reference signal by the reference signal antenna port.
  • the receiving unit 201 receives the QCL beam information that is sent by the network device and has a QCL relationship with the reference signal antenna port on the time domain resource and/or the frequency domain resource.
  • the receiving unit 201 may receive at least one of a time domain QCL beam information list, a frequency domain QCL beam information list, and a time frequency domain QCL beam information list sent by the network device.
  • the receiving unit 201 may receive, by using DCI, the QCL beam information that has a QCL relationship with the reference signal antenna port.
  • the beam identification information is beam synchronization signal identification information.
  • the beam is a beam identification reference signal, a beam reference signal, a beam scanning reference signal or a beam synchronization signal.
  • the processing unit 202 may be a processor or a controller.
  • the receiving unit 201 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the apparatus 200 for receiving QCL information may be the terminal shown in FIG. 8.
  • FIG. 8 is a schematic structural diagram of a terminal 2000 according to an embodiment of the present application.
  • the terminal device 2000 includes a receiver 2001 and a processor 2002.
  • the receiver 2001 is configured to support the terminal to receive QCL beam information transmitted by the network device.
  • the processor 2002 is configured to support a terminal to perform the functions of the terminal involved in the above-described number QCL information transmission and reception method.
  • the terminal may also include a memory 2003 and a transmitter 2004 for coupling with the processor 2002, which stores program instructions and data necessary for the terminal device.
  • the transmitter 2004 is for transmitting signals.
  • the device 200 for receiving the QCL information and the terminal 2000 are referred to the foregoing method or other embodiments. The description of these contents is not described here.
  • the network device and the terminal are not limited to the foregoing structure.
  • the terminal may further include a display device, an input/output interface, and the like, and all the terminals that can implement the embodiments of the present application are within the protection scope of the embodiments of the present application.
  • the network device may also include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all network devices that can implement the embodiments of the present application are within the protection scope of the embodiments of the present application.
  • the processor involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory may be integrated in the processor or may be separately provided from the processor.
  • the functions of the receiver and the transmitter can be implemented by a dedicated chip through the transceiver circuit or the transceiver.
  • the processor can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • program code that implements processor, receiver, and transmitter functions is stored in a memory that implements the functions of the processor, receiver, and transmitter by executing code in memory.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and one or more terminals.
  • the embodiment of the present application further provides a computer storage medium for storing some instructions. When the instructions are executed, any method involved in the foregoing terminal or network device may be completed.

Abstract

本申请公开了一种通信方法、装置、网络设备及终端。确定准共址QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。发送所述QCL波束信息。终端接收QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。所述终端根据所述QCL波束信息中包括的与参考信号天线端口具有QCL关系的波束信息,确定与所述参考信号天线端口具有QCL关系的波束。

Description

通信方法、装置、网络设备及终端
本申请要求于2016年11月4日提交中国专利局、申请号为201610981779.9、申请名称为“准共址信息的发送接收方法、装置、网络设备及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、网络设备及终端。
背景技术
随着近年来智能移动终端等设备的大量普及,对系统的吞吐量提出了越来越高的需求。在频谱资源愈发紧张的情况下,支持多点协作传输(Coordination multiple point,CoMP)的通信模式应运而生。
在CoMP通信模式下,信号可能来自多个不同的传输点(Transmitting receiving point,TRP),为保证信号的正确接收和解调,引入了具有准共址(Quasi-Co-Location,QCL)关系的参考信号概念,比如小区级参考信号(Cell-specific Reference Signal,CRS),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),终端可根据CRS/CSI-RS估计大尺度特征参数,所述大尺度特征参数包括时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延等中的一项或者多项。例如,在长期演进(Long Term Evolution,LTE)通信系统的协议版本11(Release11)中,为了支持CoMP,引入了天线端口QCL。天线端口QCL表征天线端口发送出的信号会经过相同的大尺度衰落,具有相同的大尺度特征参数。例如,当称天线端口A和天线端口B之间满足QCL关系时,是指在天线端口A上的信号估计得到的信道大尺度特征参数同样适合于天线端口B上的信号。
LTE系统中,为了支持终端从服务基站接收物理下行控制信道(Physical Downlink Control Channel,PDCCH),从协作基站接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH),R11中定义了一种新的传输模式(传输模式10),主要引入了物理下行共享信道数据资源映射和准共址指示(PDSCH RE Mapping and Quasi-Co-Location Indicator,PQI),以指示发送PDSCH的基站,以及与其对应的信道大尺度特征一致的天线端口。在LTE系统中,针对同一TRP,终端接收到的PDSCH对应的解调参考信号(Demodulation Reference Symbol,DMRS)所有端口都是QCL的,即天线端口7-端口14是准共址的。故终端根据PQI,结合无线资源控制(Radio Resource Control,RRC)配置的PDSCH数据资源单元映射QCL配置信息,可以得知解调该PDSCH需要使用的DMRS对应的无线信道参数。
然而,在第五代(5G)通信系统中,同一TRP可能会配置多天线面板的大规模阵列结构,不同的天线面板形成的不同波束的大尺度特性不同(大尺度特性除了时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延之外,还包括接收到达角(angle of arrival,AOA)、到达角扩展(angle of arrival spread,AAS)、发射离开角(angle of departure,AOD)、离开角扩展(angle of departure spread,ADS)和空间相关性(spatial correlation)等),故针对同一TRP,发送信号的天线端口可能是非QCL的,按照上述PQI指示方式配置QCL信息的方式,终端并不能根据该信息估计大尺度特征参数。不同波束的大尺度特性参数不 同可以指上述大尺度特性参数中的一项或者多项不同。
故,如何提供一种适用于5G通信系统的QCL信息配置方法,急需解决。
发明内容
本申请实施例提供一种通信方法及装置,具体的,提供一种准共址信息的发送接收方法、装置、网络设备及终端,以使终端可以确定与参考信号天线端口具有QCL关系的波束,并准确进行信道大尺度特性估计。
第一方面,提供一种QCL信息发送接收方法,在该方法中,网络设备向终端发送确定的QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。终端接收到QCL波束信息后,根据QCL指示信息中包含的与参考信号天线端口具有QCL关系的波束信息,可以确定与所述参考信号天线端口具有QCL关系的波束,进而可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。
其中,所述参考信号可以是解调参考信号,也可以是信道状态信息参考信号,或者其他参考信号,在此不做限制。QCL波束信息可以是波束标识,也可以是波束天线端口信息或者其他与波束相关的信息。其中,波束标识信息可以是波束同步信号标识。所述波束可以包括发射波束和接收波束。所述发射波束是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。所述接收波束是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。所述波束可以是波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号等与波束相关的信号。可选的,前述确定与所述参考信号天线端口具有QCL关系的波束既可以指前述物理波束,也可以指前述提到的波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号等与波束相关的信号。进一步的,通过所述波束发送的已发送参考信号可以是通过前述物理波束发送的波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号等与波束相关的信号中的一个或多个,也可以指与所述波束信息对应的波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号等与波束相关的信号中的一个或多个。
一种可能的设计中,所述网络设备通过无线资源控制RRC信令发送QCL波束信息。
其中,所述QCL波束信息包括至少一组QCL波束信息。网络设备通过RRC信令向终端发送至少一组QCL波束信息,并可通过下行控制信息指示终端当前所用参考信号适用的QCL波束信息,当前所用参考信号适用的QCL波束信息即指与参考信号天线端口具有QCL关系的波束信息。
本申请实施例中在RRC信令中原有的QCL指示信息中增加QCL波束信息,可采用如下两种方式实现:
一种实施方式中,在数据资源映射QCL配置信息中增加QCL波束信息,以在物理层协议中增加用于说明在RRC信令中增加了QCL波束信息的参数信息。
另一种实施方式中,在非零功率CSI-RS的配置参数中增加QCL波束信息,以指示CSI-RS的QCL波束信息。
另一种可能的设计中,若参考信号为DMRS,则与所述DMRS天线端口具有QCL关系的QCL波束信息为非零功率CSI-RS的配置参数标识对应的CSI-RS资源配置信息中包括的QCL波束信息。
又一种可能的设计中,网络设备可根据参考信号天线端口发送参考信号所用时域资源和/或频域资源,确定与所述时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息,并向终端发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
其中,网络设备可向终端发送时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个。终端接收到网络设备发送的频域QCL波束信息列表,可确定参考信号在不同频段上的QCL波束,在不同频段上进行信道的大尺度特性估计。终端接收到网络设备发送的时域QCL波束列表,可确定参考信号在不同子帧或者时隙或者其他时间单位上的QCL波束,进而在不同子帧或者时隙或者其他时间单位上进行信道的大尺度特性估计。终端接收到网络设备发送的时频域QCL波束信息列表,可确定参考信号在不同时频域资源上的QCL波束,进而在不同时频域上进行信道的大尺度特性估计。
又一种可能的设计中,网络设备可通过DCI信息发送QCL波束信息。
其中,网络设备通过DCI信息发送的QCL波束信息可以是与终端当前传输数据所用参考信号的天线端口具有QCL关系的波束信息。终端将DCI信息发送给终端后,终端根据接收到的DCI信息,可以准确的确定出与当前传输数据的参考信号天线端口具有QCL关系的波束以及该确定出的波束发送的已发送参考信号,进而可根据确定出的已发送参考信号,进行信道大尺度特性估计。例如,可根据所确定的与所述参考信号天线端口具有QCL关系的波束,确定所述参考信号天线端口的大尺度特性。
第二方面,提供一种通信装置,所述通信装置具有实现上述第一方面中涉及的网络设备的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,所述通信装置包括处理单元和发送单元,处理单元和发送单元的功能可以和各方法步骤相对应,在此不予赘述。
第三方面,提供一种通信装置,所述准共址信息的接收设备具有实现上述第一方面中涉及的终端的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
一种可能的设计中,所述通信装置包括接收单元和处理单元,接收单元和处理单元的功能可以和各方法步骤相对应,在此不予赘述。
第四方面,提供一种网络设备,所述网络设备包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述网络设备用于完成如第一方面中所描述的网络设备所涉及的任意一种方法。
第五方面,提供一种终端,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述终端用于完成如第一方面中所描述的终端所涉及的任意一种方法。
第六方面,提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述终端或网络设备所涉及的任意一种方法。
第七方面,提供一种通信系统,包括终端和网络设备,所述网络设备为前述第四方面涉及的网络设备,所述终端为前述第五方面涉及的终端。
本申请提供的网络设备具有实现上述方法方面中网络设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述网络设备包括一个或多个处理器,所述一个或多个处理器被配置为支持所述网络设备执行上述方法中相应的功能。可选的,还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序和/或指令,进一步的,还可以保存数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。当所述处理器执行所述存储器中的程序和/或指令时,所述网络设备执行上述方法中相应的步骤。
在一种可能的设计中,上述网络设备包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述网络设备执行上述方法中相应的功能。例如,确定QCL波束信息。所述通信单元用于支持所述网络设备与其他设备通信,实现接收和/或发送功能。例如,发送所述处理器生成的QCL波束信息。
可选的,所述网络设备还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述网络设备可以为基站,gNB或TRP等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述网络设备还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
本申请还提供一种装置,该装置具有实现上述方法方面中终端行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器,所述一个或多个处理器被配置为支持所述装置执行上述方法中终端相应的功能。可选的,还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序和/或指令,进一步的,还可以保存数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。当所述处理器执行所述存储器中的程序和/或指令时,所述装置执行上述方法中相应的步骤。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端相应的功能。例如,确定与参考信号天线端口具有QCL关系的波束。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收QCL波束信息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
本申请实施例中,网络设备向终端发送确定的QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。终端接收到QCL波束信息后,根据QCL指示信息中包含的与参考信号天线端口具有QCL关系的波束信息,可以确定与所述参考信号天线端口具有QCL关系的波束,进而可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。
附图说明
图1A至图1B为本申请实施例中一个TRP内包括4个天线面板形成波束的示意图;
图2为网络设备和终端之间进行通信的示意图;
图3为网络设备和终端内部结构的简化示意图;
图4为本申请实施例提供的配置QCL信息的实施方法流程图;
图5为本申请实施例提供的用于发送QCL信息的设备结构示意图;
图6为本申请实施例提供的网络设备的结构示意图;
图7为本申请实施例提供的用于接收QCL信息的设备结构示意图;
图8为本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,可以称之为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、无线保真(Wireless Fidelity,WIFI)接入点(Access Point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)等。举例而言,网络设备可以为5G,如NR(new radio)系统中的基站gNB,基带单元(BBU),或,数据单元(DU,data unit)。其中,在一些部署中,gNB可以包括控制单元(CU,control unit)和DU,还可以进一步包括RU(射频单元,radio unit)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现RRC(无线资源控制,radio resource control),PDCP(packet data convergence protocol,分组数据汇聚层协议)层的功能,DU实现RLC(radio link control,无线链路控制)、MAC(media access control,媒体接入控制)和PHY(physical)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU,或者,DU+RU,发送的。
2)、终端,是一种向用户提供语音和/或数据连通性的设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS), 终端设备(Terminal Equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等等。
3)、交互,本申请中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
4)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
5)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例提供的配置准共址信息的方法、网络设备及终端,可应用于新无线(New Radio,NR)通信技术中,所述NR是指新一代无线接入网络技术,可以应用在未来演进网络,如5G通信系统中。本申请实施例提供的配置准共址信息的方法、网络设备及终端也可应用于无线保真(Wireless Fidelity,WIFI)和LTE等无线通信系统中,还可以应用于固网等有线网络中。
可以理解的是,无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(wireless local area networks,WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本申请实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本申请实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络 设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
本申请实施例以下以应用于5G通信系统中为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
在5G通信系统中,同一TRP可能会配置多天线面板的大规模阵列结构,不同的天线面板会形成多个波束用于发送信号,因此发送信号的不同波束的信道特征不一样,这导致了天线端口号相同的情况下QCL是不同。在不同的波束下网络设备可能会用相同的天线端口号发送信号,而且网络设备可能会针对不同的波束发送不同的波束信号,所述波束信号比如可以是波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号等。故,在多天线面板的5G通信系统中,若仍采用现有的天线端口QCL关系指示方式,并不能准确指示与当前发送信号具有QCL关系的已发送信号,进而不能准确确定当前发送信号的大尺度特性。例如图1A和图1B示出了一个TRP内包括4个天线面板形成波束的示意图。图1A中,四个天线面板中的每个天线面板独立形成波束,每个天线面板形成的波束不同,四个不同的波束发送信号的天线端口可能是非QCL的。图1B中,四个天线面板一起形成波束,但是由于对四个天线面板形成的波束进行了不同的预编码使得各波束的方向性不同,此时发送信号的天线端口也有可能是非QCL的。
本申请实施例提供一种配置QCL信息的方法,在该方法中,网络设备向终端发送确定的QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。终端接收到QCL波束信息后,根据QCL指示信息中包含的与参考信号天线端口具有QCL关系的波束信息,可以确定与所述参考信号天线端口具有QCL关系的波束,进而可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。其中,大尺度特性可以为时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、平均信道增益(average gain)和平均时延(average delay),接收到达角(angle of arrival,AOA)、到达角扩展(angle of arrival spread,AAS)、发射离开角(angle of departure,AOD)、离开角扩展(angle of departure spread,ADS)、空间接收参数(spatial RX parameters)和空间相关性(spatial correlation)中的一项或多项。
需要说明的是,本申请实施例中涉及的参考信号包括但不限于解调参考信号(Demodulation Reference Symbol,DMRS),也可以是信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),或者其他参考信息,在此不做限制。
可以理解的是,本申请实施例中涉及的波束(beam),是指由至少一个天线端口所发射或者接收数据进行幅度和/或相位的加权来构成波束,也可以通过其他方法,例如调整天线单元的相关参数来构成波束。所述波束可以包括发射波束和接收波束。所述发射波束是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。所述接收波束是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。
由于采用了多组天线,从发射端到接收端无线信号对应同一条空间流(spatial streams),是通过多条路径传输的。在接收端采用一定的算法对多个天线收到信号进行处理,就可以明显改善接收端的信噪比。即使在接收端较远时,也能获得较好的信号质量。
本申请实施例中涉及的波束可以是波束识别参考信号、波束参考信号、波束扫描参考信号或者波束同步信号。
需指出的是,本申请实施例中的方法或装置可以应用于网络设备和终端(如基站和用户设备)之间,也适用于网络设备和网络设备(如宏基站和微基站,宏基站和微基站,微基站和微基站)通信,或者终端设备和终端设备(如终端与终端(Device to Device,D2D)场景)通信。换言之,本申请实施例中的QCL信息发送接收方法既适用于发送信号时的波束的QCL指示信息,也适用于接收信号时的波束的QCL指示信息。在本申请以下所有实施例中,以网络设备和终端之间的通信为例进行描述。
图2所示为网络设备和终端构成的一种通信系统的结构示意图。
图3所示为网络设备和终端的内部结构的简化示意图。
示例的网络设备可以包括天线阵列,双工器,发信机(Transmit,TX)和收信机(Receive,RX)(有时,TX和RX统称为收发信机(Transmit Receive,TRX)),以及基带处理部分。其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器(Power Amplifier,PA),数模转换器(Digital to Analog Converter,DAC)和变频器,通常RX可以包括低噪放(Low Noise Amplifier,LNA),模数转换器(Analog to Digital Converter,ADC)和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,网络设备还可以包括控制部分,用于进行多用户调度和资源分配、导频调度、用户物理层参数配置等。
示例的终端可以包括天线,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。在图2中,终端具有单天线。可以理解的是,终端也可以具有多天线(即天线阵列)。
其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括PA,DAC和变频器,通常RX可以包括LNA,ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,终端也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(Channel State Information,CSI)、判断下行数据包是否接收成功等等。
图4示出了本申请实施例提供的配置准共址信息的方法流程示意图,如图4所示,包括:
S101:网络设备确定QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有准共址QCL关系的波束信息。
本申请实施例中所述QCL波束信息可以是波束标识,也可以是波束天线端口信息或者其他与波束相关的信息。
本申请实施例中,QCL波束信息是指与参考信号天线端口具有QCL关系的波束信息。 该QCL波束信息可以是多个,也可以是一个。
S102:网络设备发送QCL波束信息,终端接收所述QCL波束信息。
S103:终端根据QCL波束信息中包括的与参考信号天线端口具有准共址QCL关系的波束信息,可以确定与所述参考信号天线端口具有QCL关系的波束。
进一步的,可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。
可以理解的是,本申请实施例以网络设备配置与参考信号天线端口具有准共址QCL关系的波束信息,并发送该波束信息对应的波束及该参考信号天线端口对应的参考信号,终端接收波束信息,波束及参考信号(终端根据所述波束确定所接收的参考信号的信道大尺度特性)为例进行的描述。
在另一种可能的设计中,网络设备配置与参考信号天线端口具有准共址QCL关系的波束信息,终端接收该波束信息,发送该波束信息对应的波束及该参考信号天线端口对应的参考信号。这样,网络设备可以根据所述波束确定所接收的所述参考信号的信道大尺度特性。
在另一种可能的设计中,网络设备配置与参考信号天线端口具有准共址QCL关系的波束信息,并发送该波束信息对应的波束;终端接收该波束信息及波束,并发送该参考信号天线端口对应的参考信号。这样,终端可以根据所述波束确定所发送的所述参考信号的信道大尺度特性。这种设计可以应用于信道具有互易性的场景。
在另一种可能的设计中,网络设备配置与参考信号天线端口具有准共址QCL关系的波束信息;终端接收该波束信息,并发送该波束信息对应的波束;网络设备发送该参考信号天线端口对应的参考信号。这样,网络设备可以根据所述波束确定所发送的所述参考信号的信道大尺度特性。这种设计可以应用于信道具有互易性的场景。
在另一种可能的设计中,终端向网络设备发送与参考信号天线端口具有准共址QCL关系的波束信息,并发送该波束信息对应的波束及该参考信号天线端口对应的参考信号,网络设备接收该波束信息,该波束信息对应的波束及该参考信号天线端口对应的参考信号。这样,网络设备可以根据所述波束确定所接收的所述参考信号的信道大尺度特性。
在另一种可能的设计中,在信道具有互易性的情况中,终端向网络设备发送与参考信号天线端口具有准共址QCL关系的波束信息,并发送该波束信息对应的波束,网络设备接收该波束信息及该波束信息对应的波束,并发送该参考信号天线端口对应的参考信号。这样,网络设备可以根据所述波束确定所发送的所述参考信号的信道大尺度特性。这种设计可以应用于信道具有互易性的场景。
在另一种可能的设计中,与参考信号天线端口具有准共址QCL关系的波束信息为协议预定义的,这种情况下,终端和网络设备中具有参考信号天线端口与波束信息具有QCL关系的对应信息(可以不用配置)。该波束信息对应的波束可以由网络设备发给终端,也可以由终端发给网络设备,该参考信号天线端口对应的参考信号可以由网络设备发给终端,也可以由终端发给网络设备。
本申请实施例中的方案也可以应用于以上可能的设计中。本申请实施例中提供的相应装置(如网络设备、终端、通信芯片等),也可以有相应的变化,在此不予赘述。
本申请实施例以下将针对网络设备为终端配置QCL波束信息的具体实现过程进行说明。
本申请实施例中,网络设备可通过向终端发送的RRC信令配置QCL波束信息,例如可在RRC信令中配置包含有QCL波束信息的QCL指示信息。终端通过RRC信令接收网络设备发送的所述QCL波束信息。终端解析RRC信令得到QCL波束信息,根据QCL波束信息中包含的与参考信号天线端口具有QCL关系的波束信息,可以确定与所述参考信号天线端口具有QCL关系的波束,并进行信道大尺度特性估计。一种可能的设计中,可根据所确定的与参考信号天线端口具有QCL关系的波束,确定参考信号天线端口的大尺度特性。
具体的,本申请实施例中可在RRC信令中原有的QCL指示信息中增加QCL波束信息。其中,所述原有QCL指示信息是指应用本申请实施例提供的QCL信息配置方法之前所配置的不包含有QCL波束信息的QCL指示信息。例如,RRC信令中原有QCL指示信息的信令可采用如下方式配置:
Figure PCTCN2017109383-appb-000001
本申请实施例中,在上述原有QCL指示信息的信令中PDSCH-RE-MappingQCL-Config表示物理下行共享信道数据资源映射QCL配置参数。pdsch-RE-MappingQCL-ConfigId-r11表示物理下行共享信道数据资源映射QCL配置参数中包括物理下行共享信道数据资源映射QCL配置标识。PDSCH-RE-MappingQCL-ConfigId-r11表示物理下行共享信道数据资源映射QCL配置标识的取值为PDSCH-RE-MappingQCL-ConfigId-r11。
qcl-CSI-RS-ConfigNZPId表示与数据天线端口具有QCL关系的非零功率(Non Zero Power,NZP)CSI-RS的配置标识。
本申请实施例中,原有QCL指示信息中增加的QCL波束信息可以是波束标识信息、波束天线端口信息或者其他与波束相关的信息。其中,波束标识信息可以为波束同步信号标识信息。本申请实施例中,在RRC信令中原有的QCL指示信息中增加QCL波束信息的信令可采用如下方式配置:
Figure PCTCN2017109383-appb-000002
上述RRC信令中的QCL指示信息的信令相对原有QCL指示信息的信令,增加了QCL波束信息,增加的QCL波束信息为Qcl-beam-ConfigId或者qcl-beam-RS ports,其中,Qcl-beam-ConfigId表示具有QCL关系的波束标识信息,qcl-beam-RS ports表示具有QCL关系的波束天线端口信息。
可选的,本申请实施例中可在原有QCL指示中增加多组(至少一组)QCL波束信息,以在同一TRP内为参考信号配置多组具有QCL关系的QCL波束信息。
本申请实施例中若网络设备通过RRC信令配置并向终端发送了至少一组QCL波束信息,则网络设备可通过下行控制信息(Downlink Control Information,DCI)指示终端当前所用参考信号适用的QCL波束,当前所用参考信号适用的QCL波束即指与参考信号天线端口具有QCL关系的波束信息。终端通过RRC信令接收网络设备发送的所述至少一组QCL波束信息,并依据所述DCI指示确定当前所用参考信号适用的QCL波束。
本申请实施例为描述方便,可将用于指示终端QCL波束信息的DCI,称为第一DCI。
可以理解的是,本申请实施例中在RRC信令中原有的QCL指示信息中增加QCL波束信息,可采用如下两种方式实现:
一种实施方式中,在数据资源映射(PDSCH RE Mapping)QCL配置信息中增加QCL波束信息,以在物理层协议中增加用于说明在RRC信令中增加了QCL波束信息的参数信息。
另一种实施方式中,在非零功率(Non Zero Power,NZP)CSI-RS的配置参数中增加QCL波束信息,以指示CSI-RS的QCL波束信息。
本申请实施例以下将结合实际应用对上述两种通过RRC信令发送QCL波束信息的具体实施过程进行举例说明。
本申请实施例中首先以参考信号为DMRS为例,对在数据资源映射QCL配置参数中增加QCL波束信息的实施过程进行说明。
本申请实施例中,网络设备可在PDSCH RE Mapping与PDSCH天线端口QCL的配置参数中设置与终端发送数据的DMRS天线端口具有QCL关系的QCL波束信息,所述QCL波束信息包括QCL波束标识、QCL波束天线端口信息或者其他与波束相关的信息。网络设备通过向终端发送用于指示与终端发送数据的DMRS天线端口具有QCL关系的QCL波束信息,使终端获取与发送数据的DMRS天线端口具有QCL关系的波束,进而可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。
本申请实施例中增加了QCL波束信息后的PDSCH RE Mapping与PDSCH天线端口QCL的配置参数示例如下,其中,增加的QCL波束信息为Qcl-beam-ConfigId或者qcl-beam-RS ports,其中Qcl-beam-ConfigId表示具体QCL关系的波束标识信息,qcl-beam-RS ports表示具有QCL关系的波束的天线端口信息:
CRS天线端口数:crs-PortsCount-r11
-CRS频偏:crs-FreqShift-r11
-多播/组播/单频网络子帧配置:mbsfn-SubframeConfigList-r11
-零功率(Zero Power,ZP)CSI-RS配置标识:csi-RS-ConfigZPId-r11
-pdsch起始点:pdsch-Start-r11
-与数据天线端口具有QCL关系的NZPCSI-RS的配置标识:qcl-CSI-RS-ConfigNZPId-r11
-QCL波束信息:Qcl-beam-ConfigId(qcl-beam-RS ports)
进一步的,由于原有PDSCH RE Mapping与PDSCH天线端口QCL的配置参数的个数有限,可能不足以满足在PDSCH RE Mapping与PDSCH天线端口QCL的配置参数中增加QCL波束信息的需求,故需要扩充DCI中用于指示PDSCH RE Mapping与PDSCH天线端口QCL的配置参数的比特位,以保证能有足够的比特位指示增加的QCL波束信息。例如,假设网络设备目前可以为终端配置四种不同的PDSCH RE Mapping与PDSCH天线端口QCL的配置参数集合,如果当前网络设备可以形成4个波束,则每个波束下可以有4个参数集合,即总共需要16个PDSCH RE Mapping与PDSCH天线端口QCL的配置参数。因此,需要扩充DCI中用于指示PDSCH RE Mapping与PDSCH天线端口QCL的配置参数指示域的比特位为至少4个比特,以指示16个PDSCH RE Mapping与PDSCH天线端口QCL的配置参数。例如,可采用如下表1所示DCI指示域的比特位为4个比特的指示方式指示PDSCH RE Mapping与PDSCH天线端口QCL的配置参数:
Figure PCTCN2017109383-appb-000003
Figure PCTCN2017109383-appb-000004
表1
本申请实施例以下以参考信号为CSI-RS为例,对在NZP CSI-RS的配置参数中增加QCL波束标识信息或者QCL波束天线端口信息的过程进行说明。
本申请实施例中可在RRC信令的QCL指示信息中的NZP CSI-RS资源配置信息(CSI-RS-ConfigNZP)中增加QCL波束信息,该QCL波束信息用于指示与CSI-RS天线端口具有QCL关系的QCL波束标识信息、QCL波束天线端口信息或者其他与波束相关的信息,以实现对终端所用参考信号(例如CSI-RS)的QCL波束信息的指示。本申请实施例中可以在NZP CSI-RS资源配置信息中增加QCL波束信息,具体的信令可采用如下配置:
Figure PCTCN2017109383-appb-000005
Figure PCTCN2017109383-appb-000006
上述在NZP CSI-RS资源配置信息(CSI-RS-ConfigNZP)的NZP CSI-RS的配置标识(csi-RS-ConfigNZPId)中增加了QCL波束信息,增加的QCL波束信息信令为Qcl-beam-ConfigId或者qcl-beam-RS ports,其中Qcl-beam-ConfigId表示具体QCL关系的波束标识信息,qcl-beam-RS ports表示具有QCL关系的波束的天线端口信息。
进一步的,目前网络设备通过RRC信令为终端针对一个TRP会配置多个CSI-RS资源配置信息,每个CSI-RS资源配置信息会对应一个CSI-RS-ConfigNZPId,而且会指示该CSI-RS资源的天线端口数、资源配置、子帧配置、加扰标识、以及CSI-RS与CRS的QCL关系等等。终端根据CSI-RS天线端口和CRS天线端口的QCL对应关系,可得到DMRS对应的CRS天线端口,进而可确定CRS信号,并进行信道大尺度的估计。故,本申请实施例中,若参考信号为DMRS,则可通过增加了QCL波束信息的CSI-RS-ConfigNZPId对应的CSI-RS资源配置信息指示DMRS的QCL波束信息,与所述DMRS天线端口具有QCL关系的QCL波束信息为CSI-RS-ConfigNZPId对应的CSI-RS资源配置信息中包括的QCL波束信息。终端接收到增加了QCL波束信息的CSI-RS-ConfigNZPId后,可根据CSI-RS-ConfigNZPId对应的CSI-RS资源配置信息中的QCL波束信息,确定出与DMRS具有QCL关系的波束信息,进而可确定波束信号,并进行信道大尺度特性的估计。具体的举例说明,增加了QCL波束信息的CSI-RS-ConfigNZPId对应的CSI-RS资源配置信息可以通过RRC信令发送,而与所述DMRS天线端口具有QCL关系的QCL波束信息可以通过DCI指示PDSCH RE Mapping与PDSCH天线端口QCL的配置参数指示域中指示的PDSCH RE Mapping与PDSCH天线端口QCL的配置参数中的CSI-RS-ConfigNZPId确定。
可选的,本申请实施例中网络设备可根据参考信号天线端口发送参考信号所用时域资源和/或频域资源,确定与所述时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息,并向终端发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。所述终端接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
具体的,网络设备可针对参考信号所用频域列表中的频域资源,增加QCL波束信息,并形成参考信号的频域QCL波束列表。其中,所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。网络设备也可针对参考信号所用时域列表中的时域资源,增加QCL波束信息,并形成参考信号的时域QCL波束列表。其中,所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。网络设备还可针对参考信号所用时频域资源列表中的时频域资源,增加QCL波束信息,并形成参考信号的时频域QCL波束列表。其中,所述时频域QCL波束信息列表包括与至少一个时频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。其中,所述时频域资源是指具有一一对应关系的时域资源和频域资源。
以CSI-RS信令配置为例,本申请实施例中配置有时域列表、时域QCL波束列表、频域QCL波束列表和时频域QCL波束列表的信令的具体配置方式可采用如下方式配置:
Figure PCTCN2017109383-appb-000007
Figure PCTCN2017109383-appb-000008
上述CSI-RS信令中,frequencyConfigList用于指示频域位置信息,subframeConfigList用于指示时域位置信息,time-frequencyConfigList用于指示时频域位置信息。在NZP CSI-RS 资源配置信息(CSI-RS-ConfigNZP)的NZP CSI-RS的配置标识(csi-RS-ConfigNZPId)中增加了QCL波束信息,增加的QCL波束信息为Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List。其中,
当Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List与frequencyConfigList对应时,Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List表示频域QCL波束列表。或者
当Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List与subframeConfigList对应时,Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List表示时域QCL波束列表。或者
当Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List与time-frequencyConfigList对应时,Qcl-beam-ConfigId-List或者qcl-beam-RS ports-List表示时频域QCL波束列表。
本申请实施例中,所述网络设备向终端发送时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个。所述终端接收所述网络设备所发送的时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个。当网络设备将频域QCL波束信息列表发送给终端后,终端可确定参考信号在不同频段上的QCL波束,进而在不同频段上进行信道的大尺度特性估计。当网络设备将包含有时域QCL波束列表的QCL指示信息发送给终端后,终端可确定参考信号在不同子帧或者时隙或者其他时间单位上的QCL波束,进而在不同子帧或者时隙或者其他时间单位上进行信道的大尺度特性估计。当网络设备将时频域QCL波束信息列表发送给终端后,终端可确定参考信号在不同时频域资源上的QCL波束,进而在不同时频域上进行信道的大尺度特性估计。
本申请实施例中,网络设备采用上述方式配置了包含QCL波束信息的RRC信令后,可向终端发送配置的RRC信令,终端接收到RRC信令后,可通过其中的QCL波束信息,确定与参考信号天线端口具有QCL关系的波束,进而可确定出通过所述波束发送的已发送参考信号,根据确定出的已发送参考信号,进行信道大尺度特性估计。
本申请实施例中,网络设备还可采用如下方式为终端配置QCL波束信息:
本申请实施例中,网络设备可通过DCI信息发送QCL波束信息。
具体的,本申请实施例中可在网络设备向终端发送的DCI信息中增加QCL波束信息,并向终端发送增加了QCL波束信息的DCI。终端通过DCI接收所述与参考信号天线端口具有QCL关系的QCL波束信息。本申请实施例中在DCI中增加QCL波束信息的信令配置方式,可采用如下方式配置:
The following information is transmitted by means of the DCI format 2D:
PDSCH RE Mapping and Quasi-Co-Location Indicator–2bits as defined in sections 7.1.9and 7.1.10of[3]
qcl_beam_ConfigId-2bits(beam ID or beam RS ports)
上述DCI信令中,增加了QCL波束信息,增加的QCL波束信息为qcl_beam_ConfigId。所述qcl_beam_ConfigId可以是波束标识(beam ID)或者波束天线端口信息(beam RS ports)。
本申请实施例中为描述方便,可将网络设备向终端发送的包含有QCL指示信息的DCI称为第二DCI。
本申请实施例中第二DCI中增加的QCL波束信息是指与终端当前传输数据所用参考信号的天线端口具有QCL关系的波束信息。终端将第二DCI发送给终端后,终端根据接 收到的第二DCI,可以准确的确定出与当前传输数据的参考信号天线端口具有QCL关系的波束以及该确定出的波束发送的已发送参考信号,进而可根据确定出的已发送参考信号,进行信道大尺度特性估计。
需要说明的是,本申请实施例的说明书和权利要求书及附图中涉及的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,例如本申请实施例中上述涉及的第一DCI和第二DCI仅是用于方便描述以及区分不同的阈值,不构成对DCI的限定。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
上述主要从终端和网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图5示出了本申请实施例提供的用于发送QCL信息的装置100的一种结构示意图。用于发送QCL信息的装置100包括处理单元101和发送单元102。处理单元101,用于确定QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有准共址QCL关系的波束信息。发送单元102,用于发送所述处理单元101确定的所述QCL波束信息。
其中,所述QCL波束信息可以包括波束标识信息和波束天线端口信息中的至少一个。
可选的,所述发送单元102,可采用如下方式发送所述QCL波束信息:
若所述QCL波束信息包括至少一组QCL波束信息,则通过无线资源控制RRC信令发送所述至少一组QCL波束信息。
可选的,所述QCL波束信息可设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
可选的,所述处理单元101可根据参考信号天线端口发送参考信号所用时域资源和/或频域资源,确定与所述时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。所述发送单元102发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
其中,所述发送单元102可发送时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个。所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。所述时频域QCL波束信息列表包括与至少一个时频域资源上的参考信号 天线端口具有QCL关系的至少一个QCL波束信息。
所述发送单元102,还可通过下行控制信息DCI发送所述与参考信号天线端口具有QCL关系的QCL波束信息。
可选的,所述波束标识信息为波束同步信号标识信息。
可选的,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
当采用硬件形式实现时,本申请实施例中,处理单元101可以是处理器或控制器。发送单元102可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。
当所述处理单元101是处理器,发送单元102是发射器时,本申请实施例所涉及的用于发送QCL信息的装置100可以为图6所示的网络设备。其中,所述图6所示的网络设备可以是基站。
图6示出了本申请实施例提供的网络设备1000的一种结构示意图。参阅图6所示,网络设备1000包括处理器1001和发射器1002。其中,其中,处理器1001也可以为控制器,图6中表示为“控制器/处理器1001”。所述处理器1001被配置为支持网络设备执行上述QCL波束信息发送接收方法涉及的网络设备的功能。所述发射器1002被配置为支持网络设备发送QCL波束信息的功能。所述网络设备还可以包括存储器1003和总线1004,所述存储器1003用于与处理器1001耦合,其保存网络设备必要的程序指令和数据。其中,处理器1001、存储器1003、和发射器1002通过总线系统1004相连,该存储器1003用于存储指令,该处理器1001用于执行该存储器1003存储的指令,以控制发射器1002发送信号,完成上述方法中网络设备执行相应功能的步骤。
本申请实施例中,用于发送QCL信息的装置100和网络设备1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在采用集成单元的情况下,图7示出了本申请实施例提供的用于接收QCL信息的装置200的一种结构示意图。用于接收QCL信息的装置200包括接收单元201和处理单元202。接收单元201,用于接收网络设备发送的QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息。处理单元202,用于根据所述接收单元201接收到的所述QCL波束信息中包括的与参考信号天线端口具有QCL关系的波束信息,确定与所述参考信号天线端口具有QCL关系的波束,并确定出通过所述波束发送的已发送参考信号,根据确定出的所述已发送参考信号,进行信道大尺度特性估计。或者,处理单元202,用于根据所述接收单元201接收到的所述QCL波束信息中包括的与参考信号天线端口具有QCL关系的波束信息,确定与所述参考信号天线端口具有QCL关系的波束。可选的,所述处理单元202还用于:
根据所确定的与所述参考信号天线端口具有QCL关系的波束,确定所述参考信号天线端口的大尺度特性。
可选的,若所述QCL波束信息包括至少一组QCL波束信息,所述接收单元201通过RRC信令接收网络设备发送的所述至少一组QCL波束信息。
其中,所述QCL波束信息可设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
可选的,所述与参考信号天线端口具有QCL关系的QCL波束信息是所述网络设备根据参考信号天线端口发送参考信号所用时域资源和/或频域资源所确定的。所述接收单201元接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
其中,所述接收单元201,可接收所述网络设备所发送的时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个。
可选的,所述接收单元201,可通过DCI接收所述与参考信号天线端口具有QCL关系的QCL波束信息。
可选的,所述波束标识信息为波束同步信号标识信息。
可选的,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
当采用硬件形式实现时,本申请实施例中,处理单元202可以是处理器或控制器。接收单元201可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。
当所述处理单元202是处理器,接收单元201是接收器时,本申请实施例所涉及的用于接收QCL信息的装置200可以为图8所示的终端。
图8示出了本申请实施例提供的终端2000的结构示意图。参阅图8所示,终端设备2000包括接收器2001和处理器2002。其中,所述接收器2001被配置为支持终端接收网络设备发射的QCL波束信息。所述处理器2002被配置为支持终端执行上述数QCL信息发送接收方法涉及的终端的功能。所述终端还可以包括存储器2003和发射器2004,所述存储器2003用于与处理器2002耦合,其保存终端设备必要的程序指令和数据。所述发射器2004用于发送信号。
本申请实施例中,用于接收QCL信息的装置200和终端2000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
可以理解的是,本申请实施例附图中仅仅示出了网络设备和终端的简化设计。在实际应用中,网络设备和终端并不限于上述结构,例如终端还可以包括显示设备、输入输出接口等,而所有可以实现本申请实施例的终端都在本申请实施例的保护范围之内。网络设备还可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请实施例的网络设备都在本申请实施例的保护范围之内。
需要说明的是,本申请实施例上述涉及的处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
作为一种实现方式,接收器和发射器的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,将实现处理器、接收器和发射器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器、接收器和发射器的功能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
本申请实施例还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述终端或网络设备所涉及的任意一种方法。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    确定准共址QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有准共址QCL关系的波束信息;
    发送所述QCL波束信息。
  2. 如权利要求1所述的方法,其特征在于,所述QCL波束信息包括波束标识信息和波束天线端口信息中的至少一个。
  3. 如权利要求1或2所述的方法,其特征在于,所述QCL波束信息包括至少一组QCL波束信息;
    所述发送所述QCL波束信息,包括:
    通过无线资源控制RRC信令发送所述至少一组QCL波束信息。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述QCL波束信息设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述确定与参考信号天线端口具有QCL关系的QCL波束信息,包括:
    根据参考信号天线端口发送参考信号所用时域资源和/或频域资源,确定与所述时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息;
    所述发送所述QCL波束信息,包括:
    发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
  6. 如权利要求5所述的方法,其特征在于,所述发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息,包括:
    发送时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个;
    所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述时频域QCL波束信息列表包括与至少一个时频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。
  7. 如权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    通过下行控制信息DCI发送所述与参考信号天线端口具有QCL关系的QCL波束信息。
  8. 如权利要求2至7任一项所述的方法,其特征在于,所述波束标识信息为波束同步信号标识信息。
  9. 如权利要求1至8任一项所述的方法,其特征在于,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
  10. 一种通信方法,其特征在于,包括:
    接收来自网络设备的准共址QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息;
    根据所述QCL波束信息中包括的与参考信号天线端口具有QCL关系的波束信息,确定与所述参考信号天线端口具有QCL关系的波束。
  11. 如权利要求10所述的方法,其特征在于,所述QCL波束信息包括波束标识信息和波束天线端口信息中的至少一个。
  12. 如权利要求9或10所述的方法,其特征在于,所述QCL波束信息包括至少一组QCL波束信息;
    所述接收网络设备发送的QCL波束信息,包括:
    通过无线资源控制RRC信令接收网络设备发送的所述至少一组QCL波束信息。
  13. 如权利要求10至12任一项所述的方法,其特征在于,所述QCL波束信息设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
  14. 如权利要求10至13任一项所述的方法,其特征在于,所述与参考信号天线端口具有QCL关系的QCL波束信息是所述网络设备根据参考信号天线端口发送参考信号所用时域资源和/或频域资源所确定的;
    所述接收网络设备发送的QCL波束信息,包括:
    接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
  15. 如权利要求14所述的方法,其特征在于,所述接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息,包括:
    接收所述网络设备所发送的时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个;
    所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述时频域QCL波束信息列表包括与至少一个时域资源和至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。
  16. 如权利要求10至12任一项所述的方法,其特征在于,所述接收来自网络设备发送的QCL波束信息,包括:
    通过下行控制信息DCI接收所述与参考信号天线端口具有QCL关系的QCL波束信息。
  17. 如权利要求11至16任一项所述的方法,其特征在于,所述波束标识信息为波束同步信号标识信息。
  18. 如权利要求10至17任一项所述的方法,其特征在于,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
  19. 如权利要求10至18任一项所述的方法,其特征在于,所述方法还包括:
    根据所确定的与所述参考信号天线端口具有QCL关系的波束,确定所述参考信号天线端口的大尺度特性。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于确定准共址QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有准共址QCL关系的波束信息;
    发送单元,用于发送所述处理单元确定的所述QCL波束信息。
  21. 如权利要求20所述的通信装置,其特征在于,所述QCL波束信息包括波束标识信息和波束天线端口信息中的至少一个。
  22. 如权利要求20或21所述的通信装置,其特征在于,所述发送单元,采用如下方式发送所述QCL波束信息:
    若所述QCL波束信息包括至少一组QCL波束信息,则通过无线资源控制RRC信令发送所述至少一组QCL波束信息。
  23. 如权利要求20至22任一项所述的通信装置,其特征在于,所述QCL波束信息设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
  24. 如权利要求20至23任一项所述的通信装置,其特征在于,所述处理单元,采用如下方式确定与参考信号天线端口具有QCL关系的QCL波束信息:
    根据参考信号天线端口发送参考信号所用时域资源和/或频域资源,确定与所述时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息;
    所述发送单元,采用如下方式发送所述QCL波束信息:
    发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
  25. 如权利要求24所述的通信装置,其特征在于,所述发送单元,采用如下方式发送所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息:
    发送时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个;
    所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述时频域QCL波束信息列表包括与至少一个时频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。
  26. 如权利要求20至22任一项所述的通信装置,其特征在于,所述发送单元,还用于:
    通过下行控制信息DCI发送所述与参考信号天线端口具有QCL关系的QCL波束信息。
  27. 如权利要求21至26任一项所述的装置,其特征在于,所述波束标识信息为波束同步信号标识信息。
  28. 如权利要求20至27任一项所述的装置,其特征在于,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
  29. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的准共址QCL波束信息,所述QCL波束信息中包括与参考信号天线端口具有QCL关系的波束信息;
    处理单元,用于根据所述接收单元接收到的所述QCL波束信息中包括的与参考信号天线端口具有QCL关系的波束信息,确定与所述参考信号天线端口具有QCL关系的波束。
  30. 如权利要求29所述的通信装置,其特征在于,所述QCL波束信息包括波束标识信息和波束天线端口信息中的至少一个。
  31. 如权利要求29或30所述的通信装置,其特征在于,所述接收单元,采用如下方 式接收网络设备发送的QCL波束信息:
    若所述QCL波束信息包括至少一组QCL波束信息,通过无线资源控制RRC信令接收网络设备发送的所述至少一组QCL波束信息。
  32. 如权利要求29至31任一项所述的通信装置,其特征在于,所述QCL波束信息设置于数据资源映射QCL配置信息和/或非零功率信道状态信息参考信号配置信息中。
  33. 如权利要求29至32任一项所述的通信装置,其特征在于,所述与参考信号天线端口具有QCL关系的QCL波束信息是所述网络设备根据参考信号天线端口发送参考信号所用时域资源和/或频域资源所确定的;
    所述接收单元,采用如下方式接收网络设备发送的QCL波束信息:
    接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息。
  34. 如权利要求33所述的通信装置,其特征在于,所述接收单元,采用如下方式接收所述网络设备所发送的所述与时域资源和/或频域资源上的参考信号天线端口具有QCL关系的QCL波束信息:
    接收所述网络设备所发送的时域QCL波束信息列表、频域QCL波束信息列表和时频域QCL波束信息列表中的至少一个;
    所述时域QCL波束信息列表包括与至少一个时域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述频域QCL波束信息列表包括与至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息;
    所述时频域QCL波束信息列表包括与至少一个时域资源和至少一个频域资源上的参考信号天线端口具有QCL关系的至少一个QCL波束信息。
  35. 如权利要求29至31任一项所述的通信装置,其特征在于,所述接收单元,采用如下方式接收网络设备发送的QCL波束信息:
    通过下行控制信息DCI接收所述与参考信号天线端口具有QCL关系的QCL波束信息。
  36. 如权利要求30至35任一项所述的装置,其特征在于,所述波束标识信息为波束同步信号标识信息。
  37. 如权利要求29至36任一项所述的装置,其特征在于,所述波束为波束识别参考信号,波束参考信号,波束扫描参考信号或者波束同步信号。
  38. 如权利要求29至37任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所确定的与所述参考信号天线端口具有QCL关系的波束,确定所述参考信号天线端口的大尺度特性。
  39. 一种网络设备,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述网络设备用于完成如权利要求1至9任意一项所述的方法。
  40. 一种终端,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述终端用于完成如权利要求10至19任意一项所述的方法。
  41. 一种可读存储介质,其特征在于,包括指令或程序,当所述指令或程序被执行时,如权利要求1至19任意一项所述的方法被执行。
  42. 一种通信装置,其特征在于,用于执行如权利要求1至19任意一项所述的方法。
  43. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当处理器执行所述存储器存储的指令时,所述网络设备用于完成如权利要求1至19任意一项所述的方法。
PCT/CN2017/109383 2016-11-04 2017-11-03 通信方法、装置、网络设备及终端 WO2018082670A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17867226.7A EP3537619A4 (en) 2016-11-04 2017-11-03 METHOD, APPARATUS, NETWORK DEVICE AND TERMINAL FOR COMMUNICATIONS
CN201780075202.4A CN110036617B (zh) 2016-11-04 2017-11-03 通信方法、装置、网络设备及终端
JP2019523599A JP6844914B2 (ja) 2016-11-04 2017-11-03 通信方法、通信機器、ネットワークデバイスおよび端末
BR112019008716A BR112019008716A2 (pt) 2016-11-04 2017-11-03 método de comunicação, aparelho de comunicações, dispositivo de rede, e terminal
CA3042834A CA3042834C (en) 2016-11-04 2017-11-03 Communication method, communications apparatus, network device, and terminal
US16/288,823 US11128349B2 (en) 2016-11-04 2019-02-28 Communication method, communications apparatus, network device, and terminal
US17/468,275 US11546020B2 (en) 2016-11-04 2021-09-07 Communication method, communications apparatus, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610981779.9 2016-11-04
CN201610981779.9A CN108023841B (zh) 2016-11-04 2016-11-04 准共址信息的发送接收方法、装置、网络设备及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/288,823 Continuation US11128349B2 (en) 2016-11-04 2019-02-28 Communication method, communications apparatus, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2018082670A1 true WO2018082670A1 (zh) 2018-05-11

Family

ID=62076566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109383 WO2018082670A1 (zh) 2016-11-04 2017-11-03 通信方法、装置、网络设备及终端

Country Status (7)

Country Link
US (2) US11128349B2 (zh)
EP (1) EP3537619A4 (zh)
JP (1) JP6844914B2 (zh)
CN (3) CN109150250B (zh)
BR (1) BR112019008716A2 (zh)
CA (1) CA3042834C (zh)
WO (1) WO2018082670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557013A (zh) * 2022-01-11 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN108337065A (zh) * 2017-01-18 2018-07-27 索尼公司 电子设备和通信方法
JP7074143B2 (ja) * 2017-04-27 2022-05-24 日本電気株式会社 方法およびユーザ機器
US20190069285A1 (en) * 2017-08-24 2019-02-28 Samsung Electronics Co., Ltd. Configuration of beam indication in a next generation mmwave system
WO2019201250A1 (zh) * 2018-04-16 2019-10-24 中兴通讯股份有限公司 一种确定准共址参考信号集合的方法和装置
WO2019227312A1 (zh) * 2018-05-29 2019-12-05 株式会社Ntt都科摩 用于信号传输的方法及相应的用户终端、基站
US20210259004A1 (en) * 2018-06-18 2021-08-19 Ntt Docomo, Inc. User terminal
WO2020000156A1 (en) * 2018-06-25 2020-01-02 Nokia Shanghai Bell Co., Ltd. Methods, devices and computer readable medium for communication measurement
CN110798298B (zh) * 2018-08-03 2021-11-02 维沃移动通信有限公司 控制信息指示、接收方法和设备
EP3834331B9 (en) 2018-08-10 2023-11-29 Qualcomm Incorporated Quasi-colocation indication for non-zero power channel state information reference signal port groups
CN110881220B (zh) * 2018-09-06 2022-09-30 大唐移动通信设备有限公司 多传输点trp数据处理的方法、基站、终端及存储介质
CN110933749B (zh) * 2018-09-20 2023-04-07 成都华为技术有限公司 指示波束的方法和装置
WO2020056698A1 (en) * 2018-09-20 2020-03-26 Nokia Shanghai Bell Co., Ltd. Methods and apparatuses for random access procedure in a telecommunication system
CN112715023B (zh) * 2018-09-21 2023-04-18 中兴通讯股份有限公司 用于提高无线通信中的调度灵活性的方法、装置和系统
CN112602347A (zh) * 2018-09-27 2021-04-02 株式会社Ntt都科摩 用户装置
US11956762B2 (en) * 2018-09-28 2024-04-09 At&T Intellectual Property I, L.P. Facilitating improved performance in advanced networks with multiple transmission points
JP7193549B2 (ja) * 2018-10-31 2022-12-20 株式会社Nttドコモ 端末、無線通信方法及びシステム
CN111148268B (zh) * 2018-11-02 2022-02-01 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
CN111106914B (zh) * 2018-11-12 2022-06-07 维沃移动通信有限公司 确定控制资源集的准共址的方法、终端和存储介质
CN111435883B (zh) * 2019-01-11 2021-10-26 华为技术有限公司 准共址指示方法及装置
CN114567928B (zh) * 2019-02-15 2024-03-26 成都华为技术有限公司 用于定位终端设备的方法和装置
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
US20220167378A1 (en) * 2019-04-09 2022-05-26 Ntt Docomo, Inc. User terminal and radio communication method
CN111865370A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种确定信号到达角的方法、装置和系统
CN114285501B (zh) * 2019-06-14 2023-04-21 Oppo广东移动通信有限公司 无线通信的方法、终端设备、网络设备和存储介质
WO2021022453A1 (zh) * 2019-08-05 2021-02-11 北京小米移动软件有限公司 天线面板选择方法、装置及存储介质
CN112399566B (zh) * 2019-08-14 2022-04-12 华为技术有限公司 处理数据的方法和通信装置
WO2021062680A1 (zh) * 2019-09-30 2021-04-08 Oppo广东移动通信有限公司 数据传输方法及相关设备
US11909589B2 (en) 2019-10-03 2024-02-20 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal
CN112994856A (zh) * 2019-12-12 2021-06-18 中国移动通信有限公司研究院 一种配置方法、终端及网络侧设备
US20210204252A1 (en) * 2019-12-31 2021-07-01 Qualcomm Incorporated Quasi co-location source selection and indication on sidelink
CN114902598B (zh) * 2020-01-21 2024-03-29 中兴通讯股份有限公司 无线通信系统中的波束指示方法
CN115152174A (zh) * 2020-02-21 2022-10-04 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104770039A (zh) * 2012-11-01 2015-07-08 三星电子株式会社 用于先进的长期演进的传输模式10的物理下行共享信道的天线端口的传输方案和准协同定位假设
WO2015182915A1 (ko) * 2014-05-27 2015-12-03 엘지전자(주) 무선 통신 시스템에서 디스커버리 참조 신호를 이용하여 측정을 수행하기 위한 방법 및 이를 위한 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119073A1 (ko) * 2012-02-11 2013-08-15 엘지전자 주식회사 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
WO2014010911A1 (ko) * 2012-07-09 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
US9521665B2 (en) * 2012-09-16 2016-12-13 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink signal considering antenna port relationship in wireless communication system
US9614653B2 (en) * 2013-01-18 2017-04-04 Lg Electronics Inc. Method and apparatus for performing Quasi Co-Location in wireless access system
WO2014168315A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for reporting channel state information for fractional beamforming in a wireless communication system
JP6175187B2 (ja) * 2013-06-19 2017-08-02 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて干渉除去のための方法及びそのための装置
JP2015164281A (ja) * 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
US10225054B2 (en) * 2014-11-07 2019-03-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting reference signal, method and apparatus for measuring and reporting channel state information, and method for configuring the same
WO2017023231A1 (en) * 2015-07-31 2017-02-09 Intel Corporation Receive beam indication for 5g systems
US10405293B2 (en) * 2015-08-25 2019-09-03 Lg Electronics Inc. Method for receiving or transmitting reference signal for location determination in wireless communication system and device for same
CN106559879B (zh) * 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
CN108886671B (zh) * 2016-04-11 2021-09-07 瑞典爱立信有限公司 处理用于多播传输的准共址(qcl)配置的方法
US10887143B2 (en) * 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
US10039076B2 (en) * 2016-08-22 2018-07-31 Qualcomm Incorporated Declaring quasi co-location among multiple antenna ports
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
US10547364B2 (en) * 2016-09-30 2020-01-28 Telefonaktiebolaget Lm Ericsson (Publ) Quasi co-location for beamforming
US10736010B2 (en) * 2016-10-07 2020-08-04 Qualcomm Incorporated Reference beam for event trigger in mobility management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104770039A (zh) * 2012-11-01 2015-07-08 三星电子株式会社 用于先进的长期演进的传输模式10的物理下行共享信道的天线端口的传输方案和准协同定位假设
WO2015182915A1 (ko) * 2014-05-27 2015-12-03 엘지전자(주) 무선 통신 시스템에서 디스커버리 참조 신호를 이용하여 측정을 수행하기 위한 방법 및 이를 위한 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on beam coordination and QCL for NR", 3GPP DRAFT; R1-1609256 NR_QCL_FINAL,, no. R1-1609256, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051159368 *
See also references of EP3537619A4
ZTE CORPORATION: "On Qusai-Co-Location/Beam for NR MIMO", 3GPP DRAFT; R1-1608675 QCL QCB FOR NR MIMO,, no. R1-1608675, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051159030 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557013A (zh) * 2022-01-11 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
CN114557013B (zh) * 2022-01-11 2024-02-13 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CA3042834C (en) 2021-09-21
CN110036617A (zh) 2019-07-19
CN108023841B (zh) 2024-01-05
CN108023841A (zh) 2018-05-11
US11546020B2 (en) 2023-01-03
US11128349B2 (en) 2021-09-21
JP2019533390A (ja) 2019-11-14
CN109150250A (zh) 2019-01-04
CN110036617B (zh) 2020-07-21
JP6844914B2 (ja) 2021-03-17
EP3537619A4 (en) 2020-02-12
US20190199406A1 (en) 2019-06-27
EP3537619A1 (en) 2019-09-11
CN109150250B (zh) 2020-03-10
US20220069867A1 (en) 2022-03-03
BR112019008716A2 (pt) 2019-07-16
CA3042834A1 (en) 2018-05-11

Similar Documents

Publication Publication Date Title
US11546020B2 (en) Communication method, communications apparatus, network device, and terminal
KR102308639B1 (ko) 신호 전송 방법 및 장치
WO2018127181A1 (zh) 一种信号传输方法和装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN111436147B (zh) 传输信号的方法和装置
WO2017119467A1 (ja) ユーザ装置、基地局、信号受信方法及び信号送信方法
EP3528415B1 (en) Information transmission method and apparatus
WO2019029730A1 (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
JP2021533652A (ja) Ue固有のrs多重化のための方法
US10588099B2 (en) Power configuration method and device
EP3937410A1 (en) Method and device for communication processing
WO2017088791A1 (zh) 一种波束处理方法和基站
WO2023024967A1 (zh) 资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3042834

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019523599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008716

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017867226

Country of ref document: EP

Effective date: 20190603

ENP Entry into the national phase

Ref document number: 112019008716

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190429