WO2019227312A1 - 用于信号传输的方法及相应的用户终端、基站 - Google Patents

用于信号传输的方法及相应的用户终端、基站 Download PDF

Info

Publication number
WO2019227312A1
WO2019227312A1 PCT/CN2018/088879 CN2018088879W WO2019227312A1 WO 2019227312 A1 WO2019227312 A1 WO 2019227312A1 CN 2018088879 W CN2018088879 W CN 2018088879W WO 2019227312 A1 WO2019227312 A1 WO 2019227312A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
antenna port
base station
information
airspace
Prior art date
Application number
PCT/CN2018/088879
Other languages
English (en)
French (fr)
Inventor
王新
刘敏
王静
侯晓林
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US17/047,934 priority Critical patent/US11510213B2/en
Priority to PCT/CN2018/088879 priority patent/WO2019227312A1/zh
Priority to CN201880091672.4A priority patent/CN111903082A/zh
Publication of WO2019227312A1 publication Critical patent/WO2019227312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present disclosure relates to the field of mobile communications, and more particularly, to a method for signal transmission and corresponding user terminals and base stations.
  • MIMO multiple-input multiple-output
  • a base station and a user terminal use multiple transmitting antennas and receiving antennas to transmit multiple data streams in parallel, thereby increasing the capacity of the communication system without increasing the bandwidth.
  • MIMO can be divided into Single User (SU) MIMO and Multiple User (MU) MIMO.
  • SU-MIMO refers to the base station transmitting multiple data streams in parallel with only one user
  • MU-MIMO refers to the base station transmitting multiple data streams in parallel with multiple users.
  • the base station determines an equivalent channel by performing channel estimation, and precodes the data stream through the equivalent channel to eliminate multi-user interference in advance, and then sends the precoded signal to the user terminal.
  • the user terminal determines a precoding matrix for processing the received signal by performing channel estimation, so that the user terminal obtains a signal that does not include multi-user interference.
  • the precoding matrix determined by the user terminal may not match the equivalent channel determined by the base station. This will cause the signal received by the user terminal to be a signal subject to strong interference.
  • a signal transmission method performed by a user terminal includes: receiving airspace reception parameter indication information sent by a base station; and determining a first airspace reception parameter according to the airspace reception parameter indication information, so that a user terminal receives a downlink data signal through the first airspace reception parameter.
  • a signal transmission method performed by a base station includes generating airspace reception parameter indication information; and sending the airspace reception parameter indication information to a user terminal, so that the user terminal determines a first airspace reception parameter according to the airspace reception parameter indication information.
  • a signal transmission method performed by a user terminal includes: receiving information about a first antenna port from a base station; determining a first antenna port from at least one antenna port of a user terminal according to the information about the first antenna port; and on the first antenna port A first downlink data signal is received, and a second downlink data signal received on an antenna port other than the first antenna port among the at least one antenna port is ignored.
  • a signal transmission method performed by a base station includes: determining a first antenna port from at least one antenna port of a user terminal; and sending information about the first antenna port to the user terminal, so that the user terminal receives a first downlink on the first antenna port. The data signal and ignore the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port.
  • a user terminal for signal transmission includes: a receiving unit configured to receive airspace reception parameter indication information sent by a base station; and a determination unit configured to determine a first airspace reception parameter according to the airspace reception parameter indication information, so that the user terminal passes the airspace reception parameter indication information.
  • the first airspace receiving parameter receives a downlink data signal.
  • a base station for signal transmission includes: a generating unit configured to generate airspace reception parameter indication information; and a sending unit configured to send the airspace reception parameter indication information to a user terminal so that the user terminal determines based on the airspace reception parameter indication information.
  • the first airspace receives parameters.
  • a user terminal for signal transmission includes: a receiving unit configured to receive information about a first antenna port from a base station; and a determining unit configured to determine a first antenna port from at least one antenna port of the user terminal according to the information about the first antenna port.
  • An antenna port; and the receiving unit is further configured to receive a first downlink data signal on the first antenna port, and ignore antennas other than the first antenna port in the at least one antenna port The second downlink data signal received on the port.
  • a base station for signal transmission includes: a determining unit configured to determine a first antenna port from at least one antenna port of a user terminal; and a transmitting unit configured to send information about the first antenna port to the user terminal so that the user The terminal receives a first downlink data signal on a first antenna port and ignores a second downlink data signal received on an antenna port other than the first antenna port among the at least one antenna port.
  • FIG. 1 is a schematic diagram of a wireless communication system in which embodiments of the present disclosure can be applied;
  • FIG. 2 is a flowchart of a signal transmission method performed by a user terminal according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a signal transmission method performed by a base station according to an embodiment of the present disclosure
  • FIGS. 2 and 3 are schematic diagrams of a wireless communication system that performs signal transmission according to the methods shown in FIGS. 2 and 3;
  • FIG. 5 is a flowchart of a signal transmission method performed by a user terminal according to another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a signal transmission method performed by a base station according to another embodiment of the present disclosure.
  • FIGS. 5 and 6 are schematic diagrams of a wireless communication system that performs signal transmission according to the methods shown in FIGS. 5 and 6;
  • FIG. 8 is a flowchart of a signal transmission method performed by a user terminal according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a signal transmission method performed by a base station according to another embodiment of the present disclosure.
  • FIGS. 8 and 9 are schematic diagrams of a wireless communication system that performs signal transmission according to the methods shown in FIGS. 8 and 9;
  • FIG. 11 is a schematic structural diagram of a user terminal that executes the method shown in FIG. 2 according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a base station performing the method shown in FIG. 3 according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a user terminal that executes the method shown in FIG. 5 according to another embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a base station that performs the method shown in FIG. 6 according to another embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a user terminal that executes the method shown in FIG. 8 according to another embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of a base station that performs the method shown in FIG. 9 according to another embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a hardware structure of a user terminal or a base station according to an embodiment of the present disclosure.
  • the same reference numerals denote the same elements throughout.
  • the user terminals described herein may include various types of user terminals (User Equipment, UE), such as mobile terminals (also referred to as mobile stations) or fixed terminals. However, for convenience, it is sometimes interchangeable in the following Use UE and mobile station.
  • UE User Equipment
  • the base station may be a fixed station, a NodeB, an eNodeB (eNB), an access point (access point), a transmission point, a reception point, a femto cell, a small cell, and the like, which are not limited herein.
  • the wireless communication system may be an LTE system, an LTE-A system, an NR system, or any other type of wireless communication system.
  • a 5G NR system is taken as an example to describe the embodiments of the present disclosure, but it should be recognized that the following description can also be applied to other types of wireless communication systems.
  • the wireless communication system 100 may include a base station (BS) 110 and a user terminal 120.
  • the base station 110 is a serving base station of the user terminal 120.
  • the base station 110 determines an equivalent channel for transmitting a signal to the user terminal 120 based on the estimation of the downlink channel, and uses the equivalent channel to signal 111 (also referred to as “signal flow”, “data flow”) to be transmitted to the user terminal 120 through the equivalent channel. Or “signal layer”, etc.) and the interference signals 112 to 114 (for example, signals to be sent by the base station to other user terminals) suffered by the user terminal 120 are subjected to precoding processing. Then, the base station 110 sends the precoded signal to the user terminal 120 on the downlink channel.
  • the user terminal 120 receives the signals after the precoding processing through the antenna # 1 and the antenna # 2, respectively, and estimates the channels corresponding to the antenna # 1 and the antenna # 2 to determine a precoding matrix for reception. Then, the user terminal 120 processes the two signals from the antenna # 1 and the antenna # 2 through the precoding matrix. Since the transmitter of the base station 110 and the receiver of the user terminal 120 (for example, a MIMO receiver) are transparent to each other, the channel estimation result of the transmitter of the base station 110 and the receiver of the user terminal 120 are not exactly the same. In this case, the precoding matrix determined by the user terminal 120 for receiving does not match the equivalent channel determined by the base station 110, which may cause the signal received by the user terminal to be a signal that is subject to strong interference. In order to reduce the interference suffered by the user terminal, the technical solution of the present disclosure is proposed.
  • the wireless communication system may further include more base stations, and / or Multiple user terminals, and / or user terminals have fewer or more antennas.
  • the precoding matrix used for receiving on the user terminal side may also be referred to as a receiving matrix, a receiving vector, a receiving beamforming vector, a receiving precoding matrix, a receiving precoding vector, a spatial filter, and a receiving spatial filter.
  • a receiving matrix a receiving vector
  • a receiving beamforming vector a receiving precoding matrix
  • a receiving precoding vector a receiving precoding vector
  • a spatial filter a receiving spatial filter.
  • space receiving parameter space receiving vector, space receiving matrix, space receiving filter, space receiving parameter, space receiving vector, space receiving matrix, space receiving filter, etc.
  • the above terms may be used interchangeably for convenience.
  • the user terminal may determine the airspace reception parameter according to the airspace reception parameter indication information sent by the base station. This embodiment is described below with reference to FIGS. 2 to 4.
  • FIG. 2 is a flowchart of a signal transmission method 200 performed by a user terminal according to an embodiment of the present disclosure.
  • a user terminal receives airspace receiving parameter indication information sent by a base station.
  • the airspace receiving parameter indication information may be indication information that the user terminal notifies the base station of the airspace reception parameters determined by itself and the base station generates the corresponding information.
  • the indication information of the airspace reception parameter may also be indication information generated by the base station according to the airspace reception parameter determined by the base station for the user terminal.
  • the user terminal determines the first airspace reception parameter according to the airspace reception parameter indication information, so that the user terminal receives the downlink data signal through the first airspace reception parameter.
  • step S201 will specifically describe the example of the airspace receiving parameter indication information in step S201 as the user terminal notifies the base station of the airspace reception parameter determined by itself and the base station generates the corresponding indication information.
  • the method 200 may further include: the user terminal determines at least one candidate airspace receiving parameter by measuring a downlink channel.
  • a user terminal may receive a downlink reference signal, such as a Channel State Information Reference Signal (CSI-RS), from a base station to measure downlink information to train airspace reception parameters, thereby determining one or more candidate airspaces.
  • CSI-RS Channel State Information Reference Signal
  • the method 200 may further include: the user terminal may select at least one candidate airspace receiving parameter from the codebook.
  • the “codebook” here may be a preset codebook that corresponds to the airspace receiving parameters.
  • the codebook may be configured by the base station and notified to the user terminal by the base station.
  • the codebook may be a codebook stipulated by a standard specification (such as 3GPP) and stored in advance by both the user terminal and the base station.
  • the method 200 may further include: the user terminal uses the at least one candidate airspace receiving parameter to send an uplink reference signal to the base station, respectively, so that the base station determines the first from the at least one uplink reference signal.
  • Reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • the user terminal may send an uplink reference signal to the base station using a candidate airspace reception parameter, so that the base station determines the uplink reference signal after receiving the uplink reference signal. Is the first reference signal and sends information about the first reference signal to the user terminal.
  • the user terminal may send multiple uplink reference signals to the base station using multiple candidate airspace reception parameters, so that the base station may receive the multiple uplink reference signals after receiving the multiple uplink reference signals.
  • An uplink reference signal is selected from the multiple uplink reference signals and determined as a first reference signal.
  • the base station may also generate the airspace receiving parameter indication information according to the first reference signal.
  • the airspace reception parameter indication information may include information about the first reference signal. Accordingly, in step S201, the user terminal may receive information about the first reference signal. Then, in step S202, the user terminal may determine an airspace reception parameter used when transmitting the first reference signal according to the information about the first reference signal sent by the base station, and receive the airspace reception used when transmitting the first reference signal. The parameter is determined as a first airspace receiving parameter for receiving a downlink data signal.
  • the information about the first reference signal may include resource information and / or port information (for example, a port index) ).
  • the resource information of the first reference signal may be, for example, a resource identifier (ID) used when the user terminal sends an uplink reference signal to be determined by the base station as the first reference signal, such as a time-frequency resource ID.
  • ID resource identifier
  • a user terminal when a user terminal sends an uplink reference signal to a base station, it may send the resource ID and / or port information of the uplink reference signal to the base station together, so that the base station can determine the first reference signal after the uplink reference signal is the first reference signal.
  • a resource ID and / or port information of a reference signal is fed back to the user terminal. Therefore, after receiving the resource ID and / or port information of the first reference signal fed back by the base station, the user terminal may determine the airspace reception parameter used when transmitting the first reference signal as the destination airspace reception parameter.
  • the information about the first reference signal may further include association information between the first reference signal and the downlink reference signal.
  • the "downlink reference signal” herein may be any kind of downlink reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DM-RS).
  • DM-RS Demodulation Reference Signal
  • the association information between the first reference signal and the downlink reference signal may be included in the downlink configuration information received by the user terminal from the base station.
  • the downlink configuration information may be, for example, downlink transmission configuration identification (Transmission Configuration Indication) or quasi co-location (QCL) configuration information.
  • the association information between the first reference signal and the downlink reference signal may be embodied as adding resource information and / or port information of the first reference signal to the downlink configuration information, thereby representing the relationship between the first reference signal and the downlink reference signal. Relevance. Therefore, the user terminal can obtain the first reference signal determined by the base station for the user terminal through the downlink configuration information, and then determine the airspace reception parameter used when sending the first reference signal as the destination airspace reception parameter.
  • the following line configuration information is an example of QCL configuration information to describe the present disclosure.
  • the resource information and / or port information of the first reference signal may be added to the regular QCL configuration information.
  • the conventional QCL configuration information already includes information indicating the correlation between a CSI-RS, a Synchronization Signal (SS) block, and the like and a downlink reference signal.
  • the resource ID and / or port information of the first reference signal may be added to the regular QCL configuration information to indicate the correlation between the first reference signal and the downlink reference signal.
  • QCL configuration information is given below:
  • the QCL configuration information may be simply referred to as "QCL-Info".
  • the type of the QCL configuration information may be a type D (Type-D) defined in an existing standard specification, that is, an airspace receiving parameter used to configure a transmission identifier for resource information and / or port information of the first reference signal.
  • a new type of QCL configuration information that is different from the conventional QCL configuration information may be designed.
  • the new type of QCL configuration information may only indicate the correlation between the first reference signal and the downlink reference signal without Represents the correlation between CSI-RS, SS block, etc. and downlink reference signals.
  • the new type of QCL configuration information may include resource information and / or port information of the first reference signal to indicate an association between the first reference signal and a downlink reference signal.
  • An example of the new type of QCL configuration information is given below:
  • the new type of QCL configuration information may be simply referred to as "QCL-UL-Info".
  • the type of the QCL configuration information may be one of Type A (Type-A), Type B (Type-B), Type C (Type-C), or Type D (Type-D) defined in the existing standard specifications. any type.
  • the user terminal can determine that the first reference signal is associated with the downlink reference signal, and can further determine the airspace reception parameter used when transmitting the first reference signal as used for A first airspace reception parameter for receiving a downlink data signal.
  • the above-mentioned conventional QCL configuration information or newly designed QCL configuration information may include other information in addition to information indicating the correlation between certain signals and downlink reference signals, since these other information are not relevant to this disclosure, So omitted here.
  • the user terminal may use radio resource control (RRC) signaling, downlink control information (DCI) or media access control (Media Access Control) from the base station.
  • RRC radio resource control
  • DCI downlink control information
  • Media Access Control Media Access Control
  • MAC Control Element, CE
  • the base station may switch between conventional QCL configuration information or newly designed QCL configuration information.
  • the user terminal may determine whether to use conventional QCL configuration information or newly designed QCL configuration information through RRC signaling, DCI, MAC, CE, etc. from the base station to determine a first airspace reception parameter for receiving downlink data signals.
  • the airspace reception parameter indication information in step S201 is an example in which the user terminal notifies the base station of the airspace reception parameters determined by itself and the base station generates the corresponding information.
  • the “airspace reception parameter indication information” in step S201 may include index information of the first airspace reception parameter.
  • the user terminal may determine the first airspace reception parameter for receiving the downlink data signal according to the received index information of the first airspace reception parameter. For example, the user terminal may determine the first airspace reception parameter from a preset codebook according to index information of the first airspace reception parameter.
  • both the user terminal and the base station may store a codebook corresponding to the airspace reception parameter in advance, and then the base station may select a first airspace reception parameter from the codebook and send index information of the first airspace reception parameter to the user terminal.
  • the "codebook" may be, for example, any codebook corresponding to airspace reception parameters, such as a codebook already defined in 3GPP Release 8 or other versions.
  • the user terminal receives index information of the first airspace reception parameter sent by the base station.
  • the user terminal may determine a first airspace receiving parameter for receiving a downlink data signal in the codebook according to the index information.
  • a codebook can be used to quantify the airspace reception parameters. For example, for user terminals with different numbers of antenna ports, different codebooks can be set separately. For example, for a user terminal having two antenna ports, four antenna ports, and eight antenna ports, three codebooks represented by four bits may be set.
  • the index information of the first airspace reception parameter may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the user terminal may obtain the index information of the first airspace reception parameter by receiving RRC signaling, DCI, or MAC from the base station, so as to determine the codebook for receiving the downlink data signal according to the index information of the first airspace reception parameter. Receive parameters for the first airspace.
  • the airspace reception parameter indication information in step S201 is indication information generated by the base station according to the airspace reception parameters determined for the user terminal
  • the "airspace reception parameter indication information" in step S201 may include the first airspace reception parameter Index information. That is, the user terminal may be notified by the base station of the first airspace reception parameter in a hinted manner.
  • the user terminal may also be notified by the base station of the first airspace reception parameter in an explicit manner.
  • the airspace reception parameter indication information in step S201 is indication information generated by the base station according to the airspace reception parameters determined for the user terminal
  • the "airspace reception parameter indication information" in step S201 may further include the first airspace reception parameter.
  • the user terminal may quickly determine a first airspace reception parameter for receiving a downlink data signal according to the received first airspace reception parameter.
  • the base station can instruct the user terminal to determine a spatial filter for receiving downlink data signals, so that both the base station and the user terminal can agree on a spatial filter for receiving downlink data signals, which ensures that The spatial filter receiving the downlink data signal matches the equivalent channel determined by the base station, thereby reducing the interference suffered by the user terminal.
  • FIG. 3 is a flowchart of a signal transmission method 300 performed by a base station according to an embodiment of the present disclosure. Since the method 300 is the same as some of the details of the method 200 described above with reference to FIG. 2, a detailed description of the same content is omitted here for simplicity.
  • the base station in step S301, the base station generates airspace reception parameter indication information.
  • the airspace receiving parameter indication information may be indication information that the user terminal notifies the base station of the airspace reception parameters determined by itself and the base station generates the corresponding information.
  • the indication information of the airspace reception parameter may also be indication information generated by the base station according to the airspace reception parameter determined by the base station for the user terminal.
  • the airspace receiving parameter indication information in step S301 is the indication information generated by the user terminal when it informs the base station of the airspace reception parameters determined by itself and the base station accordingly.
  • the method 300 may further include: the base station receives at least one uplink reference signal from the user terminal, the at least one uplink reference signal is the user terminal using at least one candidate airspace The receiving parameters are respectively sent to the base station; and the base station selects the first reference signal from at least one uplink reference signal.
  • the base station may select the first reference signal according to the reception quality of the at least one uplink reference signal.
  • the base station may determine the uplink reference signal with the best reception quality as the first reference signal.
  • the base station may determine an equivalent channel according to the first reference signal so as to send a downlink data signal to the user terminal. Moreover, the base station may generate the airspace reception parameter indication information according to the information of the first reference signal, and send the airspace reception parameter indication information to the user terminal.
  • the airspace receiving parameter indication information may include information about the first reference signal.
  • the user terminal may determine a first airspace reception parameter for receiving a downlink data signal according to the airspace reception parameter indication information. In this way, the spatial filter used by the user terminal for receiving downlink data signals matches the equivalent channel determined by the base station, so that the signal received by the user terminal is a signal that suffers less interference or a signal that does not suffer interference.
  • the information about the first reference signal may include resource information and / or port information (for example, a port index) of the first reference signal ).
  • the resource information of the first reference signal may be, for example, a resource identifier (ID) used when the user terminal sends an uplink reference signal to be determined by the base station as the first reference signal, such as a time-frequency resource ID.
  • ID resource identifier
  • a user terminal when a user terminal sends an uplink reference signal to a base station, it may send the resource ID and / or port information of the uplink reference signal to the base station together, so that the base station can determine the first reference signal after the uplink reference signal is the first reference signal.
  • a resource ID and / or port information of a reference signal is fed back to the user terminal. Therefore, after receiving the resource ID and / or port information of the first reference signal fed back by the base station, the user terminal may determine the airspace reception parameter used when transmitting the first reference signal as the destination airspace reception parameter.
  • the information about the first reference signal may further include association information between the first reference signal and the downlink reference signal.
  • the "downlink reference signal” herein may be any kind of downlink reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DM-RS).
  • DM-RS Demodulation Reference Signal
  • the association information between the first reference signal and the downlink reference signal may be included in the downlink configuration information received by the user terminal from the base station.
  • the downlink configuration information may be, for example, downlink transmission configuration identification (Transmission Configuration Indication) or quasi co-location (QCL) configuration information.
  • the association information between the first reference signal and the downlink reference signal may be embodied as adding resource information and / or port information of the first reference signal to the downlink configuration information, thereby representing the relationship between the first reference signal and the downlink reference signal. Relevance. Therefore, the user terminal can obtain the first reference signal determined by the base station for the user terminal through the downlink configuration information, and then determine the airspace reception parameter used when sending the first reference signal as the destination airspace reception parameter.
  • the airspace reception parameter indication information in step S301 is an example in which the user terminal notifies the base station of the airspace reception parameters determined by itself and the base station generates the corresponding information.
  • the “airspace reception parameter indication information” in step S301 may include index information of the first airspace reception parameter. That is, the user terminal may be notified by the base station of the first airspace reception parameter in a hinted manner.
  • the user terminal may also be notified by the base station of the first airspace reception parameter in an explicit manner.
  • the airspace reception parameter indication information in step S301 is indication information generated by the base station according to the airspace reception parameters determined for the user terminal
  • the "airspace reception parameter indication information" in step S301 may further include the first airspace reception parameter. Accordingly, the user terminal can quickly determine the first airspace reception parameter for receiving the downlink data signal according to the received first airspace reception parameter.
  • the base station sends the airspace reception parameter indication information to the user terminal, so that the user terminal determines the first airspace reception parameter according to the airspace reception parameter indication information.
  • the base station may send the airspace receiving parameter indication information to the user terminal through RRC signaling, DCI or MAC CE.
  • the user terminal may obtain the index information of the first airspace reception parameter by receiving RRC signaling, DCI, or MAC from the base station, so as to determine the codebook for receiving the downlink data signal according to the index information of the first airspace reception parameter. Receive parameters for the first airspace.
  • the method 300 may further include: the base station performs precoding processing on the downlink data signal, and sends the precoding processed downlink data signal to the user terminal.
  • the base station may perform non-linear precoding processing on the downlink data signal, such as using the Tomlinson-Harashima Precoding (THP) scheme or the Vector Perturbation (VP) scheme to perform downlink precoding
  • THP Tomlinson-Harashima Precoding
  • VP Vector Perturbation
  • THP uses THP as an example to describe the process of the base station performing non-linear precoding processing on the downlink data signal.
  • the number of layers scheduled by the base station to the k-th user terminal is L k , where k ⁇ K and a positive integer.
  • is the modulo boundary
  • p I and p Q are integers. Represents interference from the first layer to the (k-1) th layer to the kth layer.
  • the base station can instruct the user terminal to determine a spatial filter for receiving downlink data signals, so that both the base station and the user terminal can agree on a spatial filter for receiving downlink data signals, which ensures that The spatial filter receiving the downlink data signal matches the equivalent channel determined by the base station, thereby reducing the interference suffered by the user terminal.
  • the wireless communication system 400 may include a base station (BS) 410 and a user terminal 420.
  • the base station 410 is a serving base station of the user terminal 420.
  • the wireless communication system shown in FIG. 4 may include a base station (BS) 410 and a user terminal 420.
  • the base station 410 is a serving base station of the user terminal 420.
  • the user terminal 420 may determine the first airspace receiving parameter for receiving the downlink data signal according to the airspace receiving parameter indication information, so that the spatial filter for receiving the downlink data signal of the user terminal 420 and the equivalent channel determined by the base station 410 ( For example, the vector [h 1 , h 2 ] can be used to match). As shown in FIG. 4, the user terminal 420 can process the two signals from the antenna # 1 and the antenna # 2 through the first airspace receiving parameter, thereby reducing the interference suffered by the user terminal.
  • the user terminal may receive downlink data signals on one or more antenna ports indicated by the base station and ignore downlink data signals received on other antenna ports other than the one or more antenna ports. This embodiment is described below with reference to FIGS. 5 to 7.
  • FIG. 5 is a flowchart of a signal transmission method 500 performed by a user terminal according to another embodiment of the present disclosure.
  • the user terminal receives information about the first antenna port from the base station.
  • the "antenna port" herein may be an uplink port of a user terminal, such as a port in an SRS resource, or may be another equivalent concept, such as an SRS resource in a group of single-port SRS resources.
  • the first antenna port may be determined by the base station from at least one antenna port of the user terminal.
  • the first antenna port may be a user terminal sending an uplink reference signal such as an SRS to the base station, and then the base station determines a channel condition corresponding to at least one antenna port of the user terminal according to the received SRS and at least one Determined in the antenna port.
  • the first antenna port may be determined by the base station by comparing the channel conditions corresponding to each antenna port of the user terminal and selecting an antenna port with the best channel condition among them.
  • the information about the first antenna port may include index information of the first antenna port.
  • both the user terminal and the base station may store the antenna port selection codebook in advance, and then the base station may select the first antenna port from the antenna port selection codebook, and send the index information of the first antenna port to the user terminal.
  • the user terminal may determine the first antenna port in the antenna port selection codebook according to the index information.
  • one or more codebooks corresponding to the specific antenna port may be set.
  • the number of bits of one or more codebooks may be determined according to the number of specific antenna ports of the user terminal.
  • a codebook and the number of bits of the codebook may be determined according to the number of specific antenna ports and the RI value of the user terminal. For example, for all RI values, a codebook can be set. Because for a user terminal having two antenna ports, the user terminal can use at least one of the two antenna ports to receive a downlink data signal. Then, when the Rank Indication (RI) is 1, the user terminal may use any one of the two antenna ports to receive a downlink data signal (two port usage modes); and when the RI is 2, The user terminal can use the two antenna ports to receive downlink data signals (a port usage mode). Therefore, for a user terminal with two antenna ports, there are three port usage modes, and an antenna port selection codebook represented by two bits can be set accordingly.
  • RI Rank Indication
  • multiple codebooks and the number of bits in each codebook of the multiple codebooks may be determined according to the number of specific antenna ports and RI values of the user terminal. For example, for each RI value, a codebook corresponding to each RI value can be set. Because for a user terminal having two antenna ports, the user terminal can use at least one of the two antenna ports to receive a downlink data signal. Then, when the RI is 1, the user terminal can use any one of the two antenna ports to receive the downlink data signal, and the antenna port selection codebook represented by 1 bit shown in Table 1 below can be defined. Table 1 is an example of the antenna port selection codebook when the user terminal has two antenna ports and the RI is 1.
  • the base station may also notify the user terminal of the RI and the antenna port index information (or antenna port selection codeword) jointly.
  • the base station may define joint notification signaling represented by 2 bits as shown in Table 2 below. Table 2 is an example of joint notification signaling when the user terminal has two antenna ports and the RI is 1 or 2.
  • the above example is described again by taking a user terminal with four antenna ports as an example. According to the above example, one or more codebooks corresponding to the specific antenna port can be set.
  • a codebook and the number of bits of the codebook may be determined according to the number of specific antenna ports and the RI value of the user terminal. For example, for all RI values, a codebook can be set. For a user terminal having four antenna ports, the user terminal can use at least one antenna port of the four antenna ports to receive a downlink data signal.
  • the user terminal can use any one of the four antenna ports to receive downlink data signals (three port usage methods); when the RI is 2, the user terminal can use the four antennas Any two antenna ports in the port receive downlink data signals (six types of port usage); when the RI is 3, the user terminal can use any three antenna ports of the four antenna ports to receive downlink data signals (four A port use mode); and when the RI is 4, the user terminal can use the four antenna ports to receive downlink data signals (a port use mode). Therefore, for a user terminal with four antenna ports, there are fourteen port usage modes, and an antenna port selection codebook represented by four bits can be set accordingly.
  • multiple codebooks and the number of bits in each codebook of the multiple codebooks may be determined according to the number of specific antenna ports and the RI value of the user terminal. For example, for each RI value, a codebook corresponding to each RI value can be set. For a user terminal having four antenna ports, the user terminal can use at least one antenna port of the four antenna ports to receive a downlink data signal. Then, when the RI is 1, the user terminal can use any one of the four antenna ports to receive downlink data signals, and an antenna port selection codebook represented by two bits shown in Table 3 below can be defined. Table 3 is an example of the antenna port selection codebook when the user terminal has four antenna ports and the RI is 1.
  • Codeword sequence number significance 00 Use antenna port 0 01 Using antenna port 1 10 Using antenna port 2 11 Using antenna port 3
  • the user terminal can use any two antenna ports among the four antenna ports to receive downlink data signals. Then, an antenna port selection codebook represented by three bits shown in Table 4 below can be defined. Table 4 is an example of the antenna port selection codebook when the user terminal has four antenna ports and the RI is 2.
  • the user terminal can use any three antenna ports among the four antenna ports to receive downlink data signals. Then, an antenna port selection codebook represented by two bits shown in Table 5 below can be defined. Table 5 is an example of the antenna port selection codebook when the user terminal has four antenna ports and the RI is 3.
  • Codeword sequence number significance 00 Use antenna ports 0, 1, 2 01 Use antenna ports 0, 1, 3 10 Use antenna ports 0, 2, 3 11 Use antenna ports 1, 2, 3
  • the base station may also notify the user terminal of the RI and the antenna port index information (or antenna port selection codeword) jointly.
  • the base station may define joint notification signaling represented by 4 bits as shown in Table 6 below. Table 6 is an example of joint notification signaling when the user terminal has four antenna ports and the RI is 1 to 4.
  • Bit field value RI Antenna port 0000 1 Use antenna port 0 0001 1 Using antenna port 1 0010 1 Using antenna port 2 0011 1 Using antenna port 3 0100 2 Use antenna port 0,1 0101 2 Use antenna port 0, 2 0110 2 Use antenna ports 0, 3 0111 2 Use antenna ports 1, 2 1000 2 Use antenna ports 1, 3 1001 2 Use antenna ports 2, 3 1010 3 Use antenna ports 0, 1, 2 1011 3 Use antenna ports 0, 1, 3 1100 3 Use antenna ports 0, 2, 3 1101 3 Use antenna ports 1, 2, 3 1110 4 Use antenna ports 1, 2, 3, 4 1111 Keep Keep Keep Keep Keep
  • a similar method can be used to set the antenna port selection codebook.
  • the information about the first antenna port may include association information between the first antenna port and an uplink reference signal.
  • the uplink reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the first antenna port and the SRS port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port connected to the SRS port QCL may be determined as the first antenna port.
  • the "association information between the first antenna port and the uplink reference signal" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may further include association information between the first antenna port and an index of the first antenna port.
  • the index of the first antenna port and the first antenna port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port of the index QCL with the first antenna port may be determined as the first antenna port.
  • the "association information between the first antenna port and the index of the first antenna port" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the user terminal can obtain the information about the first antenna port by receiving RRC signaling, DCI, or MAC from the base station, so that the user terminal receives the downlink data signal on the first antenna port and discards the The downlink data signal received on the antenna port except the first antenna port.
  • the user terminal determines the first antenna port from at least one antenna port of the user terminal according to the information about the first antenna port. For example, when the information about the first antenna port is the index information of the first antenna port, after receiving the index information of the first antenna port, the user terminal may determine the first in the antenna port selection codebook according to the index information. Antenna port. As another example, when the information about the first antenna port is association information between the first antenna port and an uplink reference signal or an index of the first antenna port, the user terminal may refer to the uplink information after receiving the association information. The antenna port associated with the signal or the index of the first antenna port is determined as the first antenna port.
  • the user terminal receives the first downlink data signal on the first antenna port, and ignores the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port.
  • the user terminal may receive the first downlink data signal on the first antenna port and process the first downlink data signal, and the user terminal may discard the antenna port other than the first antenna port among the at least one antenna port.
  • a second downlink data signal received on the uplink may be received on the uplink.
  • the above embodiment can be applied to the wireless communication system shown in FIG. 1.
  • the user terminal when the user terminal combines the two signals from the antenna # 1 and the antenna # 2, it can process only the signal from the antenna # 1 and not the signal from the antenna # 2.
  • the above embodiment can also be applied to a wireless communication system as shown in FIG. 4.
  • the base station sends the airspace reception parameter indication information to the user terminal, and the airspace reception parameter indication information can be represented by a vector [g 1 , 0] or [0, g 2 ].
  • the user terminal receives downlink data signals on one antenna port indicated by the base station and ignores downlink data signals received on other antenna ports, the user terminal may also Receive downlink data signals on one antenna port and ignore downlink data signals received on other antenna ports except the multiple antenna ports.
  • the base station can determine a first antenna port from at least one antenna port for the user terminal, and notify the user terminal of the first antenna port, and the user terminal only processes downlink data on the first antenna port. Signal, so that the first antenna port matches the equivalent channel determined by the base station, thereby reducing interference suffered by the user terminal.
  • FIG. 6 is a flowchart of a signal transmission method 600 performed by a base station according to another embodiment of the present disclosure. Since the method 600 is the same as some details of the method 500 described above with reference to FIG. 5, a detailed description of the same content is omitted here for simplicity.
  • the base station determines a first antenna port from at least one antenna port of the user terminal.
  • the base station may determine the first antenna port from the at least one antenna port of the user terminal according to a channel condition corresponding to the at least one antenna port of the user terminal. For example, the base station may compare the channel conditions corresponding to each antenna port of the user terminal, and select the antenna port with the best channel condition as the first antenna port.
  • step S602 the base station sends information about the first antenna port to the user terminal, so that the user terminal receives the first downlink data signal on the first antenna port and ignores the signals in the at least one antenna port.
  • the information about the first antenna port may include index information of the first antenna port.
  • both the user terminal and the base station may store the antenna port selection codebook in advance, and then the base station may select the first antenna port from the antenna port selection codebook, and send the index information of the first antenna port to the user terminal.
  • the user terminal may determine the first antenna port in the antenna port selection codebook according to the index information.
  • one or more codebooks corresponding to the specific antenna port may be set.
  • the number of bits of one or more codebooks may be determined according to the number of specific antenna ports of the user terminal.
  • the user terminal may use at least one of the two antenna ports to receive a downlink data signal.
  • the Rank Indication (RI) is 1, the user terminal can use either of the two antenna ports to receive downlink data signals (two port usage methods); and when the RI is 2, the user terminal
  • the two antenna ports can be used to receive downlink data signals (a port usage mode). Therefore, for a user terminal with two antenna ports, there are three port usage modes, and an antenna port selection codebook represented by two bits can be set.
  • the information about the first antenna port may include association information between the first antenna port and an uplink reference signal.
  • the uplink reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the first antenna port and the SRS port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port connected to the SRS port QCL may be determined as the first antenna port.
  • the "association information between the first antenna port and the uplink reference signal" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may further include association information between the first antenna port and an index of the first antenna port.
  • the index of the first antenna port and the first antenna port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port of the index QCL with the first antenna port may be determined as the first antenna port.
  • the "association information between the first antenna port and the index of the first antenna port" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the base station may send information about the first antenna port to the user terminal through RRC signaling, DCI, MAC, CE, or the like. Accordingly, the user terminal may obtain the information about the first antenna port by receiving RRC signaling, DCI, or MAC from the base station, so that the user terminal receives the first downlink on the first antenna port according to the information about the first antenna port. The data signal and ignore the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port.
  • the method 600 may further include: the base station performs precoding processing on the downlink data signal, and sends the precoding processed downlink data signal to the user terminal.
  • the base station may perform non-linear precoding processing on the downlink data signal, such as using the Tomlinson-Harashima Precoding (THP) scheme or the Vector Perturbation (VP) scheme to perform downlink precoding
  • THP Tomlinson-Harashima Precoding
  • VP Vector Perturbation
  • the data signal is subjected to a non-linear precoding process.
  • the base station may perform THP encoding on the downlink data signal by using the formula (1) described above.
  • the base station can determine a first antenna port from at least one antenna port for the user terminal, and notify the user terminal of the first antenna port, and the user terminal only processes downlink data on the first antenna port. Signal, so that the first antenna port matches the equivalent channel determined by the base station, thereby reducing interference suffered by the user terminal.
  • the wireless communication system 700 may include a base station (BS) 710 and a user terminal 720.
  • the base station 710 is a serving base station of the user terminal 720.
  • the wireless communication system shown in FIG. 7 may include a base station (BS) 710 and a user terminal 720.
  • the base station 710 is a serving base station of the user terminal 720.
  • the user terminal 720 can Receiving the first downlink data signal on the first antenna port and ignoring the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port, so that the user terminal 720 The first antenna port matches the equivalent channel determined by the base station, ensuring that the signals received by the user terminal do not include interference signals from other antenna ports. As shown in FIG. 7, the user terminal 720 can receive a signal through the antenna # 1, and discard the signal received on the antenna # 2, thereby reducing the interference suffered by the user terminal.
  • the user terminal may receive the initial data and its copy data from the base station in order to obtain the initial data through interference cancellation. This embodiment is described below with reference to FIGS. 8 to 10.
  • FIG. 8 is a flowchart of a signal transmission method 800 performed by a user terminal according to another embodiment of the present disclosure.
  • the user terminal receives multiple data streams from the base station, and each of the multiple data streams corresponds to the initial data or a copy of the initial data.
  • the duplicate data of the initial data is the same as the initial data.
  • a user terminal may receive multiple data streams on one or more antenna ports.
  • a user terminal can receive a data stream on each antenna port.
  • a user terminal may receive multiple data streams on one antenna port.
  • the plurality of data streams may be generated by the base station processing the initial data or one or more duplicate data of the initial data, respectively.
  • the multiple data streams may be generated by the base station performing precoding processing (such as through non-linear precoding, etc.) on the initial data or one or more copies of the initial data, respectively.
  • precoding processing such as through non-linear precoding, etc.
  • Non-linear precoding such as THP, includes modulo operation, feedback processing, feedforward processing, power normalization, and so on.
  • the plurality of data streams may be transmitted by the base station on at least one DMRS port.
  • the multiple data streams may be sent after the base station performs phase rotations on the multiple data streams separately from each other.
  • the multiple data streams may be sent by the base station on different DMRS ports, respectively.
  • the user terminal may determine which DMRS ports the base station sends data streams on through control information received from the base station. For example, the user terminal can determine which DMRS ports the base station sends data streams on through RRC signaling, DCI or MAC CE from the base station.
  • step S802 the user terminal performs serial interference cancellation processing on multiple data streams to obtain initial data.
  • a user terminal may use a Minimum Mean Square Error (MMSE) receiver to perform serial interference cancellation processing on multiple data streams to obtain initial data.
  • MMSE Minimum Mean Square Error
  • the method 800 may further include: the user terminal estimates the downlink channel to obtain an estimated channel. For example, when the base station sends multiple data streams on at least one DMRS port, the user terminal may estimate a channel corresponding to the at least one DMRS port to obtain an estimated channel corresponding to each DMRS port.
  • the user terminal may perform an inverse operation of precoding on the data stream through an estimated channel corresponding to each DMRS port, such as a demodulation operation.
  • the user terminal can then perform serial interference cancellation processing on the pre-coded inverse operation processed data to obtain the initial data.
  • the base station can repeatedly send data to be sent to the user terminal. Accordingly, the user terminal can perform interference cancellation on the received multiple channels of data to obtain actual data, thereby reducing the user terminal ’s interference.
  • FIG. 9 is a flowchart of a signal transmission method 900 performed by a base station according to another embodiment of the present disclosure. Because the method 900 is the same as some details of the method 800 described above with reference to FIG. 8, a detailed description of the same content is omitted here for simplicity.
  • the base station maps the initial data and one or more copies of the initial data to different layers, respectively. That is, in the present disclosure, each layer corresponds to the initial data or one copy of the initial data. Further, in the present disclosure, the duplicate data of the initial data is the same as the initial data.
  • the base station processes the data on each layer to generate a data stream corresponding to each layer.
  • the base station may perform precoding processing on the data on each layer (such as through non-linear precoding, etc.) to generate a data stream corresponding to each layer.
  • precoding processing such as THP, includes modulo operation, feedback processing, feedforward processing, power normalization, and so on.
  • the THP precoding process is implemented by the following formula (3) to obtain the pre-processed data symbol x ′ k, l :
  • is the modulo boundary
  • p I and p Q are integers, Indicates that the k-th user terminal is subject to interference from other user terminals, Represents interference from other layers of the k-th user terminal to this layer.
  • step S903 the base station sends multiple data streams corresponding to different layers to the user terminal, so that the user terminal performs serial interference cancellation processing on the multiple data streams to obtain initial data.
  • a base station may send multiple data streams on at least one DMRS port. For example, when the base station sends multiple data streams on one DMRS port, the base station may perform phase rotation on the multiple data streams, and then send the data streams. As another example, when the base station sends multiple data streams on multiple DMRS ports, the base station may send on different DMRS ports.
  • the base station may send control information to the user terminal to notify the user terminal of which DMRS ports the downlink data signal is sent on.
  • the base station may notify the user terminal base station on which DMRS ports to send downlink data signals through RRC signaling, DCI or MAC CE.
  • the base station may also send control information to the user terminal to notify the user terminal of the correspondence between the number of DMRS ports and the number of layers.
  • the number of DMRS ports corresponds to the number of layers.
  • the base station may send RRC signaling, DCI or MAC CE to the user terminal to notify the user terminal of the correspondence between the number of DMRS ports and the number of layers.
  • the base station can also reorder the data streams corresponding to each layer.
  • the base station may reorder the data flow corresponding to each layer based on the principle of fairness.
  • the base station then sends the reordered multiple data streams on at least one DMRS port.
  • the base station can repeatedly send downlink data signals to be transmitted. Accordingly, the user terminal can perform interference cancellation on the received multiple signals to obtain actual downlink data signals, thereby reducing the user terminal ’s suffering. Interference.
  • the wireless communication system 1000 may include a base station (BS) 1010 and a user terminal 1020.
  • the base station 1010 is a serving base station of the user terminal 1020.
  • the user terminal 1020 can transmit the antenna # 1 and the antenna # 1. 2
  • the two signals received receive interference cancellation to obtain the actual downlink data signal, thereby reducing the interference suffered by the user terminal.
  • each user terminal may execute any one of the methods performed by the user terminal described in the above embodiments.
  • FIG. 11 illustrates a block diagram of a user terminal 1100 according to an embodiment of the present disclosure. Since the function of the user terminal 1100 is the same as the details of the method 200 described above with reference to FIG. 2, a detailed description of the same content is omitted here for simplicity.
  • the user terminal 1100 includes a receiving unit 1110 configured to receive airspace reception parameter indication information sent by a base station; and a determination unit 1120 configured to determine a first airspace reception parameter according to the airspace reception parameter indication information. So that the user terminal receives the downlink data signal through the first airspace receiving parameter.
  • the user terminal 1100 may include other components. However, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted here.
  • the airspace reception parameter indication information may be indication information that the user terminal notifies the base station of the airspace reception parameters determined by the user terminal and the base station generates the corresponding information.
  • the indication information of the airspace reception parameter may also be indication information generated by the base station according to the airspace reception parameter determined by the base station for the user terminal.
  • the airspace receiving parameter indication information is indication information that the user terminal notifies the base station of the airspace reception parameter determined by itself and the base station generates the corresponding information.
  • the method 200 may further include: the user terminal determines at least one candidate airspace reception parameter by measuring a downlink channel.
  • a user terminal may receive a downlink reference signal, such as a Channel State Information Reference Signal (CSI-RS), from a base station to measure downlink information to train airspace reception parameters, thereby determining one or more candidate airspaces.
  • CSI-RS Channel State Information Reference Signal
  • the user terminal 1100 may further include: a sending unit (not shown) configured to use the at least one candidate airspace reception parameter to separately send an uplink reference signal to the base station, so that The base station determines a first reference signal from at least one uplink reference signal.
  • the uplink reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • the base station may also generate the airspace receiving parameter indication information according to the first reference signal.
  • the airspace reception parameter indication information may include information about the first reference signal.
  • the receiving unit 1110 can receive information about the first reference signal.
  • the determining unit 1120 may determine the airspace reception parameter used when transmitting the first reference signal according to the information about the first reference signal sent by the base station, and determine the airspace reception parameter used when transmitting the first reference signal as A first airspace receiving parameter for receiving a downlink data signal.
  • the information about the first reference signal may include resource information and / or port information (for example, a port index) of the first reference signal ).
  • the resource information of the first reference signal may be, for example, a resource identifier (ID) used when the user terminal sends an uplink reference signal to be determined by the base station as the first reference signal, such as a time-frequency resource ID.
  • ID resource identifier
  • a user terminal when a user terminal sends an uplink reference signal to a base station, it may send the resource ID and / or port information of the uplink reference signal to the base station together, so that the base station can determine the first reference signal after the uplink reference signal is the first reference signal.
  • a resource ID and / or port information of a reference signal is fed back to the user terminal. Therefore, after receiving the resource ID and / or port information of the first reference signal fed back by the base station, the user terminal may determine the airspace reception parameter used when transmitting the first reference signal as the destination airspace reception parameter.
  • the information about the first reference signal may further include association information between the first reference signal and the downlink reference signal.
  • the "downlink reference signal” herein may be any kind of downlink reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DM-RS).
  • DM-RS Demodulation Reference Signal
  • the association information between the first reference signal and the downlink reference signal may be included in the downlink configuration information received by the user terminal from the base station.
  • the downlink configuration information may be, for example, downlink transmission configuration identification (Transmission Configuration Indication) or quasi co-location (QCL) configuration information.
  • the association information between the first reference signal and the downlink reference signal may be embodied as adding resource information and / or port information of the first reference signal to the downlink configuration information, thereby representing the relationship between the first reference signal and the downlink reference signal. Relevance. Therefore, the user terminal can obtain the first reference signal determined by the base station for the user terminal through the downlink configuration information, and then determine the airspace reception parameter used when sending the first reference signal as the destination airspace reception parameter.
  • the following line configuration information is an example of QCL configuration information to describe the present disclosure.
  • the resource information and / or port information of the first reference signal may be added to the regular QCL configuration information.
  • the conventional QCL configuration information already includes information indicating the correlation between a CSI-RS, a Synchronization Signal (SS) block, and the downlink reference signal.
  • the resource ID and / or port information of the first reference signal may be added to the regular QCL configuration information to indicate the correlation between the first reference signal and the downlink reference signal.
  • QCL configuration information is given below:
  • the QCL configuration information may be simply referred to as "QCL-Info".
  • the type of the QCL configuration information may be a type D (Type-D) defined in an existing standard specification, that is, an airspace receiving parameter used to configure a transmission identifier for resource information and / or port information of the first reference signal.
  • a new type of QCL configuration information that is different from the conventional QCL configuration information may be designed.
  • the new type of QCL configuration information may only indicate the correlation between the first reference signal and the downlink reference signal without Represents the correlation between CSI-RS, SS block, etc. and downlink reference signals.
  • the new type of QCL configuration information may include resource information and / or port information of the first reference signal to indicate an association between the first reference signal and a downlink reference signal.
  • An example of the new type of QCL configuration information is given below:
  • the new type of QCL configuration information may be simply referred to as "QCL-UL-Info".
  • the type of the QCL configuration information may be one of Type A (Type-A), Type B (Type-B), Type C (Type-C), or Type D (Type-D) defined in the existing standard specifications. any type.
  • the user terminal can determine that the first reference signal is associated with the downlink reference signal, and can further determine the airspace reception parameter used when transmitting the first reference signal as used for A first airspace reception parameter for receiving a downlink data signal.
  • the above-mentioned conventional QCL configuration information or newly designed QCL configuration information may include other information in addition to information indicating the correlation between certain signals and downlink reference signals, since these other information are not relevant to this disclosure, So omitted here.
  • the receiving unit 1110 may use Radio Resource Control (RRC) signaling, Downlink Control Information (DCI), or Media Access Control (Media Access Control) from a base station.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • Media Access Control Media Access Control
  • Control MAC, Control Element, CE
  • MAC Control Element, CE
  • the base station may switch between conventional QCL configuration information or newly designed QCL configuration information.
  • the receiving unit 1110 may determine whether to use conventional QCL configuration information or newly designed QCL configuration information through RRC signaling, DCI or MAC CE from the base station, so as to determine a first airspace reception parameter for receiving a downlink data signal.
  • the airspace reception parameter indication information is an example in which the user terminal notifies the base station of the airspace reception parameters determined by itself and the base station generates the corresponding information.
  • the “space domain receiving parameter indication information” may include index information of the first airspace receiving parameter.
  • the determining unit 1120 may determine the first airspace reception parameter for receiving the downlink data signal according to the received index information of the first airspace reception parameter.
  • both the user terminal and the base station may store a codebook corresponding to the airspace reception parameter in advance, and then the base station may select a first airspace reception parameter from the codebook and send index information of the first airspace reception parameter to the user terminal.
  • the "codebook" may be, for example, any codebook corresponding to airspace reception parameters, such as a codebook already defined in 3GPP Release 8 or other versions.
  • the receiving unit 1110 receives the index information of the first airspace reception parameter sent by the base station. Then, the determining unit 1120 may determine a first airspace receiving parameter for receiving a downlink data signal in the codebook according to the index information.
  • the index information of the first airspace reception parameter may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the receiving unit 1110 can obtain the index information of the first airspace receiving parameter by receiving RRC signaling, DCI, or MAC from the base station, so as to determine in the codebook for receiving the downlink according to the index information of the first airspace receiving parameter.
  • the first airspace reception parameter of the data signal may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the receiving unit 1110 can obtain the index information of the first airspace receiving parameter by receiving RRC signaling, DCI, or MAC from the base station, so as to determine in the codebook for receiving the downlink according to the index information of the first airspace receiving parameter.
  • the first airspace reception parameter of the data signal may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the receiving unit 1110
  • the airspace reception parameter indication information is indication information generated by the base station according to the airspace reception parameter determined for the user terminal
  • the "airspace reception parameter indication information" may include index information of the first airspace reception parameter. That is, the user terminal may be notified by the base station of the first airspace reception parameter in a hinted manner. In addition, according to another example of the present disclosure, the user terminal may also be notified by the base station of the first airspace reception parameter in an explicit manner.
  • the airspace reception parameter indication information is indication information generated by the base station according to the airspace reception parameter determined by the base station for the user terminal
  • the "airspace reception parameter indication information" may further include the first airspace reception parameter. Accordingly, the determining unit 1120 can quickly determine the first airspace reception parameter for receiving the downlink data signal according to the received first airspace reception parameter.
  • the base station can instruct the user terminal to determine a spatial filter for receiving downlink data signals, so that both the base station and the user terminal can agree on a spatial filter for receiving downlink data signals, which ensures that The spatial filter receiving the downlink data signal matches the equivalent channel determined by the base station, thereby reducing the interference suffered by the user terminal.
  • FIG. 12 illustrates a block diagram of a base station 1200 according to an embodiment of the present disclosure. Since the function of the base station 1200 is the same as the details of the method 300 described above with reference to FIG. 3, a detailed description of the same content is omitted here for simplicity.
  • the base station 1200 includes a generating unit 1210 configured to generate airspace reception parameter indication information; and a sending unit 1220 configured to send airspace reception parameter indication information to a user terminal so that the user terminal receives the parameter according to the airspace
  • the indication information determines a first airspace reception parameter.
  • the base station 1200 may include other components. However, since these components are not related to the content of the embodiment of the present invention, their illustration and description are omitted here.
  • the airspace receiving parameter indication information is indication information that the user terminal notifies the base station of the airspace reception parameter determined by itself and the base station generates the corresponding information.
  • the base station 1200 may further include a receiving unit (not shown) configured to receive at least one uplink reference signal from a user terminal, where the at least one uplink reference signal is a user The terminal uses at least one candidate airspace reception parameter to send to the base station respectively; and a selection unit (not shown) configured to select a first reference signal from at least one uplink reference signal.
  • the selection unit may select the first reference signal according to the reception quality of the at least one uplink reference signal.
  • the selection unit may determine the uplink reference signal with the best reception quality as the first reference signal.
  • the selection unit may determine an equivalent channel according to the first reference signal so as to send a downlink data signal to the user terminal.
  • the base station may generate the airspace reception parameter indication information according to the information of the first reference signal, and send the airspace reception parameter indication information to the user terminal.
  • the information about the first reference signal may include resource information and / or port information (for example, a port index) of the first reference signal ).
  • the resource information of the first reference signal may be, for example, a resource identifier (ID) used when the user terminal sends an uplink reference signal to be determined by the base station as the first reference signal, such as a time-frequency resource ID.
  • ID resource identifier
  • the information about the first reference signal may further include association information between the first reference signal and the downlink reference signal.
  • the "downlink reference signal” herein may be any kind of downlink reference signal, such as a demodulation reference signal (Demodulation Reference Signal, DM-RS).
  • DM-RS Demodulation Reference Signal
  • the association information between the first reference signal and the downlink reference signal may be included in the downlink configuration information received by the user terminal from the base station.
  • the downlink configuration information may be, for example, downlink transmission configuration identification (Transmission Configuration Indication) or quasi co-location (QCL) configuration information.
  • the association information between the first reference signal and the downlink reference signal may be embodied as adding resource information and / or port information of the first reference signal to the downlink configuration information, thereby representing the relationship between the first reference signal and the downlink reference signal. Relevance.
  • the “airspace reception parameter indication information” may include index information of the first airspace reception parameter. That is, the user terminal may be notified by the base station of the first airspace reception parameter in a hinted manner.
  • the user terminal may also be notified by the base station of the first airspace reception parameter in an explicit manner.
  • the airspace reception parameter indication information is indication information generated by the base station according to the airspace reception parameters determined by the user terminal
  • the "airspace reception parameter indication information" may further include the first airspace reception parameter. Accordingly, the user terminal can quickly determine the first airspace reception parameter for receiving the downlink data signal according to the received first airspace reception parameter.
  • the sending unit 1220 may send the airspace receiving parameter indication information to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the user terminal may obtain the index information of the first airspace reception parameter by receiving RRC signaling, DCI, or MAC from the base station, so as to determine the codebook for receiving the downlink data signal according to the index information of the first airspace reception parameter. Receive parameters for the first airspace.
  • the base station 1200 may further include a processing unit configured to perform precoding processing on the downlink data signal, and send the downlink data signal after the precoding processing to the user terminal.
  • the base station may perform non-linear precoding processing on the downlink data signal, such as using the Tomlinson-Harashima Precoding (THP) scheme or the Vector Perturbation (VP) scheme to perform downlink precoding
  • THP Tomlinson-Harashima Precoding
  • VP Vector Perturbation
  • the base station can instruct the user terminal to determine a spatial filter for receiving downlink data signals, so that both the base station and the user terminal can agree on a spatial filter for receiving downlink data signals, which ensures that The spatial filter receiving the downlink data signal matches the equivalent channel determined by the base station, thereby reducing the interference suffered by the user terminal.
  • FIG. 13 illustrates a block diagram of a user terminal 1300 according to an embodiment of the present disclosure. Since the function of the user terminal 1300 is the same as the details of the method 500 described above with reference to FIG. 5, a detailed description of the same content is omitted here for simplicity.
  • the user terminal 1300 includes a receiving unit 1310 configured to receive information about a first antenna port from a base station; and a determining unit 1320 configured to receive information from the user terminal from the first antenna port according to the information about the first antenna port.
  • a first antenna port is determined from at least one antenna port.
  • the receiving unit 1310 is also configured to receive the first downlink data signal on the first antenna port, and ignore the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port.
  • the user terminal 1300 may include other components. However, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted here.
  • the first antenna port may be determined by the base station from at least one antenna port of the user terminal.
  • the first antenna port may be a user terminal sending an uplink reference signal such as an SRS to the base station, and then the base station determines a channel condition corresponding to at least one antenna port of the user terminal according to the received SRS and at least one Determined in the antenna port.
  • the first antenna port may be determined by the base station by comparing the channel conditions corresponding to each antenna port of the user terminal and selecting an antenna port with the best channel condition among them.
  • the information about the first antenna port may include index information of the first antenna port.
  • both the user terminal and the base station may store the antenna port selection codebook in advance, and then the base station may select the first antenna port from the antenna port selection codebook, and send the index information of the first antenna port to the user terminal.
  • the user terminal may determine the first antenna port in the antenna port selection codebook according to the index information.
  • the information about the first antenna port may include association information between the first antenna port and an uplink reference signal.
  • the uplink reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the first antenna port and the SRS port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port connected to the SRS port QCL may be determined as the first antenna port.
  • the "association information between the first antenna port and the uplink reference signal" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may further include association information between the first antenna port and an index of the first antenna port.
  • the index of the first antenna port and the first antenna port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port of the index QCL with the first antenna port may be determined as the first antenna port.
  • the "association information between the first antenna port and the index of the first antenna port" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may be sent by the base station to the user terminal through RRC signaling, DCI, MAC, CE, or the like.
  • the user terminal can obtain the information about the first antenna port by receiving RRC signaling, DCI, or MAC from the base station, so that the user terminal receives the downlink data signal on the first antenna port and discards the The downlink data signal received on the antenna port except the first antenna port.
  • the receiving unit 1310 may determine the The first antenna port is determined in the port selection codebook.
  • the receiving unit 1310 may determine the unit 1320 to The antenna port associated with the uplink reference signal or the index of the first antenna port is determined as the first antenna port.
  • the base station can determine a first antenna port from at least one antenna port for the user terminal, and notify the user terminal of the first antenna port, and the user terminal only processes downlink data on the first antenna port. Signal, so that the first antenna port matches the equivalent channel determined by the base station, thereby reducing interference suffered by the user terminal.
  • FIG. 14 illustrates a block diagram of a base station 1400 according to an embodiment of the present disclosure. Since the function of the base station 1400 is the same as the details of the method 600 described above with reference to FIG. 6, a detailed description of the same content is omitted here for simplicity.
  • the base station 1400 includes a determining unit 1410 configured to determine a first antenna port from at least one antenna port of a user terminal; and a sending unit 1420 configured to send a user terminal with regard to the first antenna port. Information so that the user terminal receives the first downlink data signal on the first antenna port and ignores the second downlink data received on the antenna port other than the first antenna port in the at least one antenna port signal.
  • the base station 1400 may include other components. However, since these components are not related to the content of the embodiment of the present invention, their illustration and description are omitted here.
  • the determining unit 1410 may determine the first antenna port from the at least one antenna port of the user terminal according to a channel condition corresponding to the at least one antenna port of the user terminal. For example, the determining unit 1410 may compare a channel condition corresponding to each antenna port of the user terminal, and select an antenna port with the best channel condition as the first antenna port.
  • the information about the first antenna port may include index information of the first antenna port.
  • both the user terminal and the base station may store the antenna port selection codebook in advance, and then the base station may select the first antenna port from the antenna port selection codebook, and send the index information of the first antenna port to the user terminal.
  • the user terminal may determine the first antenna port in the antenna port selection codebook according to the index information.
  • one or more codebooks corresponding to the specific antenna port may be set.
  • the number of bits of one or more codebooks may be determined according to the number of specific antenna ports of the user terminal.
  • the user terminal may use at least one of the two antenna ports to receive a downlink data signal.
  • the Rank Indication (RI) is 1, the user terminal can use either of the two antenna ports to receive downlink data signals (two port usage methods); and when the RI is 2, the user terminal
  • the two antenna ports can be used to receive downlink data signals (a port usage mode). Therefore, for a user terminal with two antenna ports, there are three port usage modes, and an antenna port selection codebook represented by two bits can be set.
  • the information about the first antenna port may include association information between the first antenna port and an uplink reference signal.
  • the uplink reference signal may be any kind of uplink reference signal, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • the first antenna port and the SRS port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port connected to the SRS port QCL may be determined as the first antenna port.
  • the "association information between the first antenna port and the uplink reference signal" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the information about the first antenna port may further include association information between the first antenna port and an index of the first antenna port.
  • the index of the first antenna port and the first antenna port may be set to QCL. Therefore, when the user terminal receives the association information, the antenna port of the index QCL with the first antenna port may be determined as the first antenna port.
  • the "association information between the first antenna port and the index of the first antenna port" in this example may also be configured in a similar manner to the QCL configuration information described above, and then sent by the base station to the user terminal.
  • the base station may send information about the first antenna port to the user terminal through RRC signaling, DCI, MAC, CE, or the like. Accordingly, the user terminal may obtain the information about the first antenna port by receiving RRC signaling, DCI, or MAC from the base station, so that the user terminal receives the first downlink on the first antenna port according to the information about the first antenna port. The data signal and ignore the second downlink data signal received on the antenna port other than the first antenna port among the at least one antenna port.
  • the base station 1400 may further include a processing unit (not shown) configured to perform precoding processing on a downlink data signal. Then, the sending unit 1420 sends the downlink data signal after the precoding processing to the user terminal.
  • the base station may perform non-linear precoding processing on the downlink data signal, such as using the Tomlinson-Harashima Precoding (THP) scheme or the Vector Perturbation (VP) scheme to perform downlink precoding
  • THP Tomlinson-Harashima Precoding
  • VP Vector Perturbation
  • the data signal is subjected to a non-linear precoding process.
  • the base station may perform THP encoding on the downlink data signal by using the formula (1) described above.
  • the base station can determine a first antenna port from at least one antenna port for the user terminal, and notify the user terminal of the first antenna port, and the user terminal only processes downlink data on the first antenna port. Signal, so that the first antenna port matches the equivalent channel determined by the base station, thereby reducing interference suffered by the user terminal.
  • FIG. 15 illustrates a block diagram of a user terminal 1500 according to an embodiment of the present disclosure. Since the function of the user terminal 1500 is the same as the details of the method 800 described above with reference to FIG. 8, a detailed description of the same content is omitted here for simplicity.
  • the user terminal 1500 includes a receiving unit 1510 configured to receive a plurality of data streams from the base station, each of the plurality of data streams corresponding to the initial data or a copy of the initial data; And a processing unit 1520 configured to perform serial interference cancellation processing on a plurality of data streams to obtain initial data.
  • the user terminal 1500 may include other components. However, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted here.
  • the receiving unit 1510 may receive multiple data streams on one or more antenna ports.
  • a user terminal can receive a data stream on each antenna port.
  • a user terminal may receive multiple data streams on one antenna port.
  • the plurality of data streams may be generated by the base station processing the initial data or one or more duplicate data of the initial data, respectively.
  • the multiple data streams may be generated by the base station performing precoding processing (such as through non-linear precoding, etc.) on the initial data or one or more copies of the initial data, respectively.
  • precoding processing such as through non-linear precoding, etc.
  • Non-linear precoding such as THP, includes modulo operation, feedback processing, feedforward processing, power normalization, and so on.
  • the plurality of data streams may be transmitted by the base station on at least one DMRS port.
  • the multiple data streams may be sent after the base station performs phase rotations on the multiple data streams separately from each other.
  • the multiple data streams may be sent by the base station on different DMRS ports, respectively.
  • the receiving unit 1510 may determine which DMRS ports the base station sends data streams on through control information received from the base station.
  • the user terminal can determine which DMRS ports the base station sends data streams on through RRC signaling, DCI or MAC CE from the base station.
  • the processing unit 1520 may use a Minimum Mean Error (MMSE) receiver to perform serial interference cancellation processing on multiple data streams to obtain initial data.
  • MMSE Minimum Mean Error
  • the user The terminal 1500 may further include a channel estimation unit (not shown) configured to estimate a downlink channel by a user terminal to obtain an estimated channel.
  • the channel estimation unit may estimate a channel corresponding to the at least one DMRS port to obtain an estimated channel corresponding to each DMRS port.
  • the processing unit 1520 may perform a pre-coding inverse operation on the data stream by using an estimated channel corresponding to each DMRS port, such as a demodulation operation. Then, the processing unit 1520 may perform serial interference cancellation processing on the pre-coded inverse operation processed data to obtain initial data.
  • the base station can repeatedly send data to be sent to the user terminal. Accordingly, the user terminal can perform interference cancellation on the received multiple channels of data to obtain actual data, thereby reducing the user terminal ’s interference.
  • FIG. 16 illustrates a block diagram of a base station 1600 according to an embodiment of the present disclosure. Since the function of the base station 1600 is the same as the details of the method 900 described above with reference to FIG. 9, a detailed description of the same content is omitted here for simplicity.
  • the base station 1600 includes a mapping unit 1610 configured to map the initial data and one or more copies of the initial data to different layers, respectively; and a processing unit 1620 configured to map each layer Processing of data to generate a data stream corresponding to each layer; a sending unit 1630 configured to send multiple data streams corresponding to different layers to a user terminal, so that the user terminal responds to multiple data streams Serial interference cancellation processing is performed to obtain initial data.
  • the base station 1600 may include other components. However, since these components are not related to the content of the embodiment of the present invention, their illustration and description are omitted here.
  • the processing unit 1620 may perform precoding processing (for example, through non-linear precoding, etc.) on the data on each layer to generate a data stream corresponding to each layer.
  • precoding processing for example, through non-linear precoding, etc.
  • Non-linear precoding here such as THP, includes modulo operation, feedback processing, feedforward processing, power normalization, and so on.
  • the sending unit 1630 may send multiple data streams on at least one DMRS port. For example, when the base station sends multiple data streams on one DMRS port, the sending unit 1630 may perform phase rotation on the multiple data streams and send the data streams separately from each other. As another example, when the base station sends multiple data streams on multiple DMRS ports, the sending unit 1630 may send on different DMRS ports.
  • the sending unit 1630 may send control information to the user terminal to notify the user terminal base station on which DMRS ports the downlink data signal is sent.
  • the sending unit 1630 may notify the user terminal base station on which DMRS ports to send downlink data signals through RRC signaling, DCI or MAC CE.
  • the sending unit 1630 may also send control information to the user terminal to notify the user terminal of the correspondence between the number of DMRS ports and the number of layers.
  • the number of DMRS ports corresponds to the number of layers.
  • the base station may send RRC signaling, DCI or MAC CE to the user terminal to notify the user terminal of the correspondence between the number of DMRS ports and the number of layers.
  • the sending unit 1630 may also reorder the data streams corresponding to each layer. For example, the sending unit 1630 may reorder the data streams corresponding to each layer based on the fairness principle. Then, the sending unit 1630 sends the reordered multiple data streams on at least one DMRS port.
  • the base station can repeatedly send downlink data signals to be transmitted. Accordingly, the user terminal can perform interference cancellation on the received multiple signals to obtain actual downlink data signals, thereby reducing the user terminal ’s suffering. Interference.
  • each functional block may be implemented by one device that is physically and / or logically combined, and two or more devices that are physically and / or logically separated may be directly and / or indirectly (for example, (Wired and / or wireless) connection to achieve by the above multiple devices.
  • a device such as a first communication device, a second communication device, or a flying user terminal, etc.
  • a device may function as a computer that executes processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a schematic diagram of a hardware structure of a device 1700 (base station or user terminal) according to an embodiment of the present disclosure.
  • the above-mentioned device may be configured as a computer device that physically includes a processor 1710, a memory 1720, a memory 1730, a communication device 1740, an input device 1750, an output device 1760, a bus 1770, and the like.
  • the hardware structure of the user terminal and the base station may include one or more devices shown in the figure, or may not include some devices.
  • processor 1710 For example, only one processor 1710 is shown, but it may be a plurality of processors. In addition, processing may be performed by one processor, or processing may be performed by more than one processor simultaneously, sequentially, or by other methods. In addition, the processor 1710 may be installed by more than one chip.
  • the functions of the device 1700 are implemented, for example, by reading predetermined software (programs) into hardware such as the processor 1710 and the memory 1720 to cause the processor 1710 to perform calculations and control communication performed by the communication device 1740. And control the reading and / or writing of data in the memory 1720 and the memory 1730.
  • predetermined software programs
  • the processor 1710 controls, for example, the entire computer by operating an operating system.
  • the processor 1710 may be composed of a central processing unit (CPU, Central Processing Unit) including an interface with a peripheral device, a control device, a computing device, and a register.
  • CPU Central Processing Unit
  • the above-mentioned determination unit, adjustment unit, and the like may be implemented by the processor 1710.
  • the processor 1710 reads a program (program code), software modules, data, and the like from the memory 1730 and / or the communication device 1740 to the memory 1720, and performs various processes according to them.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments can be adopted.
  • the determination unit of the user terminal 500 may be implemented by a control program stored in the memory 1720 and operated by the processor 1710, and may also be implemented similarly for other functional blocks.
  • the memory 1720 is a computer-readable recording medium. It is constituted by at least one of a random access memory (RAM, Random Access Memory) and other appropriate storage media.
  • the memory 1720 may also be referred to as a register, a cache, a main memory (main storage device), and the like.
  • the memory 1720 may store an executable program (program code), a software module, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 1730 is a computer-readable recording medium, and may be, for example, a flexible disk, a floppy (registered trademark) disk, a floppy disk, a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital Versatile Disc, Blu-ray (registered trademark) disc), removable disk, hard drive, smart card, flash memory device (e.g. card, stick, key driver), magnetic stripe, database , Server, or other appropriate storage medium.
  • the memory 1730 may also be referred to as an auxiliary storage device.
  • the communication device 1740 is hardware (transmitting / receiving equipment) for communicating between computers through a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 1740 may include, for example, Frequency Division Duplex (FDD) and / or Time Division Duplex (TDD), and may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting unit, receiving unit, etc. may be implemented by the communication device 1740.
  • the input device 1750 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1760 is an output device (for example, a display, a speaker, a light emitting diode (LED), etc.) that performs output to the outside.
  • the input device 1750 and the output device 1760 may be an integrated structure (for example, a touch panel).
  • bus 1770 for communicating information.
  • the bus 1770 may be composed of a single bus, or may be composed of different buses between devices.
  • base stations and user terminals can include microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs, Programmable Logic Devices), Hardware such as a programming gate array (FPGA, Field Programmable Gate Array) can be used to implement part or all of each functional block.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • Hardware such as a programming gate array (FPGA, Field Programmable Gate Array) can be used to implement part or all of each functional block.
  • the processor 1710 may be installed by at least one of these pieces of hardware.
  • the channel and / or symbol may also be a signal (signaling).
  • signals can also be messages.
  • the reference signal may also be referred to as RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the information, parameters, and the like described in this specification may be expressed in absolute values, may be expressed in relative values to a predetermined value, and may be expressed in corresponding other information.
  • radio resources may be indicated by a prescribed index.
  • formulas and the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, etc. described in this specification can be represented using any of a variety of different technologies.
  • the data, commands, instructions, information, signals, bits, symbols, chips, etc. that may be mentioned in all the above descriptions may be passed by voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. To represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and / or output from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Information or signals input or output can be stored in a specific place (for example, memory), or can be managed through a management table. Information or signals input or output can be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of information is not limited to the methods / embodiments described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, radio resource control (RRC, Radio Resource Control) signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling ), Other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be called an RRC message, for example, it may be an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified by, for example, a MAC control unit (MAC CE (Control Element)).
  • notification of prescribed information is not limited to being performed explicitly, and may be performed implicitly (for example, by not performing notification of the prescribed information or by notification of other information).
  • the judgment can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true or false, or by a numerical comparison ( (For example, comparison with a predetermined value).
  • software is called software, firmware, middleware, microcode, hardware description language, or other names, it should be broadly interpreted as referring to commands, command sets, codes, code segments, program codes, programs, subprograms Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, steps, functions, etc.
  • software, commands, information, etc. may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, optical cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and / or wireless technology (infrared, microwave, etc.) to send from a website, server, or other remote resource
  • wired technology coaxial cable, optical cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this specification are used interchangeably.
  • BS Base Station
  • eNB Wireless Base Station
  • gNB gNodeB
  • Cell Cell Group
  • Carrier Carrier
  • Component Carrier Such terms are used interchangeably.
  • the base station is sometimes referred to by terms such as fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femto cell, and small cell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small base station for indoor use (radio remote head (RRH, Remote Radio Head))) to provide communication services.
  • RRH radio remote head
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a base station and / or a base station subsystem performing communication services in the coverage.
  • Mobile stations are also sometimes used by those skilled in the art as user stations, mobile units, user units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile user stations, access terminals, mobile terminals, wireless A terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other appropriate terminology.
  • the wireless base station in this specification may be replaced with a user terminal.
  • a user terminal For example, for a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D, Device-to-Device), each aspect / embodiment of the present disclosure may be applied.
  • the functions of the first communication device or the second communication device in the above-mentioned device 1700 may be regarded as the functions of the user terminal.
  • the words "up” and “down” can also be replaced with "side”.
  • the uplink channel may be replaced with a side channel.
  • the user terminal in this specification may be replaced with a wireless base station.
  • the functions provided by the user terminal may be regarded as functions provided by the first communication device or the second communication device.
  • a specific operation performed by a base station may be performed by an upper node of the base station in some cases.
  • various actions performed for communication with the terminal can pass through the base station or one or more networks other than the base station.
  • a node for example, a mobility management entity (MME, Mobility Management Entity), a serving gateway (S-GW, Serving-Gateway), etc., but is not limited to this), or a combination thereof may be used.
  • MME mobility management entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B LTE-Beyond
  • Super 3G mobile communication system SUPER 3G
  • IMT-Advanced 4G mobile communication system (4G, 4th mobile communication system
  • 5G mobile communication system 5G mobile communication system (5G, 5th mobile generation system) communication system
  • Future Radio Access FX, Future Radio Access
  • GSM registered trademark
  • GSM Global Mobile Communication System
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi (registered trademark)
  • IEEE 920.16 WiMAX (registered trademark)
  • IEEE 920.20 Ultra Wide Band (UWB, Ultra-WideB
  • any reference to units using the names "first”, “second”, etc. in this specification does not comprehensively limit the number or order of these units. These names can be used in this description as a convenient method to distinguish two or more units. Therefore, the reference of the first unit and the second unit does not mean that only two units can be used or that the first unit must precede the second unit in several forms.
  • determining used in this specification may include various actions. For example, regarding “determination”, calculation, calculation, processing, deriving, investigating, looking up (such as a table, database, or other Searching in the data structure), confirming (ascertaining), etc. are considered to be “judging (determining)”. In addition, regarding “determination”, it is also possible to receive (e.g., receive information), transmit (e.g., send information), input (input), output (output), accessing (e.g., Accessing data in the memory) is considered as “judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units. This includes the case where there are one or more intermediate units between two units that are “connected” or “combined” with each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access.”
  • two units can be considered as using one or more wires, cables, and / or printed electrical connections, and as several non-limiting and non-exhaustive examples, by using radio frequency regions , Electromagnetic energy, and the like in the microwave region, and / or the wavelength region of both light (both visible and invisible light) are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于信号传输的方法及相应的用户终端、基站。由用户终端执行的方法包括:接收由基站发送的空域接收参数指示信息;以及根据所述空域接收参数指示信息确定第一空域接收参数,以便用户终端通过所述第一空域接收参数接收下行数据信号。由基站执行的方法包括:生成空域接收参数指示信息;以及向用户终端发送所述空域接收参数指示信息,以便所述用户终端根据所述空域接收参数指示信息确定第一空域接收参数。

Description

用于信号传输的方法及相应的用户终端、基站 技术领域
本公开涉及移动通信领域,并且更具体地涉及一种用于信号传输的方法及相应的用户终端、基站。
背景技术
为了提高通信系统的信道容量,已经提出了多入多出(Multiple Input Multiple Output,MIMO)技术。在MIMO技术中,基站和用户终端分别使用多个发送天线和接收天线并行地传输多个数据流,从而在不增加带宽的情况下提高通信系统的容量。根据同时与基站进行通信的用户终端的数量,MIMO可以分为单用户(Single User,SU)MIMO和多用户(Multiple Users,MU)MIMO。SU-MIMO是指基站只与一个用户并行地传输多个数据流,而MU-MIMO是指基站与多个用户并行地传输多个数据流。
在现有的MU-MIMO中,为了消除各个用户之间的相互干扰,已经提出了对数据流进行预编码的技术。在预编码技术中,基站通过进行信道估计来确定等效信道且通过等效信道对数据流进行预编码以预先消除多用户干扰,然后将预编码后的信号发送给用户终端。相应地,用户终端通过进行信道估计确定对接收到的信号进行处理的预编码矩阵,以便用户终端获得不包含多用户干扰的信号。然而,由于基站和用户终端对信道的估计结果不完全相同,因此,用户终端确定的预编码矩阵可能与基站确定的等效信道不匹配。这会导致用户终端接收到的信号是遭受较强干扰的信号。
发明内容
根据本公开的一个方面,提供了一种由用户终端执行的信号传输方法。该方法包括:接收由基站发送的空域接收参数指示信息;以及根据所述空域接收参数指示信息确定第一空域接收参数,以便用户终端通过所述第一空域接收参数接收下行数据信号。
根据本公开的另一方面,提供了一种由基站执行的信号传输方法。该方法包括:生成空域接收参数指示信息;以及向用户终端发送所述空域接收参数指示信息,以便所述用户终端根据所述空域接收参数指示信息确定第一空 域接收参数。
根据本公开的另一方面,提供了一种由用户终端执行的信号传输方法。该方法包括:从基站接收关于第一天线端口的信息;根据所述关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口;以及在所述第一天线端口上接收第一下行数据信号,并且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
根据本公开的另一方面,提供了一种由基站执行的信号传输方法。该方法包括:从用户终端的至少一个天线端口中确定第一天线端口;以及向所述用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
根据本公开的另一方面,提供了一种用于信号传输的用户终端。该用户终端包括:接收单元,被配置为接收由基站发送的空域接收参数指示信息;以及确定单元,被配置为根据所述空域接收参数指示信息确定第一空域接收参数,以便用户终端通过所述第一空域接收参数接收下行数据信号。
根据本公开的另一方面,提供了一种用于信号传输的基站。该基站包括:生成单元,被配置为生成空域接收参数指示信息;以及发送单元,被配置为向用户终端发送所述空域接收参数指示信息,以便所述用户终端根据所述空域接收参数指示信息确定第一空域接收参数。
根据本公开的另一方面,提供了一种用于信号传输的用户终端。该用户终端包括:接收单元,被配置为从基站接收关于第一天线端口的信息;确定单元,被配置为根据所述关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口;以及所述接收单元还被配置为在所述第一天线端口上接收第一下行数据信号,并且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
根据本公开的另一方面,提供了一种用于信号传输的基站。该基站包括:确定单元,被配置为从用户终端的至少一个天线端口中确定第一天线端口;以及发送单元,被配置为向所述用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收 的第二下行数据信号。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是可以在其中应用本公开实施例的无线通信系统的示意图;
图2是根据本公开的一个实施例的由用户终端执行的信号传输方法的流程图;
图3是根据本公开的一个实施例的由基站执行的信号传输方法的流程图;
图4是根据图2和3所示的方法进行信号传输的无线通信系统的示意图;
图5是根据本公开的另一实施例的由用户终端执行的信号传输方法的流程图;
图6是根据本公开的另一实施例的由基站执行的信号传输方法的流程图;
图7是根据图5和6所示的方法进行信号传输的无线通信系统的示意图;
图8是根据本公开的另一实施例的由用户终端执行的信号传输方法的流程图;
图9是根据本公开的另一实施例的由基站执行的信号传输方法的流程图;
图10是根据图8和9所示的方法进行信号传输的无线通信系统的示意图;
图11是根据本公开的一个实施例的执行图2所示的方法的用户终端的结构示意图;
图12是根据本公开的一个实施例的执行图3所示的方法的基站的结构示意图;
图13是根据本公开的另一实施例的执行图5所示的方法的用户终端的结构示意图;
图14是根据本公开的另一实施例的执行图6所示的方法的基站的结构示意图;
图15是根据本公开的另一实施例的执行图8所示的方法的用户终端的结构示意图;
图16是根据本公开的另一实施例的执行图9所示的方法的基站的结构示意图;
图17是根据本公开的实施例的所涉及的用户终端或基站的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。此外,这里所述的用户终端可以包括各种类型的用户终端(User Equipment,UE),例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。此外,基站可以为固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等,在此不做限定。
首先,参照图1来描述可以在其中应用本公开实施例的无线通信系统的示意图。该无线通信系统可以是LTE系统、LTE-A系统、NR系统,也可以是任何其他类型的无线通信系统。在下文中,以5G NR系统为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信系统。
如图1所示,无线通信系统100可以包括基站(BS)110以及用户终端120,该基站110是用户终端120的服务基站。基站110基于对下行信道的估计确定用于向用户终端120发送信号的等效信道,并通过等效信道对要发送给用户终端120的信号111(也可以称为“信号流”、“数据流”或“信号层”等)和用户终端120遭受的干扰信号112~114(例如,基站要发送给其他用户终端的信号)进行预编码处理。然后,基站110在下行信道上将预编码处 理后的信号发送给用户终端120。相应地,用户终端120通过天线#1和天线#2分别接收预编码处理后的信号,并对与天线#1和天线#2相对应的信道进行估计以确定用于接收的预编码矩阵。然后,用户终端120通过该预编码矩阵对来自天线#1和天线#2的两路信号进行处理。由于基站110的发射机和用户终端120的接收机(例如MIMO接收机)彼此透明,因此,基站110的发射机对信道的估计结果和用户终端120的接收机对信道的估计结果不完全相同。在这种情形下,用户终端120确定的用于接收的预编码矩阵与基站110确定的等效信道不匹配,这会导致用户终端接收到的信号是遭受较强干扰的信号。为了减少用户终端遭受的干扰,提出了本公开的技术方案。
需要认识到,尽管在图1中示出了一个基站、一个用户终端且该用户终端具有两个天线,但这只是示意性的,该无线通信系统还可以包括更多个基站,和/或更多个用户终端,和/或用户终端具有更少个或更多个天线。
在本公开中,在用户终端侧的用于接收的预编码矩阵还可以被称为接收矩阵、接收向量、接收波束成型向量、接收预编码矩阵、接收预编码向量、空间滤波器、接收空间滤波器、空间接收参数、空间接收向量、空间接收矩阵、空间接收滤波器、空域接收参数、空域接收向量、空域接收矩阵、空域接收滤波器等。在下文中,为了方便起见,可以互换地使用上述术语。
根据本公开的一个实施例,用户终端可以根据基站发送的空域接收参数指示信息来确定空域接收参数。以下结合图2~4来该实施例。
首先,参照图2来描述根据本公开一个实施例的由用户终端执行的信号传输方法。图2是根据本公开一个实施例的由用户终端执行的信号传输方法200的流程图。如图2所示,在步骤S201中,用户终端接收由基站发送的空域接收参数指示信息。例如,空域接收参数指示信息可以是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息。可替换地,空域接收参数指示信息还可以是基站根据其为用户终端确定的空域接收参数生成的指示信息。然后,在步骤S202中,用户终端根据空域接收参数指示信息确定第一空域接收参数,以便用户终端通过第一空域接收参数接收下行数据信号。
以下将具体地描述步骤S201中的空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,在步骤S201之前,方法200还 可以包括:用户终端通过对下行信道进行测量确定至少一个候选空域接收参数。例如,用户终端可以从基站接收下行参考信号,比如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),以对下行信息进行测量来训练空域接收参数,从而确定一个或多个候选空域接收参数。
可替换地,在这种情形下,在步骤S201之前,方法200还可以包括:用户终端可以从码本中选择至少一个候选空域接收参数。这里的“码本”可以是预先设定的且与空域接收参数相对应的码本。例如,码本可以是由基站配置的,并由基站通知给用户终端的。又例如,码本可以是由标准规范(比如3GPP)约定的,且用户终端和基站均预先存储的码本。
在用户终端确定了一个或多个候选空域接收参数之后,方法200还可以包括:用户终端使用至少一个候选空域接收参数分别向基站发送上行参考信号,以便基站从至少一个上行参考信号中确定第一参考信号。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。
例如,用户终端可以在接收到基站向其发送的上行参考信号触发信息之后,使用一个候选空域接收参数向基站发送一个上行参考信号,以便基站在接收到该上行参考信号后将该上行参考信号确定为第一参考信号以及将关于该第一参考信号的信息发送给用户终端。
又例如,用户终端可以在接收到基站向其发送的上行参考信号触发信息之后,使用多个候选空域接收参数分别向基站发送多个上行参考信号,以便基站在接收到该多个上行参考信号后从该多个上行参考信号选择一个上行参考信号并将其确定为第一参考信号。此外,基站还可以根据第一参考信号生成空域接收参数指示信息。
在该示例中,空域接收参数指示信息可以包括关于第一参考信号的信息。相应地,在步骤S201中,用户终端可以接收关于第一参考信号的信息。然后,在步骤S202中,用户终端可以根据基站发送的关于该第一参考信号的信息来确定发送该第一参考信号时使用的空域接收参数,并将发送该第一参考信号时使用的空域接收参数确定为用于接收下行数据信号的第一空域接收参数。
此外,关于上述示例中的“关于第一参考信号的信息”,根据本公开的一个示例,关于第一参考信号的信息可以包括第一参考信号的资源信息和/或端 口信息(例如,端口索引)。第一参考信号的资源信息例如可以是用户终端发送将被基站确定为第一参考信号的上行参考信号时使用的资源标识符(ID),比如时频资源ID。例如,用户终端在向基站发送上行参考信号时,可以将上行参考信号的资源ID和/或端口信息一起发送给基站,以便基站在将上行参考信号确定为第一参考信号之后,能够将该第一参考信号的资源ID和/或端口信息反馈给用户终端。因此,用户终端在接收到基站反馈的第一参考信号的资源ID和/或端口信息之后,可以把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。
根据本公开的另一示例,关于第一参考信号的信息还可以包括第一参考信号与下行参考信号之间的关联信息。这里的“下行参考信号”可以是任何一种下行参考信号,例如解调参考信号(Demodulation Reference Signal,DM-RS)。
在该示例中,第一参考信号与下行参考信号之间的关联信息可以被包括在由用户终端从基站接收的下行配置信息中。下行配置信息可以是例如下行链路发送配置标识(Transmission Configuration Indication)或者准共位(Quasi Co-Location,QCL)配置信息。例如,第一参考信号与下行参考信号之间的关联信息可以体现为将第一参考信号的资源信息和/或端口信息添加到下行配置信息中,从而表示第一参考信号与下行参考信号之间的关联性。因此,用户终端可以通过下行配置信息获知基站为用户终端确定的第一参考信号,进而把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。以下以下行配置信息为QCL配置信息为例来描述本公开。
例如,可以将第一参考信号的资源信息和/或端口信息添加到常规的QCL配置信息中。常规的QCL配置信息已经包括了表示CSI-RS、同步信号(Synchronization Signal,SS)块(block)等与下行参考信号之间的关联性的信息。在该示例中,可以将第一参考信号的资源ID和/或端口信息添加到常规的QCL配置信息中,以表示第一参考信号与下行参考信号之间的关联性。下面给出QCL配置信息的一个示例:
Figure PCTCN2018088879-appb-000001
在该示例中,QCL配置信息可以被简称为“QCL-Info”。此外,该QCL配置信息的类型可以是现有标准规范中定义的类型D(Type-D),即用于针对第一参考信号的资源信息和/或端口信息的发送配置标识的空域接收参数。
又例如,可以设计一种不同于常规QCL配置信息的、新的类型的QCL配置信息,该新的类型的QCL配置信息可以只表示第一参考信号与下行参考信号之间的关联性,而不表示CSI-RS、SS block等与下行参考信号之间的关联性。比如,该新的类型的QCL配置信息可以包括第一参考信号的资源信息和/或端口信息,以表示第一参考信号与下行参考信号之间的关联性。下面给出新的类型的QCL配置信息的一个示例:
Figure PCTCN2018088879-appb-000002
在该示例中,该新的类型的QCL配置信息可以被简称为“QCL-UL-Info”。此外,该QCL配置信息的类型可以是现有标准规范中定义的类型A(Type-A)、类型B(Type-B)、类型C(Type-C)或类型D(Type-D)中的任何一种。
通过上述常规QCL配置信息或新设计的QCL配置信息,用户终端可以确定第一参考信号与下行参考信号是相关联的,进而可以把发送该第一参考 信号时使用的空域接收参数确定为用于接收下行数据信号的第一空域接收参数。
需要认识到,上述常规QCL配置信息或新设计的QCL配置信息除了包括表示某些信号与下行参考信号之间的关联性的信息以外,还可以包括其他信息,由于这些其他信息与本公开无关,所以在此进行了省略。
此外,根据本公开的一个示例,用户终端可以通过来自基站的无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)等接收下行配置信息,以便根据下行配置信息确定用于接收下行数据信号的第一空域接收参数。
此外,根据本公开的另一示例,基站可以对常规QCL配置信息或新设计的QCL配置信息进行切换。相应地,用户终端可以通过来自基站的RRC信令、DCI或MAC CE等确定使用常规QCL配置信息还是新设计的QCL配置信息,以确定用于接收下行数据信号的第一空域接收参数。
上面已经描述了步骤S201中的空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。下面将具体地描述步骤S201中的空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,步骤S201中的“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。相应地,在步骤S202中,用户终端可以根据接收到的第一空域接收参数的索引信息确定用于接收下行数据信号的第一空域接收参数。例如,用户终端可以根据第一空域接收参数的索引信息从预先设置的码本中确定第一空域接收参数。
例如,用户终端和基站均可预先存储与空域接收参数相对应的码本,然后基站可以从码本中选择第一空域接收参数,并将该第一空域接收参数的索引信息发送给用户终端。“码本”例如可以是与空域接收参数相对应的任何一个码本,例如3GPP Release 8或其他版本中已经定义的码本。相应地,在步骤S201中,用户终端接收由基站发送的第一空域接收参数的索引信息。然后,在步骤S202中,用户终端可以根据该索引信息在码本中确定用于接收下行数据信号的第一空域接收参数。
在该示例中,可以使用码本来量化空域接收参数。例如,对于具有不同 天线端口数量的用户终端,可以分别设置不同的码本。比如,对于具有两个天线端口、四个天线端口、八个天线端口的用户终端,可以设置三个由四个比特表示的码本。
此外,根据本公开的一个示例,第一空域接收参数的索引信息可以是基站通过RRC信令、DCI或MAC CE等发送给用户终端的。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得第一空域接收参数的索引信息,以便根据第一空域接收参数的索引信息在码本中确定用于接收下行数据信号的第一空域接收参数。
上述示例描述了当步骤S201中的空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息时,步骤S201中的“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。也就是说,用户终端可以暗示的方式被基站通知第一空域接收参数。此外,根据本公开的另一示例,用户终端还可以明示的方式被基站通知第一空域接收参数。
例如,当步骤S201中的空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息时,步骤S201中的“空域接收参数指示信息”还可以包括第一空域接收参数。相应地,在步骤S202中,用户终端可以根据接收到的第一空域接收参数快速地确定用于接收下行数据信号的第一空域接收参数。
通过本公开的上述实施例,基站可以指示用户终端确定用于接收下行数据信号的空间滤波器,使得基站和用户终端双方可以对用于接收下行数据信号的空间滤波器达成一致,保证了用于接收下行数据信号的空间滤波器与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
以下,参照图3来描述根据本公开一个实施例的由基站执行的信号传输方法。图3是根据本公开一个实施例的由基站执行的信号传输方法300的流程图。由于方法300与在上文中参照图2描述的方法200的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图3所示,在步骤S301中,基站生成空域接收参数指示信息。例如,空域接收参数指示信息可以是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息。可替换地,空域接收参数指示信息还可以是基站根据其为用户终端确定的空域接收参数生成的指示信息。
以下将具体地描述步骤S301中的空域接收参数指示信息是用户终端向 基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,在步骤S301之前,方法300还可以包括:基站从用户终端接收至少一个上行参考信号,所述至少一个上行参考信号是用户终端使用至少一个候选空域接收参数分别向基站发送的;以及基站从至少一个上行参考信号中选择第一参考信号。例如,基站可以根据该至少一个上行参考信号的接收质量选择第一参考信号,比如基站可以将接收质量最佳的上行参考信号确定为第一参考信号。
在该示例中,基站在选择第一参考信号之后,可以根据第一参考信号确定等效信道以便向用户终端发送下行数据信号。而且,基站可以根据第一参考信号的信息生成空域接收参数指示信息,并向用户终端发送空域接收参数指示信息。例如,空域接收参数指示信息可以包括关于第一参考信号的信息。相应地,用户终端可以根据空域接收参数指示信息确定用于接收下行数据信号的第一空域接收参数。通过这种方式,用户终端的用于接收下行数据信号的空间滤波器与基站确定的等效信道相匹配,使得用户终端接收到的信号是遭受较少干扰的信号或不遭受干扰的信号。
此外,关于上述示例中的“关于第一参考信号的信息”,根据本公开的一个示例,关于第一参考信号的信息可以包括第一参考信号的资源信息和/或端口信息(例如,端口索引)。第一参考信号的资源信息例如可以是用户终端发送将被基站确定为第一参考信号的上行参考信号时使用的资源标识符(ID),比如时频资源ID。例如,用户终端在向基站发送上行参考信号时,可以将上行参考信号的资源ID和/或端口信息一起发送给基站,以便基站在将上行参考信号确定为第一参考信号之后,能够将该第一参考信号的资源ID和/或端口信息反馈给用户终端。因此,用户终端在接收到基站反馈的第一参考信号的资源ID和/或端口信息之后,可以把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。
根据本公开的另一示例,关于第一参考信号的信息还可以包括第一参考信号与下行参考信号之间的关联信息。这里的“下行参考信号”可以是任何一种下行参考信号,例如解调参考信号(Demodulation Reference Signal,DM-RS)。
在该示例中,第一参考信号与下行参考信号之间的关联信息可以被包括在由用户终端从基站接收的下行配置信息中。下行配置信息可以是例如下行 链路发送配置标识(Transmission Configuration Indication)或者准共位(Quasi Co-Location,QCL)配置信息。例如,第一参考信号与下行参考信号之间的关联信息可以体现为将第一参考信号的资源信息和/或端口信息添加到下行配置信息中,从而表示第一参考信号与下行参考信号之间的关联性。因此,用户终端可以通过下行配置信息获知基站为用户终端确定的第一参考信号,进而把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。
上面已经描述了步骤S301中的空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。下面将具体地描述步骤S301中的空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,步骤S301中的“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。也就是说,用户终端可以暗示的方式被基站通知第一空域接收参数。
此外,根据本公开的另一示例,用户终端还可以明示的方式被基站通知第一空域接收参数。例如,当步骤S301中的空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息时,步骤S301中的“空域接收参数指示信息”还可以包括第一空域接收参数。相应地,用户终端可以根据接收到的第一空域接收参数快速地确定用于接收下行数据信号的第一空域接收参数。
然后,在步骤S302中,基站向用户终端发送空域接收参数指示信息,以便用户终端根据空域接收参数指示信息确定第一空域接收参数。例如,基站可以通过RRC信令、DCI或MAC CE等向用户终端发送空域接收参数指示信息。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得第一空域接收参数的索引信息,以便根据第一空域接收参数的索引信息在码本中确定用于接收下行数据信号的第一空域接收参数。
此外,根据本公开的一个示例,方法300还可以包括:基站对下行数据信号进行预编码处理,以及将预编码处理后的下行数据信号发送给用户终端。例如,基站可以对下行数据信号进行非线性预编码处理,比如通过汤姆林森-哈拉希玛预编码(Tomlinson-Harashima Precoding,THP)方案或矢量微扰法(Vector Perturbation,VP)方案对下行数据信号进行非线性预编码处理。下面以THP为例描述基站对下行数据信号进行非线性预编码处理的过程。
假设在通信系统中,存在1个基站和K个用户终端,其中每个用户终端具有N RX,k个天线端口。对于第k个用户终端,基站调度给该第k个用户终端的层的数量为L k,其中k≤K且为正整数。此外,对于第k个用户终端,被调度给第k个用户终端的第l层的数据码元为d k,l(l=1,…,L k)。此外,与第m个用户终端的第n层对第k个用户终端的第l层的干扰相对应的反馈矩阵B的元素为b k,l。因此,对于第k个用户终端,以L k=1为例,通过下面的公式(1)实现THP预编码处理,以获得预处理之后的码元x′ k,l
Figure PCTCN2018088879-appb-000003
其中,α为取模边界,p I、p Q为整数,
Figure PCTCN2018088879-appb-000004
表示从第1层~第(k-1)层对第k层的干扰。
通过本公开的上述实施例,基站可以指示用户终端确定用于接收下行数据信号的空间滤波器,使得基站和用户终端双方可以对用于接收下行数据信号的空间滤波器达成一致,保证了用于接收下行数据信号的空间滤波器与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
另外,可以参照图4来描述根据图2所示的方法200和图3所示的方法300进行信号传输的无线通信系统的示意图。如图4所示,无线通信系统400可以包括基站(BS)410以及用户终端420,该基站410是用户终端420的服务基站。与现有技术(例如,如图1所示的无线通信系统)不同的是,由于基站410向用户终端420发送了空域接收参数指示信息(例如可以用向量[g 1,g 2]表示),因此,用户终端420可以根据空域接收参数指示信息确定用于接收下行数据信号的第一空域接收参数,使得用户终端420的用于接收下行数据信号的空间滤波器与基站410确定的等效信道(例如可以用向量[h 1,h 2]表示)相匹配。如图4所示,用户终端420可以通过第一空域接收参数来处理来自天线#1和天线#2的两路信号,从而减少用户终端遭受的干扰。
根据本公开的另一实施例,用户终端可以在基站指示的一个或多个天线端口上接收下行数据信号且忽略在除了所述一个或多个天线端口的其他天线端口上接收的下行数据信号。以下结合图5~7来描述该实施例。
首先,参照图5来描述根据本公开另一实施例的由用户终端执行的信号传输方法。图5是根据本公开另一实施例的由用户终端执行的信号传输方法500的流程图。如图5所示,在步骤S501中,用户终端从基站接收关于第一 天线端口的信息。这里的“天线端口”可以是用户终端的上行端口,例如SRS资源中的端口,或者还可以是其它等效的概念,例如一组单端口SRS资源中的一个SRS资源。
根据本公开的一个示例,第一天线端口可以是基站从用户终端的至少一个天线端口中确定。例如,第一天线端口可以是用户终端向基站发送上行参考信号例如SRS,然后基站根据接收到的SRS确定与用户终端的至少一个天线端口相对应的信道条件以及根据信道条件从用户终端的至少一个天线端口中确定的。比如,第一天线端口可以是基站通过比较与用户终端的每个天线端口相对应的信道条件,从中选择信道条件最佳的天线端口而确定的。
根据本公开的一个示例,关于第一天线端口的信息可以包括第一天线端口的索引信息。例如,用户终端和基站均可预先存储天线端口选择码本,然后基站可以从天线端口选择码本中选择第一天线端口,并将该第一天线端口的索引信息发送给用户终端。相应地,用户终端接收到第一天线端口的索引信息之后,可以根据该索引信息在天线端口选择码本中确定第一天线端口。
在该示例中,对于具有特定天线端口数量的用户终端,可以设置与该特定天线端口相对应的一个或多个码本。此外,可以根据用户终端的特定天线端口数量确定一个或多个码本的比特数。
例如,可以根据用户终端的特定天线端口数量和RI值,确定一个码本以及该一个码本的比特数。比如,对于所有的RI值,可以设置一个码本。由于对于具有两个天线端口的用户终端而言,用户终端可以使用该两个天线端口中的至少一个天线端口来接收下行数据信号。那么,当秩指示(Rank Indication,RI)为1时,用户终端可以使用该两个天线端口中的任意一个天线端口来接收下行数据信号(两种端口使用方式);以及当RI为2时,用户终端可以使用该两个天线端口来接收下行数据信号(一种端口使用方式)。因此,对于具有两个天线端口的用户终端,存在三种端口使用方式,可以相应地设置一个由两个比特表示的天线端口选择码本。
又例如,可以根据用户终端的特定天线端口数量和RI值,确定多个码本以及该多个码本中的每个码本的比特数。比如,对于每一个RI值,均可以设置与每一个RI值相对应的一个码本。由于对于具有两个天线端口的用户终端而言,用户终端可以使用该两个天线端口中的至少一个天线端口来接收下行数据信号。那么,当RI为1时,用户终端可以使用该两个天线端口 中的任意一个天线端口来接收下行数据信号,则可以定义以下表1所示的由1个比特表示的天线端口选择码本。表1是当用户终端具有两个天线端口且RI为1时的天线端口选择码本的一个示例。
码字序号 意义
0 使用天线端口0
1 使用天线端口1
表1天线端口选择码本的示例
在这种情形下,基站也可以将RI与天线端口的索引信息(或者天线端口选择码字)联合通知给用户终端。例如,基站可以定义以下表2所示的由2个比特表示的联合通知信令。表2是当用户终端具有两个天线端口且RI为1或2时的联合通知信令的一个示例。
码字序号 意义
00 RI=1,使用天线端口0
01 RI=1,使用天线端口1
10 RI=2,使用天线端口0,1
11 保留
表2联合通知信令的示例
下面以具有四个天线端口的用户终端为例再次描述上述示例。根据上述示例,可以设置与该特定天线端口相对应的一个或多个码本。
例如,可以根据用户终端的特定天线端口数量和RI值,确定一个码本以及该一个码本的比特数。比如,对于所有的RI值,可以设置一个码本。由于对于具有四个天线端口的用户终端而言,用户终端可以使用该四个天线端口中的至少一个天线端口来接收下行数据信号。那么,当RI为1时,用户终端可以使用该四个天线端口中的任意一个天线端口来接收下行数据信号(三种端口使用方式);当RI为2时,用户终端可以使用该四个天线端口中的任意两个天线端口来接收下行数据信号(六种端口使用方式);当RI为3时,用户终端可以使用该四个天线端口中的任意三个天线端口来接收下行数据信号(四种端口使用方式);以及当RI为4时,用户终端可以使用该四个天线端口来接收下行数据信号(一种端口使用方式)。因此,对于具有四个天线端口的用户终端,存在十四种端口使用方式,可以相应地设置一个由四个比特表示的天线端口选择码本。
又例如,可以根据用户终端的特定天线端口数量和RI值,确定多个码本以及该多个码本中的每个码本的比特数。比如,对于每一个RI值,均可以设置与每一个RI值相对应的一个码本。由于对于具有四个天线端口的用户终端而言,用户终端可以使用该四个天线端口中的至少一个天线端口来接收下行数据信号。那么,当RI为1时,用户终端可以使用该四个天线端口中的任意一个天线端口来接收下行数据信号,则可以定义以下表3所示的由2个比特表示的天线端口选择码本。表3是当用户终端具有四个天线端口且RI为1时的天线端口选择码本的一个示例。
码字序号 意义
00 使用天线端口0
01 使用天线端口1
10 使用天线端口2
11 使用天线端口3
表3天线端口选择码本的另一示例
当RI为2时,用户终端可以使用该四个天线端口中的任意两个天线端口来接收下行数据信号,则可以定义以下表4所示的由3个比特表示的天线端口选择码本。表4是当用户终端具有四个天线端口且RI为2时的天线端口选择码本的一个示例。
码字序号 意义
000 使用天线端口0,1
001 使用天线端口0,2
010 使用天线端口0,3
011 使用天线端口1,2
100 使用天线端口1,3
101 使用天线端口2,3
110~111 保留
表4天线端口选择码本的另一示例
当RI为3时,用户终端可以使用该四个天线端口中的任意三个天线端口来接收下行数据信号,则可以定义以下表5所示的由2个比特表示的天线端口选择码本。表5是当用户终端具有四个天线端口且RI为3时的天线端口选择码本的一个示例。
码字序号 意义
00 使用天线端口0,1,2
01 使用天线端口0,1,3
10 使用天线端口0,2,3
11 使用天线端口1,2,3
表5天线端口选择码本的另一示例
在这种情形下,基站也可以将RI与天线端口的索引信息(或者天线端口选择码字)联合通知给用户终端。例如,基站可以定义以下表6所示的由4个比特表示的联合通知信令。表6是当用户终端具有四个天线端口且RI为1~4时的联合通知信令的一个示例。
比特域值 RI 天线端口
0000 1 使用天线端口0
0001 1 使用天线端口1
0010 1 使用天线端口2
0011 1 使用天线端口3
0100 2 使用天线端口0,1
0101 2 使用天线端口0,2
0110 2 使用天线端口0,3
0111 2 使用天线端口1,2
1000 2 使用天线端口1,3
1001 2 使用天线端口2,3
1010 3 使用天线端口0,1,2
1011 3 使用天线端口0,1,3
1100 3 使用天线端口0,2,3
1101 3 使用天线端口1,2,3
1110 4 使用天线端口1,2,3,4
1111 保留 保留
表6联合通知信令的另一示例
此外,对于具有八个或更多个天线端口的用户终端,也可以类似的方法设置天线端口选择码本。然而,为了控制信令开销,可以不对每一个RI的 取值设置所有可能的天线端口选择码本。
根据本公开的另一示例,关于第一天线端口的信息可以包括第一天线端口与上行参考信号之间的关联信息。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。例如,可以将第一天线端口与SRS端口设置为QCL,因此,当用户终端接收到该关联信息时,可以将与SRS端口QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与上行参考信号之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
根据本公开的另一示例,关于第一天线端口的信息还可以包括第一天线端口与第一天线端口的索引之间的关联信息。例如,可以将第一天线端口与第一天线端口的索引设置为QCL,因此,当用户终端接收到该关联信息时,可以将与第一天线端口的索引QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与第一天线端口的索引之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
此外,根据本公开的一个示例,关于第一天线端口的信息可以是基站通过RRC信令、DCI或MAC CE等发送给用户终端的。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得关于第一天线端口的信息,以便用户终端在第一天线端口上接收下行数据信号且丢弃在至少一个天线端口中的、除了第一天线端口的天线端口上接收的下行数据信号。
然后,在步骤S502中,用户终端根据关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口。例如,当关于第一天线端口的信息是第一天线端口的索引信息时,用户终端可以在接收到第一天线端口的索引信息之后,可以根据该索引信息在天线端口选择码本中确定第一天线端口。又例如,当关于第一天线端口的信息是第一天线端口与上行参考信号或第一天线端口的索引之间的关联信息时,用户终端可以在接收到该关联信息之后,可以将与上行参考信号或第一天线端口的索引相关联的天线端口确定为第一天线端口。
然后,在步骤S503中,用户终端在第一天线端口上接收第一下行数据信号,并且忽略在至少一个天线端口中的、除了第一天线端口的天线端口上 接收的第二下行数据信号。例如,用户终端可以在第一天线端口上接收第一下行数据信号并对第一下行数据信号进行处理,并且用户终端可以丢弃在至少一个天线端口中的、除了第一天线端口的天线端口上接收的第二下行数据信号。
上述实施例可以应用于如图1所示的无线通信系统。在这种情形下,用户终端在对来自天线#1和天线#2的两路信号进行合并处理时,可以仅处理来自天线#1的信号而不处理来自天线#2的信号。
此外,上述实施例还可以应用于如图4所示的无线通信系统。在这种情形下,可以理解为基站向用户终端发送了空域接收参数指示信息,且该空域接收参数指示信息可以用向量[g 1,0]或[0,g 2]表示。
另外,需要认识到,虽然在上述实施例中,用户终端在基站指示的一个天线端口上接收下行数据信号且忽略在其他天线端口上接收的下行数据信号,但是用户终端也可以在基站指示的多个天线端口上接收下行数据信号且忽略在除了所述多个天线端口的其他天线端口上接收的下行数据信号。
通过本公开的上述实施例,基站可以为用户终端从至少一个天线端口中确定第一天线端口,并向用户终端通知该第一天线端口,而用户终端仅处理在第一天线端口上的下行数据信号,使得第一天线端口与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
以下,参照图6来描述根据本公开另一实施例的由基站执行的信号传输方法。图6是根据本公开另一实施例的由基站执行的信号传输方法600的流程图。由于方法600与在上文中参照图5描述的方法500的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图6所示,在步骤S601中,基站从用户终端的至少一个天线端口中确定第一天线端口。
根据本公开的一个示例,基站可以根据与用户终端的至少一个天线端口相对应的信道条件,从用户终端的至少一个天线端口中确定第一天线端口。例如,基站可以比较与用户终端的每个天线端口相对应的信道条件,以及从中选择信道条件最佳的天线端口作为第一天线端口。
然后,在步骤S602中,基站向用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
根据本公开的一个示例,关于第一天线端口的信息可以包括第一天线端口的索引信息。例如,用户终端和基站均可预先存储天线端口选择码本,然后基站可以从天线端口选择码本中选择第一天线端口,并将该第一天线端口的索引信息发送给用户终端。相应地,用户终端接收到第一天线端口的索引信息之后,可以根据该索引信息在天线端口选择码本中确定第一天线端口。
在该示例中,对于具有特定天线端口数量的用户终端,可以设置与该特定天线端口相对应的一个或多个码本。此外,可以根据用户终端的特定天线端口数量确定一个或多个码本的比特数。
例如,对于具有两个天线端口的用户终端,用户终端可以使用该两个天线端口中的至少一个天线端口来接收下行数据信号。当秩指示(Rank Indication,RI)为1时,用户终端可以使用该两个天线端口中的任意一个天线端口来接收下行数据信号(两种端口使用方式);以及当RI为2时,用户终端可以使用该两个天线端口来接收下行数据信号(一种端口使用方式)。因此,对于具有两个天线端口的用户终端,存在三种端口使用方式,则可以设置一个由两个比特表示的天线端口选择码本。
根据本公开的另一示例,关于第一天线端口的信息可以包括第一天线端口与上行参考信号之间的关联信息。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。例如,可以将第一天线端口与SRS端口设置为QCL,因此,当用户终端接收到该关联信息时,可以将与SRS端口QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与上行参考信号之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
根据本公开的另一示例,关于第一天线端口的信息还可以包括第一天线端口与第一天线端口的索引之间的关联信息。例如,可以将第一天线端口与第一天线端口的索引设置为QCL,因此,当用户终端接收到该关联信息时,可以将与第一天线端口的索引QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与第一天线端口的索引之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
此外,根据本公开的一个示例,基站可以通过RRC信令、DCI或MAC  CE等向用户终端发送关于第一天线端口的信息。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得关于第一天线端口的信息,以便用户终端根据关于第一天线端口的信息在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
此外,根据本公开的一个示例,方法600还可以包括:基站对下行数据信号进行预编码处理,以及将预编码处理后的下行数据信号发送给用户终端。例如,基站可以对下行数据信号进行非线性预编码处理,比如通过汤姆林森-哈拉希玛预编码(Tomlinson-Harashima Precoding,THP)方案或矢量微扰法(Vector Perturbation,VP)方案对下行数据信号进行非线性预编码处理。比如,基站可以通过上面所描述的公式(1)对下行数据信号进行THP编码。
通过本公开的上述实施例,基站可以为用户终端从至少一个天线端口中确定第一天线端口,并向用户终端通知该第一天线端口,而用户终端仅处理在第一天线端口上的下行数据信号,使得第一天线端口与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
另外,可以参照图7来描述根据图5所示的方法500和图6所示的方法600进行信号传输的无线通信系统的示意图。如图7所示,无线通信系统700可以包括基站(BS)710以及用户终端720,该基站710是用户终端720的服务基站。与现有技术(例如,如图1所示的无线通信系统)不同的是,由于基站710向用户终端720发送了关于第一天线端口的信息,因此,用户终端720可以根据关于第一天线端口的信息在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号,使得用户终端720的第一天线端口与基站确定的等效信道相匹配,保证了用户终端接收到的信号不包括来自其他天线端口的干扰信号。如图7所示,用户终端720可以通过天线#1接收信号,而丢弃在天线#2上接收到的信号,从而减少用户终端遭受的干扰。
根据本公开的另一示例,用户终端可以从基站接收初始数据及其副本数据,以便通过干扰消除来获得初始数据。以下结合图8~10来描述该实施例。
首先,参照图8来描述根据本公开另一实施例的由用户终端执行的信号传输方法。图8是根据本公开另一实施例的由用户终端执行的信号传输方法 800的流程图。如图8所示,在步骤S801中,用户终端从基站接收多个数据流,所述多个数据流中的每个数据流对应于初始数据或初始数据的一个副本数据。在本公开中,初始数据的副本数据与初始数据相同。
根据本公开的一个示例,用户终端可以在一个或多个天线端口上接收多个数据流。例如,用户终端可以在每个天线端口上接收一个数据流。又例如,用户终端可以在一个天线端口上接收多个数据流。
根据本公开的另一示例,多个数据流可以是基站分别对初始数据或初始数据的一个或多个副本数据进行处理而生成的。例如,多个数据流可以是基站分别对初始数据或初始数据的一个或多个副本数据进行预编码处理(比如通过非线性预编码等)而生成的。非线性预编码比如THP,其包括取模操作、反馈处理、前馈处理、功率归一化等。
根据本公开的另一示例,多个数据流可以是基站在至少一个DMRS端口上发送的。例如,当基站在一个DMRS端口上发送多个数据流时,多个数据流可以是基站对多个数据流分别进行彼此不同的相位旋转之后发送的。又例如,当基站在多个DMRS端口上发送多个数据流时,多个数据流可以是基站分别在不同的DMRS端口上发送的。
在该示例中,用户终端可以通过从基站接收的控制信息来确定基站在哪些DMRS端口上发送数据流。例如,用户终端可以通过来自基站的RRC信令、DCI或MAC CE等确定基站在哪些DMRS端口上发送数据流。
然后,在步骤S802中,用户终端对多个数据流进行串行干扰消除处理,以获得初始数据。例如,用户终端可以使用最小均方误差法(Minimum Mean Square Error,MMSE)接收机对多个数据流进行串行干扰消除处理,以获得初始数据。
此外,在步骤S801中的多个数据流是基站分别对初始数据或初始数据的一个或多个副本数据进行预编码处理(比如通过非线性预编码等)而生成的情形下,根据本公开的一个示例,在步骤S802之前,方法800还可以包括:用户终端对下行信道进行估计,以获得估计信道。例如,当基站在至少一个DMRS端口上发送多个数据流时,用户终端可以对与至少一个DMRS端口相对应的信道进行估计,以获得与每个DMRS端口相对应的估计信道。
然后,用户终端可以通过与每个DMRS端口相对应的估计信道对数据流进行预编码的反操作,比如去取模操作等。然后,用户终端可以对经预编 码的反操作处理后的数据进行串行干扰消除处理,以获得初始数据。
通过本公开的上述实施例,基站可以对要发送给用户终端的数据进行重复发送,相应地,用户终端可以对接收到的多路数据进行干扰消除以获得实际的数据,从而减少用户终端遭受的干扰。
以下,参照图9来描述根据本公开另一实施例的由基站执行的信号传输方法。图9是根据本公开另一实施例的由基站执行的信号传输方法900的流程图。由于方法900与在上文中参照图8描述的方法800的部分细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。如图9所示,在步骤S901中,基站将初始数据和初始数据的一个或多个副本数据分别映射到不同的层。也就是说,在本公开中,每一层对应于初始数据或初始数据的一个副本数据。此外,在本公开中,初始数据的副本数据与初始数据相同。
然后,在步骤S902中,基站对每个层上的数据进行处理,以生成与每个层相对应的数据流。例如,基站可以对每个层上的数据进行预编码处理(比如通过非线性预编码等),以生成与每个层相对应的数据流。这里的非线性预编码比如THP,其包括取模操作、反馈处理、前馈处理、功率归一化等。
下面给出基站对初始数据以及一个或多个副本数据进行THP的示例过程。假设在通信系统中,存在1个基站和K个用户终端,其中每个用户终端具有N RX,k个天线端口。对于第k个用户终端,基站调度给该第k个用户终端的层的数量为L k,其中k≤K且为正整数。此外,对于第k个用户终端,被调度给第k个用户终端的第l层的数据码元为d k,l(l=1,…,L k),并且可以按照下面的公式(2)所示的层重复规则确定在重复之后的数据码元为d′ k,l(l=1,…,N RX,k):
d′ k,l=d k,(l mod L k)   (l=1,…,N RX,k)        公式(2)
并且,在这种情形下,只需要通知L k。此外,与第m个用户终端的第n层对第k个用户终端的第l层的干扰相对应的反馈矩阵B的元素为b k,l,m,n。因此,对于第k个用户终端,通过下面的公式(3)实现THP预编码处理,以获得预处理之后的数据码元x′ k,l
Figure PCTCN2018088879-appb-000005
其中,α为取模边界,p I、p Q为整数,,
Figure PCTCN2018088879-appb-000006
表示第k个用户终端遭受的来自其他用户终端的干扰,
Figure PCTCN2018088879-appb-000007
表示第k个用户 终端的其他层对本层的干扰。
然后,在步骤S903中,基站将与不同的层相对应的多个数据流发送给用户终端,以便用户终端对多个数据流进行串行干扰消除处理以获得初始数据。
根据本公开的一个示例,基站可以在至少一个DMRS端口上发送多个数据流。例如,当基站在一个DMRS端口上发送多个数据流时,基站可以对多个数据流分别进行彼此不同的相位旋转之后进行发送。又例如,当基站在多个DMRS端口上发送多个数据流时,基站可以分别在不同的DMRS端口上进行发送。
在该示例中,基站可以向用户终端发送控制信息来通知用户终端基站在哪些DMRS端口上发送下行数据信号。例如,基站可以通过RRC信令、DCI或MAC CE等来通知用户终端基站在哪些DMRS端口上发送下行数据信号。
此外,在该示例中,基站还可以向用户终端发送控制信息来通知用户终端DMRS端口的数量与层的数量的对应关系。在常规的通信系统中,DMRS端口的数量与层的数量是一一对应的。然而,在本公开中,DMRS端口的数量与层的数量不一定是一一对应的。因此,在这种情形下,基站可以向用户终端发送RRC信令、DCI或MAC CE等,以通知用户终端DMRS端口的数量与层的数量的对应关系。
此外,在该示例中,基站还可以对与每个层相对应的数据流重新排序。例如,基站可以基于公平原则对与每个层相对应的数据流重新排序。然后,基站在至少一个DMRS端口上发送重新排序后的多个数据流。
通过本公开的上述实施例,基站可以对要发送的下行数据信号进行重复发送,相应地,用户终端可以对接收到的多路信号进行干扰消除以获得实际的下行数据信号,从而减少用户终端遭受的干扰。
另外,可以参照图10来描述根据图8所示的方法800和图9所示的方法900进行信号传输的无线通信系统的示意图。如图10所示,无线通信系统1000可以包括基站(BS)1010以及用户终端1020,该基站1010是用户终端1020的服务基站。与现有技术(例如,如图1所示的无线通信系统)不同的是,由于基站1010对要发送的下行数据信号1011进行重复发送,因此,用户终端1020可以对通过天线#1和天线#2接收到的两路信号进行干扰消除以获得实际的下行数据信号,从而减少用户终端遭受的干扰。
上面已经描述了本公开的多个实施例,需要认识到,上述多个实施例可以单独使用或组合使用。例如,当通信系统中存在多个用户终端时,每个用户终端均可以执行在上述多个实施例中所描述的由用户终端执行的方法中的任何一种。
下面,参照图11来描述根据本公开实施例的执行图2所示的方法200的用户终端。图11示出了根据本公开实施例的用户终端1100的框图。由于用户终端1100的功能与在上文中参照图2描述的方法200的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图11所示,用户终端1100包括接收单元1110,其被配置为接收由基站发送的空域接收参数指示信息;以及确定单元1120,其被配置为根据空域接收参数指示信息确定第一空域接收参数,以便用户终端通过第一空域接收参数接收下行数据信号。除了这两个单元以外,用户终端1100还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
在本公开中,例如,空域接收参数指示信息可以是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息。可替换地,空域接收参数指示信息还可以是基站根据其为用户终端确定的空域接收参数生成的指示信息。
以下将具体地描述空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,在步骤S201之前,方法200还可以包括:用户终端通过对下行信道进行测量确定至少一个候选空域接收参数。例如,用户终端可以从基站接收下行参考信号,比如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),以对下行信息进行测量来训练空域接收参数,从而确定一个或多个候选空域接收参数。
在用户终端确定了一个或多个候选空域接收参数之后,用户终端1100还可以包括:发送单元(未示出),其被配置为使用至少一个候选空域接收参数分别向基站发送上行参考信号,以便基站从至少一个上行参考信号中确定第一参考信号。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。
此外,基站还可以根据第一参考信号生成空域接收参数指示信息。在该 示例中,空域接收参数指示信息可以包括关于第一参考信号的信息。相应地,接收单元1110可以接收关于第一参考信号的信息。然后,确定单元1120可以根据基站发送的关于该第一参考信号的信息来确定发送该第一参考信号时使用的空域接收参数,并将发送该第一参考信号时使用的空域接收参数确定为用于接收下行数据信号的第一空域接收参数。
此外,关于上述示例中的“关于第一参考信号的信息”,根据本公开的一个示例,关于第一参考信号的信息可以包括第一参考信号的资源信息和/或端口信息(例如,端口索引)。第一参考信号的资源信息例如可以是用户终端发送将被基站确定为第一参考信号的上行参考信号时使用的资源标识符(ID),比如时频资源ID。例如,用户终端在向基站发送上行参考信号时,可以将上行参考信号的资源ID和/或端口信息一起发送给基站,以便基站在将上行参考信号确定为第一参考信号之后,能够将该第一参考信号的资源ID和/或端口信息反馈给用户终端。因此,用户终端在接收到基站反馈的第一参考信号的资源ID和/或端口信息之后,可以把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。
根据本公开的另一示例,关于第一参考信号的信息还可以包括第一参考信号与下行参考信号之间的关联信息。这里的“下行参考信号”可以是任何一种下行参考信号,例如解调参考信号(Demodulation Reference Signal,DM-RS)。
在该示例中,第一参考信号与下行参考信号之间的关联信息可以被包括在由用户终端从基站接收的下行配置信息中。下行配置信息可以是例如下行链路发送配置标识(Transmission Configuration Indication)或者准共位(Quasi Co-Location,QCL)配置信息。例如,第一参考信号与下行参考信号之间的关联信息可以体现为将第一参考信号的资源信息和/或端口信息添加到下行配置信息中,从而表示第一参考信号与下行参考信号之间的关联性。因此,用户终端可以通过下行配置信息获知基站为用户终端确定的第一参考信号,进而把发送第一参考信号时使用的空域接收参数确定为目的空域接收参数。以下以下行配置信息为QCL配置信息为例来描述本公开。
例如,可以将第一参考信号的资源信息和/或端口信息添加到常规的QCL配置信息中。常规的QCL配置信息已经包括了表示CSI-RS、同步信号(Synchronization Signal,SS)块(block)等与下行参考信号之间的关联性 的信息。在该示例中,可以将第一参考信号的资源ID和/或端口信息添加到常规的QCL配置信息中,以表示第一参考信号与下行参考信号之间的关联性。下面给出QCL配置信息的一个示例:
Figure PCTCN2018088879-appb-000008
在该示例中,QCL配置信息可以被简称为“QCL-Info”。此外,该QCL配置信息的类型可以是现有标准规范中定义的类型D(Type-D),即用于针对第一参考信号的资源信息和/或端口信息的发送配置标识的空域接收参数。
又例如,可以设计一种不同于常规QCL配置信息的、新的类型的QCL配置信息,该新的类型的QCL配置信息可以只表示第一参考信号与下行参考信号之间的关联性,而不表示CSI-RS、SS block等与下行参考信号之间的关联性。比如,该新的类型的QCL配置信息可以包括第一参考信号的资源信息和/或端口信息,以表示第一参考信号与下行参考信号之间的关联性。下面给出新的类型的QCL配置信息的一个示例:
Figure PCTCN2018088879-appb-000009
在该示例中,该新的类型的QCL配置信息可以被简称为“QCL-UL-Info”。此外,该QCL配置信息的类型可以是现有标准规范中定义的类型A(Type-A)、 类型B(Type-B)、类型C(Type-C)或类型D(Type-D)中的任何一种。
通过上述常规QCL配置信息或新设计的QCL配置信息,用户终端可以确定第一参考信号与下行参考信号是相关联的,进而可以把发送该第一参考信号时使用的空域接收参数确定为用于接收下行数据信号的第一空域接收参数。
需要认识到,上述常规QCL配置信息或新设计的QCL配置信息除了包括表示某些信号与下行参考信号之间的关联性的信息以外,还可以包括其他信息,由于这些其他信息与本公开无关,所以在此进行了省略。
此外,根据本公开的一个示例,接收单元1110可以通过来自基站的无线资源控制(Radio Resource Control,RRC)信令、下行链路控制信息(Downlink Control Information,DCI)或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)等接收下行配置信息,以便根据下行配置信息确定用于接收下行数据信号的第一空域接收参数。
此外,根据本公开的另一示例,基站可以对常规QCL配置信息或新设计的QCL配置信息进行切换。相应地,接收单元1110可以通过来自基站的RRC信令、DCI或MAC CE等确定使用常规QCL配置信息还是新设计的QCL配置信息,以确定用于接收下行数据信号的第一空域接收参数。
上面已经描述了空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。下面将具体地描述空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。相应地,确定单元1120可以根据接收到的第一空域接收参数的索引信息确定用于接收下行数据信号的第一空域接收参数。
例如,用户终端和基站均可预先存储与空域接收参数相对应的码本,然后基站可以从码本中选择第一空域接收参数,并将该第一空域接收参数的索引信息发送给用户终端。“码本”例如可以是与空域接收参数相对应的任何一个码本,例如3GPP Release 8或其他版本中已经定义的码本。相应地,接收单元1110接收由基站发送的第一空域接收参数的索引信息。然后,确定单元1120可以根据该索引信息在码本中确定用于接收下行数据信号的第一空 域接收参数。
此外,根据本公开的一个示例,第一空域接收参数的索引信息可以是基站通过RRC信令、DCI或MAC CE等发送给用户终端的。相应地,接收单元1110接可以通过从基站接收RRC信令、DCI或MAC CE来获得第一空域接收参数的索引信息,以便根据第一空域接收参数的索引信息在码本中确定用于接收下行数据信号的第一空域接收参数。
上述示例描述了空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息时,“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。也就是说,用户终端可以暗示的方式被基站通知第一空域接收参数。此外,根据本公开的另一示例,用户终端还可以明示的方式被基站通知第一空域接收参数。
例如,当空域接收参数指示信息是基站根据其为用户终端确定的空域接收参数生成的指示信息时,“空域接收参数指示信息”还可以包括第一空域接收参数。相应地,确定单元1120可以根据接收到的第一空域接收参数快速地确定用于接收下行数据信号的第一空域接收参数。
通过本公开的上述实施例,基站可以指示用户终端确定用于接收下行数据信号的空间滤波器,使得基站和用户终端双方可以对用于接收下行数据信号的空间滤波器达成一致,保证了用于接收下行数据信号的空间滤波器与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
下面,参照图12来描述根据本公开实施例的执行图3所示的方法300的基站。图12示出了根据本公开实施例的基站1200的框图。由于基站1200的功能与在上文中参照图3描述的方法300的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图12所示,基站1200包括生成单元1210,其被配置为生成空域接收参数指示信息;以及发送单元1220,其被配置为向用户终端发送空域接收参数指示信息,以便用户终端根据空域接收参数指示信息确定第一空域接收参数。除了这两个单元以外,基站1200还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
以下将具体地描述空域接收参数指示信息是用户终端向基站通知自身确定的空域接收参数而基站相应地生成的指示信息的示例。
根据本公开的一个示例,在这种情形下,基站1200还可以包括:接收单元(未示出),其被配置为从用户终端接收至少一个上行参考信号,所述至少一个上行参考信号是用户终端使用至少一个候选空域接收参数分别向基站发送的;以及选择单元(未示出),其被配置为从至少一个上行参考信号中选择第一参考信号。例如,选择单元可以根据该至少一个上行参考信号的接收质量选择第一参考信号,比如选择单元可以将接收质量最佳的上行参考信号确定为第一参考信号。
在该示例中,选择单元在选择第一参考信号之后,可以根据第一参考信号确定等效信道以便向用户终端发送下行数据信号。而且,基站可以根据第一参考信号的信息生成空域接收参数指示信息,并向用户终端发送空域接收参数指示信息。
此外,关于上述示例中的“关于第一参考信号的信息”,根据本公开的一个示例,关于第一参考信号的信息可以包括第一参考信号的资源信息和/或端口信息(例如,端口索引)。第一参考信号的资源信息例如可以是用户终端发送将被基站确定为第一参考信号的上行参考信号时使用的资源标识符(ID),比如时频资源ID。
根据本公开的另一示例,关于第一参考信号的信息还可以包括第一参考信号与下行参考信号之间的关联信息。这里的“下行参考信号”可以是任何一种下行参考信号,例如解调参考信号(Demodulation Reference Signal,DM-RS)。
在该示例中,第一参考信号与下行参考信号之间的关联信息可以被包括在由用户终端从基站接收的下行配置信息中。下行配置信息可以是例如下行链路发送配置标识(Transmission Configuration Indication)或者准共位(Quasi Co-Location,QCL)配置信息。例如,第一参考信号与下行参考信号之间的关联信息可以体现为将第一参考信号的资源信息和/或端口信息添加到下行配置信息中,从而表示第一参考信号与下行参考信号之间的关联性。
根据本公开的一个示例,“空域接收参数指示信息”可以包括第一空域接收参数的索引信息。也就是说,用户终端可以暗示的方式被基站通知第一空域接收参数。
此外,根据本公开的另一示例,用户终端还可以明示的方式被基站通知第一空域接收参数。例如,当空域接收参数指示信息是基站根据其为用户终 端确定的空域接收参数生成的指示信息时,“空域接收参数指示信息”还可以包括第一空域接收参数。相应地,用户终端可以根据接收到的第一空域接收参数快速地确定用于接收下行数据信号的第一空域接收参数。
此外,根据本公开的一个示例,发送单元1220可以通过RRC信令、DCI或MAC CE等向用户终端发送空域接收参数指示信息。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得第一空域接收参数的索引信息,以便根据第一空域接收参数的索引信息在码本中确定用于接收下行数据信号的第一空域接收参数。
此外,根据本公开的一个示例,基站1200还可以包括:处理单元,其被配置为对下行数据信号进行预编码处理,以及将预编码处理后的下行数据信号发送给用户终端。例如,基站可以对下行数据信号进行非线性预编码处理,比如通过汤姆林森-哈拉希玛预编码(Tomlinson-Harashima Precoding,THP)方案或矢量微扰法(Vector Perturbation,VP)方案对下行数据信号进行非线性预编码处理。
通过本公开的上述实施例,基站可以指示用户终端确定用于接收下行数据信号的空间滤波器,使得基站和用户终端双方可以对用于接收下行数据信号的空间滤波器达成一致,保证了用于接收下行数据信号的空间滤波器与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
下面,参照图13来描述根据本公开实施例的执行图5所示的方法500的用户终端。图13示出了根据本公开实施例的用户终端1300的框图。由于用户终端1300的功能与在上文中参照图5描述的方法500的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图13所示,用户终端1300包括接收单元1310,其被配置为从基站接收关于第一天线端口的信息;以及确定单元1320,其被配置为根据关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口。此外,接收单元1310还被配置为在第一天线端口上接收第一下行数据信号,并且忽略在至少一个天线端口中的、除了第一天线端口的天线端口上接收的第二下行数据信号。除了这三个单元以外,用户终端1300还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,第一天线端口可以是基站从用户终端的至少一 个天线端口中确定。例如,第一天线端口可以是用户终端向基站发送上行参考信号例如SRS,然后基站根据接收到的SRS确定与用户终端的至少一个天线端口相对应的信道条件以及根据信道条件从用户终端的至少一个天线端口中确定的。比如,第一天线端口可以是基站通过比较与用户终端的每个天线端口相对应的信道条件,从中选择信道条件最佳的天线端口而确定的。
根据本公开的一个示例,关于第一天线端口的信息可以包括第一天线端口的索引信息。例如,用户终端和基站均可预先存储天线端口选择码本,然后基站可以从天线端口选择码本中选择第一天线端口,并将该第一天线端口的索引信息发送给用户终端。相应地,用户终端接收到第一天线端口的索引信息之后,可以根据该索引信息在天线端口选择码本中确定第一天线端口。
根据本公开的另一示例,关于第一天线端口的信息可以包括第一天线端口与上行参考信号之间的关联信息。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。例如,可以将第一天线端口与SRS端口设置为QCL,因此,当用户终端接收到该关联信息时,可以将与SRS端口QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与上行参考信号之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
根据本公开的另一示例,关于第一天线端口的信息还可以包括第一天线端口与第一天线端口的索引之间的关联信息。例如,可以将第一天线端口与第一天线端口的索引设置为QCL,因此,当用户终端接收到该关联信息时,可以将与第一天线端口的索引QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与第一天线端口的索引之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
此外,根据本公开的一个示例,关于第一天线端口的信息可以是基站通过RRC信令、DCI或MAC CE等发送给用户终端的。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得关于第一天线端口的信息,以便用户终端在第一天线端口上接收下行数据信号且丢弃在至少一个天线端口中的、除了第一天线端口的天线端口上接收的下行数据信号。
根据本公开的一个示例,当关于第一天线端口的信息是第一天线端口的 索引信息时,接收单元1310在接收到第一天线端口的索引信息之后,确定单元1320可以根据该索引信息在天线端口选择码本中确定第一天线端口。又例如,当关于第一天线端口的信息是第一天线端口与上行参考信号或第一天线端口的索引之间的关联信息时,接收单元1310在接收到该关联信息之后,确定单元1320可以将与上行参考信号或第一天线端口的索引相关联的天线端口确定为第一天线端口。
通过本公开的上述实施例,基站可以为用户终端从至少一个天线端口中确定第一天线端口,并向用户终端通知该第一天线端口,而用户终端仅处理在第一天线端口上的下行数据信号,使得第一天线端口与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
下面,参照图14来描述根据本公开实施例的执行图6所示的方法600的基站。图14示出了根据本公开实施例的基站1400的框图。由于基站1400的功能与在上文中参照图6描述的方法600的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图14所示,基站1400包括确定单元1410,其被配置为从用户终端的至少一个天线端口中确定第一天线端口;以及发送单元1420,其被配置为向用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。除了这两个单元以外,基站1400还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,确定单元1410可以根据与用户终端的至少一个天线端口相对应的信道条件,从用户终端的至少一个天线端口中确定第一天线端口。例如,确定单元1410可以比较与用户终端的每个天线端口相对应的信道条件,以及从中选择信道条件最佳的天线端口作为第一天线端口。
根据本公开的一个示例,关于第一天线端口的信息可以包括第一天线端口的索引信息。例如,用户终端和基站均可预先存储天线端口选择码本,然后基站可以从天线端口选择码本中选择第一天线端口,并将该第一天线端口的索引信息发送给用户终端。相应地,用户终端接收到第一天线端口的索引信息之后,可以根据该索引信息在天线端口选择码本中确定第一天线端口。
在该示例中,对于具有特定天线端口数量的用户终端,可以设置与该特 定天线端口相对应的一个或多个码本。此外,可以根据用户终端的特定天线端口数量确定一个或多个码本的比特数。
例如,对于具有两个天线端口的用户终端,用户终端可以使用该两个天线端口中的至少一个天线端口来接收下行数据信号。当秩指示(Rank Indication,RI)为1时,用户终端可以使用该两个天线端口中的任意一个天线端口来接收下行数据信号(两种端口使用方式);以及当RI为2时,用户终端可以使用该两个天线端口来接收下行数据信号(一种端口使用方式)。因此,对于具有两个天线端口的用户终端,存在三种端口使用方式,则可以设置一个由两个比特表示的天线端口选择码本。
根据本公开的另一示例,关于第一天线端口的信息可以包括第一天线端口与上行参考信号之间的关联信息。在该示例中,上行参考信号可以是任何一种上行参考信号,比如探测参考信号(Sounding Reference Signal,SRS)。例如,可以将第一天线端口与SRS端口设置为QCL,因此,当用户终端接收到该关联信息时,可以将与SRS端口QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与上行参考信号之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
根据本公开的另一示例,关于第一天线端口的信息还可以包括第一天线端口与第一天线端口的索引之间的关联信息。例如,可以将第一天线端口与第一天线端口的索引设置为QCL,因此,当用户终端接收到该关联信息时,可以将与第一天线端口的索引QCL的天线端口确定为第一天线端口。此外,在该示例中的“第一天线端口与第一天线端口的索引之间的关联信息”也可以与上文所描述的QCL配置信息类似的方式进行配置,然后由基站发送给用户终端。
此外,根据本公开的一个示例,基站可以通过RRC信令、DCI或MAC CE等向用户终端发送关于第一天线端口的信息。相应地,用户终端可以通过从基站接收RRC信令、DCI或MAC CE来获得关于第一天线端口的信息,以便用户终端根据关于第一天线端口的信息在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
此外,根据本公开的一个示例,基站1400还可以包括:处理单元(未 示出),其被配置为对下行数据信号进行预编码处理。然后,发送单元1420将预编码处理后的下行数据信号发送给用户终端。例如,基站可以对下行数据信号进行非线性预编码处理,比如通过汤姆林森-哈拉希玛预编码(Tomlinson-Harashima Precoding,THP)方案或矢量微扰法(Vector Perturbation,VP)方案对下行数据信号进行非线性预编码处理。比如,基站可以通过上面所描述的公式(1)对下行数据信号进行THP编码。
通过本公开的上述实施例,基站可以为用户终端从至少一个天线端口中确定第一天线端口,并向用户终端通知该第一天线端口,而用户终端仅处理在第一天线端口上的下行数据信号,使得第一天线端口与基站确定的等效信道相匹配,从而减少用户终端遭受的干扰。
下面,参照图15来描述根据本公开实施例的执行图8所示的方法800的用户终端。图15示出了根据本公开实施例的用户终端1500的框图。由于用户终端1500的功能与在上文中参照图8描述的方法800的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图15所示,用户终端1500包括接收单元1510,其被配置为从基站接收多个数据流,所述多个数据流中的每个数据流对应于初始数据或初始数据的一个副本数据;以及处理单元1520,其被配置为对多个数据流进行串行干扰消除处理,以获得初始数据。除了这两个单元以外,用户终端1500还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,接收单元1510可以在一个或多个天线端口上接收多个数据流。例如,用户终端可以在每个天线端口上接收一个数据流。又例如,用户终端可以在一个天线端口上接收多个数据流。
根据本公开的另一示例,多个数据流可以是基站分别对初始数据或初始数据的一个或多个副本数据进行处理而生成的。例如,多个数据流可以是基站分别对初始数据或初始数据的一个或多个副本数据进行预编码处理(比如通过非线性预编码等)而生成的。非线性预编码比如THP,其包括取模操作、反馈处理、前馈处理、功率归一化等。
根据本公开的另一示例,多个数据流可以是基站在至少一个DMRS端口上发送的。例如,当基站在一个DMRS端口上发送多个数据流时,多个数据流可以是基站对多个数据流分别进行彼此不同的相位旋转之后发送的。又 例如,当基站在多个DMRS端口上发送多个数据流时,多个数据流可以是基站分别在不同的DMRS端口上发送的。
在该示例中,接收单元1510可以通过从基站接收的控制信息来确定基站在哪些DMRS端口上发送数据流。例如,用户终端可以通过来自基站的RRC信令、DCI或MAC CE等确定基站在哪些DMRS端口上发送数据流。
根据本公开的一个示例,处理单元1520可以使用最小均分误差法(Minimum Mean Square Error,MMSE)接收机对多个数据流进行串行干扰消除处理,以获得初始数据。
此外,在多个数据流是基站分别对初始数据或初始数据的一个或多个副本数据进行预编码处理(比如通过非线性预编码等)而生成的情形下,根据本公开的一个示例,用户终端1500还可以包括:信道估计单元(未示出),其被配置为用户终端对下行信道进行估计,以获得估计信道。例如,当基站在至少一个DMRS端口上发送多个数据流时,信道估计单元可以对与至少一个DMRS端口相对应的信道进行估计,以获得与每个DMRS端口相对应的估计信道。
然后,处理单元1520可以通过与每个DMRS端口相对应的估计信道对数据流进行预编码的反操作,比如去取模操作等。然后,处理单元1520可以对经预编码的反操作处理后的数据进行串行干扰消除处理,以获得初始数据。
通过本公开的上述实施例,基站可以对要发送给用户终端的数据进行重复发送,相应地,用户终端可以对接收到的多路数据进行干扰消除以获得实际的数据,从而减少用户终端遭受的干扰。
下面,参照图16来描述根据本公开实施例的执行图9所示的方法900的基站。图16示出了根据本公开实施例的基站1600的框图。由于基站1600的功能与在上文中参照图9描述的方法900的细节相同,因此在这里为了简单起见,省略对相同内容的详细描述。
如图16所示,基站1600包括映射单元1610,其被配置为将初始数据和初始数据的一个或多个副本数据分别映射到不同的层;处理单元1620,其被配置为对每个层上的数据进行处理,以生成与每个层相对应的数据流;发送单元1630,其被配置为将与不同的层相对应的多个数据流发送给用户终端,以便用户终端对多个数据流进行串行干扰消除处理以获得初始数据。除了这 三个单元以外,基站1600还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。
根据本公开的一个示例,处理单元1620可以对每个层上的数据进行预编码处理(比如通过非线性预编码等),以生成与每个层相对应的数据流。这里的非线性预编码比如THP,其包括取模操作、反馈处理、前馈处理、功率归一化等。
根据本公开的一个示例,发送单元1630可以在至少一个DMRS端口上发送多个数据流。例如,当基站在一个DMRS端口上发送多个数据流时,发送单元1630可以对多个数据流分别进行彼此不同的相位旋转之后进行发送。又例如,当基站在多个DMRS端口上发送多个数据流时,发送单元1630可以分别在不同的DMRS端口上进行发送。
在该示例中,发送单元1630可以向用户终端发送控制信息来通知用户终端基站在哪些DMRS端口上发送下行数据信号。例如,发送单元1630可以通过RRC信令、DCI或MAC CE等来通知用户终端基站在哪些DMRS端口上发送下行数据信号。
此外,在该示例中,发送单元1630还可以向用户终端发送控制信息来通知用户终端DMRS端口的数量与层的数量的对应关系。在常规的通信系统中,DMRS端口的数量与层的数量是一一对应的。然而,在本公开中,DMRS端口的数量与层的数量不一定是一一对应的。因此,在这种情形下,基站可以向用户终端发送RRC信令、DCI或MAC CE等,以通知用户终端DMRS端口的数量与层的数量的对应关系。
此外,在该示例中,发送单元1630还可以对与每个层相对应的数据流重新排序。例如,发送单元1630可以基于公平原则对与每个层相对应的数据流重新排序。然后,发送单元1630在至少一个DMRS端口上发送重新排序后的多个数据流。
通过本公开的上述实施例,基站可以对要发送的下行数据信号进行重复发送,相应地,用户终端可以对接收到的多路信号进行干扰消除以获得实际的下行数据信号,从而减少用户终端遭受的干扰。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能 块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的一个实施例的设备(比如第一通信设备、第二通信设备或飞行用户终端等)可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图17是根据本公开的实施例的所涉及的设备1700(基站或用户终端)的硬件结构的示意图。上述的设备(基站或用户终端)可以作为在物理上包括处理器1710、内存1720、存储器1730、通信装置1740、输入装置1750、输出装置1760、总线1770等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端和基站的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1710仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1710可以通过一个以上的芯片来安装。
设备1700的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1710、内存1720等硬件上,从而使处理器1710进行运算,对由通信装置1740进行的通信进行控制,并对内存1720和存储器1730中的数据的读出和/或写入进行控制。
处理器1710例如使操作系统进行工作从而对计算机整体进行控制。处理器1710可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的确定单元、调整单元等可以通过处理器1710实现。
此外,处理器1710将程序(程序代码)、软件模块、数据等从存储器1730和/或通信装置1740读出到内存1720,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户终端500的确定单元可以通过保存在内存1720中并通过处理器1710来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存1720是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1720也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1720可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器1730是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1730也可以称为辅助存储装置。
通信装置1740是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1740为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元、接收单元等可以通过通信装置1740来实现。
输入装置1750是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1760是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1750和输出装置1760也可以为一体的结构(例如触控面板)。
此外,处理器1710、内存1720等各装置通过用于对信息进行通信的总线1770连接。总线1770可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站和用户终端可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各 功能块的部分或全部。例如,处理器1710可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信 息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述的设备1700中的第一通信设备或第二通信设备所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作第一通信设备或第二通信设备所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关 于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”, 还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (17)

  1. 一种信号传输方法,由用户终端执行,所述方法包括:
    接收由基站发送的空域接收参数指示信息;以及
    根据所述空域接收参数指示信息确定第一空域接收参数,以便用户终端通过所述第一空域接收参数接收下行数据信号。
  2. 如权利要求1所述的方法,还包括:
    使用至少一个候选空域接收参数分别向基站发送上行参考信号,以便基站从所述至少一个上行参考信号中确定第一参考信号,其中所述空域接收参数指示信息包括关于第一参考信号的信息。
  3. 如权利要求2所述的方法,还包括:
    通过对下行信道进行测量确定所述至少一个候选空域接收参数。
  4. 如权利要求2所述的方法,其中所述关于第一参考信号的信息包括所述第一参考信号的资源信息和/或端口信息。
  5. 如权利要求2所述的方法,其中所述关于第一参考信号的信息包括所述第一参考信号与下行参考信号之间的关联信息。
  6. 如权利要求1所述的方法,其中所述空域接收参数指示信息包括第一空域接收参数的索引信息。
  7. 如权利要求6所述的方法,其中所述根据所述空域接收参数指示信息确定第一空域接收参数包括:
    根据所述第一空域接收参数的索引信息从预先设置的码本中确定第一空域接收参数。
  8. 一种信号传输方法,由基站执行,所述方法包括:
    生成空域接收参数指示信息;以及
    向用户终端发送所述空域接收参数指示信息,以便所述用户终端根据所述空域接收参数指示信息确定第一空域接收参数。
  9. 一种信号传输方法,由用户终端执行,所述方法包括:
    从基站接收关于第一天线端口的信息;
    根据所述关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口;以及
    在所述第一天线端口上接收第一下行数据信号,并且忽略在所述至少一 个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
  10. 如权利要求9所述的方法,其中所述关于第一天线端口的信息包括第一天线端口的索引信息。
  11. 如权利要求9所述的方法,其中所述关于第一天线端口的信息包括第一天线端口与上行参考信号之间的关联信息。
  12. 一种信号传输方法,由基站执行,所述方法包括:
    从用户终端的至少一个天线端口中确定第一天线端口;以及
    向所述用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
  13. 如权利要求12所述的方法,其中所述从用户终端的至少一个天线端口中确定第一天线端口包括:
    根据与用户终端的至少一个天线端口相对应的信道条件,从所述用户终端的至少一个天线端口中确定第一天线端口。
  14. 一种用于信号传输的用户终端,所述用户终端包括:
    接收单元,被配置为接收由基站发送的空域接收参数指示信息;以及
    确定单元,被配置为根据所述空域接收参数指示信息确定第一空域接收参数,以便用户终端通过所述第一空域接收参数接收下行数据信号。
  15. 一种用于信号传输的基站,所述基站包括:
    生成单元,被配置为生成空域接收参数指示信息;以及
    发送单元,被配置为向用户终端发送所述空域接收参数指示信息,以便所述用户终端根据所述空域接收参数指示信息确定第一空域接收参数。
  16. 一种用于信号传输的用户终端,所述用户终端包括:
    接收单元,被配置为从基站接收关于第一天线端口的信息;
    确定单元,被配置为根据所述关于第一天线端口的信息,从用户终端的至少一个天线端口中确定第一天线端口;以及
    所述接收单元还被配置为在所述第一天线端口上接收第一下行数据信号,并且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
  17. 一种用于信号传输的基站,所述基站包括:
    确定单元,被配置为从用户终端的至少一个天线端口中确定第一天线端口;以及
    发送单元,被配置为向所述用户终端发送关于第一天线端口的信息,以便所述用户终端在第一天线端口上接收第一下行数据信号且忽略在所述至少一个天线端口中的、除了所述第一天线端口的天线端口上接收的第二下行数据信号。
PCT/CN2018/088879 2018-05-29 2018-05-29 用于信号传输的方法及相应的用户终端、基站 WO2019227312A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/047,934 US11510213B2 (en) 2018-05-29 2018-05-29 Method for signal transmission, and corresponding user terminals and base stations
PCT/CN2018/088879 WO2019227312A1 (zh) 2018-05-29 2018-05-29 用于信号传输的方法及相应的用户终端、基站
CN201880091672.4A CN111903082A (zh) 2018-05-29 2018-05-29 用于信号传输的方法及相应的用户终端、基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088879 WO2019227312A1 (zh) 2018-05-29 2018-05-29 用于信号传输的方法及相应的用户终端、基站

Publications (1)

Publication Number Publication Date
WO2019227312A1 true WO2019227312A1 (zh) 2019-12-05

Family

ID=68697743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088879 WO2019227312A1 (zh) 2018-05-29 2018-05-29 用于信号传输的方法及相应的用户终端、基站

Country Status (3)

Country Link
US (1) US11510213B2 (zh)
CN (1) CN111903082A (zh)
WO (1) WO2019227312A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028981A1 (en) * 2021-09-03 2023-03-09 Qualcomm Incorporated Techniques for codebook and control signaling for uplink

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215874A1 (ja) * 2018-05-10 2019-11-14 株式会社Nttドコモ 受信装置及び送信装置
KR20240017124A (ko) * 2019-07-17 2024-02-06 오피노 엘엘씨 새로운 무선에서의 공간 관계
CN114513236B (zh) * 2020-11-16 2023-10-27 中国移动通信有限公司研究院 一种多天线预编码方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
CN106664124A (zh) * 2014-07-11 2017-05-10 华为技术有限公司 无线通信网络中的方法和节点
CN108024274A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种无线通信数据传输方法、装置和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031700A (ko) * 2010-09-27 2012-04-04 삼성전자주식회사 계층 셀 통신 시스템에서 피드포워드 인덱스를 이용한 간섭 정렬 방법 및 장치
US11018743B2 (en) * 2016-07-22 2021-05-25 Apple Inc. QCL (quasi co-location) indication for beamforming management
WO2018062842A1 (en) * 2016-09-27 2018-04-05 Samsung Electronics Co., Ltd. Method and apparatus for receiving downlink reference signal in wireless communication system
WO2018075205A1 (en) * 2016-10-19 2018-04-26 Intel Corporation Multi-carrier qcl (quasi co-location) for antenna ports in nr (new radio)
WO2018082696A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
CN114567533A (zh) * 2016-11-04 2022-05-31 北京三星通信技术研究有限公司 一种信道状态信息的汇报方法和装置
CN108023841B (zh) * 2016-11-04 2024-01-05 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
KR102373474B1 (ko) * 2017-03-23 2022-03-11 삼성전자주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 장치 및 방법
CN108039903B (zh) * 2017-09-11 2021-06-01 华为技术有限公司 一种通信方法及设备
GB2572390B (en) * 2018-03-28 2021-03-10 Samsung Electronics Co Ltd Reference signal power boosting in a telecommunication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664124A (zh) * 2014-07-11 2017-05-10 华为技术有限公司 无线通信网络中的方法和节点
WO2016086144A1 (en) * 2014-11-26 2016-06-02 Interdigital Patent Holdings, Inc. Initial access in high frequency wireless systems
CN108024274A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种无线通信数据传输方法、装置和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028981A1 (en) * 2021-09-03 2023-03-09 Qualcomm Incorporated Techniques for codebook and control signaling for uplink

Also Published As

Publication number Publication date
US20210168818A1 (en) 2021-06-03
US11510213B2 (en) 2022-11-22
CN111903082A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN110474668B (zh) 指示无线信道状态的系统和方法
JP7158490B2 (ja) 複数の仮定を伴うチャネル状態情報(csi)フィードバック
WO2019072138A1 (en) SYSTEM AND METHOD FOR CONTROL SIGNALING
WO2019227312A1 (zh) 用于信号传输的方法及相应的用户终端、基站
WO2019062681A1 (zh) 一种上行传输、配置方法、终端及基站
WO2017031672A1 (zh) 一种预编码信息发送、反馈方法及装置
EP3449582A1 (en) Adaptively grouped user equipment multicasting and beamforming
US10420137B2 (en) System and method for signal density reduction in the frequency domain
WO2021253936A1 (zh) 用户设备、基站、用户设备和基站的信道估计和反馈系统
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2018196505A1 (zh) 星座图旋转方法及装置
JP2023520220A (ja) 小帯域幅部分(bwp)についての新無線(nr)マルチインプットマルチアウトプット(mimo)チャネル状態情報(csi)設計
JP2024500395A (ja) より高いランクの送信をサポートするためのタイプiiポート選択コードブックを拡張する方法
WO2018061777A1 (ja) 通信装置及び通信方法
WO2016004884A1 (zh) 一种基站、ue中的大尺度mimo通信方法和设备
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
WO2022150484A1 (en) Methods of mapping multiple sd-fd bases per csi-rs port for type ii port selection codebook
CN110351832A (zh) 用于分配天线端口的方法及基站
WO2022141077A1 (zh) 信息发送方法、预编码粒度确定方法、终端以及基站
WO2022141078A1 (zh) 通信系统中的终端以及基站
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2022141079A1 (zh) 终端以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920684

Country of ref document: EP

Kind code of ref document: A1