WO2022141079A1 - 终端以及基站 - Google Patents

终端以及基站 Download PDF

Info

Publication number
WO2022141079A1
WO2022141079A1 PCT/CN2020/140956 CN2020140956W WO2022141079A1 WO 2022141079 A1 WO2022141079 A1 WO 2022141079A1 CN 2020140956 W CN2020140956 W CN 2020140956W WO 2022141079 A1 WO2022141079 A1 WO 2022141079A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain vectors
transform domain
terminal
information
vectors
Prior art date
Application number
PCT/CN2020/140956
Other languages
English (en)
French (fr)
Inventor
刘文佳
侯晓林
王新
松村祐辉
纳迪桑卡鲁帕辛哈
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN202080108199.3A priority Critical patent/CN116671030A/zh
Priority to PCT/CN2020/140956 priority patent/WO2022141079A1/zh
Priority to US18/268,505 priority patent/US20240030988A1/en
Publication of WO2022141079A1 publication Critical patent/WO2022141079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly to a method performed by a terminal in a communication system, a method performed by a base station in a communication system, and a corresponding terminal and base station.
  • multi-antenna technologies such as Multiple Input Multiple Output (MIMO) technology
  • MIMO Multiple Input Multiple Output
  • precoding technology on the transmitter side.
  • a codebook is designed.
  • the 5G New Radio (NR) version 15 (Release 15, can be referred to as R15 for short) has designed two types of codebooks, namely the first type codebook (Type I codebook) and the second type codebook (Type I codebook). II codebook).
  • the above codebook is designed for subbands, and therefore, operations based on the above codebook are subband-level operations.
  • the operation that the terminal determines a precoding matrix indicator (Precoding Matrix Indicator, PMI) and feeds back the PMI to the base station is an operation at the subband level, or the operation (for example, compression) performed by the terminal according to the information at the subband level is a subband level operation.
  • the operation of the subband level, and the operation of the base station to generate the precoding matrix according to the PMI is also the operation of the subband level.
  • the low granularity of these operations limits the performance of the communication system.
  • a codebook for subcarriers is proposed.
  • the communication system applies the subcarrier-level precoding technology, what information the terminal should feed back to the base station so that the base station can determine the subcarrier-level precoding matrix is an aspect that needs to be considered.
  • the present disclosure proposes a method performed by a terminal, a method performed by a base station, and a corresponding terminal and base station.
  • a method performed by a terminal comprising: determining at least one set of transform domain vectors, wherein the at least one set of transform domain vectors is used to process factors associated with a plurality of spatial domain vectors, the The plurality of spatial vectors are used to determine the precoding matrix at the subcarrier level; and the precoding matrix indication information is sent to the base station, wherein the precoding matrix indication information includes first information, and the first information is used to indicate the at least one An array of transform domain vectors.
  • the above method further includes: receiving indication information from the base station, where the indication information is used to indicate the quantity of the at least one set of transform domain vectors; wherein the determining of the at least one set of transform domain vectors includes: At least one set of transform domain vectors corresponding to the number is determined.
  • the set of transform domain vectors is used to process the data associated with each of the plurality of spatial domain vectors factor.
  • the at least one group of transform domain vectors is a plurality of groups of transform domain vectors
  • the number of the plurality of groups of transform domain vectors is the same as the number of the plurality of spatial domain vectors
  • the plurality of groups Each set of transform-domain vectors of the transform-domain vectors is used to process factors associated with respective ones of the plurality of spatial-domain vectors, respectively.
  • the first information is used to indicate an index of the at least one set of transform domain vectors.
  • the precoding matrix indication information further includes second information for indicating parameters for determining the at least one set of transform domain vectors.
  • the parameters are used to determine the at least one set of transform domain vectors from candidate transform domain vectors with respect to a precoding matrix.
  • the parameter is a first parameter representing the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter is a second parameter for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • a method performed by a base station comprising: receiving precoding matrix indication information from a terminal, wherein the precoding matrix indication information includes at least first information, and the first information is used for indicating the at least one set of transform-domain vectors for processing factors associated with a plurality of spatial-domain vectors for use in determining subcarrier-level precoding matrices; according to the The precoding matrix indication information determines the subcarrier-level precoding matrix.
  • a terminal comprising: a control unit configured to determine at least one set of transform domain vectors, wherein the at least one set of transform domain vectors is used to process data associated with a plurality of spatial domain vectors factor, the plurality of spatial vectors are used to determine the precoding matrix at the subcarrier level; and the sending unit is configured to send precoding matrix indication information to the base station, wherein the precoding matrix indication information includes first information, the The first information is used to indicate the at least one set of transform domain vectors.
  • the above-mentioned terminal further includes: a receiving unit configured to receive indication information from the base station, where the indication information is used to indicate the quantity of the at least one group of transform domain vectors; wherein the control unit is is configured to determine at least one set of transform domain vectors corresponding to the number.
  • the set of transform domain vectors is used to process the data associated with each of the plurality of spatial domain vectors factor.
  • the at least one group of transform domain vectors is a plurality of groups of transform domain vectors
  • the number of the plurality of groups of transform domain vectors is the same as the number of the plurality of spatial domain vectors
  • the plurality of groups Each set of transform-domain vectors of the transform-domain vectors is used to process factors associated with respective ones of the plurality of spatial-domain vectors, respectively.
  • the first information is used to indicate an index of the at least one set of transform domain vectors.
  • the precoding matrix indication information further includes second information for indicating parameters for determining the at least one set of transform domain vectors.
  • the parameters are used to determine the at least one set of transform domain vectors from candidate transform domain vectors with respect to a precoding matrix.
  • the parameter is a first parameter representing the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter is a second parameter for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • a base station comprising: a receiving unit configured to receive precoding matrix indication information from a terminal, wherein the precoding matrix indication information includes at least first information, the first information for indicating the at least one set of transform domain vectors, the at least one set of transform domain vectors for processing factors associated with a plurality of spatial domain vectors for use in determining subcarrier-level precoding matrices; and a control unit, configured to determine a subcarrier-level precoding matrix according to the precoding matrix indication information.
  • the terminal in the case where the communication system applies the subcarrier-level precoding technology, can at least one set of transform domain vectors of the factors associated with the spatial domain vector, including the at least one set of transform domain vectors in the precoding matrix indication information, and feeding back the precoding matrix indication information to the base station, so that the base station can use the precoding matrix according to the precoding matrix
  • the indication information determines the precoding matrix at the subcarrier level.
  • FIG. 1 shows a schematic diagram of a wireless communication system in which embodiments of the present disclosure may be applied.
  • FIG. 2 shows a flowchart of a method performed by a terminal according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for a terminal to determine a set of transform domain vectors from candidate transform domain vectors according to an embodiment of the present disclosure.
  • FIG. 4 shows a flowchart of a method performed by a base station according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a wireless communication system in which embodiments of the present disclosure may be applied.
  • the wireless communication system 100 shown in FIG. 1 may be a 5G communication system, or may be any other type of wireless communication system, such as a 6G communication system.
  • the embodiments of the present disclosure are described by taking a 5G communication system as an example, but it should be appreciated that the following description can also be applied to other types of wireless communication systems.
  • the wireless communication system 100 may include a base station 110 and a terminal 120 , and the base station 110 is a serving base station of the terminal 120 .
  • the base station 110 may send a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) to the terminal 120 .
  • the terminal 120 may measure the CSI-RS, determine the channel condition according to the measurement result, and determine a precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • the terminal 120 may include the PMI in the CSI report, and send the CSI report to the base station 110 , thereby realizing feedback of the PMI to the base station 110 .
  • the base station 110 may generate a precoding matrix from the PMI and then apply the precoding matrix in downlink transmissions from the base station 110 to the terminal 120 .
  • the base stations described herein may provide communication coverage for specific geographic areas, which may be referred to as cells, Node Bs, gNBs, 5G Node Bs, access points, and/or transmission reception points, among others.
  • the terminals described here may include various types of terminals, such as user equipment (UE), mobile terminals (or referred to as mobile stations) or fixed terminals, however, for the sake of convenience, sometimes interchangeably hereinafter Use terminals and UEs.
  • UE user equipment
  • mobile terminals or referred to as mobile stations
  • fixed terminals for the sake of convenience, sometimes interchangeably hereinafter Use terminals and UEs.
  • FIG. 1 only shows one base station and one terminal
  • the wireless communication system may include more base stations and/or more terminals, and one base station may serve multiple terminals, and one terminal may also be used by multiple base station service.
  • the terminal uses the corresponding codebook according to the configuration.
  • codebooks are designed for subbands of wireless communication systems, and accordingly, precoding techniques and/or CSI feedback are subband-level operations. The low granularity of these operations limits the performance of the communication system.
  • sub-carrier-level precoding technology and/or CSI feedback technology have been proposed to improve the operation granularity, thereby improving the communication system. performance.
  • a subcarrier-level precoding technique and/or CSI feedback may be implemented based on the existing enhanced second type codebook.
  • the sub-band-related parameters and operations involved in the application process of the existing enhanced second-type codebook can be modified into sub-carrier-related parameters and operations, which can be called enhanced frequency domain (enhanced frequency domain). Frequency Domain, eFD) compression scheme.
  • eFD Frequency Domain
  • the wireless communication system applies subcarrier-level precoding technology and/or CSI feedback, it is an aspect to be considered which information the terminal should feed back to the base station so that the base station can determine the subcarrier-level precoding matrix.
  • the terminal may determine multiple spatial vectors and at least one for each layer corresponding to the precoding process.
  • a set of transform domain vectors wherein the at least one set of transform domain vectors can be used to process factors associated with the plurality of spatial domain vectors (eg, can be used to compress factors associated with the plurality of spatial domain vectors).
  • the terminal may use the at least one set of transform domain vectors to process factors associated with the plurality of spatial domain vectors to obtain processed factors.
  • the terminal may feed back to the base station information about the determined plurality of spatial domain vectors, information about the determined at least one set of transform domain vectors, and the processed factors.
  • the base station can determine the subcarrier-level precoding matrix at least according to the information.
  • the transform domain described here may be a domain after transforming the frequency domain, such as a delay domain.
  • the transform domain vector may be a discrete Fourier transform (Discrete Fourier Transform, DFT) vector, and the factor may be a frequency domain weighting coefficient (for example, a complex linear combination (Linear Combination, LC) coefficient).
  • DFT discrete Fourier Transform
  • LC complex linear combination
  • FIG. 2 shows a flowchart of a method 200 performed by a terminal according to an embodiment of the present disclosure.
  • the terminal may perform the method 200 respectively.
  • step S201 the terminal determines at least one set of transform domain vectors, wherein the at least one set of transform domain vectors is used to process factors associated with a plurality of spatial domain vectors used for Determine the precoding matrix at the subcarrier level.
  • the precoding matrix at the subcarrier level is different from the precoding matrix at the subband level in the related art.
  • the codebook used for precoding technology and/or CSI feedback is a codebook designed for subbands, so the precoding matrix determined based on the codebook is subband-level precoding matrix.
  • the codebook used for the precoding technique and/or CSI feedback is a codebook designed for subcarriers, so the precoding matrix determined based on the codebook is a subcarrier level precoding matrix.
  • a precoding matrix at the subcarrier level may also be referred to as a precoding matrix for a subcarrier, or a precoding matrix for a subcarrier.
  • the terminal may determine multiple spatial vectors, for example, L spatial vectors, where L is a positive integer.
  • the terminal may determine the plurality of airspace vectors according to a conventional method of determining an airspace vector (eg, a method of determining an airspace vector specified by a wireless communication standard such as a 3GPP standard specification).
  • a spatial vector may also be referred to as a spatial beam, or a spatial codeword, or a wideband codeword, or a wideband spatial codeword, or the like.
  • each spatial domain vector may have frequency domain weighting coefficients, such as the LC coefficients mentioned above.
  • the factors associated with the plurality of spatial domain vectors in step S201 may be frequency domain weighting coefficients of the plurality of spatial domain vectors.
  • the at least one set of transform domain vectors in step S201 may be a set of transform domain vectors, or may be multiple sets of transform domain vectors. At least one set of transform domain vectors in step S201 is used to determine a subcarrier-level precoding matrix, specifically, to process factors associated with multiple spatial domain vectors.
  • the terminal can autonomously determine the number of groups of transform domain vectors. For example, the terminal may determine how many sets of transform domain vectors it should determine according to the provisions of a wireless communication standard (eg, a 3GPP standard specification). For example, a wireless communication standard (eg, a 3GPP standard specification) may specify that the number of sets of transform domain vectors is one.
  • a wireless communication standard eg, a 3GPP standard specification
  • the terminal determines a set of transform domain vectors.
  • the terminal may determine the number of groups of transform domain vectors with the aid of an indication from the base station.
  • the base station may indicate to the terminal the number of groups of transform domain vectors or a value range of the number of groups of transform domain vectors.
  • the method 200 may further include: the terminal receiving indication information from the base station, the indication information being used to indicate the number of the at least one group of transform domain vectors.
  • the terminal may determine at least one set of transform domain vectors corresponding to the number.
  • the number of the at least one group of transform domain vectors indicated by the indication information is one.
  • the terminal may determine a group of transform domain vectors.
  • the quantity of the at least one group of transform domain vectors indicated by the indication information is L (ie, the same as the quantity of multiple spatial domain vectors).
  • the terminal may determine L groups of transform domain vectors.
  • the quantity of the at least one group of transform domain vectors indicated by the indication information is L/2. Accordingly, in step S201, the terminal may determine L/2 groups of transform domain vectors.
  • the method 200 may further include: the terminal receiving indication information from the base station, where the indication information is used to indicate the at least one group of transform domain vectors is greater than or equal to the preset threshold.
  • the terminal may determine multiple groups of transform domain vectors.
  • the number of sets of transform domain vectors may be the same as the number of spatial domain vectors, or may be greater than the number of spatial domain vectors (eg, twice the number of spatial domain vectors).
  • the terminal may determine a group of transform domain vectors.
  • the preset threshold may be 2, and when the indication information indicates that the number of the at least one group of transform domain vectors is greater than or equal to 2, the terminal may determine L groups of transform domain vectors, and when the indication information indicates the at least one group of transform domain vectors When the number of group transform domain vectors is less than 2, the terminal may determine a group of transform domain vectors.
  • the base station may send the indication information to the terminal via higher layer signaling.
  • the high-layer signaling is radio resource control (Radio Resource Control, RRC) signaling or media access control (Media Access Control, MAC) control element (Control Element, CE)
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the base station can use RRC signaling or MAC CE.
  • the terminal may receive the indication information from the base station via RRC signaling or MAC CE.
  • the base station may send the indication information to the terminal via lower layer signaling.
  • the lower layer signaling is downlink control information (Downlink Control Information, DCI)
  • the base station may send the indication information to the terminal via the DCI.
  • the terminal may receive the indication information from the base station via DCI.
  • the set of transform domain vectors is used to process factors associated with each spatial domain vector of the plurality of spatial domain vectors.
  • the set of transform domain vectors may be used to compress the frequency domain weighting coefficients for each of the plurality of spatial domain vectors. That is, for each spatial vector of the plurality of spatial vectors, the set of transform domain vectors is common.
  • the number of the multiple sets of transform domain vectors may be the same as the number of the multiple sets of transform domain vectors, and the number of the multiple sets of transform domain vectors may be the same as the number of the multiple sets of transform domain vectors.
  • Each set of transform domain vectors is separately used to process factors associated with respective ones of the plurality of spatial domain vectors. For example, in the example where the factors are frequency-domain weighting coefficients and the processing is compression, each set of transform-domain vectors in the plurality of sets of transform-domain vectors is separately frequency-domain weighted for compressing a corresponding one of the plurality of spatial-domain vectors coefficient.
  • the number of sets of transform domain vectors may be L, and the sets of transform domain vectors are respectively the first set of transform domain vectors, the second set of transform domain vectors, ..., the Lth set of transform domain vectors, and the first set of transform domain vectors.
  • the transform domain vector is used to compress the frequency domain weighting coefficients of the first spatial domain vector among the plurality of spatial domain vectors
  • the second set of transform domain vectors is used to compress the second spatial domain vector of the plurality of spatial domain vectors.
  • the frequency domain weighting coefficients, . . . , the Lth set of transform domain vectors are used to compress the frequency domain weighting coefficients of the Lth spatial domain vector of the plurality of spatial domain vectors.
  • the set of transform domain vectors is specific. This situation is applicable to the situation that the base station adopts a single-polarized antenna or the situation that the base station adopts a dual-polarized antenna and the two polarization directions of the dual-polarized antenna use the same set of transform domain vectors.
  • the number of the multiple sets of transform domain vectors may be greater than the number of the multiple spatial domain vectors, and each of the multiple sets of transform domain vectors may be larger than the number of the multiple sets of transform domain vectors.
  • the sets of transform domain vectors are respectively used to process factors associated with the respective spatial domain vectors in each polarization direction of the plurality of spatial domain vectors.
  • the number of sets of transform domain vectors may be twice the number of spatial domain vectors.
  • each set of transform domain vectors in the plurality of sets of transform domain vectors is separately used to compress the plurality of spatial domain vectors in each polarization direction.
  • Frequency domain weighting coefficients for the corresponding spatial domain vector may be 2L, and the sets of transform domain vectors are respectively the first set of transform domain vectors, the second set of transform domain vectors, ..., the 2Lth set of transform domain vectors, and the first set of transform domain vectors.
  • the transform domain vector is used to compress the frequency domain weighting coefficient of the first spatial domain vector in the first polarization direction among the plurality of spatial domain vectors
  • the second group of transform domain vectors is used to compress the plurality of spatial domain vectors.
  • the frequency domain weighting coefficient of the first spatial domain vector in the second polarization direction, and the third group of transform domain vectors are used to compress the frequency domain weighting of the second spatial domain vector in the first polarization direction among the plurality of spatial domain vectors coefficients
  • the fourth group of transform domain vectors are used to compress the frequency domain weighting coefficients of the second space vector in the plurality of space domain vectors in the second polarization direction
  • the (2L-1)th group of transform domain vectors are The frequency domain weighting coefficients used to compress the Lth spatial vector in the plurality of spatial vectors in the first polarization direction
  • the 2L group of transform domain vectors are used to compress the Lth spatial vector in the plurality of spatial vectors Frequency domain weighting factor of the vector in the second polarization
  • the number of the plurality of sets of transform domain vectors may be smaller than the number of the plurality of spatial domain vectors, and the number of the plurality of spatial domain vectors may be An integer multiple of the number of sets of transform domain vectors (or the number of sets of transform domain vectors is divisible by the number of spatial domain vectors).
  • the number of the plurality of spatial domain vectors may be L
  • the number of the groups of transform domain vectors may be L/M, where L/M is a positive integer, and M is a positive integer greater than 1 and less than L.
  • each set of transform domain vectors in the plurality of sets of transform domain vectors may be separately used to process factors associated with the M spatial domain vectors in the plurality of spatial domain vectors. That is, the same set of transform domain vectors can be used for every M spatial domain vectors.
  • the factors are frequency domain weighting coefficients and the processing is compression
  • each set of transform domain vectors in the plurality of sets of transform domain vectors is respectively used to compress the frequency domain of M spatial domain vectors in the plurality of spatial domain vectors Weighting factor.
  • the number of the multiple sets of transform domain vectors may be L/M
  • the multiple sets of transform domain vectors are respectively the first set of transform domain vectors, the second set of transform domain vectors, ..., the L/Mth set of transform domain vectors
  • the first set of transform domain vectors is used to compress the frequency domain weighting coefficients of the first spatial domain vector to the Mth spatial domain vector among the plurality of spatial domain vectors
  • the second set of transform domain vectors is used to compress the plurality of spatial domain vectors.
  • the frequency-domain weighting coefficients of the (M+1)th to the (2M)th spatial-domain vectors in the spatial-domain vectors, ..., the L/M-th group of transform-domain vectors are used to compress the th Frequency domain weighting coefficients from (L-M+1) spatial domain vectors to the Lth spatial domain vector.
  • the terminal may determine the at least one set of transform domain vectors from candidate transform domain vectors related to the precoding matrix.
  • Each set of transform domain vectors may include multiple transform domain vectors.
  • each set of transform domain vectors may include M v transform domain vectors, where M v is a positive integer, and v represents the rank corresponding to the terminal and is a positive integer.
  • step S301 the terminal may receive fourth information from the base station for indicating a first parameter, where the first parameter represents the number of candidate transform domain vectors for a subcarrier-level precoding matrix.
  • the fourth information in step S301 may include the first parameter.
  • the fourth information may include only the first parameter, ie the fourth information is the first parameter.
  • the fourth information may include not only the first parameter, but also other information (for example, other configuration information sent by the base station to the terminal).
  • the fourth information in step S301 may also be used to indicate the value range of the first parameter.
  • the terminal may determine the value range of the first parameter according to the fourth information, select a value from the value range, and use the selected value as the value of the first parameter.
  • the first parameter in step S301 can be represented as M max , whose value is smaller than the number of sub-carriers of the communication system (for example, it can be represented as N 3 ) and larger than the number of sub-bands of the communication system (for example, it can be represented as N 3 ) Denoted as N 0 ).
  • the value of the first parameter in step S301 may be less than the number (N 3 ) of the sub-carriers of the communication system and less than or equal to the number (N 0 ) of the sub-bands of the communication system.
  • the base station may send the fourth information to the terminal via higher layer signaling.
  • the higher-layer signaling is Radio Resource Control (Radio Resource Control, RRC) signaling or Media Access Control (Media Access Control, MAC) Control Element (Control Element, CE)
  • the base station can use RRC signaling or MAC CE Send fourth information to the terminal.
  • the terminal may receive the fourth information from the base station via RRC signaling or MAC CE.
  • the base station may send the fourth information to the terminal via lower layer signaling.
  • the lower layer signaling is downlink control information (Downlink Control Information, DCI)
  • the base station may send the fourth information to the terminal via the DCI.
  • the terminal may receive the fourth information from the base station via DCI.
  • the terminal may determine a set of transform domain vectors from the number of candidate transform domain vectors indicated by the fourth information.
  • the set of transform domain vectors includes multiple transform domain vectors, for example, includes M v transform domain vectors, where M v is a positive integer, and v represents a rank corresponding to the terminal and is a positive integer.
  • the terminal can directly select the M max candidate transform domain vectors from the Mv transform domain vectors are selected from the vectors.
  • the terminal may determine the middle of the candidate transform domain vectors.
  • a subset (Intermediate Subset, may be referred to as InS or a subset for short), and M v transform domain vectors are selected from the subset to further reduce the feedback overhead.
  • the terminal may determine at least one set of transform domain vectors from the subset of candidate transform domain vectors for the subcarrier-level precoding matrix according to at least the second parameter.
  • the terminal may select from the candidate transform domain vectors of the subcarrier-level precoding matrix according to the second parameter M v transform domain vectors are determined in the subset.
  • the second parameter may be a parameter used to determine the vectors included in the subset of candidate transform domain vectors, which may be denoted as M initial .
  • the value range of the second parameter may be specified by a wireless communication standard specification (eg, a 3GPP standard specification).
  • the value range of the second parameter may be: M initial ⁇ ⁇ -N 3 '+1,-N 3 '+2,...,0 ⁇ , where N 3 ' represents a subset of candidate transform domain vectors (InS)
  • the number of vectors to include may also be called the size of the subset).
  • the terminal and the base station may negotiate the value of the third parameter (N 3 ′) and the value of the fourth parameter (M initial ) in advance.
  • the terminal may determine the value of the third parameter and the value of the fourth parameter, and report the value of the third parameter and the value of the fourth parameter determined by itself to the base station.
  • the base station may determine the value of the third parameter and the value of the fourth parameter, and notify the terminal of the value of the third parameter and the value of the fourth parameter determined by itself.
  • the terminal may determine the value of the third parameter and report the value of the third parameter determined by itself to the base station, and the base station may determine the value of the fourth parameter and report the value of the fourth parameter determined by itself to the base station. The value of the parameter is notified to the terminal.
  • the base station may determine the value of the third parameter and notify the terminal of the value of the third parameter determined by itself, and the terminal may determine the value of the fourth parameter and determine the value of the fourth parameter determined by itself. The value of the parameter is reported to the base station.
  • the terminal sends precoding matrix indication information to the base station.
  • the precoding matrix indication information is subcarrier-level precoding matrix indication information, which may also be referred to as precoding matrix indication information for subcarriers, or precoding matrix indication information for subcarriers.
  • the precoding matrix indication information includes first information, where the first information is used to indicate the at least one group of transform domain vectors.
  • the first information may be used to indicate the indices of at least one set of transform domain vectors.
  • an index may be preset.
  • the terminal determines at least one set of transform domain vectors in step S201
  • the first information in step S202 may indicate an index of the at least one set of transform domain vectors.
  • the precoding matrix indication information in step S202 may further include second information.
  • This second information may be used to indicate parameters used to determine the at least one set of transform domain vectors.
  • This parameter is used to determine the at least one set of transform domain vectors from candidate transform domain vectors for the precoding matrix.
  • this parameter may be the first parameter (M max ) described above, which represents the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter may be the second parameter (M initial ) described above for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • the precoding matrix indication information in step S202 may further include third information.
  • the third information can be used to indicate the plurality of spatial vectors mentioned in step S201.
  • the third information may be used to indicate the indices of the plurality of spatial vectors mentioned in step S201.
  • the terminal may process the factors associated with the plurality of spatial domain vectors using at least one set of transform domain vectors to obtain processed factors.
  • the precoding matrix indication information in step S202 may further include processed factors.
  • the precoding matrix indication information in step S202 may further include the compressed frequency-domain weighting coefficient.
  • the terminal may determine a plurality of spatial domain vectors and at least one set of transform domain vectors for each layer corresponding to the precoding process.
  • the layer corresponding to the precoding process is one layer (that is, the number of layers and the value of the rank can be the same), therefore, the terminal can determine multiple airspaces for the layer vector and at least one set of transform domain vectors.
  • the precoding matrix indication information in step S202 may include first information and second information corresponding to the at least one group of transform domain vectors, and third information corresponding to the plurality of spatial domain vectors.
  • the layer corresponding to the precoding process includes multiple layers (the number of the multiple layers may be the same as the value of the rank).
  • a plurality of spatial domain vectors and at least one set of transform domain vectors are determined.
  • the precoding matrix indication information in step S202 may include first information and second information corresponding to at least one set of transform domain vectors for each layer, and corresponding to a plurality of spatial domain vectors for each layer. the third information. That is, the precoding matrix indication information in step S202 may include multiple pieces of first information, multiple pieces of second information, and multiple pieces of third information.
  • the multiple spatial vectors determined by the terminal for each layer may be the same. In this case, the precoding matrix indication information in step S202 may include multiple first information, multiple The second message and a third message.
  • the terminal may determine according to different values of the second parameter different subsets, thereby determining at least one set of transform domain vectors for each layer from the different subsets.
  • the terminal when the terminal is set to determine at least one set of transform domain vectors for the first layer and the second layer respectively, the terminal may determine the first subset according to the first value of the second parameter, and determine from the first subset At least one set of transform domain vectors for the first layer, and a second subset is determined according to the second value of the second parameter, and at least one set of transform domain vectors for the second layer is determined from the second subset.
  • the precoding matrix indication information in step S202 may also include other information.
  • Such information may be information specified by a wireless communication standard (eg, 3GPP standard specification), for example, amplitude coefficient indicator (amplitude coefficient indicator), phase coefficient indicator (phase coefficient indicator), etc. for each layer.
  • the precoding matrix indication information in step S202 may be a precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • PMI Precoding Matrix Indicator
  • the value of PMI may correspond to codebook indices i 1 and i 2 , where
  • i 1,1 and i 1,2 indicate the indices of multiple spatial vectors
  • i 1,5 indicates at least one value of the first parameter (M max ) and/or at least one value of the second parameter (M initial ) value (alternatively, an index indicating at least one value of the first parameter and/or an index of at least one value of the second parameter)
  • i 1,6,l indicates at least one set of transform domain vectors for the lth layer The index of , 1 ⁇ l ⁇ v and a positive integer, where v is the rank corresponding to the terminal and is a positive integer greater than or equal to 1.
  • i 2,3,1 and i 2,4,1 may be the amplitude coefficient indicators for the lth layer
  • i 2,5,l may be for the lth layer Phase coefficient indicator for the layer.
  • the value of the first parameter (M max ) and/or the value of the second parameter (M initial ) for each layer may be the same or different.
  • i 1,5 may indicate one value of the first parameter and/or one value of the second parameter.
  • i 1,5 may indicate the value of the first parameter and/or the second parameter for each layer.
  • the value of the parameter, that is, i 1,5 may indicate multiple values of the first parameter (the number of the multiple values may be the same as the number of layers, that is, the same as the value of the rank) and/or the value of the second parameter. Multiple values (the number of the multiple values may be the same as the number of layers, that is, the same as the value of the rank).
  • i 1,5 can be a vector.
  • i 1,5 [i 1,5,1 ,...,i 1,5,l ,...,i 1,5,v ], where 1 ⁇ l ⁇ v and is a positive integer, i 1,5,1 represents the index of at least one value of the first parameter (M max ) corresponding to the l-th layer and/or at least one value of the second parameter (M initial ) corresponding to the l-th layer An index to retrieve a value.
  • i 1,5,l may represent the first parameter corresponding to the lth layer ( An index of a value of M max ) and/or an index of a value of a second parameter (M initial ) corresponding to the l-th layer.
  • the terminal may use L values of the first parameter (M max ) and/or L values of the second parameter (M initial ).
  • i 1,5,1 may indicate L values for the first parameter (M max ) and/or L values for the second parameter (M initial ) (alternatively, indicate the first parameter the index of the L values of , and/or the index of the L values of the second parameter).
  • i 1,5,l can be represented as: where 0 ⁇ m ⁇ (L-1) and is a positive integer, The index representing the value of the first parameter (M max ) corresponding to the m-th spatial vector of the l-th layer and/or the value of the second parameter (M initial ) corresponding to the m-th spatial vector of the l-th layer The index of the value.
  • i 1,6,l may represent a set of transforms corresponding to the lth layer The index of the domain vector.
  • the set of transform domain vectors is specific
  • i 1,6,l may indicate the index of the L group of transform domain vectors corresponding to the lth layer.
  • i 1,6,l can be a vector.
  • i 1,6,l can be represented as: where 0 ⁇ m ⁇ (L-1) and is a positive integer, represents the index of the set of transform domain vectors corresponding to the mth spatial domain vector of the lth layer.
  • the above-described “candidate transform domain vector on subcarrier-level precoding matrix” may be a candidate for subcarrier-level precoding matrix indication information (eg, subcarrier-level PMI) Transform domain vector.
  • the "transform domain vector for determining a subcarrier-level precoding matrix” described above may be a transform domain vector for determining subcarrier-level precoding matrix indication information (eg, subcarrier-level PMI).
  • the "at least one set of transform domain vectors” described above may be at least one set of transform domains for determining subcarrier-level precoding matrix indication information (eg, subcarrier-level PMI) or subcarrier-level precoding matrices vector.
  • the "multiple spatial vectors” described above may be multiple spatial vectors used to determine subcarrier-level precoding matrix indication information (eg, subcarrier-level PMI).
  • the terminal can determine at least one set of transform domain vectors for processing factors associated with multiple spatial domain vectors, The at least one group of transform domain vectors is included in the precoding matrix indication information, and the precoding matrix indication information is fed back to the base station, so that the base station determines a subcarrier-level precoding matrix according to the precoding matrix indication information.
  • FIG. 4 shows a flowchart of a method performed by a base station according to an embodiment of the present disclosure. Since some details of the method 400 are the same as those of the method 200 described above with reference to FIG. 2 , a detailed description of the same is omitted for simplicity.
  • the base station receives precoding matrix indication information from the terminal, where the precoding matrix indication information includes at least first information, and the first information is used to indicate the at least one group of transform domains A vector, the at least one set of transform domain vectors used to process factors associated with a plurality of spatial domain vectors used to determine subcarrier level precoding matrices.
  • the at least one set of transform domain vectors in step S401 may be a set of transform domain vectors, or may be multiple sets of transform domain vectors.
  • the base station may indicate to the terminal the number of groups of transform domain vectors or the value range of the number of groups of transform domain vectors, so that the terminal can determine how many groups of transform domain vectors it should determine with the help of the base station's instruction.
  • method 400 may further include: the base station sends indication information to the terminal, where the indication information is used to indicate the number of the at least one group of transform domain vectors.
  • the terminal may determine at least one set of transform domain vectors corresponding to the number.
  • the number of the at least one set of transform domain vectors indicated by the indication information is one, and accordingly, the terminal may determine a set of transform domain vectors.
  • the quantity of the at least one set of transform domain vectors indicated by the indication information is L (ie, the same as the quantity of multiple spatial domain vectors), and accordingly, the terminal may determine L sets of transform domain vectors.
  • the quantity of the at least one group of transform domain vectors indicated by the indication information is L/2, and accordingly, the terminal may determine L/2 groups of transform domain vectors.
  • the method 400 may further include: the base station sends indication information to the terminal, where the indication information is used to indicate the at least one group of transform domain vectors is greater than the preset threshold.
  • the terminal may determine multiple groups of transform domain vectors.
  • the number of sets of transform domain vectors may be the same as the number of spatial domain vectors, or may be greater than the number of spatial domain vectors (eg, twice the number of spatial domain vectors).
  • the terminal may determine a group of transform domain vectors.
  • the preset threshold may be 2, and when the indication information indicates that the number of the at least one group of transform domain vectors is greater than 2, the terminal may determine L groups of transform domain vectors, and when the indication information indicates the at least one group of transform domain vectors When the number of domain vectors is less than 2, the terminal may determine a set of transform domain vectors.
  • the base station may send the indication information to the terminal via higher layer signaling.
  • the base station may send the indication information to the terminal via RRC signaling or MAC CE. Accordingly, the terminal may receive the indication information from the base station via RRC signaling or MAC CE.
  • the base station may send the indication information to the terminal via lower layer signaling.
  • the lower layer signaling is DCI
  • the base station may send the indication information to the terminal via DCI. Accordingly, the terminal may receive the indication information from the base station via DCI.
  • the precoding matrix indication information in step S401 may further include second information.
  • This second information may be used to indicate parameters used to determine the at least one set of transform domain vectors.
  • This parameter is used to determine the at least one set of transform domain vectors from candidate transform domain vectors for the precoding matrix.
  • this parameter may be the first parameter (M max ) described above, which represents the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter may be the second parameter (M initial ) described above for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • the precoding matrix indication information in step S401 may further include third information.
  • the third information may be used to indicate a plurality of spatial vectors determined by the terminal.
  • the third information may be used to indicate indices of multiple spatial vectors determined by the terminal.
  • the terminal may process the factors associated with the plurality of spatial domain vectors using at least one set of transform domain vectors to obtain processed factors.
  • the precoding matrix indication information in step S401 may further include processed factors.
  • the precoding matrix indication information in step S401 may further include the compressed frequency-domain weighting coefficient.
  • the precoding matrix indication information in step S401 may also include other information.
  • Such information may be information specified by a wireless communication standard (eg, 3GPP standard specification), for example, amplitude coefficient indicator (amplitude coefficient indicator), phase coefficient indicator (phase coefficient indicator), etc. for each layer.
  • the precoding matrix indication information in step S401 may be a precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • PMI Precoding Matrix Indicator
  • the value of PMI may correspond to codebook indices i 1 and i 2 , where
  • i 1,1 and i 1,2 indicate the indices of multiple spatial vectors
  • i 1,5 indicates at least one value of the first parameter (M max ) and/or at least one value of the second parameter (M initial ) value (alternatively, an index indicating at least one value of the first parameter and/or an index of at least one value of the second parameter)
  • i 1,6,l indicates at least one set of transform domain vectors for the lth layer The index of , 1 ⁇ l ⁇ v and a positive integer, where v is the rank corresponding to the terminal and is a positive integer greater than or equal to 1.
  • i 2,3,1 and i 2,4,1 may be the amplitude coefficient indicators for the lth layer
  • i 2,5,l may be for the lth layer Phase coefficient indicator for the layer.
  • the base station determines a subcarrier-level precoding matrix according to the precoding matrix indication information. For example, in an example in which the precoding matrix indication information is PMI, the base station may generate the precoding matrix according to a conventional manner of generating a precoding matrix through PMI (eg, a manner specified by the 3GPP standard specification).
  • the terminal in the case where the communication system applies the subcarrier-level precoding technology, the terminal can determine at least one set of transform domain vectors for processing factors associated with multiple spatial domain vectors, Including the at least one group of transform domain vectors in the precoding matrix indication information, and feeding back the precoding matrix indication information to the base station, correspondingly, the base station can receive the precoding matrix indication information from the terminal and according to the precoding matrix indication information Determine the precoding matrix at the subcarrier level.
  • FIG. 5 is a schematic structural diagram of a terminal 500 according to an embodiment of the present disclosure. Since the functions of the terminal 500 are the same as some details of the method 200 described above with reference to FIG. 2 , detailed descriptions of the same are omitted for simplicity. As shown in FIG. 5
  • the terminal 500 includes a control unit 510 configured to determine at least one set of transform domain vectors, wherein the at least one set of transform domain vectors is used to process factors associated with a plurality of spatial domain vectors, the multiple and the sending unit 520 is configured to send precoding matrix indication information to the base station, wherein the precoding matrix indication information includes first information, and the first information uses to indicate the at least one set of transform domain vectors.
  • the terminal 500 may further include other components, however, since these components are irrelevant to the contents of the embodiments of the present disclosure, their illustration and description are omitted here.
  • control unit 510 may determine at least one set of transform domain vectors for each layer, respectively.
  • control unit 510 may determine a plurality of spatial vectors, eg, L spatial vectors, where L is a positive integer.
  • the control unit 510 may determine the plurality of airspace vectors according to a conventional method of determining an airspace vector (for example, a method of determining an airspace vector specified by a wireless communication standard such as a 3GPP standard specification).
  • a spatial vector may also be referred to as a spatial beam, or a spatial codeword, or a wideband codeword, or a wideband spatial codeword, or the like.
  • each spatial domain vector may have frequency domain weighting coefficients, such as the LC coefficients mentioned above.
  • the factors associated with the plurality of spatial vectors may be frequency domain weighting coefficients of the plurality of spatial vectors.
  • At least one set of transform domain vectors may be a set of transform domain vectors, or may be multiple sets of transform domain vectors.
  • control unit 510 may autonomously determine the number of groups of transform domain vectors. For example, the control unit 510 may determine how many sets of transform domain vectors it should determine according to the provisions of a wireless communication standard (eg, a 3GPP standard specification). For example, a wireless communication standard (eg, a 3GPP standard specification) may specify that the number of sets of transform domain vectors is one. Accordingly, the control unit 510 determines a set of transform domain vectors.
  • a wireless communication standard eg, a 3GPP standard specification
  • control unit 510 may determine the number of groups of transform domain vectors with the aid of an instruction from the base station.
  • the base station may indicate to the terminal the number of groups of transform domain vectors or a value range of the number of groups of transform domain vectors.
  • the terminal 500 may further include: a receiving unit 530 .
  • the receiving unit 530 may be configured to receive indication information from the base station, where the indication information is used to indicate the quantity of the at least one group of transform domain vectors.
  • the control unit 510 may determine at least one set of transform domain vectors corresponding to the number.
  • the number of the at least one set of transform domain vectors indicated by the indication information is one, and accordingly, the control unit 510 may determine a set of transform domain vectors.
  • the quantity of the at least one set of transform domain vectors indicated by the indication information is L (ie, the same as the quantity of multiple spatial domain vectors), and accordingly, the control unit 510 may determine L sets of transform domain vectors.
  • the receiving unit 530 may receive indication information from the base station, where the indication information is used to indicate whether the number of the at least one group of transform domain vectors is greater than the preset threshold.
  • the control unit 510 may determine multiple groups of transform domain vectors.
  • the number of sets of transform domain vectors may be the same as the number of spatial domain vectors, or may be greater than the number of spatial domain vectors (eg, twice the number of spatial domain vectors).
  • the control unit 510 may determine a group of transform domain vectors.
  • the preset threshold may be 2, and when the indication information indicates that the number of the at least one group of transform domain vectors is greater than 2, the control unit 510 may determine L groups of transform domain vectors, and when the indication information indicates the at least one group of transform domain vectors When the number of sets of transform domain vectors is less than 2, the control unit 510 may determine a set of transform domain vectors.
  • the set of transform domain vectors is used to process factors associated with each spatial domain vector of the plurality of spatial domain vectors.
  • the set of transform domain vectors may be used to compress the frequency domain weighting coefficients for each of the plurality of spatial domain vectors. That is, for each spatial vector of the plurality of spatial vectors, the set of transform domain vectors is common.
  • the number of the multiple sets of transform domain vectors may be the same as the number of the multiple sets of transform domain vectors, and the number of the multiple sets of transform domain vectors may be the same as the number of the multiple sets of transform domain vectors.
  • Each set of transform domain vectors is separately used to process factors associated with respective ones of the plurality of spatial domain vectors. For example, in the example where the factors are frequency-domain weighting coefficients and the processing is compression, each set of transform-domain vectors in the plurality of sets of transform-domain vectors is separately frequency-domain weighted for compressing a corresponding one of the plurality of spatial-domain vectors coefficient.
  • the number of sets of transform domain vectors may be L, and the sets of transform domain vectors are respectively the first set of transform domain vectors, the second set of transform domain vectors, ..., the Lth set of transform domain vectors, and the first set of transform domain vectors.
  • the transform domain vector is used to compress the frequency domain weighting coefficients of the first spatial domain vector among the plurality of spatial domain vectors
  • the second set of transform domain vectors is used to compress the second spatial domain vector of the plurality of spatial domain vectors.
  • the frequency domain weighting coefficients, . . . , the Lth set of transform domain vectors are used to compress the frequency domain weighting coefficients of the Lth spatial domain vector of the plurality of spatial domain vectors. That is, for each spatial vector of the plurality of spatial vectors, the set of transform domain vectors is specific. This situation is applicable to the situation where the base station adopts a single-polarized antenna.
  • the number of the multiple sets of transform domain vectors may be greater than the number of the multiple spatial domain vectors, and each of the multiple sets of transform domain vectors may be larger than the number of the multiple sets of transform domain vectors.
  • the sets of transform domain vectors are each used to process factors associated with respective ones of the plurality of spatial domain vectors. For example, the number of sets of transform domain vectors may be twice the number of spatial domain vectors. This situation is applicable to the situation where the base station adopts dual polarized antennas.
  • control unit 510 may determine the at least one set of transform domain vectors from candidate transform domain vectors with respect to the precoding matrix.
  • Each set of transform domain vectors may include multiple transform domain vectors.
  • each set of transform domain vectors may include M v transform domain vectors, where M v is a positive integer, and v represents the rank corresponding to the terminal and is a positive integer.
  • the receiving unit 530 may receive fourth information indicating a first parameter from the base station, wherein the first parameter represents the number of candidate transform domain vectors related to the precoding matrix.
  • the fourth information may include the first parameter.
  • the fourth information may include only the first parameter, ie the fourth information is the first parameter.
  • the fourth information may include not only the first parameter, but also other information (for example, other configuration information sent by the base station to the terminal).
  • the fourth information may also be used to indicate a value range of the first parameter.
  • the terminal may determine the value range of the first parameter according to the fourth information, select a value from the value range, and use the selected value as the value of the first parameter.
  • the first parameter may be denoted as M max , which takes a value smaller than the number of sub-carriers of the communication system (eg, may be denoted as N 3 ) and greater than the number of sub-bands of the communication system (eg, may be denoted as N 0 ) ).
  • the value of the first parameter may be smaller than the number of sub-carriers (N 3 ) of the communication system and smaller than the number of sub-bands (N 0 ) of the communication system.
  • the base station may send the fourth information to the terminal via higher layer signaling.
  • the higher-layer signaling is Radio Resource Control (Radio Resource Control, RRC) signaling or Media Access Control (Media Access Control, MAC) Control Element (Control Element, CE)
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the base station can use RRC signaling or MAC CE Send fourth information to the terminal.
  • the receiving unit 530 may receive the fourth information from the base station via RRC signaling or MAC CE.
  • the base station may send the fourth information to the terminal via lower layer signaling.
  • the lower layer signaling is downlink control information (Downlink Control Information, DCI)
  • the base station may send the fourth information to the terminal via the DCI.
  • the receiving unit 530 may receive the fourth information from the base station via DCI.
  • control unit 510 may determine a set of transform domain vectors from the number of candidate transform domain vectors indicated by the fourth information.
  • the set of transform domain vectors includes multiple transform domain vectors, for example, includes M v transform domain vectors, where M v is a positive integer, and v represents a rank corresponding to the terminal and is a positive integer.
  • the control unit 510 may directly select the M max candidate transform domain vectors from the Choose M v transform domain vectors.
  • the control unit 510 may determine an intermediate subset of the candidate transform domain vectors (Intermediate Subset, may be referred to as InS or a subset for short), and Mv transform domain vectors are selected from the subset to further reduce the feedback overhead.
  • control unit 510 may determine at least one set of transform domain vectors from the subset of candidate transform domain vectors for the precoding matrix according to at least the second parameter.
  • the control unit 510 may select from the subset of candidate transform domain vectors with respect to the precoding matrix according to the second parameter Determine M v transform domain vectors.
  • the second parameter may be a parameter used to determine the vectors included in the subset of candidate transform domain vectors, which may be denoted as M initial .
  • the value range of the second parameter may be specified by a wireless communication standard specification (eg, a 3GPP standard specification).
  • the value range of the second parameter may be: M initial ⁇ ⁇ -N 3 '+1,-N 3 '+2,...,0 ⁇ , where N 3 ' represents a subset of candidate transform domain vectors (InS)
  • the number of vectors to include may also be called the size of the subset).
  • the terminal and the base station may negotiate the value of the third parameter (N 3 ′) and the value of the fourth parameter (M initial ) in advance.
  • the terminal may determine the value of the third parameter and the value of the fourth parameter, and report the value of the third parameter and the value of the fourth parameter determined by itself to the base station.
  • the base station may determine the value of the third parameter and the value of the fourth parameter, and notify the terminal of the value of the third parameter and the value of the fourth parameter determined by itself.
  • the terminal may determine the value of the third parameter and report the value of the third parameter determined by itself to the base station, and the base station may determine the value of the fourth parameter and report the value of the fourth parameter determined by itself to the base station. The value of the parameter is notified to the terminal.
  • the base station may determine the value of the third parameter and notify the terminal of the value of the third parameter determined by itself, and the terminal may determine the value of the fourth parameter and determine the value of the fourth parameter determined by itself. The value of the parameter is reported to the base station.
  • the sending unit 520 sends precoding matrix indication information to the base station, where the precoding matrix indication information includes first information, and the first information is used to indicate the at least one set of transform domain vectors.
  • the first information may be used to indicate the indices of at least one set of transform domain vectors.
  • an index may be preset. Accordingly, when the control unit 510 determines at least one set of transform domain vectors, the first information may indicate an index of the at least one set of transform domain vectors.
  • the precoding matrix indication information may further include second information.
  • This second information may be used to indicate parameters used to determine the at least one set of transform domain vectors.
  • This parameter is used to determine the at least one set of transform domain vectors from candidate transform domain vectors for the precoding matrix.
  • this parameter may be the first parameter (M max ) described above, which represents the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter may be the second parameter (M initial ) described above for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • the precoding matrix indication information may further include third information.
  • the third information may be used to indicate the above-mentioned multiple spatial vectors.
  • the third information may be used to indicate the indices of the above-mentioned spatial vectors.
  • control unit 510 may process the factors associated with the plurality of spatial domain vectors using at least one set of transform domain vectors to obtain processed factors.
  • the precoding matrix indication information may further include processed factors.
  • the precoding matrix indication information may further include the compressed frequency-domain weighting coefficient.
  • control unit 510 may determine a plurality of spatial domain vectors and at least one set of transform domain vectors for each layer corresponding to the precoding process.
  • the layer corresponding to the precoding process is one layer (that is, the number of layers and the value of the rank can be the same), therefore, the control unit 510 can determine the number of layers for the layer. space domain vectors and at least one set of transform domain vectors.
  • the precoding matrix indication information may include first information and second information corresponding to the at least one group of transform domain vectors, and third information corresponding to the plurality of spatial domain vectors.
  • the layer corresponding to the precoding process includes multiple layers (the number of the multiple layers may be the same as the value of the rank).
  • the layers respectively determine a plurality of spatial domain vectors and at least one set of transform domain vectors.
  • the precoding matrix indication information may include first information and second information corresponding to at least one set of transform domain vectors for each layer, and third information corresponding to a plurality of spatial domain vectors for each layer . That is, the precoding matrix indication information may include multiple pieces of first information, multiple pieces of second information, and multiple pieces of third information.
  • the plurality of spatial vectors determined by the control unit 510 for each layer may be the same.
  • the precoding matrix indication information may include a plurality of first information, a plurality of second information information and a third message.
  • control unit 510 determines at least one set of transform domain vectors from the subset of candidate transform domain vectors
  • the control unit 510 may determine the at least one set of transform domain vectors according to the second Different values of the parameters determine different subsets, so that at least one set of transform domain vectors for each layer is determined from the different subsets.
  • control unit 510 when the control unit 510 is set to determine at least one set of transform domain vectors for the first layer and the second layer, respectively, the control unit 510 may determine the first subset according to the first value of the second parameter, and use the first subset from the first A subset determines at least one set of transform domain vectors for the first layer, and a second subset is determined according to the second value of the second parameter, and at least one set of transform domain vectors for the second layer is determined from the second subset .
  • the precoding matrix indication information may also include other information.
  • Such information may be information specified by a wireless communication standard (eg, 3GPP standard specification), for example, amplitude coefficient indicator (amplitude coefficient indicator), phase coefficient indicator (phase coefficient indicator), etc. for each layer.
  • the precoding matrix indication information may be a precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • PMI Precoding Matrix Indicator
  • the value of PMI may correspond to codebook indices i 1 and i 2 , where
  • i 1,1 and i 1,2 indicate the indices of multiple spatial vectors
  • i 1,5 indicates at least one value of the first parameter (M max ) and/or at least one value of the second parameter (M initial ) value (alternatively, an index indicating at least one value of the first parameter and/or an index of at least one value of the second parameter)
  • i 1,6,l indicates at least one set of transform domain vectors for the lth layer The index of , 1 ⁇ l ⁇ v and a positive integer, where v is the rank corresponding to the terminal and is a positive integer greater than or equal to 1.
  • i 2,3,1 and i 2,4,1 may be the amplitude coefficient indicators for the lth layer
  • i 2,5,l may be for the lth layer Phase coefficient indicator for the layer.
  • the terminal in the case where the communication system applies the subcarrier-level precoding technology, the terminal can determine at least one set of transform domain vectors for processing factors associated with multiple spatial domain vectors, and use the at least one set of transform domain vectors for processing factors associated with multiple spatial domain vectors.
  • a set of transform domain vectors is included in the precoding matrix indication information, and the precoding matrix indication information is fed back to the base station, so that the base station determines a subcarrier-level precoding matrix according to the precoding matrix indication information.
  • FIG. 6 is a schematic structural diagram of a base station 600 according to an embodiment of the present disclosure. Since the functions of the base station 600 are the same as some details of the method 400 described above with reference to FIG. 4, a detailed description of the same is omitted for simplicity.
  • the base station 600 includes: a receiving unit 610 configured to receive precoding matrix indication information from a terminal, wherein the precoding matrix indication information includes at least first information, and the first information is used to indicate the at least one group of transform domain vectors; and a control unit 620, configured to determine a precoding matrix according to the precoding matrix indication information. Besides these two units, the base station 600 may also include other components, however, since these components are not related to the content of the embodiments of the present disclosure, their illustration and description are omitted here.
  • At least one set of transform domain vectors may be a set of transform domain vectors, or may be multiple sets of transform domain vectors.
  • the base station may indicate to the terminal the number of groups of transform domain vectors or the value range of the number of groups of transform domain vectors, so that the terminal can determine how many groups of transform domain vectors it should determine with the help of the base station's instruction.
  • the base station 600 may further include: a sending unit 630 .
  • the sending unit 630 is configured to send indication information to the terminal, where the indication information is used to indicate the quantity of the at least one group of transform domain vectors.
  • the terminal may determine at least one set of transform domain vectors corresponding to the number.
  • the number of the at least one set of transform domain vectors indicated by the indication information is one, and accordingly, the terminal may determine a set of transform domain vectors.
  • the quantity of the at least one set of transform domain vectors indicated by the indication information is L (ie, the same as the quantity of multiple spatial domain vectors), and accordingly, the terminal may determine L sets of transform domain vectors.
  • the sending unit 630 may be configured to send indication information to the terminal, where the indication information is used to indicate the at least one group of transform domain vectors is greater than the preset threshold.
  • the terminal may determine multiple groups of transform domain vectors.
  • the number of sets of transform domain vectors may be the same as the number of spatial domain vectors, or may be greater than the number of spatial domain vectors (eg, twice the number of spatial domain vectors).
  • the terminal may determine a group of transform domain vectors.
  • the preset threshold may be 2, and when the indication information indicates that the number of the at least one group of transform domain vectors is greater than 2, the terminal may determine L groups of transform domain vectors, and when the indication information indicates the at least one group of transform domain vectors When the number of domain vectors is less than 2, the terminal may determine a set of transform domain vectors.
  • the precoding matrix indication information may further include second information.
  • This second information may be used to indicate parameters used to determine the at least one set of transform domain vectors.
  • This parameter is used to determine the at least one set of transform domain vectors from candidate transform domain vectors for the precoding matrix.
  • this parameter may be the first parameter (M max ) described above, which represents the number of candidate transform domain vectors with respect to the precoding matrix.
  • the parameter may be the second parameter (M initial ) described above for determining the at least one set of transform domain vectors from a subset of candidate transform domain vectors for the precoding matrix.
  • the precoding matrix indication information may further include third information.
  • the third information may be used to indicate a plurality of spatial vectors determined by the terminal.
  • the third information may be used to indicate indices of multiple spatial vectors determined by the terminal.
  • the terminal may process the factors associated with the plurality of spatial domain vectors using at least one set of transform domain vectors to obtain processed factors.
  • the precoding matrix indication information may further include processed factors.
  • the precoding matrix indication information may further include the compressed frequency-domain weighting coefficient.
  • the precoding matrix indication information may also include other information.
  • Such information may be information specified by a wireless communication standard (eg, 3GPP standard specification), for example, amplitude coefficient indicator (amplitude coefficient indicator), phase coefficient indicator (phase coefficient indicator), etc. for each layer.
  • the precoding matrix indication information may be a precoding matrix indicator (Precoding Matrix Indicator, PMI).
  • PMI Precoding Matrix Indicator
  • control unit 620 determines a precoding matrix according to the precoding matrix indication information. For example, in an example in which the precoding matrix indication information is PMI, the control unit 620 may generate the precoding matrix according to a conventional manner of generating a precoding matrix through PMI (eg, a manner prescribed by the 3GPP standard specification).
  • the terminal in the case where the communication system applies the subcarrier-level precoding technology, the terminal can determine at least one set of transform domain vectors for processing factors associated with multiple spatial domain vectors, and use the at least one set of transform domain vectors A set of transform domain vectors is included in the precoding matrix indication information, and the precoding matrix indication information is fed back to the base station. Accordingly, the base station can receive the precoding matrix indication information from the terminal and determine the subcarrier level according to the precoding matrix indication information the precoding matrix.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated may be directly and/or indirectly (for example, By wired and/or wireless) connection, it is realized by the above-mentioned multiple devices.
  • the communication device (such as the terminal 500 and the base station 600) of the embodiment of the present disclosure may function as a computer that executes the processing of the wireless communication method of the present disclosure.
  • FIG. 7 is a schematic diagram of a hardware structure of a communication device 700 (terminal or base station) involved according to an embodiment of the present disclosure.
  • the above-described communication device 700 can be configured as a computer device that physically includes a processor 710 , a memory 720 , a memory 730 , a communication device 740 , an input device 750 , an output device 760 , a bus 770 , and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structures of the user terminal and the base station may include one or more devices shown in the figures, or may not include some devices.
  • processor 710 For example, only one processor 710 is shown, but there may be multiple processors. Furthermore, processing may be performed by one processor, or by more than one processor simultaneously, sequentially, or in other ways. Additionally, the processor 710 may be mounted on more than one chip.
  • Each function of the device 700 is realized, for example, by reading predetermined software (programs) into hardware such as the processor 710 and the memory 720 to cause the processor 710 to perform calculations and to control communication by the communication device 740 , and controls the reading and/or writing of data in the memory 720 and the memory 730 .
  • predetermined software programs
  • the processor 710 operates, for example, an operating system to control the entire computer.
  • the processor 710 may be constituted by a central processing unit (CPU, Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-mentioned determination unit, adjustment unit, etc. may be implemented by the processor 710 .
  • the processor 710 reads out programs (program codes), software modules, data, etc. from the memory 730 and/or the communication device 740 to the memory 720, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program for causing a computer to execute at least a part of the operations described in the above-described embodiments may be employed.
  • the control unit of the terminal 500 can be implemented by a control program stored in the memory 720 and operated by the processor 710, and other functional blocks can also be implemented similarly.
  • the memory 720 is a computer-readable recording medium, such as a read-only memory (ROM, Read Only Memory), a programmable read-only memory (EPROM, Erasable Programmable ROM), an electrically programmable read-only memory (EEPROM, Electrically EPROM), Random access memory (RAM, Random Access Memory) and at least one of other suitable storage media.
  • Memory 720 may also be referred to as registers, cache, main memory (main storage), and the like.
  • the memory 720 may store executable programs (program codes), software modules, and the like for implementing the method according to an embodiment of the present disclosure.
  • the memory 730 is a computer-readable recording medium, and can be composed of, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.), Digital versatile discs, Blu-ray (registered trademark) discs), removable disks, hard drives, smart cards, flash memory devices (eg, cards, sticks, key drivers), magnetic stripes, databases , a server, and at least one of other suitable storage media.
  • Memory 730 may also be referred to as secondary storage.
  • the communication device 740 is a hardware (transmitting and receiving device) used for communication between computers through a wired and/or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the communication device 740 may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like.
  • the transmitting unit, the receiving unit, etc. of the above-mentioned terminal 500 may be implemented by the communication device 740 .
  • the input device 750 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 760 is an output device (eg, a display, a speaker, a Light Emitting Diode (LED, Light Emitting Diode) lamp, etc.) that implements output to the outside.
  • the input device 750 and the output device 760 may also have an integrated structure (eg, a touch panel).
  • each device such as the processor 710 and the memory 720 is connected by a bus 770 for communicating information.
  • the bus 770 may be constituted by a single bus, or may be constituted by different buses between devices.
  • the base station and the terminal may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a programmable logic device (PLD, Programmable Logic Device), a field programmable Gate Array (FPGA, Field Programmable Gate Array) and other hardware, can realize part or all of each functional block through this hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • the processor 710 may be installed by at least one of these pieces of hardware.
  • channels and/or symbols may also be signals (signaling).
  • signals can also be messages.
  • the reference signal may also be referred to as RS (Reference Signal) for short, and may also be referred to as a pilot (Pilot), a pilot signal, etc. according to the applicable standard.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the information, parameters, etc. described in this specification may be expressed by absolute values, may be expressed by relative values with respect to predetermined values, or may be expressed by corresponding other information.
  • the radio resource may be indicated by a prescribed index.
  • the formulas and the like using these parameters may also be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification may be represented using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. may be referred to in all of the above descriptions may be generated by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. combination to represent.
  • information, signals, etc. may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Input or output information, signals, etc. can be stored in a specific place (eg, memory), and can also be managed through a management table. Input or output information, signals, etc. can be overwritten, updated or supplemented. Output messages, signals, etc. can be deleted. Input information, signals, etc. can be sent to other devices.
  • a specific place eg, memory
  • Input or output information, signals, etc. can be overwritten, updated or supplemented.
  • Output messages, signals, etc. can be deleted.
  • Input information, signals, etc. can be sent to other devices.
  • Notification of information is not limited to the mode/embodiment described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (eg, Downlink Control Information (DCI, Downlink Control Information), Uplink Control Information (UCI, Uplink Control Information)), upper layer signaling (eg, Radio Resource Control Information) (RRC, Radio Resource Control) signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling ), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control Information
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the physical layer signaling may also be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may also be called an RRC message, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, and the like.
  • the MAC signaling can be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to being performed explicitly, and may be performed implicitly (eg, by not performing notification of the predetermined information, or by notification of other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, by a true or false value (Boolean value) represented by true (true) or false (false), or by a numerical comparison ( For example, a comparison with a predetermined value) is performed.
  • software, commands, information, etc. may be sent or received via a transmission medium.
  • a transmission medium For example, when sending from a website, server, or other remote source using wireline technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL, Digital Subscriber Line, etc.) and/or wireless technology (infrared, microwave, etc.)
  • wireline technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL, Digital Subscriber Line, etc.
  • wireless technology infrared, microwave, etc.
  • system and “network” are used interchangeably in this specification.
  • Base station BS, Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group femtocell
  • carrier femtocell
  • a base station may house one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also pass through the base station subsystem (for example, indoor small base stations (Remote Radio Heads (RRH, RRH) Remote Radio Head)) to provide communication services.
  • the terms "cell” or “sector” refer to a portion or the entirety of the coverage area of the base station and/or base station subsystem in which the communication service is performed.
  • mobile station MS, Mobile Station
  • user terminal user terminal
  • UE User Equipment
  • terminal mobile station
  • a mobile station is also sometimes referred to by those skilled in the art as subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless Terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate term.
  • the base station in this specification may also be replaced with a terminal.
  • each mode/embodiment of the present disclosure can also be applied to a structure in which communication between a base station and a terminal is replaced by communication between a plurality of terminals (D2D, Device-to-Device).
  • the functions possessed by the base station 600 described above may be regarded as functions possessed by the terminal.
  • words like "up” and “down” can also be replaced with "side”.
  • the upstream channel can also be replaced by a side channel.
  • the terminal in this specification can also be replaced with a base station.
  • the functions possessed by the terminal 500 described above can be regarded as functions possessed by the base station.
  • a specific operation performed by a base station may also be performed by an upper node thereof depending on circumstances.
  • various actions performed for communication with a terminal can be performed through the base station, one or more networks other than the base station Nodes (for example, Mobility Management Entity (MME, Mobility Management Entity), Serving-Gateway (S-GW, Serving-Gateway), etc. can be considered, but not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Serving-Gateway Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • LTE-B Long Term Evolution Beyond
  • LTE-Beyond Long Term Evolution Beyond
  • IMT-Advanced 4th Generation Mobile Communication System
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • future wireless access FX, Future Radio Access
  • New-RAT Radio Access Technology
  • New wireless NR, New Radio
  • NX New Radio Access
  • FX Future generation radio access
  • GSM Global System for Mobile Communications
  • CDMA3000 Code Division Multiple Access 3000
  • UMB Ultra Mobile Broadband
  • IEEE 920.11 Wi-Fi Protected Access
  • any reference in this specification to an element using the designation "first”, “second” etc. is not intended to comprehensively limit the number or order of such elements. These names may be used in this specification as a convenient method of distinguishing two or more units. Thus, a reference to a first element and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some form.
  • determining (determining) used in this specification may include various operations. For example, with regard to “judging (determining)”, calculating, computing, processing, deriving, investigating, looking up (eg, tables, databases, or other Searching in the data structure), confirming (ascertaining), etc. are regarded as “judgment (determination)”. In addition, regarding “judgment (determination)”, receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), accessing (accessing) (for example, access to data in the memory), etc., are regarded as “judgment (determination)".
  • connection refers to any connection or combination, direct or indirect, between two or more units, which can be It includes the following situations: between two units “connected” or “combined” with each other, there are one or more intermediate units.
  • the combination or connection between the units may be physical or logical, or may also be a combination of the two.
  • connecting can also be replaced by "accessing”.
  • two units may be considered to be electrically connected through the use of one or more wires, cables, and/or printed, and as a number of non-limiting and non-exhaustive examples, by using a radio frequency region , the microwave region, and/or the wavelengths of electromagnetic energy in the light (both visible and invisible) region, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种终端以及基站。该终端包括:控制单元,被配置为确定至少一组变换域向量,该至少一组变换域向量用于处理与多个空域向量相关联的因子,多个空域向量用于确定子载波级的预编码矩阵;以及发送单元,被配置为向基站发送预编码矩阵指示信息,该预编码矩阵指示信息包括第一信息,第一信息用于指示至少一组变换域向量。该基站包括:接收单元,被配置为从终端接收预编码矩阵指示信息,该预编码矩阵指示信息至少包括第一信息,第一信息用于指示至少一组变换域向量;以及控制单元,被配置为根据预编码矩阵指示信息确定预编码矩阵。

Description

终端以及基站 技术领域
本公开涉及无线通信领域,并且更具体地涉及由通信系统中的终端执行的方法、由通信系统中的基站执行的方法、以及相应的终端和基站。
背景技术
为了提高通信系统的吞吐量,提出了多天线技术,例如多输入多输出(Multiple Input Multiple Output,MIMO)技术。在应用多天线技术的场景中,为了有效地消除多用户干扰、提高系统容量、以及降低接收器的信号处理难度,提出了在发送器侧应用预编码(precoding)技术。为了支持预编码技术,设计了码本。
5G新空口(New Radio,NR)的版本15(Release 15,可以简称为R15)设计了两种类型的码本,分别为第一类型码本(Type I codebook)和第二类型码本(Type II codebook)。然而,上述码本是针对子带而设计的,因此,基于上述码本的操作是子带级(subband-level)的操作。具体地,终端确定预编码矩阵指示符(Precoding Matrix Indicator,PMI)并向基站反馈PMI的操作是子带级的操作,或者终端根据子带级的信息进行的操作(例如,压缩)是子带级的操作,并且基站根据PMI生成预编码矩阵的操作也是子带级的操作。这些操作的粒度较低,限制了通信系统的性能。
为了提升通信系统的性能,提出了针对子载波设计码本。在通信系统应用子载波级的预编码技术的情形下,终端应该向基站反馈哪些信息以便基站确定子载波级的预编码矩阵,是需要考虑的一个方面。
发明内容
为了克服现有技术中存在的缺陷,本公开提出了一种由终端执行的方法、由基站执行的方法、以及相应的终端和基站。
根据本公开的一个方面,提供了一种由终端执行的方法,包括: 确定至少一组变换域向量,其中所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及向基站发送预编码矩阵指示信息,其中所述预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。
根据本公开的一个示例,上述方法还包括:从所述基站接收指示信息,所述指示信息用于指示所述至少一组变换域向量的数量;其中所述确定至少一组变换域向量包括:确定与所述数量对应的至少一组变换域向量。
根据本公开的一个示例,其中当所述至少一组变换域向量是一组变换域向量时,该组变换域向量被用于处理与所述多个空域向量中的每个空域向量相关联的因子。
根据本公开的一个示例,其中当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量与所述多个空域向量的数量相同,并且所述多组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。
根据本公开的一个示例,其中所述第一信息用于指示所述至少一组变换域向量的索引。
根据本公开的一个示例,其中所述预编码矩阵指示信息还包括第二信息,所述第二信息用于指示用于确定所述至少一组变换域向量的参数。
根据本公开的一个示例,其中所述参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。
根据本公开的一个示例,其中所述参数是第一参数,所述第一参数表示关于预编码矩阵的候选变换域向量的数量。
根据本公开的一个示例,其中所述参数是第二参数,所述第二参数用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
根据本公开的另一方面,提供了一种由基站执行的方法,包括:从终端接收预编码矩阵指示信息,其中所述预编码矩阵指示信息至少 包括第一信息,所述第一信息用于指示所述至少一组变换域向量,所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;根据所述预编码矩阵指示信息确定子载波级的预编码矩阵。
根据本公开的另一方面,提供了一种终端,包括:控制单元,被配置为确定至少一组变换域向量,其中所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及发送单元,被配置为向基站发送预编码矩阵指示信息,其中所述预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。
根据本公开的一个示例,上述终端还包括:接收单元,被配置为从所述基站接收指示信息,所述指示信息用于指示所述至少一组变换域向量的数量;其中所述控制单元被配置为确定与所述数量对应的至少一组变换域向量。
根据本公开的一个示例,其中当所述至少一组变换域向量是一组变换域向量时,该组变换域向量被用于处理与所述多个空域向量中的每个空域向量相关联的因子。
根据本公开的一个示例,其中当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量与所述多个空域向量的数量相同,并且所述多组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。
根据本公开的一个示例,其中所述第一信息用于指示所述至少一组变换域向量的索引。
根据本公开的一个示例,其中所述预编码矩阵指示信息还包括第二信息,所述第二信息用于指示用于确定所述至少一组变换域向量的参数。
根据本公开的一个示例,其中所述参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。
根据本公开的一个示例,其中所述参数是第一参数,所述第一参数表示关于预编码矩阵的候选变换域向量的数量。
根据本公开的一个示例,其中所述参数是第二参数,所述第二参数用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
根据本公开的另一方面,提供了一种基站,包括:接收单元,被配置为从终端接收预编码矩阵指示信息,其中所述预编码矩阵指示信息至少包括第一信息,所述第一信息用于指示所述至少一组变换域向量,所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及控制单元,被配置为根据所述预编码矩阵指示信息确定子载波级的预编码矩阵。
根据本公开上述各方面的由终端执行的方法、由基站执行的方法、以及相应的终端和基站,在通信系统应用子载波级的预编码技术的情形下,终端可以确定用于处理与多个空域向量相关联的因子的至少一组变换域向量,并将该至少一组变换域向量包括在预编码矩阵指示信息中,以及向基站反馈该预编码矩阵指示信息,以便基站根据该预编码矩阵指示信息确定子载波级的预编码矩阵。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1示出了可在其中应用本公开实施例的无线通信系统的示意图。
图2示出了根据本公开实施例的由终端执行的方法的流程图。
图3是根据本公开实施例的终端从候选变换域向量中确定一组变换域向量的方法的流程图。
图4示出了根据本公开实施例的由基站执行的方法的流程图。
图5示出了根据本公开实施例的终端的结构示意图。
图6示出了根据本公开实施例的基站的结构示意图。
图7是根据本公开实施例的通信设备的硬件结构的示意图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。在附图中,相同的参考标号自始至终表示相同的元件。应当理解,这里所描述的实施例仅仅是说明性的,而不应被解释为限制本公开的范围。
首先,参照图1来描述可在其中应用本公开实施例的无线通信系统。图1示出了可在其中应用本公开实施例的无线通信系统的示意图。图1所示的无线通信系统100可以是5G通信系统,也可以是任何其他类型的无线通信系统,比如6G通信系统等。在下文中,以5G通信系统为例来描述本公开的实施例,但应当认识到,以下描述也可以适用于其他类型的无线通信系统。
如图1所示,无线通信系统100可以包括基站110和终端120,该基站110是终端120的服务基站。基站110可以向终端120发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。终端120可以对CSI-RS进行测量并根据测量结果确定信道状况,以及确定预编码矩阵指示符(Precoding Matrix Indicator,PMI)。终端120可以将PMI包含在CSI报告中,并向基站110发送CSI报告,从而实现了向基站110反馈PMI。基站110可以根据PMI生成预编码矩阵,然后,在从基站110到终端120的下行链路传输中应用该预编码矩阵。
这里所描述的基站可以提供针对特定地理区域的通信覆盖,其可以被称为小区、节点B、gNB、5G节点B、接入点和/或发送接收点等。这里所描述的终端可以包括各种类型的终端,例如用户装置(User Equipment,UE)、移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用终端和UE。
需要认识到,虽然图1仅示出一个基站和一个终端,但是无线通信系统可以包括更多个基站和/或更多个终端,并且一个基站可以服务多个终端,一个终端也可以被多个基站服务。
在上面所描述的终端确定PMI的过程中,终端根据配置使用相应的码本。在现有技术中,码本是针对无线通信系统的子带而设计的,相应地,预编码技术和/或CSI反馈是子带级(subband-level)的操作。这些操作的粒度较低,限制了通信系统的性能。
为了克服子带级的预编码技术和/或CSI反馈技术存在的缺陷,已经提出了子载波级(subcarrier-level)的预编码技术和/或CSI反馈,以提高操作粒度,从而提升了通信系统的性能。具体地,可以基于现有的增强的第二类型码本,来实现子载波级的预编码技术和/或CSI反馈。例如,可以将在现有的增强的第二类型码本的应用过程中涉及的与子带有关的参数和操作修改为与子载波有关的参数和操作,这可以称为增强的频域(enhanced Frequency Domain,eFD)压缩方案。
在无线通信系统应用子载波级的预编码技术和/或CSI反馈的情形下,终端应该向基站反馈哪些信息以便基站确定子载波级的预编码矩阵,是需要考虑的一个方面。
本公开提出了,在无线通信系统应用子载波级的预编码技术和/或CSI反馈的情形下,终端可以为与预编码处理过程对应的每个层(layer)确定多个空域向量以及至少一组变换域向量,其中该至少一组变换域向量可以用于处理与多个空域向量相关联的因子(例如,可以用于压缩与多个空域向量相关联的因子)。终端可以使用该至少一组变换域向量来处理与多个空域向量相关联的因子,来获得处理后的因子。然后,终端可以将关于所确定的多个空域向量的信息、关于所确定的至少一组变换域向量的信息、处理后的因子反馈给基站。相应地,基站可以至少根据这些信息确定子载波级的预编码矩阵。
这里所描述的变换域可以是对频域进行变换之后的域,例如延迟域。变换域向量可以是离散傅里叶变换(Discrete Fourier Transform,DFT)向量,因子可以是频域加权系数(例如复线性组合(Linear Combination,LC)系数)。
下面将从终端的角度和基站的角度分别来描述本公开的技术方案的具体实现方式。
首先,结合图2来描述根据本公开实施例的由终端执行的方法。 图2示出了根据本公开实施例的由终端执行的方法200的流程图。对于与预编码处理过程对应的每个层(layer),终端可以分别执行方法200。
如图2所示,在步骤S201中,终端确定至少一组变换域向量,其中所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵。
在本公开中,子载波级的预编码矩阵与现有技术中的子带级的预编码矩阵不同。具体地,在现有技术中,用于预编码技术和/或CSI反馈的码本是针对子带而设计的码本,因此,基于该码本确定的预编码矩阵是子带级的预编码矩阵。然而,在本公开中,用于预编码技术和/或CSI反馈的码本是针对子载波而设计的码本,因此,基于该码本确定的预编码矩阵是子载波级的预编码矩阵。在本公开中,子载波级的预编码矩阵还可以称为用于子载波的预编码矩阵,或者针对子载波的预编码矩阵。
在步骤S201之前,终端可以确定多个空域向量,例如L个空域向量,其中L为正整数。终端可以按照常规的确定空域向量的方法(例如,诸如3GPP标准规范之类的无线通信标准所规定的确定空域向量的方法)来确定多个空域向量。在本公开中,空域向量也可以称为空域波束、或者空域码字、或者宽带码字、或者宽带空域码字等。
在本公开中,每个空域向量可以具有频域加权系数,例如上面所提到的LC系数。步骤S201中的与多个空域向量相关联的因子可以是多个空域向量的频域加权系数。
此外,步骤S201中的至少一组变换域向量可以是一组变换域向量,也可以是多组变换域向量。步骤S201中的至少一组变换域向量用于确定子载波级的预编码矩阵,具体地,用于处理与多个空域向量相关联的因子。
在本公开中,终端可以自主地确定变换域向量的组的数量。例如,终端可以根据无线通信标准(例如,3GPP标准规范)的规定来确定其应确定几组变换域向量。例如,无线通信标准(例如,3GPP标准规范)可以规定变换域向量的组的数量是一。相应地,在步骤S201 中,终端确定一组变换域向量。
可替换地,终端可以借助基站的指示来确定变换域向量的组的数量。在这种情形下,基站可以向终端指示变换域向量的组的数量或变换域向量的组的数量的取值范围。
例如,在基站向终端指示变换域向量的组的数量的示例中,方法200还可以包括:终端从基站接收指示信息,该指示信息用于指示所述至少一组变换域向量的数量。在该示例中,在步骤S201中,终端可以确定与所述数量对应的至少一组变换域向量。例如,该指示信息所指示的所述至少一组变换域向量的数量是一,相应地,在步骤S201中,终端可以确定一组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L(即与多个空域向量的数量相同),相应地,在步骤S201中,终端可以确定L组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L/2,相应地,在步骤S201中,终端可以确定L/2组变换域向量。
又例如,在基站向终端指示变换域向量的组的数量的取值范围的示例中,方法200还可以包括:终端从基站接收指示信息,该指示信息用于指示所述至少一组变换域向量的数量是否大于或等于预设阈值。当该指示信息指示所述至少一组变换域向量的数量大于或等于预设阈值时,终端可以确定多组变换域向量。该多组变换域向量的数量可以与多个空域向量的数量相同,或者可以大于多个空域向量的数量(例如,是多个空域向量的数量的二倍)。当该指示信息指示所述至少一组变换域向量的数量小于预设阈值时,终端可以确定一组变换域向量。例如,预设阈值可以是2,并且当该指示信息指示所述至少一组变换域向量的数量大于或等于2时,终端可以确定L组变换域向量,以及当该指示信息指示所述至少一组变换域向量的数量小于2时,终端可以确定一组变换域向量。
此外,根据本公开的一个示例,对于上面所描述的指示信息,基站可以经由高层信令向终端发送该指示信息。在高层信令为无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)的示例中, 基站可以经由RRC信令或者MAC CE向终端发送该指示信息。相应地,终端可以经由RRC信令或者MAC CE从基站接收该指示信息。可替换地,基站可以经由低层信令向终端发送该指示信息。在低层信令为下行链路控制信息(Downlink Control Information,DCI)的示例中,基站可以经由DCI向终端发送该指示信息。相应地,终端可以经由DCI从基站接收该指示信息。
在本公开中,当所述至少一组变换域向量是一组变换域向量时,该组变换域向量被用于处理与所述多个空域向量中的每个空域向量相关联的因子。例如,在因子是频域加权系数且处理是压缩的示例中,该组变换域向量可以被用于压缩所述多个空域向量中的每个空域向量的频域加权系数。也就是说,对于所述多个空域向量中的每个空域向量,变换域向量的组是共用的(common)。
此外,当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量可以与所述多个空域向量的数量相同,并且所述多组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。例如,在因子是频域加权系数且处理是压缩的示例中,该多组变换域向量中的各组变换域向量分别被用于压缩所述多个空域向量中的相应空域向量的频域加权系数。例如,该多组变换域向量的数量可以是L,并且该多组变换域向量分别为第1组变换域向量、第2组变换域向量、…、第L组变换域向量,并且第1组变换域向量被用于压缩所述多个空域向量中的第1个空域向量的频域加权系数、第2组变换域向量被用于压缩所述多个空域向量中的第2个空域向量的频域加权系数、…、第L组变换域向量被用于压缩所述多个空域向量中的第L个空域向量的频域加权系数。也就是说,对于所述多个空域向量中的每个空域向量,变换域向量的组是特定的(specific)。这种情形适用于基站采用单极化天线的情形或者基站采用双极化天线并且双极化天线的两个极化方向使用相同变换域向量的组的情形。
此外,当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量可以大于所述多个空域向量的数量,并且所述多 组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中每个极化方向上的的相应空域向量相关联的因子。例如,所述多组变换域向量的数量可以是多个空域向量的数量的二倍。例如,在因子是频域加权系数且处理是压缩的示例中,该多组变换域向量中的各组变换域向量分别被用于压缩所述多个空域向量中的每个极化方向上的相应空域向量的频域加权系数。例如,该多组变换域向量的数量可以是2L,并且该多组变换域向量分别为第1组变换域向量、第2组变换域向量、…、第2L组变换域向量,并且第1组变换域向量被用于压缩所述多个空域向量中的第1个空域向量在第一极化方向的频域加权系数、第2组变换域向量被用于压缩所述多个空域向量中的第1个空域向量在第二极化方向的频域加权系数、第3组变换域向量被用于压缩所述多个空域向量中的第2个空域向量在第一极化方向的频域加权系数、第4组变换域向量被用于压缩所述多个空域向量中的第2个空域向量在第二极化方向的频域加权系数、…、第(2L-1)组变换域向量被用于压缩所述多个空域向量中的第L个空域向量在第一极化方向的频域加权系数、第2L组变换域向量被用于压缩所述多个空域向量中的第L个空域向量在第二极化方向的频域加权系数。这种情形适用于基站采用双极化天线并且双极化天线的两个极化方向使用变换域向量的不同组的情形。
此外,当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量可以小于所述多个空域向量的数量,并且所述多个空域向量的数量可以是所述多组变换域向量的数量的整数倍(或者所述多组变换域向量的数量能够被所述多个空域向量的数量整除)。例如,所述多个空域向量的数量可以是L,所述多组变换域向量的数量可以是L/M,其中L/M为正整数,M为大于1且小于L的正整数。在这种情形下,所述多组变换域向量中的每组变换域向量可以分别被用于处理与所述多个空域向量中的M个空域向量相关联的因子。也就是说,每M个空域向量可以使用同一组变换域向量。例如,在因子是频域加权系数且处理是压缩的示例中,该多组变换域向量中的每组变换域向量分别被用于压缩所述多个空域向量中的M个空域向量 的频域加权系数。例如,该多组变换域向量的数量可以是L/M,并且该多组变换域向量分别为第1组变换域向量、第2组变换域向量、…、第L/M组变换域向量,并且第1组变换域向量被用于压缩所述多个空域向量中的第1个空域向量至第M个空域向量的频域加权系数、第2组变换域向量被用于压缩所述多个空域向量中的第(M+1)个空域向量至第(2M)个空域向量的频域加权系数、…、第L/M组变换域向量被用于压缩所述多个空域向量中的第(L-M+1)个空域向量至第L个空域向量的频域加权系数。
返回图2,在步骤S201中,终端可以从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。每组变换域向量可以包括多个变换域向量。例如,每组变换域向量可以包括M v个变换域向量,其中M v为正整数,v表示与终端对应的秩且为正整数。
下面将结合图3来描述终端从候选变换域向量中确定一组变换域向量的示意流程。图3是根据本公开实施例的终端从候选变换域向量中确定一组变换域向量的方法的流程图。如图3所示,在步骤S301中,终端可以从基站接收用于指示第一参数的第四信息,其中所述第一参数表示关于子载波级的预编码矩阵的候选变换域向量的数量。
根据本公开的一个示例,步骤S301中的第四信息可以包括第一参数。例如,第四信息可以仅包括第一参数,即第四信息是第一参数。又例如,第四信息不仅可以包括第一参数,还可以包括其他信息(例如,基站向终端发送的其他配置信息)。
此外,根据本公开的一个示例,步骤S301中的第四信息还可以用于指示第一参数的取值范围。在该示例中,终端可以根据第四信息确定第一参数的取值范围,并从该取值范围中选择一个取值,以及将所选择的取值作为第一参数的取值。
此外,步骤S301中的第一参数可以被表示为M max,其的取值小于通信系统的子载波的数量(例如,可以表示为N 3)且大于通信系统的子带的数量(例如,可以表示为N 0)。可替换地,步骤S301中的第一参数的取值可以小于通信系统的子载波的数量(N 3)且小于或等于通信系统的子带的数量(N 0)。
此外,基站可以经由高层信令向终端发送第四信息。在高层信令为无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)的示例中,基站可以经由RRC信令或者MAC CE向终端发送第四信息。相应地,在步骤S301中,终端可以经由RRC信令或者MAC CE从基站接收第四信息。
此外,基站可以经由低层信令向终端发送第四信息。在低层信令为下行链路控制信息(Downlink Control Information,DCI)的示例中,基站可以经由DCI向终端发送第四信息。相应地,在步骤S301中,终端可以经由DCI从基站接收第四信息。
然后,在步骤S302中,终端可以从所述第四信息所指示的数量的候选变换域向量中确定一组变换域向量。该组变换域向量包括多个变换域向量,例如包括M v个变换域向量,其中M v为正整数,v表示与终端对应的秩且为正整数。
当第四信息所指示的第一参数的取值较小时,即关于子载波级的预编码矩阵的候选变换域向量的数量(M max)较小时,终端可以直接从该M max个候选变换域向量中选择M v个变换域向量。当第四信息所指示的第一参数的取值较大时,即关于子载波级的预编码矩阵的候选变换域向量的数量(M max)较大时,终端可以确定候选变换域向量的中间子集(Intermediate Subset,可以简称为InS或者子集),并从该子集中选择M v个变换域向量,以进一步减小反馈开销。
在终端从子集中选择M v个变换域向量的示例中,终端可以至少根据第二参数从关于子载波级的预编码矩阵的候选变换域向量的子集中确定至少一组变换域向量。当该至少一组变换域向量是一组变换域向量并且该组变换域向量包括M v个变换域向量时,终端可以根据第二参数从关于子载波级的预编码矩阵的候选变换域向量的子集中确定M v个变换域向量。第二参数可以是用于确定候选变换域向量的子集所包括的向量的参数,其可以被表示为M initial。第二参数的取值范围可以由无线通信标准规范(例如,3GPP标准规范)规定。例如,第二参数的取值范围可以是:M initial∈{-N 3’+1,-N 3’+2,…,0}, 其中N 3’表示候选变换域向量的子集(InS)所包括的向量的数量(也可以称为子集的大小)。
终端和基站可以预先协商第三参数(N 3’)的取值和第四参数(M initial)的取值。根据本公开的第一示例,终端可以确定第三参数的取值和第四参数的取值,并将自身所确定的第三参数的取值和第四参数的取值上报给基站。根据本公开的第二示例,基站可以确定第三参数的取值和第四参数的取值,并将自身所确定的第三参数的取值和第四参数的取值通知给终端。根据本公开的第三示例,终端可以确定第三参数的取值并将自身所确定的第三参数的取值上报给基站,基站可以确定第四参数的取值并将自身所确定的第四参数的取值通知给终端。根据本公开的第四示例,基站可以确定第三参数的取值并将自身所确定的第三参数的取值通知给终端,终端可以确定第四参数的取值并将自身所确定的第四参数的取值上报给基站。
返回图2,在步骤S202中,终端向基站发送预编码矩阵指示信息。在本公开中,该预编码矩阵指示信息是子载波级的预编码矩阵指示信息,也可以称为用于子载波的预编码矩阵指示信息,或者针对子载波的预编码矩阵指示信息。此外,该预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。例如,第一信息可以用于指示至少一组变换域向量的索引。例如,对于从候选变换域向量选择出的任何一组变换域向量,可以预先设置索引。相应地,当终端在步骤S201中确定了至少一组变换域向量时,步骤S202中的第一信息可以指示该至少一组变换域向量的索引。
此外,根据本公开的一个示例,步骤S202中的预编码矩阵指示信息还可以包括第二信息。该第二信息可以用于指示用于确定所述至少一组变换域向量的参数。该参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。例如,该参数可以是上面所描述的第一参数(M max),其表示关于预编码矩阵的候选变换域向量的数量。又例如,该参数可以是上面所描述的第二参数(M initial),其用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
此外,根据本公开的一个示例,步骤S202中的预编码矩阵指示信息还可以包括第三信息。该第三信息可以用于指示步骤S201中提到的多个空域向量。例如,该第三信息可以用于指示步骤S201中提到的多个空域向量的索引。
此外,如上面所描述的,终端可以使用至少一组变换域向量来处理与多个空域向量相关联的因子,来获得处理后的因子。根据本公开的一个示例,步骤S202中的预编码矩阵指示信息还可以包括处理后的因子。在因子是频域加权系数且处理是压缩的示例,步骤S202中的预编码矩阵指示信息还可以包括压缩后的频域加权系数。
此外,如上面所描述的,终端可以为与预编码处理过程对应的每个层(layer)确定多个空域向量以及至少一组变换域向量。当与终端对应的秩的取值为1时,与预编码处理过程对应的层是1个层(即层的数量与秩的取值可以相同),因此,终端可以为该层确定多个空域向量以及至少一组变换域向量。相应地,步骤S202中的预编码矩阵指示信息可以包括与该至少一组变换域向量对应的第一信息和第二信息,以及与该多个空域向量对应的第三信息。当与终端对应的秩的取值大于1时,与预编码处理过程对应的层包括多个层(该多个层的数量与秩的取值可以相同),因此,终端可以为每个层分别确定多个空域向量以及至少一组变换域向量。相应地,步骤S202中的预编码矩阵指示信息可以包括与用于每个层的至少一组变换域向量对应的第一信息和第二信息,以及与用于每个层的多个空域向量对应的第三信息。也就是说,步骤S202中的预编码矩阵指示信息可以包括多个第一信息、多个第二信息和多个第三信息。此外,根据本公开的一个示例,终端为每个层确定的多个空域向量可以是相同的,在这种情形下,步骤S202中的预编码矩阵指示信息可以包括多个第一信息、多个第二信息和一个第三信息。
此外,在终端从候选变换域向量的子集中确定至少一组变换域向量的示例中,当终端为不同的层分别确定至少一组变换域向量时,终端可以根据第二参数的不同取值确定不同的子集,从而从不同的子集确定针对各个层的至少一组变换域向量。例如,当终端被设定为给第 一层和第二层分别确定至少一组变换域向量时,终端可以根据第二参数的第一取值确定第一子集,并从第一子集确定针对第一层的至少一组变换域向量,以及根据第二参数的第二取值确定第二子集,并从第二子集确定针对第二层的至少一组变换域向量。
此外,除了上面所提到的第一信息、第二信息和第三信息等,步骤S202中的预编码矩阵指示信息还可以包括其他信息。这些信息可以是无线通信标准(例如3GPP标准规范)规定的信息,例如,针对每一层的振幅系数指示符(amplitude coefficient indicators)、相位系数指示符(phase coefficient indicator)等。
根据本公开的一个示例,步骤S202中的预编码矩阵指示信息可以是预编码矩阵指示符(Precoding Matrix Indicator,PMI)。下面给出PMI的一个具体示例。PMI的取值可以对应码本索引i 1和i 2,其中
Figure PCTCN2020140956-appb-000001
Figure PCTCN2020140956-appb-000002
其中,i 1,1和i 1,2指示多个空域向量的索引,i 1,5指示第一参数(M max)的至少一个取值和/或第二参数(M initial)的至少一个取值(可替换地,指示第一参数的至少一个取值的索引和/或第二参数的至少一个取值的索引),i 1,6,l指示针对第l层的至少一组变换域向量的索引,1≤l≤v且为正整数,v为与终端对应的秩且取值为大于或等于1的正整数。剩余元素的定义可以遵循无线通信标准的规定,例如,i 2,3,l和i 2,4,l可以是针对第l层的振幅系数指示符,i 2,5,l可以是针对第l层的相位系数指示符。
在终端为每一层分别确定一组变换域向量时,针对每一层的第一参数(M max)的取值和/或第二参数(M initial)的取值可以相同,也可以不同。当针对每一层的第一参数的取值和/或第二参数的取值相同时,i 1,5可以指示第一参数的一个取值和/或第二参数的一个取值。可替换地,当针对每一层的第一参数的取值和/或第二参数的取值不同时,i 1,5可以指示针对每一层的第一参数的取值和/或第二参数的取值, 即i 1,5可以指示第一参数的多个取值(该多个取值的数量可以与层的数量相同,即与秩的取值相同)和/或第二参数的多个取值(该多个取值的数量可以与层的数量相同,即与秩的取值相同)。
如果终端被要求向基站上报第一参数的取值和/或第二参数的取值,那么终端可以通过i 1,5来上报。在这种情形下,i 1,5可以是一个向量。例如,i 1,5可以被表示为:i 1,5=[i 1,5,1,…,i 1,5,l,…,i 1,5,v],其中1≤l≤v且为正整数,i 1,5,l表示与第l层对应的第一参数(M max)的至少一个取值的索引和/或与第l个层对应的第二参数(M initial)的至少一个取值的索引。在上文所描述的“对于多个空域向量中的每个空域向量,变换域向量的组是共用的”的情形中,i 1,5,l可以表示与第l层对应的第一参数(M max)的一个取值的索引和/或与第l个层对应的第二参数(M initial)的一个取值的索引。此外,在上文所描述的“对于多个空域向量中的每个空域向量,变换域向量的组是特定的”的情形中,当针对第l层的至少一组变换域向量是L组变换域向量时,为了确定L组变换域向量,终端可能使用了第一参数(M max)的L个取值和/或第二参数(M initial)的L个取值。在这种情形下,i 1,5,l可以指示第一参数(M max)的L个取值和/或第二参数(M initial)的L个取值(可替换地,指示第一参数的L个取值的索引和/或第二参数的L个取值的索引)。例如,i 1,5,l可以被表示为:
Figure PCTCN2020140956-appb-000003
其中0≤m≤(L-1)且为正整数,
Figure PCTCN2020140956-appb-000004
表示与第l层的第m个空域向量对应的第一参数(M max)的取值的索引和/或与第l个层的第m个空域向量对应的第二参数(M initial)的取值的索引。
此外,上文所描述的“对于多个空域向量中的每个空域向量,变换域向量的组是共用的”的情形中,i 1,6,l可以表示与第l层对应的一组变换域向量的索引。在上文所描述的“对于多个空域向量中的每个空域向量,变换域向量的组是特定的”的情形中,当针对第l层的至少一组变换域向量是L组变换域向量时,i 1,6,l可以指示与第l层对应的L组变换域向量的索引。在这种情形下,i 1,6,l可以是一个向量。例如,i 1,6,l可以被表示为:
Figure PCTCN2020140956-appb-000005
其中0≤m≤(L-1)且为正整数,
Figure PCTCN2020140956-appb-000006
表示与第l层的第m个空域向量对应的一组变换域 向量的索引。
此外,在本公开中,上文所描述的“关于子载波级的预编码矩阵的候选变换域向量”可以是关于子载波级的预编码矩阵指示信息(例如,子载波级的PMI)的候选变换域向量。上文所描述的“用于确定子载波级的预编码矩阵的变换域向量”可以是用于确定子载波级的预编码矩阵指示信息(例如,子载波级的PMI)的变换域向量。上文所描述的“至少一组变换域向量”可以是用于确定子载波级的预编码矩阵指示信息(例如,子载波级的PMI)或者子载波级的预编码矩阵的至少一组变换域向量。上文所描述的“多个空域向量”可以是用于确定子载波级的预编码矩阵指示信息(例如,子载波级的PMI)的多个空域向量。
通过本公开实施例的由终端执行的方法,在通信系统应用子载波级的预编码技术的情形下,终端可以确定用于处理与多个空域向量相关联的因子的至少一组变换域向量,并将该至少一组变换域向量包括在预编码矩阵指示信息中,以及向基站反馈该预编码矩阵指示信息,以便基站根据该预编码矩阵指示信息确定子载波级的预编码矩阵。
下面,结合图4来描述根据本公开实施例的由基站执行的方法。图4示出了根据本公开实施例的由基站执行的方法的流程图。由于方法400与在上文中参照图2描述的方法200的某些细节相同,因此,为了简单起见,省略了对相同内容的详细描述。
如图4所示,在步骤S401中,基站从终端接收预编码矩阵指示信息,其中所述预编码矩阵指示信息至少包括第一信息,所述第一信息用于指示所述至少一组变换域向量,所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵。
在本公开中,步骤S401中的至少一组变换域向量可以是一组变换域向量,也可以是多组变换域向量。基站可以向终端指示变换域向量的组的数量或变换域向量的组的数量的取值范围,以便终端可以借助基站的指示来确定其应确定几组变换域向量。
例如,在基站向终端指示变换域向量的组的数量的示例中,方法 400还可以包括:基站向终端发送指示信息,该指示信息用于指示所述至少一组变换域向量的数量。在该示例中,终端可以确定与所述数量对应的至少一组变换域向量。例如,该指示信息所指示的所述至少一组变换域向量的数量是一,相应地,终端可以确定一组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L(即与多个空域向量的数量相同),相应地,终端可以确定L组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L/2,相应地,终端可以确定L/2组变换域向量。
又例如,在基站向终端指示变换域向量的组的数量的取值范围的示例中,方法400还可以包括:基站向终端发送指示信息,该指示信息用于指示所述至少一组变换域向量的数量是否大于预设阈值。当该指示信息指示所述至少一组变换域向量的数量大于预设阈值时,终端可以确定多组变换域向量。该多组变换域向量的数量可以与多个空域向量的数量相同,或者可以大于多个空域向量的数量(例如,是多个空域向量的数量的二倍)。当该指示信息指示所述至少一组变换域向量的数量小于预设阈值时,终端可以确定一组变换域向量。例如,预设阈值可以是2,并且当该指示信息指示所述至少一组变换域向量的数量大于2时,终端可以确定L组变换域向量,以及当该指示信息指示所述至少一组变换域向量的数量小于2时,终端可以确定一组变换域向量。
此外,根据本公开的一个示例,对于上面所描述的指示信息,基站可以经由高层信令向终端发送该指示信息。在高层信令为RRC信令或MAC CE的示例中,基站可以经由RRC信令或者MAC CE向终端发送该指示信息。相应地,终端可以经由RRC信令或者MAC CE从基站接收该指示信息。可替换地,基站可以经由低层信令向终端发送该指示信息。在低层信令为DCI的示例中,基站可以经由DCI向终端发送该指示信息。相应地,终端可以经由DCI从基站接收该指示信息。
此外,根据本公开的一个示例,步骤S401中的预编码矩阵指示信息还可以包括第二信息。该第二信息可以用于指示用于确定所述至 少一组变换域向量的参数。该参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。例如,该参数可以是上面所描述的第一参数(M max),其表示关于预编码矩阵的候选变换域向量的数量。又例如,该参数可以是上面所描述的第二参数(M initial),其用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
此外,根据本公开的一个示例,步骤S401中的预编码矩阵指示信息还可以包括第三信息。该第三信息可以用于指示终端所确定的多个空域向量。例如,该第三信息可以用于指示终端所确定的多个空域向量的索引。
此外,如上面所描述的,终端可以使用至少一组变换域向量来处理与多个空域向量相关联的因子,来获得处理后的因子。根据本公开的一个示例,步骤S401中的预编码矩阵指示信息还可以包括处理后的因子。在因子是频域加权系数且处理是压缩的示例,步骤S401中的预编码矩阵指示信息还可以包括压缩后的频域加权系数。
此外,除了上面所提到的第一信息、第二信息和第三信息等,步骤S401中的预编码矩阵指示信息还可以包括其他信息。这些信息可以是无线通信标准(例如3GPP标准规范)规定的信息,例如,针对每一层的振幅系数指示符(amplitude coefficient indicators)、相位系数指示符(phase coefficient indicator)等。
根据本公开的一个示例,步骤S401中的预编码矩阵指示信息可以是预编码矩阵指示符(Precoding Matrix Indicator,PMI)。下面给出PMI的一个具体示例。PMI的取值可以对应码本索引i 1和i 2,其中
Figure PCTCN2020140956-appb-000007
Figure PCTCN2020140956-appb-000008
其中,i 1,1和i 1,2指示多个空域向量的索引,i 1,5指示第一参数(M max)的至少一个取值和/或第二参数(M initial)的至少一个取值(可替换地,指示第一参数的至少一个取值的索引和/或第二参数的至少一个取值 的索引),i 1,6,l指示针对第l层的至少一组变换域向量的索引,1≤l≤v且为正整数,v为与终端对应的秩且取值为大于或等于1的正整数。剩余元素的定义可以遵循无线通信标准的规定,例如,i 2,3,l和i 2,4,l可以是针对第l层的振幅系数指示符,i 2,5,l可以是针对第l层的相位系数指示符。
返回图4,在步骤S402中,基站根据所述预编码矩阵指示信息确定子载波级的预编码矩阵。例如,在预编码矩阵指示信息是PMI的示例中,基站可以根据常规的通过PMI生成预编码矩阵的方式(例如,3GPP标准规范规定的方式)来生成预编码矩阵。
通过本公开实施例的由基站执行的方法,在通信系统应用子载波级的预编码技术的情形下,终端可以确定用于处理与多个空域向量相关联的因子的至少一组变换域向量,并将该至少一组变换域向量包括在预编码矩阵指示信息中,以及向基站反馈该预编码矩阵指示信息,相应地,基站能够从终端接收预编码矩阵指示信息并且根据该预编码矩阵指示信息确定子载波级的预编码矩阵。
下面,参照图5来描述根据本公开实施例的终端。图5是根据本公开实施例的终端500的结构示意图。由于终端500的功能与在上文中参照图2描述的方法200的某些细节相同,因此为了简单起见,省略对相同内容的详细描述。如图5所示,终端500包括:控制单元510,被配置为确定至少一组变换域向量,其中所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及发送单元520,被配置为向基站发送预编码矩阵指示信息,其中所述预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。除了这两个单元以外,终端500还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
在本公开中,对于与预编码处理过程对应的每个层(layer),控制单元510可以分别为每一层确定至少一组变换域向量。
此外,控制单元510可以确定多个空域向量,例如L个空域向量,其中L为正整数。控制单元510可以按照常规的确定空域向量的 方法(例如,诸如3GPP标准规范之类的无线通信标准所规定的确定空域向量的方法)来确定多个空域向量。在本公开中,空域向量也可以称为空域波束、或者空域码字、或者宽带码字、或者宽带空域码字等。
在本公开中,每个空域向量可以具有频域加权系数,例如上面所提到的LC系数。与多个空域向量相关联的因子可以是多个空域向量的频域加权系数。
此外,在本公开中,至少一组变换域向量可以是一组变换域向量,也可以是多组变换域向量。
在本公开中,控制单元510可以自主地确定变换域向量的组的数量。例如,控制单元510可以根据无线通信标准(例如,3GPP标准规范)的规定来确定其应确定几组变换域向量。例如,无线通信标准(例如,3GPP标准规范)可以规定变换域向量的组的数量是一。相应地,控制单元510确定一组变换域向量。
可替换地,控制单元510可以借助基站的指示来确定变换域向量的组的数量。在这种情形下,基站可以向终端指示变换域向量的组的数量或变换域向量的组的数量的取值范围。
例如,在基站向终端指示变换域向量的组的数量的示例中,终端500还可以包括:接收单元530。接收单元530可以被配置为从基站接收指示信息,该指示信息用于指示所述至少一组变换域向量的数量。在该示例中,控制单元510可以确定与所述数量对应的至少一组变换域向量。例如,该指示信息所指示的所述至少一组变换域向量的数量是一,相应地,控制单元510可以确定一组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L(即与多个空域向量的数量相同),相应地,控制单元510可以确定L组变换域向量。
又例如,在基站向终端指示变换域向量的组的数量的取值范围的示例中,接收单元530可以从基站接收指示信息,该指示信息用于指示所述至少一组变换域向量的数量是否大于预设阈值。当该指示信息指示所述至少一组变换域向量的数量大于预设阈值时,控制单元510 可以确定多组变换域向量。该多组变换域向量的数量可以与多个空域向量的数量相同,或者可以大于多个空域向量的数量(例如,是多个空域向量的数量的二倍)。当该指示信息指示所述至少一组变换域向量的数量小于预设阈值时,控制单元510可以确定一组变换域向量。例如,预设阈值可以是2,并且当该指示信息指示所述至少一组变换域向量的数量大于2时,控制单元510可以确定L组变换域向量,以及当该指示信息指示所述至少一组变换域向量的数量小于2时,控制单元510可以确定一组变换域向量。
在本公开中,当所述至少一组变换域向量是一组变换域向量时,该组变换域向量被用于处理与所述多个空域向量中的每个空域向量相关联的因子。例如,在因子是频域加权系数且处理是压缩的示例中,该组变换域向量可以被用于压缩所述多个空域向量中的每个空域向量的频域加权系数。也就是说,对于所述多个空域向量中的每个空域向量,变换域向量的组是共用的(common)。
此外,当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量可以与所述多个空域向量的数量相同,并且所述多组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。例如,在因子是频域加权系数且处理是压缩的示例中,该多组变换域向量中的各组变换域向量分别被用于压缩所述多个空域向量中的相应空域向量的频域加权系数。例如,该多组变换域向量的数量可以是L,并且该多组变换域向量分别为第1组变换域向量、第2组变换域向量、…、第L组变换域向量,并且第1组变换域向量被用于压缩所述多个空域向量中的第1个空域向量的频域加权系数、第2组变换域向量被用于压缩所述多个空域向量中的第2个空域向量的频域加权系数、…、第L组变换域向量被用于压缩所述多个空域向量中的第L个空域向量的频域加权系数。也就是说,对于所述多个空域向量中的每个空域向量,变换域向量的组是特定的(specific)。这种情形适用于基站采用单极化天线的情形。
此外,当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量可以大于所述多个空域向量的数量,并且所述多 组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。例如,所述多组变换域向量的数量可以是多个空域向量的数量的二倍。这种情形适用于基站采用双极化天线的情形。
此外,控制单元510可以从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。每组变换域向量可以包括多个变换域向量。例如,每组变换域向量可以包括M v个变换域向量,其中M v为正整数,v表示与终端对应的秩且为正整数。
下面将描述控制单元510从候选变换域向量中确定一组变换域向量的示意过程。
首先,接收单元530可以从基站接收用于指示第一参数的第四信息,其中所述第一参数表示关于预编码矩阵的候选变换域向量的数量。
根据本公开的一个示例,第四信息可以包括第一参数。例如,第四信息可以仅包括第一参数,即第四信息是第一参数。又例如,第四信息不仅可以包括第一参数,还可以包括其他信息(例如,基站向终端发送的其他配置信息)。
此外,根据本公开的一个示例,第四信息还可以用于指示第一参数的取值范围。在该示例中,终端可以根据第四信息确定第一参数的取值范围,并从该取值范围中选择一个取值,以及将所选择的取值作为第一参数的取值。
此外,第一参数可以被表示为M max,其的取值小于通信系统的子载波的数量(例如,可以表示为N 3)且大于通信系统的子带的数量(例如,可以表示为N 0)。可替换地,第一参数的取值可以小于通信系统的子载波的数量(N 3)且小于通信系统的子带的数量(N 0)。
此外,基站可以经由高层信令向终端发送第四信息。在高层信令为无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)的示例中,基站可以经由RRC信令或者MAC CE向终端发送第四信息。相应地,接收单元530可以经由RRC信令或者MAC CE从基站接收第四信息。
此外,基站可以经由低层信令向终端发送第四信息。在低层信令为下行链路控制信息(Downlink Control Information,DCI)的示例中,基站可以经由DCI向终端发送第四信息。相应地,接收单元530可以经由DCI从基站接收第四信息。
然后,控制单元510可以从所述第四信息所指示的数量的候选变换域向量中确定一组变换域向量。该组变换域向量包括多个变换域向量,例如包括M v个变换域向量,其中M v为正整数,v表示与终端对应的秩且为正整数。
当第四信息所指示的第一参数的取值较小时,即关于预编码矩阵的候选变换域向量的数量(M max)较小时,控制单元510可以直接从该M max个候选变换域向量中选择M v个变换域向量。当第四信息所指示的第一参数的取值较大时,即关于预编码矩阵的候选变换域向量的数量(M max)较大时,控制单元510可以确定候选变换域向量的中间子集(Intermediate Subset,可以简称为InS或者子集),并从该子集中选择M v个变换域向量,以进一步减小反馈开销。
在控制单元510从子集中选择M v个变换域向量的示例中,控制单元510可以至少根据第二参数从关于预编码矩阵的候选变换域向量的子集中确定至少一组变换域向量。当该至少一组变换域向量是一组变换域向量并且该组变换域向量包括M v个变换域向量时,控制单元510可以根据第二参数从关于预编码矩阵的候选变换域向量的子集中确定M v个变换域向量。第二参数可以是用于确定候选变换域向量的子集所包括的向量的参数,其可以被表示为M initial。第二参数的取值范围可以由无线通信标准规范(例如,3GPP标准规范)规定。例如,第二参数的取值范围可以是:M initial∈{-N 3’+1,-N 3’+2,…,0},其中N 3’表示候选变换域向量的子集(InS)所包括的向量的数量(也可以称为子集的大小)。
终端和基站可以预先协商第三参数(N 3’)的取值和第四参数(M initial)的取值。根据本公开的第一示例,终端可以确定第三参数的取值和第四参数的取值,并将自身所确定的第三参数的取值和第四参数的取值上报给基站。根据本公开的第二示例,基站可以确定第三 参数的取值和第四参数的取值,并将自身所确定的第三参数的取值和第四参数的取值通知给终端。根据本公开的第三示例,终端可以确定第三参数的取值并将自身所确定的第三参数的取值上报给基站,基站可以确定第四参数的取值并将自身所确定的第四参数的取值通知给终端。根据本公开的第四示例,基站可以确定第三参数的取值并将自身所确定的第三参数的取值通知给终端,终端可以确定第四参数的取值并将自身所确定的第四参数的取值上报给基站。
此外,在本公开中,发送单元520向基站发送预编码矩阵指示信息,其中所述预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。例如,第一信息可以用于指示至少一组变换域向量的索引。例如,对于从候选变换域向量选择出的任何一组变换域向量,可以预先设置索引。相应地,当控制单元510确定了至少一组变换域向量时,第一信息可以指示该至少一组变换域向量的索引。
此外,根据本公开的一个示例,预编码矩阵指示信息还可以包括第二信息。该第二信息可以用于指示用于确定所述至少一组变换域向量的参数。该参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。例如,该参数可以是上面所描述的第一参数(M max),其表示关于预编码矩阵的候选变换域向量的数量。又例如,该参数可以是上面所描述的第二参数(M initial),其用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
此外,根据本公开的一个示例,预编码矩阵指示信息还可以包括第三信息。该第三信息可以用于指示上文所提到的多个空域向量。例如,该第三信息可以用于指示上文所提到的多个空域向量的索引。
此外,如上面所描述的,控制单元510可以使用至少一组变换域向量来处理与多个空域向量相关联的因子,来获得处理后的因子。根据本公开的一个示例,预编码矩阵指示信息还可以包括处理后的因子。在因子是频域加权系数且处理是压缩的示例,预编码矩阵指示信息还可以包括压缩后的频域加权系数。
此外,如上面所描述的,控制单元510可以为与预编码处理过程 对应的每个层(layer)确定多个空域向量以及至少一组变换域向量。当与终端对应的秩的取值为1时,与预编码处理过程对应的层是1个层(即层的数量与秩的取值可以相同),因此,控制单元510可以为该层确定多个空域向量以及至少一组变换域向量。相应地,预编码矩阵指示信息可以包括与该至少一组变换域向量对应的第一信息和第二信息,以及与该多个空域向量对应的第三信息。当与终端对应的秩的取值大于1时,与预编码处理过程对应的层包括多个层(该多个层的数量与秩的取值可以相同),因此,控制单元510可以为每个层分别确定多个空域向量以及至少一组变换域向量。相应地,预编码矩阵指示信息可以包括与用于每个层的至少一组变换域向量对应的第一信息和第二信息,以及与用于每个层的多个空域向量对应的第三信息。也就是说,预编码矩阵指示信息可以包括多个第一信息、多个第二信息和多个第三信息。此外,根据本公开的一个示例,控制单元510为每个层确定的多个空域向量可以是相同的,在这种情形下,预编码矩阵指示信息可以包括多个第一信息、多个第二信息和一个第三信息。
此外,在控制单元510从候选变换域向量的子集中确定至少一组变换域向量的示例中,当控制单元510为不同的层分别确定至少一组变换域向量时,控制单元510可以根据第二参数的不同取值确定不同的子集,从而从不同的子集确定针对各个层的至少一组变换域向量。例如,当控制单元510被设定为给第一层和第二层分别确定至少一组变换域向量时,控制单元510可以根据第二参数的第一取值确定第一子集,并从第一子集确定针对第一层的至少一组变换域向量,以及根据第二参数的第二取值确定第二子集,并从第二子集确定针对第二层的至少一组变换域向量。
此外,除了上面所提到的第一信息、第二信息和第三信息等,预编码矩阵指示信息还可以包括其他信息。这些信息可以是无线通信标准(例如3GPP标准规范)规定的信息,例如,针对每一层的振幅系数指示符(amplitude coefficient indicators)、相位系数指示符(phase coefficient indicator)等。
根据本公开的一个示例,预编码矩阵指示信息可以是预编码矩阵 指示符(Precoding Matrix Indicator,PMI)。下面给出PMI的一个具体示例。PMI的取值可以对应码本索引i 1和i 2,其中
Figure PCTCN2020140956-appb-000009
Figure PCTCN2020140956-appb-000010
其中,i 1,1和i 1,2指示多个空域向量的索引,i 1,5指示第一参数(M max)的至少一个取值和/或第二参数(M initial)的至少一个取值(可替换地,指示第一参数的至少一个取值的索引和/或第二参数的至少一个取值的索引),i 1,6,l指示针对第l层的至少一组变换域向量的索引,1≤l≤v且为正整数,v为与终端对应的秩且取值为大于或等于1的正整数。剩余元素的定义可以遵循无线通信标准的规定,例如,i 2,3,l和i 2,4,l可以是针对第l层的振幅系数指示符,i 2,5,l可以是针对第l层的相位系数指示符。
通过本公开实施例的终端,在通信系统应用子载波级的预编码技术的情形下,终端可以确定用于处理与多个空域向量相关联的因子的至少一组变换域向量,并将该至少一组变换域向量包括在预编码矩阵指示信息中,以及向基站反馈该预编码矩阵指示信息,以便基站根据该预编码矩阵指示信息确定子载波级的预编码矩阵。
下面,参照图6来描述根据本公开实施例的基站。图6是根据本公开实施例的基站600的结构示意图。由于基站600的功能与在上文中参照图4描述的方法400的某些细节相同,因此为了简单起见,省略对相同内容的详细描述。如图6所示,基站600包括:接收单元610,被配置为从终端接收预编码矩阵指示信息,其中所述预编码矩阵指示信息至少包括第一信息,所述第一信息用于指示所述至少一组变换域向量;以及控制单元620,被配置为根据所述预编码矩阵指示信息确定预编码矩阵。除了这两个单元以外,基站600还可以包括其他部件,然而,由于这些部件与本公开实施例的内容无关,因此在这里省略其图示和描述。
在本公开中,至少一组变换域向量可以是一组变换域向量,也可 以是多组变换域向量。基站可以向终端指示变换域向量的组的数量或变换域向量的组的数量的取值范围,以便终端可以借助基站的指示来确定其应确定几组变换域向量。
例如,在基站向终端指示变换域向量的组的数量的示例中,基站600还可以包括:发送单元630。发送单元630被配置为向终端发送指示信息,该指示信息用于指示所述至少一组变换域向量的数量。在该示例中,终端可以确定与所述数量对应的至少一组变换域向量。例如,该指示信息所指示的所述至少一组变换域向量的数量是一,相应地,终端可以确定一组变换域向量。又例如,该指示信息所指示的所述至少一组变换域向量的数量是L(即与多个空域向量的数量相同),相应地,终端可以确定L组变换域向量。
又例如,在基站向终端指示变换域向量的组的数量的取值范围的示例中,发送单元630可以被配置为向终端发送指示信息,该指示信息用于指示所述至少一组变换域向量的数量是否大于预设阈值。当该指示信息指示所述至少一组变换域向量的数量大于预设阈值时,终端可以确定多组变换域向量。该多组变换域向量的数量可以与多个空域向量的数量相同,或者可以大于多个空域向量的数量(例如,是多个空域向量的数量的二倍)。当该指示信息指示所述至少一组变换域向量的数量小于预设阈值时,终端可以确定一组变换域向量。例如,预设阈值可以是2,并且当该指示信息指示所述至少一组变换域向量的数量大于2时,终端可以确定L组变换域向量,以及当该指示信息指示所述至少一组变换域向量的数量小于2时,终端可以确定一组变换域向量。
此外,根据本公开的一个示例,预编码矩阵指示信息还可以包括第二信息。该第二信息可以用于指示用于确定所述至少一组变换域向量的参数。该参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。例如,该参数可以是上面所描述的第一参数(M max),其表示关于预编码矩阵的候选变换域向量的数量。又例如,该参数可以是上面所描述的第二参数(M initial),其用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
此外,根据本公开的一个示例,预编码矩阵指示信息还可以包括第三信息。该第三信息可以用于指示终端所确定的多个空域向量。例如,该第三信息可以用于指示终端所确定的多个空域向量的索引。
此外,如上面所描述的,终端可以使用至少一组变换域向量来处理与多个空域向量相关联的因子,来获得处理后的因子。根据本公开的一个示例,预编码矩阵指示信息还可以包括处理后的因子。在因子是频域加权系数且处理是压缩的示例,预编码矩阵指示信息还可以包括压缩后的频域加权系数。
此外,除了上面所提到的第一信息、第二信息和第三信息等,预编码矩阵指示信息还可以包括其他信息。这些信息可以是无线通信标准(例如3GPP标准规范)规定的信息,例如,针对每一层的振幅系数指示符(amplitude coefficient indicators)、相位系数指示符(phase coefficient indicator)等。
根据本公开的一个示例,预编码矩阵指示信息可以是预编码矩阵指示符(Precoding Matrix Indicator,PMI)。
此外,在本公开中,控制单元620根据所述预编码矩阵指示信息确定预编码矩阵。例如,在预编码矩阵指示信息是PMI的示例中,控制单元620可以根据常规的通过PMI生成预编码矩阵的方式(例如,3GPP标准规范规定的方式)来生成预编码矩阵。
通过本公开实施例的基站,在通信系统应用子载波级的预编码技术的情形下,终端可以确定用于处理与多个空域向量相关联的因子的至少一组变换域向量,并将该至少一组变换域向量包括在预编码矩阵指示信息中,以及向基站反馈该预编码矩阵指示信息,相应地,基站能够从终端接收预编码矩阵指示信息并且根据该预编码矩阵指示信息确定子载波级的预编码矩阵。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/ 或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开实施例的通信设备(比如终端500、基站600)可以作为执行本公开的无线通信方法的处理的计算机来发挥功能。图7是根据本公开的实施例的所涉及的通信设备700(终端或基站)的硬件结构的示意图。上述的通信设备700可以作为在物理上包括处理器710、内存720、存储器730、通信装置740、输入装置750、输出装置760、总线770等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端和基站的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器710仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器710可以通过一个以上的芯片来安装。
设备700的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器710、内存720等硬件上,从而使处理器710进行运算,对由通信装置740进行的通信进行控制,并对内存720和存储器730中的数据的读出和/或写入进行控制。
处理器710例如使操作系统进行工作从而对计算机整体进行控制。处理器710可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的确定单元、调整单元等可以通过处理器710实现。
此外,处理器710将程序(程序代码)、软件模块、数据等从存储器730和/或通信装置740读出到内存720,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,终端500的控制单元可以通过保存在内存720中并通过处理器710来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存720是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存720也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存720可以保存用于实施本公开的一实施方式所涉及的方法的可执行程序(程序代码)、软件模块等。
存储器730是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器730也可以称为辅助存储装置。
通信装置740是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置740为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述终端500的发送单元、接收单元等可以通过通信装置740来实现。
输入装置750是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置760是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置750和输出装置760也可以为一体的结构(例如触控面板)。
此外,处理器710、内存720等各装置通过用于对信息进行通信的总线770连接。总线770可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站和终端可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器710可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体接入控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重设定(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的基站也可以用终端来替换。例如,对于将基站和终端间的通信替换为多个终端间(D2D,Device-to-Device)的通信的结构,也可以应用本公开的各方式/实施方式。此时,可以将上述基站600所具有的功能当作终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的终端也可以用基站来替换。此时,可以将上述的终端500所具有的功能当作基站所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、第6代移动通信系统(6G,6th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入3000(CDMA3000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 920.11(Wi-Fi(注册商标))、IEEE 920.16(WiMAX(注册商标))、IEEE 920.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth (注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有 射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本公开进行了详细说明,但对于本领域技术人员而言,显然,本公开并非限定于本说明书中说明的实施方式。本公开在不脱离由权利要求书的记载所确定的本公开的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本公开而言并非具有任何限制性的意义。

Claims (10)

  1. 一种终端,包括:
    控制单元,被配置为确定至少一组变换域向量,其中所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及
    发送单元,被配置为向基站发送预编码矩阵指示信息,其中所述预编码矩阵指示信息包括第一信息,所述第一信息用于指示所述至少一组变换域向量。
  2. 如权利要求1所述的终端,
    还包括:
    接收单元,被配置为从所述基站接收指示信息,所述指示信息用于指示所述至少一组变换域向量的数量;
    其中所述控制单元被配置为确定与所述数量对应的至少一组变换域向量。
  3. 如权利要求1或2所述的终端,其中当所述至少一组变换域向量是一组变换域向量时,该组变换域向量被用于处理与所述多个空域向量中的每个空域向量相关联的因子。
  4. 如权利要求1或2所述的终端,其中当所述至少一组变换域向量是多组变换域向量时,所述多组变换域向量的数量与所述多个空域向量的数量相同,并且所述多组变换域向量中的各组变换域向量分别被用于处理与所述多个空域向量中的相应空域向量相关联的因子。
  5. 如权利要求1或2所述的终端,其中所述第一信息用于指示所述至少一组变换域向量的索引。
  6. 如权利要求1或2所述的终端,其中所述预编码矩阵指示信息还包括第二信息,所述第二信息用于指示用于确定所述至少一组变换域向量的参数。
  7. 如权利要求6所述的终端,其中所述参数用于从关于预编码矩阵的候选变换域向量中确定所述至少一组变换域向量。
  8. 如权利要求7所述的终端,其中所述参数是第一参数,所述 第一参数表示关于预编码矩阵的候选变换域向量的数量。
  9. 如权利要求7所述的终端,其中所述参数是第二参数,所述第二参数用于从关于预编码矩阵的候选变换域向量的子集中确定所述至少一组变换域向量。
  10. 一种基站,包括:
    接收单元,被配置为从终端接收预编码矩阵指示信息,其中所述预编码矩阵指示信息至少包括第一信息,所述第一信息用于指示所述至少一组变换域向量,所述至少一组变换域向量用于处理与多个空域向量相关联的因子,所述多个空域向量用于确定子载波级的预编码矩阵;以及
    控制单元,被配置为根据所述预编码矩阵指示信息确定子载波级的预编码矩阵。
PCT/CN2020/140956 2020-12-29 2020-12-29 终端以及基站 WO2022141079A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080108199.3A CN116671030A (zh) 2020-12-29 2020-12-29 终端以及基站
PCT/CN2020/140956 WO2022141079A1 (zh) 2020-12-29 2020-12-29 终端以及基站
US18/268,505 US20240030988A1 (en) 2020-12-29 2020-12-29 Terminal and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140956 WO2022141079A1 (zh) 2020-12-29 2020-12-29 终端以及基站

Publications (1)

Publication Number Publication Date
WO2022141079A1 true WO2022141079A1 (zh) 2022-07-07

Family

ID=82258723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140956 WO2022141079A1 (zh) 2020-12-29 2020-12-29 终端以及基站

Country Status (3)

Country Link
US (1) US20240030988A1 (zh)
CN (1) CN116671030A (zh)
WO (1) WO2022141079A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830092A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 指示预编码矩阵和确定预编码矩阵的方法以及通信装置
CN111435850A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 用于构建预编码向量的向量指示方法和通信装置
CN111865372A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种用于构建预编码矩阵的系数指示方法和通信装置
CN111865377A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 指示和确定预编码矩阵的方法以及通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208992A1 (ko) * 2018-04-23 2019-10-31 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
CN111447680B (zh) * 2019-01-16 2022-10-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830092A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 指示预编码矩阵和确定预编码矩阵的方法以及通信装置
CN111435850A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 用于构建预编码向量的向量指示方法和通信装置
CN111865372A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种用于构建预编码矩阵的系数指示方法和通信装置
CN111865377A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 指示和确定预编码矩阵的方法以及通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on UE complexity of DFT-based compression codebook", 3GPP DRAFT; R1-1906032, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727489 *
SAMSUNG: "Summary of CSI enhancement for MU-MIMO support", 3GPP DRAFT; R1-1813002, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 15 November 2018 (2018-11-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 9, XP051494308 *

Also Published As

Publication number Publication date
CN116671030A (zh) 2023-08-29
US20240030988A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2021253937A1 (zh) 无线通信系统的终端、基站以及由终端和基站执行的方法
WO2017031672A1 (zh) 一种预编码信息发送、反馈方法及装置
WO2021253936A1 (zh) 用户设备、基站、用户设备和基站的信道估计和反馈系统
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2021203312A1 (en) New radio (nr) multi-input multi-output (mimo) channel state information (csi) design for small bandwidth part (bwp)
US20240022289A1 (en) Methods of extending type ii port selection codebook for supporting higher rank transmission
US11510213B2 (en) Method for signal transmission, and corresponding user terminals and base stations
JP2020533900A (ja) 上り制御情報の送信方法及び移動局
WO2022141079A1 (zh) 终端以及基站
EP4320743A1 (en) Methods of csi reporting for 5g nr rel. 17 type ii port selection codebook
WO2022150484A1 (en) Methods of mapping multiple sd-fd bases per csi-rs port for type ii port selection codebook
WO2022141078A1 (zh) 通信系统中的终端以及基站
WO2022141077A1 (zh) 信息发送方法、预编码粒度确定方法、终端以及基站
US20240187070A1 (en) Methods of reporting additional delays for port selection codebook
US20240235637A1 (en) Methods of csi reporting for 5g nr rel. 17 type ii port selection codebook
JP2019186923A (ja) アンテナポートを割り当てる方法及び基地局
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2022160345A1 (zh) 信道重建方法、基站和终端
CN118285067A (zh) 通信系统中的终端以及基站
CN116724527A (zh) Csi-rs辅助的利用srs的部分频率探测的方法
CN116803046A (zh) 利用探测参考信号的部分频率探测的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108199.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967427

Country of ref document: EP

Kind code of ref document: A1