WO2020164324A1 - 生成prs序列的方法、终端设备和定位设备 - Google Patents

生成prs序列的方法、终端设备和定位设备 Download PDF

Info

Publication number
WO2020164324A1
WO2020164324A1 PCT/CN2019/130280 CN2019130280W WO2020164324A1 WO 2020164324 A1 WO2020164324 A1 WO 2020164324A1 CN 2019130280 W CN2019130280 W CN 2019130280W WO 2020164324 A1 WO2020164324 A1 WO 2020164324A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
terminal device
serving cell
cell
sfn
Prior art date
Application number
PCT/CN2019/130280
Other languages
English (en)
French (fr)
Inventor
史桢宇
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164324A1 publication Critical patent/WO2020164324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of communication technology, and more specifically, to a method, terminal device, and positioning device for generating a PRS sequence.
  • the positioning reference signal (PRS) sequence of the serving cell and the PRS sequence of the neighboring cell can be generated on the terminal device side, and then the PRS sequence of the serving cell and the PRS sequence of the neighboring cell can be generated respectively.
  • Perform relevant processing on the signals received from the base stations of the serving cell and the neighboring cell to obtain the delay-related information of the serving cell and the neighboring cell, and finally determine the location of the terminal device according to the delay-related information of the serving cell and the neighboring cell.
  • the subframe/slot number where the PRS of the serving cell and the neighboring cell are located can be obtained through the start time and the PRS configuration index (PRS configuration index).
  • PRS configuration index PRS configuration index
  • the way the serving cell obtains the subframe/slot number remains unchanged, but the neighboring cell needs to determine the subframe difference between the neighboring cell and the serving cell in a cycle based on the PRS subframe offset (PRS subframeoffset) Number, and then use the PRS configuration index to determine the subframe/slot number where the PRS is located.
  • the subframe/slot number obtained may be inconsistent with the actual subframe/slot number, resulting in that the PRS sequence of the generated neighbor cell is not the current subframe
  • the PRS corresponding to /slot affects that the terminal device cannot detect the PRS of the neighboring cell, so the terminal device cannot obtain the positioning measurement result. Since the positioning measurement results of neighboring cells cannot be detected, the positioning accuracy of the terminal equipment is affected.
  • This application provides a method, terminal device and positioning device for generating a PRS sequence to generate a PRS sequence more accurately.
  • a method for generating a PRS sequence includes: receiving auxiliary information from a positioning management function module LMF, the auxiliary information including a positioning reference signal PRS configuration index, a PRS identifier, and a neighbor cell system frame number SFN absolute time information; generate the PRS sequence of the serving cell according to the PRS configuration index and the PRS identifier of the serving cell; generate the PRS sequence of the serving cell according to the PRS configuration index and the absolute time information of the neighbor cell's SFN and the PRS identifier of the neighbor cell To generate the PRS sequence of the neighbor cell.
  • the PRS identifier in the aforementioned auxiliary information includes the PRS identifier of the serving cell and the PRS identifier of the neighboring cell.
  • the aforementioned location management function (LMF) module may be a module located in a core network device, and the LMF may send positioning-related information to the terminal device.
  • LMF location management function
  • the number of the foregoing serving cells may be one, and the number of the foregoing neighboring cells may be two or more.
  • the above method further includes: performing relevant processing on the first downlink data from the serving cell according to the PRS sequence of the serving cell to obtain the first type of delay; and performing processing on the second downlink data from the neighbor cell according to the PRS sequence of the neighbor cell Performing relevant processing on the data to obtain the second type of delay; determine the location of the terminal device according to the first type of delay and the second type of delay.
  • the above-mentioned first type of delay is the time delay between the time when the base station in the serving cell sends the first downlink data and the time when the terminal device receives the first downlink data; the above-mentioned second type The time delay is the time delay between the time when the base station in the neighbor cell sends the second downlink data and the time when the terminal device receives the second downlink data.
  • the above-mentioned base station can be a base station in a long term evolution (LTE) system, a base station in a new radio (NR) system, or a transmission point (TP), a transmitting and receiving point (transmit/receive point, TRP), etc., this application does not specifically limit the base station.
  • LTE long term evolution
  • NR new radio
  • TP transmission point
  • TRP transmit/receive point
  • the absolute time of the SFN of the neighbor cell is used to determine the PRS configuration index of the neighbor cell, and the PRS sequence of the neighbor cell can be determined more accurately regardless of whether the neighbor cell is synchronized with the serving cell.
  • the absolute time information of the SFN of the neighboring cell is the start time of the SFN of the neighboring cell.
  • the terminal device can obtain the start time of the SFN of the neighbor cell, and then can generate the PRS sequence of the neighbor cell according to the start time of the SFN of the neighbor cell .
  • the generating the PRS sequence of the serving cell according to the PRS configuration index includes: according to the PRS configuration index and the PRS identifier of the serving cell, And the start time of the SFN of the serving cell to generate the PRS sequence of the serving cell.
  • the terminal device When the terminal device accesses the serving cell, it can directly obtain the SFN start time of the serving cell from the serving cell, and then can generate the PRS sequence of the serving cell.
  • the absolute time information of the SFN of the neighboring cell is the frame number where the PRS sent by the neighboring cell is located.
  • the frame where the PRS is located can be determined when the PRS is sent aperiodicly, and then the PRS sequence can be generated. It can also be based on the PRS location when the PRS has frequency hopping. The frame number determines the location of the PRS in the frequency domain.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the generating the PRS sequence of the serving cell according to the PRS configuration index includes: according to the PRS configuration index and the location of the PRS sent by the serving cell To generate the PRS sequence of the serving cell.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cell to the terminal device is less than the number of time slots included in a subframe. number.
  • a method for generating a PRS sequence includes: generating auxiliary information, the auxiliary information including a positioning reference signal PRS configuration index, a PRS identifier, and absolute time information of a neighbor cell's system frame number SFN;
  • the terminal device sends the auxiliary information, and the auxiliary information is used by the terminal device to generate the PRS sequence of the neighbor cell and the PRS sequence of the serving cell of the terminal device.
  • the absolute time of the SFN of the neighbor cell is used to determine the PRS configuration index of the neighbor cell, and the PRS sequence of the neighbor cell can be determined more accurately regardless of whether the neighbor cell is synchronized with the serving cell.
  • the absolute time information of the SFN of the neighbor cell is the start time of the SFN of the neighbor cell.
  • the terminal device can generate the PRS sequence of the neighbor cell according to the start time of the SFN of the neighbor cell.
  • the absolute time information of the SFN of the neighbor cell is the frame number where the PRS sent by the neighbor cell is located.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cells to the terminal device is less than the number of time slots included in a subframe. number.
  • a terminal device in a third aspect, includes a module corresponding to the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit, or software, or It can be realized by hardware circuit combined with software.
  • a positioning device in a fourth aspect, includes a module corresponding to the method/operation/step/action described in the second aspect.
  • the module may be a hardware circuit, software, or It can be realized by hardware circuit combined with software.
  • a terminal device in a fifth aspect, includes a processor and a transceiver, and may also include a memory.
  • the processor is used to call the program code stored in the memory to perform part or all of the operations in any one of the above-mentioned first aspects.
  • the transceiver and the processor are used to perform part or all of the operations in any one of the above-mentioned first aspects.
  • the aforementioned memory is a non-volatile memory.
  • the foregoing memory and the processor are coupled with each other.
  • a positioning device in a sixth aspect, includes a processor and a transceiver, and may also include a memory.
  • the processor is used to call the program code stored in the memory to execute part or all of the operations in any one of the above-mentioned second aspects.
  • the transceiver and the processor are used to perform part or all of the operations in any one of the above-mentioned second aspects.
  • the aforementioned memory is a non-volatile memory.
  • the foregoing memory and the processor are coupled with each other.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores program code, where the program code includes any one of the first aspect or the second aspect. Instructions for some or all of the steps of a method.
  • the foregoing computer-readable storage medium is located in a terminal device or a positioning device.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute part or all of the steps of any one of the first aspect or the second aspect .
  • a chip in a ninth aspect, includes a processor, and the processor is configured to perform part or all of the operations in any one of the first aspect or the second aspect.
  • the aforementioned chip is located inside the positioning device or the terminal device.
  • Figure 1 is a schematic diagram of a possible application scenario of an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for generating a PRS sequence according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a process of positioning by user equipment
  • FIG. 4 is a schematic diagram of the process of positioning by the user equipment
  • Fig. 5 is a schematic flowchart of a method for generating a PRS sequence according to an embodiment of the present application
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a positioning device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a positioning device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of the application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • the terminal device can also be a cell phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • PLMN public land mobile network
  • UE will be used as an example for description in this application.
  • the base station in the embodiment of this application can be a global system for mobile communications (GSM) system or a base transceiver station (BTS) in code division multiple access (CDMA), or broadband
  • the base station (NodeB, NB) in the code division multiple access (wideband code division multiple access, WCDMA) system can also be the evolved NodeB (eNB or eNodeB) in the LTE system, or it can be a cloud wireless access network
  • the wireless controller in the (cloud radio access network, CRAN) scenario, or the base station can also be a relay station, an access point, an in-vehicle device, a wearable device, a base station in a future 5G network or a base station in a future evolved PLMN network,
  • the base station in this application may also be TP, TRP, etc., which is not limited in the embodiment of this application.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is a schematic diagram of a possible application scenario of an embodiment of the present application.
  • the communication system shown in Figure 1 includes terminal equipment and core network equipment.
  • the terminal equipment is within the coverage of three cells.
  • the communication system also has two neighboring cells, neighboring cell 1 and neighboring cell. 2.
  • neighbor cell 1 corresponds to base station 1
  • neighbor cell 2 corresponds to base station 2
  • the serving cell corresponds to base station 3.
  • the terminal device can determine the serving cell and the PRS sequence and the PRS sequence of the neighbor cell by receiving auxiliary information sent by the LMF in the core network device.
  • Fig. 2 is a schematic flowchart of a method for generating a PRS sequence according to an embodiment of the present application.
  • the method shown in FIG. 2 includes steps 1001 to 1003, which are described in detail below.
  • the aforementioned auxiliary information includes the positioning reference signal PRS configuration index, the PRS identifier, and the absolute time information of the SFN of the neighbor cell of the terminal device.
  • the PRS identifier includes the PRS identifier of the serving cell and the PRS identifier of the neighboring cell.
  • the aforementioned LMF may be a module located in a core network device, and the LMF may send positioning-related information to the terminal device.
  • the number of the foregoing serving cells may be one, and the number of the foregoing neighboring cells may be two or more.
  • the configuration table of the PRS configuration index can be as shown in Table 1.
  • Table 1 when the PRS configuration index is obtained, the subframe in which the PRS is located in different PRS cycles can be determined according to Table 1 relative to the cycle start point.
  • the number of offset subframes in LTE, the offset may be in units of subframes), so as to obtain the subframe/slot identifier where the PRS is located, and then generate the PRS sequence.
  • the PRS sequence may be generated based on a random seed, which as shown in a random seed may be defined based on the 36.211 standard Third Generation Partnership Project (3 rd generation partnership project, 3GPP ) as shown in equation (1).
  • 3GPP Third Generation Partnership Project
  • the ID of the PRS indicates which base station sends the downlink reference information PRS, the information is included in the PRS-Info in the downlink auxiliary information, and is explicitly indicated to the terminal device;
  • N CP indicates the length of the cyclic prefix (CP), which mainly indicates whether it is normal CP or extended CP. This information is also included in the cpLength of the downlink auxiliary information and is explicitly indicated to the UE;
  • Orthogonal frequency division multiplexing (OFDM) symbol index Since the pattern of PRS in LTE is relatively fixed, it is determined whether it is normal CP or extended CP. Which symbols in a slot have PRS also It is set, no special instructions and transmission are required, and it can be considered that the base station and UE know information;
  • n s slot index, time slot identifier. This information is not explicitly reported to the terminal device. The terminal device needs to obtain this information through other information. The following describes how to obtain the time slot identifier where the PRS is located through other information.
  • the absolute time of the SFN of the neighbor cell is used to determine the PRS configuration index of the neighbor cell, and the PRS sequence of the neighbor cell can be determined more accurately regardless of whether the neighbor cell is synchronized with the serving cell.
  • the method shown in Figure 2 above further includes: performing related processing on the first downlink data from the serving cell according to the PRS sequence of the serving cell to obtain the first type of delay; Related processing is performed on the second downlink data of the cell to obtain the second type of time delay; and the location of the terminal device is determined according to the first type of time delay and the second type of time delay.
  • the above-mentioned first type of delay is the time delay between the time when the base station in the serving cell sends the first downlink data and the time when the terminal device receives the first downlink data; the above-mentioned second type The time delay is the time delay between the time when the base station in the neighbor cell sends the second downlink data and the time when the terminal device receives the second downlink data.
  • the first type of delay may include one delay value
  • the second type of delay may include two or more delay values, so that the terminal equipment can be determined according to the first type of delay and the second type of delay.
  • the current location may include one delay value
  • the second type of delay may include two or more delay values
  • the absolute time information of the SFN of the neighboring cell is the initialisation time of the SFN of the neighboring cell (SFN0 initialisation time).
  • the start time of the aforementioned SFN can be carried in the field OTDOA-NeighbourCellInfoElement, where the OTDOA in the aforementioned field is an observed time difference of arrival (OTDOA), and the aforementioned field is a field that carries auxiliary information of neighboring cells.
  • OTDOA observed time difference of arrival
  • the aforementioned field is a field that carries auxiliary information of neighboring cells.
  • the terminal device can generate the PRS sequence of the neighbor cell according to the start time of the SFN of the neighbor cell.
  • the SFN start time of the neighbor cell represents the actual start time of the neighbor cell, which can be used to help the terminal device to determine the actual SFN.
  • the definition of the start time here can be based on the definition in the 3GPP 36.455 protocol, using 64 bits to represent the specific time. The specific definition can be shown in Table 2:
  • the absolute time information of the neighbor cell may also be the time difference between the start time of the SFN of the neighbor cell and the start time of the SFN of the serving cell.
  • the unit of the time difference is similar to the above definition of the SFN start time, and the specific unit may be a specific time, or it may be the number of slots/subframes/frames.
  • the original PRS configuration index (PRS configuration index) in units of subframes (subframe) may be modified to the PRS configuration index in units of slots (slot).
  • the configuration table of the modified PRS configuration index may be as shown in Table 3.
  • Table 3 and Table 1 The difference between Table 3 and Table 1 is that the PRS period and PRS offset in Table 3 are in units of time slots, while the PRS period and PRS offset in Table 2 are in units of subframes.
  • Table 3 and Table 3 Compared with 1, the quantified granularity is smaller.
  • Figure 3 is a schematic diagram of a user equipment positioning process. The method shown in Figure 3 includes:
  • the LMF sends auxiliary information to the UE.
  • the LMF may send auxiliary information to the UE through the base station.
  • the auxiliary information is added to the start time of the SFN of the neighbor cell.
  • the auxiliary information also includes the PRS configuration index.
  • the UE generates the PRS sequence of the serving cell and the PRS sequence of the neighboring cell.
  • the UE when the UE accesses the serving cell, it already knows the SFN start time of the serving cell, and then obtains the PRS time slot identifier of the serving cell based on the PRS configuration index, and then can use the PRS time slot identifier to determine the PRS of the serving cell. Identify, generate the PRS sequence of the serving cell.
  • the UE can first determine the position of the PRS at the frame level according to its own clock and the received start time of the SFN of the neighbor cell, and then obtain the PRS of the neighbor cell based on the PRS configuration index.
  • the time slot identifier, and finally the PRS sequence of the neighbor cell is generated according to the time slot identifier of the PRS and the PRS identifier of the neighbor cell.
  • multiple base stations send PRS to UE.
  • the above-mentioned multiple base stations include base stations corresponding to serving cells and base stations corresponding to neighboring cells.
  • the UE performs related processing according to the generated PRS sequence and the downlink data received from multiple base stations to obtain the time delay between the time when the downlink data is sent by the base station and the time when the UE receives the downlink data.
  • the terminal equipment can be positioned based on these delays.
  • the auxiliary information sent by the LMF to the UE can also be the time difference between the start time of the SFN of the neighbor cell and the start time of the SFN of the serving cell, so that when the UE obtains the time difference ,
  • the SFN start time of the neighbor cell can be determined according to the SFN start time of the serving cell and the time difference.
  • the generating the PRS sequence of the serving cell according to the PRS configuration index includes: according to the PRS configuration index and the PRS identifier of the serving cell, and the SFN of the serving cell The PRS sequence of the serving cell is generated at the start time of.
  • the terminal device When the terminal device accesses the serving cell, the terminal device can directly obtain the SFN start time of the serving cell from the serving cell, and then can generate the PRS sequence of the serving cell.
  • the absolute time information of the SFN of the neighbor cell is the frame number of the PRS sent by the neighbor cell.
  • the terminal device side can directly obtain the SFN information without calculation, which can simplify the calculation complexity of the terminal device.
  • Figure 4 is a schematic diagram of a user equipment positioning process. The method shown in Figure 4 includes:
  • the LMF sends auxiliary information to the UE.
  • the LMF may send auxiliary information to the UE through the base station.
  • the auxiliary information is added to the frame number of the PRS sent by the neighboring cell.
  • the auxiliary information also includes the PRS configuration index and the PRS identifier.
  • the PRS identifier includes the service The PRS identity of the cell and the PRS identity of the neighboring cell.
  • the UE generates the PRS sequence of the serving cell and the PRS sequence of the neighbor cell.
  • the UE when the UE accesses the serving cell, it already knows the SFN start time of the serving cell, and then obtains the PRS time slot identifier of the serving cell based on the PRS configuration index, and then can use the PRS time slot identifier to determine the PRS of the serving cell. Identify, generate the PRS sequence of the serving cell.
  • the UE can first determine the position of the PRS at the frame level according to its own clock and the received start time of the SFN of the neighbor cell, and then obtain the PRS of the neighbor cell based on the PRS configuration index.
  • the time slot identifier, and finally the PRS sequence of the neighbor cell is generated according to the time slot identifier of the PRS and the PRS identifier of the neighbor cell.
  • Multiple base stations send PRS to the UE.
  • the above-mentioned multiple base stations include base stations corresponding to serving cells and base stations corresponding to neighboring cells.
  • the UE performs related processing according to the generated PRS sequence and the downlink data received from multiple base stations to obtain the time delay between the time when the downlink data is sent by the base station and the time when the UE receives the downlink data.
  • the terminal equipment can be positioned based on these delays.
  • the auxiliary information in addition to adding the frame number of the PRS sent by the neighboring cell, may also add the frame number of the PRS sent by the serving cell.
  • the UE can obtain the PRS identity of the serving cell according to the frame number of the PRS sent by the serving cell and the PRS configuration index, and then generate the PRS sequence of the serving cell.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the generating the PRS sequence of the serving cell according to the PRS configuration index includes: generating the PRS sequence according to the PRS configuration index and the frame number of the PRS sent by the serving cell. PRS sequence of the serving cell.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the PRS configuration index is a time slot level index
  • a more accurate PRS sequence can be generated according to information such as the PRS configuration index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cell to the terminal device is less than the number of time slots included in one subframe.
  • the method for generating the PRS sequence of the embodiment of the present application is described above with reference to FIG. 2 from the perspective of the terminal device, and the method for generating the PRS sequence of the embodiment of the present application is introduced below from the perspective of the positioning device with reference to FIG. 5. It should be understood that the method for generating the PRS sequence shown in FIG. 2 corresponds to the method for generating the PRS sequence shown in FIG. 5, and the definition and interpretation of related information in the method for generating the PRS sequence shown in FIG. 2 are also applicable to the diagram. The method of generating the PRS sequence shown in 5, the method of generating the PRS sequence shown in FIG. 5 will be described below.
  • Fig. 5 is a schematic flowchart of a method for generating a PRS sequence according to an embodiment of the present application.
  • the method shown in Figure 5 includes steps 4001 to 4002, which are described below.
  • auxiliary information includes a positioning reference signal PRS configuration index, a PRS identifier, and SFN absolute time information of a neighbor cell of the terminal device.
  • the above-mentioned PRS identifier includes the PRS identifier of the serving cell and the PRS identifier of the neighboring cell.
  • auxiliary information Send the auxiliary information to a terminal device, where the auxiliary information is used by the terminal device to generate the PRS sequence of the neighbor cell and the PRS sequence of the serving cell of the terminal device.
  • the absolute time information of the SFN of the neighbor cell is the start time of the SFN of the neighbor cell.
  • the absolute time information of the SFN of the neighbor cell is the frame number of the PRS sent by the neighbor cell.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cell to the terminal device is less than the number of time slots included in one subframe.
  • the method for generating the PRS sequence in the embodiment of the present application is described in detail above in conjunction with FIGS. 2 to 5.
  • the following describes the terminal device and the positioning device of the embodiment of the present application with reference to FIG. 6 to FIG. 9. It should be understood that the terminal device and the positioning device shown in FIG. 6 to FIG. 9 can execute the PRS sequence generation method of the embodiment of the present application To avoid unnecessary repetition of the corresponding steps in the following, repetitive descriptions are appropriately omitted when describing the terminal device and the positioning device in the embodiments of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 5000 shown in FIG. 6 includes:
  • the transceiver module 5001 is configured to receive auxiliary information from the positioning management function module LMF.
  • the auxiliary information includes the positioning reference signal PRS configuration index, the PRS identifier, and the absolute time information of the SFN of the neighboring cell of the terminal device, where the PRS identifier includes The PRS identity of the serving cell and the PRS identity of the neighboring cell;
  • the processing module 5002 is configured to generate the PRS sequence of the serving cell according to the PRS configuration index and the PRS identifier of the serving cell;
  • the processing module 5002 is further configured to generate the PRS sequence of the neighbor cell according to the PRS configuration index, the absolute time information of the SFN of the neighbor cell and the PRS identifier of the neighbor cell.
  • the absolute time information of the SFN of the neighbor cell is the start time of the SFN of the neighbor cell.
  • the processing module 5002 is configured to generate the PRS sequence of the serving cell according to the PRS configuration index and the start time of the SFN of the serving cell.
  • the absolute time information of the SFN of the neighbor cell is the frame number of the PRS sent by the neighbor cell.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the processing module 5002 is configured to generate the PRS sequence of the serving cell according to the PRS configuration index and the frame number of the PRS sent by the serving cell.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cell to the terminal device is less than the number of time slots included in one subframe.
  • the absolute time of the SFN of the neighbor cell is used to determine the PRS configuration index of the neighbor cell, and the PRS sequence of the neighbor cell can be determined more accurately regardless of whether the neighbor cell is synchronized with the serving cell.
  • Fig. 7 is a schematic block diagram of a positioning device according to an embodiment of the present application.
  • the terminal device 6000 shown in FIG. 7 includes:
  • the processing module 6001 is configured to generate auxiliary information.
  • the auxiliary information includes a positioning reference signal PRS configuration index, a PRS identifier, and absolute time information of the SFN of the neighbor cell of the terminal device, where the identifier includes the PRS identifier of the serving cell and PRS identification of neighboring cell;
  • the transceiver module 6002 is configured to send the auxiliary information to a terminal device, where the auxiliary information is used by the terminal device to generate the PRS sequence of the neighbor cell and the PRS sequence of the serving cell of the terminal device.
  • the absolute time of the SFN of the neighbor cell is used to determine the PRS configuration index of the neighbor cell, and the PRS sequence of the neighbor cell can be determined more accurately regardless of whether the neighbor cell is synchronized with the serving cell.
  • the absolute time information of the SFN of the neighbor cell is the start time of the SFN of the neighbor cell.
  • the absolute time information of the SFN of the neighbor cell is the frame number of the PRS sent by the neighbor cell.
  • the auxiliary information further includes the frame number of the PRS sent by the serving cell of the terminal device.
  • the PRS configuration index is a subframe level index, or the PRS configuration index is a slot level index.
  • the number of periodic time slots of the PRS sent by the serving cell and/or neighboring cell to the terminal device is less than the number of time slots included in one subframe.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 7000 shown in FIG. 8 includes a memory 7001, a transceiver 7002, and a processor 7003.
  • the memory 7001 is used to store programs
  • the processor 7003 is used to execute the programs stored in the memory 7001.
  • the transceiver 7002 and the processor 7003 are used to execute the programs shown in FIG. Steps in the method.
  • the processor 7003 in the terminal device 7000 is equivalent to the processing module 5002 in the terminal device 5000, and the transceiver 7002 in the terminal device 7000 is equivalent to the transceiver module 5001 in the terminal device 5000.
  • FIG. 9 is a schematic block diagram of a positioning device according to an embodiment of the present application.
  • the terminal device 8000 shown in FIG. 9 includes a memory 8001, a processor 8002, and a transceiver 8003.
  • the memory 8001 is used to store programs, and the processor 8002 is used to execute the programs stored in the memory 8001.
  • the processor 8002 and the transceiver 8003 are used to execute the programs shown in FIG. Steps in the method.
  • the processor 8002 in the terminal device 8000 is equivalent to the processing module 6001 in the terminal device 6000, and the transceiver 8003 in the terminal device 8000 is equivalent to the transceiver module 6002 in the terminal device 6000.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了生成PRS序列的方法和装置。该方法包括:接收来自定位管理功能模块LMF的辅助信息,辅助信息包括定位参考信号PRS配置索引、PRS标识和终端设备的邻居小区的系统帧号SFN的绝对时间信息,PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;根据PRS配置索引和服务小区的PRS标识生成服务小区的PRS序列;根据PRS配置索引、邻居小区的SFN的绝对时间信息和邻居小区的PRS标识,生成邻居小区的PRS序列。本申请能够更正确地生成邻居小区的PRS序列。

Description

生成PRS序列的方法、终端设备和定位设备
本申请要求于2019年02月15日提交中国专利局、申请号为201910117860.6、申请名称为“生成PRS序列的方法、终端设备和定位设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种生成PRS序列的方法、终端设备和定位设备。
背景技术
为了实现对终端设备的定位,在终端设备侧可以生成服务小区的定位参考信号(positioning reference signal,PRS)序列和邻居小区的PRS序列,然后再分别根据服务小区的PRS序列和邻居小区的PRS序列对从服务小区和邻居小区的基站接收到的信号进行相关处理,得到服务小区和邻居小区的时延相关信息,最后再根据服务小区和邻居小区的时延相关信息来确定终端设备的位置。
具体地,需要根据PRS标识(identity,ID)和PRS所在的子帧(subframe)/时隙(slot)号来生成服务小区和邻居小区的PRS序列。
当服务小区和邻居小区同步时,服务小区和邻居小区的PRS所在的subframe/slot号可以通过起始时间和PRS配置索引(PRS configuration index)获得。当服务小区和邻居小区不同步时,服务小区获得subframe/slot号的方式不变,但是邻居小区需要根据PRS子帧偏移(PRS subframeoffset)来确定邻居小区和服务小区在一个周期内相差的subframe数量,再通过PRS配置索引来确定PRS所在的subframe/slot号。
但是在某些情况下,例如,当PRS周期较短时,根据PRS subframeoffset会出现得到的subframe/slot号与实际的subframe/slot号不一致的情况,从而导致生成的邻居小区的PRS序列不是当前subframe/slot所对应的PRS,进而影响终端设备检测不到邻居小区的PRS,所以终端设备无法获取定位测量结果。由于无法检测到邻居小区的定位测量结果,从而影响终端设备的定位精度。
发明内容
本申请提供一种生成PRS序列的方法、终端设备和定位设备,以更准确地生成PRS序列。
第一方面,提供了一种生成PRS序列的方法,该方法包括:接收来自定位管理功能模块LMF的辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和邻居小区的系统帧号SFN的绝对时间信息;根据所述PRS配置索引和服务小区的PRS标识生成所述服务小区的PRS序列;根据所述PRS配置索引和所述邻居小区的SFN的绝对时间 信息和邻居小区的PRS标识,生成所述邻居小区的PRS序列。
其中,上述辅助信息中的PRS标识包括服务小区的PRS标识和邻居小区的PRS标识。
上述定位管理功能(location management function,LMF)模块可以是位于核心网设备中的模块,LMF可以向终端设备发送定位相关的信息。
应理解,上述服务小区的数量可以是一个,上述邻居小区的数量可以是两个或者两个以上。
可选地,上述方法还包括:根据服务小区的PRS序列对来自服务小区的第一下行数据进行相关处理,得到第一类时延;根据邻居小区的PRS序列对来自邻居小区的第二下行数据进行相关处理,得到第二类时延;根据所述第一类时延和第二类时延,确定所述终端设备所处的位置。
其中,上述第一类时延为服务小区中的基站发送所述第一下行数据的时间与所述终端设备接收到所述第一下行数据的时间之间的时延;上述第二类时延为邻居小区中的基站发送所述第二下行数据的时间与所述终端设备接收到所述第二下行数据的时间之间的时延。
上述基站可以是长期演进(long term evolution,LTE)系统中的基站,也可以是新空口(new radio,NR)系统中的基站,或者还可以是传输点(transmission point,TP),发送接收点(transmit/receive point,TRP)等等,本申请不对基站做特别的限定。
本申请中,通过采用邻居小区的SFN的绝对时间来确定邻居小区的PRS配置索引,无论在邻居小区与服务小区是否同步的情况下,都能够较为准确地确定邻居小区的PRS序列。
结合第一方面,在第一方面的某些实现方式中,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
通过在LMF发送的辅助信息中加入邻居小区的SFN的起始时间,使得终端设备可以获取邻居小区的SFN的起始时间,进而能够根据邻居小区的SFN的起始时间来生成邻居小区的PRS序列。
结合第一方面,在第一方面的某些实现方式中,所述根据所述PRS配置索引生成所述服务小区的PRS序列,包括:根据所述PRS配置索引和所述服务小区的PRS标识,以及所述服务小区的SFN的起始时间,生成所述服务小区的PRS序列。
当终端设备接入服务小区时,能够直接从服务小区获取服务小区的SFN的起始时间,进而可以生成服务小区的PRS序列。
结合第一方面,在第一方面的某些实现方式中,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
当SFN的绝对时间信息为邻居小区发送的PRS所在的帧号时,能够在PRS非周期发送的时候确定PRS所在的帧,进而生成PRS序列,还可以在PRS有跳频的时候根据PRS所在的帧号确定PRS在频域所在的位置。
结合第一方面,在第一方面的某些实现方式中,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
结合第一方面,在第一方面的某些实现方式中,所述根据所述PRS配置索引生成所述服务小区的PRS序列,包括:根据所述PRS配置索引和所述服务小区发送的PRS所在的帧号,生成所述服务小区的PRS序列。
结合第一方面,在第一方面的某些实现方式中,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
结合第一方面,在第一方面的某些实现方式中,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
第二方面,提供了一种生成PRS序列的方法,该方法包括:生成辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和邻居小区的系统帧号SFN的绝对时间信息;向终端设备发送所述辅助信息,所述辅助信息用于所述终端设备生成所述邻居小区的PRS序列和所述终端设备的服务小区的PRS序列。
本申请中,通过采用邻居小区的SFN的绝对时间来确定邻居小区的PRS配置索引,无论在邻居小区与服务小区是否同步的情况下,都能够较为准确地确定邻居小区的PRS序列。
结合第二方面,在第二方面的某些实现方式中,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
通过在LMF发送的辅助信息中加入邻居小区的SFN的起始时间,能够使得终端设备可以根据邻居小区的SFN的起始时间来生成邻居小区的PRS序列。
结合第二方面,在第二方面的某些实现方式中,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
结合第二方面,在第二方面的某些实现方式中,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
结合第二方面,在第二方面的某些实现方式中,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
结合第二方面,在第二方面的某些实现方式中,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
第三方面,提供了一种终端设备,该终端设备包括用于执行上述第一方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第四方面,提供了一种定位设备,该定位设备包括用于执行上述第二方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第五方面,提供了一种终端设备,该终端设备包括处理器和收发器,还可以包括存储器。该处理器用于调用存储器存储的程序代码以执行上述第一方面中的任意一种方式中的部分或全部操作。
具体地,当处理器调用存储器存储的程序代码时,收发器和处理器用于执行上述第一方面中的任意一种方式中的部分或全部操作。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第六方面,提供了一种定位设备,该定位设备包括处理器和收发器,还可以包括存储器。该处理器用于调用存储器存储的程序代码以执行上述第二方面中的任意一种方式中的部分或全部操作。
具体地,当处理器调用存储器存储的程序代码时,收发器和处理器用于执行上述第二方面中的任意一种方式中的部分或全部操作。
可选地,上述存储器为非易失性存储器。
可选地,上述存储器与处理器互相耦合在一起。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面或者第二方面中的任意一种方法的部分或全部步骤的指令。
可选地,上述计算机可读存储介质位于终端设备或者定位设备内。
第八方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面或者第二方面中的任意一种方法的部分或全部步骤。
第九方面,提供了一种芯片,所述芯片包括处理器,所述处理器用于执行上述第一方面或者第二方面中的任意一种方式中的部分或全部操作。
可选地,上述芯片位于定位设备或者终端设备内部。
附图说明
图1是本申请实施例可能的应用场景的示意图;
图2是本申请实施例的生成PRS序列的方法的示意性流程图;
图3是用户设备进行定位的过程的示意图;
图4是用户设备进行定位的过程的示意图;
图5是本申请实施例的生成PRS序列的方法的示意性流程图;
图6是本申请实施例的终端设备的示意性框图;
图7是本申请实施例的定位设备的示意性框图;
图8是本申请实施例的终端设备的示意性框图;
图9是本申请实施例的定位设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新空口(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议 (session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
为描述描述方便,本申请中将采用UE来作为示例进行描述。
本申请实施例中的基站可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该基站还可以是中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的PLMN网络中的基站,本申请中的基站还可以是TP、TRP等等,本申请实施例并不限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例可能的应用场景的示意图。
图1所示的通信系统包括终端设备、核心网设备,其中,终端设备处于三个小区的覆盖范围内,除了服务小区之外,该通信系统还存在两个邻居小区,邻居小区1和邻居小区2。其中,邻居小区1对应基站1,邻居小区2对应基站2,服务小区对应基站3。在图1所示的通信系统中,终端设备可以通过接收核心网设备中的LMF发送的辅助信息来确定服务小区和PRS序列和邻居小区的PRS序列。
图2是本申请实施例的生成PRS序列的方法的示意性流程图。图2所示的方法包括步骤1001至1003,下面对这些步骤进行详细介绍。
1001、接收来自定位管理功能模块LMF的辅助信息。
上述辅助信息包括定位参考信号PRS配置索引、PRS标识和终端设备的邻居小区的SFN的绝对时间信息。其中,PRS标识包括服务小区的PRS标识和邻居小区的PRS标识。
上述LMF可以是位于核心网设备中的模块,LMF可以向终端设备发送定位相关的信息。
应理解,上述服务小区的数量可以是一个,上述邻居小区的数量可以是两个或者两个以上。
PRS配置索引的配置表可以如表1所示,如表1所示,当获取到PRS配置索引之后,可以根据表1确定在不同的PRS周期下的PRS所在的子帧相对于周期起始点的偏移子帧 数(在LTE中,该偏移可以是以子帧为单位),从而得到PRS所在的子帧/时隙标识,进而生成PRS序列。
表1
Figure PCTCN2019130280-appb-000001
1002、根据PRS配置索引和服务小区的PRS标识生成服务小区的PRS序列。
其中,上述PRS序列可以是根据随机种子生成的,其中,基于第三代合作伙伴计划(3 rd generation partnership project,3GPP)标准36.211中定义的一种可能的随机种子如公式(1)所示。
Figure PCTCN2019130280-appb-000002
由公式(1)可知,随机种子主要由以下四种参数决定,下面对这四种参数进行介绍。
Figure PCTCN2019130280-appb-000003
PRS的ID,该信息指示的是由哪个基站发送的下行参考信息PRS,该信息包含在下行的辅助信息中的PRS-Info中,显性指示给终端设备;
N CP:表示循环前缀(cyclic prefix,CP)长度,主要指示的是normal CP还是extended CP,该信息也同样包含在下行辅助信息的cpLength中,显性指示给UE;
l:正交频分复用(orthogonal frequency division multiplexing,OFDM)symbol index,由于在LTE中PRS的pattern相对固定,定下了是normal CP还是extended CP,一个slot内在哪几个symbol上有PRS也定下了,不需要特别指示和发送,可以认为基站和UE都知道的信息;
n s:slot index,时隙标识,该信息并没有显性报给终端设备,需要终端设备自己通过其他信息获取该信息,以下具体描述如何通过其他信息获取PRS所在的时隙标识。
1003、根据所述PRS配置索引、所述邻居小区的系统帧号(system frame number,SFN)的绝对时间信息和邻居小区的PRS标识,生成所述邻居小区的PRS序列。
本申请中,通过采用邻居小区的SFN的绝对时间来确定邻居小区的PRS配置索引,无论在邻居小区与服务小区是否同步的情况下,都能够较为准确地确定邻居小区的PRS序列。
可选地,上图2所示的方法还包括:根据服务小区的PRS序列对来自服务小区的第一下行数据进行相关处理,得到第一类时延;根据邻居小区的PRS序列对来自邻居小区的第二下行数据进行相关处理,得到第二类时延;根据所述第一类时延和第二类时延,确定所述终端设备所处的位置。
其中,上述第一类时延为服务小区中的基站发送所述第一下行数据的时间与所述终端设备接收到所述第一下行数据的时间之间的时延;上述第二类时延为邻居小区中的基站发送所述第二下行数据的时间与所述终端设备接收到所述第二下行数据的时间之间的时延。
上述第一类时延可以包括一个时延值,而上述第二类时延可以包括两个或者两个以上的时延值,这样根据第一类时延和第二类时延能够确定终端设备当前所处的位置。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间(SFN0 initialisation time)。
具体地,上述SFN的起始时间可以携带在字段OTDOA-NeighbourCellInfoElement中,其中,上述字段中的OTDOA为观察到达时间差(observed time difference of arrival,OTDOA),上述字段是携带邻居小区的辅助信息的字段,该字段包含的内容具体如下:
Figure PCTCN2019130280-appb-000004
Figure PCTCN2019130280-appb-000005
通过在LMF发送的辅助信息中加入邻居小区的SFN的起始时间,能够使得终端设备可以根据邻居小区的SFN的起始时间来生成邻居小区的PRS序列。
其中,邻居小区的SFN的起始时间表示邻居小区的实际起始时间,可以用于帮助终端设备来确定实际的SFN。具体地,这里的起始时间的定义可以基于3GPP 36.455协议中的定义,用64bit来表示具体的时间,具体定义可以如表2所示:
表2
Figure PCTCN2019130280-appb-000006
可选地,上述邻居小区的绝对时间信息还可以是邻居小区的SFN的起始时间相对于服务小区的SFN的起始时间的时间差。该时间差的单位与上述SFN的起始时间的定义类似,具体单位可以是具体的时间,也可以是时隙(slot)/子帧(subframe)/帧(frame)数。
可以将原来以子帧(subframe)为单位的PRS配置索引(PRS configuration index)修改为以时隙(slot)为单位的PRS配置索引。
修改后的PRS配置索引的配置表可以如表3所。
表3
Figure PCTCN2019130280-appb-000007
Figure PCTCN2019130280-appb-000008
表3与表1的区别在于,表3中的PRS周期和PRS偏移均是以时隙为单位,而表2中的PRS周期和PRS偏移均是以子帧为单位,表3与表1相比,量化的颗粒度更小。
为了更好地说明邻居小区的SFN的绝对时间信息是邻居小区的SFN的起始时间时,终端设备进行定位的整个过程,下面结合图3对该内容进行描述。
图3是用户设备定位过程的示意图。图3所示的方法包括:
2001、LMF向UE发送辅助信息。
在步骤2001中,LMF可以通过基站向UE发送辅助信息,该辅助信息加入了邻居小区的SFN的起始时间,此外,该辅助信息还包括PRS配置索引。
2002、UE生成服务小区的PRS序列和邻居小区的PRS序列。
其中,UE在接入服务小区时,已经获知服务小区的SFN起始时间,然后基于PRS配置索引获取服务小区的PRS的时隙标识,接下来就可以根据PRS的时隙标识,服务小区的PRS标识,生成服务小区的PRS序列。
对于邻居小区来说,UE可以根据自己的时钟以及接收到的邻居小区的SFN的起始时间,先确定PRS在帧(frame)级别上的位置,然后再基于PRS配置索引获得邻居小区的PRS的时隙标识,最后再根据PRS的时隙标识和邻居小区的PRS标识,生成邻居小区的PRS序列。
2003、多个基站向UE发送PRS。
上述多个基站包括对应于服务小区的基站,和对应于邻居小区的基站。
2004、UE根据生成的PRS序列与从多个基站接收到的下行数据进行相关处理,得到基站发送的下行数据的时间到UE接收到该下行数据的时间之间的时延。
在得到上述时延之后,可以根据这些时延对终端设备进行定位。
另外,在上述步骤201中,LMF向UE发送的辅助信息中加入的还可以是邻居小区的SFN的起始时间相对于服务小区的SFN的起始时间的时间差,这样当UE获取到该时间差之后,能够根据服务小区的SFN的起始时间以及该时间差来确定邻居小区的SFN的起始时间。
可选地,作为一个实施例,所述根据所述PRS配置索引生成所述服务小区的PRS序列,包括:根据所述PRS配置索引和所述服务小区的PRS标识,以及所述服务小区的SFN的起始时间,生成所述服务小区的PRS序列。
当终端设备接入服务小区时,终端设备能够直接从服务小区获取服务小区的SFN的起始时间,进而可以生成服务小区的PRS序列。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
本申请中,当SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号时,终端设备侧就不需要通过计算就可以直接获得SFN信息了,能够简化终端设备的计算复杂度。
为了更好地说明邻居小区的SFN的绝对时间信息是邻居小区发送的PRS所在的帧号,终端设备进行定位的整个过程,下面结合图4对该内容进行描述。
图4是用户设备定位过程的示意图。图4所示的方法包括:
3001、LMF向UE发送辅助信息。
在步骤3001中,LMF可以通过基站向UE发送辅助信息,该辅助信息加入了邻居小区发送的PRS所在的帧号,此外,该辅助信息还包括PRS配置索引和PRS标识,其中,PRS标识包括服务小区的PRS标识和邻居小区的PRS标识。
3002、UE生成服务小区的PRS序列和邻居小区的PRS序列。
其中,UE在接入服务小区时,已经获知服务小区的SFN起始时间,然后基于PRS配置索引获取服务小区的PRS的时隙标识,接下来就可以根据PRS的时隙标识,服务小区的PRS标识,生成服务小区的PRS序列。
对于邻居小区来说,UE可以根据自己的时钟以及接收到的邻居小区的SFN的起始时间,先确定PRS在帧(frame)级别上的位置,然后再基于PRS配置索引获得邻居小区的PRS的时隙标识,最后再根据PRS的时隙标识和邻居小区的PRS标识,生成邻居小区的PRS序列。
3003、多个基站向UE发送PRS。
上述多个基站包括对应于服务小区的基站,和对应于邻居小区的基站。
3004、UE根据生成的PRS序列与从多个基站接收到的下行数据进行相关处理,得到基站发送的下行数据的时间到UE接收到该下行数据的时间之间的时延。
在得到上述时延之后,可以根据这些时延对终端设备进行定位。
可选地,在上述步骤3001中,辅助信息中除了加入邻居小区发送的PRS所在的帧号之外,还可以加入服务小区发送的PRS所在的帧号。
这样UE就可以根据服务小区发送的PRS所在的帧号,以及PRS配置索引来获取服务小区的PRS标识,进而生成服务小区的PRS序列。
可选地,作为一个实施例,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述根据所述PRS配置索引生成所述服务小区的PRS序列,包括:根据所述PRS配置索引和所述服务小区发送的PRS所在的帧号,生成所述服务小区的PRS序列。
可选地,作为一个实施例,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
当PRS配置索引为时隙级别的索引时,根据PRS配置索引等信息能够生成更加准确的PRS序列。
可选地,作为一个实施例,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
上文结合图2从终端设备的角度对本申请实施例的PRS序列的生成方法进行了介绍,下面结合图5从定位设备的角度对本申请实施例的PRS序列的生成方法进行介绍。应理解,图2所示的PRS序列的生成方法与图5所示的PRS序列的生成方法是对应的,图2所示的PRS序列的生成方法中对相关信息的限定和解释同样适用于图5所示的PRS序列的生成方法,下面对图5所示的PRS序列的生成方法进行描述。
图5是本申请实施例的生成PRS序列的方法的示意性流程图。图5所示的方法包括 步骤4001至4002,下面对这些步骤进行介绍。
4001、生成辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和所述终端设备的邻居小区的SFN的绝对时间信息。
其中,上述PRS标识包括服务小区的PRS标识和邻居小区的PRS标识。
4002、向终端设备发送所述辅助信息,所述辅助信息用于所述终端设备生成所述邻居小区的PRS序列和所述终端设备的服务小区的PRS序列。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
可选地,作为一个实施例,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
上文结合图2至5对本申请实施例的PRS序列的生成方法进行了详细的描述。下面结合图6至图9对本申请实施例的终端设备和定位设备进行描述,应理解,图6至图9中的所示的终端设备和定位设备能够执行本申请实施例的PRS序列的生成方法中的相应步骤,为了避免不必要的重复,下面在描述本申请实施例的终端设备和定位设备时适当省略重复的描述。
图6是本申请实施例的终端设备的示意性框图。图6所示的终端设备5000包括:
收发模块5001,用于接收来自定位管理功能模块LMF的辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和终端设备的邻居小区的SFN的绝对时间信息,其中,该PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;
处理模块5002,用于根据所述PRS配置索引和服务小区的PRS标识生成所述服务小区的PRS序列;
所述处理模块5002还用于根据所述PRS配置索引和所述邻居小区的SFN的绝对时间信息和邻居小区的PRS标识,生成所述邻居小区的PRS序列。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
可选地,作为一个实施例,所述处理模块5002用于:根据所述PRS配置索引和所述服务小区的SFN的起始时间,生成所述服务小区的PRS序列。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述处理模块5002用于:根据所述PRS配置索引和所述服务小区发送的PRS所在的帧号,生成所述服务小区的PRS序列。
可选地,作为一个实施例,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
可选地,作为一个实施例,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
本申请中,通过采用邻居小区的SFN的绝对时间来确定邻居小区的PRS配置索引,无论在邻居小区与服务小区是否同步的情况下,都能够较为准确地确定邻居小区的PRS序列。
图7是本申请实施例的定位设备的示意性框图。图7所示的终端设备6000包括:
处理模块6001,用于生成辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和所述终端设备的邻居小区的SFN的绝对时间信息,其中,该标识包括服务小区的PRS标识和邻居小区的PRS标识;
收发模块6002,用于向终端设备发送所述辅助信息,所述辅助信息用于所述终端设备生成所述邻居小区的PRS序列和所述终端设备的服务小区的PRS序列。
本申请中,通过采用邻居小区的SFN的绝对时间来确定邻居小区的PRS配置索引,无论在邻居小区与服务小区是否同步的情况下,都能够较为准确地确定邻居小区的PRS序列。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
可选地,作为一个实施例,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
可选地,作为一个实施例,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
可选地,作为一个实施例,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
图8是本申请实施例的终端设备的示意性框图。图8所示的终端设备7000包括:存储器7001、收发器7002和处理器7003。
其中,存储器7001用于存储程序,处理器7003用于执行存储器7001中存储的程序,当存储器7001中存储的程序被处理器7003执行时,收发器7002和处理器7003用于执行图2所示的方法中的各个步骤。
终端设备7000中的处理器7003相当于终端设备5000中的处理模块5002,终端设备7000中的收发器7002相当于终端设备5000中的收发模块5001。
图9是本申请实施例的定位设备的示意性框图。图9所示的终端设备8000包括:存储器8001、处理器8002和收发器8003。
其中,存储器8001用于存储程序,处理器8002用于执行存储器8001中存储的程序,当存储器8001中存储的程序被处理器8002执行时,处理器8002和收发器8003用于执行图5所示的方法中的各个步骤。
终端设备8000中的处理器8002相当于终端设备6000中的处理模块6001,终端设备 8000中的收发器8003相当于终端设备6000中的收发模块6002。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种生成PRS序列的方法,其特征在于,包括:
    接收来自定位管理功能模块LMF的辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和终端设备的邻居小区的系统帧号SFN的绝对时间信息,所述PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;
    根据所述PRS配置索引和所述服务小区的PRS标识生成所述服务小区的PRS序列;
    根据所述PRS配置索引、所述邻居小区的SFN的绝对时间信息和所述邻居小区的PRS标识,生成所述邻居小区的PRS序列。
  2. 如权利要求1所述的方法,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
  3. 如权利要求1或2所述的方法,其特征在于,所述根据所述PRS配置索引和服务小区的PRS标识生成所述服务小区的PRS序列,包括:
    根据所述PRS配置索引和所述服务小区的PRS标识,以及所述服务小区的SFN的起始时间,生成所述服务小区的PRS序列。
  4. 如权利要求1所述的方法,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述PRS配置索引生成所述服务小区的PRS序列,包括:
    根据所述PRS配置索引和所述服务小区发送的PRS所在的帧号,生成所述服务小区的PRS序列。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
  9. 一种生成PRS序列的方法,其特征在于,包括:
    生成辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和所述终端设备的邻居小区的系统帧号SFN的绝对时间信息,所述PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;
    向终端设备发送所述辅助信息,所述辅助信息用于所述终端设备生成所述邻居小区的PRS序列和所述终端设备的服务小区的PRS序列。
  10. 如权利要求9所述的方法,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
  11. 如权利要求9所述的方法,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
  12. 如权利要求9-11中任一项所述的方法,其特征在于,所述辅助信息还包括所述 终端设备的服务小区发送的PRS所在的帧号。
  13. 如权利要求9-12中任一项所述的方法,其特征在于,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
  14. 如权利要求9-13中任一项所述的方法,其特征在于,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
  15. 一种终端设备,其特征在于,包括:
    收发模块,用于接收来自定位管理功能模块LMF的辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和终端设备的邻居小区的系统帧号SFN的绝对时间信息,所述PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;
    处理模块,用于根据所述PRS配置索引和服务小区的PRS标识生成所述服务小区的PRS序列;
    所述处理模块还用于根据所述PRS配置索引和所述邻居小区的SFN的绝对时间信息和邻居小区的PRS标识,生成所述邻居小区的PRS序列。
  16. 如权利要求15所述的终端设备,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
  17. 如权利要求15或16所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述PRS配置索引和所述服务小区的SFN的起始时间,生成所述服务小区的PRS序列。
  18. 如权利要求15所述的终端设备,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
  19. 如权利要求15-18中任一项所述的终端设备,其特征在于,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
  20. 如权利要求19所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述PRS配置索引和所述服务小区发送的PRS所在的帧号,生成所述服务小区的PRS序列。
  21. 如权利要求15-20中任一项所述的终端设备,其特征在于,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
  22. 如权利要求15-21中任一项所述的终端设备,其特征在于,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
  23. 一种定位设备,其特征在于,包括:
    处理模块,用于生成辅助信息,所述辅助信息包括定位参考信号PRS配置索引、PRS标识和所述终端设备的邻居小区的系统帧号SFN的绝对时间信息,所述PRS标识包括服务小区的PRS标识和邻居小区的PRS标识;
    收发模块,用于向终端设备发送所述辅助信息,所述辅助信息用于所述终端设备生成所述邻居小区的PRS序列和所述终端设备的服务小区的PRS序列。
  24. 如权利要求23所述的定位设备,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区的SFN的起始时间。
  25. 如权利要求23所述的定位设备,其特征在于,所述邻居小区的SFN的绝对时间信息为所述邻居小区发送的PRS所在的帧号。
  26. 如权利要求23-25中任一项所述的定位设备,其特征在于,所述辅助信息还包括所述终端设备的服务小区发送的PRS所在的帧号。
  27. 如权利要求23-26中任一项所述的定位设备,其特征在于,所述PRS配置索引为子帧级别的索引,或者,所述PRS配置索引为时隙级别的索引。
  28. 如权利要求23-27中任一项所述的定位设备,其特征在于,所述服务小区和/或邻居小区向所述终端设备发送的PRS的周期的时隙个数小于一个子帧中包含的时隙个数。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序代码,所述程序代码包括用于执行权利要求1-8或者权利要求9-14中的任一项所述的方法的部分或全部步骤的指令。
PCT/CN2019/130280 2019-02-15 2019-12-31 生成prs序列的方法、终端设备和定位设备 WO2020164324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910117860.6A CN111586554B (zh) 2019-02-15 2019-02-15 生成prs序列的方法、终端设备和定位设备
CN201910117860.6 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020164324A1 true WO2020164324A1 (zh) 2020-08-20

Family

ID=72044328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130280 WO2020164324A1 (zh) 2019-02-15 2019-12-31 生成prs序列的方法、终端设备和定位设备

Country Status (2)

Country Link
CN (1) CN111586554B (zh)
WO (1) WO2020164324A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015575A (zh) * 2021-10-22 2023-04-25 大唐移动通信设备有限公司 数据处理方法及用户设备、存储介质
RU2819423C1 (ru) * 2020-12-08 2024-05-21 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ конфигурации параметров, устройство для конфигурации параметров и носитель данных

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122930A1 (en) * 2010-07-16 2013-05-16 Lg Electronics Inc. Method and apparatus for transmitting location estimation message in wireless communication system
CN105393612A (zh) * 2013-07-12 2016-03-09 高通股份有限公司 提供观测的到达时间差定位参考信号辅助数据
WO2018082068A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 Sfn指示方法、终端设备、定位服务器和系统
WO2018144140A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Location determination using user equipment preconfigured with positioning reference signal information
WO2019029422A1 (zh) * 2017-08-09 2019-02-14 电信科学技术研究院有限公司 一种定位、测量上报方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122930A1 (en) * 2010-07-16 2013-05-16 Lg Electronics Inc. Method and apparatus for transmitting location estimation message in wireless communication system
CN105393612A (zh) * 2013-07-12 2016-03-09 高通股份有限公司 提供观测的到达时间差定位参考信号辅助数据
WO2018082068A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 Sfn指示方法、终端设备、定位服务器和系统
WO2018144140A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Location determination using user equipment preconfigured with positioning reference signal information
WO2019029422A1 (zh) * 2017-08-09 2019-02-14 电信科学技术研究院有限公司 一种定位、测量上报方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819423C1 (ru) * 2020-12-08 2024-05-21 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ конфигурации параметров, устройство для конфигурации параметров и носитель данных
CN116015575A (zh) * 2021-10-22 2023-04-25 大唐移动通信设备有限公司 数据处理方法及用户设备、存储介质

Also Published As

Publication number Publication date
CN111586554B (zh) 2021-12-24
CN111586554A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
WO2022068836A1 (zh) 定位参考信号的传输方法及装置、存储介质、终端
JP2019523390A (ja) 測位基準信号を管理するための方法、ユーザ機器、無線送信機およびネットワークノード
US11233613B2 (en) Pilot signal transmission method and device
TWI687120B (zh) 用於隨機接入的方法、網路設備和終端設備
TWI687126B (zh) 無線資源管理測量的方法、終端設備和網路設備
US10849102B2 (en) Signal transmission method, network device, and terminal device
US20200106551A1 (en) Information determination method, terminal apparatus, and network apparatus
WO2020029896A1 (zh) 一种参考信号发送、接收方法及装置
WO2020220839A1 (zh) 获取时间提前量的方法与装置
WO2018171507A1 (zh) 一种收发物理随机接入信道前导码序列的方法及装置
US11722989B2 (en) Communication method, terminal apparatus, and access network apparatus
WO2020164324A1 (zh) 生成prs序列的方法、终端设备和定位设备
TW201840225A (zh) 處理信號的方法和設備
CN110662227B (zh) 定位参考信号配置、接收方法和设备
WO2020089853A1 (en) Scrambling of reference signals in wireless communication networks
CN108476059B (zh) 一种信号的发送方法、接收方法、终端设备、基站及系统
CA3061389C (en) Method for transmitting reference signal, terminal and network device
WO2022151390A1 (zh) 一种通信方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915516

Country of ref document: EP

Kind code of ref document: A1