WO2018082068A1 - Sfn指示方法、终端设备、定位服务器和系统 - Google Patents

Sfn指示方法、终端设备、定位服务器和系统 Download PDF

Info

Publication number
WO2018082068A1
WO2018082068A1 PCT/CN2016/104784 CN2016104784W WO2018082068A1 WO 2018082068 A1 WO2018082068 A1 WO 2018082068A1 CN 2016104784 W CN2016104784 W CN 2016104784W WO 2018082068 A1 WO2018082068 A1 WO 2018082068A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
sfn
terminal device
radio frame
indication parameter
Prior art date
Application number
PCT/CN2016/104784
Other languages
English (en)
French (fr)
Inventor
陈哲
金哲
吴毅凌
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019523579A priority Critical patent/JP6789391B2/ja
Priority to EP16920617.4A priority patent/EP3528560B1/en
Priority to CN201680090601.3A priority patent/CN109952794B/zh
Priority to PCT/CN2016/104784 priority patent/WO2018082068A1/zh
Publication of WO2018082068A1 publication Critical patent/WO2018082068A1/zh
Priority to US16/401,973 priority patent/US10736073B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a SFN (English full name: system frame number: Chinese system name: system frame number) indication method, a terminal device, a positioning server, and a system.
  • SFN English full name: system frame number: Chinese system name: system frame number
  • FIG. 1 shows a schematic diagram of the OTDOA positioning technique.
  • a plurality of base stations 01 send synchronization signals to the terminal device 1, and the terminal device 02 obtains arrival time information by measuring the same-frequency signals transmitted by the plurality of base stations 1, and then calculates the geographical position in combination with the plurality of base stations 01.
  • the NB-IoT downlink sends the NSSS (English name: narrowband secondary synchronization signal, Chinese full name: narrowband secondary synchronization signal) signal
  • the terminal device obtains the downlink signal arrival time information of the cells by measuring the NSSS of the multiple cells, thereby enabling Support OTDOA positioning.
  • the terminal device confirms the NSSS signal by detecting the NSSS sequence, and the representation manner of the NSSS sequence is:
  • n 0,1,...,131
  • n' n mod 131
  • phase rotation sequence where phase rotation parameters n f is the radio frame number of the radio frame where the NSSS is located.
  • the terminal device When the terminal device detects the NSSS sequence, the binary sequence b q (m) and the phase rotation sequence are separately detected.
  • the phase rotation sequence in the frequency domain Since the cyclic value of the phase rotation parameter ⁇ f is reflected as a cyclic shift in the time domain, when the terminal device detects the phase rotation sequence
  • the timing measurement result has a large error, thereby deteriorating the positioning accuracy, and the calculation complexity is relatively high because the phase rotation sequence needs to be compared one by one.
  • Embodiments of the present invention provide an SFN indication method, a terminal device, a positioning server, and a system for solving a misjudgment caused by the inability to distinguish phase rotation when detecting a phase rotation sequence.
  • the embodiment of the present invention provides a system frame number SFN indication method, including: a positioning server acquiring an SFN offset indication parameter of a cell i, where the SFN offset indication parameter indicates an SFN and a cell of a radio frame m of the cell i The relative offset between the SFNs of the radio frame n of j; the positioning server transmits the SFN offset indication parameter of the cell i to the terminal device.
  • the SFN indication method obtained by the embodiment of the present invention obtains a relative offset between the SFN of the cell i and the SFN of the cell j by using the positioning server, and then the terminal device determines the phase rotation parameter of the cell i according to the relative offset, and further Obtaining a phase rotation sequence according to the phase rotation parameter, so that the terminal device can detect the NSSS sequence of the cell i according to the determined phase rotation parameter, without the phase rotation sequence The detection is performed, so that the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence is solved, and the computational complexity is reduced.
  • the terminal device may further obtain a sequence initialization factor used by the NPRS on the radio frame m of the cell i according to the frame number of the radio frame n of the cell j and the SFN offset indication parameter of the cell i, and obtain the sequence initialization factor according to the sequence initialization factor.
  • the NPRS on the radio frame m of cell i provides a way to determine the NPRS using the SFN offset indication parameter of cell i.
  • the positioning server sends the SFN offset indication parameter of the cell i to the terminal device, and the positioning server sends the SFN offset indication parameter to the terminal device by using an LTE positioning protocol (LPP) message.
  • LTP LTE positioning protocol
  • the design provides a way for the positioning server to send the SFN offset indication parameter of the cell i to the terminal device, and the transmission mode is more flexible.
  • the positioning server acquires the SFN offset indication parameter of the cell i, including: the positioning server acquires the SFN initialization time of the cell i from the cell i, and acquires the SFN initialization time of the cell j from the cell j; the positioning server according to the cell i The SFN initialization time of the cell and the SFN initialization time of the cell j generate the SFN offset indication parameter of the cell i.
  • This design provides a way to obtain the SFN offset indication parameters for cell i.
  • the positioning server sends the SFN offset indication parameter of the cell i to the terminal device, and the positioning server sends the SFN offset indication parameter to the terminal device via the cell j through the LTE positioning protocol A LPPa message.
  • the design provides another way for the positioning server to send the SFN offset indication parameter of the cell i to the terminal device, and the transmission mode is more flexible.
  • the embodiment of the present invention provides another system frame number SFN indication method, including: the terminal device receives an SFN offset indication parameter of the cell i from the positioning server, where the SFN offset indication parameter indicates the cell i the offset between the radio frame with SFN cell j m of the SFN of the radio frame n; j is a terminal device to obtain a cell radio frame n the frame number SFN j; j is a terminal apparatus according to a cell radio frame n the frame number SFN j Determining the phase rotation parameter of the cell i with the SFN offset indication parameter of the cell i; or obtaining the radio frame m of the cell i according to the frame number SFN j of the radio frame n of the cell j and the SFN offset indication parameter of the cell i
  • the sequence initialization factor c init used by the narrowband positioning reference signal NPRS and the NPRS on the radio frame m of the cell i according to the sequence initialization factor c init of the cell i.
  • the SFN indication method obtained by the embodiment of the present invention obtains a relative offset between the SFN of the cell i and the SFN of the cell j by using the positioning server, and then the terminal device determines the phase rotation parameter of the cell i according to the relative offset, and further Obtaining a phase rotation sequence according to the phase rotation parameter, so that the terminal device can detect the NSSS sequence of the cell i according to the determined phase rotation parameter, without detecting the phase rotation sequence, thereby solving the problem that the phase rotation sequence cannot be detected Distinguish the misjudgment caused by phase rotation and reduce the computational complexity.
  • the terminal device may further obtain a sequence initialization factor used by the NPRS on the radio frame m of the cell i according to the frame number of the radio frame n of the cell j and the SFN offset indication parameter of the cell i, and obtain the sequence initialization factor according to the sequence initialization factor.
  • the NPRS on the radio frame m of cell i provides a way to determine the NPRS using the SFN offset indication parameter of cell i.
  • the SFN offset indication parameter is obtained by the positioning server according to the SFN initialization time of cell i and the SFN initialization time of cell j. This design provides a way to obtain the SFN offset indication parameters for cell i.
  • the terminal device receives the SFN offset indication parameter of the cell i from the positioning server, including: the terminal device receives the SFN offset indication parameter from the positioning server by using an LTE positioning protocol LPP message.
  • the design provides a way for the positioning server to send the SFN offset indication parameter of the cell i to the terminal device, and the transmission mode is more flexible.
  • the terminal device receives the SFN offset indication parameter of the cell i from the positioning server, where the terminal device receives the SFN offset indication parameter sent by the positioning server via the cell j through the LTE positioning protocol A LPPa message.
  • the design provides another way for the positioning server to send the SFN offset indication parameter of the cell i to the terminal device, and the transmission mode is more flexible.
  • the terminal device determines the phase rotation parameter of the cell i according to the frame number SFN j of the radio frame n of the cell j and the SFN offset indication parameter of the cell i, including: if the cell j is transmitted on the radio frame n The phase rotation parameter of the NSSS is And if the SFN offset indication parameter SFN_offset i of the cell i is an odd number, the phase rotation parameter ⁇ ' f used by the NSSS received by the terminal device on the next radio frame of the radio frame m of the cell i is And if the SFN offset indication parameter SFN_offset i of the cell i is an even number, the phase rotation parameter ⁇ ' f used by the NSSS received by the terminal device on the radio frame m of the cell i is The design specifically provides a way to determine the phase rotation parameter of the cell i according to the frame number of the radio frame n of the cell j and the SFN offset indication parameter of the cell i.
  • the sequence initialization factor used by the narrowband positioning reference signal NPRS on the radio frame m of the cell i is obtained.
  • c init including: terminal device based A sequence initialization factor c init is obtained ;
  • n' f (SFN j + SFN_offset i ) mod K.
  • K defines the period of the seed
  • n s is the slot number of the slot in which the OFDM symbol is located
  • l is the physical symbol number of the OFDM symbol.
  • N CP is a parameter related to the cyclic prefix.
  • the design specifically provides a way to determine the sequence initialization factor used by the NPRS of the cell i based on the SFN initialization time of the cell j and the SFN initialization time of the cell i.
  • an embodiment of the present invention provides a positioning server, including: a processing unit, configured to acquire an SFN offset indication parameter of a cell i, where the SFN offset indication parameter indicates an SFN and a cell of a radio frame m of the cell i The relative offset between the SFNs of the radio frame n of j, the sending unit, configured to send the SFN offset indication parameter of the cell i acquired by the processing unit to the terminal device.
  • an embodiment of the present invention provides a terminal device, including:
  • a receiving unit configured to receive, by the positioning server, an SFN offset indication parameter of the cell i, where the SFN offset indication parameter indicates a relative offset between the SFN of the radio frame m of the cell i and the SFN of the radio frame n of the cell j shifting; a processing unit for acquiring the radio frame n of the frame number SFN cell j j; for determining cell parameters of the cell according to SFN offset indicates a radio frame j n j SFN and frame number received by the receiving unit cell i sequence initialization factors or, offset according to the parameter indicating a frame number SFN SFN cell i and cell j j radio frame n, i is obtained cell narrowband radio frame positioning m NPRS reference signal used; phase rotation parameter i c init , and obtain the NPRS on the radio frame m of the cell i according to the sequence initialization factor c init of the cell i.
  • the time difference between the start time of the radio frame m of the cell i and the start time of the radio frame n of the cell j is less than the time length of one radio frame.
  • This design provides a temporal positional relationship between the radio frame m of cell i and the radio frame n of cell j.
  • the initialization time of the radio frame m of the cell i is later than the initialization time of the radio frame n of the cell j.
  • the design further provides a temporal positional relationship between the radio frame m of cell i and the radio frame n of cell j.
  • the SFN of the radio frame n of the cell j is synchronized by the terminal device according to the synchronization signal sent by the cell j.
  • the broadcast information is determined. This design provides a way to obtain the SFN of the radio frame n of cell j.
  • the SFN offset indication parameter of the cell i is Where t j is the SFN initialization time of the cell j, t i is the SFN initialization time of the cell i, T is the time length of the radio frame, and N is a positive integer, indicating the maximum indication range of the SFN offset indication parameter, Rounding down for the operation.
  • the design specifically provides a way to determine the SFN offset indication parameter of the cell i according to the SFN initialization time of the cell j and the SFN initialization time of the cell i.
  • the embodiment of the present invention provides another system frame number SFN indication method, including: the terminal equipment measures the NSSS of the cell i to obtain the phase rotation parameter ⁇ f,i of the cell i, where the phase of the cell i
  • the phase rotation parameter ⁇ f,i obtains the SFN offset indication parameter of the cell i; the terminal device sends the SFN offset indication parameter of the cell i to the positioning server; and the terminal device receives the positioning server according to the SFN offset indication parameter of the cell i.
  • SFN indicating the method provided in the embodiment of the present invention first, NSSS cell i was measured by the terminal device to obtain a phase rotation parameter ⁇ f cell i, i, then based on the phase rotation parameter ⁇ f, i obtained SFN partial cell i After the indication parameter is sent to the positioning server, the positioning server checks the SFN offset indication parameter of the cell i from the terminal device to verify whether the phase rotation parameter ⁇ f,i of the cell i measured by the terminal device is correct. The result is fed back to the terminal device, so that the terminal device knows whether the measurement result is correct, thereby preventing misjudgment, and solving the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence.
  • the terminal device obtains the SFN offset indication parameter of the cell i according to the phase rotation parameter ⁇ f,i of the cell i, including: if the initialization time of the NSSS radio frame carrying the cell i and the SFN of the serving cell are The time difference between the radio frame initialization moments of 0 is greater than the time difference threshold T threshold , and the SFN offset indication parameter of the cell i Otherwise, the SFN offset indication parameter of cell i
  • the design specifically provides a way to obtain the SFN offset indication parameter of the cell i according to the phase rotation parameter of the cell i.
  • the terminal device sends the SFN offset indication parameter of the cell i to the positioning server, where the terminal device sends the SFN offset indication parameter of the cell i to the positioning server by using an LTE positioning protocol (LPP) message.
  • LTP LTE positioning protocol
  • the design is specifically provided A method of transmitting the SFN offset indication parameter of the cell i to the positioning server, and the transmission mode is more flexible.
  • an embodiment of the present invention provides a system frame number SFN indication method, including: a positioning server receiving an SFN offset indication parameter of a cell i from a terminal device, where the SFN offset indication parameter of the cell i is a terminal device According to the phase rotation parameter ⁇ f,i of the cell i, the phase rotation parameter ⁇ f,i of the cell i is obtained by the terminal device measuring the NSSS of the cell i, and the phase rotation parameter ⁇ f,i of the cell i is at the terminal device.
  • the phase rotation parameter of the first complete NSSS on the NSSS radio frame that is located in the cell i; the SFN offset indication parameter of the location server to the cell i from the terminal device The verification is performed to obtain a verification result; the positioning server feeds back the verification result to the terminal device.
  • SFN indicating the method provided in the embodiment of the present invention first, NSSS cell i was measured by the terminal device to obtain a phase rotation parameter ⁇ f cell i, i, then based on the phase rotation parameter ⁇ f, i obtained SFN partial cell i After the indication parameter is sent to the positioning server, the positioning server checks the SFN offset indication parameter of the cell i from the terminal device to verify whether the phase rotation parameter ⁇ f,i of the cell i measured by the terminal device is correct. The result is fed back to the terminal device, so that the terminal device knows whether the measurement result is correct, thereby preventing misjudgment, and solving the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence.
  • the positioning server checks the SFN offset indication parameter of the cell i from the terminal device, including: the positioning server uses the SFN offset indication parameter of the cell i from the terminal device, and the positioning server calculates it by itself.
  • the SFN offset indication parameter of the cell i is checked to verify whether the phase rotation parameter ⁇ f, i of the cell i measured by the terminal device is correct.
  • the design specifically provides a way to verify the SFN offset indication parameter of the cell i from the terminal device, so that the phase rotation parameter ⁇ f,i of the cell i measured by the terminal device can be indirectly verified.
  • the terminal device sends the SFN offset indication parameter of the cell i to the positioning server, and the positioning server receives the SFN offset indication parameter of the cell i from the terminal device by using the LPP message.
  • the design specifically provides a kind of cell i
  • the SFN offset indicates the way the parameter is sent to the positioning server, and the transmission mode is more flexible.
  • the embodiment of the present invention provides a terminal device, which can implement the functions performed by the terminal device in the foregoing method example, and the function can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the terminal device includes a processor and a transceiver configured to support the terminal device to perform a corresponding function in the above method.
  • the transceiver is used to support communication between the terminal device and other network elements.
  • the terminal device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the terminal device.
  • the embodiment of the present invention provides a positioning server, which can implement the functions performed by the positioning server in the foregoing method embodiment, and the functions can be implemented by hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the location server includes a processor and a transceiver configured to support the location server to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the positioning server and other network elements.
  • the location server can also include a memory for coupling with the processor that holds the program instructions and data necessary for the location server.
  • an embodiment of the present invention provides a positioning system, where the system includes the device that can implement the function of the terminal device and the device that can implement the function of the positioning server.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the positioning server, including a program designed to perform the above aspects.
  • the positioning server is obtained. Taking the relative offset between the SFN of the cell i and the SFN of the cell j, and then determining, by the terminal device, the phase rotation parameter of the cell i according to the relative offset, and obtaining a phase rotation sequence according to the phase rotation parameter, so that the terminal device
  • the NSSS sequence of the cell i can be detected according to the determined phase rotation parameter without detecting the phase rotation sequence, so that the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence is solved.
  • the terminal device determines the sequence initialization factor of the positioning reference signal NPRS of the cell i according to the relative offset, and further determines the NPRS, so that the terminal device can detect the NPRS sent by the cell i according to the determined NPRS, and the solution is solved. Detection misjudgment and high computational complexity caused by not knowing the specific NPRS.
  • FIG. 1 is a schematic diagram of an OTDOA positioning technology according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a positioning system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a positioning server according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of an SFN indication method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of acquiring an SFN offset indication parameter of a cell i according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an SFN initialization time of a cell i and a cell j according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another SFN initialization time of a cell i and a cell j according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another SFN indication method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of still another SFN indication method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another positioning server according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another positioning server according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another positioning server according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of still another terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another terminal device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a positioning system, as shown in FIG. 2, including: a positioning server 11, a terminal device 12, an eNB 13, and an MME (English name: mobility management entity, full name: mobility management entity).
  • Service gateway 15, PDN English full name: packet data network, Chinese full name: packet data network
  • the location server 11 is an entity on the network side that is dedicated to supporting the location function.
  • the positioning server is an E-SMLC (English full name: promote serving mobile location center) 112 or GMLC (English full name: gateway mobile location center, Chinese full name: gateway mobile location center),
  • the location server is an SLP (English full name: SUPL (secure user plane location) location platform, a secure user plane location platform).
  • the MME 14 is responsible for signaling processing between the core network and the terminal device 12, and the serving gateway 15 and the PDN gateway 16 are responsible for packet forwarding.
  • the terminal device 12 can include a processor 1201 that can include circuitry for audio/video and logic functions of the terminal device 12.
  • processor 1201 can include a digital signal processor device, a microprocessor device, an analog to digital converter, a digital to analog converter, and the like. The control and signal processing functions of the mobile device can be distributed among these devices based on their respective capabilities.
  • the processor may also include an internal voice coder VC 12011, an internal data modem DM 12012, and the like.
  • processor 1201 can include functionality to operate one or more software programs, which can be stored in a memory.
  • the processor and the stored software instructions can be configured to cause the terminal device 12 to perform an action.
  • the processor can operate the linker.
  • the terminal device 12 may also include a user interface, which may include, for example, an earphone or speaker 1202, a microphone 1203, an output device (eg, display) 1204, an input device 1205, etc., operatively coupled to the processor.
  • the processor can 1201 to include user interface circuitry configured to control at least some of the functionality of one or more components of the user interface, such as a speaker, microphone, display, and the like.
  • the processor and/or user interface circuitry including the processor can be configured to control one of the one or more components of the user interface by computer program instructions (eg, software and/or firmware) stored in a memory accessible by the processor. Or multiple features.
  • the terminal device 12 can include a battery for powering various circuits associated with the mobile device, such as circuitry that provides mechanical vibration as a detectable output.
  • the input device can include a device that allows the device to receive data, such as a keypad, a touch display, a joystick, and/or at least one other input device, and the like.
  • the terminal device 12 may also include one or more connection circuit modules 1206 for sharing and/or obtaining data.
  • the terminal device 12 can include a receiver 12061 and a transmitter 12062 coupled to the antenna 12063 for transmitting and receiving RF signals, respectively.
  • the terminal device 12 may include a short range RF RF transceiver and/or detector 12064 such that data may be shared with and/or obtained from the electronic device in accordance with RF technology.
  • the terminal device 12 may include other short-range transceivers such as, for example, an infrared IR transceiver 12065, a Bluetooth transceiver 12066, and a wireless universal serial bus USB transceiver 12067. and many more.
  • the Bluetooth transceiver 12066 is capable of operating in accordance with low power or ultra low power Bluetooth technology.
  • the terminal device 12, and more specifically the short range transceiver is capable of transmitting and/or receiving data to and/or from an electronic device in the vicinity of the device, such as within 10 meters.
  • the terminal device 12 is capable of transmitting and/or receiving data to and/or from electronic devices in accordance with various wireless networking technologies, including: Wi-Fi, Wi-Fi low power, WLAN technology Such as IEEE 802.11 technology, IEEE 802.15 technology, IEEE 802.16 technology, and the like.
  • the terminal device 12 may include a memory that may store information elements related to the mobile user, such as the subscriber identity module SIM 1207. In addition to the SIM 1207, the device may also include other removable and/or fixed memories. Terminal device 12 may include volatile memory 1208 and/or non-volatile memory 1209.
  • volatile memory can include random access memory RAM including dynamic RAM and/or static RAM, on-chip and/or off-chip cache, and the like.
  • non-volatile memory can be embedded and/or removable, and can include, for example, read only memory, flash memory, magnetic storage devices such as a hard disk, a floppy disk drive, magnetic tape, and the like, an optical disk drive and/or media, Non-volatile random access memory NVRAM and the like.
  • the non-volatile memory can include a cache area for temporary storage of data. At least a portion of the volatile and/or non-volatile memory can be embedded in the processor.
  • the memory can store one or more software programs, instructions, information blocks, data, etc., which can be used by the terminal device 12 to perform the functions of the mobile terminal.
  • the memory may include an identifier capable of uniquely identifying the terminal device 12, such as an international mobile device identity IMEI code.
  • the location server 11 includes a processor 1101, a communication interface 1102, a volatile memory 1103, and a nonvolatile memory 1104.
  • the communication interface 1102 is used by the positioning server 11 to communicate with other communication devices.
  • the communication interface 1102 can include an Ethernet interface, a wired or wireless network interface, and the like.
  • Volatile memory 1103 can include random access memory RAM including dynamic RAM and/or static RAM, on-chip and/or off-chip cache, and the like.
  • the non-volatile memory 1104 can be embedded and/or removable, which can include, for example, read only memory, flash memory Memory, magnetic storage devices such as hard disks, floppy disk drives, magnetic tapes, etc., optical disk drives and/or media, non-volatile random access memory NVRAM, and the like. Similar to the volatile memory 1103, the non-volatile memory 1104 can include a cache area for temporary storage of data. At least a portion of the volatile and/or non-volatile memory can be embedded in the processor 1101.
  • the memory can store one or more software programs, instructions, information blocks, data, etc., which can be used by the location server 11 to perform the functions of the location server.
  • the SFN indication method, the terminal device, the positioning server, and the system provided by the embodiment of the present invention obtain the SFN offset between the SFN of the cell i and the SFN of the cell j, and use the SFN offset and the SFN number of the cell j. Generating a phase rotation parameter of the NSSS. Since the SFN of the cell i and the SFN of the cell j are determined, the generated SFN offset and the phase rotation parameter of the finally generated NSSS are also determined, so that the terminal device can rotate according to the determined phase.
  • the parameter is used to detect the NSSS sequence of the cell i without detecting the phase rotation sequence, so that the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence is solved. It should be noted that for any positioning design that requires SFN information, the method provided by the present invention can also be used to indicate the SFN.
  • An embodiment of the present invention provides an SFN indication method, which is used in the foregoing positioning system. Referring to FIG. 5, the method includes:
  • the positioning server acquires an SFN offset indication parameter of the cell i, where the SFN offset indication parameter indicates a relative offset between the SFN of the radio frame m of the cell i and the SFN of the radio frame n of the cell j.
  • the cell j may be a serving cell in which the terminal device is located, or other cells selected as a reference for the SFN.
  • the SFN offset indication parameter of the cell i can be obtained according to the configuration, and the obtained relative offset is fixed; or can be automatically obtained by using the steps S1011-S1012, as shown in FIG. More flexible than that.
  • the positioning server acquires the SFN initialization time of the cell i from the cell i, and The cell j acquires the SFN initialization time of the cell j.
  • the positioning server is used as an example for the E-SMLC.
  • the E-SMLC will report an SFN-related information to the E-SMLC, and the parameter is "sFNInitialisationTime" when the E-SMLC collects the information related to the OTDOA location.
  • the parameter indicates the time when the SFN of the cell is initialized to 0, and the unit is second.
  • the positioning server generates an SFN offset indication parameter of the cell i according to the SFN initialization time of the cell i and the SFN initialization time of the cell j.
  • the positioning server is still used as an example for the E-SMLC.
  • the E-SMLC determines the SFN offset indication parameter of the cell i for the cell i.
  • the SFN offset indication parameter indicates a relative offset between the SFN of the radio frame m of the cell i and the SFN of the radio frame n of the cell j based on the radio frame n of the cell j, that is, the radio indicating the cell j The difference between the SFN of frame n and the SFN of the first complete radio frame m of cell i after the radio frame initialization time.
  • the radio frame m of the cell i is the first complete radio frame after the initialization time of the radio frame n of the cell j, and the time difference between the start time of the radio frame m of the cell i and the start time of the radio frame n of the cell j is less than one
  • the length of the radio frame, the initialization time of the radio frame m of the cell i is later than the initialization time of the radio frame n of the cell j.
  • the SFN offset indication parameter may be determined according to the SFN initialization time reported by the cell j and the SFN initialization time reported by the cell i by using the following formula:
  • the SFN of the radio frame n of the cell j is determined by the terminal device according to the synchronization signal and/or the broadcast information sent by the cell j, for example, separately for the synchronization signal.
  • the positioning server sends the SFN offset indication parameter of the cell i to the terminal device.
  • the positioning server is still used as an example for the E-SMLC.
  • the location server E-SMLC sends the SFN offset indication parameter of the cell i to the terminal device in the form of an LPP (English full name: LTE positioning protocol, LTE positioning protocol) message, and the SFN indication parameter of the cell i is The cell ID of the cell (English name: cell identification, full name of Chinese: cell identification code) corresponds.
  • LPP English full name: LTE positioning protocol, LTE positioning protocol
  • the location server E-SMLC sends the SFN offset indication parameter of the cell i to the cell j in the form of an LPPa (English full name: LTE positioning protocol A, LTE positioning protocol A) message, and is received by the cell j.
  • LPPa English full name: LTE positioning protocol A, LTE positioning protocol A
  • the obtained SFN offset indication parameter is transmitted to the terminal device through the broadcast message on the cell j along with the corresponding Cell ID.
  • the terminal device receives an SFN offset indication parameter of the cell i from the positioning server.
  • the terminal device acquires a frame number SFN j of the radio frame n of the cell j .
  • the terminal device may acquire the frame number SFN j of the radio frame n of the cell j by the downlink synchronization process with the cell j and the broadcast information of the cell j .
  • the terminal device determines a phase rotation parameter of the cell i according to the SFN j of the cell j and the SFN offset indication parameter of the cell i.
  • the SFN offset indication parameter SFN_offset i of the cell i is an odd number, then there is no NSSS on the radio frame m of the cell i, which means that the next radio frame of the cell i will carry the NSSS, so the cell i is in the radio frame m.
  • the NSSS is transmitted on the next radio frame, and the phase rotation parameters used by the NSSS are: Furthermore, the phase rotation parameters used by the NSSS on subsequent radio frames can be inferred.
  • the radio frame will carry the NSSS, and the phase rotation parameter used by the NSSS is: Furthermore, the phase rotation parameters used by the NSSS on subsequent radio frames can be inferred.
  • the rotation parameters are: Other values can be derived by analogy (33/132)*0, (33/132)*1, (33/132)*2.
  • the terminal device can obtain a phase rotation sequence according to the phase rotation parameter When detecting the NSSS sequence, it is no longer necessary to detect the phase rotation sequence.
  • the SFN indication method acquires a cell by using a positioning server a relative offset between the SFN of the i and the SFN of the cell j, and then the terminal device determines a phase rotation parameter of the cell i according to the relative offset, and further obtains a phase rotation sequence according to the phase rotation parameter, so that the terminal device can
  • the determined phase rotation parameter detects the NSSS sequence of the cell i without detecting the phase rotation sequence, thereby solving the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence, and reducing the computational complexity.
  • An embodiment of the present invention provides another SFN indication method, which is used in the foregoing positioning system. Referring to FIG. 9, the method includes:
  • the phase rotation parameter of the first complete NSSS on the NSSS radio frame is located in cell i.
  • the terminal device measures the NSSS of the cell i without knowing any SFN initialization time, and determines the phase rotation parameter ⁇ f,i of the NSSS of the cell i during the measurement.
  • the terminal device obtains an SFN offset indication parameter of the cell i according to the phase rotation parameter ⁇ f,i of the cell i.
  • the terminal device sends the SFN offset indication parameter of the cell i to the positioning server.
  • the terminal device sends the SFN offset indication parameter of the cell i to the positioning server by using an LPP message.
  • the positioning server receives the SFN offset indication of the cell i from the terminal device. parameter.
  • the positioning server receives the SFN offset indication parameter of the cell i from the terminal device by using the LPP message.
  • the positioning server checks the SFN offset indication parameter of the cell i from the terminal device to obtain a verification result.
  • the positioning server performs verification by using the SFN offset indication parameter of the cell i from the terminal device and the SFN offset indication parameter of the cell i calculated by the positioning server to verify the phase rotation of the cell i measured by the terminal device. Is the parameter ⁇ f,i correct?
  • the positioning server feeds back the verification result to the terminal device.
  • the terminal device receives the verification result from the positioning server.
  • SFN indicating the method provided in the embodiment of the present invention first, NSSS cell i was measured by the terminal device to obtain a phase rotation parameter ⁇ f cell i, i, then based on the phase rotation parameter ⁇ f, i obtained SFN partial cell i After the indication parameter is sent to the positioning server, the positioning server checks the SFN offset indication parameter of the cell i from the terminal device to verify whether the phase rotation parameter ⁇ f,i of the cell i measured by the terminal device is correct. The result is fed back to the terminal device, so that the terminal device knows whether the measurement result is correct, thereby preventing misjudgment, and solving the misjudgment caused by the inability to distinguish the phase rotation when detecting the phase rotation sequence.
  • An embodiment of the present invention provides another SFN indication method, which is used in the foregoing positioning system. Referring to FIG. 10, the method includes:
  • the positioning server acquires an SFN offset indication parameter SFN_offset i of the cell i, where the SFN offset indication parameter indicates a relative offset between the SFN of the radio frame m of the cell i and the SFN of the radio frame n of the cell j.
  • step S101 This step is the same as step S101, and details are not described herein again.
  • the positioning server sends the SFN offset indication parameter SFN_offset i of the cell i to the terminal device.
  • step S102 This step is the same as step S102, and details are not described herein again.
  • the terminal device receives the SFN offset indication parameter SFN_offset i of the cell i from the positioning server.
  • step S103 This step is the same as step S103, and details are not described herein again.
  • the terminal device acquires a frame number SFN j of the radio frame n of the cell j .
  • step S104 This step is the same as step S104, and details are not described herein again.
  • NPRS (English name the S305, the terminal apparatus in accordance with a frame number SFN j SFN offset parameters indicative of cell i and cell j n of the radio frame, a radio frame i obtained cell m: narrowband positioning reference signal, Chinese name: positioning narrowband The reference initialization factor c init used by the reference signal).
  • the sequence generation of the NPRS is based on a pseudo-random sequence generator, and the pseudo-random sequence generator is initialized at the beginning of each OFDM (English full name: orthogonal frequency division multiplexing) symbol, which is used.
  • n' f n f mod K
  • n f the frame number SFN of the radio frame in which the OFDM symbol is located
  • is a weighting factor
  • K defines the period of the seed
  • K may be a positive integer
  • n s is the slot number of the slot in which the OFDM symbol is located
  • l is the physical symbol number of the OFDM symbol.
  • the N CP is a parameter related to the cyclic prefix.
  • the value of the N CP corresponding to the regular CP (the full name of the cyclic prefix, the Chinese full name: the cyclic prefix) is 1, and the value of the N CP corresponding to the extended CP is Is 0.
  • n' f (SFN j + SFN_offset i ) mod K.
  • n s is the slot number of the slot in which the OFDM symbol is located, and l is the physical symbol number of the OFDM symbol.
  • the N CP is a parameter related to the cyclic prefix
  • the value of the N CP corresponding to the regular CP is 1
  • the value of the N CP corresponding to the extended CP is 0.
  • the terminal device obtains an NPRS on the radio frame m of the cell i according to the sequence initialization factor c init of the cell i.
  • step S305 For details, see step S305, and details are not described herein again.
  • the positioning server acquires an SFN offset indication parameter of the cell i, where the parameter indicates a relative offset between the SFN of the cell i and the SFN of the cell j, and then the terminal device according to the relative offset And a frame number of the radio frame n of the cell j is used to determine a sequence initialization factor used by the NPRS on the radio frame m of the cell i, and the NPRS on the radio frame m of the cell i is obtained according to the sequence initialization factor, providing a The SFN offset indication parameter of cell i is used to determine the path of the NPRS.
  • the terminal device determines the sequence initialization factor of the positioning reference signal NPRS of the cell i according to the relative offset, and further determines the NPRS, so that the terminal device can detect the NPRS sent by the cell i according to the determined NPRS, and solves the problem that the NPRS is not known. Detection misjudgment and high computational complexity caused by the specific NPRS case.
  • each network element such as a terminal device and a positioning server, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may divide the function module of the terminal device, the positioning server, and the like according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division. In actual implementation, there may be another division side. formula.
  • FIG. 11 is a schematic diagram showing a possible configuration of the positioning server involved in the foregoing embodiment.
  • the positioning server 11 includes: a processing unit 1111, a sending unit 1112, and a receiving unit. 1113.
  • the processing unit 1111 is configured to support the positioning server 12 to perform the process S101 in FIG. 5, the processes S1011 and S1012 in FIG. 6, the process S205 in FIG. 9, the process S301 in FIG. 10, and the sending unit 1112 is configured to support the positioning server 12 to execute FIG.
  • the process S102 in the process S206 in FIG. 9, the process S302 in FIG. 10; the receiving unit 1113 is configured to support the positioning server 12 to execute the process S204 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 12 shows a possible structural diagram of the positioning server involved in the above embodiment.
  • the location server 12 includes a processing module 1122 and a communication module 1123.
  • the processing module 1122 is configured to control and manage the action of the positioning server.
  • the processing module 1122 is configured to support the positioning server 12 to perform the process S101 in FIG. 5, the processes S1011 and S1012 in FIG. 6, and the process S205 in FIG. In process S301.
  • Communication module 1123 is used to support communication between positioning server 12 and other network entities, such as communication with the functional modules or network entities shown in FIG. 2.
  • the location server 12 can also include a storage module 1121 for storing program code and data of the location server.
  • the processing module 1122 can be a processor or a controller, for example, a central processing unit (English name: central processing unit, English abbreviation: CPU), a general-purpose processor, a digital signal processor (English full name: digital signal processor, English) Abbreviation: DSP), ASIC (application-specific integrated circuit, English abbreviation: ASIC), field programmable gate array (English full name: field programmable gate array, English abbreviation: FPGA) or other programmable logic devices, Transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as Contains one or more microprocessor combinations, a combination of DSP and microprocessor, and more.
  • the communication module 1123 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1121 can be a memory.
  • the positioning server may be the positioning server shown in FIG.
  • the location server 11 includes a processor 1132, a transceiver 1133, a memory 1131, and a bus 1134.
  • the transceiver 1133, the processor 1132, and the memory 1131 are mutually connected by a bus 1134;
  • the bus 1134 may be a peripheral component interconnect standard (English full name: peripheral component interconnect, English abbreviation: PCI) bus or an extended industry standard structure (English full name) :extended industry standard architecture, English abbreviation: EISA) bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • FIG. 14 is a schematic diagram showing a possible structure of a terminal device involved in the foregoing embodiment.
  • the terminal device 12 includes: a receiving unit 1211, a processing unit 1212, and a sending unit. 1213.
  • the receiving unit 1211 is configured to support the terminal device 12 to perform the process S103 in FIG. 5, the process S207 in FIG. 9, the process S303 in FIG. 10;
  • the processing unit 1212 is configured to support the terminal device 12 to perform the processes S104 and S105 in FIG. Processes S201 and S202 in Fig. 9, processes S304-S306 in Fig. 10;
  • the transmitting unit 1213 is for supporting the terminal device 12 to execute the process S203 in Fig. 9. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 15 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 12 includes a processing module 1222 and a communication module 1223.
  • the processing module 1222 is configured to perform control management on the actions of the terminal device.
  • the processing module 1222 is configured to support the terminal device 12 to perform processes S104 and S105 in FIG. 5, processes S201 and S202 in FIG. 9, and the process in FIG. S304-S306 and/or other processes for the techniques described herein.
  • Communication module 1223 is used to support communication between terminal device 12 and other network entities, such as with the functional modules or network entities shown in FIG.
  • the terminal device 12 may further include a storage module 1221 for storing program codes and data of the terminal device.
  • the processing module 1222 may be a processor or a controller, for example, may be a central processing unit (English name: central processing unit, English abbreviation: CPU), a general-purpose processor, a digital signal processor (English full name: digital signal processor, English) Abbreviation: DSP), ASIC (application-specific integrated circuit, English abbreviation: ASIC), field programmable gate array (English full name: field programmable gate array, English abbreviation: FPGA) or other programmable logic devices, Transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1223 may be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1221 may be a memory.
  • the terminal device involved in the embodiment of the present invention may be the terminal device shown in FIG.
  • the terminal device 12 includes a processor 1232, a transceiver 1233, a memory 1231, and a bus 1234.
  • the transceiver 1233, the processor 1232, and the memory 1231 are connected to each other through a bus 1234;
  • the bus 1234 may be a peripheral component interconnect standard (English full name: peripheral component interconnect, English abbreviation: PCI) bus or an extended industry standard structure (English full name) :extended industry standard architecture, English abbreviation: EISA) bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种SFN指示方法、终端设备、定位服务器和系统,涉及通信领域,用于解决检测相位旋转序列时由于无法区分相位旋转造成的误判。SFN指示方法包括:定位服务器获取小区i的SFN偏移指示参数;定位服务器将小区i的SFN偏移指示参数发送给终端设备;终端设备从定位服务器接收小区i的SFN偏移指示参数;终端设备获取小区j的无线帧n的帧号;终端设备根据小区j的无线帧n的帧号与小区i的SFN偏移指示参数确定小区i的相位旋转参数,或者,得到小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子,并根据小区i的序列初始化因子得到小区i的无线帧m上的NPRS。本发明的实施例应用于OTDOA定位。

Description

SFN指示方法、终端设备、定位服务器和系统 技术领域
本发明涉及通信领域,尤其涉及一种SFN(英文全称:system frame number:中文全称:系统帧号)指示方法、终端设备、定位服务器和系统。
背景技术
移动通信标准化组织3GPP(英文全称:3rd generation partnership project,中文全称:第三代合作伙伴计划)提出了增强NB-IoT(英文全称:narrow band internet of things,中文全称:窄带物联网)课题,其中定位成为该课题的主要研究内容之一。
目前,定位技术多种多样,其中,OTDOA(英文全称:observed time difference of arrival,中文全称:观察到达时间差)定位技术是增强NB-IoT课题重点关注的技术之一。图1示出了OTDOA定位技术的示意图。在OTDOA定位技术中,多个基站01向终端设备1发送同步信号,终端设备02通过对多个基站1发送的同频信号进行测量得到到达时间信息,然后结合多个基站01的地理位置计算出终端设备02的地理位置。
具体的,NB-IoT下行发送NSSS(英文全称:narrowband secondary synchronization signal,中文全称:窄带辅同步信号)信号,终端设备通过测量多个小区的NSSS来获得这些小区的下行信号到达时间信息,从而能够支持OTDOA定位。进一步的,终端设备通过检测NSSS序列来确认NSSS信号,NSSS序列的表示方式为:
Figure PCTCN2016104784-appb-000001
其中,
n=0,1,...,131
n′=n mod 131
m=n mod 128
Figure PCTCN2016104784-appb-000002
Figure PCTCN2016104784-appb-000003
bq(m)为二进制序列;
Figure PCTCN2016104784-appb-000004
为相位旋转序列,其中,相位旋转参数
Figure PCTCN2016104784-appb-000005
nf为NSSS所在无线帧的无线帧号。
当终端设备检测NSSS序列时,要分别检测二进制序列bq(m)和相位旋转序列
Figure PCTCN2016104784-appb-000006
其中,频域上的相位旋转序列
Figure PCTCN2016104784-appb-000007
由于相位旋转参数θf的循环取值反映到时域上即表现为循环移位,当终端设备检测相位旋转序列
Figure PCTCN2016104784-appb-000008
时,无法区分相位旋转,从而导致定时测量结果出现较大误差,进而恶化定位精度,并且由于需要对相位旋转序列逐个进行比较,因此计算复杂度相对较高。
发明内容
本发明的实施例提供一种SFN指示方法、终端设备、定位服务器和系统,用于解决检测相位旋转序列时由于无法区分相位旋转造成的误判。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明实施例提供了一种系统帧号SFN指示方法,包括:定位服务器获取小区i的SFN偏移指示参数,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移;定位服务器将小区i的SFN偏移指示参数发送给终端设备。本发明实施例提供的SFN指示方法,通过定位服务器获取小区i的SFN与小区j的SFN之间的相对偏移,然后终端设备根据该相对偏移量来确定该小区i的相位旋转参数,进而根据该相位旋转参数得到相位旋转序列,使得终端设备可以根据确定的相位旋转参数来对小区i的NSSS序列进行检测,而不需要对相位旋转序列 进行检测,所以解决了检测相位旋转序列时由于无法区分相位旋转造成的误判,同时降低了计算复杂度。另外,终端设备还可以根据小区j的无线帧n的帧号以及小区i的SFN偏移指示参数,得到小区i的无线帧m上的NPRS所使用的序列初始化因子,并根据该序列初始化因子得到小区i的无线帧m上的NPRS,提供了一种利用小区i的SFN偏移指示参数来确定NPRS的途径。
在一种可能的设计中,定位服务器将小区i的SFN偏移指示参数发送给终端设备,包括:定位服务器通过LTE定位协议LPP消息将SFN偏移指示参数发送给终端设备。该设计提供了一种定位服务器将小区i的SFN偏移指示参数发送给终端设备的途径,传输方式更灵活。
在一个可能的设计中,定位服务器获取小区i的SFN偏移指示参数,包括:定位服务器从小区i获取小区i的SFN初始化时刻,从小区j获取小区j的SFN初始化时刻;定位服务器根据小区i的SFN初始化时刻以及小区j的SFN初始化时刻生成小区i的SFN偏移指示参数。该设计提供了一种获取小区i的SFN偏移指示参数的途径。
在一种可能的设计中,定位服务器将小区i的SFN偏移指示参数发送给终端设备,包括:定位服务器通过LTE定位协议A LPPa消息将SFN偏移指示参数经由小区j发送给终端设备。该设计提供了另一种定位服务器将小区i的SFN偏移指示参数发送给终端设备的途径,传输方式更灵活。
另一方面,本发明实施例提供了另一种系统帧号SFN指示方法,包括:终端设备从定位服务器接收小区i的SFN偏移指示参数,其中,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移;终端设备获取小区j的无线帧n的帧号SFNj;终端设备根据小区j的无线帧n的帧号SFNj与小区i 的SFN偏移指示参数确定小区i的相位旋转参数;或者,根据小区j的无线帧n的帧号SFNj与小区i的SFN偏移指示参数,得到小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,并根据小区i的序列初始化因子cinit得到小区i的无线帧m上的NPRS。本发明实施例提供的SFN指示方法,通过定位服务器获取小区i的SFN与小区j的SFN之间的相对偏移,然后终端设备根据该相对偏移量来确定该小区i的相位旋转参数,进而根据该相位旋转参数得到相位旋转序列,使得终端设备可以根据确定的相位旋转参数来对小区i的NSSS序列进行检测,而不需要对相位旋转序列进行检测,所以解决了检测相位旋转序列时由于无法区分相位旋转造成的误判,同时降低了计算复杂度。另外,终端设备还可以根据小区j的无线帧n的帧号以及小区i的SFN偏移指示参数,得到小区i的无线帧m上的NPRS所使用的序列初始化因子,并根据该序列初始化因子得到小区i的无线帧m上的NPRS,提供了一种利用小区i的SFN偏移指示参数来确定NPRS的途径。在一种可能的设计中,SFN偏移指示参数为定位服务器根据小区i的SFN初始化时刻和小区j的SFN初始化时刻得到。该设计提供了一种获取小区i的SFN偏移指示参数的途径。
在一种可能的设计中,终端设备从定位服务器接收小区i的SFN偏移指示参数,包括:终端设备通过LTE定位协议LPP消息从定位服务器接收SFN偏移指示参数。该设计提供了一种定位服务器将小区i的SFN偏移指示参数发送给终端设备的途径,传输方式更灵活。
在一种可能的设计中,终端设备从定位服务器接收小区i的SFN偏移指示参数,包括:终端设备通过LTE定位协议A LPPa消息接收从定位服务器经由小区j发送的SFN偏移指示参数。该设计提供了另一种定位服务器将小区i的SFN偏移指示参数发送给终端设备的途径,传输方式更灵活。
在一种可能的设计中,终端设备根据小区j的无线帧n的帧号SFNj与小区i的SFN偏移指示参数确定小区i的相位旋转参数,包括: 若小区j在无线帧n上传输的NSSS的相位旋转参数为
Figure PCTCN2016104784-appb-000009
并且如果小区i的SFN偏移指示参数SFN_offseti为奇数,则终端设备在小区i的无线帧m的下一个无线帧上接收的NSSS所使用的相位旋转参数θ′f
Figure PCTCN2016104784-appb-000010
并且如果小区i的SFN偏移指示参数SFN_offseti为偶数,则终端设备在小区i的无线帧m上接收的NSSS所使用的相位旋转参数θ′f
Figure PCTCN2016104784-appb-000011
该设计具体提供了一种根据小区j的无线帧n的帧号与小区i的SFN偏移指示参数确定小区i的相位旋转参数的途径。
在一种可能的设计中,根据小区j的无线帧n的帧号SFNj与小区i的SFN偏移指示参数,得到小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,包括:终端设备根据
Figure PCTCN2016104784-appb-000012
得到序列初始化因子cinit;其中,n′f=(SFNj+SFN_offseti)mod K。α为加权因子,K定义种子的周期,ns为正交频分复用OFDM符号所在时隙的时隙号,l为OFDM符号的物理符号序号,
Figure PCTCN2016104784-appb-000013
为小区i的小区标识,NCP为与循环前缀有关的参数。该设计具体提供了一种根据小区j的SFN初始化时刻和小区i的SFN初始化时刻确定小区i的NPRS所使用的序列初始化因子的途径。
又一方面,本发明实施例提供了一种定位服务器,包括:处理单元,用于获取小区i的SFN偏移指示参数,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移,发送单元,用于将处理单元获取的小区i的SFN偏移指示参数发送给终端设备。
再一方面,本发明实施例提供了一种终端设备,包括:
接收单元,用于从定位服务器接收小区i的SFN偏移指示参数,其中,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移;处理单元,用于获取小区j的无线帧n的帧号SFNj;和用于根据小区j的无线帧n的帧号SFNj与接收单元接收的小区i的SFN偏移指示参数确定小区i的相位旋转参数;或者,根据小区j的无线帧n的帧号SFNj与小区i的SFN偏移指示参数,得到小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,并根据小区i的序列初始化因子cinit得到小区i的无线帧m上的NPRS。
在上述本申请提供的实施例,在一种可能的设计中,小区i的无线帧m的起始时刻与小区j的无线帧n的起始时刻之间的时间差小于一个无线帧的时间长度。该设计提供了一种小区i的无线帧m与小区j的无线帧n的时间位置关系。
在上述本申请提供的实施例,在一种可能的设计中,小区i的无线帧m的初始化时刻晚于小区j的无线帧n的初始化时刻。该设计进一步提供了小区i的无线帧m与小区j的无线帧n的时间位置关系。
在上述本申请提供的实施例,在一种可能的设计中,当小区j为终端设备的服务小区时,小区j的无线帧n的SFN由终端设备根据小区j所发送的同步信号和/或广播信息确定。该设计提供了一种获取小区j的无线帧n的SFN的途径。
在上述本申请提供的实施例,在一种可能的设计中,小区i的SFN偏移指示参数为
Figure PCTCN2016104784-appb-000014
其中,tj为小区j的SFN初始化时刻,ti为小区i的SFN初始化时刻,T为无线帧的时间长度,N为正整数,表示SFN偏移指示参数的最大指示范围,
Figure PCTCN2016104784-appb-000015
为向下取整操作。该设计具体提供了根据小区j的SFN初始化时刻和小区i的SFN初始化时刻确定小区i的SFN偏移指示参数的途径。
又一方面,本发明实施例提供了又一种系统帧号SFN指示方法,包括:终端设备对小区i的NSSS进行测量以获取小区i的相位旋转参数θf,i,其中,小区i的相位旋转参数θf,i为在终端设备的服务小区的SFN=0无线帧的初始化时刻之后,位于小区i的首个完整的并且承载NSSS无线帧上的NSSS的相位旋转参数;终端设备根据小区i的相位旋转参数θf,i得到小区i的SFN偏移指示参数;终端设备将小区i的SFN偏移指示参数发送给定位服务器;终端设备接收定位服务器根据小区i的SFN偏移指示参数进行校验后得到的校验结果。本发明实施例提供的SFN指示方法,通过终端设备首先对小区i的NSSS进行测量以得到小区i的相位旋转参数θf,i,然后根据该相位旋转参数θf,i得到小区i的SFN偏移指示参数,发送给定位服务器后,由定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验,以验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确,并将结果反馈给终端设备,以便终端设备获知测量结果是否正确,从而防止误判,解决了检测相位旋转序列时由于无法区分相位旋转造成的误判。
在一种可能的设计中,终端设备根据小区i的相位旋转参数θf,i得到小区i的SFN偏移指示参数,包括:若小区i的承载NSSS无线帧的初始化时刻与服务小区的SFN=0的无线帧初始化时刻之间的时间差大于时间差门限Tthreshold,则小区i的SFN偏移指示参数
Figure PCTCN2016104784-appb-000016
否则,小区i的SFN偏移指示参数
Figure PCTCN2016104784-appb-000017
该设计具体提供了一种根据小区i的相位旋转参数得到小区i的SFN偏移指示参数的途径。
在一种可能的设计中,终端设备将小区i的SFN偏移指示参数发送给定位服务器,包括:终端设备通过LTE定位协议LPP消息将小区i的SFN偏移指示参数发送给定位服务器。该设计具体提供了 一种将小区i的SFN偏移指示参数发送给定位服务器的途径,传输方式更灵活。
又一方面,本发明实施例提供了一种系统帧号SFN指示方法,包括:定位服务器接收来自终端设备的小区i的SFN偏移指示参数,其中,小区i的SFN偏移指示参数为终端设备根据小区i的相位旋转参数θf,i得到,小区i的相位旋转参数θf,i为终端设备对小区i的NSSS进行测量以得到,小区i的相位旋转参数θf,i为在终端设备的服务小区的SFN=0无线帧的初始化时刻之后,位于小区i的首个完整的并且承载NSSS无线帧上的NSSS的相位旋转参数;定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验以得到校验结果;定位服务器将校验结果反馈给终端设备。本发明实施例提供的SFN指示方法,通过终端设备首先对小区i的NSSS进行测量以得到小区i的相位旋转参数θf,i,然后根据该相位旋转参数θf,i得到小区i的SFN偏移指示参数,发送给定位服务器后,由定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验,以验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确,并将结果反馈给终端设备,以便终端设备获知测量结果是否正确,从而防止误判,解决了检测相位旋转序列时由于无法区分相位旋转造成的误判。
在一种可能的设计中,定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验,包括:定位服务器利用来自终端设备的小区i的SFN偏移指示参数以及定位服务器自己计算得到的小区i的SFN偏移指示参数来进行校验,以验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确。该设计具体提供了一种对来自终端设备的小区i的SFN偏移指示参数进行校验的途径,使得可以间接验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确。
在一种可能的设计中,终端设备将小区i的SFN偏移指示参数发送给定位服务器,包括:定位服务器通过LPP消息从终端设备接收小区i的SFN偏移指示参数。该设计具体提供了一种将小区i的 SFN偏移指示参数发送给定位服务器的途径,传输方式更灵活。
又一方面,本发明实施例提供了一种终端设备,该终端设备可以实现上述方法示例中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该终端设备的结构中包括处理器和收发器,该处理器被配置为支持该终端设备执行上述方法中相应的功能。该收发器用于支持该终端设备与其他网元之间的通信。该终端设备还可以包括存储器,该存储器用于与处理器耦合,其保存该终端设备必要的程序指令和数据。
又一方面,本发明实施例提供了一种定位服务器置,该定位服务器可以实现上述方法实施例中定位服务器所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该定位服务器的结构中包括处理器和收发器,该处理器被配置为支持该定位服务器执行上述方法中相应的功能。该收发器用于支持该定位服务器与其他网元之间的通信。该定位服务器还可以包括存储器,该存储器用于与处理器耦合,其保存该定位服务器必要的程序指令和数据。
又一方面,本发明实施例提供了一种定位系统,该系统包括上述方面所述的可以实现终端设备的功能的装置和可以实现定位服务器的功能的装置。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述定位服务器所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相较于现有技术,本发明实施例提供的方案中,定位服务器获 取小区i的SFN与小区j的SFN之间的相对偏移,然后终端设备根据该相对偏移量来确定该小区i的相位旋转参数,进而根据该相位旋转参数得到相位旋转序列,使得终端设备可以根据确定的相位旋转参数来对小区i的NSSS序列进行检测,而不需要对相位旋转序列进行检测,所以解决了检测相位旋转序列时由于无法区分相位旋转造成的误判。同样地,终端设备根据该相对偏移量来确定该小区i的定位参考信号NPRS的序列初始化因子,进而确定NPRS,使得终端设备可以根据确定的NPRS来对小区i发送的NPRS进行检测,解决了在不知道具体NPRS的情况下造成的检测误判和高计算复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的OTDOA定位技术的示意图;
图2为本发明实施例提供的定位系统的示意图;
图3为本发明实施例提供的一种终端设备的结构示意图;
图4为本发明实施例提供的一种定位服务器的结构示意图;
图5为本发明实施例提供的一种SFN指示方法的流程示意图;
图6为本发明实施例提供的一种获取小区i的SFN偏移指示参数的流程示意图;
图7为本发明实施例提供的一种小区i和小区j的SFN初始化时刻的示意图;
图8为本发明实施例提供的另一种小区i和小区j的SFN初始化时刻的示意图;
图9为本发明实施例提供的另一种SFN指示方法的流程示意 图;
图10为本发明实施例提供的又一种SFN指示方法的流程示意图;
图11为本发明实施例提供的另一种定位服务器的结构示意图;
图12为本发明实施例提供的又一种定位服务器的结构示意图;
图13为本发明实施例提供的再一种定位服务器的结构示意图;
图14为本发明实施例提供的另一种终端设备的结构示意图;
图15为本发明实施例提供的又一种终端设备的结构示意图;
图16为本发明实施例提供的再一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种定位系统,参照图2中所示,包括:定位服务器11、终端设备12、eNB 13、MME(英文全称:mobility management entity,中文全称:移动性管理实体)14、服务网关15、PDN(英文全称:packet data network,中文全称:分组数据网络)网关16。定位服务器11是网络侧的一种专门用来支持定位功能的实体。在控制面定位方案中,定位服务器是E-SMLC(英文全称:evolved serving mobile location center,增强服务移动位置中心)112或GMLC(英文全称:gateway mobile location center,中文全称:网关移动位置中心),而在用户面定位方案中,定位服务器是SLP(英文全称:SUPL(secure user plane location)location platform,安全用户面位置平台)。另外,MME 14负责核心网与终端设备12之间信令处理,服务网关15和PDN网关16负责数据包转发。
参照图3中所示,终端设备12可以包括处理器1201,处理器1201可以包括用于终端设备12的音频/视频和逻辑功能的电路。例如,处理器1201可以包括数字信号处理器设备、微处理器设备、模数转换器、数模转换器等等。可以根据这些设备各自的能力而在这些设备之间分配移动设备的控制和信号处理功能。处理器还可以包括内部语音编码器VC 12011、内部数据调制解调器DM 12012等等。此外,处理器1201可以包括操作一个或多个软件程序的功能,所述软件程序可以存储在存储器中。通常,处理器和所存储的软件指令可以被配置为使终端设备12执行动作。例如,处理器能够操作连接程序。
终端设备12还可以包括用户接口,其例如可以包括耳机或扬声器1202、麦克风1203、输出装置(例如显示器)1204、输入装置1205等等,其可操作地耦合到处理器。在这一点上,处理器可1201以包括用户接口电路,其被配置为至少控制所述用户接口的一个或多个元件(诸如扬声器、麦克风、显示器等等)的一些功能。处理器和/或包括处理器的用户接口电路可以被配置为通过存储在处理器可访问的存储器中的计算机程序指令(例如软件和/或固件)来控制用户接口的一个或多个元件的一个或多个功能。尽管并未示出,但是终端设备12可以包括用于向与移动设备相关的各种电路供电的电池,所述电路例如为提供机械振动来作为可检测输出的电路。输入装置可以包括允许所述装置接收数据的设备,诸如小键盘、触摸显示器、游戏杆和/或至少一个其他输入设备等。
终端设备12还可以包括用于共享和/或获得数据的一个或多个连接电路模块1206。例如,所述终端设备12可以包括接收机12061和发射机12062,与天线12063相连分别用于发送和接收RF信号。所述终端设备12可以包括短距射频RF收发机和/或检测器12064,从而可以根据RF技术与电子设备共享和/或从电子设备获得数据。所述终端设备12可以包括其他短距收发机,诸如例如红外IR收发机12065、蓝牙收发机12066、无线通用串行总线USB收发机12067 等等。蓝牙收发机12066能够根据低功耗或超低功耗蓝牙技术操作。在这一点上,终端设备12并且更具体地是短距收发机能够向和/或从在所述装置附近(诸如在10米内)的电子设备发送和/或接收数据。尽管并未示出,所述终端设备12能够根据各种无线联网技术来向和/或从电子设备发送和/或接收数据,这些技术包括:Wi-Fi、Wi-Fi低功耗、WLAN技术,诸如IEEE 802.11技术、IEEE 802.15技术、IEEE 802.16技术等等。
终端设备12可以包括可存储与移动用户相关的信息元素的存储器,诸如用户身份模块SIM 1207。除了SIM 1207,所述装置还可以包括其他可移除和/或固定存储器。终端设备12可以包括易失性存储器1208和/或非易失性存储器1209。例如,易失性存储器可以包括随机存取存储器RAM,其包括动态RAM和/或静态RAM、芯片上和/或芯片外高速缓冲存储器等等。非易失性存储器可以是嵌入式的和/或可移除的,其可以包括例如只读存储器、闪存存储器、磁性存储设备,例如硬盘、软盘驱动器、磁带等等、光盘驱动器和/或介质、非易失性随机存取存储器NVRAM等等。类似于易失性存储器,非易失性存储器可以包括用于数据的暂时存储的高速缓冲区域。易失性和/或非易失性存储器的至少一部分可以嵌入到处理器中。存储器可以存储一个或多个软件程序、指令、信息块、数据等等,其可以由所述终端设备12用来执行移动终端的功能。例如,存储器可以包括能够唯一标识终端设备12的标识符,诸如国际移动设备标志IMEI码。
参照图4中所示,定位服务器11包括处理器1101、通信接口1102、易失存储器1103和非易失存储器1104。通信接口1102用于定位服务器11与其他通信设备进行通信,例如,通信接口1102可以包括以太网接口、有线或无线网络接口等。易失性存储器1103可以包括随机存取存储器RAM,其包括动态RAM和/或静态RAM、芯片上和/或芯片外高速缓冲存储器等等。非易失性存储器1104可以是嵌入式的和/或可移除的,其可以包括例如只读存储器、闪存存 储器、磁性存储设备,例如硬盘、软盘驱动器、磁带等等、光盘驱动器和/或介质、非易失性随机存取存储器NVRAM等等。类似于易失性存储器1103,非易失性存储器1104可以包括用于数据的暂时存储的高速缓冲区域。易失性和/或非易失性存储器的至少一部分可以嵌入到处理器1101中。存储器可以存储一个或多个软件程序、指令、信息块、数据等等,其可以由定位服务器11用来执行定位服务器的功能。
本发明实施例提供的SFN指示方法、终端设备、定位服务器和系统,通过获取小区i的SFN与小区j的SFN之间的SFN偏移量,利用该SFN偏移量和小区j的SFN号来生成NSSS的相位旋转参数,由于小区i的SFN与小区j的SFN是确定的,则产生的SFN偏移量以及最终生成的NSSS的相位旋转参数也是确定的,使得终端设备可以根据确定的相位旋转参数来对小区i的NSSS序列进行检测,而不需要对相位旋转序列进行检测,所以解决了检测相位旋转序列时由于无法区分相位旋转造成的误判。需要注意的是,对于任何需要SFN信息的定位设计,同样可以采用本发明所提供的方法来指示SFN。
本发明实施例提供了一种SFN指示方法,用于上述定位系统,参照图5中所示,该方法包括:
S101、定位服务器获取小区i的SFN偏移指示参数,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移。
小区j可以是终端设备所在的服务小区,或者是选择作为SFN参考基准的其他小区。
具体的,小区i的SFN偏移指示参数可以根据配置来获取,得到的相对偏移是固定不变的;或者参照图6中所示,可以通过步骤S1011-S1012来自动获取,与上述固定配置相比,更加灵活。
S1011、定位服务器从小区i获取小区i的SFN初始化时刻,从 小区j获取小区j的SFN初始化时刻。
以定位服务器为E-SMLC为例进行说明。按照现有的协议规范,E-SMLC在向每个待测量小区收集支持OTDOA定位所需的相关信息时,每个小区会将一个与SFN相关的信息上报给E-SMLC,该参数为“sFNInitialisationTime”,该参数指示了该小区的SFN初始化为0的时刻,单位为秒。
S1012、定位服务器根据小区i的SFN初始化时刻以及小区j的SFN初始化时刻生成小区i的SFN偏移指示参数。
仍以定位服务器为E-SMLC为例进行说明。E-SMLC为小区i确定小区i的SFN偏移指示参数。该SFN偏移指示参数,指示了以小区j的无线帧n为基准,小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移,即指示了小区j的无线帧n的SFN与该无线帧初始化时刻之后小区i的首个完整无线帧m的SFN之间的差值。小区i的无线帧m为小区j的无线帧n的初始化时刻之后首个完整无线帧,小区i的无线帧m的起始时刻与小区j的无线帧n的起始时刻之间的时间差小于一个无线帧的时间长度,小区i的无线帧m的初始化时刻晚于小区j的无线帧n的初始化时刻。该SFN偏移指示参数,可以根据小区j上报的SFN初始化时刻以及小区i上报的SFN初始化时刻,通过下述公式确定:
Figure PCTCN2016104784-appb-000018
其中,SFN_offseti即为待小区i的SFN偏移指示参数;tj为小区j上报的小区j的SFN初始化时刻,ti为小区i上报的小区i的SFN初始化时刻,T为无线帧的时间长度,对于LTE,T=0.01秒;N为正整数,表示SFN偏移指示参数的最大指示范围,对于LTE,N=8;
Figure PCTCN2016104784-appb-000019
为向下取整操作。
对于图7中的示例来说,假设图中的1-4表示SFN,tj-ti小于一个无线帧的时间长度T,所以
Figure PCTCN2016104784-appb-000020
值为0,因此SFN_offseti值为0。
可选的,当小区j为终端设备的服务小区时,小区j的无线帧n的SFN由终端设备根据小区j所发送的同步信号和/或广播信息确定,示例性的,单独对于同步信号来说,终端设备通过对小区j所发送的NSSS进行检测获得小区j的无线帧n的SFN;单独对于广播信息来说,终端设备通过读取小区j的NPBCH(英文全称:narrowband physical broadcast channel,中文全称:窄带物理广播信道)中的SFN信息域来获得小区j的无线帧n的SFN;对于同步信号和广播信息来说,终端设备从NSSS和广播信息中分别获得相应的SFN信息,组成完整的小区j的无线帧n的SFN。并且E-SMLC也可以为终端设备的服务小区确定SFN偏移指示参数为默认值0,即SFN_offsetj=0。
S102、定位服务器将小区i的SFN偏移指示参数发送给终端设备。
仍以定位服务器为E-SMLC为例进行说明。
可选的,定位服务器E-SMLC将小区i的SFN偏移指示参数通过LPP(英文全称:LTE positioning protocol,中文全称:LTE定位协议)消息的形式发送给终端设备,小区i的SFN指示参数与该小区的Cell ID(英文全称:cell identification,中文全称:小区识别码)对应。
可选的,定位服务器E-SMLC将小区i的SFN偏移指示参数通过LPPa(英文全称:LTE positioning protocol A,中文全称:LTE定位协议A)消息的形式发送给小区j,由小区j将收到的SFN偏移指示参数连同所对应的Cell ID通过小区j上的广播消息发送给终端设备。
S103、终端设备从定位服务器接收小区i的SFN偏移指示参数。
S104、终端设备获取小区j的无线帧n的帧号SFNj
具体的,终端设备可以通过与小区j的下行同步过程以及读取小区j的广播信息来获取小区j的无线帧n的帧号SFNj
S105、终端设备根据小区j的SFNj与小区i的SFN偏移指示参 数确定小区i的相位旋转参数。
按照TS36.211的规定,NB-IoT的NSSS在满足nfmod 2=0的无线帧中的子帧#9中传输。如果小区j在无线帧n上传输NSSS并且该NSSS使用的相位旋转参数为
Figure PCTCN2016104784-appb-000021
并且如果小区i的SFN偏移指示参数SFN_offseti为奇数,则小区i的无线帧m上没有NSSS,那么也就意味着小区i的下一个无线帧上将承载NSSS,因此小区i在无线帧m的下一个无线帧上发送NSSS,并且该NSSS所使用的相位旋转参数为:
Figure PCTCN2016104784-appb-000022
进而可以推知后续无线帧上的NSSS所使用的相位旋转参数。
并且如果小区i的SFN偏移指示参数SFN_offseti为偶数,则该无线帧将承载NSSS,该NSSS所使用相位旋转参数为:
Figure PCTCN2016104784-appb-000023
进而可以推知后续无线帧上的NSSS所使用的相位旋转参数。
示例性的,参照图8中所示,假设小区j的无线帧0的相位旋转参数θf为(33/132)*0=0,小区j的无线帧0初始化时刻(SFN=0)之后小区i的首个完整无线帧SFN=7,SFN_offseti=7为奇数,小区i的下一个无线帧(SFN=8)上将承载NSSS,因此小区i的SFN=8无线帧上的NSSS所使用相位旋转参数为:
Figure PCTCN2016104784-appb-000024
其他值可以依次类推得到(33/132)*0、(33/132)*1、(33/132)*2。
终端设备可以根据该相位旋转参数得到相位旋转序列
Figure PCTCN2016104784-appb-000025
在对NSSS序列进行检测时,不需要再对相位旋转序列进行检测。
本发明实施例提供的SFN指示方法,通过定位服务器获取小区 i的SFN与小区j的SFN之间的相对偏移,然后终端设备根据该相对偏移量来确定该小区i的相位旋转参数,进而根据该相位旋转参数得到相位旋转序列,使得终端设备可以根据确定的相位旋转参数来对小区i的NSSS序列进行检测,而不需要对相位旋转序列进行检测,所以解决了检测相位旋转序列时由于无法区分相位旋转造成的误判,同时降低了计算复杂度。
本发明实施例提供了另一种SFN指示方法,用于上述定位系统,参照图9中所示,该方法包括:
S201、终端设备对小区i的NSSS进行测量以得到小区i的相位旋转参数θf,i,其中,小区i的相位旋转参数θf,i为在终端设备的服务小区的SFN=0无线帧的初始化时刻之后,位于小区i的首个完整的并且承载NSSS无线帧上的NSSS的相位旋转参数。
此时,终端设备在不知道任何SFN初始化时刻的情况下对小区i的NSSS进行测量,并在测量期间确定小区i的NSSS的相位旋转参数θf,i
S202、终端设备根据小区i的相位旋转参数θf,i得到小区i的SFN偏移指示参数。
具体的,若小区i的承载NSSS无线帧的初始化时刻与服务小区的SFN=0的无线帧初始化时刻之间的时间差大于时间差门限Tthreshold,则小区i的SFN偏移指示参数
Figure PCTCN2016104784-appb-000026
否则,小区i的SFN偏移指示参数
Figure PCTCN2016104784-appb-000027
S203、终端设备将小区i的SFN偏移指示参数发送给定位服务器。
具体的,终端设备通过LPP消息将小区i的SFN偏移指示参数发送给定位服务器。
S204、定位服务器接收来自终端设备的小区i的SFN偏移指示 参数。
具体的,定位服务器通过LPP消息从终端设备接收小区i的SFN偏移指示参数。
S205、定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验以得到检验结果。
具体的,定位服务器利用来自终端设备的小区i的SFN偏移指示参数以及定位服务器自己计算得到的小区i的SFN偏移指示参数来进行校验,以验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确,
S206、定位服务器将校验结果反馈给终端设备。
S207、终端设备接收来自定位服务器的校验结果。
本发明实施例提供的SFN指示方法,通过终端设备首先对小区i的NSSS进行测量以得到小区i的相位旋转参数θf,i,然后根据该相位旋转参数θf,i得到小区i的SFN偏移指示参数,发送给定位服务器后,由定位服务器对来自终端设备的小区i的SFN偏移指示参数进行校验,以验证终端设备测量得到的小区i的相位旋转参数θf,i是否正确,并将结果反馈给终端设备,以便终端设备获知测量结果是否正确,从而防止误判,解决了检测相位旋转序列时由于无法区分相位旋转造成的误判。
本发明实施例提供了另一种SFN指示方法,用于上述定位系统,参照图10中所示,该方法包括:
S301、定位服务器获取小区i的SFN偏移指示参数SFN_offseti,其中,SFN偏移指示参数指示小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移。
该步骤与步骤S101相同,在此不再赘述。
S302、定位服务器将小区i的SFN偏移指示参数SFN_offseti发送给终端设备。
该步骤与步骤S102相同,在此不再赘述。
S303、终端设备从定位服务器接收小区i的SFN偏移指示参数SFN_offseti
该步骤与步骤S103相同,在此不再赘述。
S304、终端设备获取小区j的无线帧n的帧号SFNj
该步骤与步骤S104相同,在此不再赘述。
S305、终端设备根据小区i的SFN偏移指示参数和小区j的无线帧n的帧号SFNj,得到小区i的无线帧m上的NPRS(英文全称:narrowband positioning reference signal,中文全称:窄带定位参考信号)所使用的序列初始化因子cinit
目前NPRS的序列生成基于伪随机序列生成器,在每个OFDM(英文全称:orthogonal frequency division multiplexing,中文全称:正交频分复用)符号开始时对伪随机序列生成器进行初始化,所使用的初始化因子cinit与该OFDM符号所在的无线帧的帧号SFN有关,即:cinit=g(SFN),g(·)为SFN到cinit的映射函数。
现有技术中,
Figure PCTCN2016104784-appb-000028
其中,n′f=nfmod K,nf为该OFDM符号所在无线帧的帧号SFN,α为加权因子,K定义种子的周期,K可以是正整数。ns为该OFDM符号所在时隙的时隙号,l为该OFDM符号的物理符号序号,
Figure PCTCN2016104784-appb-000029
为该小区的标识,NCP为与循环前缀有关的参数,常规CP(英文全称:cyclic prefix,中文全称:循环前缀)对应的NCP的取值为1,扩展CP对应的NCP的取值为0。
若小区i的无线帧m上的OFDM符号p上发送NPRS,那么终端设备可以确定该OFDM符号上NPRS信号生成所使用的序列初始化因子为cinit=gi(SFNj+SFN_offseti),其中gi(·)为小区i所使用的SFN到cinit的映射函数,对于本发明实施例而言,具体的:
Figure PCTCN2016104784-appb-000030
其中,n′f=(SFNj+SFN_offseti)mod K。ns为该OFDM符号所在时隙的时隙号,l为该OFDM符号的物理符号序号,
Figure PCTCN2016104784-appb-000031
为小区i的小区标识,NCP为与循环前缀有关的参数,常规CP对应的NCP的取值为1,扩展 CP对应的NCP的取值为0。
S306、终端设备根据小区i的序列初始化因子cinit得到小区i的无线帧m上的NPRS。
具体见步骤S305,在此不再赘述。
本发明实施例提供的SFN指示方法,定位服务器获取小区i的SFN偏移指示参数,该参数指示小区i的SFN与小区j的SFN之间的相对偏移,然后终端设备根据该相对偏移量和小区j的无线帧n的帧号来确定该小区i的无线帧m上的NPRS所使用的序列初始化因子,并根据该序列初始化因子得到小区i的无线帧m上的NPRS,提供了一种利用小区i的SFN偏移指示参数来确定NPRS的途径。终端设备根据该相对偏移量来确定该小区i的定位参考信号NPRS的序列初始化因子,进而确定NPRS,使得终端设备可以根据确定的NPRS来对小区i发送的NPRS进行检测,解决了在不知道具体NPRS的情况下造成的检测误判和高计算复杂度。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备和定位服务器等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对终端设备和定位服务器等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方 式。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的定位服务器的一种可能的结构示意图,定位服务器11包括:处理单元1111、发送单元1112、接收单元1113。处理单元1111用于支持定位服务器12执行图5中的过程S101,图6中过程S1011和S1012,图9中的过程S205,图10中过程S301;发送单元1112用于支持定位服务器12执行图5中的过程S102,图9中的过程S206,图10中的过程S302;接收单元1113用于支持定位服务器12执行图9中的过程S204。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的定位服务器的一种可能的结构示意图。定位服务器12包括:处理模块1122和通信模块1123。处理模块1122用于对定位服务器的动作进行控制管理,例如,处理模块1122用于支持定位服务器12执行图5中的过程S101,图6中过程S1011和S1012,图9中的过程S205,图10中过程S301。通信模块1123用于支持定位服务器12与其他网络实体的通信,例如与图2中示出的功能模块或网络实体之间的通信。定位服务器12还可以包括存储模块1121,用于存储定位服务器的程序代码和数据。
其中,处理模块1122可以是处理器或控制器,例如可以是中央处理器(英文全称:central processing unit,英文简称:CPU),通用处理器,数字信号处理器(英文全称:digital signal processor,英文简称:DSP)、专用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC)、现场可编程门阵列(英文全称:field programmable gate array,英文简称:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如 包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1123可以是收发器、收发电路或通信接口等。存储模块1121可以是存储器。
当处理模块1122为处理器,通信模块1123为收发器,存储模块1121为存储器时,本发明实施例所涉及的定位服务器可以为图13中所示的定位服务器。
参阅图13所示,该定位服务器11包括:处理器1132、收发器1133、存储器1131以及总线1134。其中,收发器1133、处理器1132以及存储器1131通过总线1134相互连接;总线1134可以是外设部件互连标准(英文全称:peripheral component interconnect,英文简称:PCI)总线或扩展工业标准结构(英文全称:extended industry standard architecture,英文简称:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述实施例中所涉及的终端设备的一种可能的结构示意图,终端设备12包括:接收单元1211、处理单元1212、发送单元1213。接收单元1211用于支持终端设备12执行图5中的过程S103,图9中的过程S207,图10中的过程S303;处理单元1212用于支持终端设备12执行图5中的过程S104和S105,图9中的过程S201和S202,图10中的过程S304-S306;发送单元1213用于支持终端设备12执行图9中的过程S203。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备12包括:处理模块1222和通信模块1223。处理模块1222用于对终端设备的动作进行控制管理,例如,处理模块1222用于支持终端设备12执行图5中的过程S104和S105,图9中的过程S201和S202,图10中的过程 S304-S306和/或用于本文所描述的技术的其它过程。通信模块1223用于支持终端设备12与其他网络实体的通信,例如与图1中示出的功能模块或网络实体之间的通信。终端设备12还可以包括存储模块1221,用于存储终端设备的程序代码和数据。
其中,处理模块1222可以是处理器或控制器,例如可以是中央处理器(英文全称:central processing unit,英文简称:CPU),通用处理器,数字信号处理器(英文全称:digital signal processor,英文简称:DSP)、专用集成电路(英文全称:application-specific integrated circuit,英文简称:ASIC)、现场可编程门阵列(英文全称:field programmable gate array,英文简称:FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1223可以是收发器、收发电路或通信接口等。存储模块1221可以是存储器。
当处理模块1222为处理器,通信模块1223为收发器,存储模块1221为存储器时,本发明实施例所涉及的终端设备可以为图16中所示的终端设备。
参阅图16所示,该终端设备12包括:处理器1232、收发器1233、存储器1231以及总线1234。其中,收发器1233、处理器1232以及存储器1231通过总线1234相互连接;总线1234可以是外设部件互连标准(英文全称:peripheral component interconnect,英文简称:PCI)总线或扩展工业标准结构(英文全称:extended industry standard architecture,英文简称:EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种系统帧号SFN指示方法,其特征在于,包括:
    定位服务器获取小区i的SFN偏移指示参数,其中,所述SFN偏移指示参数指示所述小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移;
    所述定位服务器将所述小区i的SFN偏移指示参数发送给终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述小区i的无线帧m的初始化时刻与所述小区j的无线帧n的初始化时刻之间的时间差小于一个无线帧的时间长度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述小区i的无线帧m的初始化时刻晚于所述小区j的无线帧n的初始化时刻。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,当所述小区j为所述终端设备的服务小区时,所述小区j的无线帧n的SFN由所述终端设备根据所述小区j所发送的同步信号和/或广播信息确定。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述定位服务器将所述小区i的SFN偏移指示参数发送给所述终端设备,包括:
    所述定位服务器通过LTE定位协议LPP消息将所述SFN偏移指示参数发送给所述终端设备。
  6. 根据权利要求1-4中任一项所述的方法,其特征在于,所述定位服务器将所述小区i的SFN偏移指示参数发送给所述终端设备,包括:
    所述定位服务器通过LTE定位协议A LPPa消息将所述SFN偏移指示参数经由所述小区j发送给所述终端设备。
  7. 一种系统帧号SFN指示方法,其特征在于,包括:
    终端设备从定位服务器接收小区i的SFN偏移指示参数,其中, 所述SFN偏移指示参数指示所述小区i的无线帧m的SFN与所述小区j的无线帧n的SFN之间的相对偏移;
    所述终端设备获取小区j的无线帧n的帧号SFNj
    所述终端设备根据所述小区j的无线帧n的帧号SFNj与所述小区i的SFN偏移指示参数确定所述小区i的相位旋转参数,
    或者,
    根据所述小区j的无线帧n的帧号SFNj与所述小区i的SFN偏移指示参数,得到所述小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,并根据所述小区i的序列初始化因子cinit得到所述小区i的无线帧m上的NPRS。
  8. 根据权利要求7所述的方法,其特征在于,所述小区i的无线帧m的初始化时刻与所述小区j的无线帧n的初始化时刻之间的时间差小于一个无线帧的时间长度。
  9. 根据权利要求7或8所述的方法,其特征在于,所述小区i的无线帧m的初始化时刻晚于所述小区j的无线帧n的初始化时刻。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,当所述小区j为所述终端设备的服务小区时,所述无线帧n的SFN由所述终端设备根据所述小区j所发送的同步信号和/或广播信息确定。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述终端设备从定位服务器接收小区i的SFN偏移指示参数,包括:
    所述终端设备通过LTE定位协议LPP消息从所述定位服务器接收所述SFN偏移指示参数。
  12. 根据权利要求7-10中任一项所述的方法,其特征在于,所述终端设备从定位服务器接收小区i的SFN偏移指示参数,包括:
    所述终端设备通过LTE定位协议A LPPa消息接收从所述定位服务器经由所述小区j发送的所述SFN偏移指示参数。
  13. 根据权利要求7-12中任一项所述的方法,其特征在于,所述终端设备根据所述小区j的无线帧n的帧号SFNj与所述小区i的SFN偏移指示参数确定所述小区i的相位旋转参数,包括:
    若所述小区j在所述无线帧n上传输的NSSS的相位旋转参数为
    Figure PCTCN2016104784-appb-100001
    并且如果所述小区i的SFN偏移指示参数SFN_offseti为奇数,则所述终端设备在所述小区i的无线帧m的下一个无线帧上接收的NSSS所使用的相位旋转参数θ′f
    Figure PCTCN2016104784-appb-100002
    并且如果所述小区i的SFN偏移指示参数SFN_offseti为偶数,则所述终端设备在所述小区i的无线帧m上接收的NSSS所使用的相位旋转参数θ′f
    Figure PCTCN2016104784-appb-100003
  14. 根据权利要求7-12中任一项所述的方法,其特征在于,所述根据所述小区j的无线帧n的帧号SFNj与所述小区i的SFN偏移指示参数,得到所述小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,包括:
    所述终端设备根据
    Figure PCTCN2016104784-appb-100004
    得到所述序列初始化因子cinit
    其中,n′f=(SFNj+SFN_offseti)mod K,α为加权因子,K定义种子的周期,ns为正交频分复用OFDM符号所在时隙的时隙号,l为所述OFDM符号的物理符号序号,
    Figure PCTCN2016104784-appb-100005
    为所述小区i的小区标识,NCP为与循环前缀有关的参数。
  15. 一种定位服务器,其特征在于,包括:
    处理单元,用于获取小区i的SFN偏移指示参数,其中,所述SFN偏移指示参数指示所述小区i的无线帧m的SFN与小区j的无线帧n的SFN之间的相对偏移;
    发送单元,用于将所述处理单元获取的所述小区i的SFN偏移指 示参数发送给终端设备。
  16. 根据权利要求15所述的定位服务器,其特征在于,所述小区i的无线帧m的初始化时刻与所述小区j的无线帧n的初始化时刻之间的时间差小于一个无线帧的时间长度。
  17. 根据权利要求15或16所述的定位服务器,其特征在于,所述小区i的无线帧m的初始化时刻晚于所述小区j的无线帧n的初始化时刻。
  18. 根据权利要求15-17中任一项所述的定位服务器,其特征在于,当所述小区j为所述终端设备的服务小区时,所述小区j的无线帧n的SFN由所述终端设备根据所述小区j所发送的同步信号和/或广播信息确定。
  19. 根据权利要求15-18中任一项所述的定位服务器,其特征在于,所述发送单元,具体用于:
    通过LTE定位协议LPP消息将所述SFN偏移指示参数发送给所述终端设备。
  20. 根据权利要求15-18中任一项所述的定位服务器,其特征在于,所述发送单元,具体用于:
    通过LTE定位协议A LPPa消息将所述SFN偏移指示参数经由所述小区j发送给所述终端设备。
  21. 一种终端设备,其特征在于,包括:
    接收单元,用于从定位服务器接收小区i的SFN偏移指示参数,其中,其中,所述SFN偏移指示参数指示所述小区i的无线帧m的SFN与所述小区j的无线帧n的SFN之间的相对偏移;
    处理单元,用于获取小区j的无线帧n的帧号SFNj
    所述处理单元,还用于根据所述小区j的无线帧n的帧号SFNj与所述接收单元接收的所述小区i的SFN偏移指示参数确定所述小区i的相位旋转参数,
    或者,
    根据所述小区j的无线帧n的帧号SFNj与所述小区i的SFN偏移指示参数,得到所述小区i的无线帧m上的窄带定位参考信号NPRS所使用的序列初始化因子cinit,并根据所述小区i的序列初始化因子cinit得到所述小区i的无线帧m上的NPRS。
  22. 根据权利要求21所述的终端设备,其特征在于,所述小区i的无线帧m的初始化时刻与所述小区j的无线帧n的初始化时刻之间的时间差小于一个无线帧的时间长度。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述小区i的无线帧m的初始化时刻晚于所述小区j的无线帧n的初始化时刻。
  24. 根据权利要求21-23中任一项所述的终端设备,其特征在于,当所述小区j为所述终端设备的服务小区时,所述无线帧n的SFN由所述终端设备根据所述小区j所发送的同步信号和/或广播信息确定。
  25. 根据权利要求21-24中任一项所述的终端设备,其特征在于,所述接收单元,具体用于:
    通过LTE定位协议LPP消息从所述的定位服务器接收所述SFN偏移指示参数。
  26. 根据权利要求21-24中任一项所述的终端设备,其特征在于,所述接收单元,具体用于:
    通过LTE定位协议A LPPa消息接收从所述的定位服务器经由所述小区j发送的所述SFN偏移指示参数。
  27. 根据权利要求21-26中任一项所述的终端设备,其特征在于,所述处理单元,具体用于:
    若所述小区j在所述无线帧n上传输的NSSS的相位旋转参数为
    Figure PCTCN2016104784-appb-100006
    所述接收单元具体用于,如果所述小区i的SFN偏移指示参数SFN_offseti为奇数,则在所述小区i的无线帧m的下一个无线帧上接收的NSSS所使用的相位旋转参数θ′f为:
    Figure PCTCN2016104784-appb-100007
    或者
    所述接收单元具体用于,如果所述小区i的SFN偏移指示参数SFN_offseti为偶数,则在所述小区i的无线帧m上接收的NSSS所使用的相位旋转参数θ′f
    Figure PCTCN2016104784-appb-100008
  28. 根据权利要求21-26中任一项所述的终端设备,其特征在于,所述处理单元,具体用于:
    根据
    Figure PCTCN2016104784-appb-100009
    得到所述序列初始化因子cinit
    其中,n′f=(SFNj+SFN_offseti)mod K,α为加权因子,K定义种子的周期,ns为正交频分复用OFDM符号所在时隙的时隙号,l为所述OFDM符号的物理符号序号,
    Figure PCTCN2016104784-appb-100010
    为所述小区i的小区标识,NCP为与循环前缀有关的参数。
  29. 一种定位系统,其特征在于,包括如权利要求15-20中任一项所述的定位服务器和如权利要求21-28中任一项所述的终端设备。
PCT/CN2016/104784 2016-11-04 2016-11-04 Sfn指示方法、终端设备、定位服务器和系统 WO2018082068A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019523579A JP6789391B2 (ja) 2016-11-04 2016-11-04 Sfn指示方法、端末デバイス並びに測位サーバ及びシステム
EP16920617.4A EP3528560B1 (en) 2016-11-04 2016-11-04 Sfn indication method and system
CN201680090601.3A CN109952794B (zh) 2016-11-04 2016-11-04 Sfn指示方法、终端设备、定位服务器和系统
PCT/CN2016/104784 WO2018082068A1 (zh) 2016-11-04 2016-11-04 Sfn指示方法、终端设备、定位服务器和系统
US16/401,973 US10736073B2 (en) 2016-11-04 2019-05-02 SFN indication method, terminal device, and positioning server and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104784 WO2018082068A1 (zh) 2016-11-04 2016-11-04 Sfn指示方法、终端设备、定位服务器和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,973 Continuation US10736073B2 (en) 2016-11-04 2019-05-02 SFN indication method, terminal device, and positioning server and system

Publications (1)

Publication Number Publication Date
WO2018082068A1 true WO2018082068A1 (zh) 2018-05-11

Family

ID=62076501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104784 WO2018082068A1 (zh) 2016-11-04 2016-11-04 Sfn指示方法、终端设备、定位服务器和系统

Country Status (5)

Country Link
US (1) US10736073B2 (zh)
EP (1) EP3528560B1 (zh)
JP (1) JP6789391B2 (zh)
CN (1) CN109952794B (zh)
WO (1) WO2018082068A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164324A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 生成prs序列的方法、终端设备和定位设备
JP2021533697A (ja) * 2018-08-10 2021-12-02 華為技術有限公司Huawei Technologies Co., Ltd. 参照信号送信方法、参照信号受信方法、および装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200571B (zh) * 2018-11-19 2021-10-01 华为技术有限公司 一种信号传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349338A (zh) * 2009-03-09 2012-02-08 瑞典爱立信有限公司 无线通信系统中的方法和布置
CN102457960A (zh) * 2010-11-02 2012-05-16 大唐移动通信设备有限公司 一种辅助观察到达时间差定位的测量处理方法及设备
CN103444243A (zh) * 2011-01-20 2013-12-11 高通股份有限公司 用于确定对于小区的时序信息的方法和装置
US20150208198A1 (en) * 2012-09-04 2015-07-23 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for positioning mobile terminal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869925A4 (en) * 2005-04-08 2010-01-20 Seeker Wireless Pty Ltd ADVANCED TERRESTRIAL MOBILE OCALIZATION
US8660072B2 (en) * 2010-01-18 2014-02-25 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for improved reference signal correlation characteristics
KR101191215B1 (ko) * 2010-07-16 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
KR20150016930A (ko) 2012-05-14 2015-02-13 엘지전자 주식회사 무선 통신 시스템에서 위치 측정 방법
US9432809B2 (en) * 2013-07-12 2016-08-30 Qualcomm Incorporated Providing OTDOA PRS assistance data
US9462448B2 (en) 2014-04-14 2016-10-04 Qualcomm Incorporated Adaptive positioning reference signal (PRS) for indoor location
US10317509B2 (en) * 2016-03-31 2019-06-11 Qualcomm Incorporated PRS-based terrestrial beacon system (TBS) implementations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349338A (zh) * 2009-03-09 2012-02-08 瑞典爱立信有限公司 无线通信系统中的方法和布置
CN102457960A (zh) * 2010-11-02 2012-05-16 大唐移动通信设备有限公司 一种辅助观察到达时间差定位的测量处理方法及设备
CN103444243A (zh) * 2011-01-20 2013-12-11 高通股份有限公司 用于确定对于小区的时序信息的方法和装置
US20150208198A1 (en) * 2012-09-04 2015-07-23 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for positioning mobile terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3528560A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533697A (ja) * 2018-08-10 2021-12-02 華為技術有限公司Huawei Technologies Co., Ltd. 参照信号送信方法、参照信号受信方法、および装置
JP7196281B2 (ja) 2018-08-10 2022-12-26 華為技術有限公司 参照信号送信方法、参照信号受信方法、および装置
US11582081B2 (en) 2018-08-10 2023-02-14 Huawei Technologies Co., Ltd. Reference signal sending method, reference signal receiving method, and apparatus
WO2020164324A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 生成prs序列的方法、终端设备和定位设备
CN111586554A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 生成prs序列的方法、终端设备和定位设备
CN111586554B (zh) * 2019-02-15 2021-12-24 华为技术有限公司 生成prs序列的方法、终端设备和定位设备

Also Published As

Publication number Publication date
EP3528560A4 (en) 2019-08-21
CN109952794B (zh) 2020-11-17
US20190261304A1 (en) 2019-08-22
EP3528560A1 (en) 2019-08-21
JP2020500473A (ja) 2020-01-09
EP3528560B1 (en) 2020-09-16
JP6789391B2 (ja) 2020-11-25
US10736073B2 (en) 2020-08-04
CN109952794A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
US10182360B2 (en) FTM protocol with angle of arrival and angle of departure
TWI716660B (zh) 用於獲取定位信號的方法及/或系統
US20200304226A1 (en) Methods and User Equipment, Radio Transmitter and Network Node for Managing Positioning Reference Signals
US9435876B2 (en) Autonomous muting indication to enable improved time difference of arrival measurements
US10560829B2 (en) Wireless communication for angle of arrival determination
KR101123594B1 (ko) 이력 네트워크 정보를 이용하여 근사 포지션을 결정하기 위한 방법 및 장치
TW202131008A (zh) 用於存在相位雜訊時之5g定位精度改良之方法及設備
WO2020063110A1 (zh) 定位方法及装置
US10736073B2 (en) SFN indication method, terminal device, and positioning server and system
CN112105957A (zh) 用于处置参考站的gnss参考系信息的方法
WO2018000440A1 (zh) 信号检测的方法和装置
WO2020088034A1 (zh) 信息确定方法、装置及设备
WO2023078259A1 (zh) 定位方法、装置及相关设备
EP3804396A1 (en) Method for bundling sampling data for wireless transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920617

Country of ref document: EP

Effective date: 20190513