WO2020063110A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2020063110A1
WO2020063110A1 PCT/CN2019/099129 CN2019099129W WO2020063110A1 WO 2020063110 A1 WO2020063110 A1 WO 2020063110A1 CN 2019099129 W CN2019099129 W CN 2019099129W WO 2020063110 A1 WO2020063110 A1 WO 2020063110A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
positioning
assistance data
transmission bandwidth
data
Prior art date
Application number
PCT/CN2019/099129
Other languages
English (en)
French (fr)
Inventor
达人
高雪媛
李辉
高秋彬
任斌
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2020063110A1 publication Critical patent/WO2020063110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a positioning method and device.
  • Observed Time Difference is a method introduced by 3GPP to use the measured downlink reference signal time difference (RSTD) to locate.
  • a user equipment User Equipment
  • the network positioning server uses a multi-point positioning algorithm or other algorithms to determine the UE position.
  • 3GPP specifically defines positioning reference signals (Positioning Reference Signals, PRS) for supporting LTE OTDOA, to help the UE detect downlink reference signals from a sufficient number of neighbor cells.
  • PRS Positioning Reference Signals
  • the PRS from the cell is periodically transmitted in a pre-configured mode.
  • the transmission power (Energy, Resource, and Element) of each PRS resource element (RERE) is the same, and the PRS EPRE cannot be smaller than other broadcast data or reference signal EPRE, because the UE needs to detect at least three cells PRS to achieve the purpose of determining the location of the UE.
  • the main problem of LNTPRS is that PRS signals need to occupy a lot of system resources, otherwise it is difficult to ensure the performance and accuracy of the positioning system, especially positioning in an indoor environment.
  • the embodiments of the present application provide a positioning method and device to improve positioning performance and accuracy.
  • a positioning method provided in this embodiment of the present application includes:
  • positioning assistance data request sent by a user equipment UE When receiving a positioning assistance data request sent by a user equipment UE, obtaining positioning assistance data from a base station; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • the E-PRS provided in the embodiment of the present application has the following advantages:
  • Use system resources flexibly to improve the detectability of E-PRS and the positioning performance of OTDOA.
  • the E-PRS includes a primary PRS and a secondary PRS.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is mixed with a signal for a data service and sent;
  • the transmission power EPRE per resource unit RE adopted by the secondary PRS is smaller than the EPRE adopted by the primary PRS.
  • the PRS signals transmitted by the base station are actually continuous. Therefore, the UE can continuously measure and track PRS signals from multiple neighboring cells to achieve continuous positioning and tracking. In addition, if the UE can phase-lock the phase of the continuously transmitted PRS signal through the phase-locked loop, the UE can provide carrier phase measurement for positioning. With carrier phase measurement, high positioning accuracy can be achieved.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is not sent together with a signal used for a data service
  • the transmission power EPRE per resource unit used by the secondary PRS is greater than or equal to the EPRE adopted by the primary PRS.
  • the frequency domain configuration of the secondary PRS includes a transmission bandwidth, a frequency domain position, and a PRS resource unit RE density of the secondary PRS in each PRS resource block RB.
  • the transmission bandwidth and frequency domain position of the secondary PRS are configured in one of the following ways:
  • a transmission bandwidth and a frequency domain position of the secondary PRS are the same as a transmission bandwidth and a frequency domain position of the primary PRS;
  • the transmission bandwidth of the secondary PRS is configured to be a narrow-band bandwidth much smaller than the transmission bandwidth of the primary PRS;
  • the transmission bandwidth of the secondary PRS occupies the entire carrier bandwidth.
  • the PRS resource unit RE density of the secondary PRS in each PRS resource block RB is configured in one of the following ways:
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 3 REs;
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 6 REs;
  • the secondary PRS RE occupies all REs in the transmission bandwidth of the secondary PRS.
  • the method further includes:
  • a positioning method provided in this embodiment of the present application includes:
  • the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • a positioning method provided in an embodiment of the present application includes:
  • Acquiring positioning assistance data sent by the positioning server wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • the method further includes:
  • a positioning device provided in an embodiment of the present application includes:
  • An obtaining unit configured to obtain positioning assistance data from a base station when receiving a positioning assistance data request sent by a user equipment UE; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • a sending unit configured to send the E-PRS configuration data to the UE
  • a positioning unit is configured to receive a positioning measurement value obtained by the UE by using the E-PRS configuration data, and use the positioning measurement value to determine a position of the UE.
  • a positioning device provided in an embodiment of the present application includes:
  • a receiving unit configured to receive a request for acquiring positioning assistance data sent by a positioning server
  • a sending unit is configured to send positioning assistance data to the positioning server according to the request; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • a positioning device provided in an embodiment of the present application includes:
  • a first sending unit configured to send a positioning assistance data request to a positioning server
  • An obtaining unit configured to obtain positioning assistance data sent by the positioning server; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • a measurement unit configured to measure a downlink signal according to the positioning assistance data to obtain a positioning measurement value
  • a second sending unit is configured to send the positioning measurement value to the positioning server.
  • Each of the units described above may be implemented by a physical device such as a processor.
  • the positioning device on the positioning server side may be, for example, the positioning server itself.
  • the positioning device on the base station side may be, for example, the base station itself.
  • the positioning device on the UE side may be, for example, the UE itself.
  • Another embodiment of the present application provides a computing device including a memory and a processor, where the memory is used to store program instructions, the processor is used to call the program instructions stored in the memory, and according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing methods.
  • FIG. 1 is a schematic diagram of a data communication signal not being transmitted during a PRS ODFM symbol in an LNTPRS transmission mode according to an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a signal structure of a time domain TC-OFDM provided by an embodiment of the present application
  • FIG. 3 is a schematic configuration diagram of a P-PRS according to an embodiment of the present application.
  • FIG. 4 is a schematic configuration diagram of an S-PRS according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an E-PRS-based OTDOA basic positioning process according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a positioning method on a positioning server side according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a positioning method at a base station side according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a positioning method on a UE side according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a positioning device on a positioning server side according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a positioning device on a base station side according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a positioning device on a UE side according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another positioning device on a positioning server side according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another positioning device on a base station side according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another positioning device on a UE side according to an embodiment of the present application.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Address
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • the user equipment includes, but is not limited to, a mobile station (MS), a mobile terminal (Mobile), a mobile phone (Mobile), and a handset (handset).
  • MS mobile station
  • Mobile mobile terminal
  • Mobile mobile phone
  • Handset mobile handset
  • portable equipment portable equipment
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular" Telephone), a computer with wireless communication function, etc.
  • the user equipment may also be a portable, compact, handheld, computer-built or vehicle-mounted mobile device.
  • a base station may refer to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface.
  • the base station can be used to convert the received air frames and IP packets to each other, and serve as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in TD-SCDMA or WCDMA, or an evolving base station (eNodeB or eNB or e- NodeB, evolutional (NodeB), or base station (gNB) in 5G NR, the present invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNodeB or eNB or e- NodeB, evolutional (NodeB) evolutional
  • gNB base station
  • an enhanced positioning reference signal (Enhanced PRS, E-PRS) that can more flexibly support various indoor and outdoor scenes.
  • the E-PRS provided in the embodiment of the present application has the following advantages:
  • the UE can continuously measure and track PRS signals from multiple neighboring cells to achieve continuous positioning and tracking.
  • the UE can phase-lock the phase of the continuously transmitted PRS signal through the phase-locked loop, the UE can provide carrier phase measurement for positioning. With carrier phase measurement, high positioning accuracy can be achieved.
  • Use system resources flexibly to improve the detectability of S-PRS and the positioning performance of OTDOA.
  • the embodiments of the present application provide an E-PRS-based positioning method and device to improve positioning performance and accuracy.
  • the method and the device are based on the same application concept. Since the principle of the method and the device for solving the problem is similar, the implementation of the device and the method can be referred to each other, and duplicated details will not be repeated.
  • the applicable system may be a global mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless service (general packet service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general purpose Mobile system (universal mobile telecommunication system, UMTS), global interconnected microwave access (worldwide interoperability for microwave access, WiMAX) system, 5G system and 5G NR system.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general purpose Mobile system
  • WiMAX global interconnected microwave access
  • the terminal device involved in this embodiment of the present application may be a device that provides voice and / or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the names of the terminal devices may be different.
  • the terminal devices may be called user equipment (User Equipment).
  • a wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (also called a "cellular" phone) and a computer with a mobile terminal device, for example, it can be portable , Portable, handheld, computer-built or vehicle-mounted mobile devices that exchange language and / or data with the wireless access network.
  • a wireless terminal device can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • Remote terminal device remote terminal
  • access terminal device access terminal
  • user terminal user terminal
  • user agent user agent
  • user device user device
  • the network equipment involved in the embodiments of the present application includes a base station and a positioning server.
  • the base station may include multiple cells.
  • the base station may also be called an access point, or it may refer to a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or another name.
  • Network equipment can be used to convert the received air frames and Internet protocol (IP) packets to each other, as a router between the wireless terminal equipment and the rest of the access network, where the rest of the access network can include the internet Protocol (IP) communication network.
  • IP internet Protocol
  • the network equipment can also coordinate the management of the attributes of the air interface.
  • the network device involved in the embodiment of the present application may be a network device (base transceiver station, BTS) in a global mobile communication system (GSM) or code division multiple access (CDMA). ), Or network equipment (NodeB) in wide-band code division multiple access (WCDMA), or evolved network equipment in a long term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), or home evolved node (HeNB), relay node (relay node), home base station (eNodeB) femto), pico, etc. are not limited in the embodiments of the present application.
  • BTS base transceiver station
  • GSM global mobile communication system
  • CDMA code division multiple access
  • WCDMA code division multiple access
  • WCDMA code division multiple access
  • LTE long term evolution
  • evolutional node B, eNB or e-NodeB 5G base station in 5G network architecture (next generation
  • the PRS signal of each cell is transmitted with the configured transmission mode and power.
  • the transmission mode is defined by the transmission time period, transmission duration, and transmission offset, see Figure 1.
  • the PRS signal is transmitted in a PRS resource element (RE) in a PRS OFDM symbol in a defined subframe.
  • RE PRS resource element
  • other data or reference signals are not transmitted in the OFDM symbols transmitting PRS in order to minimize interference from other data or reference signals.
  • each PRS RE in the same cell is the same, and the PRS EPRE cannot be smaller than other broadcast data or reference signals EPRE, because the UE needs to detect at least three PRS of the cell to achieve the purpose of determining the location of the UE.
  • the main problem in traditional PRS is that PRS signals need to occupy a lot of system resources, otherwise it is difficult to ensure the performance and accuracy of the positioning system, especially positioning in an indoor environment.
  • a time division CDMA-OFDM (TC-OFDM) indoor positioning reference signal is proposed.
  • This signal consists of a high power, short pseudorandom noise sequence (PNsequenc) and a low power, long pseudorandom noise sequence signal that are transmitted periodically, see Figure 2.
  • High-power, short pseudo-random noise sequences have short transmission times.
  • the UE first performs coarse synchronization through a high-power PN sequence.
  • the low power long PN sequence is used for data communication and the OFDM signal is transmitted together, and the transmission time is long.
  • the UE performs long-time integration on the low-power long PN sequence, detects low-power signals, and provides RSTD measurement values to achieve TDOA positioning.
  • the time division CDMA-OFDM (TC-OFDM) indoor positioning reference signal is a CDMA signal.
  • LTE and 5G NR are both OFDM systems. Therefore, TC-OFDM requires that the base station sends and receives the CDMA and OFDM signals at the same time, which brings certain difficulties to the realization of the BS and especially the UE.
  • signal transmission is limited by the design of the PN sequence. It is difficult to flexibly configure and adjust the signal transmission bandwidth, allocate power on different spectrums in the transmission bandwidth, and freely adjust and control positioning signals between each other, and adjust positioning signals and data communication signals with each other according to the transmission of OFDM signals for data communication. Interference between each other.
  • the E-PRS signal includes a primary PRS signal (Primary PRS, P-PRS) and a secondary PRS signal (Secondary PRS, S-PRS).
  • the P-PRS signal is similar to the traditional PRS signal.
  • it is transmitted with a higher EPRE (for example, 3 dB higher than the average data transmission power, which can be configured according to the actual situation of the network).
  • P-PRS signals are mainly used for the following purposes:
  • NR 5G New Radio System positioning requirements for general UEs. If the UE is located exactly where P-PRS signals from multiple neighboring cells can be detected (for example, outdoor), the UE can also obtain RSTD measurements from these neighboring cells by detecting P-PRS signals to quickly determine the approximate UE position.
  • High-precision time and frequency synchronization is a necessary condition for the UE to perform long-coherent integration on the S-PRS signal to detect the S-PRS signal;
  • the S-PRS signal is an auxiliary positioning reference signal specially designed to improve positioning performance.
  • S-PRS can be flexibly configured into the following different sending methods:
  • the system can configure whether and how to send the S-PRS signal, and even configure the transmission for the special needs of a UE;
  • the S-PRS signal configuration and the P-PRS signal configuration are independent of each other.
  • the S-PRS bandwidth can be greater than, less than, or equal to the P-PRS signal bandwidth.
  • the mapping mode of S-PRS to RE can be the same as or different from P-PRS;
  • the S-PRS signal is configured in a downlink time slot in which the P-PRS signal is not transmitted.
  • the S-PRS signal can avoid other downlink data transmission time slots, and can also be sent together in the downlink data transmission time slots;
  • S-PRS can use the same sequence generation method as P-PRS sequence, and generally uses the same sequence generation method.
  • P-PRS and S-PRS both use GOLD sequences.
  • the advantage of using the same sequence generation method is that the design and implementation are simple. However, different binary sequences can also be used.
  • P-PRS uses the GOLD sequence
  • S-PRS uses the Zadoff-Chu sequence
  • S-PRS uses the Zadoff-Chu sequence.
  • the advantage of using different sequence generation methods is that it is possible to improve the detection performance of S-PRS. Before detecting the S-PRS, the UE has obtained high-precision time and frequency synchronization with the base station.
  • the Zadoff-Chu sequence As the S-PRS sequence, there is no problem that the Zadoff-Chu sequence is generally poor in anti-frequency offset performance, and the Zadoff-Chu sequence can be fully utilized when the frequency offset is small, Good auto-correlation and cross-correlation to improve the detection performance of S-PRS.
  • the S-PRS signal is mainly used for the following purposes:
  • Support NR high-precision positioning Support UE to detect S-PRS signals from multiple neighboring cells through long-term coherent or non-coherent integration. Since the UE has detected the P-PRS signal on a fixed time slot to obtain high-precision time and frequency synchronization with the base station, the terminal can improve the received signal-to-noise ratio of the PRS signal through long-term coherent or non-coherent integration. In this way, the UE will obtain more measurement values of the reference signal time difference measurement (RSTD) of the neighboring cell than the P_PRS signal. Therefore, the positioning performance of the indoor or outdoor environment can be improved.
  • RSTD reference signal time difference measurement
  • the resources for the PRS system in the actual OTDOA system are reduced.
  • the design of E-PRS will reduce the system resources used for PRS in the actual OTDOA system while ensuring certain OTDOA positioning performance.
  • the UE is required to be able to detect at least PRS from three cells to achieve the purpose of determining the UE position.
  • the main purpose of P-PRS transmission is to provide the UE with high-precision time and frequency synchronization, rather than determining the location of the UE. This purpose can be achieved only by detecting the P-PRS from a cell.
  • the P-PRS transmission may be configured to have a longer periodicity and / or a shorter P-PRS transmission duration than a conventional PRS without transmitting an S-PRS.
  • the UE detects S-PRS signals from multiple neighboring cells through long-term coherent or non-coherent integration. Because the transmission of S-PRS can be mixed with the signal of the data communication service and transmitted continuously or independently.
  • sending the S-PRS signal basically does not occupy system resources.
  • S-PRS can adopt the same Or even a larger EPRE is sent independently at a different time and frequency resource from the signal of the data communication service, improving the detectability and positioning performance of the S-PRS without having to worry about interference with data communication service signals.
  • the PRS signals transmitted by the base station are actually continuous. Therefore, it is possible for the UE to continuously measure and track PRS signals from multiple neighboring cells to achieve continuous positioning and tracking.
  • the UE can phase-lock the phase of the continuously transmitted PRS signal through the phase-locked loop, the UE can provide carrier phase measurement for positioning. With carrier phase measurement, higher positioning accuracy can be achieved.
  • the E-PRS signal is configured as follows:
  • FIG. 3 and FIG. 4 show typical configuration examples of two types of P-PRS and S-PRS.
  • S-PRS and P-PRS signals are transmitted continuously and uninterruptedly at different times;
  • S-PRS In the frequency domain, S-PRS has a larger bandwidth (for example, the same bandwidth as P-PRS, which can be determined according to actual needs), and is mixed with signals used for data services and sent;
  • the S-PRS is transmitted continuously with a very low EPRE (the specific value can be configured according to performance, such as 10dB lower).
  • S-PRS and P-PRS signals are transmitted continuously and uninterruptedly at different times;
  • the S-PRS is transmitted on a narrower bandwidth (for example, configured to be transmitted on only a few PRBs, such as 3 PRBs), and is not mixed with signals for data services;
  • the EPRE is the same as or higher than the EPRE of the P-PRS.
  • the main consideration of this new configuration is that when conditions permit, such as in a 5G large bandwidth system, the network can use a portion of the bandwidth to specifically send S-PRS signals without having to send them together with signals from data communication services. This may further improve the detectability and positioning performance of S-PRS.
  • the S-PRS signal and the P-PRS signal can be configured separately, and the S-PRS signal can be configured to be transmitted or not.
  • the configuration method of the P-PRS signal in the time domain, frequency domain, and transmit power is similar to that of the traditional PRS signal.
  • the time domain configuration of the S-PRS signal can be selected from the following methods:
  • the time domain of the S-PRS signal is configured as some or all OFDM symbols except that the P-PRS signal is transmitted.
  • the transmission power of the S-PRS signal can be configured by the following methods:
  • the S-PRS signal can also be turned off with zero power.
  • the frequency domain configuration of the S-PRS signal includes transmission bandwidth, location, and density.
  • the S-PRS signal transmission bandwidth and location can be configured through the following options:
  • Option 1 The transmission bandwidth and location of the S-PRS signal are the same as the P-PRS signal;
  • the transmission bandwidth of the S-PRS signal is configured to a narrow-band bandwidth that is much smaller than the P-PRS signal bandwidth;
  • the S-PRS signal occupies the entire carrier bandwidth, regardless of how the transmission bandwidth of the P-PRS signal is configured.
  • the PRS RE density of the S-PRS signal at each PRS RB can be configured by the following options:
  • S-PRS REs are evenly distributed in the S-PRS transmission bandwidth, and there is one S_PRS RE in every 3 REs.
  • S-PRS REs are evenly distributed in the S-PRS transmission bandwidth, and there is one S_PRS RE in every 6 REs.
  • the S-PRS RE occupies all REs in the S-PRS transmission bandwidth.
  • the E-PRS-based positioning method is described as follows:
  • the proposed E-PRS signal can support the OTDOA positioning process defined in the existing specifications, such as the LTE OTDOA positioning process defined in 3GPP, or the NG-RAN OTDOA positioning process defined in 3GPP, or similar OTDOA that 3GPP may define in the future.
  • Figure 5 is a schematic diagram of a basic OTDOA positioning process.
  • the base station (BS) and the positioning server (Location Server) in FIG. 5 are eNodeB and Evolved Serving Mobile Location Center (E-SMLC).
  • E-SMLC Evolved Serving Mobile Location Center
  • the BS and Location services in Figure 5 are, for example, next-generation base stations (Next Generation Base Node B, gNode B ) And Location Management Function (LMF) entities.
  • next-generation base stations Next Generation Base Node B, gNode B
  • LMF Location Management Function
  • Step 1 After the UE establishes a connection with the BS, the UE is in a radio resource control (Radio Resource Control (RRC) connected (RRC_CONNECTED) state.
  • RRC Radio Resource Control
  • Step 2 The positioning server sends a RequestCapabilities message to the UE, requesting the UE to notify the server of the positioning capabilities that the UE can support.
  • Step 3 The UE sends a ProvideCapabilities message to respond to the positioning server.
  • the E-PRS-based OTDOA needs to modify the existing ProvideCapabilities message so that the UE can notify the positioning server whether the UE supports detecting the E-PRS to obtain the RSTD measurement value.
  • Step 4 When downlink positioning assistance data is needed, the UE sends a RequestAssistanceData message to the positioning server.
  • the message includes requesting the positioning server to provide OTDOA assistance data.
  • Step 5 The positioning server sends an OTDOA information request (OTDOA INFORMATION REQUEST) message to the BS to request the BS to provide downlink positioning assistance data, such as E-PRS configuration data.
  • OTDOA INFORMATION REQUEST OTDOA information request
  • Step 6 The BS sends an OTDOA information response (OTDOA INFORMATION RESPONSE) message to the positioning server.
  • OTDOA information response OTDOA INFORMATION RESPONSE
  • Existing OTDOA messages will be modified to allow the BS to provide E-PRS configuration data to the server.
  • Step 7 The positioning server provides positioning assistance data requested by the UE in ProvideAssistanceData.
  • Step 8 The positioning server sends a Request Location Information (RequestLocationInformation) message to the UE.
  • the message requests the UE to measure the downlink measurement of the BS and return the measured positioning measurement value.
  • Step 9 The UE uses positioning assistance data (for example, E-PRS configuration data) to measure a downlink signal to obtain a positioning measurement value.
  • positioning assistance data for example, E-PRS configuration data
  • Step 10 The UE sends a location information (ProvideLocationInformation) message to the positioning server, which includes a positioning measurement value (for example, RSTD measurement) obtained by measuring a downlink signal.
  • a positioning measurement value for example, RSTD measurement
  • Step 11 The positioning server uses the positioning measurement value obtained by the UE to calculate the position of the UE.
  • the network side configures parameters for transmitting E-PRS for each base station cell.
  • the parameters of the E-PRS include the configuration of the P-PRS signal in the time domain, the frequency domain, and the transmission power, and the configuration of the S-PRS signal in the time domain, the frequency domain, and the transmission power.
  • Each base station cell transmits P-PRS and S-PRS signals according to the configured E-PRS parameters.
  • the positioning server When the positioning server needs to provide positioning services for any UE, the positioning server sends a RequestCapabilities message to the UE, requesting the UE to notify the server of the positioning functions that the UE can support.
  • the positioning server needs to send an OTDOA INFORMATION REQUEST message to each BS. Request the BS to provide downlink positioning assistance data, such as E-PRS configuration data;
  • the BS After receiving the OTDOA INFORMATION REQUEST message, the BS needs to send an OTDOA INFORMATION RESPONSE message to the positioning server.
  • Provide the requested downlink positioning assistance data to the positioning server including E-PRS configuration data;
  • the positioning server After receiving the INFORMATION RESPONSE message from the BS, the positioning server sends ProvideAssistanceData to the UE, provides positioning assistance data and sends a RequestLocationInformation message to the UE, requests the UE to measure the downlink of the BS, and reports the measured positioning measurement value;
  • the positioning server uses the positioning measurement value provided by the UE in ProvideLocationInformation and the BS information provided by the BS in INFORMATION RESPONSE to calculate the location of the UE.
  • a positioning method provided by an embodiment of the present application includes:
  • the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • the E-PRS provided in the embodiment of the present application has the following advantages:
  • Use system resources flexibly to improve the detectability of E-PRS and the positioning performance of OTDOA.
  • the E-PRS includes a primary PRS and a secondary PRS.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is mixed with a signal for a data service and sent;
  • the transmission power EPRE per resource unit RE adopted by the secondary PRS is smaller than the EPRE adopted by the primary PRS.
  • the PRS signals transmitted by the base station are actually continuous. Therefore, the UE can continuously measure and track PRS signals from multiple neighboring cells to achieve continuous positioning and tracking. In addition, if the UE can phase-lock the phase of the continuously transmitted PRS signal through the phase-locked loop, the UE can provide carrier phase measurement for positioning. With carrier phase measurement, high positioning accuracy can be achieved.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is not sent together with a signal used for a data service
  • the transmission power EPRE per resource unit used by the secondary PRS is greater than or equal to the EPRE adopted by the primary PRS.
  • the frequency domain configuration of the secondary PRS includes a transmission bandwidth, a frequency domain position, and a PRS resource unit RE density of the secondary PRS in each PRS resource block RB.
  • the transmission bandwidth and frequency domain position of the secondary PRS are configured in one of the following ways:
  • a transmission bandwidth and a frequency domain position of the secondary PRS are the same as a transmission bandwidth and a frequency domain position of the primary PRS;
  • the transmission bandwidth of the secondary PRS is configured to be a narrow-band bandwidth much smaller than the transmission bandwidth of the primary PRS;
  • the transmission bandwidth of the secondary PRS occupies the entire carrier bandwidth.
  • the PRS resource unit RE density of the secondary PRS in each PRS resource block RB is configured in one of the following ways:
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 3 REs;
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 6 REs;
  • the secondary PRS RE occupies all REs in the transmission bandwidth of the secondary PRS.
  • the method further includes:
  • a positioning method provided by an embodiment of the present application includes:
  • S202 Send positioning assistance data to the positioning server according to the request; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • the UE After receiving the RequestCapabilities message, the UE needs to send a ProvideCapabilities message to respond to the positioning server. Notify the positioning server that the UE supports detecting E-PRS to obtain RSTD measurement values;
  • the UE When downlink positioning assistance data is needed, the UE needs to send a RequestAssistanceData message to the positioning server, requesting the positioning server to provide OTDOA assistance data;
  • the positioning server sends a RequestLocationInformation message to the UE.
  • the message requests the UE to measure the downlink of the BS and reply to the measured positioning measurement value;
  • the UE uses the positioning assistance data (for example, E-PRS configuration data) provided by the positioning server in the ProvideAssistanceData message to measure the downlink signal to obtain a positioning measurement value;
  • the positioning assistance data for example, E-PRS configuration data
  • the UE sends a Provide Location Information (ProvideLocationInformation) message to the positioning server, which includes information such as a positioning measurement value obtained by measuring a downlink signal and a time when the measurement value is obtained.
  • Provide Location Information ProvideLocationInformation
  • a positioning method provided in an embodiment of the present application includes:
  • the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • the method further includes:
  • the E-PRS provided in the embodiment of the present application includes a positioning signal of a basic configuration and a positioning signal of an auxiliary configuration.
  • Auxiliary configuration positioning signals can be sent together with very low power OFDM signals used for data communication, or they can be transmitted separately using very narrow bandwidth.
  • PRS Compared with TC-OFDM positioning signals, PRS has the following advantages:
  • TC-OFDM requires the base station to send and the UE simultaneously receive CDMA and OFDM signals; PRS does not require the BS and UE to process CDMA signals, which makes the implementation of BS and especially UE easier and simpler
  • the transmission bandwidth is limited by the design of the PN sequence. It is difficult to flexibly configure and adjust the signal transmission bandwidth.
  • the power of the PN sequence is evenly distributed on the spectrum of the transmission bandwidth, and cannot be adjusted according to the transmission of the OFDM signal due to data communication.
  • the PRS itself is an OFDM signal. Carrier bandwidth can be easily configured and configured anywhere within the bandwidth;
  • Interference control TC-OFDM transmission power is evenly distributed within the bandwidth of the PN positioning signal; it is not possible to freely adjust and control the positioning signals between each other, and adjust the positioning signals and data communication signals between each other according to the transmission of OFDM signals for data communication. Interfere with each other.
  • PRS PRS and RE can be placed freely within the carrier bandwidth, and the positioning signals can be freely adjusted and controlled to interfere with each other and between positioning signals and data communication signals.
  • the E-PRS provided in the embodiment of the present application has the following advantages:
  • the UE can continuously measure and track PRS signals from multiple neighboring cells to achieve continuous positioning and tracking.
  • the UE can phase-lock the phase of the continuously transmitted PRS signal through the phase-locked loop, the UE can provide carrier phase measurement for positioning. With carrier phase measurement, high positioning accuracy can be achieved.
  • Use system resources flexibly to improve the detectability of S-PRS and the positioning performance of OTDOA.
  • the positioning server and the UE use a Lightweight Presentation Protocol (LPP) protocol for communication.
  • LPP Lightweight Presentation Protocol
  • a positioning device provided in an embodiment of the present application includes:
  • An obtaining unit 11 is configured to obtain positioning assistance data from a base station when receiving a positioning assistance data request sent by a user equipment UE; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • a sending unit 12 configured to send the E-PRS configuration data to the UE
  • a positioning unit 13 is configured to receive a positioning measurement value obtained by the UE by using the E-PRS configuration data, and determine the position of the UE by using the positioning measurement value.
  • a positioning device provided in an embodiment of the present application includes:
  • the receiving unit 21 is configured to receive a request for acquiring positioning assistance data sent by a positioning server;
  • the sending unit 22 is configured to send positioning assistance data to the positioning server according to the request; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • a positioning device provided in an embodiment of the present application includes:
  • a first sending unit 31, configured to send a positioning assistance data request to a positioning server
  • the obtaining unit 32 is configured to obtain positioning assistance data sent by the positioning server; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • a measurement unit 33 configured to measure a downlink signal according to the positioning assistance data to obtain a positioning measurement value
  • the second sending unit 34 is configured to send the positioning measurement value to the positioning server.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .
  • Each of the units described above may be implemented by a physical device such as a processor.
  • the positioning device on the positioning server side may be, for example, the positioning server itself.
  • the positioning device on the base station side may be, for example, the base station itself.
  • the positioning device on the UE side may be, for example, the UE itself.
  • An embodiment of the present application provides a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a Personal Digital Assistant (PDA), and the like.
  • the computing device may include a central processing unit (CPU), memory, input / output devices, etc.
  • the input device may include a keyboard, mouse, touch screen, etc.
  • the output device may include a display device, such as a liquid crystal display (Liquid Crystal Display LCD), cathode ray tube (Cathode Ray Tube, CRT) and so on.
  • LCD liquid crystal display
  • CRT cathode Ray Tube
  • the memory may include a read-only memory (ROM) and a random access memory (RAM), and provide the processor with program instructions and data stored in the memory.
  • ROM read-only memory
  • RAM random access memory
  • the memory may be used to store a program of any of the methods provided in the embodiments of the present application.
  • the processor invokes program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions for the above-mentioned apparatus provided in the embodiment of the present application, which includes a program for executing any one of the methods provided in the embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as a floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)).
  • magnetic storage such as a floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)
  • the apparatus provided in this embodiment of the present application includes:
  • the processor 500 is configured to read a program in the memory 520 and execute the following processes:
  • the positioning assistance data is obtained from the base station; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data;
  • the E-PRS includes a primary PRS and a secondary PRS.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is mixed with a signal for a data service and sent;
  • the transmission power EPRE per resource unit RE adopted by the secondary PRS is smaller than the EPRE adopted by the primary PRS.
  • the primary PRS and the secondary PRS are transmitted continuously and uninterruptedly at different times;
  • the secondary PRS is not sent together with a signal used for a data service
  • the transmission power EPRE per resource unit used by the secondary PRS is greater than or equal to the EPRE adopted by the primary PRS.
  • the frequency domain configuration of the secondary PRS includes a transmission bandwidth, a frequency domain position, and a PRS resource unit RE density of the secondary PRS in each PRS resource block RB.
  • the transmission bandwidth and frequency domain position of the secondary PRS are configured in one of the following ways:
  • a transmission bandwidth and a frequency domain position of the secondary PRS are the same as a transmission bandwidth and a frequency domain position of the primary PRS;
  • the transmission bandwidth of the secondary PRS is configured to be a narrow-band bandwidth much smaller than the transmission bandwidth of the primary PRS;
  • the transmission bandwidth of the secondary PRS occupies the entire carrier bandwidth.
  • the PRS resource unit RE density of the secondary PRS in each PRS resource block RB is configured in one of the following ways:
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 3 REs;
  • the secondary PRS and RE are evenly distributed in the transmission bandwidth of the secondary PRS, and there is one secondary PRS and RE in every 6 REs;
  • the secondary PRS RE occupies all REs in the transmission bandwidth of the secondary PRS.
  • processor 500 is further configured to:
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 510 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 when performing operations.
  • the processor 500 may be a central embedded device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central embedded device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex programmable logic device
  • an apparatus provided in an embodiment of the present application includes:
  • the processor 504 is configured to read a program in the memory 505 and execute the following processes:
  • the positioning assistance data is sent to the positioning server through the transceiver 501; wherein the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data.
  • the transceiver 501 is configured to receive and send data under the control of the processor 504.
  • a bus architecture (represented by a bus 506).
  • the bus 506 may include any number of interconnected buses and bridges.
  • the bus 506 will include one or more processors represented by the processor 504 and memory represented by the memory 505.
  • Various circuits are linked together.
  • the bus 506 can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, they are not described further herein.
  • the bus interface 503 provides an interface between the bus 506 and the transceiver 501.
  • the transceiver 501 may be one element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 504 is transmitted on a wireless medium through the antenna 502. Further, the antenna 502 also receives the data and transmits the data to the processor 504.
  • the processor 504 is responsible for managing the bus 506 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 may be used to store data used by the processor 504 when performing operations.
  • the processor 504 may be a central embedded device (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA), or a complex programmable logic device ( Complex Programmable Logic Device (CPLD).
  • CPU central embedded device
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • an apparatus provided in this embodiment of the present application includes:
  • the processor 600 is configured to read a program in the memory 620 and execute the following processes:
  • the positioning assistance data includes enhanced positioning reference signal E-PRS configuration data
  • the positioning measurement value is sent to the positioning server through the transceiver 610.
  • processor 600 is further configured to:
  • the positioning capability information of the UE supporting E-PRS is sent to the positioning server through the transceiver 610.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together. The bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting and connecting the required equipment.
  • the connected equipment includes, but is not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 may store data used by the processor 600 when performing operations.
  • the processor 600 may be a central embedded device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (FPGA) Complex Programmable Logic Device (CPLD).
  • CPU central embedded device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD Complex Programmable Logic Device
  • the method provided in the embodiment of the present application may be applied to a terminal device or a network device.
  • the terminal device may also be referred to as User Equipment ("UE” for short), Mobile Station ("MS” for short), Mobile Terminal (Mobile), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Mobile
  • the terminal may Have the ability to communicate with one or more core networks via Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or a "cellular" phone), or a computer with a mobile nature.
  • the terminal may also be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device.
  • a network device may be a base station (for example, an access point), which refers to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface.
  • the base station can be used to convert the received air frames and IP packets to each other, and serve as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node in LTE) B), or gNB, etc. in a 5G system. It is not limited in the embodiments of the present application.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are executed.
  • the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了定位方法及装置,用以提高定位性能和精度。在定位服务器侧,本申请实施例提供的一种定位方法,包括:当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;将所述E-PRS配置数据发送给所述UE;接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。

Description

定位方法及装置
本申请要求在2018年9月27日提交中国专利局、申请号为201811130328.X、发明名称为“定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及定位方法及装置。
背景技术
观察到达时间差(Observed Time Difference of Arrival,OTDOA)是3GPP引入的一种利用测量的下行链路参考信号时间差(Reference Signal Time Difference Measurement,RSTD)来定位的方法。在这个方法中,用户设备(User Equipment,UE)测量从来自服务小区和邻近小区发送的参考信号以获得RSTD测量值,并将RSTD测量值上报给网络定位服务器。网络定位服务器则用多点定位算法或其他算法来确定UE位置。
为了提供良好的OTDOA定位性能,3GPP专门定义了用于支持LTE OTDOA的定位参考信号(Positioning Reference Signals,PRS),以帮助UE检测到来自足够数量邻居小区的下行链路参考信号。
在目前传统LTE PRS设计中,来自小区的PRS以预先配置的模式进行周期性的传输。每个PRS资源单元(Resource element,RE)的发送功率(Energy Per Resource Element,EPRE)相同,并且PRS EPRE一般不能小于其他广播数据或参考信号EPRE,其原因是UE至少需要检测到来自三个小区的PRS,以达到确定UE位置的目的。目前LTEPRS的主要问题是PRS信号需要占用大量的系统资源,否则难以保证定位系统的性能和精度,尤其是室内环境下的定位。
发明内容
本申请实施例提供了定位方法及装置,用以提高定位性能和精度。
在定位服务器侧,本申请实施例提供的一种定位方法,包括:
当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
将所述E-PRS配置数据发送给所述UE;
接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定 所述UE的位置。
与传统的PRS相比,本申请实施例提供的E-PRS具有以下优点:
在保证相同的OTDOA定位性能下,减少在实际OTDOA系统中用于PRS系统资源;
提供更好的定位性能,特别适用于UE处于慢动作和静止状态的室内环境。
灵活利用系统资源来提高E-PRS的可检测性和OTDOA的定位性能。
因此通过本申请实施例提供的该定位方法,能够提高定位性能和精度。
可选地,所述E-PRS包含主PRS和辅PRS。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元RE发射功率EPRE,小于所述主PRS所采用的EPRE。
由于P-PRS和S-PRS信号的交替传输,基站传输的PRS信号实际上是连续不断的。于是,UE就能通过持续测量和跟踪来自多个相邻小区的PRS信号,以实现连续定位和跟踪。此外,如果UE能够通过锁相环实现锁相住连续传输的PRS信号的相位,则UE能提供用于定位的载波相位测量。利用载波相位测量,可以实现很高的定位精度。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS不与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元发射功率EPRE,大于或等于所述主PRS所采用的EPRE。
可选地,所述辅PRS的频域配置包括传输带宽、频域位置和所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度。
可选地,所述辅PRS的传输带宽和频域位置通过以下方式之一进行配置:
所述辅PRS的传输带宽和频域位置与所述主PRS的传输带宽和频域位置相同;
所述辅PRS的传输带宽配置为远小于所述主PRS的传输带宽的窄带带宽;
所述辅PRS的传输带宽占整个载波带宽。
可选地,所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度通过以下方式之一进行配置:
辅PRS RE均匀分布在辅PRS的传输带宽中,每3个RE中有一个辅PRS RE;
辅PRS RE均匀分布在辅PRS的传输带宽中,每6个RE中有一个辅PRS RE;
辅PRS RE占满辅PRS的传输带宽中所有的RE。
可选地,该方法还包括:
向所述UE发送定位能力请求;
确定所述UE上报的该UE支持E-PRS的定位能力信息。
在基站侧,本申请实施例提供的一种定位方法,包括:
接收定位服务器发送的获取定位辅助数据的请求;
根据所述请求向所述定位服务器发送定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据。
在UE侧,本申请实施例提供的一种定位方法,包括:
向定位服务器发送定位辅助数据请求;
获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
根据所述定位辅助数据测量下行链路信号,得到定位测量值;
发送所述定位测量值给所述定位服务器。
可选地,该方法还包括:
接收所述定位服务器发送的定位能力请求;
将UE支持E-PRS的定位能力信息发送给所述定位服务器。
在定位服务器侧,本申请实施例提供的一种定位装置,包括:
获取单元,用于当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
发送单元,用于将所述E-PRS配置数据发送给所述UE;
定位单元,用于接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
在基站侧,本申请实施例提供的一种定位装置,包括:
接收单元,用于接收定位服务器发送的获取定位辅助数据的请求;
发送单元,用于根据所述请求向所述定位服务器发送定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据。
在UE侧,本申请实施例提供的一种定位装置,包括:
第一发送单元,用于向定位服务器发送定位辅助数据请求;
获取单元,用于获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
测量单元,用于根据所述定位辅助数据测量下行链路信号,得到定位测量值;
第二发送单元,用于发送所述定位测量值给所述定位服务器。
以上各所述的单元,都可以由处理器等实体器件实现。
上述定位服务器侧的定位装置,例如可以是定位服务器本身。
上述基站侧的定位装置,例如可以是基站本身。
上述UE侧的定位装置,例如可以是UE本身。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的LTEPRS传输模式中,在PRS ODFM符号期间没有传输数据通信信号的示意图;
图2为本申请实施例提供的时域TC-OFDM的信号结构示意图;
图3为本申请实施例提供的P-PRS的配置示意图;
图4为本申请实施例提供的S-PRS的配置示意图;
图5为本申请实施例提供的基于E-PRS的OTDOA基本定位过程示意图;
图6为本申请实施例提供的定位服务器侧的一种定位方法的流程示意图;
图7为本申请实施例提供的基站侧的一种定位方法的流程示意图;
图8为本申请实施例提供的UE侧的一种定位方法的流程示意图;
图9为本申请实施例提供的定位服务器侧的一种定位装置的结构示意图;
图10为本申请实施例提供的基站侧的一种定位装置的结构示意图;
图11为本申请实施例提供的UE侧的一种定位装置的结构示意图;
图12为本申请实施例提供的定位服务器侧的另一种定位装置的结构示意图;
图13为本申请实施例提供的基站侧的另一种定位装置的结构示意图;
图14为本申请实施例提供的UE侧的另一种定位装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本 发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例针对传统PRS设计中的弱点,提出一种更能灵活支持各种室内外场景的增强的定位参考信号(Enhanced PRS,E-PRS)。
与传统的PRS相比,本申请实施例提供的E-PRS具有以下优点:
在保证相同的OTDOA定位性能下,减少在实际OTDOA系统中用于PRS系统资源;
提供更好的定位性能,特别适用于UE处于慢动作和静止状态的室内环境。由于P-PRS和S-PRS信号的交替传输,基站传输的PRS信号实际上是连续不断的。于是,UE就能通过持续测量和跟踪来自多个相邻小区的PRS信号,以实现连续定位和跟踪。此外,如果UE能 够通过锁相环实现锁相住连续传输的PRS信号的相位,则UE能提供用于定位的载波相位测量。利用载波相位测量,可以实现很高的定位精度。
灵活利用系统资源来提高S-PRS的可检测性和OTDOA的定位性能。
本申请实施例提供了基于E-PRS的定位方法及装置,用以提高定位性能和精度。其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,包括基站和定位服务器。其中,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网 络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
在传统的LTE PRS设计中,各小区的PRS信号以配置的传输模式和功率进行传输。传输模式由传输时间周期、传输持续时间和传输偏移量定义,参见图1。在传输持续时间中,PRS信号在所定义子帧里的PRS OFDM符号中的PRS资源单元(Resource element,RE)来传送的。在传输PRS的OFDM符号中一般不传输其他数据或参考信号,以便最大限度地减少来自其他数据或参考信号的干扰。并且,同一小区的每个PRS RE的发送功率(Energy per resource element,EPRE)是相同的,并且PRS EPRE一般不能小于其他它广播数据或参考信号EPRE,其原因是UE至少需要检测到来自三个小区的PRS,以达到确定UE位置的目的。在传统PRS的主要问题是PRS信号需要占用大量的系统资源,否则难以保证定位系统的性能和精度,尤其是室内环境下的定位。
现有技术中提出了一种时分CDMA-OFDM(TC-OFDM)室内定位参考信号。该信号由周期性传输的高功率、短伪随机噪声序列(pseudorandom noise sequence,PN sequenc)和低功率、长伪随机噪声序列信号组成,参见图2。高功率、短伪随机噪声序列的传输时间短。UE先通过高功率PN序列进行粗同步。低功率长PN序列用于数据通信的OFDM信号一起发送,传输时间长。粗同步后的UE通过对低功率长PN序列进行持续时间长积分,检测出低功率信号,提供RSTD测量值,以实现TDOA定位。
综上,在图1所示的传统LTEPRS传输模式中,在PRS ODFM符号期间没有传输数据通信信号。因此,在PRS传输期间分配的时间和频率资源全部是系统资源额外开销。在实际OTDOA系统中,为减少系统资源额外开销,需要配置周期较长,持续时间较短的PRS传输。然而,长PRS传输周期和短PRS传输持续时间的降低会导致定位延迟、PRS信号检测概率降低、定位性能下降。另外,传统PRS是周期性、非连续的信号,无法采用更先进的信号处理技术,例如长期互相关或载波相位定位,来实现针对某些具有挑战性环境下(例如室内)的高性能定位。
时分CDMA-OFDM(TC-OFDM)室内定位参考信号是CDMA信号。但LTE和5G NR 都是OFDM系统。于是,TC-OFDM要求基站同时发送和UE同时接受CDMA和OFDM信号,这对BS和特别是UE的实现带来一定困难。另外,对于TC-OFDM,信号传输受PN序列的设计限制。难以灵活配置和调整信号传输带宽,分配传输带宽上的不同频谱上的功率,也无法进行自由调整和控制定位信号彼此之间、以及根据数据通信的OFDM信号的传输调整定位信号与数据通信信号彼此之间的互相干扰。
因此,本申请实施例中提出E-PRS的设计,E-PRS信号包含主PRS信号(Primary PRS,P-PRS)、辅PRS信号(Secondary PRS,S-PRS)。
其中,P-PRS信号与传统的PRS信号类似,在配置的周期和时间里,以较高的EPRE(比如高出平均数据发送功率3dB,具体可以根据网络实际情况配置)传输。
在E-PRS的设计中,P-PRS信号主要用于以下目的:
用于一般UE的5G新的无线系统(5G New Radio system,NR)定位需求。如果UE正好位于可以检测到来自多个相邻小区的P-PRS信号(例如室外),则UE也可通过检测P-PRS信号来获得来自这些相邻小区的RSTD测量,以快速确定UE的大致位置。
获得与基站高精度的时间和频率同步。支持UE通过检测来自一个或多个相邻小区的P-PRS信号,获得与基站高精度的时间和频率同步。高精度的时间和频率同步是为了UE随后对S-PRS信号执行长相干积分来检测S-PRS信号的创造必要条件;
S-PRS信号是为了提高定位性能专门设计的辅助定位参考信号。S-PRS可以灵活配置成以下不同的发送方式:
系统可以配置S-PRS信号是否发送以及如何发送,甚至可以针对某个UE的特殊需求来配置发送;
在频域分配上,S-PRS信号配置与P-PRS信号配置相互独立。S-PRS的带宽可以大于、小于或者等于P-PRS信号带宽。并且S-PRS到RE的映射方式可以和P-PRS相同或者不同;
在时域分配上,S-PRS信号配置在不发送P-PRS信号的下行时隙中。S-PRS信号可以避开其它下行数据发送时隙,也可以在下行数据发送时隙中一起发送;
在序列生成上,S-PRS可以使用和P-PRS序列相同的序列生成方式,一般采用相同序列生成方式,例如P-PRS和S-PRS都使用GOLD序列。采用相同序列生成方式的优点是使设计和实现都简单。但也可以采用不同的二进制序列,例如P-PRS使用GOLD序列,S-PRS使用Zadoff-Chu序列,而S-PRS使用Zadoff-Chu序列。采用不相同序列生成方式的优点是可能提高S-PRS的检测性能。在检测S-PRS之前,UE已获得与基站高精度的时间和频率同步。这时,使用Zadoff-Chu序列作为S-PRS序列,不存在通常担心的Zadoff-Chu序列抗频率偏移性能差的问题,而能充分利用Zadoff-Chu序列在频率偏移小的时候,具有很好的自相关和互相关来提高S-PRS的检测性能。
S-PRS信号主要用于以下目的:
支持NR高精度定位。支持UE通过长期相干或非相干积分检测来自多个相邻小区的S-PRS信号。由于UE已通过在固定时隙上检测P-PRS信号从而获得与基站高精度的时间和频率同步,终端可以通过长时间的相干或非相干积分来提高PRS信号的接收信噪比。这样UE将获得比只检测P_PRS信号更多的相邻小区的参考信号时间差测量(Reference signal time difference measurement,RSTD)的测量值。从而可以提高室内或者室外环境的定位性能。
在保证相同的OTDOA定位性能下,减少在实际OTDOA系统中用于PRS系统资源。E-PRS的设计将在保证一定OTDOA定位性能下,减少在实际OTDOA系统中用于PRS的系统资源。传统PRS设计中,要求UE至少能检测到来自三个小区的PRS,以达到确定UE位置的目的。
在E-PRS的设计中,P-PRS传输的主要目的是为UE提供高精度的时间和频率同步,而不是确定UE的位置。这个目的只需通过检测来自一个小区的P-PRS就可达到。于是,P-PRS传输可以被配置为具有比没有传输S-PRS的传统PRS更长的周期性和/或更短的P-PRS传输持续时间。UE通过长期相干或非相干积分检测来自多个相邻小区的S-PRS信号。由于S-PRS的传输是可以与数据通信服务的信号混合一起连续发送也可以独立发送。当S-PRS的传输与数据通信服务的信号混合一起连续发送时,而且S-PRS的EPRE远比数据通信业务的EPRE低,从而发送S-PRS信号基本不占系统资源。当系统有资源来支持S-PRS不与数据通信服务的信号混合在一起发送时,或者系统希望尽可能提高S-PRS的可检测性和定位性能时,S-PRS可以采用与P-SRS相同或甚至更大的EPRE在与数据通信服务的信号不同的时间和频率资源独立发送,提高S-PRS的可检测性和定位性能,而不必担心对数据通信业务信号的干扰。
由于P-PRS和S-PRS信号的交替传输,基站传输的PRS信号实际上是连续不断的。于是,UE就有可能通过持续测量和跟踪来自多个相邻小区的PRS信号,以实现连续定位和跟踪。此外,如果UE能够通过锁相环实现锁相住连续传输的PRS信号的相位,则UE能提供用于定位的载波相位测量。利用载波相位测量,可以实现更高的定位精度。
E-PRS信号的配置方法如下:
对于E-PRS信号的配置方法,图3和图4给出了典型的两种P-PRS和S-PRS的配置示例。
例1(参见图3):
在时域上,S-PRS与P-PRS信号在不同的时间上进行连续不间断地交替发送;
在频域上,S-PRS在较大带宽上(比如和P-PRS一样的带宽上,具体可以根据实际需要而定)、与用于数据业务的信号混合在一起发送;
在传输功率上,S-PRS以非常低的EPRE(具体值可以根据性能配置,比如低10dB)连续发送。
例2(参见图4):
在时域上,S-PRS与P-PRS信号在不同的时间上进行连续不间断的交替发送;
在频域上,S-PRS在较窄的带宽(比如配置仅在几个PRB上传输,例如在3个PRB上传输)上、不与用于数据业务的信号混合在一起发送;
在传输功率上,与P-PRS的EPRE相同或更高的EPRE。
这种新的配置主要考虑因素是当条件允许时,例如在5G大带宽系统中,网络可以使用一部分带宽来专门发送S-PRS信号,而不必与数据通信服务的信号混合一起发送。这样有可能进一步提高S-PRS的可检测性和定位性能。
具体的配置方法如下:
S-PRS信号与P-PRS信号可分开配置,其中S-PRS信号可以配置是否发送。
关于P-PRS信号的配置参数:
P-PRS信号在时域、频域和发送功率的配置方法与传统PRS信号类似。
关于S-PRS信号的配置参数:
S-PRS信号的时域配置可以选以下方法:
S-PRS信号的时域配置为除了发送P-PRS信号之外的某些或所有OFDM符号。
S-PRS信号的发送功率可以选以下方法进行配置:
1)通过相对于P-PRS的功率偏移量进行配置;
2)通过绝对功率量进行配置。
当不需要辅助定位信号的场景时,也可以使用零功率关闭S-PRS信号。
S-PRS信号的频域配置包括传输带宽、位置和密度。
其中,S-PRS信号传输带宽和位置可以通过以下选项进行配置:
选项1)S-PRS信号的传输带宽和位置与P-PRS信号相同;
选项2)S-PRS信号的传输带宽配置为远小于P-PRS信号带宽的窄带带宽;
选项3)S-PRS信号占整个载波带宽,而无论P-PRS信号的传输带宽是如何配置的。
S-PRS信号在每个PRS RB的PRS RE密度可通过以下选项进行配置:
选项1)S-PRS RE均匀分布在S-PRS传输带宽中,每3个RE中有一个S_PRS RE。
选项2)S-PRS RE均匀分布在S-PRS传输带宽中,每6个RE中有一个S_PRS RE。
选项3)S-PRS RE占满S-PRS传输带宽中所有的RE。
此外,对于已经配置了用于支持OFDM数据通讯参考信号,例如系统时间和频率同步信号的RE,也可根据系统的设计要求,选择是否发送S-PRS信号。
基于E-PRS的定位实现方法介绍如下:
所提出的E-PRS信号可支持现有规范中定义的OTDOA定位过程,例如3GPP中定义的LTE OTDOA定位过程,或3GPP中定义的NG-RAN OTDOA定位过程,或3GPP将来有可 能定义的类似OTDOA定位过程。图5是一个基本的OTDOA定位过程示意图。在LTE定位系统里,图5中的基站(BS)和定位服务器(Location Server)为eNode B和增强服务移动定位中心(Evolved Serving Mobile Location Center,E-SMLC)。在新一代(New Generation,NG)无线接入网络(NG Radio Access Network,NG-RAN)定位系统里,图5中的BS和Location Serve,例如分别为下一代基站(Next Generation Node B,gNode B)和位置管理功能(Location management function,LMF)实体。
基于E-PRS的OTDOA基本定位过程,参见图5,包括:
步骤1、在UE建立与BS的连接之后,UE处于无线资源控制(Radio Resource Control,RRC)连接(RRC_CONNECTED)状态。
步骤2、定位服务器向UE发送请求能力(RequestCapabilities)消息,请求UE通知服务器该UE所能支持的定位功能。
步骤3、UE发送提供能力(ProvideCapabilities)消息来响应定位服务器。基于E-PRS的OTDOA需要修改现有的ProvideCapabilities消息,使得UE能通知定位服务器,该UE是否支持检测E-PRS来得到RSTD测量值。
步骤4、当需要下行链路定位辅助数据时,UE向定位服务器发送请求辅助数据(RequestAssistanceData)消息。该消息包括请求定位服务器提供OTDOA辅助数据。
步骤5、定位服务器向BS发送OTDOA信息请求(OTDOA INFORMATION REQUEST)消息,用于请求BS提供下行链路定位辅助数据,例如E-PRS配置数据。
步骤6、BS向定位服务器发送OTDOA信息响应(OTDOA INFORMATION RESPONSE)消息。向定位服务器提供所请求的下行链路定位辅助数据,包括E-PRS配置数据。现有的OTDOA消息将被修改,以允许BS为服务器提供E-PRS配置数据。
步骤7、定位服务器在提供辅助数据(ProvideAssistanceData)中提供UE所请求的定位辅助数据。
步骤8、定位服务器向UE发送请求位置信息(RequestLocationInformation)消息。该消息请求UE测量BS的下行链路测,并回复测量到的定位测量值。
步骤9、UE利用定位辅助数据(例如,E-PRS配置数据)来测量下行链路信号以获得定位测量值。
步骤10、UE向定位服务器发送提供位置信息(ProvideLocationInformation)消息,其包括测量下行链路信号所获得的定位测量值(例如,RSTD测量)。
步骤11、定位服务器利用UE所获得的定位测量值,计算出UE的位置。
综上,网络侧和终端侧的具体实现分别如下:
网络侧:
网络侧为每个基站小区配置传输E-PRS的参数。E-PRS的参数包括P-PRS信号在时域、 频域和发送功率的配置,以及S-PRS信号在时域、频域和发送功率的配置。
每个基站小区根据配置的E-PRS参数来传输P-PRS和S-PRS信号。
当定位服务器需要为任一UE提供定位服务时,定位服务器向UE发送RequestCapabilities消息,请求UE通知服务器该UE所能支持的定位功能。
定位服务器需要向各个BS发送OTDOA INFORMATION REQUEST消息。请求BS提供下行链路定位辅助数据,例如E-PRS配置数据;
收到OTDOA INFORMATION REQUEST消息后,BS需要向定位服务器发送OTDOA INFORMATION RESPONSE消息。向定位服务器提供所请求的下行链路定位辅助数据,包括E-PRS配置数据;
收到BS发送的INFORMATION RESPONSE消息之后,定位服务器发送ProvideAssistanceData给UE,提供定位辅助数据并向UE发送RequestLocationInformation消息,请求UE测量BS的下行链路,并报告所测量的定位测量值;
定位服务器利用UE在ProvideLocationInformation所提供的定位测量值以及BS在INFORMATION RESPONSE里所提供的BS信息,计算出UE的位置。
在定位服务器侧,参见图6,本申请实施例提供的一种定位方法,包括:
S101、当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
S102、将所述E-PRS配置数据发送给所述UE;
S103、接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
与传统的PRS相比,本申请实施例提供的E-PRS具有以下优点:
在保证相同的OTDOA定位性能下,减少在实际OTDOA系统中用于PRS系统资源;
提供更好的定位性能,特别适用于UE处于慢动作和静止状态的室内环境。
灵活利用系统资源来提高E-PRS的可检测性和OTDOA的定位性能。
因此通过本申请实施例提供的该定位方法,能够提高定位性能和精度。
可选地,所述E-PRS包含主PRS和辅PRS。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元RE发射功率EPRE,小于所述主PRS所采用的EPRE。
由于P-PRS和S-PRS信号的交替传输,基站传输的PRS信号实际上是连续不断的。于是,UE就能通过持续测量和跟踪来自多个相邻小区的PRS信号,以实现连续定位和跟踪。 此外,如果UE能够通过锁相环实现锁相住连续传输的PRS信号的相位,则UE能提供用于定位的载波相位测量。利用载波相位测量,可以实现很高的定位精度。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS不与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元发射功率EPRE,大于或等于所述主PRS所采用的EPRE。
可选地,所述辅PRS的频域配置包括传输带宽、频域位置和所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度。
可选地,所述辅PRS的传输带宽和频域位置通过以下方式之一进行配置:
所述辅PRS的传输带宽和频域位置与所述主PRS的传输带宽和频域位置相同;
所述辅PRS的传输带宽配置为远小于所述主PRS的传输带宽的窄带带宽;
所述辅PRS的传输带宽占整个载波带宽。
可选地,所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度通过以下方式之一进行配置:
辅PRS RE均匀分布在辅PRS的传输带宽中,每3个RE中有一个辅PRS RE;
辅PRS RE均匀分布在辅PRS的传输带宽中,每6个RE中有一个辅PRS RE;
辅PRS RE占满辅PRS的传输带宽中所有的RE。
可选地,该方法还包括:
向所述UE发送定位能力请求;
确定所述UE上报的该UE支持E-PRS的定位能力信息。
相应地,在基站侧,参见图7,本申请实施例提供的一种定位方法,包括:
S201、接收定位服务器发送的获取定位辅助数据的请求;
S202、根据所述请求向所述定位服务器发送定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据。
终端侧:
收到RequestCapabilities消息后,UE需要发送ProvideCapabilities消息来响应定位服务器。通知定位服务器,该UE支持检测E-PRS来得到RSTD测量值;
当需要下行定位辅助数据时,UE需要向定位服务器发送RequestAssistanceData消息,请求定位服务器提供OTDOA辅助数据;
定位服务器向UE发送RequestLocationInformation消息。该消息请求UE测量BS的下行链路,并回复测量到的定位测量值;
UE利用定位服务器在ProvideAssistanceData消息中提供的定位辅助数据(例如,E-PRS 配置数据)来测量下行链路信号以获得定位测量值;
UE向定位服务器发送提供位置信息(ProvideLocationInformation)消息,其包括测量下行链路信号所获得的定位测量值和获得测量值的时间等信息。
因此,在UE侧,参见图8,本申请实施例提供的一种定位方法,包括:
S301、向定位服务器发送定位辅助数据请求;
S302、获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
S303、根据所述定位辅助数据测量下行链路信号,得到定位测量值;
S304、发送所述定位测量值给所述定位服务器。
可选地,该方法还包括:
接收所述定位服务器发送的定位能力请求;
将UE支持E-PRS的定位能力信息发送给所述定位服务器。
综上所述,本申请实施例提供的E-PRS包括基础配置的定位信号和辅助配置的定位信号。辅助配置的定位信号可以采用极低功率用于数据通信的OFDM信号一起发送,也可以占用极窄带宽单独传输。
与TC-OFDM定位信号相比,PRS具有以下优点:
实现简单:TC-OFDM要求基站同时发送和UE同时接受CDMA和OFDM信号;而PRS不要求BS和UE处理CDMA信号,这使BS和特别是UE的实现更容易简单;
配置灵活:对于TC-OFDM,传输带宽受PN序列的设计限制。难以灵活配置和调整信号传输带宽。另外,PN序列的功率平均分配在传输带宽的频谱上,无法根据由于数据通信的OFDM信号的传输进行调整。而PRS本身是OFDM信号。可以很容易地配置载波带宽,而且配置在带宽内的任何位置;
干扰控制:TC-OFDM发射功率均匀分布在PN定位信号的带宽内;无法进行自由调整和控制定位信号彼此之间、以及根据数据通信的OFDM信号的传输调整定位信号与数据通信信号彼此之间的互相干扰。对于PRS,PRS RE可以在载波带宽内自由放置,可自由调整和控制定位信号彼此之间以及定位信号与数据通信信号彼此之间的互相干扰。
与传统的PRS相比,本申请实施例提供的E-PRS具有以下优点:
在保证相同的OTDOA定位性能下,减少在实际OTDOA系统中用于PRS系统资源;
提供更好的定位性能,特别适用于UE处于慢动作和静止状态的室内环境。由于P-PRS和S-PRS信号的交替传输,基站传输的PRS信号实际上是连续不断的。于是,UE就能通过持续测量和跟踪来自多个相邻小区的PRS信号,以实现连续定位和跟踪。此外,如果UE能够通过锁相环实现锁相住连续传输的PRS信号的相位,则UE能提供用于定位的载波相位测量。利用载波相位测量,可以实现很高的定位精度。
灵活利用系统资源来提高S-PRS的可检测性和OTDOA的定位性能。
下面介绍一下本申请实施例提供的装置。
可选的,本发明实施例中,定位服务器与UE之间采用轻量级表示协议(Lightweight Presentation Protocol,LPP)协议进行通信。
在定位服务器侧,参见图9,本申请实施例提供的一种定位装置,包括:
获取单元11,用于当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
发送单元12,用于将所述E-PRS配置数据发送给所述UE;
定位单元13,用于接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
在基站侧,参见图10,本申请实施例提供的一种定位装置,包括:
接收单元21,用于接收定位服务器发送的获取定位辅助数据的请求;
发送单元22,用于根据所述请求向所述定位服务器发送定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据。
在UE侧,参见图11,本申请实施例提供的一种定位装置,包括:
第一发送单元31,用于向定位服务器发送定位辅助数据请求;
获取单元32,用于获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
测量单元33,用于根据所述定位辅助数据测量下行链路信号,得到定位测量值;
第二发送单元34,用于发送所述定位测量值给所述定位服务器。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上各所述的单元,都可以由处理器等实体器件实现。
上述定位服务器侧的定位装置,例如可以是定位服务器本身。
上述基站侧的定位装置,例如可以是基站本身。
上述UE侧的定位装置,例如可以是UE本身。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
例如,参见图12,在定位服务器侧,本申请实施例提供的装置包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
当通过收发机510接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
通过收发机510将所述E-PRS配置数据发送给所述UE;
通过收发机510接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
可选地,所述E-PRS包含主PRS和辅PRS。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元RE发射功率EPRE,小于所述主PRS所采用的EPRE。
可选地,
在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
在频域上,所述辅PRS不与用于数据业务的信号混合在一起发送;
在传输功率上,所述辅PRS所采用的每资源单元发射功率EPRE,大于或等于所述主PRS所采用的EPRE。
可选地,所述辅PRS的频域配置包括传输带宽、频域位置和所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度。
可选地,所述辅PRS的传输带宽和频域位置通过以下方式之一进行配置:
所述辅PRS的传输带宽和频域位置与所述主PRS的传输带宽和频域位置相同;
所述辅PRS的传输带宽配置为远小于所述主PRS的传输带宽的窄带带宽;
所述辅PRS的传输带宽占整个载波带宽。
可选地,所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度通过以下方式之一进行配置:
辅PRS RE均匀分布在辅PRS的传输带宽中,每3个RE中有一个辅PRS RE;
辅PRS RE均匀分布在辅PRS的传输带宽中,每6个RE中有一个辅PRS RE;
辅PRS RE占满辅PRS的传输带宽中所有的RE。
可选地,所述处理器500还用于:
通过收发机510向所述UE发送定位能力请求;
确定所述UE上报的该UE支持E-PRS的定位能力信息。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
相应地,在基站侧,参见图13,本申请实施例提供的一种装置包括:
处理器504,用于读取存储器505中的程序,执行下列过程:
通过收发机501接收定位服务器发送的获取定位辅助数据的请求;
根据所述请求,通过收发机501向所述定位服务器发送定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据。
收发机501,用于在处理器504的控制下接收和发送数据。
在图13中,总线架构(用总线506来代表),总线506可以包括任意数量的互联的总线和桥,总线506将包括由处理器504代表的一个或多个处理器和存储器505代表的存储器的各种电路链接在一起。总线506还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线506和收发机501之间提供接口。收发机501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线506和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
相应地,参见图14,在UE侧,本申请实施例提供的一种装置包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
通过收发机610向定位服务器发送定位辅助数据请求;
通过收发机610获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
根据所述定位辅助数据测量下行链路信号,得到定位测量值;
通过收发机610发送所述定位测量值给所述定位服务器。
可选地,所述处理器600还用于:
通过收发机610接收所述定位服务器发送的定位能力请求;
通过收发机610将UE支持E-PRS的定位能力信息发送给所述定位服务器。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的 单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (23)

  1. 一种定位方法,其特征在于,该方法包括:
    当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
    将所述E-PRS配置数据发送给所述UE;
    接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述E-PRS包含主PRS和辅PRS。
  3. 根据权利要求2所述的方法,其特征在于,
    在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
    在频域上,所述辅PRS与用于数据业务的信号混合在一起发送;
    在传输功率上,所述辅PRS所采用的每资源单元RE发射功率EPRE,小于所述主PRS所采用的EPRE。
  4. 根据权利要求2所述的方法,其特征在于,
    在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
    在频域上,所述辅PRS不与用于数据业务的信号混合在一起发送;
    在传输功率上,所述辅PRS所采用的每资源单元发射功率EPRE,大于或等于所述主PRS所采用的EPRE。
  5. 根据权利要求3或4所述的方法,其特征在于,所述辅PRS的频域配置包括传输带宽、频域位置和所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度。
  6. 根据权利要求5所述的方法,其特征在于,所述辅PRS的传输带宽和频域位置通过以下方式之一进行配置:
    所述辅PRS的传输带宽和频域位置与所述主PRS的传输带宽和频域位置相同;
    所述辅PRS的传输带宽配置为远小于所述主PRS的传输带宽的窄带带宽;
    所述辅PRS的传输带宽占整个载波带宽。
  7. 根据权利要求5所述的方法,其特征在于,所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度通过以下方式之一进行配置:
    辅PRS RE均匀分布在辅PRS的传输带宽中,每3个RE中有一个辅PRS RE;
    辅PRS RE均匀分布在辅PRS的传输带宽中,每6个RE中有一个辅PRS RE;
    辅PRS RE占满辅PRS的传输带宽中所有的RE。
  8. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    向所述UE发送定位能力请求;
    确定所述UE上报的该UE支持E-PRS的定位能力信息。
  9. 一种定位方法,其特征在于,该方法包括:
    向定位服务器发送定位辅助数据请求;
    获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
    根据所述定位辅助数据测量下行链路信号,得到定位测量值;
    发送所述定位测量值给所述定位服务器。
  10. 根据权利要求9所述的方法,其特征在于,该方法还包括:
    接收所述定位服务器发送的定位能力请求;
    将UE支持E-PRS的定位能力信息发送给所述定位服务器。
  11. 一种计算设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于读取存储器中的程序,执行下列过程:
    当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助数
    据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
    将所述E-PRS配置数据发送给所述UE;
    接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
  12. 根据权利要求11所述的计算设备,其特征在于,所述E-PRS包含主PRS和辅PRS。
  13. 根据权利要求12所述的计算设备,其特征在于,
    在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
    在频域上,所述辅PRS与用于数据业务的信号混合在一起发送;
    在传输功率上,所述辅PRS所采用的每资源单元RE发射功率EPRE,小于所述主PRS所采用的EPRE。
  14. 根据权利要求12所述的计算设备,其特征在于,
    在时域上,所述主PRS和所述辅PRS在不同的时间上进行连续不间断地交替发送;
    在频域上,所述辅PRS不与用于数据业务的信号混合在一起发送;
    在传输功率上,所述辅PRS所采用的每资源单元发射功率EPRE,大于或等于所述主PRS所采用的EPRE。
  15. 根据权利要求13或14所述的计算设备,其特征在于,所述辅PRS的频域配置包括传输带宽、频域位置和所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度。
  16. 根据权利要求15所述的计算设备,其特征在于,所述辅PRS的传输带宽和频域位置通过以下方式之一进行配置:
    所述辅PRS的传输带宽和频域位置与所述主PRS的传输带宽和频域位置相同;
    所述辅PRS的传输带宽配置为远小于所述主PRS的传输带宽的窄带带宽;
    所述辅PRS的传输带宽占整个载波带宽。
  17. 根据权利要求15所述的计算设备,其特征在于,所述辅PRS在每个PRS资源块RB中的PRS资源单元RE密度通过以下方式之一进行配置:
    辅PRS RE均匀分布在辅PRS的传输带宽中,每3个RE中有一个辅PRS RE;
    辅PRS RE均匀分布在辅PRS的传输带宽中,每6个RE中有一个辅PRS RE;
    辅PRS RE占满辅PRS的传输带宽中所有的RE。
  18. 根据权利要求11所述的计算设备,其特征在于,所述处理器进一步用于:
    向所述UE发送定位能力请求;
    确定所述UE上报的该UE支持E-PRS的定位能力信息。
  19. 一种计算设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于读取存储器中的程序,执行下列过程:
    向定位服务器发送定位辅助数据请求;
    获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
    根据所述定位辅助数据测量下行链路信号,得到定位测量值;
    发送所述定位测量值给所述定位服务器。
  20. 根据权利要求19所述的计算设备,其特征在于,所述处理器进一步用于:
    接收所述定位服务器发送的定位能力请求;
    将UE支持E-PRS的定位能力信息发送给所述定位服务器。
  21. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至10任一项所述的方法。
  22. 一种定位装置,其特征在于,包括:
    获取单元,用于当接收到用户设备UE发送的定位辅助数据请求时,从基站获取定位辅助据;其中,所述定位辅助数据包括增强的定位参考信号E-PRS配置数据;
    发送单元,用于将所述E-PRS配置数据发送给所述UE;
    定位单元,用于接收所述UE利用所述E-PRS配置数据得到的定位测量值,并利用该定位测量值确定所述UE的位置。
  23. 一种定位装置,其特征在于,包括:
    第一发送单元,用于向定位服务器发送定位辅助数据请求;
    获取单元,用于获取所述定位服务器发送的定位辅助数据;其中,所述定位辅助数据 包括增强的定位参考信号E-PRS配置数据;
    测量单元,用于根据所述定位辅助数据测量下行链路信号,得到定位测量值;
    第二发送单元,用于发送所述定位测量值给所述定位服务器。
PCT/CN2019/099129 2018-09-27 2019-08-02 定位方法及装置 WO2020063110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811130328.X 2018-09-27
CN201811130328.XA CN110972054B (zh) 2018-09-27 2018-09-27 定位方法及装置

Publications (1)

Publication Number Publication Date
WO2020063110A1 true WO2020063110A1 (zh) 2020-04-02

Family

ID=69950979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099129 WO2020063110A1 (zh) 2018-09-27 2019-08-02 定位方法及装置

Country Status (3)

Country Link
CN (1) CN110972054B (zh)
TW (1) TWI731395B (zh)
WO (1) WO2020063110A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112073894B (zh) * 2019-05-24 2022-03-22 大唐移动通信设备有限公司 一种信息确定方法及装置
CN116033339A (zh) * 2020-05-14 2023-04-28 大唐移动通信设备有限公司 一种信息上报方法、装置、设备及可读存储介质
CN113709723B (zh) * 2020-05-20 2022-10-14 大唐移动通信设备有限公司 一种能力上报及处理方法、设备、装置及介质
CN113939012B (zh) * 2020-06-29 2023-06-23 大唐移动通信设备有限公司 定位方法及装置
WO2022077426A1 (en) * 2020-10-16 2022-04-21 Zte Corporation Systems and methods to trigger sending uplink messages
EP4209087A4 (en) * 2020-12-24 2024-05-01 ZTE Corporation SYSTEMS AND METHODS FOR REQUESTING REFERENCE SIGNALS
CN114697169B (zh) * 2020-12-25 2023-11-03 大唐移动通信设备有限公司 一种载波相位测量方法及装置
CN116711254A (zh) * 2021-01-14 2023-09-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2024164116A1 (en) * 2023-02-06 2024-08-15 Mediatek Singapore Pte. Ltd. Auxiliary positioning reference units mechanism for ai/ml positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122930A1 (en) * 2010-07-16 2013-05-16 Lg Electronics Inc. Method and apparatus for transmitting location estimation message in wireless communication system
WO2014019125A1 (zh) * 2012-07-30 2014-02-06 华为技术有限公司 用户设备的定位方法、数据发送方法、装置及用户设备
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
WO2018028941A1 (en) * 2016-08-12 2018-02-15 Sony Corporation Location server, infrastructure equipment, communications device and methods for the use of supplementary postioning reference signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172588A1 (ko) * 2012-05-14 2013-11-21 엘지전자 주식회사 무선 통신 시스템에서 위치 측정 방법
US9479303B2 (en) * 2012-10-23 2016-10-25 Qualcomm Incorporated Enhanced positioning reference signal transmission in wireless communication network
US9432809B2 (en) * 2013-07-12 2016-08-30 Qualcomm Incorporated Providing OTDOA PRS assistance data
CN104735781B (zh) * 2015-04-02 2018-01-30 上海海事大学 一种室内定位系统及其定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122930A1 (en) * 2010-07-16 2013-05-16 Lg Electronics Inc. Method and apparatus for transmitting location estimation message in wireless communication system
WO2014019125A1 (zh) * 2012-07-30 2014-02-06 华为技术有限公司 用户设备的定位方法、数据发送方法、装置及用户设备
CN104469931A (zh) * 2014-11-05 2015-03-25 中兴通讯股份有限公司 一种定位增强的方法及设备
WO2018028941A1 (en) * 2016-08-12 2018-02-15 Sony Corporation Location server, infrastructure equipment, communications device and methods for the use of supplementary postioning reference signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Indoor Positioning Enhancements for UTRA and LTE (Release 13", 3GPP TR 37.857, 24 September 2015 (2015-09-24) *

Also Published As

Publication number Publication date
CN110972054B (zh) 2021-04-09
TW202014019A (zh) 2020-04-01
CN110972054A (zh) 2020-04-07
TWI731395B (zh) 2021-06-21

Similar Documents

Publication Publication Date Title
WO2020063110A1 (zh) 定位方法及装置
KR102713959B1 (ko) 신호 전송, 신호 측정 보고, 측위 방법 및 장치
US12004105B2 (en) Time synchronization method and apparatus
EP3668205B1 (en) Positioning and measurement reporting method and apparatus
WO2020015610A1 (zh) 定位方法、装置及设备
RU2427982C2 (ru) Способы и системы для обеспечения улучшенного определения местоположения в беспроводной связи
US20220330198A1 (en) Signal transmission method and apparatus
WO2019223659A1 (zh) 一种信号传输方法及装置
WO2019228425A1 (zh) 一种定位方法及装置
JP7267463B2 (ja) 情報を決定するための方法および装置
US11503543B2 (en) Signal transmission method and device
US12095698B2 (en) Signal transmission method and device
EP4187964A1 (en) Uplink signal location method, communication base station, measurement base station, and ue
US20220407639A1 (en) Information communication method and device
WO2022206306A1 (zh) 一种通信方法和装置
JP2024523913A (ja) ポジショニング方法、装置及び関連機器
WO2020164455A1 (zh) 一种测量信息上报方法以及相关装置
CN111050383B (zh) 信号传输方法及装置
WO2023078259A1 (zh) 定位方法、装置及相关设备
WO2019127246A1 (zh) 一种定位测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864585

Country of ref document: EP

Kind code of ref document: A1