WO2020088034A1 - 信息确定方法、装置及设备 - Google Patents

信息确定方法、装置及设备 Download PDF

Info

Publication number
WO2020088034A1
WO2020088034A1 PCT/CN2019/100585 CN2019100585W WO2020088034A1 WO 2020088034 A1 WO2020088034 A1 WO 2020088034A1 CN 2019100585 W CN2019100585 W CN 2019100585W WO 2020088034 A1 WO2020088034 A1 WO 2020088034A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
configuration
domain position
predetermined configuration
period
Prior art date
Application number
PCT/CN2019/100585
Other languages
English (en)
French (fr)
Inventor
白伟
高雪娟
艾托尼
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19879395.2A priority Critical patent/EP3876632B1/en
Priority to US17/290,653 priority patent/US11381355B2/en
Publication of WO2020088034A1 publication Critical patent/WO2020088034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • Embodiments of the present disclosure relate to the field of communication technologies, and in particular, to an information determination method, device, and equipment.
  • 5G NR (5Generation) New RAT, 5th generation new wireless access technology
  • 5G NR 5Generation
  • URLLC Ultra Reliable & Low Latency Communication, low-latency, high-reliability communication
  • Simple low-latency requirements or simple high-reliability requirements are relatively easy to implement.
  • an upstream scheduling-free scheme will be supported to reduce the air interface transmission delay, and a repeated transmission scheme will also be supported to increase reliability.
  • the arrival of user data on the UE (User Equipment) side is random.
  • the current uplink scheduling-free repetitive transmission scheme defines a configuration period, and requires that after a UE starts transmission within a period, it must end within the period, and cannot cross periods. Therefore, this will cause the actual number of repeated transmissions to be less than the configured number of repeated transmissions, which also affects reliability.
  • multiple parallel configurations appear, and there is a stagger between the configurations at the beginning of the cycle.
  • the embodiments of the present disclosure provide an information determination method, device, and equipment to solve the problem of large delay when multiple configurations coexist in the uplink scheduling-free repeated transmission scheme.
  • embodiments of the present disclosure provide an information determination method, which is applied to a network-side device, including:
  • the detected uplink is determined according to the association information between the first configuration and the predetermined configuration The transmitted HARQ ID.
  • the determining the detected hybrid automatic repeat request identifier HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration includes:
  • the detected HARQ ID of the uplink transmission is determined.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • the first period As the target period.
  • the determining the detected HARQ ID of the uplink transmission according to the attribute information of the target period includes:
  • the HARQ ID is determined.
  • the method further includes:
  • an embodiment of the present disclosure provides an information determination method, which is applied to a terminal and includes:
  • the HARQ ID of the uplink transmission is determined according to the association information between the first configuration and the predetermined configuration.
  • the determining the HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration includes:
  • the HARQ ID of the uplink transmission is determined.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • the first period As the target period.
  • the determining the detected HARQ ID of the uplink transmission according to the attribute information of the target period includes:
  • the HARQ ID is determined.
  • the method further includes:
  • an information determination apparatus including:
  • a detection module configured to detect uplink transmission on resources corresponding to at least one configuration for multiple uplink unscheduled transmission configurations
  • a determining module configured to determine the first configuration corresponding to the resource detected by the uplink transmission, and if the first configuration is not a predetermined configuration, determine according to the association information between the first configuration and the predetermined configuration The detected HARQ ID of the uplink transmission.
  • the determining module includes:
  • a first determining submodule configured to determine the time domain position where the first transmission opportunity TO in the first configuration is located
  • a second determining submodule configured to determine a target period associated with the time domain position of the first TO in the predetermined configuration
  • the third determining submodule is configured to determine the detected HARQ ID of the uplink transmission according to the attribute information of the target period.
  • the second determining sub-module is specifically configured to, according to the time domain position of the first TO, in the predetermined configuration, overlap with the time domain position of the first TO in the time domain Is determined as the target period.
  • the second determining sub-module includes:
  • the determining unit is configured to: if the offset between the time domain position of the first TO and the time domain position of the first TO in the first period is less than the length of the time domain of the first period, The first cycle is used as the target cycle.
  • an information determination apparatus including:
  • a first determining module configured to determine a first configuration corresponding to the resource for transmitting uplink transmission
  • the second determining module is configured to determine the HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration if the first configuration is not the predetermined configuration.
  • the second determining module includes:
  • a first determining submodule configured to determine the time domain position of the first transmission opportunity TO in the first configuration
  • a second determining submodule configured to determine a target period associated with the time domain position of the first TO in the predetermined configuration
  • the third determining submodule is used to determine the HARQ ID of the uplink transmission according to the attribute information of the target period.
  • the second determining sub-module is specifically configured to, according to the time domain position of the first TO, in the predetermined configuration, overlap with the time domain position of the first TO in the time domain Is determined as the target period.
  • the second determining sub-module includes:
  • the determining unit is configured to: if the offset between the time domain position of the first TO and the time domain position of the first TO in the first period is less than the length of the time domain of the first period, The first cycle is used as the target cycle.
  • an embodiment of the present disclosure provides a network-side device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the processor is used to read the program in the memory and perform the following processes:
  • the detected uplink is determined according to the association information between the first configuration and the predetermined configuration
  • the transmitted hybrid automatic repeat request identifier HARQ ID For the first configuration corresponding to the detected uplink transmission resource, if the first configuration is not a predetermined configuration, the detected uplink is determined according to the association information between the first configuration and the predetermined configuration
  • the transmitted hybrid automatic repeat request identifier HARQ ID For the first configuration corresponding to the detected uplink transmission resource, if the first configuration is not a predetermined configuration, the detected uplink is determined according to the association information between the first configuration and the predetermined configuration
  • the transmitted hybrid automatic repeat request identifier HARQ ID The transmitted hybrid automatic repeat request identifier HARQ ID.
  • the processor is also used to read the program in the memory and perform the following process:
  • the detected HARQ ID of the uplink transmission is determined.
  • the processor is also used to read the program in the memory and perform the following process:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the processor is also used to read the program in the memory and perform the following process:
  • the first period As the target period.
  • the processor is also used to read the program in the memory and perform the following process:
  • the HARQ ID is determined.
  • the processor is also used to read the program in the memory and perform the following process:
  • an embodiment of the present disclosure provides a terminal, including: a transceiver, a memory, a processor, and a computer program stored on the memory and executable on the processor;
  • the processor is used to read the program in the memory and perform the following processes:
  • the HARQ ID of the uplink transmission is determined according to the association information between the first configuration and the predetermined configuration.
  • the processor is also used to read the program in the memory and perform the following process:
  • the HARQ ID of the uplink transmission is determined.
  • the processor is also used to read the program in the memory and perform the following process:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the processor is also used to read the program in the memory and perform the following process:
  • the first period As the target period.
  • the processor is also used to read the program in the memory and perform the following process:
  • the HARQ ID is determined.
  • the processor is also used to read the program in the memory and perform the following process:
  • an embodiment of the present disclosure provides a computer-readable storage medium for storing a computer program, which when executed by a processor implements the steps in the method according to the first aspect; or, the computer When the program is executed by the processor, the steps in the method described in the second aspect are realized.
  • the solution using the embodiments of the present disclosure may not be affected by the maximum number of HARQ processes, thereby reducing delay.
  • Figure 1 is one of the transmission schematic diagrams of related technologies
  • Figure 2 is the second schematic diagram of related technology transmission
  • Fig. 3 is the third schematic diagram of related art transmission
  • FIG. 5 is a flowchart of an information determination method according to an embodiment of the present disclosure.
  • FIG. 6 is a fourth schematic diagram of transmission according to an embodiment of the present disclosure.
  • FIG. 8 is a second schematic diagram of an information determination device according to an embodiment of the present disclosure.
  • FIG. 9 is a third schematic diagram of an information determination device according to an embodiment of the present disclosure.
  • FIG. 10 is a fourth schematic diagram of an information determination device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • gNB base station in 5G
  • PUSCH Physical Physical Uplink Shared Channel
  • Table 1 below is the transmission scheme corresponding to different repetition times K and different RV configurations in the URLLC uplink scheduling-free transmission scheme.
  • the time domain resource location is ⁇ start OFDM symbol, OFDM symbol number ⁇
  • the method of determining the HARQ ID is as follows: If transmission is started in the current period, then the first OFDM symbol of TO 0 of the period is determined first.
  • the configured period (Configured Period) contains P symbols, and the total allowed number of HARQ processes is N, so the HARQ ID of this transmission is (X / P rounded modulus N). Therefore, in Fig. 1, no matter which TO starts transmission, the determined HARQ ID is the same.
  • HARQ ID is (X / P rounded modulo N + offset).
  • each configuration is divided into two HARQ IDs, and the offsets of configurations 1 to 4 are 0, 2, 4, and 6, respectively.
  • the HARQ ID of configuration 1 is 0 or 1, specifically determined by the symbol serial number
  • the HARQ ID of configuration 2 is 2 or 3, specifically determined by the symbol serial number
  • the HARQ ID of configuration 3 is 4 or 5, specifically determined by the symbol serial number
  • the HARQ ID of configuration 4 is 6 or 7, which is determined by the symbol sequence number.
  • the above method for determining the HARQ IDs with multiple configurations will be affected by the maximum number of HARQ processes.
  • the number of HARQ processes is 4.
  • the HARQ ID can only be 0.
  • the TB Transport Block
  • the new TB cannot be transmitted immediately. If the current TB is wrong, the new TB must wait for the current TB to be received correctly, which will cause a relatively large delay.
  • an embodiment of the present disclosure proposes a method for determining HARQ ID in a configuration of multiple uplink unscheduled transmissions to reduce delay.
  • the information determination method according to an embodiment of the present disclosure is applied to network-side devices and includes:
  • Step 401 For configurations of multiple uplink unscheduled transmissions, detect uplink transmissions on resources corresponding to at least one configuration.
  • Step 402 For the first configuration corresponding to the detected uplink transmission resource, if the first configuration is not a predetermined configuration, determine the detected configuration according to the association information between the first configuration and the predetermined configuration The HARQ ID of the uplink transmission.
  • the predetermined configuration may be a predetermined configuration or a high-level configuration.
  • the time domain position of the first TO in the first configuration may be determined, and the target associated with the time domain position of the first TO may be determined in the predetermined configuration cycle. Then, based on the attribute information of the target period, the detected HARQ ID of the uplink transmission is determined.
  • the target period can be determined as follows:
  • One way is to determine, according to the time domain position of the first TO, in the predetermined configuration, a period that overlaps with the time domain position of the first TO in the time domain as the target period .
  • Yet another way is to select the first period in the predetermined configuration. If the offset between the time domain position of the first TO and the time domain position of the first TO in the first period is less than the time domain length of the first period, the first period As the target period.
  • the serial number of the first OFDM symbol of the first TO in the target period in the system frame, the number of OFDM symbols in the target period, and the total number of HARQ processes are respectively obtained. Then, based on the serial number, the number of symbols, and the total number of processes, the HARQ ID is determined.
  • the quotient of the serial number and the symbol number is first rounded to obtain a first factor, and then the first factor is modulo calculated using the total number of processes to obtain The HARQ ID.
  • X represents the sequence number of the first OFDM symbol of the first TO in the target period in the system frame
  • P represents the number of OFDM symbols in the target period
  • N represents the total number of HARQ processes.
  • the way to determine the HARQ ID is the same as that of the related art. Specifically, first determine the period in which the detected uplink transmission is located. The sequence number of the first OFDM symbol of the first TO0 in this period in 1024 system frames is X. The period contains P symbols, and the total number of allowed HARQ processes is N. Then the HARQ ID for this uplink transmission is: Modulus N after X / P is rounded.
  • the solution using the embodiments of the present disclosure may not be affected by the maximum number of HARQ processes, thereby reducing delay.
  • the method may further include: the network-side device configures a plurality of uplink unscheduled transmission configurations, determines a predetermined configuration from the configuration, and then sends instruction information to the terminal.
  • the indication information includes the information of the predetermined configuration.
  • the information of the predetermined configuration may include an identifier and the like.
  • offsets are distinguished from each other by different offsets (offsets), and the offsets are relative to the same slot (slot) boundary.
  • offset is a positive integer in units of signs, where the predetermined configuration can be selected to have the smallest offset.
  • the information determination method of the embodiment of the present disclosure, applied to the terminal includes:
  • Step 501 Determine the first configuration corresponding to the uplink transmission resource.
  • Step 502 If the first configuration is not a predetermined configuration, determine the HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration.
  • the information of the predetermined configuration may be obtained by the network side device, or obtained by high-level configuration.
  • the time domain position of the first transmission opportunity TO in the first configuration may be determined, and the time domain position associated with the time domain of the first TO may be determined in the predetermined configuration Target cycle. Then, according to the attribute information of the target period, the HARQ ID of the uplink transmission is determined.
  • the target period can be determined as follows:
  • One way is to determine, according to the time domain position of the first TO, in the predetermined configuration, a period that overlaps with the time domain position of the first TO in the time domain as the target period .
  • Yet another way is to select the first period in the predetermined configuration. If the offset between the time domain position of the first TO and the time domain position of the first TO in the first period is less than the time domain length of the first period, the first period As the target period.
  • the serial number of the first OFDM symbol of the first TO in the target period in the system frame, the number of OFDM symbols in the target period, and the total number of HARQ processes are respectively obtained. Then, based on the serial number, the number of symbols, and the total number of processes, a HARQ ID is determined.
  • the quotient of the serial number and the symbol number is first rounded to obtain a first factor, and then the first factor is modulo calculated using the total number of processes to obtain The HARQ ID.
  • X represents the sequence number of the first OFDM symbol of the first TO in the target period in the system frame
  • P represents the number of OFDM symbols in the target period
  • N represents the total number of HARQ processes.
  • the way to determine the HARQ ID is the same as that of the related art. Specifically, first determine the period in which the detected uplink transmission is located. The sequence number of the first OFDM symbol of the first TO0 in this period is 1024 system frames, and the period contains P symbols. The number of processes is N, then the HARQ ID of this uplink transmission is: X / P rounded modulo N.
  • the solution using the embodiments of the present disclosure may not be affected by the maximum number of HARQ processes, thereby reducing delay.
  • it may further include: receiving indication information sent by the network side device, where the indication information includes the information of the predetermined configuration.
  • the information of the predetermined configuration may include an identifier and the like.
  • the first configuration (CG Config # 1) is a predetermined configuration.
  • the arrival time of the data is new data arrival 11 in the figure.
  • the UE will select configuration 4 for repeated PUSCH transmission, which can complete 4 repeated transmissions to meet reliability requirements.
  • the sequence number of the first OFDM symbol of the first TO (TO 0) in the above target period in 1024 system frames is X, the configured period contains P symbols, and the total allowed number of HARQ processes is N, then this transmission
  • the HARQ ID is (modulo N after X / P is rounded).
  • the HARQ ID determination problem is solved, and the delay is reduced.
  • the information determination device of the embodiment of the present disclosure includes:
  • the detection module 701 is configured to detect uplink transmission on resources corresponding to at least one configuration for multiple uplink unscheduled transmission configurations;
  • the determining module 702 is configured to determine the first configuration corresponding to the detected uplink transmission resource, and if the first configuration is not a predetermined configuration, determine according to the association information between the first configuration and the predetermined configuration The detected HARQ ID of the uplink transmission.
  • the determining module 702 includes:
  • a first determining submodule configured to determine the time domain position where the first transmission opportunity TO in the first configuration is located
  • a second determining submodule configured to determine a target period associated with the time domain position of the first TO in the predetermined configuration
  • the third determining submodule is configured to determine the detected HARQ ID of the uplink transmission according to the attribute information of the target period.
  • the second determining sub-module is specifically configured to, according to the time domain position of the first TO, in the predetermined configuration, overlap with the time domain position of the first TO in the time domain Is determined as the target period.
  • the second determining sub-module includes:
  • a selection unit is used to select the first period in the predetermined configuration; a determination unit is used to determine whether the time domain position of the first TO and the time domain position of the first TO in the first period If the offset is less than the time domain length of the first period, the first period is used as the target period.
  • the third determining sub-module is specifically used to separately obtain the serial number of the first orthogonal frequency division multiplexing OFDM symbol of the first TO in the target period in the system frame, and the The number of OFDM symbols and the total number of HARQ processes; according to the sequence number, the number of symbols and the total number of processes, determine the HARQ ID.
  • an embodiment of the present disclosure may further include: a configuration module 703, which configures multiple uplink unscheduled transmission configurations, and determines a predetermined configuration from the configurations; a sending module 704, which is used to send indication information to the terminal
  • the instruction information includes the information of the predetermined configuration.
  • the solution using the embodiments of the present disclosure may not be affected by the maximum number of HARQ processes, thereby reducing delay.
  • the information determination device of the embodiment of the present disclosure includes:
  • the first determining module 901 is configured to determine the first configuration corresponding to the resource for transmitting uplink transmission
  • the second determining module 902 is configured to determine the HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration if the first configuration is not the predetermined configuration.
  • the second determining module 902 includes:
  • the first determining submodule is used to determine the time domain position of the first transmission opportunity TO in the first configuration; the second determining submodule is used to determine the relationship with the first TO in the predetermined configuration The target period associated with the time domain position; a third determining submodule, configured to determine the HARQ ID of the uplink transmission according to the attribute information of the target period.
  • the second determining sub-module is specifically configured to, according to the time domain position of the first TO, in the predetermined configuration, overlap with the time domain position of the first TO in the time domain Is determined as the target period.
  • the second determination sub-module includes: a selection unit for selecting a first period in the predetermined configuration; a determination unit for determining the time domain position of the first TO and the first period The offset between the time domain positions of the first TO is smaller than the time domain length of the first period, and the first period is taken as the target period.
  • the third determining sub-module may include: an acquiring unit for respectively acquiring the sequence number of the first OFDM symbol of the first TO in the target period in the system frame, and the OFDM symbol in the target period The number, the total number of HARQ processes; the determining unit is used to determine the HARQ ID according to the sequence number, the number of symbols and the total number of processes.
  • the apparatus may further include: a receiving module 903, configured to receive indication information sent by the network-side device, and the indication information includes the information of the predetermined configuration.
  • the solution using the embodiments of the present disclosure may not be affected by the maximum number of HARQ processes, thereby reducing delay.
  • the network-side device of the embodiment of the present disclosure includes: a processor 1100, configured to read a program in the memory 1120, and perform the following processes:
  • the HARQ of the uplink transmission is determined according to the association information between the first configuration and the predetermined configuration ID.
  • the transceiver 1110 is used to receive and transmit data under the control of the processor 1100.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1110 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 in performing operations.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 in performing operations.
  • the processor 1100 is also used to read the computer program and perform the following steps:
  • the detected HARQ ID of the uplink transmission is determined.
  • the processor 1100 is also used to read the computer program and perform the following steps:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the processor 1100 is further used to read the computer program and perform the following steps: select a first period in the predetermined configuration; if the time domain position of the first TO is different from the first TO in the first period The offset between the time-domain positions of is less than the time-domain length of the first period, then the first period is taken as the target period.
  • the processor 1100 is further used to read the computer program and perform the following steps: separately obtain the sequence number of the first OFDM symbol of the first TO in the target period in the system frame, and the OFDM symbol in the target period Number, the total number of HARQ processes; based on the sequence number, the number of symbols, and the total number of processes, determine the HARQ ID.
  • the processor 1100 is further used to read the computer program and perform the following steps: configure a plurality of uplink unscheduled transmission configurations, and determine a predetermined configuration from the configurations; send instruction information to the terminal, where the instruction information includes all Describe the information of the predetermined configuration.
  • the terminal of the embodiment of the present disclosure includes: a processor 1200, configured to read a program in the memory 1220, and perform the following processes:
  • the HARQ ID of the uplink transmission is determined according to the association information between the first configuration and the predetermined configuration.
  • the transceiver 1210 is used to receive and transmit data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 1200 and various circuits of the memory represented by the memory 1220 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1210 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 1230 may also be an interface that can be externally connected to a desired device.
  • the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 may store data used by the processor 1200 in performing operations.
  • the processor 1200 is further used to read the computer program and perform the following steps: determine the time domain position of the first transmission opportunity TO in the first configuration; determine the first TO in the predetermined configuration The target period associated with the time domain position of; determining the HARQ ID of the uplink transmission according to the attribute information of the target period.
  • the processor 1200 is further used to read the computer program and perform the following steps: according to the time domain position of the first TO, in the predetermined configuration, the time domain position of the first TO The period with overlap in the field is determined as the target period.
  • the processor 1200 is further used to read the computer program and perform the following steps: select a first period in the predetermined configuration; if the time domain position of the first TO is different from the first TO in the first period The offset between the time-domain positions of is less than the time-domain length of the first period, then the first period is taken as the target period.
  • the processor 1200 is also used to read the computer program and perform the following steps: separately obtain the sequence number of the first OFDM symbol of the first TO in the target period in the system frame, and the OFDM symbol in the target period Number, the total number of HARQ processes; based on the sequence number, the number of symbols, and the total number of processes, determine the HARQ ID.
  • the processor 1200 is further configured to read the computer program and perform the following steps: receiving instruction information sent by the network side device, where the instruction information includes the information of the predetermined configuration.
  • the computer-readable storage medium of the embodiment of the present disclosure is used to store a computer program, and the computer program may be executed by a processor to implement the following steps:
  • the detected uplink is determined according to the association information between the first configuration and the predetermined configuration The transmitted HARQ ID.
  • the determining the detected HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration includes:
  • the detected hybrid automatic repeat request identifier HARQ ID of the uplink transmission is determined.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • the first period As the target period.
  • determining the detected HARQ ID of the uplink transmission according to the attribute information of the target period includes:
  • the HARQ ID is determined.
  • the method further includes:
  • the computer-readable storage medium of the embodiment of the present disclosure is used to store a computer program, and the computer program may be executed by a processor to implement the following steps:
  • the HARQ ID of the uplink transmission is determined according to the association information between the first configuration and the predetermined configuration.
  • the determining the HARQ ID of the uplink transmission according to the association information between the first configuration and the predetermined configuration includes:
  • the HARQ ID of the uplink transmission is determined.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • a period overlapping the time domain position of the first TO in the time domain is determined as the target period.
  • the determining the target period associated with the time domain position of the first TO in the predetermined configuration includes:
  • the first period As the target period.
  • the determining the detected HARQ ID of the uplink transmission according to the attribute information of the target period includes:
  • the HARQ ID is determined.
  • the method further includes:
  • the disclosed method and apparatus may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the above software functional unit is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving methods described in the embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disc, etc., which can store program codes Medium.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), field programmable gate array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing device
  • DPD digital signal processing device
  • PLD programmable Logic Device
  • FPGA field programmable gate array
  • controller microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信息确定方法、装置及设备。本公开的信息确定方法包括:对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。

Description

信息确定方法、装置及设备
相关申请的交叉引用
本申请主张在2018年11月2日在中国提交的中国专利申请号No.201811302296.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种信息确定方法、装置及设备。
背景技术
随着移动通信业务需求的发展变化,3GPP等多个组织对未来移动通信系统都开始研究新的无线通信系统,即5G NR(5Generation New RAT,第5代新无线接入技术)。在5G NR系统中,一个重要的需求是低时延、高可靠的通信,于是出现了URLLC(Ultra Reliable&Low Latency Communication,低时延、高可靠通信)等传输方案。单纯的低时延需求或者单纯的高可靠需求,均比较容易实现,但是,低时延需求和高可靠需求同时满足是难实现的,通常以高复杂度为代价来实现。
对于URLLC业务,在NR标准中,将会支持上行免调度方案,以减少空口传输时延,同时会支持重复传输方案,以增加可靠性。
UE(User Equipment,用户设备)侧用户数据的到达是随机的。但是目前上行免调度重复传输方案中定义了配置周期,同时要求在一个周期内UE开始传输后,必须在周期内结束,不能跨周期。因此,这会造成实际的重复传输次数小于所配置的重复传输次数,也就影响了可靠性。为了提高可靠性,出现了多个并行的配置,各个配置之间在周期起始位置上有一个错开。
在上行免调度重复传输方案中,当采用多个配置时,需要解决如何确定各个配置的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)ID(Identification,标识)的问题。相关技术的HARQ ID的配置方法中,当多个配置同时存在时,受到最大HARQ进程数的影响,将会造成较大的时延。
发明内容
有鉴于此,本公开实施例提供一种信息确定方法、装置及设备,用以解决在上行免调度重复传输方案中多个配置同时存在的情况下时延较大的问题。
为解决上述技术问题,第一方面,本公开实施例提供一种信息确定方法,应用于网络侧设备,包括:
对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。
其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID,包括:
确定所述第一配置中的第一个TO(Transmission Opportunity,传输机会)所在的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID,包括:
分别获取所述目标周期内的第一个TO的第一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,在所述在至少一个配置所对应的资源上检测上行传输之前,所述方法还包括:
配置多个上行免调度传输的配置,并从所述配置中确定预定配置;
向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
第二方面,本公开实施例提供一种信息确定方法,应用于终端,包括:
确定传输上行传输的资源所对应的第一配置;
若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID,包括:
确定所述第一配置中的第一个传输机会TO的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID,包括:
分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,所述方法还包括:
接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
第三方面,本公开实施例提供一种信息确定装置,包括:
检测模块,用于对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
确定模块,用于对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。
其中,所述确定模块包括:
第一确定子模块,用于确定所述第一配置中的第一个传输机会TO所在的时域位置;
第二确定子模块,用于在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
第三确定子模块,用于根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述第二确定子模块包括:
选择单元,用于在所述预定配置中选择第一周期;
确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
第四方面,本公开实施例提供一种信息确定装置,包括:
第一确定模块,用于确定传输上行传输的资源所对应的第一配置;
第二确定模块,用于若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述第二确定模块包括:
第一确定子模块,用于确定所述第一配置中的第一个传输机会TO的时域位置;
第二确定子模块,用于在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
第三确定子模块,用于根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述第二确定子模块包括:
选择单元,用于在所述预定配置中选择第一周期;
确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
第五方面,本公开实施例提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述处理器,用于读取存储器中的程序,执行下列过程:
对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
确定所述第一配置中的第一个传输机会TO所在的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
配置多个上行免调度传输的配置,并从所述配置中确定预定配置;
向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
第六方面,本公开实施例提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;
所述处理器,用于读取存储器中的程序,执行下列过程:
确定传输上行传输的资源所对应的第一配置;
若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
确定所述第一配置中的第一个传输机会TO的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,所述处理器还用于读取存储器中的程序,执行下列过程:
接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
第七方面,本公开实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法中的步骤;或者,所述计算机程序被处理器执行时实现如第二方面所述的方法中的步骤。
本公开实施例的上述技术方案的有益效果如下:
在本公开实施例中,对于多个上行免调度传输的配置,若检测到了上行传输,在所述上行传输的资源对应的第一配置不是预定配置时,则根据第一配置和预定配置之间的关联关系确定出该上行传输的HARQ ID。从而,利用本公开实施例的方案可不受最大HARQ进程数的影响,从而减小时延。
附图说明
图1为相关技术的传输示意图之一;
图2为相关技术的传输示意图之二;
图3为相关技术的传输示意图之三;
图4为本公开实施例信息确定方法的流程图;
图5为本公开实施例信息确定方法的流程图;
图6为本公开实施例的传输示意图之四;
图7为本公开实施例的信息确定装置的示意图之一;
图8为本公开实施例的信息确定装置的示意图之二;
图9为本公开实施例的信息确定装置的示意图之三;
图10为本公开实施例的信息确定装置的示意图之四;
图11为本公开实施例的网络侧设备的示意图;
图12为本公开实施例的终端的示意图。
具体实施方式
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
在NR URLLC方案中,由gNB(5G中的基站)先使用信令配置PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的传输,包括资源分配的周期P、重复次数K、RV序列、周期P内K个资源的位置等信息,这K个资源位置成为K个TO。
下表1是URLLC上行免调度传输方案中,配置不同的重复次数K,不同的RV配置所对应的传输方案。
表1
Figure PCTCN2019100585-appb-000001
Figure PCTCN2019100585-appb-000002
其中,通过RRC(Radio Resource Control,无线资源控制协议)配置,比如P=4,K=4、RV={0 0 0 0},时域资源位置为{起始OFDM符号,OFDM符号个数},这个时域资源位置定义为一个传输机会TO,即完成一次重复传输,K=4意味着要进行四次重复传输,需要四个TO。
当数据在第一个TO前到达时,可以使用第一个TO开始进行传输,这样会传输四次,RV为{0 0 0 0};当数据在第一个TO后、第二个TO前到达时,可以使用第二个TO开始进行传输,这样会传输三次,RV为{0 0 0};当数据在第二个TO后、第三个TO前到达时,可以使用第三个TO开始进行传输,这样会传输两次,RV为{0 0};当数据在第三个TO后、第四个TO前到达时,可以使用第四个TO开始进行传输,这样会传输一次,RV为{0}。分别对应图1中的情况1(case 1)、情况2(case 2)、情况3(case 3)、情况4(case 4)。
其中,相关技术中,HARQ ID的确定方法如下:如果在当前周期开始了传输,那么首先确定该周期的TO 0的第一个OFDM符号,这个符号在1024个系统帧内的序号为X,所配置的周期(Configured Period)包含P个符号,总共允许的HARQ进程数为N,那么这个传输的HARQ ID为(X/P取整后模N)。所以,图1中,无论从哪一个TO开始传输,所确定的HARQ ID都是相同的。
当多个配置同时存在时,可以对每一个配置采用上述确定传输的HARQ ID的方法,同时在不同的配置之间加上一个偏移offset,即HARQ ID为(X/P取整后模N+offset)。
如图2所示,共有4个配置,最大HARQ进程数为8,每个配置分得2个HARQ ID,配置1~4的offset分别为0、2、4、6。那么,配置1的HARQ ID为0或1,具体由符号序号确定,配置2的HARQ ID为2或3,具体由符 号序号确定,配置3的HARQ ID为4或5,具体由符号序号确定,配置4的HARQ ID为6或7,具体由符号序号确定。
上述多配置的HARQ ID的确定方法,将受到最大HARQ进程数的影响。例如,在图3中,HARQ进程数为4。那么,对于每个配置,只有一个HARQ ID,比如配置1,只能是HARQ ID为0,当一个周期内的TB(Transport Block,传输块)传输完成后,不能紧接着进行新TB的传输,因为当前TB出错的话,新TB必须等待当前TB正确接收,这就会造成时延比较大。
鉴于此,本公开实施例提出了一种在多个上行免调度传输的配置下,如何确定HARQ ID的方法,以减小时延。
如图4所示,本公开实施例的信息确定方法,应用于网络侧设备,包括:
步骤401、对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输。
步骤402、对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。
其中,所述预定配置可以是预先确定的配置或者是高层配置的配置。
具体的,在此步骤中,可确定所述第一配置中的第一个TO所在的时域位置,并在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期。然后,根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
在此步骤中,可通过如下方式确定目标周期:
一种方式是,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
又一种方式是,在所述预定配置中选择第一周期。若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
在确定上行传输的HARQ ID时,分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数。然后,根据所述序号,所述符号数和所述总进程数,确 定HARQ ID。
具体的,按照下述公式(1),先对所述序号和所述符号数的商取整,获得第一因数,然后利用所述总进程数对所述第一因数进行取模运算,获得所述HARQ ID。
HARQ ID=X/P取整后模N;(1)
其中,X表示目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号,P表示目标周期内的OFDM符号数,N表示HARQ的总进程数。
若所述第一配置是预定配置,确定HARQ ID的方式与相关技术的相同。具体的,首先确定检测到的上行传输所在的周期。该周期的第一个TO 0的第一个OFDM符号在1024个系统帧内的序号为X,该周期包含P个符号,总共允许的HARQ进程数为N,那么这个上行传输的HARQ ID为:X/P取整后模N。
在本公开实施例中,对于多个上行免调度传输的配置,若检测到了上行传输,在所述上行传输的资源对应的第一配置不是预定配置时,则根据第一配置和预定配置之间的关联关系确定出该上行传输的HARQ ID。从而,利用本公开实施例的方案可不受最大HARQ进程数的影响,从而减小时延。
在上述实施例的基础上,为提高通信效率,还可包括:网络侧设备配置多个上行免调度传输的配置,并从所述配置中确定预定配置,然后,向终端发送指示信息,所述指示信息中包括所述预定配置的信息。其中,所述预定配置的信息可包括标识等。
其中,所述多个配置相互以不同的offset(偏移量)来区别,offset是相对于同一个slot(时隙)边界来说的。offset为以符号为单位的正整数,其中,预定配置可以选择offset最小。
如图5所示,本公开实施例的信息确定方法,应用于终端,包括:
步骤501、确定传输上行传输的资源所对应的第一配置。
步骤502、若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述预定配置的信息可由网络侧设备获得,或者通过高层配置获得。
具体的,在此步骤中,可确定所述第一配置中的第一个传输机会TO的时域位置,并在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期。然后,根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
在此步骤中,可通过如下方式确定目标周期:
一种方式是,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
又一种方式是,在所述预定配置中选择第一周期。若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
在确定上行传输的HARQ ID时,分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数。然后,根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
具体的,按照下述公式(2),先对所述序号和所述符号数的商取整,获得第一因数,然后利用所述总进程数对所述第一因数进行取模运算,获得所述HARQ ID。
HARQ ID=X/P取整后模N;(2)
其中,X表示目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号,P表示目标周期内的OFDM符号数,N表示HARQ的总进程数。
若所述第一配置是预定配置,确定HARQ ID的方式与相关技术的相同。具体的,首先确定检测到的上行传输所在的周期,该周期的第一个TO 0的第一个OFDM符号在1024个系统帧内的序号为X,该周期包含P个符号,总共允许的HARQ进程数为N,那么这个上行传输的HARQ ID为:X/P取整后模N。
在本公开实施例中,对于多个上行免调度传输的配置,若检测到了上行传输,在所述上行传输的资源对应的第一配置不是预定配置时,则根据第一配置和预定配置之间的关联关系确定出该上行传输的HARQ ID。从而,利用本公开实施例的方案可不受最大HARQ进程数的影响,从而减小时延。
在上述实施例的基础上,为提高通信效率,还可包括:接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。其中,所述预定配置的信息可包括标识等。
如图6所示,通过RRC配置如下:P=4、K=4、RV={0 0 0 0},时域资源位置为{起始OFDM符号,OFDM符号个数},这个时域资源位置定义为一个传输机会TO,即完成一次重复传输,K=4意味着要进行四次重复传输才能满足可靠性要求,需要四个TO。假设第一个配置(CG Config#1)为预定配置。
数据的到达时刻为图中的new data arrival(新的数据到来)11,UE将选择配置4进行PUSCH的重复传输,可以完成4次重复传输,满足可靠性要求。
传输所在的配置为配置4(CG Config#4),没有使用第一个配置(CG Config#1)。那么,可确定出配置4的第一个TO的时域位置,如图中两条竖向的线之间。而后,确定出包含上述TO时域位置的第一个配置的目标周期,如图中第一个配置中的“配置的(Configured)P=K=4”标识所在的周期。上述目标周期的第一个TO(TO 0)的第一个OFDM符号在1024个系统帧内的序号为X,所配置的周期包含P个符号,总共允许的HARQ进程数为N,那么这个传输的HARQ ID为(X/P取整后模N)。
由上可以看出,本公开实施例在保证可靠传输的前提下,在多个上行免传输的配置中,解决了HARQ ID的确定问题,减小了时延。
如图7所示,本公开实施例的信息确定装置,包括:
检测模块701,用于对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
确定模块702,用于对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。
其中,所述确定模块702包括:
第一确定子模块,用于确定所述第一配置中的第一个传输机会TO所在的时域位置;
第二确定子模块,用于在所述预定配置中确定与所述第一个TO的时域 位置相关联的目标周期;
第三确定子模块,用于根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述第二确定子模块包括:
选择单元,用于在所述预定配置中选择第一周期;确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述第三确定子模块具体用于,分别获取所述目标周期内的第一个TO的第一个正交频分复用OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
如图8所示,本公开实施例还可包括:配置模块703,配置多个上行免调度传输的配置,并从所述配置中确定预定配置;发送模块704,用于向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
本公开所述装置的工作原理可参照前述方法实施例的描述。
在本公开实施例中,对于多个上行免调度传输的配置,若检测到了上行传输,在所述上行传输的资源对应的第一配置不是预定配置时,则根据第一配置和预定配置之间的关联关系确定出该上行传输的HARQ ID。从而,利用本公开实施例的方案可不受最大HARQ进程数的影响,从而减小时延。
如图9所示,本公开实施例的信息确定装置,包括:
第一确定模块901,用于确定传输上行传输的资源所对应的第一配置;
第二确定模块902,用于若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述第二确定模块902包括:
第一确定子模块,用于确定所述第一配置中的第一个传输机会TO的时域位置;第二确定子模块,用于在所述预定配置中确定与所述第一个TO的 时域位置相关联的目标周期;第三确定子模块,用于根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述第二确定子模块包括:选择单元,用于在所述预定配置中选择第一周期;确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述第三确定子模块可包括:获取单元,用于分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;确定单元,用于根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
为提高通信效率,如图10所示,所述装置还可包括:接收模块903,用于接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
本公开所述装置的工作原理可参照前述方法实施例的描述。
在本公开实施例中,对于多个上行免调度传输的配置,若检测到了上行传输,在所述上行传输的资源对应的第一配置不是预定配置时,则根据第一配置和预定配置之间的关联关系确定出该上行传输的HARQ ID。从而,利用本公开实施例的方案可不受最大HARQ进程数的影响,从而减小时延。
如图11所示,本公开实施例的网络侧设备,包括:处理器1100,用于读取存储器1120中的程序,执行下列过程:
对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
收发机1110,用于在处理器1100的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体 由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
处理器1100还用于读取所述计算机程序,执行如下步骤:
确定所述第一配置中的第一个传输机会TO所在的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
处理器1100还用于读取所述计算机程序,执行如下步骤:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
处理器1100还用于读取所述计算机程序,执行如下步骤:在所述预定配置中选择第一周期;若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
处理器1100还用于读取所述计算机程序,执行如下步骤:分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
处理器1100还用于读取所述计算机程序,执行如下步骤:配置多个上行免调度传输的配置,并从所述配置中确定预定配置;向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
如图12所示,本公开实施例的终端,包括:处理器1200,用于读取存储器1220中的程序,执行下列过程:
确定传输上行传输的资源所对应的第一配置;
若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
收发机1210,用于在处理器1200的控制下接收和发送数据。
其中,在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1230还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
处理器1200还用于读取所述计算机程序,执行如下步骤:确定所述第一配置中的第一个传输机会TO的时域位置;在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
处理器1200还用于读取所述计算机程序,执行如下步骤:根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
处理器1200还用于读取所述计算机程序,执行如下步骤:在所述预定配置中选择第一周期;若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
处理器1200还用于读取所述计算机程序,执行如下步骤:分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
处理器1200还用于读取所述计算机程序,执行如下步骤:接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID。
其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的HARQ ID,包括:
确定所述第一配置中的第一个传输机会TO所在的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述根据所述目标周期的属性信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID,包括:
分别获取所述目标周期内的第一个TO的第一个正交频分复用OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,在所述在至少一个配置所对应的资源上检测上行传输之前,所述方法还包括:
配置多个上行免调度传输的配置,并从所述配置中确定预定配置;
向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
确定传输上行传输的资源所对应的第一配置;
若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID。
其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID,包括:
确定所述第一配置中的第一个传输机会TO的时域位置;
在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
在所述预定配置中选择第一周期;
若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
其中,所述根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID,包括:
分别获取所述目标周期内的第一个TO的第一个OFDM符号在系统帧内的序号、所述目标周期内的OFDM符号数、HARQ的总进程数;
根据所述序号,所述符号数和所述总进程数,确定HARQ ID。
其中,所述方法还包括:
接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (29)

  1. 一种信息确定方法,应用于网络侧设备,包括:
    对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
    对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID,包括:
    确定所述第一配置中的第一个传输机会TO所在的时域位置;
    在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
  3. 根据权利要求2所述的方法,其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
    根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  4. 根据权利要求2所述的方法,其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
    在所述预定配置中选择第一周期;
    若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  5. 根据权利要求1所述的方法,其中,在所述在至少一个配置所对应的资源上检测上行传输之前,所述方法还包括:
    配置多个上行免调度传输的配置,并从所述配置中确定预定配置;
    向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
  6. 一种信息确定方法,应用于终端,包括:
    确定传输上行传输的资源所对应的第一配置;
    若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的混合自动重传请求标识HARQ ID。
  7. 根据权利要求6所述的方法,其中,所述根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的HARQ ID,包括:
    确定所述第一配置中的第一个传输机会TO的时域位置;
    在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
  8. 根据权利要求7所述的方法,其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
    根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  9. 根据权利要求7所述的方法,其中,所述在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期,包括:
    在所述预定配置中选择第一周期;
    若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  10. 根据权利要求6所述的方法,还包括:
    接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
  11. 一种信息确定装置,包括:
    检测模块,用于对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
    确定模块,用于对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID。
  12. 根据权利要求11所述的装置,其中,所述确定模块包括:
    第一确定子模块,用于确定所述第一配置中的第一个传输机会TO所在 的时域位置;
    第二确定子模块,用于在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    第三确定子模块,用于根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
  13. 根据权利要求12所述的装置,其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  14. 根据权利要求12所述的装置,其中,所述第二确定子模块包括:
    选择单元,用于在所述预定配置中选择第一周期;
    确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  15. 一种信息确定装置,包括:
    第一确定模块,用于确定传输上行传输的资源所对应的第一配置;
    第二确定模块,用于若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的混合自动重传请求标识HARQ ID。
  16. 根据权利要求15所述的装置,其中,所述第二确定模块包括:
    第一确定子模块,用于确定所述第一配置中的第一个传输机会TO的时域位置;
    第二确定子模块,用于在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    第三确定子模块,用于根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
  17. 根据权利要求16所述的装置,其中,所述第二确定子模块具体用于,根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  18. 根据权利要求16所述的装置,其中,所述第二确定子模块包括:
    选择单元,用于在所述预定配置中选择第一周期;
    确定单元,用于若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  19. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:
    对于多个上行免调度传输的配置,在至少一个配置所对应的资源上检测上行传输;
    对于检测到所述上行传输的资源对应的第一配置,若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定检测到的所述上行传输的混合自动重传请求标识HARQ ID。
  20. 根据权利要求19所述的设备,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    确定所述第一配置中的第一个传输机会TO所在的时域位置;
    在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    根据所述目标周期的属性信息,确定检测到的所述上行传输的HARQ ID。
  21. 根据权利要求20所述的设备,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  22. 根据权利要求20所述的设备,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    在所述预定配置中选择第一周期;
    若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  23. 根据权利要求19所述的设备,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    配置多个上行免调度传输的配置,并从所述配置中确定预定配置;
    向终端发送指示信息,所述指示信息中包括所述预定配置的信息。
  24. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述处理器,用于读取存储器中的程序,执行下列过程:
    确定传输上行传输的资源所对应的第一配置;
    若所述第一配置不是预定配置,则根据所述第一配置和所述预定配置之间的关联信息,确定所述上行传输的混合自动重传请求标识HARQ ID。
  25. 根据权利要求24所述的终端,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    确定所述第一配置中的第一个传输机会TO的时域位置;
    在所述预定配置中确定与所述第一个TO的时域位置相关联的目标周期;
    根据所述目标周期的属性信息,确定所述上行传输的HARQ ID。
  26. 根据权利要求25所述的终端,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    根据所述第一个TO的时域位置,在所述预定配置中,将与所述第一个TO的时域位置在时域上有重叠的周期确定为所述目标周期。
  27. 根据权利要求25所述的终端,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    在所述预定配置中选择第一周期;
    若所述第一个TO的时域位置与所述第一周期中第一个TO的时域位置之间的偏移量小于所述第一周期的时域长度,则将所述第一周期作为所述目标周期。
  28. 根据权利要求24所述的终端,其中,所述处理器还用于读取存储器中的程序,执行下列过程:
    接收网络侧设备发送指示信息,所述指示信息中包括所述预定配置的信息。
  29. 一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至5中任一项所述的方法中的步骤; 或者,所述计算机程序被处理器执行时实现如权利要求6至10中任一项所述的方法中的步骤。
PCT/CN2019/100585 2018-11-02 2019-08-14 信息确定方法、装置及设备 WO2020088034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19879395.2A EP3876632B1 (en) 2018-11-02 2019-08-14 Information determination method, apparatus and device
US17/290,653 US11381355B2 (en) 2018-11-02 2019-08-14 Information determination method, apparatus and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811302296.7A CN111148228B (zh) 2018-11-02 2018-11-02 一种信息确定方法、装置及设备
CN201811302296.7 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020088034A1 true WO2020088034A1 (zh) 2020-05-07

Family

ID=70464704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100585 WO2020088034A1 (zh) 2018-11-02 2019-08-14 信息确定方法、装置及设备

Country Status (4)

Country Link
US (1) US11381355B2 (zh)
EP (1) EP3876632B1 (zh)
CN (1) CN111148228B (zh)
WO (1) WO2020088034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11381355B2 (en) * 2018-11-02 2022-07-05 Datang Mobile Communications Equipment Co., Ltd. Information determination method, apparatus and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136265A1 (en) * 2016-02-03 2017-08-10 Ofinno Technologies, Llc Hybrid automatic repeat requests in a wireless device and wireless network
US20180049229A1 (en) * 2016-08-12 2018-02-15 Ofinno Technologies, Llc Semi-persistent scheduling in a wireless device and network

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394728B (zh) * 2011-11-17 2014-08-20 电信科学技术研究院 下行进程号的确定方法和设备
US11470820B2 (en) * 2016-09-08 2022-10-18 Rutgers, The State University Of New Jersey Non-membrane feeding device and diet formulation for mosquito colony production
US10382170B2 (en) * 2016-09-25 2019-08-13 Ofinno, Llc HARQ process in semi-persistent scheduling
US10869333B2 (en) * 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions
CN108400845A (zh) * 2017-02-06 2018-08-14 中兴通讯股份有限公司 确定重传进程号的方法、装置以及系统
EP4145740A1 (en) * 2017-03-23 2023-03-08 Huawei Technologies Co., Ltd. Configuration, indication and ack/nack for multiple harq grant-free transmission
US10588042B2 (en) * 2017-07-11 2020-03-10 Qualcomm Incorporated Transmission opportunities during measurement gaps
EP3442293B1 (en) * 2017-08-10 2020-07-15 Comcast Cable Communications, LLC Activation of grant-free transmission
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
CN111148228B (zh) * 2018-11-02 2022-06-21 大唐移动通信设备有限公司 一种信息确定方法、装置及设备
US11304227B2 (en) * 2019-04-08 2022-04-12 Lg Electronics Inc. Method and apparatus for validating time alignment for preconfigured uplink resource in a wireless communication system
US11483862B2 (en) * 2019-07-02 2022-10-25 Qualcomm Incorporated Configured grant resource validation
EP3780856A1 (en) * 2019-08-14 2021-02-17 Comcast Cable Communications LLC Access procedure resource configuration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136265A1 (en) * 2016-02-03 2017-08-10 Ofinno Technologies, Llc Hybrid automatic repeat requests in a wireless device and wireless network
US20180049229A1 (en) * 2016-08-12 2018-02-15 Ofinno Technologies, Llc Semi-persistent scheduling in a wireless device and network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "On Enhancements to Configured UL Grant Operation", 3GPP DRAFT; R1-1810553, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 6, XP051517961 *
See also references of EP3876632A4 *
VIVO: "Enhanced UL Grant-free Transmission for URLLC", 3GPP DRAFT; R1-1810397, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 8, XP051517806 *
ZTE ET AL.: "Remaining Details of UL Transmission without Grant", 3GPP DRAFT; R1-1719516, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 7, XP051369333 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11381355B2 (en) * 2018-11-02 2022-07-05 Datang Mobile Communications Equipment Co., Ltd. Information determination method, apparatus and device

Also Published As

Publication number Publication date
US20210359797A1 (en) 2021-11-18
CN111148228A (zh) 2020-05-12
EP3876632A4 (en) 2021-12-29
EP3876632B1 (en) 2023-12-20
EP3876632A1 (en) 2021-09-08
CN111148228B (zh) 2022-06-21
US11381355B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US11388702B2 (en) Resource determining method, apparatus, network element, and system
US9391743B2 (en) Method and apparatus for defining HARQ functionality for cells having different time division duplex subframe configurations
CN110859008B (zh) 一种上行信息的发送方法及终端
US11381356B2 (en) Data transmission method and terminal
CN108292980A (zh) 业务传输的方法和装置
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
WO2019037695A1 (zh) 一种通信方法及装置
WO2020063266A1 (zh) 一种harq进程id的确定方法、装置、终端及介质
US11296848B2 (en) Method and device for transmitting information in wireless communication system
WO2019137277A1 (zh) Pucch资源的确定方法及其接收方法、终端设备和网络侧设备
WO2017041706A1 (zh) 一种支持低延迟无线通信的ue、基站中的方法和设备
WO2014015501A1 (zh) 控制信道传输方法及设备
US11252747B2 (en) Communication method and device
WO2020164508A1 (zh) 参考信号的传输方法和通信装置
US20220159458A1 (en) Method for authenticating access network device, and related device
WO2018137206A1 (zh) 基于半双工模式的数据传输方法及装置
WO2020088034A1 (zh) 信息确定方法、装置及设备
WO2015043500A1 (zh) 一种传输pbch的方法、系统和设备
WO2018082546A1 (zh) 下行控制信道的检测方法、发送方法、网络侧设备及终端
WO2020125369A1 (zh) 信息处理方法、装置、设备及计算机可读存储介质
US20230133434A1 (en) Sidelink transmission method, transmission apparatus, and communication device
WO2020030080A1 (zh) 信息传输方法、基站及终端
WO2018082068A1 (zh) Sfn指示方法、终端设备、定位服务器和系统
WO2018059014A1 (zh) 一种确定时序的方法和设备
WO2022077514A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879395

Country of ref document: EP

Effective date: 20210602