WO2018137206A1 - 基于半双工模式的数据传输方法及装置 - Google Patents

基于半双工模式的数据传输方法及装置 Download PDF

Info

Publication number
WO2018137206A1
WO2018137206A1 PCT/CN2017/072681 CN2017072681W WO2018137206A1 WO 2018137206 A1 WO2018137206 A1 WO 2018137206A1 CN 2017072681 W CN2017072681 W CN 2017072681W WO 2018137206 A1 WO2018137206 A1 WO 2018137206A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
bundle
pdsch
harq
ack
Prior art date
Application number
PCT/CN2017/072681
Other languages
English (en)
French (fr)
Inventor
吴南龙
罗超
余政
费永强
程型清
南方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/072681 priority Critical patent/WO2018137206A1/zh
Publication of WO2018137206A1 publication Critical patent/WO2018137206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus based on a half duplex mode.
  • the data transmission method of half-duplex mode has been widely used due to its low power consumption.
  • the UE In the half-duplex mode, during the process of transmitting data between the user equipment (UE) and the base station, the UE cannot receive and transmit data at the same time, that is, the UE can only receive or transmit data at the same time.
  • MTC Machine-Type Communications
  • the base station can continuously transmit three MTC Physical Downlink Control Channels (MPDCCHs) to the UE in three consecutive subframes, that is, continuously transmit three MPDCCHs on the subframe 0-2.
  • MPDCCHs Physical Downlink Control Channels
  • each MPDCCH After each MPDCCH is transmitted, one subframe is required to transmit a corresponding physical downlink shared channel (PDSCH), and one PDSCH includes a transport block (TB), so the base station needs to
  • the PDSCHs corresponding to the three MPDCCHs are respectively sent to the UEs on the subframes 2-4, wherein each of the PDSCHs belongs to a different Hybrid Automatic Repeat ReQuest (HARQ) process.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the UE also needs to determine whether the feedback result of the PDSCH is an Acknowledgement (ACK) or a Negative Acknowledgement (NACK) after receiving one PDSCH, and send the corresponding feedback result after the interval of 3 subframes.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the UE After the UE receives all the PDSCHs in the transmission period, the UE can switch to the uplink, and send the feedback results corresponding to the three PDSCHs to the base station on the subframes 6-8 to implement the data in the half duplex mode. transmission.
  • the guard time interval of one subframe needs to be separated when switching between uplink and downlink, it can be known from the above FIG. 1 that only three PDSCHs can be transmitted in 10 subframes, the downlink peak speed is low, and when the base station and the UE are between When the quality of the transmission channel is good, the probability that the data transmitted between the base station and the UE needs to be repeatedly transmitted is small, that is, the probability that the UE successfully receives each received PDSCH is high. Therefore, in order to save time and enable the base station to transmit more data to the UE and improve the downlink peak rate, the UE may not need to send the corresponding feedback result to the base station every time a PDSCH is received in one transmission period. That is, as shown in FIG.
  • the base station and the UE may transmit data by means of HARQ-ACK bundling. Specifically, in one transmission period, the base station continuously sends 10 MPDCCHs to the UE on the subframes 0-9, thereby After one subframe is separated, 10 PDSCHs are sent to the UE on the subframe 2-1, and the 10 PDSCHs are one bundle.
  • the UE may send a physical uplink control channel carrying the feedback result to the base station after the interval of 3 subframes, that is, the subframe 5 (Physical Uplink) Control Channel (PUCCH) or Physical Uplink Shared Channel (PUSCH), where the feedback result is ACK when the 10 PDSCHs are successfully verified, and at least one of the 10 PDSCHs is not verified.
  • the feedback result is NACK.
  • the data transmission method shown in FIG. 2 can be transmitted in 17 subframes.
  • the PDSCH is transmitted. Therefore, the downlink peak rate can be increased by transmitting data in the manner shown in FIG. 2.
  • the UE sends a feedback result to the base station as a NACK. All data in the bundle needs to be re-transmitted to the UE, which reduces the reliability of the transmitted data. That is, the above technique cannot improve the reliability of the transmission data while increasing the downlink peak speed.
  • the embodiment of the present invention provides a data transmission method and apparatus based on a half duplex mode.
  • the technical solution is as follows:
  • a data transmission method based on a half duplex mode comprising:
  • the second field is used to indicate HARQ-ACK bundling information
  • the third field is used to Indicates the number of MPDCCH repetitions, the number of PDSCH repetitions, and the frequency hopping identifier
  • the PDSCH When receiving the PDSCH corresponding to the DCI sent by the base station, sending, according to the HARQ-ACK bundling information indicated by the second field, the feedback result of each bundle in the current transmission period, respectively, to implement Data transmission between the base stations, the PDSCH belongs to any bundle of multiple bundles transmitted in a current transmission period, and the feedback result is ACK or NACK.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the process multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the third field does not exist in the DCI, but a second field indicating the HARQ-ACK bundling information exists, ensuring that the UE can separately send to the base station based on the HARQ-ACK bundling information.
  • the feedback result of each bundle and since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully. That is, while saving time, the reliability of the transmitted data is also ensured, thereby further improving the efficiency of transmitting data and improving the reliability of the transmitted data.
  • the base station may notify the UE of the payload of the DCI of the MPDCCH before transmitting the MPDCCH to the UE.
  • a possible implementation manner may be that the base station may detect the UE accessing the cell it covers.
  • the UE sends Radio Resource Control (RRC) signaling, and carries the payload of the DCI in the RRC signaling.
  • RRC Radio Resource Control
  • the second field includes a HARQ-ACK bundle index field and a PDSCH index field, where the HARQ-ACK bundle index field is used to indicate a location in a current transmission period, where the PDSCH index field is used to describe the transmission.
  • the location of the PDSCH in the bundle is used to indicate a location in a current transmission period.
  • the second field includes a HARQ-ACK bundle indicating the location bundled in the current transmission cycle.
  • the index field and the PDSCH index field indicating the location of the transmitted PDSCH in the bundle to which it belongs. Therefore, when receiving the PDSCH, the UE can accurately determine each PDSCH in each bundle in one transmission period according to the second field existing in the DCI corresponding to the PDSCH, and ensure that all PDSCHs in one transmission period are respectively determined.
  • the UE can also accurately feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, further improving the reliability of the transmitted data.
  • the sending according to the HARQ-ACK bundling information indicated by the second field, the feedback result of each bundle in the current transmission period to the base station, including:
  • the UE can accurately determine the uplink transmission time based on the HARQ-ACK bundle index field and the PDSCH index field included in the DCI, thereby ensuring that the UE can bundle all the bundles in the current transmission period when the uplink transmission time arrives.
  • the feedback results are sent to the base station separately, which improves the reliability of the transmitted data.
  • the HARQ-ACK bundling index field indicates the position of the bundling in the current transmission period in a reciprocal manner
  • the PDSCH index field indicates the position of the transmitted PDSCH in the associated bundle in a reciprocal manner
  • Determining, according to the HARQ-ACK bundling index field, whether the bundle to which the PDSCH belongs is the last bundle in the current transmission period including:
  • the PDSCH index field can describe the position of the transmitted PDSCH in the bundling in a reciprocal manner, which can be convenient.
  • the UE accurately determines the location of each PDSCH received in the current bundle and the location of the bundle to which the PDSCH belongs in the current transmission period, further improving the reliability of the transmitted data.
  • the method further includes:
  • the HARQ-ACK bundling function When the HARQ-ACK bundling function is not currently enabled, it is determined that the second field does not exist in the DCI but there is a reserved field.
  • the DCI when the base station does not enable the HARQ-ACK bundling function, the DCI does not have the second field but the reserved field exists, thereby ensuring that the UE does not need to be based on the second field when the HARQ-ACK bundling function is not turned on.
  • the indicated HARQ-ACK bundling and the base station transmit data, further improving the reliability of the transmitted data.
  • the UE may separately in one transmission cycle.
  • the received verification result of each PDSCH is fed back to the base station.
  • the second field further includes a parity field, where the parity field is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • the second field may further include a parity field, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the probability that the UE will miss a PDSCH in all PDSCHs in a certain bundle. Therefore, the UE determines the accuracy of the feedback result of the bundle, and improves the reliability of the transmitted data.
  • a parity field which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the probability that the UE will miss a PDSCH in all PDSCHs in a certain bundle. Therefore, the UE determines the accuracy of the feedback result of the bundle, and improves the reliability of the transmitted data.
  • the determining whether the feedback result of the bundle to which the PDSCH belongs is ACK or NACK including:
  • the UE may perform CRC check on all PDSCHs that belong to the bundle, and the parity and parity fields of the number of all PDSCHs that belong to the bundle are received.
  • the parity of the number of PDSCHs included in the bundle is consistent, it is determined that the feedback result of the bundle is successful, and the probability of missing the bundled PDSCH is reduced, thereby improving the accuracy of determining the feedback result of the bundle. Improve the reliability of the transmitted data.
  • the method further includes:
  • the HARQ-ACK bundling function When the HARQ-ACK bundling function is not currently enabled, it is determined that the second field does not exist in the DCI but the third field exists.
  • the DCI when the base station does not open the HARQ-ACK bundling function, the DCI does not have the second field but the third field exists, thereby ensuring that the UE does not need to be based on the second field when the HARQ-ACK bundling function is not turned on.
  • the indicated HARQ-ACK bundling and the base station transmit data, further improving the reliability of the transmitted data.
  • the UE may respectively feed back the check result of each received PDSCH to the base station in one transmission period.
  • the second field when the second field includes a HARQ-ACK bundle index field and a PDSCH index field, a sum of sizes of the first field and the second field is the same as a size of the third field,
  • the second field includes a HARQ-ACK bundle index field, a PDSCH index field, and a parity field
  • the size of the second field is the same as the size of the third field.
  • the payload of the DCI sent by the base station to the UE when the HARQ-ACK bundling function is opened is ensured.
  • the payload of the DCI sent to the UE is the same as when the base station does not open the HARQ-ACK bundling function, thereby preventing the UE from detecting the DCI of the two payloads from the MPDCCH and increasing the number of detections or transmitting the MPDCCH. Problems such as reduced sexuality, that is, on the basis of not reducing the flexibility of transmitting data, the efficiency and reliability of improving data transmission are improved.
  • the size of the second field is the same as the size of the third field, the parity field included in the second field can improve the reliability of the transmitted data.
  • the size of the first field is 1 bit
  • the size of the HARQ-ACK bundle index field and the PDSCH index field in the second field are 2 bits, respectively, and the parity field in the second field
  • the size is 1 bit.
  • the embodiment of the present invention can further ensure the second field is ensured.
  • the size is the same as the size of the third field to improve the reliability of the transmitted data, or to ensure that the sum of the size of the second field and the first field is the same as the second field, so as to improve without reducing the flexibility of transmitting data. The efficiency and reliability of transmitting data is improved.
  • the base station may transmit up to 10 PDSCHs to the UE, and therefore, may include at most one transmission period.
  • a data transmission method based on a half duplex mode comprising:
  • the second field includes a HARQ-ACK bundle index field and a physical downlink shared channel PDSCH index field, where the HARQ-ACK bundle index field indicates a position in a current transmission period in a reciprocal manner, the PDSCH index field Describe the position of the transmitted PDSCH in the associated bundle in a reciprocal manner;
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the process multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the second field indicating the HARQ-ACK bundling information exists in the DCI ensuring that the UE can separately send each bundled feedback result to the base station based on the HARQ-ACK bundling information, and Since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, that is, while saving time. It also ensures the reliability of the transmitted data, thereby further improving the efficiency of transmitting data while also improving the reliability of the transmitted data.
  • the second field includes a HARQ-ACK Bundle Index field indicating the location bundled in the current transmission cycle and a PDSCH Index field indicating the location of the transmitted PDSCH in the associated bundle. Therefore, when receiving the PDSCH, the UE can accurately determine each PDSCH in each bundle in one transmission period according to the second field existing in the DCI corresponding to the PDSCH, and ensure that all PDSCHs in one transmission period are respectively determined. When included in multiple bundles, the UE can also accurately feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received. And the verification is successful, which further improves the reliability of the transmitted data.
  • the HARQ-ACK bundle index field can describe the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH index field can reciprocally describe the position of the transmitted PDSCH in the bundle, which can facilitate the UE to accurately determine.
  • the location of each PDSCH received in the current transmission period in the bundle and the location of the bundle to which the PDSCH belongs in the current transmission period further improves the reliability of the transmitted data.
  • the base station may notify the UE of the payload of the DCI of the MPDCCH before transmitting the MPDCCH to the UE.
  • a possible implementation manner may be that the base station may detect the UE accessing the cell it covers. The UE sends RRC signaling and carries the payload of the DCI in the RRC signaling.
  • the second field further includes a parity field, where the parity field is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • the second field may further include a parity field, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the UE to determine that all PDSCHs in a bundle are missing a certain PDSCH. The probability, thereby improving the accuracy of the UE determining the feedback result of the bundle, and improving the reliability of the transmitted data.
  • a parity field which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the UE to determine that all PDSCHs in a bundle are missing a certain PDSCH. The probability, thereby improving the accuracy of the UE determining the feedback result of the bundle, and improving the reliability of the transmitted data.
  • the size of the first field is 1 bit
  • the size of the HARQ-ACK bundling index field and the PDSCH index field in the second field are respectively 2 bits
  • the parity field in the second field is The size is 1 bit.
  • the size of the first field is 1 bit, which can ensure that the first field can indicate whether to open the HARQ-ACK bundling function
  • the size of the parity field is 1 bit, which can ensure that the parity field can indicate an odd or even number.
  • the size of the HARQ-ACK bundle index field and the PDSCH index field are respectively 2 bits, and in one transmission period, the base station can transmit up to 10 PDSCHs to the UE. Therefore, a maximum of 3 bundles can be included in one transmission period, and each Up to 4 PDSCHs may be included in the bundle, and the total number of PDSCHs included in the 3 bundled Chinese is less than or equal to 10. That is, the embodiment of the present invention can ensure that the DCI can positively indicate data transmission between the UE and the base station, and improve the reliability of the transmitted data while improving the efficiency of transmitting data.
  • a data transmission apparatus based on a half-duplex mode
  • the data transmission apparatus based on a half-duplex mode having a function of implementing the behavior of a data transmission method based on a half-duplex mode in the above first aspect.
  • the operating device of the storage device includes at least one module for implementing the data transmission method based on the half duplex mode provided by the above first aspect.
  • a data transmission apparatus based on a half-duplex mode
  • the data transmission apparatus based on a half-duplex mode having a function of implementing a behavior of a data transmission method based on a half-duplex mode in the second aspect described above.
  • the operating device of the storage device includes at least one module for implementing the data transmission method based on the half duplex mode provided by the second aspect.
  • a fifth aspect provides a data transmission apparatus based on a half-duplex mode, where the structure of the data transmission apparatus based on a half-duplex mode includes a processor and a memory for storing support based on a half-duplex mode
  • the data transmission apparatus executes the program of the data transmission method based on the half duplex mode provided in the above first aspect, and stores data involved in implementing the data transmission method based on the half duplex mode provided by the above first aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a data transmission apparatus based on a half-duplex mode where the structure of the data transmission apparatus based on a half-duplex mode includes a processor and a memory for storing support based on a half-duplex mode
  • the data transmission apparatus executes the program of the data transmission method based on the half duplex mode provided in the second aspect described above, and stores data involved in implementing the data transmission method based on the half duplex mode provided by the second aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • the embodiment of the present invention provides a computer storage medium for storing computer software instructions for a data transmission apparatus based on a half duplex mode provided by any of the foregoing third to sixth aspects, or A program designed to perform the data transmission based on the half duplex mode in any of the above third to sixth aspects is stored.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and
  • the HARQ-ACK bundling function is enabled, multiple bundled PDSCHs are sent to the UE in one transmission cycle, which improves the downlink rate peak and the efficiency of transmitting data.
  • the second field indicating the HARQ-ACK bundling information exists in the DCI ensuring that the UE can separately send each bundled feedback result to the base station based on the HARQ-ACK bundling information, and Since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, that is, while saving time. It also ensures the reliability of the transmitted data, thereby further improving the efficiency of transmitting data while also improving the reliability of the transmitted data. In addition, since all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • FIG. 1 is a schematic diagram of a base station transmitting data to a UE according to the prior art.
  • FIG. 2 is a schematic diagram of another base station provided by the prior art to transmit data to a UE.
  • FIG. 3 is a structural diagram of a data transmission system based on a half duplex mode provided by the prior art.
  • FIG. 4 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 5A is a flowchart of a data transmission method based on a half duplex mode according to an embodiment of the present invention.
  • FIG. 5B is a schematic diagram of a base station transmitting data to a UE according to an embodiment of the present invention.
  • FIG. 6A is a flowchart of another data transmission method based on a half duplex mode according to an embodiment of the present invention.
  • FIG. 6B is a schematic diagram of another base station transmitting data to a UE according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another data transmission method based on a half duplex mode according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a data transmission apparatus based on a half duplex mode according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of another data transmission apparatus based on a half duplex mode according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a data transmission system based on a half-duplex mode according to an exemplary embodiment.
  • the system includes a base station 01 and a plurality of UEs 02 (only six UEs are shown in the figure), and the base station 01 and UE02 can be connected through the network.
  • the base station 01 may be an entity used by the network to send or receive signals, and the UE 02 may be any device that can be used for machine type communication.
  • the UE 02 may be a mobile phone or the like.
  • the UE02 may also be a non-machine type communication device.
  • the embodiment of the present invention does not specifically limit whether the UE is a machine type communication device.
  • the base station 01 may send a notification message to the UE02 through RRC signaling when the UE 02 is detected to access the cell it covers.
  • the notification message is used to indicate that the base station 01 supports the HARQ-ACK bundling function.
  • the UE 02 can detect the communication quality with the base station 01 and transmit the communication quality information to the base station 01.
  • the base station 01 can determine that the communication quality between the current and the UE02 is good or poor.
  • the base station 01 can use the HARQ-ACK bundling function to the UE02.
  • the data when it is determined that the communication quality between the current and the UE02 is poor, the data may not be transmitted to the UE02 through the HARQ-ACK bundling function.
  • FIG. 4 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE may be used in a data transmission system based on a half duplex mode as shown in FIG. 3.
  • the UE can include a processor, which can include circuitry for audio/video and logic functions of the UE device.
  • the processor can include a digital signal processor device, a microprocessor device, an analog to digital converter, a digital to analog converter, and the like.
  • the control and signal processing functions of the UE can be distributed among these devices according to their respective capabilities.
  • the processor may also include an internal voice encoder (VC), an internal data modem (DM), and the like.
  • the processor can include functionality to operate one or more software programs, which can be stored in a memory.
  • the processor and the stored software instructions can be configured to cause the UE to perform an action.
  • the UE may also include a user interface, for example, which may include an earphone or speaker, a microphone, an output device (eg, a display), an input device, etc., operatively coupled to the processor.
  • the processor can include user interface circuitry configured to control at least some of the functionality of one or more components of the user interface, such as a speaker, microphone, display, and the like.
  • the processor and/or user interface circuitry including the processor can be configured to control one of the one or more components of the user interface by computer program instructions (eg, software and/or firmware) stored in a memory accessible by the processor. Or multiple features.
  • the UE may include a battery for powering various circuits associated with the UE, such as circuitry that provides mechanical vibration as a detectable output.
  • the input device can include a device that allows the device to receive data, such as a keypad, a touch display, a joystick, and/or at least one other input device, and the like.
  • the UE may also include one or more connected circuit modules for sharing and/or obtaining data.
  • the UE may include a Radio Frequency (RF) transceiver and/or a detector such that data may be shared with and/or obtained from the electronic device in accordance with RF technology.
  • the UE may include other short range transceivers such as, for example, an Infrared Radiation (IR) transceiver, a transceiver, a Universal Serial Bus (USB) transceiver, and the like.
  • IR Infrared Radiation
  • USB Universal Serial Bus
  • the Bluetooth transceiver can operate according to low power or ultra low power Bluetooth technology.
  • the short-range transceiver is capable of transmitting and/or receiving data to and/or from an electronic device in the vicinity of the device, such as within 10 meters.
  • the UE is capable of transmitting and/or receiving data to and/or from electronic devices in accordance with various wireless networking technologies, including: Wireless-Fidelity (Wi-Fi), Wi-Fi low. Power consumption, Wireless Local Area Network (WLAN) technology, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 technology, IEEE 802.15 technology, IEEE 802.16 technology, and the like.
  • the UE may include a memory that may store information elements related to the mobile user, such as a Subscriber Identification Module (SIM).
  • SIM Subscriber Identification Module
  • the UE may also include other removable and/or fixed memories.
  • volatile memory can include random access memory (RAM), which includes dynamic RAM and/or static RAM, on-chip and/or off-chip cache, and the like.
  • RAM random access memory
  • the non-volatile memory can be embedded and/or removable, and can include, for example, read only memory, flash memory, magnetic storage devices such as a hard disk, a floppy disk drive, magnetic tape, and the like, an optical disk drive and/or media, Non-volatile random access memory (Non-Volatile RAM, NVRAM) and the like. Similar to volatile memory, the non-volatile memory can include a cache area for temporary storage of data. At least a portion of the volatile and/or non-volatile memory can be embedded in the processor.
  • the memory may store one or more software programs, instructions, information blocks, data, etc., which may be used by the UE to perform the functions of the UE. For example, the memory may include an identifier capable of uniquely identifying the UE, such as International Mobile Equipment Identity (IMEI).
  • IMEI International Mobile Equipment Identity
  • the memory can be used to store program code for executing the solution provided by the application, and the processor can be used to execute the program code stored in the memory.
  • the UE can implement the method for transmitting data provided by any of the embodiments of FIG. 5A to FIG. 7 below through the processor and the program code in the memory.
  • FIG. 5A is a flowchart of a data transmission method based on a half-duplex mode according to an exemplary embodiment. Referring to FIG. 5A, the method is used in interaction between a base station and a UE, and includes the following steps.
  • Step 501 The base station sends a notification message to the UE by using RRC signaling, where the notification message is used to indicate that the base station supports the HARQ-ACK bundling function.
  • the base station In order to ensure that the base station can transmit data to the UE through the HARQ-ACK bundling function, and the UE can successfully receive data transmitted by the base station through the HARQ-ACK bundling function, the base station needs to notify the UE that the base station can support the HARQ. - ACK bundling function.
  • the eNB may send an RRC signaling to the UE to establish an RRC connection, and carry the notification message in the RRC signaling, when detecting that the UE accesses the cell covered by the base station.
  • the base station may also send the notification message to the UE at other occasions.
  • a possible implementation manner is that the UE is in an RRC connection with the base station, that is, the UE is in the In the process of the cell covered by the base station, the base station may also send RRC signaling to the base station to reset the RRC connection, and the RRC signaling carries the notification message.
  • the RRC signaling may also carry other information, such as the payload of the DCI included in the MPDCCH.
  • Step 502 The base station determines whether to open the HARQ-ACK bundling function based on the current communication quality with the UE. If yes, go to step 503, if not, go to step 504.
  • the base station can generally transmit data to the UE through the HARQ-ACK bundling function if the communication quality is good, so the base station can determine whether to open the HARQ-ACK bundling function.
  • the UE can detect the communication quality with the base station and send communication quality information to the base station.
  • the base station receives the communication quality information, it is determined whether the communication quality information is greater than or equal to the communication quality threshold. If the communication quality information is greater than or equal to the communication quality threshold, the current communication quality with the UE is good, and the determination is performed. Open the HARQ-ACK bundling function. If the communication quality information is smaller than the communication quality threshold, it indicates that the current communication quality with the UE is poor, and it is determined that the HARQ-ACK bundling function is not turned on.
  • the representation of the communication quality information corresponds to the communication quality threshold.
  • the communication quality information may be a percentage.
  • the communication quality threshold may also be a percentage.
  • the communication quality information may also be other forms of information, and the communication quality threshold may also be other forms of thresholds corresponding to the communication quality information.
  • the communication quality threshold may be determined by the base station before determining whether the communication quality information is greater than or equal to the communication quality threshold.
  • the communication quality threshold may be received by the base station by a related technical personnel. The value entered is obtained.
  • the communication quality between the current UE and the UE may also be detected by the base station, thereby directly obtaining the communication quality information.
  • Step 503 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE, where the DCI has a first field and a second field, and the DCI does not have a third field, where the first field is used to indicate that the HARQ is currently open.
  • - ACK bundling function the second field is used to indicate HARQ-ACK bundling information
  • the third field is used to indicate the number of MPDCCH repetitions, the number of PDSCH repetitions, and the frequency hopping identity.
  • the base station can pass the MPDCCH by ensuring that the UE can accurately receive data transmitted by the base station.
  • the first field included in the DCI indicates that the HARQ-ACK bundling function is currently enabled, and the HARQ-ACK bundling information is indicated by the second field of the DCI, and since the communication quality between the base station and the UE is currently good,
  • the MPDCCH and the PDSCH sent by the base station to the UE do not need to be repeated to enhance the coverage, and the PDSCH does not need to perform frequency hopping. Therefore, the DCI may not have information for indicating the number of MPDCCH repetitions, the number of PDSCH repetitions, and the frequency hopping identifier. Three fields.
  • the base station may continuously send multiple MPDCCHs to the UE, so that multiple PDSCHs are continuously sent to the UE, and the multiple The PDSCH belongs to multiple bundles, and different PDSCHs belong to different HARQ processes.
  • each MPDCCH or each PDSCH may occupy one subframe, and each MPDCCH includes one DCI, which is used to indicate that the UE receives the PDSCH corresponding to the DCI, and each PDSCH may include one TB.
  • the base station may send the MPDCCH after the subframe is separated by one subframe, and then send the PDSCH corresponding to the DCI of the MPDCCH, that is, the interval between the subframe in which the MPDCCH is transmitted and the subframe in which the PDSCH corresponding to the DCI of the MPDCCH is transmitted.
  • a transmission period includes a downlink transmission time period and an uplink transmission time period, where the downlink transmission time period is used by the base station to send the multiple MPDCCHs and the multiple PDSCHs to the UE, where the uplink transmission time period is used for the The UE sends a feedback result to the plurality of PDSCHs to the base station.
  • the first field may indicate that the HARQ-ACK bundling function is turned on by 0, and indicates that the HARQ-ACK bundling function is not turned on by 1.
  • the HARQ-ACK bundle is not opened by 0. Function, and open the HARQ-ACK bundling function by 1 indication.
  • the UE needs to detect the DCI of the two payloads from the MPDCCH and the MPCR flexibility is reduced, that is, the transmission data flexibility is ensured on the basis of improving the efficiency and reliability of the transmission data.
  • the sum of the sizes of the first field and the second field is the same as the size of the third field.
  • the second field includes a HARQ-ACK bundle index field and a PDSCH index field, where the HARQ-ACK bundle index field is used to indicate the location of the bundling in the current transmission period, where the PDSCH index field is used to indicate that the transmitted PDSCH is in the bundle. s position.
  • the third field usually needs to indicate the number of MPDCCH repetitions by 2 bits, the number of PDSCH repetitions is indicated by 2 bits, and the frequency hopping identifier is indicated by 1 bit, that is, the size of the third field is usually 5 bits, and therefore, the HARQ is
  • the size of the -ACK bundle index field and the PDSCH index field may be 2 bits, and the size of the first field is 1 bit, thereby ensuring that the sum of the sizes of the first field and the second field is the same as the size of the third field, both 5 bits.
  • the base station may transmit up to 10 PDSCHs to the UE, and therefore, a maximum of one transmission period may be used.
  • the bundle includes 3 bundles, and each bundle can include up to 4 PDSCHs, and the total number of PDSCHs included in the bundle of 3 bundles is less than or equal to 10.
  • the DCI when the DCI has a first field and a second field, and the third field does not exist, the DCI may be as shown in Table 1 below.
  • the "field” is used to describe the type of the field included in the DCI
  • the "number of bits” is used to describe the size of each field
  • the “description” is used to describe the value indicated by each field.
  • the number of bits in the first field is 1, indicating that the size of the first field is 1 bit
  • the description of the first field is 1, indicating that the first field indicates that the HARQ is turned on.
  • ACK bundling function the number of bits in the first field is 1, indicating that the size of the first field is 1 bit
  • the description of the first field is 1, indicating that the first field indicates that the HARQ is turned on.
  • the DCI is only described by taking the above Table 1 as an example, and the above Table 1 does not limit the embodiment of the present invention.
  • the HARQ-ACK bundle index field indicates the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH The index field indicates the position of the transmitted PDSCH in the associated bundle in a reciprocal manner.
  • the preset value may be indicated by the HARQ-ACK bundle index field, thereby being associated with the HARQ-ACK.
  • the binding indication of the PDSCH corresponding to the DCI where the bundled index field is located is the last bundle in the current transmission period, and the preset value is indicated by the PDSCH index field, so that the PDSCH corresponding to the DCI where the PDSCH index field is located is indicated as the PDSCH.
  • the preset value may be 0 or 1
  • the preset value may be determined by the base station before sending the MPDCCH to the UE.
  • a possible implementation strategy is that the preset value may be determined by the base station. The value entered by the number of people receiving the relevant technology is obtained.
  • the preset value may also be other values determined by the base station by other means.
  • the manner in which the base station sends the PDSCH to the UE may be as shown in Table 2 below.
  • the 10 PDSCHs sent to the UE in one transmission period are taken as an example.
  • the number of bundles and the number of PDSCHs included in the bundle ⁇ 3, 3, 4 ⁇ indicate that the 10 PDSCHs belong to two bundles, and each bundle includes 3 or 4 PDSCH;
  • bundling position 2,1,0 means that the first bundling position is 2, the second bundling position is 1, the third bundling position is 0;
  • PDSCH position ⁇ [2,1 , 0], [2, 1, 0], [3, 2, 1, 0] ⁇ indicates that the positions of the three PDSCHs in the first bundle are 2, 1, 0, respectively, and the 3 PDSCHs in the second bundle
  • the positions are 2, 1, and 0, and the positions of the four PDSCHs in the third bundle are 3, 2, and 1, respectively.
  • the values indicated by the HARQ-ACK bundle index field and the PDSCH index field included in the DCI corresponding to each PDSCH may be as shown in Table 3.
  • Step 504 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE, where the DCI has a first field and a first reserved field, but the second field or the third field does not exist, and the first field is used to indicate The HARQ-ACK bundling function is not currently enabled.
  • the HARQ-ACK bundling function may not be currently turned on by the first field, and since the HARQ-ACK bundling information is not required to be indicated, the second field may not exist.
  • the size of the first reserved field is 4 bits, and the sum of the sizes of the first field and the first reserved field is the same as the size of the third field.
  • the base station has sent the MPDCCH and the PDSCH corresponding to the DCI of the MPDCCH to the UE, and indicates whether the HARQ-ACK bundling function is enabled by using the first field of the DCI. Therefore, in the following steps 505 to 507, the UE may receive the MPDCCH and receive a PDSCH corresponding to the DCI of the MPDCCH based on the DCI.
  • Step 505 When the UE receives the MPDCCH sent by the base station, based on the first field that exists in the DCI of the MPDCCH, determine whether the HARQ-ACK bundling function is currently enabled. When the HARQ-ACK bundling function is currently enabled, Step 507 is performed when the HARQ-ACK bundling function is not currently enabled.
  • the UE can determine whether to open the HARQ-ACK according to the first field in the DCI. Bundle function.
  • the data is currently transmitted through the HARQ-ACK bundling function, and the first field existing in the DCI of the MPDCCH is received by the base station. If the transmitted information indicates 0, it is determined that data is not currently transmitted through the HARQ-ACK bundling function.
  • Step 506 The UE determines that the DCI has a second field but does not have a third field.
  • the HARQ-ACK bundling information indicated by the second field is separately sent to the base station. The feedback result of each bundle in the current transmission period to achieve data transmission with the base station.
  • the base station may transmit multiple PDSCHs to the UE in one transmission period, the UE usually needs to send a check result of each PDSCH to the base station when the uplink time arrives, thereby indicating to the base station whether the multiple PDSCHs are average. If the receiving is successful, the efficiency of transmitting data is reduced. Therefore, in order to improve the efficiency of transmitting data, when the UE determines that the first field and the second field are present in the DCI, the HARQ-ACK bundling information indicated by the second field may be used. The base station separately transmits the feedback result of each bundle in the current transmission period to implement data transmission with the base station.
  • the PDSCH may belong to any bundle in the current transmission period.
  • the UE may determine the accuracy of the uplink transmission time, and ensure that the UE can accurately send the feedback result to the base station to improve the reliability of the transmission data.
  • the UE may be based on the HARQ-ACK bundle index field. Determining whether the bundle to which the PDSCH belongs is the last bundle in the current transmission period. When the bundle to which the PDSCH belongs is the last bundle in the current transmission period, determining, according to the PDSCH index field, that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs is determined based on the number of PDSCHs that have not been received in the bundle to which the PDSCH belongs.
  • the uplink transmission time is determined. When the uplink transmission time arrives, the feedback result of the bundle to which the PDSCH belongs is determined, and the uplink is switched to the current transmission period. The bundled feedback results are sent to the base station separately.
  • the UE may determine that the bundle to which the PDSCH belongs is the last bundle in the current transmission period.
  • the reciprocal value indicated by the information transmitted by the HARQ-ACK bundle index field is not a preset value, the UE may determine that the bundle to which the PDSCH belongs is not the last bundle in the current transmission period.
  • the UE may determine the difference between the reciprocal value indicated by the information transmitted by the PDSCH index field and the preset value, and determine the difference as not received in the bundle to which the PDSCH belongs. Number of PDSCHs.
  • the information transmitted by the PDSCH index field indicates that the reciprocal value is 2, the preset value is 0, and the difference between the reciprocal value and the preset value is 2. Therefore, the UE determines that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs arriving is 2.
  • each PDSCH since each PDSCH is transmitted, one subframe is occupied, and there is usually one protection frame between the uplink transmission and the downlink transmission, and each subframe takes 1 millisecond. Therefore, when the PDSCH is received, the time is t1.
  • the time when the number of PDSCHs is greater than one millisecond is the time at which the uplink time arrives.
  • the UE may determine a CRC (Cyclic Redundancy Check) check result of all PDSCHs received in the bundle to which the PDSCH belongs, and determine the bundle of the PDSCH when the CRC of all the PDSCHs is successfully verified.
  • the feedback result is ACK, otherwise, the feedback result of determining the bundle to which the PDSCH belongs is a negative acknowledgement NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH belongs are PDSCH1, PDSCH2, and PDSCH3, respectively. If the feedback result of the UE to PDSCH1, PDSCH2, and PDSCH3 is ACK, that is, the verification is successful, that is, the feedback result of the bundle 2 is determined to be ACK. If the feedback result of the UE to the PDSCH1 is NACK, that is, the check fails, and the feedback result to the PDSCH2 and the PDSCH3 is ACK, it is determined that the feedback result to the bundle 2 is NACK.
  • the UE may send the feedback result of each bundle to the base station through the PUCCH or the PUSCH, and send a subframe of each bundled feedback result, and may receive a subframe between the last PDSCH in the bundle. Interval at least 3 subframes.
  • the base station sends 10 PDSCHs to the UE through the HARQ-ACK bundling function, and the process of transmitting data between the base station and the UE may be as shown in FIG. 5B.
  • the base station firstly transmits 10 MPDCCHs to the UE, and each MPDCCH occupies one subframe. For each MPDCCH, after transmitting one subframe of the subframe where the MPDCC is located, the MPDCCH is sent to the UE.
  • the PDSCH corresponding to the DCI transmits 10 PDSCHs to the UE, wherein PDSCH1, PDSCH2, and PDSCH3 belong to bundle 2, PDSCH4, PDSCH5, and PDSCH6 belong to bundle 1, and PDSCH7, PDSCH8, PDSCH9, and PDSCH10 belong to bundle 0.
  • the UE starts after separating one subframe of the last PDSCH in the 10 PDSCHs, and sends a feedback result of each bundle to the base station through the PUCCH, and sends a subframe of each bundled feedback result, and receives
  • the subframes of the last PDSCH in the bundle may be separated by at least 3 subframes.
  • Step 507 The UE determines that the second field does not exist in the DCI, but the first reserved field exists.
  • data transmission is not performed between the HARQ-ACK bundling information indicated by the second field and the base station.
  • the second field does not exist in the DCI, but the first reserved field is the same as the second field, and the UE may not be based on the HARQ-ACK bundling information. Data transmission between base stations. At this time, the UE needs to feed back the received check result of each PDSCH to the base station.
  • the third field does not exist in the DCI.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the third field does not exist in the DCI, but a second field indicating the HARQ-ACK bundling information exists, ensuring that the UE can separately send to the base station based on the HARQ-ACK bundling information.
  • the feedback result of each bundle and since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully. That is, while saving time, the reliability of the transmitted data is also ensured, thereby further improving the efficiency of transmitting data and improving the reliability of the transmitted data.
  • all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • the second field includes a HARQ-ACK Bundle Index field indicating the location bundled in the current transmission period and a PDSCH Index field indicating the location of the transmitted PDSCH in the associated bundle. Therefore, when receiving the PDSCH, the UE can accurately determine each PDSCH in each bundle in one transmission period according to the second field existing in the DCI corresponding to the PDSCH, and ensure that all PDSCHs in one transmission period are respectively determined. When included in multiple bundles, the UE can also accurately feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, further improving the reliability of the transmitted data.
  • the HARQ-ACK bundle index field can describe the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH index field can reciprocally describe the position of the transmitted PDSCH in the bundle, which can facilitate the UE to accurately determine.
  • the location of each PDSCH received in the current transmission period in the bundle and the location of the bundle to which the PDSCH belongs in the current transmission period further improves the reliability of the transmitted data.
  • the DCI does not have the second field but the reserved field exists, thereby ensuring that the UE does not need to be based on the HARQ-ACK indicated by the second field when the HARQ-ACK bundling function is not turned on. Binding and base station transmission of data further improves the reliability of the transmitted data.
  • FIG. 6A is a flowchart of a data transmission method based on a half-duplex mode according to an exemplary embodiment. Referring to FIG. 6A, the method is used in interaction between a base station and a UE, and includes the following steps.
  • Step 601 The base station sends a notification message to the UE by using RRC signaling, where the notification message is used to indicate that the base station supports the HARQ-ACK bundling function.
  • the base station In order to ensure that the base station can transmit data to the UE through the HARQ-ACK bundling function, and the UE can successfully receive data transmitted by the base station through the HARQ-ACK bundling function, the base station needs to notify the UE that the base station can support the HARQ. - ACK bundling function.
  • the eNB may send an RRC signaling to the UE to establish an RRC connection, and carry the notification message in the RRC signaling, when detecting that the UE accesses the cell covered by the base station.
  • the base station may also send the notification message to the UE at other occasions.
  • a possible implementation manner is that the UE is in an RRC connection with the base station, that is, the UE is in the In the process of the cell covered by the base station, the base station may also send RRC signaling to the base station to reset the RRC connection, and the RRC signaling carries the notification message.
  • the RRC signaling may also carry other information, such as the payload of the DCI included in the MPDCCH.
  • Step 602 The base station determines whether to open the HARQ-ACK bundling function based on the current communication quality with the UE. If yes, go to step 603, if not, go to step 604.
  • the communication quality between the base station and the UE may be different at different times, and the base station may generally transmit data to the UE through the HARQ-ACK bundling function if the communication quality is good. Therefore, the base station can determine whether to open the HARQ-ACK bundling function.
  • the UE can detect the communication quality with the base station and send communication quality information to the base station.
  • the base station receives the communication quality information, it is determined whether the communication quality information is greater than or equal to the communication quality threshold. If the communication quality information is greater than or equal to the communication quality threshold, the current communication quality with the UE is good, and the determination is performed. Open the HARQ-ACK bundling function. If the communication quality information is smaller than the communication quality threshold, it indicates that the communication quality between the UEs is poor, and it is determined that the HARQ-ACK bundling function is not turned on.
  • the representation of the communication quality information corresponds to the communication quality threshold.
  • the communication quality information may be a percentage.
  • the communication quality threshold may also be a percentage.
  • the communication quality information may also be other forms of information, and the communication quality threshold may also be other forms of thresholds corresponding to the communication quality information.
  • the communication quality threshold may be determined by the base station before determining whether the communication quality information is greater than or equal to the communication quality threshold.
  • the communication quality threshold may be received by the base station by a related technical personnel. The value entered is obtained.
  • the communication quality between the current UE and the UE may also be detected by the base station, thereby directly obtaining the communication quality information.
  • Step 603 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE, where the DCI has a first field and a second field, and the DCI does not have a third field, where the first field is used to indicate that the current field is open.
  • the HARQ-ACK bundling function the second field is used to indicate the HARQ-ACK bundling information
  • the third field is used to indicate the MPDCCH repetition number, the PDSCH repetition number, and the frequency hopping identifier.
  • the base station can pass the MPDCCH by ensuring that the UE can accurately receive data transmitted by the base station.
  • the first field of the DCI indicates that the HARQ-ACK bundling function is currently enabled, and the HARQ-ACK bundling information is indicated by the second field of the DCI, and the base station is better in quality of communication between the base station and the UE.
  • the MPDCCH and the PDSCH transmitted to the UE do not need to be repeated to enhance the coverage, and the PDSCH channel does not need to perform frequency hopping. Therefore, the DCI may not have information for indicating the number of MPDCCH repetitions, the number of PDSCH repetitions, and the frequency hopping identifier. Three fields.
  • the base station may continuously send multiple MPDCCHs to the UE, so that multiple PDSCHs are continuously sent to the UE, and the multiple The PDSCH belongs to at least one bundle, and different PDSCHs belong to different HARQ processes respectively.
  • each MPDCCH or each PDSCH may occupy one subframe, and each MPDCCH includes one DCI, which is used to indicate that the UE receives the PDSCH corresponding to the DCI, and each PDSCH may include one TB.
  • the base station may send the MPDCCH after the subframe is separated by one subframe, and then send the PDSCH corresponding to the DCI of the MPDCCH, that is, the interval between the subframe in which the MPDCCH is transmitted and the subframe in which the PDSCH corresponding to the DCI of the MPDCCH is transmitted.
  • a transmission period includes a downlink transmission time period and an uplink transmission time period, where the downlink transmission time period is used by the base station to send the multiple MPDCCHs and the multiple PDSCHs to the UE, where the uplink transmission time period is used for the The UE sends a feedback result to the plurality of PDSCHs to the base station.
  • the first field may indicate that the HARQ-ACK bundling function is turned on by 0, and indicates that the HARQ-ACK bundling function is not turned on by 1.
  • the HARQ-ACK bundling function may not be turned on by 0, and the HARQ-ACK bundling function is turned on by 1 indication.
  • DCI may include the following two possible implementations:
  • the first possible implementation manner in order to ensure that the first field can both indicate that the HARQ-ACK bundling function is turned on and the UE receives data based on the HARQ-ACK bundling information indicated by the second field, and can also indicate that the HARQ-ACK is not to be opened.
  • Binding function and the UE receives data based on information indicated by the third field, thereby improving flexibility of transmitting data, the sum of the sizes of the first field and the second field is the same as the size of the third field, and the second field includes HARQ-ACK The bundle index field, the PDSCH index field, and the second reserved field.
  • the HARQ-ACK Bundle Index field is used to describe the location of the bundle in the current transmission period, and the PDSCH index field is used to indicate the location of the transmitted PDSCH in the bundle.
  • the number of repetitions of the MPDCCH is usually indicated by 2 bits
  • the number of repetitions of the PDSCH is indicated by 2 bits
  • the hopping identifier is indicated by 1 bit
  • the size of the third field is usually 5 bits. Therefore, the HARQ-ACK bundle index is used.
  • the size of the field and the PDSCH index field may both be 2 bits
  • the size of the second reserved field may be 1 bit, thereby ensuring that the size of the second field is the same as the size of the third field, both of which are 5 bits.
  • the size of the first field and the second field is 6 bits.
  • the base station may transmit up to 10 PDSCHs to the UE, and therefore, a maximum of one transmission period may be used.
  • the bundle includes 3 bundles, and each bundle can include up to 4 PDSCHs, and the total number of PDSCHs included in the bundle of 3 bundles is less than or equal to 10.
  • the HARQ-ACK bundle index field indicates the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH The index field indicates the position of the transmitted PDSCH in the associated bundle in a reciprocal manner.
  • the binding value of the PDQ corresponding to the DCI where the HARQ-ACK bundling index field is located is indicated as the last bundling in the current transmission period, and the PDSCH index field is indicated by the HARQ-ACK bundling index field.
  • the preset value is indicated, so that the PDSCH corresponding to the DCI where the PDSCH index field is located is indicated as the last PDSCH in the bundle to which the PDSCH belongs.
  • the preset value may be 0 or 1
  • the preset value may be determined by the base station before sending the MPDCCH to the UE.
  • a possible implementation strategy is that the preset value may be determined by the base station. The value entered by the number of people receiving the relevant technology is obtained.
  • the preset value may also be other values determined by the base station by other means.
  • the second field may include, in order to facilitate the UE to further determine whether each PDSCH that belongs to the bundle has been received, and the reliability of the transmission data is improved.
  • the HARQ-ACK bundles the index field, the PDSCH index field, and the parity field, but does not include the second reserved field.
  • the size of the parity field is 1 bit, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • the DCI when the DCI has a first field and a second field, and the third field does not exist, the DCI may be as shown in Table 3 below.
  • the "field” is used to describe the type of the field included in the DCI
  • the "number of bits” is used to describe the size of each field
  • the “description” is used to describe the value indicated by each field.
  • the number of bits in the first field is 1, indicating that the size of the first field is 1 bit
  • the description of the first field is 1, indicating that the first field indicates that the HARQ is turned on.
  • ACK bundling function the number of bits in the first field is 1, indicating that the size of the first field is 1 bit
  • the description of the first field is 1, indicating that the first field indicates that the HARQ is turned on.
  • the DCI is described by taking only the above-mentioned Table 3 as an example, and the above Table 3 does not limit the embodiment of the present invention.
  • the manner in which the base station sends the PDSCH to the UE may be as shown in Table 2 below.
  • the 10 PDSCHs sent to the UE in one transmission period are taken as an example.
  • the number of bundles and the number of PDSCHs included in the bundle ⁇ 3, 3, 4 ⁇ indicate that the six PDSCHs belong to two bundles, and each bundle includes 3 or 4 PDSCH; binding position 2, 1, 0 means, first bundle
  • the position of the tie is 2, the position of the second bundle is 1, the position of the third bundle is 0; the position of the PDSCH is ⁇ [2,1,0], [2,1,0], [3,2,1, 0] ⁇ indicates that the positions of the three PDSCHs in the first bundle are 2, 1, and 0, and the positions of the three PDSCHs in the second bundle are 2, 1, and 0, respectively, and the three PDSCHs in the third bundle are
  • the positions are respectively 3, 2, 1, 0; the parity of the number of PDSCHs included in the bundle 1, 1, 0 indicates that the number of PDSCHs included in the first bundle is an odd number, and the number of PDSCHs included in the second bundle is an odd number.
  • the number of PDSCHs included in the third bundle is an even number.
  • the values indicated by the HARQ-ACK bundle index field and the PDSCH index field included in the DCI corresponding to each PDSCH may be as shown in Table 3.
  • Step 604 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE.
  • the DCI has a first field and a third field, but the second field does not exist.
  • the first field is used to indicate that the HARQ is not currently opened.
  • ACK bundling function is used to indicate that the HARQ is not currently opened.
  • the HARQ-ACK bundling function may not be currently opened by the first field, and since the HARQ-ACK bundling information is not required to be indicated, the second field may not exist but exists.
  • a third field for indicating that the DCI has information such as the number of MPDCCH repetitions, the number of PDSCH repetitions, and the frequency hopping identifier.
  • the base station has sent the MPDCCH and the PDSCH corresponding to the DCI of the MPDCCH to the UE, and indicates whether the HARQ-ACK bundling function is enabled by using the first field of the DCI. Therefore, in the following steps 605 to 607, the UE may receive the MPDCCH, and receive a PDSCH corresponding to the DCI of the MPDCCH based on the DCI.
  • Step 605 When the UE receives the MPDCCH sent by the base station, based on the first field that exists in the DCI of the MPDCCH, determine whether the HARQ-ACK bundling function is currently enabled. When the HARQ-ACK bundling function is currently enabled, Step 606 is performed, when the HARQ-ACK bundling function is not currently enabled, step 607 is performed.
  • the UE can determine whether to open the HARQ-ACK according to the first field in the DCI. Bundle function.
  • the data is currently transmitted through the HARQ-ACK bundling function, and the first field existing in the DCI of the MPDCCH is received by the base station. If the transmitted information indicates 0, it is determined that data is not currently transmitted through the HARQ-ACK bundling function.
  • Step 606 The UE determines that the DCI has a second field but does not have a third field.
  • the HARQ-ACK bundling information indicated by the second field is separately sent to the base station. The feedback result of each bundle in the current transmission period to achieve data transmission with the base station.
  • the base station may transmit multiple PDSCHs to the UE in one transmission period, the UE usually needs to send a check result of each PDSCH to the base station when the uplink time arrives, thereby indicating to the base station whether the multiple PDSCHs are average. If the receiving is successful, the efficiency of transmitting data is reduced. Therefore, in order to improve the efficiency of transmitting data, when the UE determines that the first field and the second field are present in the DCI, the HARQ-ACK bundling information indicated by the second field may be used. The base station separately transmits the feedback result of each bundle in the current transmission period to implement data transmission with the base station.
  • the PDSCH may belong to any bundle in the current transmission period.
  • the UE may determine the accuracy of the uplink transmission time, and ensure that the UE can accurately send the feedback result to the base station to improve the reliability of the transmission data.
  • the UE may be based on the HARQ-ACK bundle index field. Determining whether the bundle to which the PDSCH belongs is the last bundle in the current transmission period. When the bundle to which the PDSCH belongs is the last bundle in the current transmission period, determining, according to the PDSCH index field, that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs is determined based on the number of PDSCHs that have not been received in the bundle to which the PDSCH belongs.
  • the uplink transmission time is determined. When the uplink transmission time arrives, the feedback result of the bundle to which the PDSCH belongs is determined, and the uplink is switched to the current transmission period. The bundled feedback results are sent to the base station separately.
  • the UE may determine that the bundle to which the PDSCH belongs is the last bundle in the current transmission period.
  • the reciprocal value indicated by the information transmitted by the HARQ-ACK bundle index field is not a preset value, the UE may determine that the bundle to which the PDSCH belongs is not the last bundle in the current transmission period.
  • the UE may determine the difference between the reciprocal value indicated by the information transmitted by the PDSCH index field and the preset value, and determine the difference as not received in the bundle to which the PDSCH belongs. Number of PDSCHs.
  • the information transmitted by the PDSCH index field indicates that the reciprocal value is 2, the preset value is 0, and the difference between the reciprocal value and the preset value is 2. Therefore, the UE determines that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs arriving is 2.
  • each PDSCH since each PDSCH is transmitted, one subframe is occupied, and there is usually one protection frame between the uplink transmission and the downlink transmission, and each subframe takes 1 millisecond. Therefore, when the PDSCH is received, the time is t1.
  • the time when the number of PDSCHs is greater than one millisecond is the time at which the uplink time arrives.
  • the UE may determine a cyclic redundancy check feedback code CRC check result of all PDSCHs received in the bundle to which the PDSCH belongs.
  • CRC cyclic redundancy check feedback code
  • the feedback result of the bundle to which the PDSCH belongs is determined to be ACK, otherwise, the feedback result of determining the bundle to which the PDSCH belongs is a negative acknowledgement NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH belongs are PDSCH1, PDSCH2, and PDSCH3, respectively. If the feedback result of the UE to PDSCH1, PDSCH2, and PDSCH3 is ACK, that is, the verification is successful, that is, the feedback result of the bundle 2 is determined to be ACK. If the feedback result of the UE to the PDSCH1 is NACK, that is, the check fails, and the feedback result to the PDSCH2 and the PDSCH3 is ACK, it is determined that the feedback result to the bundle 2 is NACK.
  • the UE may send the feedback result of each bundle to the base station through the PUCCH or the PUSCH, and send a subframe of each bundled feedback result, and may receive a subframe between the last PDSCH in the bundle. Interval at least 3 subframes.
  • the second field may further include a parity field. Therefore, in order to improve the accuracy of determining, by the UE, the PDSCH that belongs to the same bundle, the UE determines the accuracy of the feedback result of the bundle, and improves the reliability of the transmission data.
  • the UE may determine a CRC check result of all PDSCHs received in the bundle to which the PDSCH belongs, determine a parity of the number of all the PDSCHs, and determine a parity indicated by the parity field, when the CRC of all the PDSCHs is equal to If the parity of the number of all the PDSCHs is the same as the parity indicated by the parity field, the feedback result of the bundle to which the PDSCH belongs is determined to be ACK, and otherwise, the feedback result of the bundle to which the PDSCH belongs is determined to be NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH1 belongs are PDSCH1, PDSCH2, and PDSCH3, respectively, and have a total of three PDSCHs, and the number is an odd number. If the check result of the UE for PDSCH1, PDSCH2, and PDSCH3 is both ACK, and the parity indicated by the parity field existing in the DCI corresponding to PDSCH1 is also an odd number, it is determined that the feedback result of the bundle 2 is ACK.
  • the UE may not receive the bundle.
  • a part of the PDSCH in 2 determines that the feedback result of the bundle 2 is NACK.
  • the base station sends 10 PDSCHs to the UE through the HARQ-ACK bundling function, and the process of transmitting data between the base station and the UE may be as shown in FIG. 6B.
  • the base station firstly transmits 10 MPDCCHs to the UE, and each MPDCCH occupies one subframe. For each MPDCCH, after transmitting one subframe of the subframe where the MPDCC is located, the MPDCCH is sent to the UE.
  • the PDSCH corresponding to the DCI transmits 10 PDSCHs to the UE, wherein PDSCH1, PDSCH2, and PDSCH3 belong to bundle 2, PDSCH4, PDSCH5, and PDSCH6 belong to bundle 1, and PDSCH7, PDSCH8, PDSCH9, and PDSCH10 belong to bundle 0.
  • the 1st and 7th MPDCCHs fail to transmit (including loss or error), causing PDSCH1 and PDSCH7 to fail to be transmitted, and the UE cannot receive.
  • the UE starts after separating one subframe of the last PDSCH in the 10 PDSCHs, and sends a feedback result of each bundle to the base station through the PUCCH, and sends a subframe of each bundled feedback result, and receives
  • the subframes of the last PDSCH in the bundle may be separated by at least 3 subframes.
  • the UE receives PDSCH3 and PDSCH4, and both PDSCH3 and PDSCH4 are successfully verified.
  • the number of PDSCHs received by the bundle 2 is even, and the parity field included by the UE from the DCI corresponding to PDSCH3 or PDSCH4 It is determined that the number of PDSCHs included in the bundle 2 is an odd number, so the UE can determine that the feedback result of the bundle 2 is NACK.
  • the UE receives PDSCH8, PDSCH9, and PDSCH10, and successfully checks PDSCH8, PDSCH9, and PDSCH10, and the number of PDSCHs included in bundle 0 is an odd number, and the UE corresponds to PDSCH8, PDSCH9, or PDSCH10.
  • the parity field included in the DCI determines that the number of PDSCHs included in the bundle 0 is an even number, so the UE can determine that the feedback result of the bundle 0 is NACK.
  • the UE receives PDSCH4, PDSCH5, and PDSCH6, and successfully checks PDSCH4, PDSCH5, and PDSCH6, the number of received PDSCHs included in bundle 1 is an odd number, and the DCI corresponding to the UE from PDSCH4, PDSCH5, or PDSCH6
  • the included parity field determines that the number of PDSCHs included in the bundle 1 is an odd number, so the UE can determine that the feedback result of the bundle 1 is ACK.
  • the CRC of all the PDSCHs is successfully fed back and the parity of the number of all the PDSCHs is present in the DCI corresponding to any PDSCH of all the PDSCHs.
  • the parity indicated by the parity field is the same (that is, the DCI corresponding to all PDSCHs is included)
  • the feedback result of the bundle to which the PDSCH belongs is determined to be ACK, otherwise, the feedback result of the bundle to which the PDSCH belongs is determined to be NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH1 belongs are PDSCH1, PDSCH2, and PDSCH3, respectively, and have a total of three PDSCHs, and the number is an odd number. If the feedback result of the UE to the PDSCH1, the PDSCH2, and the PDSCH3 is ACK, the parity indicated by the parity field existing in the DCI corresponding to the PDSCH1 is an even number, and the parity indicated by the parity field existing in the DCI corresponding to the PDSCH2 and the PDSCH3 The attributes are all odd. Therefore, since the parity indicated by the parity field existing in the DCI corresponding to all PDSCHs in the bundle 2 is inconsistent, the feedback result of determining the bundle 2 is NACK.
  • Step 607 The UE determines that the second field does not exist in the DCI, but the third field exists.
  • data transmission is not performed between the HARQ-ACK bundling information indicated by the second field and the base station.
  • the second field does not exist in the DCI, but the first reserved field is the same as the second field, and the UE may not be based on the HARQ-ACK bundling information.
  • the data is transmitted between the base stations. At this time, the UE needs to feed back the received check result of each PDSCH to the base station.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the third field does not exist in the DCI, but a second field indicating the HARQ-ACK bundling information exists, ensuring that the UE can separately send to the base station based on the HARQ-ACK bundling information.
  • the feedback result of each bundle and since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully. That is, while saving time, the reliability of the transmitted data is also ensured, thereby further improving the efficiency of transmitting data and improving the reliability of the transmitted data.
  • all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • the second field includes a HARQ-ACK Bundle Index field indicating the location bundled in the current transmission period and a PDSCH Index field indicating the location of the transmitted PDSCH in the associated bundle. Therefore, when receiving the PDSCH, the UE can accurately determine each PDSCH in each bundle in one transmission period according to the second field existing in the DCI corresponding to the PDSCH, and ensure that all PDSCHs in one transmission period are respectively determined. When included in multiple bundles, the UE can also accurately feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, further improving the reliability of the transmitted data.
  • the HARQ-ACK bundle index field can describe the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH index field can reciprocally describe the position of the transmitted PDSCH in the bundle, which can facilitate the UE to accurately determine.
  • the location of each PDSCH received in the current transmission period in the bundle and the location of the bundle to which the PDSCH belongs in the current transmission period further improves the reliability of the transmitted data.
  • the second field may further include a parity field, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the probability that the UE will miss a certain PDSCH in all PDSCHs in a certain bundle, thereby improving the probability.
  • the UE determines the accuracy of the bundled feedback result and improves the reliability of the transmitted data.
  • the DCI does not have the second field but the third field exists, thereby ensuring that the UE can repeat the number of MPDCCH repetitions indicated by the third field, physical when the HARQ-ACK bundling function is not turned on.
  • the information such as the downlink shared channel PDSCH repetition number and the frequency hopping identifier and the base station transmit data further improve the reliability of the transmitted data.
  • FIG. 7 is a flowchart of a data transmission method based on a half-duplex mode according to an exemplary embodiment. Referring to FIG. 7, the method is used in interaction between a base station and a UE, and includes the following steps.
  • Step 701 The base station sends a notification message to the UE by using RRC signaling, where the notification message is used to indicate that the base station supports the HARQ-ACK bundling function.
  • the base station In order to ensure that the base station can transmit data to the UE through the HARQ-ACK bundling function, and the UE can successfully receive data transmitted by the base station through the HARQ-ACK bundling function, the base station needs to notify the UE that the base station can support the HARQ. - ACK bundling function.
  • the eNB may send an RRC signaling to the UE to establish an RRC connection, and carry the notification message in the RRC signaling, when detecting that the UE accesses the cell covered by the base station.
  • the base station may also send the notification message to the UE at other occasions.
  • a possible implementation manner is that the UE is in an RRC connection with the base station, that is, the UE is in the In the process of the cell covered by the base station, the base station may also send RRC signaling to the base station to reset the RRC connection, and the RRC signaling carries the notification message.
  • the RRC signaling may also carry other information, such as the payload of the DCI included in the MPDCCH.
  • Step 702 The base station determines whether to open the HARQ-ACK bundling function based on the current communication quality with the UE. If yes, go to step 703, if not, go to step 704.
  • the communication quality between the base station and the UE may be different at different times, and the base station may generally transmit data to the UE through the HARQ-ACK bundling function if the communication quality is good. Therefore, the base station can determine whether to open the HARQ-ACK bundling function.
  • the UE can detect the communication quality with the base station and send communication quality information to the base station.
  • the base station receives the communication quality information, it is determined whether the communication quality information is greater than or equal to the communication quality threshold. If the communication quality information is greater than or equal to the communication quality threshold, the current communication quality with the UE is good, and the determination is performed. Open the HARQ-ACK bundling function. If the communication quality information is smaller than the communication quality threshold, it indicates that the current communication quality with the UE is poor, and it is determined that the HARQ-ACK bundling function is not turned on.
  • the representation of the communication quality information corresponds to the communication quality threshold.
  • the communication quality information may be a percentage.
  • the communication quality threshold may also be a percentage.
  • the communication quality information may also be other forms of information, and the communication quality threshold may also be other forms of thresholds corresponding to the communication quality information.
  • the communication quality threshold may be determined by the base station before determining whether the communication quality assessment information is greater than or equal to the communication quality threshold.
  • the communication quality threshold may be received by the base station. The value entered by the person is obtained.
  • the communication quality between the current UE and the UE may also be detected by the base station, thereby directly obtaining the communication quality information.
  • Step 703 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE.
  • the DCI has a first field for indicating that the HARQ-ACK bundling function is currently open, and a second field for indicating HARQ-ACK bundling information.
  • the base station Since the base station has determined to open the HARQ-ACK bundling function, that is, the data is transmitted to the UE by using the HARQ-ACK bundling function, the base station can pass the MPDCCH by ensuring that the UE can accurately receive data transmitted by the base station.
  • the first field included in the DCI indicates that the HARQ-ACK bundling function is currently turned on, and the HARQ-ACK bundling information is indicated by the second field in which the DCI exists.
  • the base station may continuously send multiple MPDCCHs to the UE, so that multiple PDSCHs are continuously sent to the UE, and the multiple PDSCH belongs to multiple bundles. And different PDSCHs belong to different HARQ processes respectively.
  • each MPDCCH or each PDSCH may occupy one subframe, and each MPDCCH includes one DCI, which is used to indicate that the UE receives the PDSCH corresponding to the DCI, and each PDSCH may include one TB.
  • the base station may send the MPDCCH after the subframe is separated by one subframe, and then send the PDSCH corresponding to the DCI of the MPDCCH, that is, the interval between the subframe in which the MPDCCH is transmitted and the subframe in which the PDSCH corresponding to the DCI of the MPDCCH is transmitted.
  • a transmission period includes a downlink transmission time period and an uplink transmission time period, where the downlink transmission time period is used by the base station to send the multiple MPDCCHs and the multiple PDSCHs to the UE, where the uplink transmission time period is used for the The UE sends a feedback result to the plurality of PDSCHs to the base station.
  • the first field may indicate that the HARQ-ACK bundling function is turned on by 0, and indicates that the HARQ-ACK bundling function is not turned on by 1.
  • the HARQ-ACK bundling function may not be turned on by 0, and the HARQ-ACK bundling function is turned on by 1 indication.
  • DCI may include the following two possible implementations:
  • the second field includes a HARQ-ACK bundle index field, a PDSCH index field, and a second reserved field.
  • the size of the HARQ-ACK bundling index field may be 2 bits, which is used to describe the location of the bundle in the current transmission period.
  • the size of the PDSCH index field may be 2 bits, which is used to indicate that the transmitted PDSCH is in the bundle.
  • the location, the size of the second reserved field may be 1 bit. At this time, the size of the first field and the second field is 6 bits.
  • the base station may transmit up to 10 PDSCHs to the UE, and therefore, a maximum of one transmission period may be used.
  • the bundle includes 3 bundles, and each bundle can include up to 4 PDSCHs, and the total number of PDSCHs included in the bundle of 3 bundles is less than or equal to 10.
  • the HARQ-ACK bundle index field indicates the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH The index field indicates the position of the transmitted PDSCH in the associated bundle in a reciprocal manner.
  • the binding value of the PDQ corresponding to the DCI where the HARQ-ACK bundling index field is located is indicated as the last bundling in the current transmission period, and the PDSCH index field is indicated by the HARQ-ACK bundling index field. Instructing the preset value to correspond to the DCI where the PDSCH index field is located
  • the PDSCH indication is the last PDSCH in the bundle to which the PDSCH belongs.
  • the preset value may be 0 or 1
  • the preset value may be determined by the base station before sending the MPDCCH to the UE.
  • a possible implementation strategy is that the preset value may be determined by the base station. The value entered by the number of people receiving the relevant technology is obtained.
  • the preset value may also be other values determined by the base station by other means.
  • the second field may be The HARQ-ACK bundle index field, the PDSCH index field, and the parity field are included, but the second reserved field is not included.
  • the size of the parity field is 1 bit, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • Step 704 The base station sends an MPDCCH and a PDSCH corresponding to the DCI of the MPDCCH to the UE.
  • the DCI has a first field and a third reserved field, but the second field does not exist.
  • the first field is used to indicate that the current HARQ-ACK bundling function.
  • the HARQ-ACK bundling function may not be currently turned on by the first field, and since the HARQ-ACK bundling information is not required to be indicated, the second field may not exist.
  • the size of the third reserved field is 5 bits, that is, the third reserved field is the same as the size of the second field.
  • the base station has sent the MPDCCH and the PDSCH corresponding to the DCI of the MPDCCH to the UE, and indicates whether the HARQ-ACK bundling function is enabled by using the first field of the DCI. Therefore, in the following steps 705 to 707, the UE may receive the MPDCCH and receive a PDSCH corresponding to the DCI of the MPDCCH based on the DCI.
  • Step 705 When the UE receives the MPDCCH sent by the base station, it is determined whether the HARQ-ACK bundling function is currently enabled based on the first field that exists in the DCI of the MPDCCH. When the HARQ-ACK bundling function is currently enabled, Step 706 is performed. When the HARQ-ACK bundling function is not currently enabled, step 707 is performed.
  • the UE can determine whether to open the HARQ-ACK according to the first field in the DCI. Bundle function.
  • the data is currently transmitted through the HARQ-ACK bundling function, and the first field existing in the DCI of the MPDCCH is received by the base station. If the transmitted information indicates 0, it is determined that data is not currently transmitted through the HARQ-ACK bundling function.
  • Step 706 The UE determines that the DCI has a second field but does not have a third reserved field.
  • the HARQ-ACK bundling information indicated by the second field is sent to the base station.
  • the feedback result of each bundle in the current transmission period is separately transmitted to implement data transmission with the base station.
  • the base station may transmit multiple PDSCHs to the UE in one transmission period, the UE usually needs to send a check result of each PDSCH to the base station when the uplink time arrives, thereby indicating to the base station whether the multiple PDSCHs are average. If the receiving is successful, the efficiency of transmitting data is reduced. Therefore, in order to improve the efficiency of transmitting data, when the UE determines that the first field and the second field are present in the DCI, the HARQ-ACK bundling information indicated by the second field may be used. The base station separately transmits the feedback result of each bundle in the current transmission period to implement data transmission with the base station.
  • the PDSCH may belong to any bundle in the current transmission period.
  • the UE may determine the accuracy of the uplink transmission time, and ensure that the UE can accurately send the feedback result to the base station to improve the reliability of the transmission data.
  • the UE may be based on the HARQ-ACK bundle index field. Determining whether the bundle to which the PDSCH belongs is the last bundle in the current transmission period. When the bundle to which the PDSCH belongs is the last bundle in the current transmission period, determining, according to the PDSCH index field, that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs is determined based on the number of PDSCHs that have not been received in the bundle to which the PDSCH belongs.
  • the uplink transmission time is determined. When the uplink transmission time arrives, the feedback result of the bundle to which the PDSCH belongs is determined, and the uplink is switched to the current transmission period. The bundled feedback results are sent to the base station separately.
  • the UE may determine that the bundle to which the PDSCH belongs is the last bundle in the current transmission period.
  • the reciprocal value indicated by the information transmitted by the HARQ-ACK bundle index field is not a preset value, the UE may determine that the bundle to which the PDSCH belongs is not the last bundle in the current transmission period.
  • the UE may determine the difference between the reciprocal value indicated by the information transmitted by the PDSCH index field and the preset value, and determine the difference as not received in the bundle to which the PDSCH belongs. Number of PDSCHs.
  • the information transmitted by the PDSCH index field indicates that the reciprocal value is 2, the preset value is 0, and the difference between the reciprocal value and the preset value is 2. Therefore, the UE determines that the bundle to which the PDSCH belongs has not been received. The number of PDSCHs arriving is 2.
  • each PDSCH since each PDSCH is transmitted, one subframe is occupied, and there is usually one protection frame between the uplink transmission and the downlink transmission, and each subframe takes 1 millisecond. Therefore, when the PDSCH is received, the time is t1.
  • the time when the number of PDSCHs is greater than one millisecond is the time at which the uplink time arrives.
  • the UE may determine a cyclic redundancy check feedback code CRC check result of all PDSCHs received in the bundle to which the PDSCH belongs.
  • CRC cyclic redundancy check feedback code
  • the feedback result of the bundle to which the PDSCH belongs is determined to be ACK, otherwise, the feedback result of determining the bundle to which the PDSCH belongs is a negative acknowledgement NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH belongs are PDSCH1, PDSCH2, and PDSCH3, respectively. If the feedback result of the UE to PDSCH1, PDSCH2, and PDSCH3 is ACK, that is, the verification is successful, that is, the feedback result of the bundle 2 is determined to be ACK. If the feedback result of the UE to the PDSCH1 is NACK, that is, the check fails, and the feedback result to the PDSCH2 and the PDSCH3 is ACK, it is determined that the feedback result to the bundle 2 is NACK.
  • the UE may send the feedback result of each bundle to the base station through the PUCCH or the PUSCH, and send a subframe of each bundled feedback result, and may receive a subframe between the last PDSCH in the bundle. Interval at least 3 subframes.
  • the second field may further include a parity field. Therefore, in order to improve the accuracy of determining, by the UE, the PDSCH that belongs to the same bundle, the UE determines the accuracy of the feedback result of the bundle, and improves the reliability of the transmission data.
  • the UE may determine a CRC check result of all PDSCHs received in the bundle to which the PDSCH belongs, determine a parity of the number of all the PDSCHs, and determine a parity indicated by the parity field, when the CRC of all the PDSCHs is equal to Successfully verified and the parity of the number of all PDSCHs and the parity indicated by the parity field
  • the feedback result of the bundle to which the PDSCH belongs is determined to be ACK. Otherwise, the feedback result of the bundle to which the PDSCH belongs is determined to be NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH1 belongs are PDSCH1, PDSCH2, and PDSCH3, respectively, and have a total of three PDSCHs, and the number is an odd number. If the feedback result of the UE to PDSCH1, PDSCH2, and PDSCH3 is ACK, and the parity indicated by the parity field existing in the DCI corresponding to PDSCH1 is also an odd number, it is determined that the feedback result of the bundle 2 is ACK.
  • the UE may not receive the bundle.
  • a part of the PDSCH in 2 determines that the feedback result of the bundle 2 is NACK.
  • the CRC of all the PDSCHs is successfully fed back and the parity of the number of all the PDSCHs is present in the DCI corresponding to any PDSCH of all the PDSCHs.
  • the parity indicated by the parity field is the same (that is, when the parity indicated by the parity field included in the DCI corresponding to all PDSCHs is consistent, and the parity of the number of all the PDSCHs is the same)
  • it is determined that The feedback result of the bundle to which the PDSCH belongs is ACK. Otherwise, the feedback result of the bundle to which the PDSCH belongs is determined to be NACK.
  • the UE determines that the PDSCHs received in the bundle 2 to which the PDSCH1 belongs are PDSCH1, PDSCH2, and PDSCH3, respectively, and have a total of three PDSCHs, and the number is an odd number. If the feedback result of the UE to the PDSCH1, the PDSCH2, and the PDSCH3 is ACK, the parity indicated by the parity field existing in the DCI corresponding to the PDSCH1 is an even number, and the parity indicated by the parity field existing in the DCI corresponding to the PDSCH2 and the PDSCH3 The attributes are all odd. Therefore, since the parity indicated by the parity field existing in the DCI corresponding to all PDSCHs in the bundle 2 is inconsistent, the feedback result of determining the bundle 2 is NACK.
  • Step 707 The UE determines that the second field does not exist in the DCI, but the third reserved field exists.
  • data transmission is not performed between the HARQ-ACK bundling information indicated by the second field and the base station.
  • the UE needs to feed back the received check result of each PDSCH to the base station.
  • the second field does not exist in the DCI, but the first reserved field is the same as the second field, and the UE may not be based on the HARQ-ACK bundling information. Data transmission between base stations.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the process multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the second field indicating the HARQ-ACK bundling information exists in the DCI ensuring that the UE can separately send each bundled feedback result to the base station based on the HARQ-ACK bundling information, and Since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, that is, while saving time. It also ensures the reliability of the transmitted data, thereby further improving the efficiency of transmitting data while also improving the reliability of the transmitted data. In addition, since all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • the second field includes a HARQ-ACK bundle index field indicating a location bundled in the current transmission period and A PDSCH index field indicating the location of the transmitted PDSCH in the bundle to which it belongs. Therefore, when receiving the PDSCH, the UE can accurately determine each PDSCH in each bundle in one transmission period according to the second field existing in the DCI corresponding to the PDSCH, and ensure that all PDSCHs in one transmission period are respectively determined. When included in multiple bundles, the UE can also accurately feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, further improving the reliability of the transmitted data.
  • the HARQ-ACK bundle index field can describe the position of the bundle in the current transmission period in a reciprocal manner
  • the PDSCH index field can reciprocally describe the position of the transmitted PDSCH in the bundle, which can facilitate the UE to accurately determine.
  • the location of each PDSCH received in the current transmission period in the bundle and the location of the bundle to which the PDSCH belongs in the current transmission period further improves the reliability of the transmitted data.
  • the second field may further include a parity field, which is used to indicate whether the number of PDSCHs included in the bundle is odd or even, which reduces the probability that the UE will miss a PDSCH in all PDSCHs in a certain bundle, thereby improving the probability.
  • the UE determines the accuracy of the bundled feedback result and improves the reliability of the transmitted data.
  • FIG. 8 is a block diagram of a data transmission apparatus based on a half duplex mode, according to an exemplary embodiment.
  • the apparatus includes a determination module 801, a first determination module 802, and a transmission module 803.
  • the determining module 801 is configured to perform the operations described in step 505 in the foregoing embodiment of FIG. 5A or step 605 in the foregoing embodiment of FIG. 6A;
  • the first determining module 802 is configured to perform the operations of step 506 in the foregoing embodiment of FIG. 5A or the step 606 in the foregoing embodiment of FIG. 6A to determine that the DCI has a second field but no third field exists;
  • the sending module 803 is configured to perform the HARQ based on the second field indication when receiving the PDSCH corresponding to the DCI sent by the base station, as described in step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A.
  • the ACK bundling information respectively sends the feedback result of each bundle in the current transmission period to the base station to implement a data transmission operation with the base station.
  • the second field includes a HARQ-ACK bundle index field and a PDSCH index field, where the HARQ-ACK bundle index field is used to indicate a location in the current transmission period, where the PDSCH index field is used to indicate that the transmitted PDSCH is in the The location in the bundle.
  • the sending module 803 includes:
  • a determining sub-module configured to perform, according to step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A, determining, according to the HARQ-ACK bundling index field, whether the bundle to which the PDSCH belongs is the last one in the current transmission period. Bundled operation;
  • Determining a sub-module configured to perform step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A, when the bundle to which the PDSCH belongs is the last bundle in the current transmission period, based on the PDSCH index field. The number of PDSCHs that have not been received in the bundle to which the PDSCH belongs;
  • the transmitting sub-module is configured to perform the uplink transmission time based on the number of PDSCHs that have not been received in the bundle to which the PDSCH belongs according to step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A, where the uplink transmission time is determined.
  • the feedback result of the bundle to which the PDSCH belongs is ACK or NACK, and is switched to the uplink, and the feedback results of all the bundles in the current transmission period are respectively sent to the base station.
  • the HARQ-ACK bundling index field indicates the position of the bundling in the current transmission period in a reciprocal manner
  • the PDSCH index field indicates the position of the transmitted PDSCH in the associated bundle in a reciprocal manner
  • the judgment sub-module is also used to:
  • the reciprocal value indicated by the information transmitted by the HARQ-ACK bundling index field in step 506 of the foregoing embodiment of FIG. 5A or the step 606 in the foregoing embodiment of FIG. 6A is a preset value, it is determined that the bundle to which the PDSCH belongs is The last bundled operation within the current transfer cycle;
  • the determining sub-module is also used to:
  • the device further includes:
  • the second determining module is configured to perform the operation of determining that the second field does not exist in the DCI but the reserved field exists when the HARQ-ACK bundling function is not currently opened, as described in step 507 in the foregoing embodiment of FIG. 5A.
  • the second field further includes a parity field, where the parity field is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • the sending submodule is further configured to:
  • step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A;
  • the CRC of all the PDSCHs is successfully verified and the parity of the number of all PDSCHs and the parity indicated by the parity field are performed according to step 506 in the foregoing embodiment of FIG. 5A or step 606 in the foregoing embodiment of FIG. 6A.
  • the operation of determining that the bundled feedback result of the PDSCH belongs to the NACK is determined.
  • the device further includes:
  • the third determining module is configured to perform the operation of determining that the second field does not exist in the DCI but the third field exists when the HARQ-ACK bundling function is not currently opened, as described in step 607 in the foregoing embodiment of FIG. 6A.
  • the second field when the second field includes a HARQ-ACK bundle index field and a PDSCH index field, a sum of sizes of the first field and the second field is the same as a size of the third field, when the second field includes When the HARQ-ACK bundles the index field, the PDSCH index field, and the parity field, the size of the second field is the same as the size of the third field.
  • the size of the first field is 1 bit
  • the size of the HARQ-ACK bundle index field and the PDSCH index field in the second field are 2 bits, respectively, and the size of the parity field in the second field is 1 Bit.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the third field does not exist in the DCI, but a second field indicating the HARQ-ACK bundling information exists, ensuring that the UE can separately send to the base station based on the HARQ-ACK bundling information.
  • the feedback result of each bundle and since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully. , which saves time and ensures the reliability of the transmitted data, thereby further increasing the number of transmissions.
  • the efficiency of the data also increases the reliability of the transmitted data.
  • all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • FIG. 9 is a block diagram of a data transmission apparatus based on a half duplex mode, according to an exemplary embodiment.
  • the apparatus includes a receiving module 901 and a transmitting module 902.
  • the receiving module 901 is configured to perform the MPDCCH that is sent by the receiving base station, where the MPDCCH of the MPDCCH includes the first field and the second field, where the second field is used to indicate the HARQ-ACK binding information. Operation
  • the second field includes a HARQ-ACK bundling index field and a PDSCH index field, where the HARQ-ACK bundling index field indicates the position of the bundling in the current transmission period in a reciprocal manner, and the PDSCH index field indicates the transmission in a reciprocal manner.
  • the sending module 802 is configured to perform the information indicated by the HARQ-ACK bundling index field and the PDSCH index field when receiving the PDSCH corresponding to the DCI sent by the base station, as described in step 706 in the foregoing embodiment of FIG. Sending, to the base station, a feedback result of each bundle in the current transmission period to implement data transmission with the base station, where the PDSCH belongs to any bundle of multiple bundles transmitted in the current transmission period, and the feedback result is ACK. Or negating the operation of answering NACK.
  • the second field further includes a parity field, where the parity field is used to indicate whether the number of PDSCHs included in the bundle is odd or even.
  • the size of the first field is 1 bit
  • the size of the HARQ-ACK bundle index field and the PDSCH index field in the second field are 2 bits, respectively, and the size of the parity field in the second field is 1 Bit.
  • the base station may send an MPDCCH to the UE, and the first field included in the DCI of the MPDCCH indicates whether to enable the HARQ-ACK bundling function, and when the HARQ-ACK bundling function is enabled, in a transmission cycle.
  • the process multiple bundled PDSCHs are sent to the UE, which improves the downlink rate peak and the efficiency of transmitting data.
  • the second field indicating the HARQ-ACK bundling information exists in the DCI ensuring that the UE can separately send each bundled feedback result to the base station based on the HARQ-ACK bundling information, and Since the UE does not need to separately feed back the check result of each PDSCH to the base station, it can also feed back to the base station whether each PDSCH included in each bundle in the current transmission period has been received and verified successfully, that is, while saving time. It also ensures the reliability of the transmitted data, thereby further improving the efficiency of transmitting data while also improving the reliability of the transmitted data. In addition, since all PDSCHs in the same transmission period are not included in one bundle, and one PDSCH check failure occurs in one transmission period, all PDSCHs in the transmission period need to be retransmitted, further improving transmission. The reliability of the data.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program The product includes one or more computer instructions.
  • the computer instructions When the computer instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供了一种基于半双工模式的数据传输方法及装置,涉及通信技术领域,所述方法包括:当接收到基站发送的机器类通信物理下行控制信道MPDCCH时,基于所述MPDCCH的下行控制信息DCI中包括的第一字段,判断当前是否已打开混合自动重传请求确认应答HARQ-ACK捆绑功能,当当前已打开所述HARQ-ACK捆绑功能时,确定所述DCI中存在第二字段但不存在第三字段,在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。本申请能够在提高传输数据的效率和可靠性。

Description

基于半双工模式的数据传输方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种基于半双工模式的数据传输方法及装置。
背景技术
随着通信技术的发展,特别是物联网和机器类通信(Machine-Type Communications,MTC)技术的发展,半双工模式的数据传输方法以其功耗低的特点,得到了广泛的应用。在半双工模式中,用户终端(User Equipment,UE)与基站传输数据的过程中,UE不能同时接收和发送数据,即在同一时刻UE只能接收或者发送数据。
当基站与UE之间的传输信道质量较好时,基站与UE之间传输的数据需要重复发送的概率较小,因此,为了提高数据传输效率,在一个传输周期中,如图1所示,基站可以在连续的3个子帧上向UE连续传输3个机器类通信物理下行控制信道(MTC Physical Downlink Control Channel,MPDCCH),即在子帧0-2上连续传输3个MPDCCH。由于每传输一个MPDCCH后,需要间隔一个子帧来传输对应的物理下行共享信道传输块(Physical Downlink Shared Channel,PDSCH)其中,一个PDSCH中包括一个传输块(Transport Block,TB),因此基站需要在子帧2-4上分别向UE发送与该3个MPDCCH对应的PDSCH,其中,每个PDSCH分别属于不同的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程。又由于UE在每接收到一个PDSCH之后,需要确定该PDSCH的反馈结果为确认应答(Acknowledgement,ACK)还是否定应答(Negative Acknowledgement,NACK),并在间隔3个子帧之后将对应的反馈结果发送给基站,因此在UE接收到该传输周期中所有的PDSCH之后,可以切换到上行,并在子帧6-8上分别将3个PDSCH对应的反馈结果发送给基站,以实现半双工模式的数据传输。
由于上行与下行之间切换时需要间隔一个子帧的保护时间间隔,因此由上述图1可知,在10个子帧内只能传输3个PDSCH,下行峰值速度低下,并且当基站与UE之间的传输信道质量较好时,基站与UE之间传输的数据需要重复发送的概率较小,即UE对接收到的每个PDSCH均成功接收的概率很高。所以,为了节省时间从而使基站能够向UE传输更多的数据,提高下行峰值速率,在一个传输周期中,UE可以不必在每接收到一个PDSCH就将对应的反馈结果发送给基站。即如图2所示,基站与UE之间可以通过HARQ-ACK捆绑的方式传输数据,具体为:在一个传输周期中,基站在子帧0-9上连续向UE发送10个MPDCCH,从而在间隔一个子帧后,在子帧2-1上向UE发送10个PDSCH,该10个PDSCH为一个捆绑。当该10个PDSCH均被UE接收到且对该10个PDSCH均校验之后,UE可以在间隔3个子帧后,即在子帧5上向基站发送携带反馈结果的物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH),其中,当该10个PDSCH均校验成功时,该反馈结果为ACK,当该10个PDSCH中的至少一个未校验成功时,该反馈结果为NACK。
与图1所示的数据传输方式相比,图2所示的数据传输方式可以在17个子帧内传输10 个PDSCH,因此,通过图2所示的方式传输数据能够提高下行峰值速率,但如果一个捆绑中存在至少一个未校验成功的PDSCH,则UE向基站发送的反馈结果为NACK,此时,基站需要重新向UE发送该捆绑中的所有数据,降低了传输数据的可靠性。也即是,上述技术无法在提高下行峰值速度的同时提高传输数据的可靠性。
发明内容
为了在提高下行峰值速度的同时提高传输数据的可靠性,本发明实施例提供了一种基于半双工模式的数据传输方法及装置。所述技术方案如下:
第一方面,提供了一种基于半双工模式的数据传输方法,所述方法包括:
当接收到基站发送的MPDCCH时,基于所述MPDCCH的下行控制信息(Downlink Control Information,DCI)中包括的第一字段,判断当前是否已打开HARQ-ACK捆绑功能;
当当前已打开所述HARQ-ACK捆绑功能时,确定所述DCI中存在第二字段但不存在第三字段,所述第二字段用于指示HARQ-ACK捆绑信息,所述第三字段用于指示MPDCCH重复次数、PDSCH重复次数和跳频标识;
在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者NACK。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。
其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中不存在第三字段,而是存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。
另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
需要说明的是,基站可以在向UE发送MPDCCH之前,向UE通知MPDCCH的DCI的有效荷载,比如,一种可能的实现方式为,基站可以在检测到UE接入其所覆盖的小区时,向UE发送无线资源控制(Radio Resource Control,RRC)信令,并在该RRC信令中携带DCI的有效荷载。
可选地,所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,所述HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,所述PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
在本发明实施例中,第二字段包括说明捆绑在当前传输周期中的位置的HARQ-ACK捆 绑索引字段和说明传输的PDSCH在所属捆绑中的位置的PDSCH索引字段。因此,UE在接收到PDSCH时,能够根据PDSCH对应的DCI中存在的第二字段,准确地确定一个传输周期中每个捆绑中的每个PDSCH,确保了在将一个传输周期中的所有PDSCH分别包括在多个捆绑中时,UE也能够准确地向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,进一步提高了传输数据的可靠性。
可选地,所述基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,包括:
基于所述HARQ-ACK捆绑索引字段判断所述PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑;
当所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于所述PDSCH索引字段确定所述PDSCH所属捆绑中还未接收到的PDSCH数目;
基于所述PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在所述上行传输时间到达时,确定所述PDSCH所属捆绑的反馈结果为ACK还是NACK,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给所述基站。
在本发明实施例中,UE能够基于DCI包括的HARQ-ACK捆绑索引字段和PDSCH索引字段,准确地确定上行传输时间,从而确保UE能够在上行传输时间到达时,将当前传输周期中所有捆绑的反馈结果分别发送给基站,提高了传输数据的可靠性。
可选地,所述HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,所述PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
所述基于所述HARQ-ACK捆绑索引字段判断所述PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑,包括:
当所述HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,确定所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑;
所述基于所述PDSCH索引字段确定所述PDSCH所属捆绑中还未接收到的PDSCH数目,包括:
确定所述PDSCH索引字段传输的信息所指示的倒数数值与所述预设数值之间的差值,并将所述差值确定为所述PDSCH所属捆绑中还未接收到的PDSCH数目。
在本发明实施例中,由于HARQ-ACK捆绑索引字段可以以倒数的方式说明捆绑在当前传输周期中的位置,PDSCH索引字段可以以倒数的方式说明传输的PDSCH在所属捆绑中的位置,能够便于UE准确地确定当前传输周期中接收到的每个PDSCH在所属捆绑中的位置以及该PDSCH所属捆绑在当前传输周期中的位置,进一步提高了传输数据的可靠性。
可选地,所述基于所述MPDCCH的DCI中包括的第一字段,判断当前是否已打开HARQ-ACK捆绑功能之后,还包括:
当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在预留字段。
在本发明实施例中,当基站不打开HARQ-ACK捆绑功能时,DCI不存在第二字段但存在预留字段,从而确保在不打开HARQ-ACK捆绑功能时,UE不需要基于第二字段所指示的HARQ-ACK捆绑与基站传输数据,进一步提高了传输数据的可靠性。
需要说明的是,当不打开HARQ-ACK捆绑功能时,在一个传输周期中,UE可以分别 将接收到的每个PDSCH的校验结果反馈给基站。
可选地,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
在本发明实施中,第二字段还可以包括奇偶性字段,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数,减少了UE在确定某一捆绑中所有PDSCH出现漏掉某一PDSCH的几率,从而提高了UE确定该捆绑的反馈结果的准确率,提高了传输数据的可靠性。
可选地,所述确定所述PDSCH所属捆绑的反馈结果为ACK还是NACK,包括:
确定所述PDSCH所属捆绑中接收到的所有PDSCH的CRC校验结果;
确定所述所有PDSCH的数目的奇偶性,以及确定所述奇偶性字段所指示的奇偶性;
当所述所有PDSCH的CRC均校验成功且所述所有PDSCH的数目的奇偶性与所述奇偶性字段所指示的奇偶性相同时,确定所述PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为NACK。
在本发明实施例中,对于每个捆绑,UE可以在接收到的属于该捆绑的所有PDSCH均CRC校验成功,且接收到的属于该捆绑的所有PDSCH的数目的奇偶性与奇偶性字段所指示的该捆绑包括的PDSCH的数目的奇偶性一致时,确定该捆绑的反馈结果为成功,减少了漏掉该捆绑某个PDSCH的几率,因此,提高了确定该捆绑的反馈结果的准确率,提高了传输数据的可靠性。
可选地,所述基于所述MPDCCH的DCI中包括的第一字段,判断当前是否已打开HARQ-ACK捆绑功能之后,还包括:
当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在所述第三字段。
在本发明实施例中,当基站不打开HARQ-ACK捆绑功能时,DCI不存在第二字段但存在第三字段,从而确保在不打开HARQ-ACK捆绑功能时,UE不需要基于第二字段所指示的HARQ-ACK捆绑与基站传输数据,进一步提高了传输数据的可靠性。
需要说明的是,当不打开HARQ-ACK捆绑功能时,在一个传输周期中,UE可以分别将接收到的每个PDSCH的校验结果反馈给基站。
可选地,当所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段时,所述第一字段和所述第二字段的大小之和与所述第三字段的大小相同,当所述第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段时,所述第二字段的大小与所述第三字段的大小相同。
在本发明实施例中,当第一字段和第二字段的大小之和与第三字段的大小相同时,确保了该基站在打开该HARQ-ACK捆绑功能时向该UE发送的DCI的有效荷载,与该基站不打开该HARQ-ACK捆绑功能时向该UE发送的DCI的有效荷载相同,从而避免该UE需要从MPDCCH中检测两种有效荷载的DCI而带来的检测次数增加或者传输MPDCCH灵活性降低等问题,也即是,在不降低传输数据的灵活性的基础上,提高了在提高传输数据的效率和可靠性。当第二字段的大小与第三字段的大小相同时,第二字段包括的奇偶性字段能够提高传输数据的可靠性。
可选地,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述第二字段中的奇偶性字段的大小为1比特。
在本发明实施例中,由于第三字段通常通过2比特指示MPDCCH重复次数,通过2比特指示PDSCH重复次数,通过1比特指示跳频标识,因此,本发明实施例能够进一步确保确保第二字段的大小与第三字段的大小相同,以提高传输数据的可靠性,或者确保第二字段与第一字段的大小之和与第二字段相同,以在不降低传输数据的灵活性的基础上,提高了在提高传输数据的效率和可靠性。
需要说明的是,由于该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小可以为2比特,而一个传输周期中,基站最多可以向UE传输10个PDSCH,因此,一个传输周期中最多可以包括3个捆绑,且每个捆绑中最多可以包括4个PDSCH,且该3个捆绑中华包括的PDSCH的总数小于或等于10。
第二方面,提供了一种基于半双工模式的数据传输方法,所述方法包括:
接收基站发送的机器类通信物理下行控制信道MPDCCH,所述MPDCCH的下行控制信息DCI中包括第一字段和第二字段,所述第二字段用于指示混合自动重传请求确认应答HARQ-ACK捆绑信息;
其中,所述第二字段包括HARQ-ACK捆绑索引字段和物理下行共享信道PDSCH索引字段,所述HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,所述PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述HARQ-ACK捆绑索引字段和所述PDSCH索引字段所指示的信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。
其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。
另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
最后,第二字段包括说明捆绑在当前传输周期中的位置的HARQ-ACK捆绑索引字段和说明传输的PDSCH在所属捆绑中的位置的PDSCH索引字段。因此,UE在接收到PDSCH时,能够根据PDSCH对应的DCI中存在的第二字段,准确地确定一个传输周期中每个捆绑中的每个PDSCH,确保了在将一个传输周期中的所有PDSCH分别包括在多个捆绑中时,UE也能够准确地向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收 并校验成功,进一步提高了传输数据的可靠性。进一步地,由于HARQ-ACK捆绑索引字段可以以倒数的方式说明捆绑在当前传输周期中的位置,PDSCH索引字段可以以倒数的方式说明传输的PDSCH在所属捆绑中的位置,能够便于UE准确地确定当前传输周期中接收到的每个PDSCH在所属捆绑中的位置以及该PDSCH所属捆绑在当前传输周期中的位置,进一步提高了传输数据的可靠性。
需要说明的是,基站可以在向UE发送MPDCCH之前,向UE通知MPDCCH的DCI的有效荷载,比如,一种可能的实现方式为,基站可以在检测到UE接入其所覆盖的小区时,向UE发送RRC信令,并在该RRC信令中携带DCI的有效荷载。
可选地,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
在本发明实施例中,第二字段还可以包括奇偶性字段,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数,减少了UE在确定某一捆绑中所有PDSCH出现漏掉某一PDSCH的几率,从而提高了UE确定该捆绑的反馈结果的准确率,提高了传输数据的可靠性。
可选地,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述,第二字段中的奇偶性字段的大小为1比特。
在本发明实施例中,第一字段的大小为1比特,能够确保第一字段能够指示是否打开HARQ-ACK捆绑功能,奇偶性字段的大小为1比特,能够确保奇偶性字段能够指示奇数或偶数,HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,而一个传输周期中,基站最多可以向UE传输10个PDSCH,因此,一个传输周期中最多可以包括3个捆绑,且每个捆绑中最多可以包括4个PDSCH,且该3个捆绑中华包括的PDSCH的总数小于或等于10。也即是,本发明实施例能够确保DCI能够确定地指示UE与基站之间的数据传输,在提高传输数据的效率的同时提高传输数据的可靠性。
第三方面,提供了一种基于半双工模式的数据传输装置,所述基于半双工模式的数据传输装置具有实现上述第一方面中基于半双工模式的数据传输方法行为的功能。该存储设备的操作装置包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的基于半双工模式的数据传输方法。
第四方面,提供了一种基于半双工模式的数据传输装置,所述基于半双工模式的数据传输装置具有实现上述第二方面中基于半双工模式的数据传输方法行为的功能。该存储设备的操作装置包括至少一个模块,该至少一个模块用于实现上述第二方面所提供的基于半双工模式的数据传输方法。
第五方面,提供了一种基于半双工模式的数据传输装置,所述基于半双工模式的数据传输装置的结构中包括处理器和存储器,所述存储器用于存储支持基于半双工模式的数据传输装置执行上述第一方面所提供的基于半双工模式的数据传输方法的程序,以及存储用于实现上述第一方面所提供的基于半双工模式的数据传输方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第六方面,提供了一种基于半双工模式的数据传输装置,所述基于半双工模式的数据传输装置的结构中包括处理器和存储器,所述存储器用于存储支持基于半双工模式的数据传输装置执行上述第二方面所提供的基于半双工模式的数据传输方法的程序,以及存储用于实现上述第二方面所提供的基于半双工模式的数据传输方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第七方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第三方面至第六方面任一方面所提供的基于半双工模式的数据传输装置所用的计算机软件指令,或存储用于执行上述第三方面至第六方面任一方面为基于半双工模式的数据传输所设计的程序。
上述本发明实施例第三方面和第四方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,且第五方面和第六方面所获得的技术效果与第二方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
本发明实施例提供的技术方案的有益效果是:在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
附图说明
图1是现技术提供的一种基站向UE传输数据的示意图。
图2是现技术提供的另一种基站向UE传输数据的示意图。
图3是现技术提供的一种基于半双工模式的数据传输系统架构图。
图4是本发明实施例提供的一种UE的结构示意图。
图5A是本发明实施例提供的一种基于半双工模式的数据传输方法的流程图。
图5B是本发明实施例提供的一种基站向UE传输数据的示意图。
图6A是本发明实施例提供的另一种基于半双工模式的数据传输方法的流程图。
图6B是本发明实施例提供的另一种基站向UE传输数据的示意图。
图7是本发明实施例提供的又一种基于半双工模式的数据传输方法的流程图。
图8是本发明实施例提供的一种基于半双工模式的数据传输装置框图。
图9是本发明实施例提供的另一种基于半双工模式的数据传输装置框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图3是根据一示例性实施例示出的一种基于半双工模式的数据传输系统架构图,参照图3,该系统包括基站01和多个UE02(图中仅示出6个UE),基站01与UE02之间可以通过网络连接。
其中,基站01可以是网络侧用来发送或接收信号的实体,UE02可以是任意能够用于机器类通信的设备,比如UE02可以是手机等。当然,UE02也可以是非机器类通信的设备,本发明实施例对UE是否为机器类通信设备不做具体限定。
基站01可以在检测到UE02接入其所覆盖的小区时,通过RRC信令向UE02发送通知消息,该通知消息用于说明基站01支持HARQ-ACK捆绑功能。UE02可以检测与基站01之间的通信质量,并向基站01发送通信质量信息。基站01在接收到该通信质量信息时,可以判断当前与UE02之间的通信质量较好或较差,当确定当前与UE02之间的通信质量较好时,可以通过HARQ-ACK捆绑功能向UE02传输数据,当确定当前与UE02之间的通信质量较差时,可以不通过HARQ-ACK捆绑功能向UE02传输数据。
图4是本发明实施例提供的一种UE的结构示意图,该UE可以用于图3所示基于半双工模式的数据传输系统中。参见图4,该UE可以包括处理器,处理器可以包括用于UE设备的音频/视频和逻辑功能的电路。例如,处理器可以包括数字信号处理器设备、微处理器设备、模数转换器、数模转换器等等。可以根据这些设备各自的能力而在这些设备之间分配UE的控制和信号处理功能。处理器还可以包括内部语音编码器(Voice encoder,VC)、内部数据调制解调器(Data Modem,DM)等等。此外,处理器可以包括操作一个或多个软件程序的功能,所述软件程序可以存储在存储器中。通常,处理器和所存储的软件指令可以被配置为使UE执行动作。
UE还可以包括用户接口,例如可以包括耳机或扬声器、麦克风、输出装置(例如显示器)、输入装置等等,其可操作地耦合到处理器。在这一点上,处理器可以包括用户接口电路,其被配置为至少控制所述用户接口的一个或多个元件(诸如扬声器、麦克风、显示器等等)的一些功能。处理器和/或包括处理器的用户接口电路可以被配置为通过存储在处理器可访问的存储器中的计算机程序指令(例如软件和/或固件)来控制用户接口的一个或多个元件的一个或多个功能。尽管并未示出,但是UE可以包括用于向与UE相关的各种电路供电的电池,所述电路例如为提供机械振动来作为可检测输出的电路。输入装置可以包括允许所述装置接收数据的设备,诸如小键盘、触摸显示器、游戏杆和/或至少一个其他输入设备等。
UE还可以包括用于共享和/或获得数据的一个或多个连接电路模块。例如,UE可以包括短距射频(Radio Freqency,RF)收发机和/或检测器,从而可以根据RF技术与电子设备共享和/或从电子设备获得数据。UE可以包括其他短距收发机,诸如例如红外线(Infrared Radiation,IR)收发机、使用收发机、无线通用串行总线(Universal Serial Bus,USB)收发机等等。蓝牙收发机能够根据低功耗或超低功耗蓝牙技术操作。在这一点上,UE更具体 地是短距收发机能够向和/或从在所述装置附近(诸如在10米内)的电子设备发送和/或接收数据。尽管并未示出,UE能够根据各种无线联网技术来向和/或从电子设备发送和/或接收数据,这些技术包括:无线保真(Wireless-Fidelity,Wi-Fi)、Wi-Fi低功耗、无线局域网(Wireless Local Area Network,WLAN)技术,诸如电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11技术、IEEE 802.15技术、IEEE 802.16技术等等。
UE可以包括可存储与移动用户相关的信息元素的存储器,诸如用户身份模块(Subscriber Identification Module,SIM)。除了SIM,所述UE还可以包括其他可移除和/或固定存储器。UE可以包括易失性存储器和/或非易失性存储器。例如,易失性存储器可以包括随机存取存储器(Ramdom Access Memory,RAM),其包括动态RAM和/或静态RAM、芯片上和/或芯片外高速缓冲存储器等等。非易失性存储器可以是嵌入式的和/或可移除的,其可以包括例如只读存储器、闪存存储器、磁性存储设备,例如硬盘、软盘驱动器、磁带等等、光盘驱动器和/或介质、非易失性随机存取存储器(Non-Volatile RAM,NVRAM)等等。类似于易失性存储器,非易失性存储器可以包括用于数据的暂时存储的高速缓冲区域。易失性和/或非易失性存储器的至少一部分可以嵌入到处理器中。存储器可以存储一个或多个软件程序、指令、信息块、数据等等,其可以由所述UE用来执行UE的功能。例如,存储器可以包括能够唯一标识UE的标识符,诸如国际移动设备身份码(International Mobile Equipment Identity,IMEI)。
其中,存储器可以用于存储执行本申请所提供方案的程序代码,处理器可以用于执行存储器中存储的程序代码。UE可以通过处理器以及存储器中的程序代码,来实现下文图5A-图7任一实施例所提供的传输数据的方法。
图5A是根据一示例性实施例示出的一种基于半双工模式的数据传输方法的流程图,参照图5A,该方法用于基站与UE的交互中,包括以下步骤。
步骤501:基站通过RRC信令向UE发送通知消息,该通知消息用于说明该基站支持HARQ-ACK捆绑功能。
为了确保该基站能够通过该HARQ-ACK捆绑功能向该UE传输数据,且该UE能够成功地接收该基站通过该HARQ-ACK捆绑功能传输的数据,该基站需要通知该UE该基站能够支持该HARQ-ACK捆绑功能。
其中,基站可以在检测到UE接入该基站所覆盖的小区时,向该UE发送RRC信令以建立RRC连接,并在该RRC信令中携带该通知消息。当然,在实际应用中,该基站也可以在其它时机向该UE发送该通知消息,比如,一种可能的实现方式为,在该UE与该基站处于RRC连接的过程中,即该UE处于该基站所覆盖的小区的过程中,该基站也可以向该基站发送RRC信令以重置该RRC连接,且该RRC信令中携带该通知消息。
需要说明的是,该RRC信令中还可以携带其它信息,比如,MPDCCH包括的DCI的有效荷载。
步骤502:该基站基于当前与该UE之间的通信质量,确定是否打开该HARQ-ACK捆绑功能。如果是则执行步骤503,如果否则执行步骤504。
由于网络波动或者其它原因,在不同时刻,该基站与UE之间的通信质量可能也是不同 时,而该基站通常可以在通信质量较好的情况下,通过该HARQ-ACK捆绑功能向UE传输数据,因此该基站可以确定是否打开该HARQ-ACK捆绑功能。
其中,该UE可以检测与该基站之间的通信质量,向该基站发送通信质量信息。当该基站接收到该通信质量信息时,判断该通信质量信息是否大于或等于通信质量阈值,如果该通信质量信息大于或等于通信质量阈值,说明当前与该UE之间的通信质量较好,确定打开该HARQ-ACK捆绑功能。如果该通信质量信息小于该通信质量阈值时,说明当前与该UE之间的通信质量较差,确定不打开该HARQ-ACK捆绑功能。
需要说明的是,该通信质量信息的表现形式与该通信质量阈值对应,比如,该通信质量信息可以是一个百分数,对应的,该通信质量阈值也可以是一个百分数。当然,在实际应用中,该通信质量信息还可以是其它形式的信息,该通信质量阈值也可以是其它形式的与该通信质量信息对应的阈值。
还需要说明的是,该通信质量阈值可以由基站在判断该通信质量信息是否大于或等于通信质量阈值之前确定,比如一种可能的实现方式为,该通信质量阈值可以由该基站接收相关技术人员输入的数值得到。
另外,在实际应用中,也可以由基站检测当前与该UE之间的通信质量,从而直接得到该通信质量信息。
步骤503:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH,该DCI存在第一字段和第二字段,且该DCI不存在第三字段,第一字段用于指示当前打开该HARQ-ACK捆绑功能,第二字段用于指示HARQ-ACK捆绑信息,第三字段用于指示MPDCCH重复次数、PDSCH重复次数和跳频标识。
由于该基站已经确定打开该HARQ-ACK捆绑功能,即通过该HARQ-ACK捆绑功能向该UE传输数据,因此,为了确保该UE能够准确地接收该基站传输的数据,该基站可以通过该MPDCCH的DCI包括的第一字段指示当前已打开该HARQ-ACK捆绑功能,并通过该DCI存在的第二字段指示HARQ-ACK捆绑信息,且由于当前该基站与该UE之间的通信质量较好,该基站向该UE发送的MPDCCH和PDSCH都不需要重复来增强覆盖,PDSCH也就不需要跳频,所以,该DCI可以不存在用于指示MPDCCH重复次数、PDSCH重复次数和跳频标识等信息的第三字段。
其中,由于当前该基站与该UE之间的通信质量较好,因此,在一个传输周期中,该基站可以向该UE连续发送多个MPDCCH,从而向该UE连续发送多个PDSCH,该多个PDSCH属于多个捆绑,且不同的PDSCH分别属于不同的HARQ进程。另外,每个MPDCCH或每个PDSCH均可以占用一个子帧,每个MPDCCH中包括一个DCI,用于指示该UE接收与该DCI对应的PDSCH,每个PDSCH中可以包括一个TB。且该基站可以发送该MPDCCH之后间隔一个子帧,再发送与该MPDCCH的DCI对应的PDSCH,也即是,发送该MPDCCH的子帧和发送与该MPDCCH的DCI对应的PDSCH的子帧之间间隔一个子帧。
需要说明的是,一个传输周期包括下行传输时间段和上行传输时间段,该下行传输时间段用于该基站向该UE发送该多个MPDCCH和该多个PDSCH,该上行传输时间段用于该UE向该基站发送对该多个PDSCH的反馈结果。
还需要说明的是,第一字段可以通过0指示打开该HARQ-ACK捆绑功能,并通过1指示不打开该HARQ-ACK捆绑功能。当然,也可以通过0指示不打开该HARQ-ACK捆绑 功能,并通过1指示打开该HARQ-ACK捆绑功能。
进一步地,为了确保该基站在打开该HARQ-ACK捆绑功能时向该UE发送的DCI的有效荷载,与该基站不打开该HARQ-ACK捆绑功能时向该UE发送的DCI的有效荷载相同,从而避免该UE需要从MPDCCH中检测两种有效荷载的DCI而带来的检测次数增加或者传输MPDCCH灵活性降低等问题,即在提高传输数据效率和可靠性的基础上,确保传输数据的灵活性,第一字段和第二字段的大小之和与第三字段的大小相同。
其中,第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,该HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,该PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
需要说明的是,由于第三字段通常需要通过2比特指示MPDCCH重复次数,通过2比特指示PDSCH重复次数,通过1比特指示跳频标识,即第三字段的大小通常为5比特,因此,该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小可以为2比特,且第一字段的大小为1比特,从而确保第一字段与第二字段的大小之和与第三字段的大小相同,均为5比特。
还需要说明的是,由于该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小可以为2比特,而一个传输周期中,基站最多可以向UE传输10个PDSCH,因此,一个传输周期中最多可以包括3个捆绑,且每个捆绑中最多可以包括4个PDSCH,且该3个捆绑中华包括的PDSCH的总数小于或等于10。
例如,当该DCI存在第一字段和第二字段,且不存在第三字段时,该DCI可以如下表1所示。其中,“字段”用于说明该DCI所包括的字段种类,“比特数”用于说明每个字段的大小,“描述”用于说明每个字段所指示的数值。以第一字段为例,由表1可知,第一字段的比特数为1,说明第一字段的大小为1比特,第一字段的描述为1,说明第一字段指示的为打开该HARQ-ACK捆绑功能。
表1
Figure PCTCN2017072681-appb-000001
需要说明的是,本发明实施例仅以上述表1为例对DCI进行说明,上述表1并不对本发明实施例构成限定。
进一步地,为了便于UE在接收到该PDSCH时,确定该PDSCH之后是否还有其它PDSCH需要接收,也即是,判断该PDSCH是否为所述捆绑中的最后一个PDSCH,以及该PDSCH所属的捆绑是否为当前传输周期中的最后一个捆绑,提高该UE接收数据的可靠性,从而提高传输数据的可靠性,该HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,该PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置。
其中,可以通过该HARQ-ACK捆绑索引字段指示预设数值,从而将与该HARQ-ACK 捆绑索引字段所在的DCI对应的PDSCH所在捆绑指示为当前传输周期中的最后一个捆绑,通过该PDSCH索引字段指示该预设数值,从而将与该PDSCH索引字段所在的DCI对应的PDSCH指示为该PDSCH所属捆绑中的最后一个PDSCH。
需要说明的是,该预设数值可以是0或1,且该预设数值可以由该基站在向该UE发送MPDCCH之前确定,比如,一种可能的实现策略为,该预设数值可以由基站接收相关技术人数人员输入的数值得到。当然,在实际应用中,该预设数值还可以由该基站通过其它方式确定的其它数值。
例如,根据该基站在一个传输周期中向UE发送的PDSCH的数目的不同,该基站向该UE发送PDSCH的方式可以如下表2所示。其中,以一个传输周期中向UE发送的10个PDSCH为例,捆绑数目以及捆绑包括的PDSCH数目{3,3,4}表示,该10个PDSCH分别属于两个捆绑,且每个捆绑中包括3个或4个PDSCH;捆绑位置2,1,0表示,第一个捆绑的位置为2,第二个捆绑的位置为1,第三个捆绑的位置为0;PDSCH位置{[2,1,0],[2,1,0],[3,2,1,0]}表示,第一个捆绑中3个PDSCH的位置分别为2、1、0,第二个捆绑中3个PDSCH的位置分别为2、1、0,第三个捆绑中4个PDSCH的位置分别为3、2、1、0。且基站向该UE发送该10个PDSCH时,每个PDSCH对应的DCI包括的HARQ-ACK捆绑索引字段和PDSCH索引字段所指示的数值可以如表3所示。
表2
Figure PCTCN2017072681-appb-000002
表3
Figure PCTCN2017072681-appb-000003
需要说明的是,本发明实施例仅以上述表2为例对该基站向该UE发送PDSCH的方式进行说明,以上述表3为例对基站向该UE发送该10个PDSCH时,每个PDSCH对应的DCI包括的HARQ-ACK捆绑索引字段和PDSCH索引字段所指示的数值进行说明,上述表2和表3并不对本发明实施例构成限定。
步骤504:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH,该DCI存在第一字段和第一预留字段,但不存在第二字段或第三字段,第一字段用于指示当前不打开该HARQ-ACK捆绑功能。
由于确定不打开该HARQ-ACK捆绑功能,因此,可以通过第一字段指示当前不打开该HARQ-ACK捆绑功能,且由于不需要指示HARQ-ACK捆绑信息,所以可以不存在第二字段。
其中,该第一预留字段的大小为4比特,且第一字段与第一预留字段的大小之和与第三字段的大小相同。
在上述步骤503或504中,该基站已经将该MPDCCH以及与该MPDCCH的DCI对应的PDSCH发送给了该UE,并通过该DCI存在的第一字段指示了是否打开该该HARQ-ACK捆绑功能,因此,在接下来的步骤505至507中,该UE可以接收该MPDCCH,并基于该DCI接收与该MPDCCH的DCI对应的PDSCH。
步骤505:当该UE接收到该基站发送的该MPDCCH时,基于该MPDCCH的DCI中存在的第一字段,判断当前是否打开HARQ-ACK捆绑功能,当当前已打开该HARQ-ACK捆绑功能时,执行步骤506,当当前未打开该HARQ-ACK捆绑功能时,执行步骤507。
由于该MPDCCH的DCI中存在第一字段,且第一字段可以用于指示当前是否打开HARQ-ACK捆绑功能,因此,该UE可以在根据该DCI中的第一字段来判断当前是否打开HARQ-ACK捆绑功能。
例如,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是1,则确定当前通过该HARQ-ACK捆绑功能传输数据,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是0,则确定当前不通过该HARQ-ACK捆绑功能传输数据。
步骤506:该UE确定该DCI存在第二字段但不存在第三字段,在接收到该基站发送的与该DCI对应的PDSCH时,基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
由于在一个传输周期中,该基站可能会向该UE传输多个PDSCH,该UE通常需要在上行时间到达时向基站发送每个PDSCH的校验结果,从而向该基站说明该多个PDSCH是否均以接收成功,这会导致传输数据的效率降低,因此,为了提高传输数据的效率,当该UE确定DCI中存在第一字段和第二字段,可以基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
需要说明的是,该PDSCH可以属于当前传输周期中的任一捆绑。
其中,为了提高UE确定上行传输时间的准确性,进而确保该UE能够准确地向基站发送反馈结果,提高传输数据的可靠性,该UE在接收该PDSCH时,可以基于该HARQ-ACK捆绑索引字段判断该PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑,当该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于该PDSCH索引字段确定该PDSCH所属捆绑中还未接收到的PDSCH数目,基于该PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在该上行传输时间到达时,确定该PDSCH所属捆绑的反馈结果,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给该基站。
需要说明的是,当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,该UE可以确定该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑。当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值不为预设数值时,该UE可以确定该PDSCH所属的捆绑不为当前传输周期内的最后一个捆绑。
还需要说明的是,该UE可以确定该PDSCH索引字段传输的信息所指示的倒数数值与该预设数值之间的差值,并将该差值确定为该PDSCH所属捆绑中还未接收到的PDSCH数目。
例如,该PDSCH索引字段传输的信息所指示的倒数数值为2,预设数值为0,倒数数值与预设数值之间的差值为2,因此,该UE确定该PDSCH所属捆绑中还未接收到的PDSCH数目为2。
还需要说明的是,由于传输每个PDSCH均占用1个子帧,且上行传输与下行传输之间通常存在一个保护帧,每个子帧用时为1毫秒,因此,当接收到该PDSCH的时刻为t1,该PDSCH所属捆绑中还未接收到的PDSCH数目为n,即该上行传输时间t2=t1+n+1,即以接收到该PDSCH的时刻起,经过比该PDSCH所属捆绑中还未接收到的PDSCH数目大于1的毫秒数的时刻,即为该上行时间到达的时刻。
其中,该UE可以确定该PDSCH所属捆绑中接收到的所有PDSCH的CRC(Cyclic Redundancy Check,循环冗余校验)校验结果,当该所有PDSCH的CRC均校验成功时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为否定应答NACK。
例如,该UE确定PDSCH所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,即均校验成功,即确定捆绑2的反馈结果为ACK。如果该UE对PDSCH1的反馈结果为NACK,即校验失败,对PDSCH2和PDSCH3的反馈结果均为ACK,则确定对捆绑2的反馈结果是NACK。
需要说明的是,该UE可以通过PUCCH或PUSCH将每个捆绑的的反馈结果发送给基站,且发送每个捆绑的反馈结果的子帧,与接收该捆绑中最后一个PDSCH的子帧之间可以 间隔至少3个子帧。
例如,在一个传输周期中,该基站通过HARQ-ACK捆绑功能向该UE发送了10个PDSCH,则该基站与该UE之间传输数据的过程可以如图5B所示。其中,该基站先向该UE连续发送10个MPDCCH,且每个MPDCCH占用一个子帧,对于每个MPDCCH,在发送该MPDCC所在的子帧间隔1个子帧后,向该UE发送与该MPDCCH的DCI对应的PDSCH,从而向该UE发送10个PDSCH,其中,PDSCH1、PDSCH2和PDSCH3属于捆绑2,PDSCH4、PDSCH5和PDSCH6属于捆绑1,PDSCH7、PDSCH8、PDSCH9和PDSCH10属于捆绑0。该UE在与接收该10个PDSCH中最后的PDSCH的子帧间隔一个保护帧之后开始,通过PUCCH向该基站发送每个捆绑的反馈结果,且发送每个捆绑的反馈结果的子帧,与接收该捆绑中最后一个PDSCH的子帧之间可以间隔至少3个子帧。
步骤507:该UE确定该DCI中不存在第二字段,但存在第一预留字段。在接收到该基站发送的与该DCI对应的PDSCH时,不基于第二字段指示的HARQ-ACK捆绑信息与该基站之间进行数据传输。
由于当前没有打开该HARQ-ACK捆绑功能,因此,该DCI中不存在第二字段,而是存在与第二字段大小相同的第一预留字段,该UE可以不基于HARQ-ACK捆绑信息与该基站之间进行数据传输。此时,该UE需要将接收到的每个PDSCH的校验结果反馈给该基站。
需要说明的是,当该DCI中存在第一字段和第一预留字段时,该DCI中也不存在第三字段。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中不存在第三字段,而是存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
另外,第二字段包括说明捆绑在当前传输周期中的位置的HARQ-ACK捆绑索引字段和说明传输的PDSCH在所属捆绑中的位置的PDSCH索引字段。因此,UE在接收到PDSCH时,能够根据PDSCH对应的DCI中存在的第二字段,准确地确定一个传输周期中每个捆绑中的每个PDSCH,确保了在将一个传输周期中的所有PDSCH分别包括在多个捆绑中时,UE也能够准确地向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,进一步提高了传输数据的可靠性。进一步地,由于HARQ-ACK捆绑索引字段可以以倒数的方式说明捆绑在当前传输周期中的位置,PDSCH索引字段可以以倒数的方式说明传输的PDSCH在所属捆绑中的位置,能够便于UE准确地确定当前传输周期中接收到的每个PDSCH在所属捆绑中的位置以及该PDSCH所属捆绑在当前传输周期中的位置,进一步提高了传输数据的可靠性。
最后,当基站不打开HARQ-ACK捆绑功能时,DCI不存在第二字段但存在预留字段,从而确保在不打开HARQ-ACK捆绑功能时,UE不需要基于第二字段所指示的HARQ-ACK捆绑与基站传输数据,进一步提高了传输数据的可靠性。
图6A是根据一示例性实施例示出的一种基于半双工模式的数据传输方法的流程图,参照图6A,该方法用于基站与UE的交互中,包括以下步骤。
步骤601:基站通过RRC信令向UE发送通知消息,该通知消息用于说明该基站支持HARQ-ACK捆绑功能。
为了确保该基站能够通过该HARQ-ACK捆绑功能向该UE传输数据,且该UE能够成功地接收该基站通过该HARQ-ACK捆绑功能传输的数据,该基站需要通知该UE该基站能够支持该HARQ-ACK捆绑功能。
其中,基站可以在检测到UE接入该基站所覆盖的小区时,向该UE发送RRC信令以建立RRC连接,并在该RRC信令中携带该通知消息。当然,在实际应用中,该基站也可以在其它时机向该UE发送该通知消息,比如,一种可能的实现方式为,在该UE与该基站处于RRC连接的过程中,即该UE处于该基站所覆盖的小区的过程中,该基站也可以向该基站发送RRC信令以重置该RRC连接,且该RRC信令中携带该通知消息。
需要说明的是,该RRC信令中还可以携带其它信息,比如,MPDCCH包括的DCI的有效荷载。
步骤602:该基站基于当前与该UE之间的通信质量,确定是否打开该HARQ-ACK捆绑功能。如果是则执行步骤603,如果否则执行步骤604。
由于网络波动或者其它原因,在不同时刻,该基站与UE之间的通信质量可能也是不同时,而该基站通常可以在通信质量较好的情况下,通过该HARQ-ACK捆绑功能向UE传输数据,因此该基站可以确定是否打开该HARQ-ACK捆绑功能。
其中,该UE可以检测与该基站之间的通信质量,向该基站发送通信质量信息。当该基站接收到该通信质量信息时,判断该通信质量信息是否大于或等于通信质量阈值,如果该通信质量信息大于或等于通信质量阈值,说明当前与该UE之间的通信质量较好,确定打开该HARQ-ACK捆绑功能。如果该通信质量信息小于该通信质量阈值时,说明当前于该UE之间的通信质量较差,确定不打开该HARQ-ACK捆绑功能。
需要说明的是,该通信质量信息的表现形式与该通信质量阈值对应,比如,该通信质量信息可以是一个百分数,对应的,该通信质量阈值也可以是一个百分数。当然,在实际应用中,该通信质量信息还可以是其它形式的信息,该通信质量阈值也可以是其它形式的与该通信质量信息对应的阈值。
还需要说明的是,该通信质量阈值可以由基站在判断该通信质量信息是否大于或等于通信质量阈值之前确定,比如一种可能的实现方式为,该通信质量阈值可以由该基站接收相关技术人员输入的数值得到。
另外,在实际应用中,也可以由基站检测当前与该UE之间的通信质量,从而直接得到该通信质量信息。
步骤603:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH,该DCI存在第一字段和第二字段,且该DCI不存在第三字段,第一字段用于指示当前打开 该HARQ-ACK捆绑功能,第二字段用于指示HARQ-ACK捆绑信息,第三字段用于指示该MPDCCH重复次数、PDSCH重复次数和跳频标识。
由于该基站已经确定打开该HARQ-ACK捆绑功能,即通过该HARQ-ACK捆绑功能向该UE传输数据,因此,为了确保该UE能够准确地接收该基站传输的数据,该基站可以通过该MPDCCH的DCI存在的第一字段指示当前打开该HARQ-ACK捆绑功能,并通过该DCI存在的第二字段指示HARQ-ACK捆绑信息,且由于当前该基站与该UE之间的通信质量较好,该基站向该UE发送的MPDCCH和PDSCH都不需要重复来增强覆盖,PDSCH信道也就不需要跳频,所以,该DCI可以不存在用于指示MPDCCH重复次数、PDSCH重复次数和跳频标识等信息的第三字段。
其中,由于当前该基站与该UE之间的通信质量较好,因此,在一个传输周期中,该基站可以向该UE连续发送多个MPDCCH,从而向该UE连续发送多个PDSCH,该多个PDSCH属于至少一个捆绑,且不同的PDSCH分别属于不同的HARQ进程。另外,每个MPDCCH或每个PDSCH均可以占用一个子帧,每个MPDCCH中包括一个DCI,用于指示该UE接收与该DCI对应的PDSCH,每个PDSCH中可以包括一个TB。且该基站可以发送该MPDCCH之后间隔一个子帧,再发送与该MPDCCH的DCI对应的PDSCH,也即是,发送该MPDCCH的子帧和发送与该MPDCCH的DCI对应的PDSCH的子帧之间间隔一个子帧。
需要说明的是,一个传输周期包括下行传输时间段和上行传输时间段,该下行传输时间段用于该基站向该UE发送该多个MPDCCH和该多个PDSCH,该上行传输时间段用于该UE向该基站发送对该多个PDSCH的反馈结果。
还需要说明的是,第一字段可以通过0指示打开该HARQ-ACK捆绑功能,并通过1指示不打开该HARQ-ACK捆绑功能。当然,也可以通过0指示不打开该HARQ-ACK捆绑功能,并通过1指示打开该HARQ-ACK捆绑功能。
进一步地,该DCI可能包括下述两种可能的实现方式:
第一种可能的实现方式,为了确保第一字段既能够指示打开该HARQ-ACK捆绑功能且该UE基于第二字段所指示的HARQ-ACK捆绑信息接收数据,也能够指示不打开该HARQ-ACK捆绑功能且该UE基于第三字段所指示的信息接收数据,从而提高传输数据的灵活性,第一字段和第二字段的大小之和与第三字段的大小相同,第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和第二预留字段。
其中,该HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,该PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
需要说明的是,通常需要通过2比特指示MPDCCH重复次数,通过2比特指示PDSCH重复次数,通过1比特指示跳频标识,即第三字段的大小通常为5比特,因此,该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小均可以为2比特,第二预留字段的大小可以为1比特,从而确保第二字段的大小与第三字段的大小相同,均为5比特。此时,第一字段与第二字段共的大小为6比特。
还需要说明的是,由于该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小可以为2比特,而一个传输周期中,基站最多可以向UE传输10个PDSCH,因此,一个传输周期中最多可以包括3个捆绑,且每个捆绑中最多可以包括4个PDSCH,且该3个捆绑中华包括的PDSCH的总数小于或等于10。
进一步地,为了便于UE在接收到该PDSCH时,确定该PDSCH之后是否还有其它PDSCH需要接收,也即是,判断该PDSCH是否为所述捆绑中的最后一个PDSCH,以及该PDSCH所属的捆绑是否为当前传输周期中的最后一个捆绑,提高该UE接收数据的可靠性,从而提高传输数据的可靠性,该HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,该PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置。
其中,可以通过该HARQ-ACK捆绑索引字段指示预设数值,从而将与该HARQ-ACK捆绑索引字段所在的DCI对应的PDSCH所在捆绑指示为当前传输周期中的最后一个捆绑,通过该PDSCH索引字段指示该预设数值,从而将与该PDSCH索引字段所在的DCI对应的PDSCH指示为该PDSCH所属捆绑中的最后一个PDSCH。
需要说明的是,该预设数值可以是0或1,且该预设数值可以由该基站在向该UE发送MPDCCH之前确定,比如,一种可能的实现策略为,该预设数值可以由基站接收相关技术人数人员输入的数值得到。当然,在实际应用中,该预设数值还可以由该基站通过其它方式确定的其它数值。
第二种可能的实现方式,由于捆绑中可能包括一个以上的PDSCH,因此,为了便于该UE进一步确定是否已接收到属于该捆绑的每个PDSCH,提高传输数据的可靠性,第二字段可以包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段,但不包括第二预留字段。
其中,该奇偶性字段的大小为1比特,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
例如,当该DCI存在第一字段和第二字段,且不存在第三字段时,该DCI可以如下表3所示。其中,“字段”用于说明该DCI所包括的字段种类,“比特数”用于说明每个字段的大小,“描述”用于说明每个字段所指示的数值。以第一字段为例,由表3可知,第一字段的比特数为1,说明第一字段的大小为1比特,第一字段的描述为1,说明第一字段指示的为打开该HARQ-ACK捆绑功能。
表3
Figure PCTCN2017072681-appb-000004
需要说明的是,本发明实施例仅以上述表3为例对DCI进行说明,上述表3并不对本发明实施例构成限定。
例如,根据该基站在一个传输周期中向UE发送的PDSCH的数目的不同,该基站向该UE发送PDSCH的方式可以如下表2所示。其中,以一个传输周期中向UE发送的10个PDSCH为例,捆绑数目以及捆绑包括的PDSCH数目{3,3,4}表示,该6个PDSCH分别属于两个捆绑,且每个捆绑中包括3个或4个PDSCH;捆绑位置2,1,0表示,第一个捆 绑的位置为2,第二个捆绑的位置为1,第三个捆绑的位置为0;PDSCH位置{[2,1,0],[2,1,0],[3,2,1,0]}表示,第一个捆绑中3个PDSCH的位置分别为2、1、0,第二个捆绑中3个PDSCH的位置分别为2、1、0,第三个捆绑中3个PDSCH的位置分别为3、2、1、0;捆绑包括的PDSCH数目的奇偶性1,1,0表示,第一捆绑中包括的PDSCH的数目为奇数,第二个捆绑中包括的PDSCH的数目为奇数,第三个捆绑中包括的PDSCH的数目为偶数。且基站向该UE发送该10个PDSCH时,每个PDSCH对应的DCI包括的HARQ-ACK捆绑索引字段和PDSCH索引字段所指示的数值可以如表3所示。
表4
Figure PCTCN2017072681-appb-000005
表5
Figure PCTCN2017072681-appb-000006
需要说明的是,本发明实施例仅以上述表4为例对该基站向该UE发送PDSCH的方式进行说明,以上述表5为例对基站向该UE发送该10个PDSCH时,每个PDSCH对应的DCI包括的HARQ-ACK捆绑索引字段和PDSCH索引字段所指示的数值进行说明,上述表4和表5并不对本发明实施例构成限定。
步骤604:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH,该DCI存在第一字段和第三字段,但不存在第二字段,第一字段用于指示当前不打开该HARQ-ACK捆绑功能。
由于确定不打开该HARQ-ACK捆绑功能,因此,可以通过第一字段指示当前不打开该HARQ-ACK捆绑功能,且由于不需要指示HARQ-ACK捆绑信息,所以可以不存在第二字段,但存在用于指示该DCI存在MPDCCH重复次数、PDSCH重复次数和跳频标识等信息的第三字段。
在上述步骤603或604中,该基站已经将该MPDCCH以及与该MPDCCH的DCI对应的PDSCH发送给了该UE,并通过该DCI存在的第一字段指示了是否打开该该HARQ-ACK捆绑功能,因此,在接下来的步骤605至607中,该UE可以接收该MPDCCH,并基于该DCI接收与该MPDCCH的DCI对应的PDSCH。
步骤605:当该UE接收到该基站发送的该MPDCCH时,基于该MPDCCH的DCI中存在的第一字段,判断当前是否打开HARQ-ACK捆绑功能,当当前已打开该HARQ-ACK捆绑功能时,执行步骤606,当当前未打开该HARQ-ACK捆绑功能时,执行步骤607。
由于该MPDCCH的DCI中存在第一字段,且第一字段可以用于指示当前是否打开HARQ-ACK捆绑功能,因此,该UE可以在根据该DCI中的第一字段来判断当前是否打开HARQ-ACK捆绑功能。
例如,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是1,则确定当前通过该HARQ-ACK捆绑功能传输数据,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是0,则确定当前不通过该HARQ-ACK捆绑功能传输数据。
步骤606:该UE确定该DCI存在第二字段但不存在第三字段,在接收到该基站发送的与该DCI对应的PDSCH时,基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送 当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
由于在一个传输周期中,该基站可能会向该UE传输多个PDSCH,该UE通常需要在上行时间到达时向基站发送每个PDSCH的校验结果,从而向该基站说明该多个PDSCH是否均以接收成功,这会导致传输数据的效率降低,因此,为了提高传输数据的效率,当该UE确定DCI中存在第一字段和第二字段,可以基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
需要说明的是,该PDSCH可以属于当前传输周期中的任一捆绑。
其中,为了提高UE确定上行传输时间的准确性,进而确保该UE能够准确地向基站发送反馈结果,提高传输数据的可靠性,该UE在接收该PDSCH时,可以基于该HARQ-ACK捆绑索引字段判断该PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑,当该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于该PDSCH索引字段确定该PDSCH所属捆绑中还未接收到的PDSCH数目,基于该PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在该上行传输时间到达时,确定该PDSCH所属捆绑的反馈结果,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给该基站。
需要说明的是,当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,该UE可以确定该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑。当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值不为预设数值时,该UE可以确定该PDSCH所属的捆绑不为当前传输周期内的最后一个捆绑。
还需要说明的是,该UE可以确定该PDSCH索引字段传输的信息所指示的倒数数值与该预设数值之间的差值,并将该差值确定为该PDSCH所属捆绑中还未接收到的PDSCH数目。
例如,该PDSCH索引字段传输的信息所指示的倒数数值为2,预设数值为0,倒数数值与预设数值之间的差值为2,因此,该UE确定该PDSCH所属捆绑中还未接收到的PDSCH数目为2。
还需要说明的是,由于传输每个PDSCH均占用1个子帧,且上行传输与下行传输之间通常存在一个保护帧,每个子帧用时为1毫秒,因此,当接收到该PDSCH的时刻为t1,该PDSCH所属捆绑中还未接收到的PDSCH数目为n,即该上行传输时间t2=t1+n+1,即以接收到该PDSCH的时刻起,经过比该PDSCH所属捆绑中还未接收到的PDSCH数目大于1的毫秒数的时刻,即为该上行时间到达的时刻。
其中,该UE可以确定该PDSCH所属捆绑中接收到的所有PDSCH的循环冗余校验反馈码CRC校验结果,当该所有PDSCH的CRC均校验成功时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为否定应答NACK。
例如,该UE确定PDSCH所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,即均校验成功,即确定捆绑2的反馈结果为ACK。如果该UE对PDSCH1的反馈结果为NACK,即校验失败,对PDSCH2和PDSCH3的反馈结果均为ACK,则确定对捆绑2的反馈结果是NACK。
需要说明的是,该UE可以通过PUCCH或PUSCH将每个捆绑的的反馈结果发送给基站,且发送每个捆绑的反馈结果的子帧,与接收该捆绑中最后一个PDSCH的子帧之间可以 间隔至少3个子帧。
进一步地,由于第二字段还可以包括奇偶性字段,因此,为了提高该UE确定属于同一捆绑的PDSCH的准确率,进而提高UE确定该捆绑的反馈结果的准确率,提高传输数据的可靠性,该UE可以确定该PDSCH所属捆绑中接收到的所有PDSCH的CRC校验结果,确定该所有PDSCH的数目的奇偶性,以及确定该奇偶性字段所指示的奇偶性,当该所有PDSCH的CRC均校验成功且该所有PDSCH的数目的奇偶性与该奇偶性字段所指示的奇偶性相同时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定该PDSCH所属捆绑的反馈结果为NACK。
例如,该UE确定PDSCH1所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3,共3个PDSCH,数目为奇数。如果该UE对PDSCH1、PDSCH2和PDSCH3的校验结果均为ACK,且PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性也为奇数,则确定捆绑2的反馈结果为ACK。如果该UE对PDSCH1的反馈结果为NACK,对PDSCH2和PDSCH3的反馈结果均为ACK,且PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性为偶数,则说明该UE可能没有接收到捆绑2中的部分PDSCH,确定捆绑2的反馈结果为NACK。
例如,在一个传输周期中,该基站通过HARQ-ACK捆绑功能向该UE发送了10个PDSCH,则该基站与该UE之间传输数据的过程可以如图6B所示。其中,该基站先向该UE连续发送10个MPDCCH,且每个MPDCCH占用一个子帧,对于每个MPDCCH,在发送该MPDCC所在的子帧间隔1个子帧后,向该UE发送与该MPDCCH的DCI对应的PDSCH,从而向该UE发送10个PDSCH,其中,PDSCH1、PDSCH2和PDSCH3属于捆绑2,PDSCH4、PDSCH5和PDSCH6属于捆绑1,PDSCH7、PDSCH8、PDSCH9和PDSCH10属于捆绑0。但第1个和7个MPDCCH发送失败(包括丢失或出错),从而导致PDSCH1和PDSCH7发送失败,UE无法接收。该UE在与接收该10个PDSCH中最后的PDSCH的子帧间隔一个保护帧之后开始,通过PUCCH向该基站发送每个捆绑的反馈结果,且发送每个捆绑的反馈结果的子帧,与接收该捆绑中最后一个PDSCH的子帧之间可以间隔至少3个子帧。对于捆绑2,该UE接收到PDSCH3和PDSCH4,且对PDSCH3和PDSCH4均校验成功,所接收到捆绑2包括的PDSCH的数目为偶数,且该UE从PDSCH3或PDSCH4对应的DCI包括的奇偶性字段确定捆绑2包括的PDSCH的数目为奇数,所以,该UE可以确定捆绑2的反馈结果为NACK。对于捆绑0,该UE接收到PDSCH8、PDSCH9和PDSCH10,且对PDSCH8、PDSCH9和PDSCH10均校验成功,所接收到捆绑0包括的PDSCH的数目为奇数,且该UE从PDSCH8、PDSCH9或PDSCH10对应的DCI包括的奇偶性字段确定捆绑0包括的PDSCH的数目为偶数,所以,该UE可以确定捆绑0的反馈结果为NACK。对于捆绑1,该UE接收到PDSCH4、PDSCH5和PDSCH6,且对PDSCH4、PDSCH5和PDSCH6校验成功,所接收到捆绑1包括的PDSCH的数目为奇数,且该UE从PDSCH4、PDSCH5或PDSCH6对应的DCI包括的奇偶性字段确定捆绑1包括的PDSCH的数目为奇数,所以,该UE可以确定捆绑1的反馈结果为ACK。
进一步地,为了提高数据反馈的可靠性,进而提高传输数据的可靠性,当该所有PDSCH的CRC均反馈成功且该所有PDSCH的数目的奇偶性与该所有PDSCH中任一PDSCH对应的DCI中存在的奇偶性字段所指示的奇偶性相同时(即该所有PDSCH对应的DCI包括的 奇偶性字段所指示的奇偶性一致,且与该所述有所有PDSCH的数目的奇偶性相同时),确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定该PDSCH所属捆绑的反馈结果为NACK。
例如,该UE确定PDSCH1所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3,共3个PDSCH,数目为奇数。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性为偶数,PDSCH2和PDSCH3对应的DCI中存在的奇偶性字段所指示的奇偶性均为奇数,因此,由于捆绑2中所有的PDSCH对应的DCI中存在的奇偶性字段所指示的奇偶性不一致,因此,确定捆绑2的反馈结果是NACK。
步骤607:该UE确定该DCI中不存在第二字段,但存在第三字段。在接收到该基站发送的与该DCI对应的PDSCH时,不基于第二字段指示的HARQ-ACK捆绑信息与该基站之间进行数据传输。
由于当前没有打开该HARQ-ACK捆绑功能,因此,该DCI中不存在第二字段,而是存在与第二字段大小相同的第一预留字段,该UE可以不基于HARQ-ACK捆绑信息与该基站之间进行数据传输,此时,该UE需要将接收到的每个PDSCH的校验结果反馈给该基站。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中不存在第三字段,而是存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
另外,第二字段包括说明捆绑在当前传输周期中的位置的HARQ-ACK捆绑索引字段和说明传输的PDSCH在所属捆绑中的位置的PDSCH索引字段。因此,UE在接收到PDSCH时,能够根据PDSCH对应的DCI中存在的第二字段,准确地确定一个传输周期中每个捆绑中的每个PDSCH,确保了在将一个传输周期中的所有PDSCH分别包括在多个捆绑中时,UE也能够准确地向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,进一步提高了传输数据的可靠性。进一步地,由于HARQ-ACK捆绑索引字段可以以倒数的方式说明捆绑在当前传输周期中的位置,PDSCH索引字段可以以倒数的方式说明传输的PDSCH在所属捆绑中的位置,能够便于UE准确地确定当前传输周期中接收到的每个PDSCH在所属捆绑中的位置以及该PDSCH所属捆绑在当前传输周期中的位置,进一步提高了传输数据的可靠性。
另外,第二字段还可以包括奇偶性字段,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数,减少了UE在确定某一捆绑中所有PDSCH出现漏掉某一PDSCH的几率,从而提高了UE确定该捆绑的反馈结果的准确率,提高了传输数据的可靠性。
最后,当基站不打开HARQ-ACK捆绑功能时,DCI不存在第二字段但存在第三字段,从而确保在不打开HARQ-ACK捆绑功能时,UE能够基于第三字段指示的MPDCCH重复次数、物理下行共享信道PDSCH重复次数和跳频标识等信息与基站传输数据,进一步提高了传输数据的可靠性。
图7是根据一示例性实施例示出的一种基于半双工模式的数据传输方法的流程图,参照图7,该方法用于基站与UE的交互中,包括以下步骤。
步骤701:基站通过RRC信令向UE发送通知消息,该通知消息用于说明该基站支持HARQ-ACK捆绑功能。
为了确保该基站能够通过该HARQ-ACK捆绑功能向该UE传输数据,且该UE能够成功地接收该基站通过该HARQ-ACK捆绑功能传输的数据,该基站需要通知该UE该基站能够支持该HARQ-ACK捆绑功能。
其中,基站可以在检测到UE接入该基站所覆盖的小区时,向该UE发送RRC信令以建立RRC连接,并在该RRC信令中携带该通知消息。当然,在实际应用中,该基站也可以在其它时机向该UE发送该通知消息,比如,一种可能的实现方式为,在该UE与该基站处于RRC连接的过程中,即该UE处于该基站所覆盖的小区的过程中,该基站也可以向该基站发送RRC信令以重置该RRC连接,且该RRC信令中携带该通知消息。
需要说明的是,该RRC信令中还可以携带其它信息,比如,MPDCCH包括的DCI的有效荷载。
步骤702:该基站基于当前与该UE之间的通信质量,确定是否打开该HARQ-ACK捆绑功能。如果是则执行步骤703,如果否则执行步骤704。
由于网络波动或者其它原因,在不同时刻,该基站与UE之间的通信质量可能也是不同时,而该基站通常可以在通信质量较好的情况下,通过该HARQ-ACK捆绑功能向UE传输数据,因此该基站可以确定是否打开该HARQ-ACK捆绑功能。
其中,该UE可以检测与该基站之间的通信质量,向该基站发送通信质量信息。当该基站接收到该通信质量信息时,判断该通信质量信息是否大于或等于通信质量阈值,如果该通信质量信息大于或等于通信质量阈值,说明当前与该UE之间的通信质量较好,确定打开该HARQ-ACK捆绑功能。如果该通信质量信息小于该通信质量阈值时,说明当前与该UE之间的通信质量较差,确定不打开该HARQ-ACK捆绑功能。
需要说明的是,该通信质量信息的表现形式与该通信质量阈值对应,比如,该通信质量信息可以是一个百分数,对应的,该通信质量阈值也可以是一个百分数。当然,在实际应用中,该通信质量信息还可以是其它形式的信息,该通信质量阈值也可以是其它形式的与该通信质量信息对应的阈值。
还需要说明的是,该通信质量阈值可以由基站在判断该通信质量评估信息是否大于或等于通信质量阈值之前确定,比如一种可能的实现方式为,该通信质量阈值可以由该基站接收相关技术人员输入的数值得到。
另外,在实际应用中,也可以由基站检测当前与该UE之间的通信质量,从而直接得到该通信质量信息。
步骤703:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH, 该DCI存在第一字段和第二字段,第一字段用于指示当前打开该HARQ-ACK捆绑功能,第二字段用于指示HARQ-ACK捆绑信息。
由于该基站已经确定打开该HARQ-ACK捆绑功能,即通过该HARQ-ACK捆绑功能向该UE传输数据,因此,为了确保该UE能够准确地接收该基站传输的数据,该基站可以通过该MPDCCH的DCI包括的第一字段指示当前已打开该HARQ-ACK捆绑功能,并通过该DCI存在的第二字段指示HARQ-ACK捆绑信息。
其中,由于当前该基站与该UE之间的通信质量较好,因此,在一个传输周期中,该基站可以向该UE连续发送多个MPDCCH,从而向该UE连续发送多个PDSCH,该多个PDSCH属于多捆绑。,且不同的PDSCH分别属于不同的HARQ进程。另外,每个MPDCCH或每个PDSCH均可以占用一个子帧,每个MPDCCH中包括一个DCI,用于指示该UE接收与该DCI对应的PDSCH,每个PDSCH中可以包括一个TB。且该基站可以发送该MPDCCH之后间隔一个子帧,再发送与该MPDCCH的DCI对应的PDSCH,也即是,发送该MPDCCH的子帧和发送与该MPDCCH的DCI对应的PDSCH的子帧之间间隔一个子帧。
需要说明的是,一个传输周期包括下行传输时间段和上行传输时间段,该下行传输时间段用于该基站向该UE发送该多个MPDCCH和该多个PDSCH,该上行传输时间段用于该UE向该基站发送对该多个PDSCH的反馈结果。
还需要说明的是,第一字段可以通过0指示打开该HARQ-ACK捆绑功能,并通过1指示不打开该HARQ-ACK捆绑功能。当然,也可以通过0指示不打开该HARQ-ACK捆绑功能,并通过1指示打开该HARQ-ACK捆绑功能。
进一步地,该DCI可能包括下述两种可能的实现方式:
第一种可能的实现方式,第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和第二预留字段。
其中,该HARQ-ACK捆绑索引字段的大小可以为2比特,用于说明捆绑在当前传输周期中的位置,该PDSCH索引字段的大小可以为2比特,用于说明传输的PDSCH在所属捆绑中的位置,第二预留字段的大小可以为1比特。此时,第一字段与第二字段共的大小为6比特。
还需要说明的是,由于该HARQ-ACK捆绑索引字段和该PDSCH索引字段的大小可以为2比特,而一个传输周期中,基站最多可以向UE传输10个PDSCH,因此,一个传输周期中最多可以包括3个捆绑,且每个捆绑中最多可以包括4个PDSCH,且该3个捆绑中华包括的PDSCH的总数小于或等于10。
进一步地,为了便于UE在接收到该PDSCH时,确定该PDSCH之后是否还有其它PDSCH需要接收,也即是,判断该PDSCH是否为所述捆绑中的最后一个PDSCH,以及该PDSCH所属的捆绑是否为当前传输周期中的最后一个捆绑,提高该UE接收数据的可靠性,从而提高传输数据的可靠性,该HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,该PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置。
其中,可以通过该HARQ-ACK捆绑索引字段指示预设数值,从而将与该HARQ-ACK捆绑索引字段所在的DCI对应的PDSCH所在捆绑指示为当前传输周期中的最后一个捆绑,通过该PDSCH索引字段指示该预设数值,从而将与该PDSCH索引字段所在的DCI对应的 PDSCH指示为该PDSCH所属捆绑中的最后一个PDSCH。
需要说明的是,该预设数值可以是0或1,且该预设数值可以由该基站在向该UE发送MPDCCH之前确定,比如,一种可能的实现策略为,该预设数值可以由基站接收相关技术人数人员输入的数值得到。当然,在实际应用中,该预设数值还可以由该基站通过其它方式确定的其它数值。
第二种可能的实现方式,由于以捆绑中可能包括一个以上的PDSCH,因此,为了便于该UE进一步确定是否已接收到属于该捆绑的每个PDSCH,提高传输数据的可靠性,第二字段可以包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段,但不包括第二预留字段。
其中,该奇偶性字段的大小为1比特,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
步骤704:该基站向该UE发送MPDCCH以及与该MPDCCH的DCI对应的PDSCH,该DCI存在第一字段和第三预留字段,但不存在第二字段,第一字段用于指示当前不打开该HARQ-ACK捆绑功能。
由于确定不打开该HARQ-ACK捆绑功能,因此,可以通过第一字段指示当前不打开该HARQ-ACK捆绑功能,且由于不需要指示HARQ-ACK捆绑信息,所以可以不存在第二字段。
其中,第三预留字段的大小为5比特,即第三预留字段与第二字段的大小相同。
在上述步骤703或704中,该基站已经将该MPDCCH以及与该MPDCCH的DCI对应的PDSCH发送给了该UE,并通过该DCI存在的第一字段指示了是否打开该该HARQ-ACK捆绑功能,因此,在接下来的步骤705至707中,该UE可以接收该MPDCCH,并基于该DCI接收与该MPDCCH的DCI对应的PDSCH。
步骤705:当该UE接收到该基站发送的该MPDCCH时,基于该MPDCCH的DCI中存在的第一字段,判断当前是否打开HARQ-ACK捆绑功能,当当前已打开该HARQ-ACK捆绑功能时,执行步骤706,当当前未打开该HARQ-ACK捆绑功能时,执行步骤707。
由于该MPDCCH的DCI中存在第一字段,且第一字段可以用于指示当前是否打开HARQ-ACK捆绑功能,因此,该UE可以在根据该DCI中的第一字段来判断当前是否打开HARQ-ACK捆绑功能。
例如,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是1,则确定当前通过该HARQ-ACK捆绑功能传输数据,当基站接收到MPDCCH的DCI中存在的第一字段传输的信息所指示的是0,则确定当前不通过该HARQ-ACK捆绑功能传输数据。
步骤706:该UE确定该DCI存在第二字段但不存在第三预留字段,在接收到该基站发送的与该DCI对应的PDSCH时,基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
由于在一个传输周期中,该基站可能会向该UE传输多个PDSCH,该UE通常需要在上行时间到达时向基站发送每个PDSCH的校验结果,从而向该基站说明该多个PDSCH是否均以接收成功,这会导致传输数据的效率降低,因此,为了提高传输数据的效率,当该UE确定DCI中存在第一字段和第二字段,可以基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输。
需要说明的是,该PDSCH可以属于当前传输周期中的任一捆绑。
其中,为了提高UE确定上行传输时间的准确性,进而确保该UE能够准确地向基站发送反馈结果,提高传输数据的可靠性,该UE在接收该PDSCH时,可以基于该HARQ-ACK捆绑索引字段判断该PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑,当该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于该PDSCH索引字段确定该PDSCH所属捆绑中还未接收到的PDSCH数目,基于该PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在该上行传输时间到达时,确定该PDSCH所属捆绑的反馈结果,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给该基站。
需要说明的是,当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,该UE可以确定该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑。当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值不为预设数值时,该UE可以确定该PDSCH所属的捆绑不为当前传输周期内的最后一个捆绑。
还需要说明的是,该UE可以确定该PDSCH索引字段传输的信息所指示的倒数数值与该预设数值之间的差值,并将该差值确定为该PDSCH所属捆绑中还未接收到的PDSCH数目。
例如,该PDSCH索引字段传输的信息所指示的倒数数值为2,预设数值为0,倒数数值与预设数值之间的差值为2,因此,该UE确定该PDSCH所属捆绑中还未接收到的PDSCH数目为2。
还需要说明的是,由于传输每个PDSCH均占用1个子帧,且上行传输与下行传输之间通常存在一个保护帧,每个子帧用时为1毫秒,因此,当接收到该PDSCH的时刻为t1,该PDSCH所属捆绑中还未接收到的PDSCH数目为n,即该上行传输时间t2=t1+n+1,即以接收到该PDSCH的时刻起,经过比该PDSCH所属捆绑中还未接收到的PDSCH数目大于1的毫秒数的时刻,即为该上行时间到达的时刻。
其中,该UE可以确定该PDSCH所属捆绑中接收到的所有PDSCH的循环冗余校验反馈码CRC校验结果,当该所有PDSCH的CRC均校验成功时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为否定应答NACK。
例如,该UE确定PDSCH所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,即均校验成功,即确定捆绑2的反馈结果为ACK。如果该UE对PDSCH1的反馈结果为NACK,即校验失败,对PDSCH2和PDSCH3的反馈结果均为ACK,则确定对捆绑2的反馈结果是NACK。
需要说明的是,该UE可以通过PUCCH或PUSCH将每个捆绑的的反馈结果发送给基站,且发送每个捆绑的反馈结果的子帧,与接收该捆绑中最后一个PDSCH的子帧之间可以间隔至少3个子帧。
进一步地,由于第二字段还可以包括奇偶性字段,因此,为了提高该UE确定属于同一捆绑的PDSCH的准确率,进而提高UE确定该捆绑的反馈结果的准确率,提高传输数据的可靠性,该UE可以确定该PDSCH所属捆绑中接收到的所有PDSCH的CRC校验结果,确定该所有PDSCH的数目的奇偶性,以及确定该奇偶性字段所指示的奇偶性,当该所有PDSCH的CRC均校验成功且该所有PDSCH的数目的奇偶性与该奇偶性字段所指示的奇偶 性相同时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定该PDSCH所属捆绑的反馈结果为NACK。
例如,该UE确定PDSCH1所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3,共3个PDSCH,数目为奇数。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,且PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性也为奇数,则确定捆绑2的反馈结果为ACK。如果该UE对PDSCH1的反馈结果为NACK,对PDSCH2和PDSCH3的反馈结果均为ACK,且PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性为偶数,则说明该UE可能没有接收到捆绑2中的部分PDSCH,确定捆绑2的反馈结果为NACK。
进一步地,为了提高数据反馈的可靠性,进而提高传输数据的可靠性,当该所有PDSCH的CRC均反馈成功且该所有PDSCH的数目的奇偶性与该所有PDSCH中任一PDSCH对应的DCI中存在的奇偶性字段所指示的奇偶性相同时(即该所有PDSCH对应的DCI包括的奇偶性字段所指示的奇偶性一致,且与该所述有所有PDSCH的数目的奇偶性相同时),确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定该PDSCH所属捆绑的反馈结果为NACK。
例如,该UE确定PDSCH1所属的捆绑2中接收到的PDSCH分别为PDSCH1、PDSCH2和PDSCH3,共3个PDSCH,数目为奇数。如果该UE对PDSCH1、PDSCH2和PDSCH3的反馈结果均为ACK,PDSCH1对应的DCI中存在的奇偶性字段所指示的奇偶性为偶数,PDSCH2和PDSCH3对应的DCI中存在的奇偶性字段所指示的奇偶性均为奇数,因此,由于捆绑2中所有的PDSCH对应的DCI中存在的奇偶性字段所指示的奇偶性不一致,因此,确定捆绑2的反馈结果是NACK。
步骤707:该UE确定该DCI中不存在第二字段,但存在第三预留字段。在接收到该基站发送的与该DCI对应的PDSCH时,不基于第二字段指示的HARQ-ACK捆绑信息与该基站之间进行数据传输。此时,该UE需要将接收到的每个PDSCH的校验结果反馈给该基站。
由于当前没有打开该HARQ-ACK捆绑功能,因此,该DCI中不存在第二字段,而是存在与第二字段大小相同的第一预留字段,该UE可以不基于HARQ-ACK捆绑信息与该基站之间进行数据传输。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
另外,第二字段包括说明捆绑在当前传输周期中的位置的HARQ-ACK捆绑索引字段和 说明传输的PDSCH在所属捆绑中的位置的PDSCH索引字段。因此,UE在接收到PDSCH时,能够根据PDSCH对应的DCI中存在的第二字段,准确地确定一个传输周期中每个捆绑中的每个PDSCH,确保了在将一个传输周期中的所有PDSCH分别包括在多个捆绑中时,UE也能够准确地向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,进一步提高了传输数据的可靠性。进一步地,由于HARQ-ACK捆绑索引字段可以以倒数的方式说明捆绑在当前传输周期中的位置,PDSCH索引字段可以以倒数的方式说明传输的PDSCH在所属捆绑中的位置,能够便于UE准确地确定当前传输周期中接收到的每个PDSCH在所属捆绑中的位置以及该PDSCH所属捆绑在当前传输周期中的位置,进一步提高了传输数据的可靠性。
最后,第二字段还可以包括奇偶性字段,用于说明捆绑中包括的PDSCH的数目是奇数还是偶数,减少了UE在确定某一捆绑中所有PDSCH出现漏掉某一PDSCH的几率,从而提高了UE确定该捆绑的反馈结果的准确率,提高了传输数据的可靠性。
图8是根据一示例性实施例示出的一种基于半双工模式的数据传输装置框图。参照图8,该装置包括判断模块801,第一确定模块802和发送模块803。
判断模块801,用于执行上述图5A实施例中步骤505或者上述图6A实施例中步骤605所述的操作;
第一确定模块802,用于执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的该UE确定该DCI存在第二字段但不存在第三字段的操作;
发送模块803,用于执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的在接收到该基站发送的与该DCI对应的PDSCH时,基于第二字段指示的HARQ-ACK捆绑信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输操作。
可选地,该第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,该HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,该PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
可选地,该发送模块803包括:
判断子模块,用于执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的基于该HARQ-ACK捆绑索引字段判断该PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑的操作;
确定子模块,用于执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的当该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于该PDSCH索引字段确定该PDSCH所属捆绑中还未接收到的PDSCH数目;
发送子模块,用于执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的基于该PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在该上行传输时间到达时,确定该PDSCH所属捆绑的反馈结果为ACK还是NACK,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给该基站。
可选地,该HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,该PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
该判断子模块还用于:
执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的当该HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,确定该PDSCH所属的捆绑为当前传输周期内的最后一个捆绑的操作;
该确定子模块还用于:
执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的确定该PDSCH索引字段传输的信息所指示的倒数数值与该预设数值之间的差值,并将该差值确定为该PDSCH所属捆绑中还未接收到的PDSCH数目。
可选地,该装置还包括:
第二确定模块,用于执行上述图5A实施例中步骤507所述的当当前未打开该HARQ-ACK捆绑功能时,确定该DCI中不存在该第二字段但存在预留字段的操作。
可选地,该第二字段还包括奇偶性字段,该奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
可选地,该发送子模块还用于:
执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的确定该PDSCH所属捆绑中接收到的所有PDSCH的循环冗余校验码CRC校验结果的操作;
执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的确定该所有PDSCH的数目的奇偶性,以及确定该奇偶性字段所指示的奇偶性的操作;
执行上述图5A实施例中步骤506或者上述图6A实施例中步骤606所述的当该所有PDSCH的CRC均校验成功且该所有PDSCH的数目的奇偶性与该奇偶性字段所指示的奇偶性相同时,确定该PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为NACK的操作。
可选地,该装置还包括:
第三确定模块,用于执行上述图6A实施例中步骤607所述的当当前未打开该HARQ-ACK捆绑功能时,确定该DCI中不存在该第二字段但存在该第三字段的操作。
可选地,当该第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段时,该第一字段和该第二字段的大小之和与该第三字段的大小相同,当该第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段时,该第二字段的大小与该第三字段的大小相同。
可选地,该第一字段的大小为1比特,该第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,该第二字段中的奇偶性字段的大小为1比特。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中不存在第三字段,而是存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数 据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图9是根据一示例性实施例示出的一种基于半双工模式的数据传输装置框图。参照图9,该装置包括接收模块901和发送模块902。
接收模块901,用于执行上述图7实施例中步骤705所述的接收基站发送的MPDCCH,该MPDCCH的DCI中包括第一字段和第二字段,该第二字段用于指示HARQ-ACK捆绑信息的操作;
其中,该第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,该HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,该PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
发送模块802,用于执行上述图7实施例中步骤706所述的在接收到该基站发送的与该DCI对应的PDSCH时,基于该HARQ-ACK捆绑索引字段和该PDSCH索引字段所指示的信息向该基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与该基站之间的数据传输,该PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,该反馈结果为ACK或者否定应答NACK的操作。
可选地,该第二字段还包括奇偶性字段,该奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
可选地,该第一字段的大小为1比特,该第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,该第二字段中的奇偶性字段的大小为1比特。
在本发明实施例中,首先,基站可以在向UE发送MPDCCH,通过该MPDCCH的DCI包括的第一字段指示是否打开HARQ-ACK捆绑功能,并在打开HARQ-ACK捆绑功能时,在一个传输周期中,向UE发送多个捆绑的PDSCH,提高了下行速率峰值和传输数据的效率。其次,如果确定打开HARQ-ACK捆绑功能,则该DCI中存在指示HARQ-ACK捆绑信息的第二字段,确保了UE能够基于该HARQ-ACK捆绑信息向基站分别发送每个捆绑的反馈结果,且由于UE不需要分别将每个PDSCH的校验结果反馈给基站,也能够向基站反馈当前传输周期中每个捆绑中包括的每个PDSCH是否已经接收并校验成功,即在节省了时间的同时也确保了传输数据的可靠性,从而在进一步提高了传输数据的效率同时也提高了传输数据的可靠性。另外,由于不是将同一传输周期中的所有PDSCH都包括在一个捆绑中,避免了一个传输周期中出现一个PDSCH校验失败,则该传输周期中所有PDSCH都需要重新传输的问题,进一步提高了传输数据的可靠性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种基于半双工模式的数据传输方法,其特征在于,所述方法包括:
    当接收到基站发送的机器类通信物理下行控制信道MPDCCH时,基于所述MPDCCH的下行控制信息DCI中包括的第一字段,判断当前是否已打开混合自动重传请求确认应答HARQ-ACK捆绑功能;
    当当前已打开所述HARQ-ACK捆绑功能时,确定所述DCI中存在第二字段但不存在第三字段,所述第二字段用于指示HARQ-ACK捆绑信息,所述第三字段用于指示MPDCCH重复次数、物理下行共享信道PDSCH重复次数和跳频标识;
    在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。
  2. 如权利要求1所述的方法,其特征在于,所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,所述HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,所述PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
  3. 如权利要求2所述的方法,其特征在于,所述基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,包括:
    基于所述HARQ-ACK捆绑索引字段判断所述PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑;
    当所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于所述PDSCH索引字段确定所述PDSCH所属捆绑中还未接收到的PDSCH数目;
    基于所述PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在所述上行传输时间到达时,确定所述PDSCH所属捆绑的反馈结果为ACK还是NACK,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给所述基站。
  4. 如权利要求3所述的方法,其特征在于,所述HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,所述PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
    所述基于所述HARQ-ACK捆绑索引字段判断所述PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑,包括:
    当所述HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,确定所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑;
    所述基于所述PDSCH索引字段确定所述PDSCH所属捆绑中还未接收到的PDSCH数目,包括:
    确定所述PDSCH索引字段传输的信息所指示的倒数数值与所述预设数值之间的差值,并将所述差值确定为所述PDSCH所属捆绑中还未接收到的PDSCH数目。
  5. 如权利要求2-4任一所述的方法,其特征在于,所述基于所述MPDCCH的下行控制信息DCI中包括的第一字段,判断当前是否已打开传输混合自动重传请求确认应答HARQ-ACK捆绑功能之后,还包括:
    当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在预留字段。
  6. 如权利要求3所述的方法,其特征在于,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
  7. 如权利要求6所述的方法,其特征在于,所述确定所述PDSCH所属捆绑的反馈结果为ACK还是NACK,包括:
    确定所述PDSCH所属捆绑中接收到的所有PDSCH的循环冗余校验码CRC校验结果;
    确定所述所有PDSCH的数目的奇偶性,以及确定所述奇偶性字段所指示的奇偶性;
    当所述所有PDSCH的CRC均校验成功且所述所有PDSCH的数目的奇偶性与所述奇偶性字段所指示的奇偶性相同时,确定所述PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为NACK。
  8. 如权利要求6或7所述的方法,其特征在于,所述基于所述MPDCCH的下行控制信息DCI中包括的第一字段,判断当前是否已打开传输混合自动重传请求确认应答HARQ-ACK捆绑功能之后,还包括:
    当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在所述第三字段。
  9. 如权利要求1-8任一所述的方法,其特征在于,当所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段时,所述第一字段和所述第二字段的大小之和与所述第三字段的大小相同,当所述第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段时,所述第二字段的大小与所述第三字段的大小相同。
  10. 如权利要求1-9任一所述的方法,其特征在于,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述第二字段中的奇偶性字段的大小为1比特。
  11. 一种基于半双工模式的数据传输方法,其特征在于,所述方法包括:
    接收基站发送的机器类通信物理下行控制信道MPDCCH,所述MPDCCH的下行控制信息DCI中包括第一字段和第二字段,所述第二字段用于指示混合自动重传请求确认应答HARQ-ACK捆绑信息;
    其中,所述第二字段包括HARQ-ACK捆绑索引字段和物理下行共享信PDSCH索引字段,所述HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,所述 PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
    在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述HARQ-ACK捆绑索引字段和所述PDSCH索引字段所指示的信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。
  12. 如权利要求11所述的方法,其特征在于,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述第二字段中的奇偶性字段的大小为1比特。
  14. 一种基于半双工模式的数据传输装置,其特征在于,所述装置包括:
    判断模块,用于当接收到基站发送的机器类通信物理下行控制信道MPDCCH时,基于所述MPDCCH的下行控制信息DCI中包括的第一字段,判断当前是否已打开混合自动重传请求确认应答HARQ-ACK捆绑功能;
    第一确定模块,用于当当前已打开所述HARQ-ACK捆绑功能时,确定所述DCI中存在第二字段但不存在第三字段,所述第二字段用于指示HARQ-ACK捆绑信息,所述第三字段用于指示MPDCCH重复次数、物理下行共享信道PDSCH重复次数和跳频标识;
    发送模块,用于在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述第二字段指示的HARQ-ACK捆绑信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。
  15. 如权利要求14所述的装置,其特征在于,所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段,所述HARQ-ACK捆绑索引字段用于说明捆绑在当前传输周期中的位置,所述PDSCH索引字段用于说明传输的PDSCH在所属捆绑中的位置。
  16. 如权利要求15所述的装置,其特征在于,所述发送模块包括:
    判断子模块,用于基于所述HARQ-ACK捆绑索引字段判断所述PDSCH所属的捆绑是否为当前传输周期内的最后一个捆绑;
    确定子模块,用于当所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑时,基于所述PDSCH索引字段确定所述PDSCH所属捆绑中还未接收到的PDSCH数目;
    发送子模块,用于基于所述PDSCH所属捆绑中还未接收到的PDSCH数目确定上行传输时间,在所述上行传输时间到达时,确定所述PDSCH所属捆绑的反馈结果为ACK还是NACK,并切换到上行,将当前传输周期内的所有捆绑的反馈结果分别发送给所述基站。
  17. 如权利要求16所述的装置,其特征在于,所述HARQ-ACK捆绑索引字段以倒数的 方式说明捆绑在当前传输周期中的位置,所述PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
    所述判断子模块还用于:
    当所述HARQ-ACK捆绑索引字段传输的信息所指示的倒数数值为预设数值时,确定所述PDSCH所属的捆绑为当前传输周期内的最后一个捆绑;
    所述确定子模块还用于:
    确定所述PDSCH索引字段传输的信息所指示的倒数数值与所述预设数值之间的差值,并将所述差值确定为所述PDSCH所属捆绑中还未接收到的PDSCH数目。
  18. 如权利要求15-17任一所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在预留字段。
  19. 如权利要求16所述的装置,其特征在于,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
  20. 如权利要求19所述的装置,其特征在于,所述发送子模块还用于:
    确定所述PDSCH所属捆绑中接收到的所有PDSCH的循环冗余校验码CRC校验结果;
    确定所述所有PDSCH的数目的奇偶性,以及确定所述奇偶性字段所指示的奇偶性;
    当所述所有PDSCH的CRC均校验成功且所述所有PDSCH的数目的奇偶性与所述奇偶性字段所指示的奇偶性相同时,确定所述PDSCH所属捆绑的反馈结果为ACK,否则,确定PDSCH所属捆绑的反馈结果为NACK。
  21. 如权利要求19或20所述的装置,其特征在于,所述装置还包括:
    第三确定模块,用于当当前未打开所述HARQ-ACK捆绑功能时,确定所述DCI中不存在所述第二字段但存在所述第三字段。
  22. 如权利要求14-21任一所述的装置,其特征在于,当所述第二字段包括HARQ-ACK捆绑索引字段和PDSCH索引字段时,所述第一字段和所述第二字段的大小之和与所述第三字段的大小相同,当所述第二字段包括HARQ-ACK捆绑索引字段、PDSCH索引字段和奇偶性字段时,所述第二字段的大小与所述第三字段的大小相同。
  23. 如权利要求14-22任一所述的装置,其特征在于,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述第二字段中的奇偶性字段的大小为1比特。
  24. 一种基于半双工模式的数据传输装置,其特征在于,所述装置包括:
    接收模块,用于接收基站发送的机器类通信物理下行控制信道MPDCCH,所述MPDCCH的下行控制信息DCI中包括第一字段和第二字段,所述第二字段用于指示混合自动重传请求 确认应答HARQ-ACK捆绑信息;
    其中,所述第二字段包括HARQ-ACK捆绑索引字段和物理下行共享信道PDSCH索引字段,所述HARQ-ACK捆绑索引字段以倒数的方式说明捆绑在当前传输周期中的位置,所述PDSCH索引字段以倒数的方式说明传输的PDSCH在所属捆绑中的位置;
    发送模块,用于在接收到所述基站发送的与所述DCI对应的PDSCH时,基于所述HARQ-ACK捆绑索引字段和所述PDSCH索引字段所指示的信息向所述基站分别发送当前传输周期内每个捆绑的反馈结果,以实现与所述基站之间的数据传输,所述PDSCH属于当前传输周期内传输的多个捆绑中的任一捆绑,所述反馈结果为ACK或者否定应答NACK。
  25. 如权利要求24所述的装置,其特征在于,所述第二字段还包括奇偶性字段,所述奇偶性字段用于说明捆绑中包括的PDSCH的数目是奇数还是偶数。
  26. [根据细则91更正 15.03.2017] 
    如权利要求24或25所述的装置,其特征在于,所述第一字段的大小为1比特,所述第二字段中的HARQ-ACK捆绑索引字段和PDSCH索引字段的大小分别为2比特,所述第二字段中的奇偶性字段的大小为1比特。
PCT/CN2017/072681 2017-01-25 2017-01-25 基于半双工模式的数据传输方法及装置 WO2018137206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072681 WO2018137206A1 (zh) 2017-01-25 2017-01-25 基于半双工模式的数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072681 WO2018137206A1 (zh) 2017-01-25 2017-01-25 基于半双工模式的数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018137206A1 true WO2018137206A1 (zh) 2018-08-02

Family

ID=62977924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072681 WO2018137206A1 (zh) 2017-01-25 2017-01-25 基于半双工模式的数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2018137206A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133457A1 (zh) * 2018-12-29 2020-07-02 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
WO2021098862A1 (en) * 2019-11-21 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuration of harq-ack feedback
WO2021203287A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Uplink control information reporting
CN117221894A (zh) * 2023-11-09 2023-12-12 湖南雷诺科技发展有限公司 一种基于大数据的5g通信传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981854A (zh) * 2008-03-25 2011-02-23 诺基亚公司 在具有NxPDCCH结构的LTE-A TDD中的PUCCH上的ACK/NACK传输
US20120033648A1 (en) * 2010-08-05 2012-02-09 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment
CN102904698A (zh) * 2011-05-31 2013-01-30 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN103095432A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN104380645A (zh) * 2012-06-28 2015-02-25 诺基亚公司 灵活的harq ack/nack传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981854A (zh) * 2008-03-25 2011-02-23 诺基亚公司 在具有NxPDCCH结构的LTE-A TDD中的PUCCH上的ACK/NACK传输
US20120033648A1 (en) * 2010-08-05 2012-02-09 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment
CN102904698A (zh) * 2011-05-31 2013-01-30 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN103095432A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN104380645A (zh) * 2012-06-28 2015-02-25 诺基亚公司 灵活的harq ack/nack传输

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133457A1 (zh) * 2018-12-29 2020-07-02 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
WO2021098862A1 (en) * 2019-11-21 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuration of harq-ack feedback
WO2021203287A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Uplink control information reporting
CN117221894A (zh) * 2023-11-09 2023-12-12 湖南雷诺科技发展有限公司 一种基于大数据的5g通信传输方法
CN117221894B (zh) * 2023-11-09 2024-01-12 湖南雷诺科技发展有限公司 一种基于大数据的5g通信传输方法

Similar Documents

Publication Publication Date Title
US20220123904A1 (en) Shared nack resource for groupcast and multicast in new radio v2x communications
US20190386785A1 (en) Harq feedback method, apparatus and system
US10455585B2 (en) Method and apparatus for carrier aggregation
US20160066222A1 (en) Multi-connectivity in a wireless network
CN111200871B (zh) 接收数据的方法和通信装置
JP2016072979A (ja) 免許不要帯域における伝送を扱う装置及び方法
US11219003B2 (en) Downlink control information sending method, downlink control information receiving method, and device
WO2018137206A1 (zh) 基于半双工模式的数据传输方法及装置
EP3472954A1 (en) Reallocation of control channel resources for retransmission of data in wireless networks based on communications mode
US11705992B2 (en) Infrastructure equipment, wireless telecommunications system and method
US20180288779A1 (en) Method and device for processing data transmission
CN106134242A (zh) 用于接收数据的方法和使用该方法的装置
CN106470093A (zh) 应答消息的反馈、接收方法及装置
WO2020083251A1 (zh) 数据传输方法及装置
JP2020530952A (ja) フィードバック応答情報の伝送方法、装置及びシステム
WO2019192283A1 (zh) 一种资源确定、资源指示方法及装置
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
WO2021208836A1 (zh) 一种harq-ack反馈方法及装置
WO2018000119A1 (zh) 上行传输的方法和装置
US10986619B2 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
US20220140957A1 (en) HARQ Feedback Technique for Communication Systems
US11742993B2 (en) Collision indication for sidelink groupcast with HARQ option 2
WO2020194264A1 (en) Methods and nodes for downlink intra-ue pre-emption
US20210007134A1 (en) Feedback indication for continued transmission for wireless networks
CN115088215A (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894438

Country of ref document: EP

Kind code of ref document: A1