WO2018082546A1 - 下行控制信道的检测方法、发送方法、网络侧设备及终端 - Google Patents

下行控制信道的检测方法、发送方法、网络侧设备及终端 Download PDF

Info

Publication number
WO2018082546A1
WO2018082546A1 PCT/CN2017/108616 CN2017108616W WO2018082546A1 WO 2018082546 A1 WO2018082546 A1 WO 2018082546A1 CN 2017108616 W CN2017108616 W CN 2017108616W WO 2018082546 A1 WO2018082546 A1 WO 2018082546A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
downlink control
detection
channel
level
Prior art date
Application number
PCT/CN2017/108616
Other languages
English (en)
French (fr)
Inventor
沈晓冬
姜蕾
秦飞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/346,865 priority Critical patent/US11265102B2/en
Priority to ES17866685T priority patent/ES2889373T3/es
Priority to EP17866685.5A priority patent/EP3537820B1/en
Publication of WO2018082546A1 publication Critical patent/WO2018082546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of mobile communications technologies, and in particular, to a downlink control channel detection method, a transmission method, a network side device, and a terminal.
  • a terminal In a mobile communication system, a terminal usually needs to detect a control channel, thereby acquiring information such as a time-frequency resource location, a modulation and coding mode, and a Hybrid Automatic Repeat ReQuest (HARQ) process in which the data channel is located, for use in the mobile communication system.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the terminal may use the first-level detection mode to detect the downlink control channel.
  • the first-level detection here refers to that the terminal only needs one downlink control channel detection to obtain the control information required for data channel detection, so that the time-frequency resource location, the modulation and coding mode, the HARQ process, and the like where the data channel is located can be obtained, and then Demodulate and decode data sent by the network. That is, once the terminal detects the control information required for the data channel detection sent by the network to the terminal in a certain downlink control channel, the terminal may not perform the detection of the downlink control channel, and the data may be The channel receives and acquires data sent by the network.
  • the detection efficiency of the primary detection is relatively high, that is, the terminal can obtain the control information of the corresponding data channel by one detection, but the requirement for the terminal detection is also relatively high, that is, the terminal is required to be in each active transmission resource. (such as subframes) are detected to determine if there is a control channel of its own.
  • a multi-level detection method of the control channel may also be proposed, and the multi-level detection mode generally has a relatively high detection complexity.
  • the embodiments of the present disclosure provide a downlink control channel detection method, a transmission method, a network side device, and a terminal, so as to solve the problem that a single downlink control channel cannot balance the multi-level detection mode of reducing power consumption of the terminal and reduce the detection complexity. The problem.
  • a method for detecting a downlink control channel includes:
  • the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, where the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, and the multi-level detection is The detection mode of the control information required for data channel detection is obtained by at least two downlink control channel detections.
  • a method for transmitting a downlink control channel including:
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides a manner of transmitting control information required for data channel detection.
  • a terminal including:
  • a determining module for determining a detection mode of the downlink control channel
  • a detecting module configured to perform detection of a downlink control channel according to the determined detection manner of the downlink control channel
  • the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, where the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, and the multi-level detection is The detection mode of the control information required for data channel detection is obtained by at least two downlink control channel detections.
  • a network side device including:
  • a selection module for selecting a transmission mode of the downlink control channel
  • a first sending module configured to send, according to the selected downlink control channel, a downlink control channel
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides a manner of transmitting control information required for data channel detection.
  • a terminal including: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being The steps in the method of detecting the downlink control channel as described above are implemented when the processor executes.
  • a network side device including: a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program being The processor performs the steps in the method of transmitting the downlink control channel as described above.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements downlink control as described above The steps in the method of detecting the channel.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements downlink control as described above The steps in the method of transmitting the channel.
  • the detection method, the sending method, the network side device, and the terminal of the downlink control channel can support multiple detection modes of the downlink control channel, and provide primary detection of the downlink control channel.
  • the multi-level detection mode the terminal performs the detection of the downlink control channel according to the detection mode indicated by the network side, thereby providing technical support for adaptively adjusting the downlink control channel detection mode, so as to reduce the multi-level detection mode and reduce detection of the terminal power consumption.
  • the embodiment of the present disclosure may indicate the downlink to the terminal by using high layer control signaling.
  • the detection mode of the control channel is used to reduce the detection complexity of the terminal on the first downlink control channel.
  • the embodiment of the present disclosure can also reduce the overhead of the high layer signaling by transmitting the control signaling grading information on the first downlink control channel to indicate the detection mode of the downlink control channel to the terminal.
  • FIG. 1 is a flowchart showing a method for detecting a downlink control channel according to Embodiment 1 of the present disclosure
  • FIG. 2 is a flowchart showing a method for detecting a downlink control channel according to Embodiment 2 of the present disclosure
  • FIG. 3 is a flowchart showing a method for detecting a downlink control channel according to Embodiment 3 of the present disclosure
  • FIG. 4 is a flowchart showing a method for transmitting a downlink control channel according to Embodiment 4 of the present disclosure
  • FIG. 5 is a flowchart of a method for transmitting a downlink control channel according to Embodiment 5 of the present disclosure
  • FIG. 6 is a flowchart showing a method for transmitting a downlink control channel according to Embodiment 6 of the present disclosure
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another terminal provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another network side device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another network side device according to an embodiment of the present disclosure.
  • FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram showing another structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a structural block diagram of a network side device according to an embodiment of the present disclosure.
  • 16 is a flow chart showing a method for detecting a downlink control channel in an embodiment of the present disclosure
  • FIG. 17 is another flowchart of a method for detecting a downlink control channel in an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram showing a self-carrier scheduling control channel in an embodiment of the present disclosure.
  • 19 is a schematic diagram showing a self-carrier scheduling control channel in an embodiment of the present disclosure.
  • FIG. 20 is a flow chart showing the terminal performing downlink control channel detection in the embodiment of the present disclosure.
  • the terminal supports multiple detection modes of the downlink control channel, and specifically includes primary detection and multi-level detection.
  • Multi-level detection can be secondary detection or more levels of detection.
  • the first-level detection is a detection method of a downlink control channel generally used by a terminal in the prior art, and the first-level detection is a detection manner of acquiring control information required for data channel detection by detecting a downlink control channel.
  • information such as a time-frequency resource location, a modulation and coding mode, and a HARQ process where the data channel is located is obtained, and the information is sufficient for the terminal to perform demodulation and decoding on the data sent by the network. That is, when the terminal detects the control information required for the data channel detection sent by the network to the terminal in a certain downlink control channel, the terminal may not perform the detection of the downlink control channel, and may perform the data channel on the data channel. Receive and acquire data sent by the network to the terminal.
  • downlink control channel detection may also acquire more information, such as carrying uplink control information for uplink transmission.
  • the multi-level detection is a detection manner of acquiring control information required for data channel detection by detecting at least two downlink control channels. If the number of detections is less than the number of detections defined by the multi-level detection, sufficient information for data channel detection cannot be obtained.
  • the number of detections of the multi-level detection may be 2, 3 or more, and preferably 2 detections are used.
  • the second implementation is taken as an example to introduce the specific implementation of the multi-level detection mode of the downlink control channel.
  • the detection efficiency of the first-level detection mode is relatively high, that is, the terminal can obtain the control information of the corresponding data channel by one detection, but the requirement for the terminal detection is also relatively high, that is, the terminal is required in each Active transmission resources (such as subframes) are detected to determine Whether or not there is a control channel of its own, this will result in more terminal power consumption.
  • the detection mode of the multi-level detection mode can reduce the frequency of detection to a certain extent, thereby saving terminal power consumption, but the detection complexity of the multi-level detection mode is relatively high.
  • the present disclosure provides a transmission/reception scheme for a downlink control channel, which can support multiple detection modes of the downlink control channel, so as to be able to support the multi-level detection mode for reducing the power consumption of the terminal and the requirement for reducing the detection complexity.
  • Technical support is provided by adaptively adjusting the downlink control channel detection mode.
  • the method for detecting a downlink control channel provided in this embodiment may be applied to a terminal side.
  • the detection method includes:
  • step 11 the detection mode of the downlink control channel is determined.
  • the terminal needs to determine a detection mode of the downlink control channel, where the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, wherein the first-level detection is to acquire a data channel detection station by using one downlink control channel detection.
  • the detection mode of the required control information, the multi-level detection is a detection manner of acquiring control information required for data channel detection by detecting at least two downlink control channels.
  • Step 12 Perform detection of a downlink control channel according to the determined detection mode of the downlink control channel.
  • the control information required for data channel detection may be read from the first downlink control channel.
  • the information carried in the downlink control channel under the primary detection is referred to herein as DCI (Downlink Control Indication).
  • the information included in the DCI may include: a time-frequency domain resource of the data channel, a modulation and coding mode, and a HARQ process. Table 1 below shows a format of the DCI:
  • the control information required for the next-level downlink control channel detection may be read from the first downlink control channel. According to The control information required for the downlink control channel detection is read, and the downlink control channel is detected step by step until the control information required for the data channel detection is acquired.
  • the terminal reads the control information required for the detection of the next-level downlink control channel from the first downlink control channel, and the first downlink control according to the control information required for the detection of the acquired downlink control channel. Detecting on the next-level control channel of the channel (assumed to be the second control channel), detecting control information required for acquiring the data channel detection from the second control channel (when the multi-level detection is level 2 detection), or Obtaining control information required for the next-level control channel of the second control channel (assumed to be the third control channel), and so on, detecting the downlink control channel step by step until acquiring the data channel detection required Control information.
  • control information required for downlink control channel detection includes at least one of a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a subcarrier number in which the downlink control channel is located.
  • This information can be used to determine the time-frequency location of the downlink control channel to detect the downlink control channel at the corresponding location.
  • the control information required for the data channel detection may include at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel. This information can be used to determine the time-frequency location of the data channel to detect the data channel at the corresponding location.
  • HARQ hybrid automatic retransmission
  • the terminal can perform one-level detection or multi-level detection according to the determined detection manner of the downlink control channel, so that the terminal can support multiple detection modes of the downlink control channel, which can be adaptive.
  • Technical support is provided to adjust the downlink control channel detection mode to balance the multi-level detection mode of reducing terminal power consumption and reduce the complexity of detection.
  • the method for detecting a downlink control channel provided in this embodiment may be applied to a terminal side.
  • the detection method includes:
  • Step 21 Detect the first downlink control channel, and obtain control signaling hierarchical information.
  • control signaling classification information is used to indicate the detection mode of the downlink control channel.
  • the detection mode of the downlink control channel includes the first-level detection and the multi-level detection.
  • the first-level detection refers to that the control information required for the data channel detection can be obtained only when the downlink control channel detection is needed.
  • the secondary downlink control channel detection can acquire the control information required for data channel detection.
  • Step 22 Determine, according to the control signaling hierarchical information, a detection mode of the downlink control channel.
  • this embodiment may send control signaling hierarchical information in the first downlink control channel.
  • 1-bit control signaling hierarchical information is transmitted.
  • the control signaling hierarchical information When the control signaling hierarchical information is 0, it indicates that the first downlink control channel is a first-level detected control channel.
  • the control signaling hierarchical information When the control signaling hierarchical information is 1, it indicates that the first downlink control channel is a control channel of the first level of multi-level detection. Therefore, according to the control signaling hierarchical information, when the control signaling hierarchical information is 0, it is determined that the detection mode is one-level detection, and vice versa, that is, multi-level detection.
  • the correspondence between the value of the control signaling hierarchical information and the detection mode can be defined by itself.
  • Step 23 Perform detection of a downlink control channel according to the determined detection mode of the downlink control channel.
  • the first downlink control channel may be detected by using a blind detection manner, and the control signaling hierarchical information is read from the first downlink control channel; or, according to the pre-acquired physical Layer layer signaling or high layer control signaling, determining a resource location of the first downlink control channel, and detecting the first downlink control channel, and reading the control signaling hierarchical information from the first downlink control channel.
  • step 23 the terminal may continue to read the control information required for the data channel detection from the first downlink control channel.
  • the terminal reads the control information required for the detection of the next-level downlink control channel from the first downlink control channel. According to the read control information required for downlink control channel detection, the downlink control channel is detected step by step until the control information required for the data channel detection is acquired.
  • the information carried in the first downlink control channel is recorded as DCI_1.
  • DCI_1 the information contained in DCI_1 is as shown in Table 2 below:
  • control signaling hierarchical information (1-bit) when the control signaling hierarchical information (1-bit) takes a value of 0, it indicates multi-level detection.
  • the other fields in Table 2 are control information required for indicating the next-level control channel detection of the first downlink control channel.
  • a specific example is given in Table 3 below.
  • CONTROL 2 indicates the first The next-level control channel of a downlink control channel.
  • the information in the other fields may be compiled into an index table according to a certain combination manner, and the same effect is achieved by indicating the detection method of the index value.
  • Table 4 A specific example is given in Table 4 below.
  • Subframe position Position in the frequency domain The location where the airspace appears Subcarrier position 001 Xx Yy Zz Ww 002 ?? 016
  • control signaling grading information (1-bit) takes a value of 1, it is represented as a level one detection.
  • other fields in Table 2 are control information required for data channel detection, and Table 5 below gives A specific example:
  • control information required for downlink control channel detection includes at least one of the following information.
  • a type information such as a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a subcarrier number where the downlink control channel is located.
  • the control information required for the data channel detection may include at least one of the following: information of a resource channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel.
  • HARQ hybrid automatic retransmission
  • the indication of the detection mode may be directly performed on the first downlink control channel, so that the terminal may detect and obtain the control signaling hierarchical information indicating the detection mode of the downlink control channel from the first downlink control channel, thereby determining the current
  • the detection mode of the first downlink control channel directly indicates the detection mode, which can save high-level signaling overhead.
  • the method for detecting a downlink control channel provided in this embodiment may be applied to a terminal side.
  • the detection method includes:
  • Step 31 Determine a detection mode of the downlink control channel according to the high-level control signaling received in advance.
  • the high layer control signaling includes a radio resource control layer (RRC) signaling or a media access control (MAC) message.
  • the network side device such as the base station, instructs the terminal to detect the specific downlink control channel in advance through the foregoing high layer control signaling.
  • RRC radio resource control layer
  • MAC media access control
  • the network side device instructs the terminal to detect the specific downlink control channel in advance through the foregoing high layer control signaling.
  • a MAC layer message entity is added to the communication system, and the message entity includes 1-bit information, and the network side device sends a message of the MAC layer message entity to the terminal, which is used to enable or disable the function corresponding to the multi-level detection of the terminal.
  • the terminal determines, according to the message, that the detection mode of the downlink control channel is multi-level detection, and vice versa.
  • an RRC signaling may be added to the RRC layer, where the signaling includes a 1-bit indication, which is used to enable or disable the function corresponding to the multi-level detection of the terminal.
  • the terminal determines that the detection mode of the downlink control channel is multi-level detection, and vice versa.
  • Step 32 Perform detection of a downlink control channel according to the determined detection mode of the downlink control channel.
  • the determined detection mode of the downlink control channel when the determined detection mode of the downlink control channel is the first-level detection, it may be detected by using the blind detection mode or according to the pre-acquired physical layer signaling or the upper layer control signaling.
  • the first downlink control channel reads the control information required for the data channel detection from the detected first downlink control channel.
  • the location of the first downlink control channel may be indicated to the terminal by using the physical layer signaling or the upper layer control signaling, so that the terminal detects the first downlink according to the physical layer signaling or the upper layer control signaling. Line control channel. After detecting the first downlink control channel, the terminal may read the control information required for the data channel detection from the first downlink control channel.
  • the first downlink control channel may be detected by using a blind detection mode or according to pre-acquired physical layer signaling or higher layer control signaling, and The control information required for the detection of the next-level downlink control channel is read from the first downlink control channel.
  • the downlink control channel is detected step by step according to the control information required for the downlink control channel detection, until the control information required for the data channel detection is acquired. That is, the terminal performs downlink control channel detection step by step according to control information required for detection of the next-level downlink control channel acquired from the downlink control channel of the upper layer, until the control information required for the data channel detection is acquired. .
  • control information required for downlink control channel detection includes at least one of the following information: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a downlink control channel.
  • Information such as the subcarrier number.
  • the control information required for the data channel detection may include at least one of the following: information of a resource channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel.
  • HARQ hybrid automatic retransmission
  • the detection mode of the downlink control channel is indicated to the terminal by using the high-level control signaling, which can reduce the detection complexity of the first downlink control channel and reduce the complexity of the terminal implementation.
  • the embodiments of the present disclosure enable the network to adjust the terminal to adopt the first-level detection or the multi-level detection as needed, and can simultaneously consider the multi-level detection mode for reducing the power consumption of the terminal and the requirement of reducing the detection complexity.
  • the method for transmitting a downlink control channel may be applied to a network side device, for example, to a base station on a network side.
  • the sending method includes:
  • Step 41 Select a transmission mode of the downlink control channel.
  • the sending manner of the downlink control channel includes a primary transmission and a multi-level transmission, and the primary transmission
  • the transmission mode is a transmission method for providing control information required for data channel detection by transmitting a downlink control channel
  • the multi-level transmission is a transmission mode for providing control information required for data channel detection by transmitting a plurality of downlink control channels. That is to say, the first-level transmission refers to that only one downlink control channel needs to be sent to provide control information required for data channel detection, and the multi-level transmission refers to that multiple downlink control channels need to be sent to provide a data channel detection. Required control information.
  • a network side device such as a base station, can select a transmission mode of a downlink control channel of a certain terminal according to requirements, for example, selecting one-level transmission or multi-level transmission.
  • Step 42 Perform transmission of a downlink control channel according to the selected transmission mode of the downlink control channel.
  • the control information required for data channel detection may be sent on the first control channel.
  • the control information required for the detection of the downlink control channel of the next-level downlink control channel may be sent on each downlink control channel before the last stage. And, the control information required for data channel detection is transmitted on the last stage downlink control channel.
  • control information required for downlink control channel detection includes at least one of the following: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a sub-control channel where the downlink control channel is located.
  • Information such as the carrier number.
  • the control information required for the data channel detection may include at least one of the following: information of a resource channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel.
  • HARQ hybrid automatic retransmission
  • the embodiment implements a method for the base station to select a downlink control channel, and then sends control information of the downlink control channel to the terminal according to the sending mode.
  • the base station can support multiple transmission modes of the downlink control channel.
  • the terminal can support multiple detection modes of the downlink control channel, such as the first-level detection and the multi-level detection in the foregoing embodiments, thereby providing technical support for adaptively adjusting the downlink control channel detection mode, which can reduce the power consumption of the terminal. Multi-level detection methods and the need to reduce detection complexity.
  • the method for transmitting a downlink control channel may be applied to a network side device, for example, to a base station on a network side.
  • the sending method includes:
  • Step 51 Select a transmission mode of the downlink control channel.
  • the process proceeds to step 52.
  • multi-level transmission the process proceeds to step 53.
  • the network side device such as a base station, can select a transmission mode of a downlink control channel of a certain terminal according to requirements, for example, selecting one-level transmission or multi-level transmission.
  • the transmission mode of the downlink control channel includes a first-level transmission and a multi-level transmission, where the first-level transmission refers to that only one downlink control channel needs to be sent to provide control information required for data channel detection, and the multi-level transmission refers to Multiple downlink control channels need to be sent to provide the control information needed for data channel detection.
  • Step 52 When the transmission mode of the selected downlink control channel is one-level transmission, signaling classification information indicating a transmission mode using the primary transmission and control information required for data channel detection are transmitted on the first control channel.
  • Step 53 When the transmission mode of the selected downlink control channel is multi-level transmission, signaling classification information for indicating the multi-level transmission mode is sent on the first control channel.
  • the control information required for the detection of the next-level downlink control channel is transmitted on the first control channel before the last stage, and the control information required for the data channel detection is transmitted on the last-stage downlink control channel.
  • control information required for downlink control channel detection includes at least one of the following: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a sub-control channel where the downlink control channel is located.
  • Information such as the carrier number.
  • the control information required for the data channel detection may include at least one of the following: information of a resource channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel.
  • HARQ hybrid automatic retransmission
  • the base station may further send physical layer signaling or high layer control signaling for indicating the resource location of the first downlink control channel to the terminal, so as to reduce the complexity of detecting the first downlink control channel by the terminal. degree.
  • the base station may not send the physical layer signaling or the upper layer control signaling, and the terminal may detect the first downlink control channel by using blind detection.
  • the lengths of the control messages sent on each downlink control channel may not be equal.
  • the control message sent on the downlink control channel may be zero-padded, or the control message sent on the downlink control channel may be compressed, where the control messages after the zero-padding operation or the compression operation are performed.
  • the lengths are the same, which can reduce the complexity of the terminal to control message detection.
  • the present embodiment can determine the maximum length of the control message of the downlink control channel of each level. And performing a zero-padding operation on the control message whose length is less than the maximum length according to the maximum length, and acquiring a control message after the zero-padding operation.
  • the lengths of the respective control messages are the same.
  • the embodiment may determine a final length according to the length of the control message of each downlink control channel. According to the final length, a predetermined field in the control message whose length is greater than the final length is discarded, and a compressed control message is obtained. The discarded predetermined field is sent to the terminal by high layer control signaling. Specifically, the foregoing final length may select a minimum length of a control message of each downlink control channel.
  • the above high layer control signaling may be RRC signaling or MAC layer message.
  • the network side device indicates the first-level transmission or the multi-level transmission by using the signaling classification information carried by the first downlink control channel, which can reduce the high-level signaling overhead required for the transmission mode indication.
  • the network side device can control the terminal to adjust the detection mode of the downlink control channel, and perform the first-level detection or the multi-level detection, so as to provide technical support for adaptively adjusting the downlink control channel detection mode, so as to reduce the terminal. Multi-level detection of power consumption and the need to reduce detection complexity.
  • the method for transmitting a downlink control channel may be applied to a network side device, for example, to a base station on a network side.
  • the sending method includes:
  • Step 61 Select a transmission mode of the downlink control channel.
  • the process proceeds to step 62.
  • multi-level transmission is selected, the process proceeds to step 63.
  • the network side device such as a base station, can select a transmission mode of a downlink control channel of a certain terminal according to requirements, for example, selecting one-level transmission or multi-level transmission.
  • Step 62 When the selected downlink control channel is sent in one level, the control information required for data channel detection is sent on the first control channel.
  • Step 63 When the transmission mode of the selected downlink control channel is multi-level transmission, the control information required for the detection of the next-level downlink control channel is sent on each downlink control channel, and on the downlink control channel of the last stage. Send control information required for data channel detection.
  • the base station needs to send the downlink control channel detection in the downlink control channel.
  • the control information or the control information required to transmit the data channel detection is no longer sent in the first downlink control channel.
  • the physical layer signaling or the upper layer for indicating the detection mode of the downlink control channel may be sent to the terminal in advance.
  • Control signaling wherein the detection manner of the downlink control channel is in one-to-one correspondence with the transmission manner of the downlink control channel. In this way, the terminal can determine the detection mode of the downlink control channel to be used according to the physical layer signaling or the upper layer control signaling.
  • control information required for downlink control channel detection includes at least one of the following: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a sub-control channel where the downlink control channel is located.
  • Information such as the carrier number.
  • the control information required for the data channel detection may include at least one of the following: information of a resource channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission (HARQ) process information corresponding to the data channel.
  • HARQ hybrid automatic retransmission
  • the network side device indicates the first level transmission or the multi-level transmission by using the high layer control signaling, which can reduce the complexity of the terminal performing the first downlink control channel detection.
  • the network side device can control the terminal to adjust the detection mode of the downlink control channel, and perform the first-level detection or the multi-level detection, so as to provide technical support for adaptively adjusting the downlink control channel detection mode, so as to reduce the terminal. Multi-level detection of power consumption and the need to reduce detection complexity.
  • the embodiment provides a terminal 70, including:
  • the determining module 71 is configured to determine a detection mode of the downlink control channel.
  • the detecting module 72 is configured to perform detection of a downlink control channel according to the determined detection manner of the downlink control channel.
  • the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, where the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, and the multi-level detection is The detection mode of the control information required for data channel detection is obtained by at least two downlink control channel detections.
  • this embodiment provides another terminal 80, including:
  • the determining module 81 is configured to determine a detection mode of the downlink control channel.
  • the detecting module 82 is configured to perform detection of the downlink control channel according to the determined detection manner of the downlink control channel.
  • the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, where the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, and the multi-level detection is The detection mode of the control information required for data channel detection is obtained by at least two downlink control channel detections.
  • the determining module 81 includes:
  • the first detecting unit 811 is configured to detect the first downlink control channel, and obtain control signaling hierarchical information.
  • the first determining unit 812 is configured to determine, according to the control signaling hierarchical information, a detection mode of the downlink control channel.
  • the control signaling hierarchical information is used to indicate a detection mode of the downlink control channel.
  • the first detecting unit 811 includes:
  • the first blind detecting unit 8111 is configured to detect the first downlink control channel by using a blind detection manner, and read the control signaling hierarchical information from the first downlink control channel. or,
  • the second detecting unit 8112 is configured to determine a resource location of the first downlink control channel according to the pre-acquired physical layer signaling or the high layer control signaling, and detect the first downlink control channel, and perform the first downlink control.
  • the control signaling hierarchical information is read in a channel.
  • the detecting module 82 includes:
  • the first reading unit 821 is configured to read control information required for the data channel detection from the first downlink control channel when the determined detection mode of the downlink control channel is level one detection.
  • the second reading unit 822 is configured to: when the determined detection mode of the downlink control channel is multi-level detection, read the next downlink control channel detection required by the first downlink control channel from the first downlink control channel. Control information of the downlink control channel is detected step by step according to the read control information required for downlink control channel detection until the control information required for the data channel detection is acquired.
  • this embodiment provides another terminal 90, including:
  • the determining module 91 is configured to determine a detection mode of the downlink control channel.
  • the detecting module 92 is configured to perform detection of a downlink control channel according to the determined detection manner of the downlink control channel.
  • the detection mode of the downlink control channel includes a first-level detection and a multi-level detection, where the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, and the multi-level detection is The detection mode of the control information required for data channel detection is obtained by at least two downlink control channel detections.
  • the determining module 91 includes:
  • the second determining unit 911 is configured to determine, according to the high-level control signaling received in advance, a detection mode of the downlink control channel, where the high-layer control signaling includes a radio resource control layer signaling or a medium access control layer message.
  • the detecting module 92 includes:
  • the third reading unit 921 is configured to detect the first downlink control by using a blind detection mode or according to pre-acquired physical layer signaling or high layer control signaling, when the determined detection mode of the downlink control channel is the first level detection. Channel; reading control information required for the data channel detection from the detected first downlink control channel.
  • the fourth reading unit 922 is configured to detect the first downlink control by using a blind detection mode or according to pre-acquired physical layer signaling or high layer control signaling, when the determined detection mode of the downlink control channel is multi-level detection. Channel; reading control information required for detection of the next-level downlink control channel from the first downlink control channel; detecting downlink control channel according to the control information required for the downlink control channel read, until obtaining The data channel detects required control information.
  • the control information required for the downlink control channel detection includes: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a subcarrier number in which the downlink control channel is located. At least one of them.
  • the control information required for the data channel detection includes at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission HARQ process information corresponding to the data channel.
  • the terminal can perform one-level detection or multi-level detection according to the determined detection manner of the downlink control channel, so that the terminal can support multiple detection modes of the downlink control channel, and can adaptively adjust the downlink control channel.
  • the detection method provides technical support to balance the multi-level detection method for reducing the power consumption of the terminal and the requirement for reducing the detection complexity.
  • the embodiment provides a network side device 100, including:
  • the selecting module 101 is configured to select a sending mode of the downlink control channel.
  • the first sending module 102 is configured to perform downlink control channel transmission according to the selected transmission mode of the downlink control channel.
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides a manner of transmitting control information required for data channel detection.
  • this embodiment provides another network side device 110, including:
  • the selecting module 111 is configured to select a sending mode of the downlink control channel.
  • the first sending module 112 is configured to perform downlink control channel transmission according to the selected transmission mode of the downlink control channel.
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides control information required for data channel detection.
  • the first sending module 112 includes:
  • the first sending unit 1121 is configured to: when the sending mode of the selected downlink control channel is a primary transmission, send signaling classification information and a data channel detection manner for indicating a transmission mode using the primary transmission on the first control channel. Required control information.
  • the second sending unit 1122 is configured to: when the sending mode of the selected downlink control channel is multi-level transmission, send signaling classification information indicating that the multi-level transmission mode is used on the first control channel; before the last stage The control information required for the downlink downlink control channel detection of each downlink control channel is sent on each downlink control channel, and the control information required for the data channel detection is sent on the last downlink control channel.
  • the network side device 110 may further include:
  • the second sending module 113 is configured to send physical layer signaling or high layer control signaling for indicating a resource location of the first downlink control channel to the terminal before the sending, by the first sending module, the downlink control channel is sent. .
  • the first sending module 112 may further include:
  • the control message adjusting unit 1123 is configured to perform a zero-padding operation on the control message sent on the downlink control channel when the transmission mode of the selected downlink control channel is multi-level transmission, or compress the control message sent on the downlink control channel.
  • the operation wherein the lengths of the respective control messages after the zero-padding operation or the compression operation are the same.
  • control message adjusting unit 1123 includes:
  • the zero-padding processing unit 11231 is configured to determine a maximum length of the control message of each downlink control channel; according to the maximum length, perform a zero-padding operation on the control message whose length is less than the maximum length, and obtain a control message after the zero-padding operation .
  • control message adjusting unit 1123 includes:
  • the compression processing unit 11232 is configured to determine a final length according to the length of the control message of each downlink control channel, and according to the final length, discard the predetermined field in the control message whose length is greater than the final length, and obtain compression The subsequent control message is sent to the terminal by the higher layer control signaling.
  • this embodiment provides another network side device 120, including:
  • the selecting module 121 is configured to select a sending mode of the downlink control channel.
  • the first sending module 122 is configured to perform downlink control channel transmission according to the selected transmission mode of the downlink control channel.
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides a manner of transmitting control information required for data channel detection.
  • the first sending module 122 includes:
  • the third sending unit 1221 is configured to: when the selected downlink control channel is sent in one level, send control information required for data channel detection on the first control channel.
  • the fourth sending unit 1222 is configured to: when the selected downlink control channel is sent in multiple stages, send the next downlink control of each level of the downlink control channel on each downlink control channel before the last stage.
  • the control information required for channel detection and the control information required for data channel detection are transmitted on the last stage downlink control channel.
  • the network side device 120 described above may further include:
  • the third sending module 123 is configured to send, to the terminal, physical layer signaling or high layer control signaling for indicating a detection mode of the downlink control channel, before the sending, by the first sending module, the The detection mode of the downlink control channel is in one-to-one correspondence with the transmission mode of the downlink control channel.
  • the control information required for the downlink control channel detection includes: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a subcarrier number in which the downlink control channel is located. At least one of them.
  • the control information required for the data channel detection includes at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission HARQ process information corresponding to the data channel.
  • the network side device can control the terminal to adjust the detection mode of the downlink control channel, and perform the first-level detection or the multi-level detection, so as to provide technical support for adaptively adjusting the downlink control channel detection mode, so as to reduce the Multi-level detection of terminal power consumption and the need to reduce detection complexity.
  • FIG. 13 is a block diagram of a terminal 130 of another embodiment of the present disclosure.
  • the mobile terminal shown in FIG. 13 includes at least one processor 1301, a memory 1302, a photographing component 1303, and a user interface 1304.
  • the various components in mobile terminal 1300 are coupled together by a bus system 1305.
  • the bus system 1305 is used to implement connection communication between these components.
  • the bus system 1305 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 1305 in FIG.
  • the user interface 1304 can include a display or a pointing device (eg, a touchpad or touch screen, etc.).
  • a display or a pointing device eg, a touchpad or touch screen, etc.
  • the memory 1302 in the embodiments of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM). It is used as an external cache.
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 1302 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 13021 and an application 13022.
  • the operating system 13021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 13022 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 13022.
  • the program or instruction stored by calling the memory 1302, specifically, may be a program or instruction stored in the application 13022.
  • the processor 1301 is configured to determine a detection mode of the downlink control channel, and perform detection of the downlink control channel according to the determined detection mode of the downlink control channel, where the detection mode of the downlink control channel includes a first-level detection and multiple levels.
  • the detection, the first-level detection is a detection manner of acquiring control information required for data channel detection by using one downlink control channel detection, where the multi-level detection is to acquire control information required for data channel detection by using at least two downlink control channel detections. Detection method.
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in a form of software.
  • the processor 1301 may be a general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (Application). Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1302, and the processor 1301 reads the information in the memory 1302 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 1301 is further configured to: detect a first downlink control channel, obtain control signaling hierarchical information, and determine, according to the control signaling hierarchical information, a detection mode of the downlink control channel; where the control signaling hierarchical information Used to indicate the detection mode of the downlink control channel.
  • the processor 1301 is further configured to: detect, by using a blind detection manner, the first downlink control channel, and read the control signaling hierarchical information from the first downlink control channel; or, according to the pre-acquired physical layer information And determining, by the high-level control signaling, a resource location of the first downlink control channel, and detecting the first downlink control channel, and reading the control signaling hierarchical information from the first downlink control channel.
  • the processor 1301 is further configured to: when the determined detection mode of the downlink control channel is the first-level detection, read the control information required for the data channel detection from the first downlink control channel.
  • the processor 1301 is further configured to: when the determined detection mode of the downlink control channel is multi-level detection, read the downlink downlink control channel detection required by the first downlink control channel from the first downlink control channel. Control information of the downlink control channel is detected step by step according to the read control information required for downlink control channel detection until the control information required for the data channel detection is acquired.
  • the processor 1301 is further configured to determine, according to the high-level control signaling received in advance, a detection mode of the downlink control channel, where the high-layer control signaling includes a radio resource control layer signaling or a media access control layer message.
  • the processor 1301 is further configured to: when the determined detection mode of the downlink control channel is the first-level detection, detect the first downlink control channel by using a blind detection mode or according to the pre-acquired physical layer signaling or the upper layer control signaling. And reading control information required for the data channel detection from the detected first downlink control channel.
  • the processor 1301 is further configured to: when the determined detection mode of the downlink control channel is multi-level detection, detect the first downlink control channel by using a blind detection mode or according to the pre-acquired physical layer signaling or the high layer control signaling. And reading control information required for detection of the next-level downlink control channel from the first downlink control channel; detecting downlink control channel according to the control information required for the downlink control channel read, until the acquisition is performed The control information required for data channel detection.
  • control information required for the downlink control channel detection includes: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and at least a subcarrier number of the downlink control channel.
  • the control information required for the data channel detection includes at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission HARQ process information corresponding to the data channel.
  • the terminal 1300 of the embodiment of the present disclosure can perform one-level detection or multi-level detection according to the determined detection manner of the downlink control channel, so that the terminal can support multiple detection modes of the downlink control channel, which can be adaptively adjusted downward.
  • the control channel detection mode provides technical support to balance the multi-level detection mode of reducing the power consumption of the terminal and the requirement of reducing the detection complexity.
  • FIG. 14 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the mobile terminal 140 in FIG. 14 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or a vehicle-mounted computer.
  • PDA personal digital assistant
  • the mobile terminal 1400 in FIG. 14 includes a power source 1410, a memory 1420, an input unit 1430, a display unit 1440, a photographing component 1450, a processor 1460, a WIFI (Wireless Fidelity) module 1470, an audio circuit 1480, and an RF circuit 14140, wherein the photographing component
  • the 1450 includes a first camera and a second camera.
  • the input unit 1430 can be configured to receive information input by the user and generate signal input related to user settings and function control of the mobile terminal 1400.
  • the input unit 1430 may include a touch panel 1431.
  • the touch panel 1431 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 1431), and according to the preset
  • the programmed program drives the corresponding connection device.
  • the touch panel 1431 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1460 is provided and can receive commands from the processor 1460 and execute them.
  • the touch panel 1431 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1430 may further include other input devices 1432.
  • the other input devices 1432 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 1440 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal.
  • the display unit 1440 can include a display panel 1441.
  • the display panel 1441 can be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 1431 may cover the display panel 1441 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 1460 to determine the type of the touch event, and then the processor The 1460 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display The interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 1460 is a control center of the mobile terminal, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 1421, and calling the second memory.
  • the data in 1422 performs various functions and processing data of the mobile terminal, thereby performing overall monitoring on the mobile terminal.
  • the processor 1460 can include one or more processing units.
  • the detection mode of the downlink control channel is determined by calling a software program and/or module stored in the first memory 1421 and/or data in the second memory 1422; according to the determined downlink control channel
  • the detection mode of the downlink control channel includes: a first-level detection and a multi-level detection, where the first-level detection is a control required to acquire a data channel detection by using one downlink control channel detection.
  • the method for detecting information, the multi-level detection is a detection manner of acquiring control information required for data channel detection by detecting at least two downlink control channels.
  • the processor 1460 is further configured to detect a first downlink control channel, obtain control signaling hierarchical information, and determine, according to the control signaling hierarchical information, a detection mode of the downlink control channel, where the control signaling hierarchical information Used to indicate the detection mode of the downlink control channel.
  • the processor 1460 is further configured to: detect, by using a blind detection manner, the first downlink control channel, and read the control signaling hierarchical information from the first downlink control channel; or, according to the pre-acquired physical layer information And determining, by the high-level control signaling, a resource location of the first downlink control channel, and detecting the first downlink control channel, and reading the control signaling hierarchical information from the first downlink control channel.
  • the processor 1460 is further configured to: when the determined detection mode of the downlink control channel is the first level detection, read the control information required for the data channel detection from the first downlink control channel.
  • the processor 1460 is further configured to: when the determined detection mode of the downlink control channel is multi-level detection, read the downlink control channel detection required by the next downlink control channel from the first downlink control channel. Control information of the downlink control channel is detected step by step according to the read control information required for downlink control channel detection until the control information required for the data channel detection is acquired.
  • the processor 1460 is further configured to determine, according to the high-level control signaling received in advance, a detection mode of the downlink control channel, where the high-layer control signaling includes a radio resource control layer signaling or a media access control layer message.
  • the processor 1460 is further configured to: when the determined detection mode of the downlink control channel is the first-level detection, detect the first downlink control channel by using a blind detection mode or according to the pre-acquired physical layer signaling or the upper layer control signaling. And reading control information required for the data channel detection from the detected first downlink control channel.
  • the processor 1460 is further configured to: when the determined detection mode of the downlink control channel is multi-level detection, detecting the first downlink control channel by using a blind detection mode or according to the pre-acquired physical layer signaling or the upper layer control signaling. And reading control information required for detection of the next-level downlink control channel from the first downlink control channel; detecting downlink control channel according to the control information required for the downlink control channel read, until the acquisition is performed The control information required for data channel detection.
  • control information required for the downlink control channel detection includes: a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and at least a subcarrier number of the downlink control channel.
  • the control information required for the data channel detection includes at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission HARQ process information corresponding to the data channel.
  • the terminal 140 of the embodiment of the present disclosure can perform one-level detection or multi-level detection according to the determined detection manner of the downlink control channel, so that the terminal can support multiple detection modes of the downlink control channel, which can be adaptively adjusted downward.
  • the control channel detection mode provides technical support to balance the multi-level detection mode of reducing the power consumption of the terminal and the requirement of reducing the detection complexity.
  • an embodiment of the present disclosure provides another structure of a network side device, including:
  • the transceiver 1501 receives and transmits data under the control of the processor 1504. Specifically, the transceiver 1501 can receive a paging message that is sent by the base station and can determine a paging type, where the paging type includes an access network initiated access network paging. Or core network paging initiated by the core network.
  • the processor 1504 is configured to read a program in the memory 1505 and perform the following process:
  • the sending mode includes a first-level sending and a multi-level sending, where the first-level sending is a sending manner of providing control information required for data channel detection by transmitting a downlink control channel, and the multi-level sending is performed by sending multiple times.
  • the downlink control channel provides a manner of transmitting control information required for data channel detection.
  • bus architecture may include any number of interconnected buses and bridges, which will include various ones of the memory represented by processor 1504 and memory represented by memory 1505.
  • the circuits are linked together.
  • the bus 1500 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 1503 provides an interface between bus 1500 and transceiver 1501.
  • the transceiver 1501 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 1504 is transmitted over wireless medium through transceiver 1501 and antenna 1502. Further, antenna 1502 also receives data and transmits the data to processor 1504 via transceiver 1501.
  • the processor 1504 is responsible for managing the bus 1500 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1505 can be used to store data used by the processor 1504 in performing operations.
  • the processor 1504 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 1504 is further configured to: when the selected downlink control channel is sent in the first-level mode, send, on the first control channel, the signaling hierarchical information used to indicate the sending mode that uses the primary transmission. And control information required for data channel detection.
  • the processor 1504 is further configured to: when the selected downlink control channel is sent in a multi-level manner, send signaling classification information indicating that the multi-level transmission mode is used on the first control channel; The control information required for the downlink downlink control channel detection of each downlink control channel is sent on each downlink control channel before the last stage, and the control required for transmitting the data channel detection on the last downlink control channel is performed. information.
  • the processor 1504 is further configured to send, to the terminal, physical layer signaling or high layer control signaling for indicating a resource location of the first downlink control channel.
  • the processor 1504 can also be used when the selected downlink control channel is When the sending mode is multi-level transmission, the control message sent on the downlink control channel is zero-padded, or the control message sent on the downlink control channel is compressed, wherein after the zero-padding operation or the compression operation Each control message is the same length.
  • the processor 1504 is further configured to determine a maximum length of a control message of each downlink control channel, and perform a zero-padding operation on the control message whose length is less than the maximum length according to the maximum length to obtain zero-padding Control message after operation.
  • the processor 1504 is further configured to determine, according to a length of a control message of each downlink control channel, a final length, and according to the final length, a control message whose length is greater than the final length
  • the predetermined field is discarded, and the compressed control message is obtained; the predetermined field that is discarded is sent to the terminal by high layer control signaling.
  • the processor 1504 is further configured to: when the selected downlink control channel is sent in a primary mode, send control information required for data channel detection on the first control channel.
  • the processor 1504 is further configured to: when the selected downlink control channel is sent in multiple stages, send the downlink control channel of each level on each downlink control channel before the last stage.
  • the control information required for the downlink control channel detection in the next stage, and the control information required for the data channel detection are transmitted on the last-stage downlink control channel.
  • the processor 1504 is further configured to send, to the terminal, physical layer signaling or high layer control signaling, which is used to indicate a detection mode of the downlink control channel, where the downlink control channel is detected by using
  • the transmission manners of the downlink control channels are in one-to-one correspondence.
  • control information required for the downlink control channel detection includes at least one of a time domain location of the downlink control channel, a frequency domain location of the downlink control channel, a spatial domain location of the downlink control channel, and a subcarrier number where the downlink control channel is located. item.
  • the control information required for the data channel detection includes at least one of a resource location of the data channel, a modulation and coding mode adopted by the data channel, and hybrid automatic retransmission HARQ process information corresponding to the data channel.
  • the network side device can control the terminal to adjust the detection mode of the downlink control channel, and perform the first-level detection or the multi-level detection, so as to provide technical support for adaptively adjusting the downlink control channel detection mode, so as to reduce the Multi-level detection of terminal power consumption and the need to reduce detection complexity.
  • an embodiment of the present disclosure provides a method for detecting a downlink control channel, where the method specifically includes:
  • Step 1601 In the first downlink control channel, detect physical layer indication information sent by the network side device.
  • the first downlink control channel may be a physical downlink control channel or a physical downlink shared channel.
  • the physical layer indication information refers to the physical layer control signaling, which is used to indicate the resource location information of the second downlink control channel carrying the control information, and the physical layer control signaling manner can reduce the detection complexity of the terminal to a certain extent. , save the processing resources of the terminal.
  • Step 1602 Determine resource location information of the second downlink control channel carrying the control information according to the physical layer indication information.
  • the terminal can determine the resource location information of the second downlink control channel that is scheduled by the network side device for the control information sent by the terminal by analyzing the physical layer indication information.
  • Step 1603 Detect control information in the second downlink control channel according to the resource location information.
  • the terminal can learn the corresponding resource bit information, and detect the second downlink control channel corresponding to the resource location information, so that only the downlink control channel carrying the control information is detected, without Detection of all downlink control channels can reduce the number of detections of the terminal and reduce the power consumption of the terminal.
  • the terminal of the embodiment of the present disclosure obtains the indication information sent by the network side device by detecting the first downlink control channel, and then determines the resource location information of the second downlink control channel carrying the downlink control information by parsing the indication information, and only The downlink control information is detected in the second downlink control channel indicated in the indication information, and the number of detections of the terminal is reduced to reduce power consumption of the terminal.
  • the detection complexity of the terminal is reduced since the configuration signaling of the discontinuous transmission originally performed in L2/L3 is indicated by the physical layer indication information, the detection complexity of the terminal is reduced.
  • the method for detecting a downlink control channel in the embodiment of the present disclosure specifically includes the following steps:
  • Step 1701 In the first downlink control channel, the physical layer indication information sent by the network side device of the local cell to which the terminal is located or the neighboring cell of the local cell is detected.
  • the terminal detects the first downlink control channel, and obtains the physical layer indication information that is sent by the network side device to which the local cell belongs, and the physical layer indication information is used to indicate the second downlink control channel of the local cell that carries the control information.
  • the resource location information; or, the terminal detects the first downlink control channel, and obtains the physical layer indication information sent by the network side device to which the neighboring cell belongs, and the neighboring cell shares the same physical indication information with the local cell, then according to the receiving
  • the physical layer indication information sent by the network side device of the neighboring cell may also obtain the resource location information of the second downlink control channel carrying the control information of the local cell.
  • the step 1701 is specifically implemented by: acquiring high-layer control signaling sent by the network side device; determining, according to the high-layer control signaling, a sending period and an offset of the physical layer indication information; according to the sending period and the offset And determining a subframe number of the downlink control channel carrying the physical layer indication information; and detecting physical layer indication information sent by the network side device in the downlink control channel corresponding to the subframe number.
  • idx is the subframe number of the downlink control channel carrying the physical layer indication information
  • T is the transmission period of the indication information
  • offset is the offset of the transmission indication information; that is, T and offset are notified by the high layer signaling, and mod is taken
  • the terminal learns that the physical layer indication information is sent in a period of eight subframes, and the offset is 0, that is, the terminal is in the integer multiple of the number of -1 (subframe).
  • the subframe whose number starts from 0) detects whether there is physical layer indication information.
  • the detection and indication manner of FIG. 19 is substantially the same as that of FIG. 18, and therefore will not be described again.
  • the method further includes: if the terminal does not detect the physical layer indication information, feeding back a non-response message to the network side device (NACK message); or, it is determined that the physical layer indication information is not carried in the downlink control channel corresponding to the number. That is to say, the terminal has two processing modes for detecting physical layer indication information, one is sending confirmation mode, and the other is sending no confirmation mode.
  • the sending of the unacknowledged mode means that the terminal first performs periodic detection according to the high-level signaling configuration. For example, the terminal learns that the period of sending the physical layer indication information is T, the offset is offset, and the terminal is in the subframe number according to the high layer signaling.
  • the specific implementation of the information that the terminal detects by the first downlink control channel to obtain the physical layer indication is obtained by using a high-level signaling configuration manner, and the terminal can also implement the method by blind detection or a prior physical layer.
  • the specific implementation is not limited.
  • all the manners applicable to the implementation of step 1701 are also applicable to the implementation of step 1601 in the first embodiment.
  • Step 1702 Extract the physical layer indication information to obtain a first index value of the first downlink control channel carrying the control information.
  • the physical layer indication information can be carried to a predefined special field for indication, special words Different values of the segments indicate different resource locations, and the index value may be a value of a special field, or may be a code having a certain mapping relationship with a value of a special field.
  • Step 1703 Determine resource location information of the second downlink control channel corresponding to the first index value according to the correspondence between the preset index value and the resource location.
  • the resource location information of the second downlink control channel includes at least one of a downlink subframe number, a frequency domain location, a spatial domain location, and a carrier number where the second downlink control channel is located.
  • the possible values of these special fields may be compiled into an index table according to a certain combination. As shown in the following Table 6, the index table is a correspondence between the index value and the possible value of the special field indicating the location of the resource. If the value of the special field is different, the physical layer indication information is only required to be parsed. The index value can be obtained by looking up the resource location of the corresponding downlink control channel.
  • the index value is a code with a certain mapping relationship with the value of the special field
  • the field xx is an indication field of the subframe number
  • the field yy is an indication field of the frequency domain location
  • the field zz is an indication field of the spatial domain location
  • the field ww is a carrier.
  • the numbered indicator field the value information of the indication field corresponding to the first index value can be found by searching the table, and then the specific resource location can be obtained according to the specific value of the indication field.
  • Step 1704 Detect control information in the second downlink control channel according to the resource location information.
  • the control information includes resource location information occupied by a transport channel carrying service data, such as time-frequency domain allocation, MCS, and the like.
  • the control information sent by the network side device may also be transmitted to the physical layer signaling, that is, the control information is specifically the physical layer control information.
  • the physical layer indication information may indicate the control information transmitted in the same carrier, and Control information transmitted within the carrier different from the physical layer indication information may be indicated. That is, the physical layer indication information and the control information sent by the network side device can be transmitted in a single carrier (as shown in FIG. 18), or can be transmitted in multiple carriers (as shown in FIG. 19, the indication information is transmitted in the carrier 1, and the control is performed. Information is transmitted in carrier 2).
  • the step of the terminal detecting the control information by detecting the control signaling twice is specifically as follows:
  • Step 2001 The terminal receives and detects the first control channel information on the carrier that carries the first control channel information.
  • the detection method may be configured by the terminal according to terminal blind detection or based on a priori physical layer or higher layer signaling.
  • Step 2002 The terminal reads the resource allocation information given in the first control channel. For example, a time domain appearance position of the second control channel, or a frequency domain appearance position, or beam information, or a carrier number, or the like.
  • Step 2003 The terminal detects the second control channel information according to the information read in the previous step. Other valid information may be combined during the testing process.
  • Step 2004 The terminal learns the location of the data channel transmission according to the result of the second control channel detection.
  • the second control channel detection Such as time position, or frequency domain location, or Modulation and Coding Scheme (MCS), or HARQ process.
  • MCS Modulation and Coding Scheme
  • the terminal detects the downlink control channel corresponding to the physical layer indication information by using the blind detection, the a priori physical layer, or the upper layer control signaling, and detects that the downlink control channel obtains the physical layer indication information, and according to the physical layer indication information,
  • the second downlink control channel corresponding to the resource location information is detected to obtain corresponding control information, so as to reduce the number of detections of the terminal and reduce the power consumption of the terminal.
  • the terminal of the embodiment of the present disclosure obtains the indication information sent by the network side device by detecting the first downlink control channel, and then determines the resource location information of the second downlink control channel carrying the downlink control information by parsing the indication information, and only The downlink control information is detected in the second downlink control channel indicated in the indication information, and the number of detections of the terminal is reduced to reduce power consumption of the terminal.
  • the detection complexity of the terminal is reduced since the configuration signaling of the discontinuous transmission originally performed in L2/L3 is indicated by the physical layer indication information, the detection complexity of the terminal is reduced.
  • the terminal may be a mobile phone (or mobile phone), or other device capable of transmitting or receiving wireless signals, including user equipment (UE), personal digital assistant (PDA), wireless modem, wireless communication device.
  • UE user equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • CPE Customer Premise Equipment
  • smart appliances or other failing to convert mobile signals into WiFi signals
  • a person's operation can spontaneously communicate with a device communicating with a mobile communication network.
  • the form of the base station is not limited, and may be a Macro Base Station, a Pico Base Station, a Node B (referred to as a 3G mobile base station), an enhanced base station (eNB), A home enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), a relay station, an access point, an RRU (Remote Radio Unit), an RRH (Remote Radio Head), and the like.
  • a 3G mobile base station referred to as a 3G mobile base station
  • eNB enhanced base station
  • Femto eNB or Home eNode B or Home eNB or HeNB HeNB
  • a relay station an access point
  • an RRU Remote Radio Unit
  • RRH Remote Radio Head
  • the base station may be replaced with other functional nodes, such as a central unit (CU, Central Unit) and a distributed unit (DU, distributed unit).
  • CU central unit
  • DU distributed unit
  • the network side node includes a central unit and a distributed unit
  • the user side node is a terminal (UE).
  • a central unit controls a plurality of distributed units deployed in a certain area, and these distributed units may also be referred to as a Transmission Reception Point (TRP).
  • TRP Transmission Reception Point
  • the TRP and the terminal perform air interface transmission.
  • One or more transmission points can simultaneously serve the terminal for data transmission.
  • the network side wireless signaling and data transceiving nodes are collectively referred to herein as base stations, including but not limited to eNBs of the LTE system and CU/DUs in the 5G technology (the specific transceiver point is TRP).
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such an understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the prior art or a portion of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk. The medium to store the program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本公开了下行控制信道的检测方法、发送方法、网络侧设备及终端,其方法包括:确定下行控制信道的检测方式;根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。

Description

下行控制信道的检测方法、发送方法、网络侧设备及终端
相关申请的交叉参考
本申请主张在2016年11月4日在中国提交的中国专利申请号No.201610966566.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本实施例涉及移动通信技术领域,尤其涉及一种下行控制信道的检测方法、发送方法、网络侧设备及终端。
背景技术
在移动通信系统中,终端通常需要对控制信道进行检测,从而获取数据信道所在的时频资源位置、调制编码方式、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程等信息,以用于数据解调和解码。
终端可能采用一级检测方式,检测下行控制信道。这里的一级检测是指终端只需要一次下行控制信道检测即可获取数据信道检测所需的控制信息,从而可以获取数据信道所在的时频资源位置、调制编码方式、HARQ进程等信息,进而可以对网络发送的数据进行解调和解码。也就是说,终端一旦在某个下行控制信道中检测到网络发送给本终端的用于数据信道检测所需的控制信息时,终端可以不再进行下行控制信道的检测,即可对所述数据信道进行接收,获取网络发送的数据。可以看出,一级检测的检测效率比较高,即终端通过一次检测即可获取相应的数据信道的控制信息,但是这对于终端检测的要求也比较高,即要求终端在每一个活跃的传输资源(如子帧)都进行检测,以判断是否有属于自己的控制信道到达。
另外,还可能会提出控制信道的多级检测的方式,多级检测方式通常其检测复杂度相对较高。
发明内容
(一)要解决的技术问题
本公开文本实施例提供了一种下行控制信道的检测方法、发送方法、网络侧设备及终端,以解决单一的下行控制信道不能兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求的问题。
(二)技术方案
根据本公开文本实施例的一个方面,提供了一种下行控制信道的检测方法,包括:
确定下行控制信道的检测方式;以及
根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;
其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
根据本公开文本实施例的另一方面,提供了一种下行控制信道的发送方法,包括:
选择下行控制信道的发送方式;以及
根据所选择的下行控制信道的发送方式,进行下行控制信道的发送;
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
根据本公开文本实施例的另一方面,提供了一种终端,包括:
确定模块,用于确定下行控制信道的检测方式;以及
检测模块,用于根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;
其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
根据本公开文本实施例的另一方面,提供了一种网络侧设备,包括:
选择模块,用于选择下行控制信道的发送方式;以及
第一发送模块,用于根据所选择的下行控制信道的发送方式,进行下行控制信道的发送;
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
根据本公开文本实施例的另一方面,提供了一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的下行控制信道的检测方法中的步骤。
根据本公开文本实施例的另一方面,提供了一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的下行控制信道的发送方法中的步骤。
根据本公开文本实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的下行控制信道的检测方法中的步骤。
根据本公开文本实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的下行控制信道的发送方法中的步骤。
(三)有益效果
本公开文本的上述技术方案的有益效果如下:
与现有技术相比,本公开文本实施例提供的下行控制信道的检测方法、发送方法、网络侧设备及终端,能够支持下行控制信道的多种检测方式,通过提供下行控制信道的一级检测和多级检测方式,终端根据网络侧指示的检测方式进行下行控制信道的检测,从而可以为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。另外,本公开文本实施例可以通过高层控制信令,向终端指示下行 控制信道的检测方式,以降低终端在第一下行控制信道的检测复杂度。另外,本公开文本实施例也可以通过在第一下行控制信道发送控制信令分级信息,向终端指示下行控制信道的检测方式,可以降低高层信令的开销。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开文本实施例一的下行控制信道的检测方法的流程图;
图2表示本公开文本实施例二的下行控制信道的检测方法的流程图;
图3表示本公开文本实施例三的下行控制信道的检测方法的流程图;
图4表示本公开文本实施例四的下行控制信道的发送方法的流程图;
图5表示本公开文本实施例五的下行控制信道的发送方法的流程图;
图6表示本公开文本实施例六的下行控制信道的发送方法的流程图;
图7表示本公开文本实施例提供的一种终端的结构示意图;
图8表示本公开文本实施例提供的另一种终端的结构示意图;
图9表示本公开文本实施例提供的又一种终端的结构示意图;
图10表示本公开文本实施例提供的一种网络侧设备的结构示意图;
图11表示本公开文本实施例提供的另一种网络侧设备的结构示意图;
图12表示本公开文本实施例提供的又一种网络侧设备的结构示意图;
图13表示本公开文本实施例提供的一种终端的结构框图;
图14表示本公开文本实施例提供的一种终端的另一结构框图;
图15表示本公开文本实施例提供的一种网络侧设备的结构框图;
图16表示本公开文本实施例中的下行控制信道的检测方法的一种流程图;
图17表示本公开文本实施例中的下行控制信道的检测方法的另一种流程图;
图18表示本公开文本实施例中自载波调度控制信道的示意图;
图19表示本公开文本实施例中自载波调度控制信道的示意图;
图20表示本公开文本实施例中终端进行下行控制信道检测的流程图。
具体实施方式
下面将参照附图更详细地描述本公开文本的示例性实施例。虽然附图中显示了本公开文本的示例性实施例,然而应当理解,可以以各种形式实现本公开文本而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开文本,并且能够将本公开文本的范围完整的传达给本领域的技术人员。
第一实施例
本公开文本实施例中,终端支持下行控制信道的多种检测方式,具体包括一级检测和多级检测。多级检测可以是二级检测或更多级别的检测。
这里的一级检测是现有技术中终端通常采用的下行控制信道的检测方式,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。例如,作为非限定性示例,获取数据信道所在的时频资源位置、调制编码方式、HARQ进程等信息,这些信息足够使得终端完成对网络发送的数据进行解调和解码。也就是说,终端一旦在某个下行控制信道中检测到网络发送给本终端的数据信道检测所需的控制信息时,终端可以不再进行下行控制信道的检测,即可对所述数据信道进行接收,获取网络发送给终端的数据。当然,下行控制信道检测还可能获取更多的信息,如以承载用于上行传输的上行控制信息。
所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。如果检测的次数少于多级检测定义的检测次数,则不能获取用于数据信道检测所需的足够信息。多级检测的检测次数可以是2次、3次或更多,优选的采用2次检测。在本文的最后,将以2次检测为例,详细介绍下行控制信道的多级检测方式的具体实现。
从以上介绍可以看出,一级检测方式的检测效率比较高,即终端通过一次检测即可获取相应的数据信道的控制信息,但是这对于终端检测的要求也比较高,即要求终端在每一个活跃的传输资源(如子帧)都进行检测,以判 断是否有属于自己的控制信道到达,这将导致较多的终端功耗。而多级检测方式的检测方式可以在一定程度上降低检测的频次,从而节约终端功耗,但多级检测方式的检测实现复杂度相对较高。
为了兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求,本公开文本实施例提供一种下行控制信道的发送/接收方案,能够支持下行控制信道的多种检测方式,从而可以为自适应调整下行控制信道检测方式提供技术支持。
请参照图1,本实施例提供的下行控制信道的检测方法,可应用于终端侧。如图1所示,该检测方法包括:
步骤11,确定下行控制信道的检测方式。
这里,终端需要确定下行控制信道的检测方式,其中,所下行述控制信道的检测方式包括一级检测和多级检测,其中,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
步骤12,根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
本实施例中,当所确定的下行控制信道的检测方式为一级检测时,可以从所述第一下行控制信道中读取数据信道检测所需的控制信息。例如,一级检测下的下行控制信道中承载的信息,这里记为DCI(Downlink Control Indication)。作为一种实现方式且作为非限定性示例,DCI中包含的信息可以包括:数据信道的时频域资源、调制编码方式以及HARQ进程等信息,下表1给出了一种DCI的格式示意:
Figure PCTCN2017108616-appb-000001
表1
本实施例中,当所确定的下行控制信道的检测方式为多级检测时,可以从第一下行控制信道中读取下一级下行控制信道检测所需的控制信息。根据 所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
例如,终端从第一下行控制信道中读取下一级下行控制信道检测所需的控制信息,以及,根据获取的下一级下行控制信道检测所需的控制信息,在第一下行控制信道的下一级控制信道(假设为第二控制信道)上进行检测,从第二控制信道上检测获取数据信道检测所需的控制信息(当所述多级检测为2级检测时),或者,获取第二控制信道的下一级控制信道(假设为第三控制信道)检测所需的控制信息,以此类推,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
这里,下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号等信息中的至少一种。这些信息可以用于确定下行控制信道的时频位置,以在对应位置上检测下行控制信道。
所述数据信道检测所需的控制信息可以包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传(HARQ)进程信息等信息中的至少一种。这些信息可以用于确定数据信道的时频位置,以在对应位置上检测数据信道。
通过以上步骤,本公开文本实施例中终端能够根据所确定的下行控制信道的检测方式,进行一级检测或多级检测,从而使终端能够支持下行控制信道的多种检测方式,可以为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第二实施例
请参照图2,本实施例提供的下行控制信道的检测方法,可应用于终端侧。如图2所示,该检测方法包括:
步骤21,检测第一下行控制信道,获取控制信令分级信息。
这里,控制信令分级信息用于指示下行控制信道的检测方式。下行控制信道的检测方式包括一级检测和多级检测,所述一级检测是指只需要一次下行控制信道检测即可获取数据信道检测所需的控制信息,所述多级检测是指需要多次下行控制信道检测才能获取数据信道检测所需的控制信息。
步骤22,根据所述控制信令分级信息,确定下行控制信道的检测方式。
例如,本实施例可以在第一下行控制信道中发送控制信令分级信息。例如,发送1-bit的控制信令分级信息。当该控制信令分级信息为0时,表示该第一下行控制信道是一级检测的控制信道。而当该控制信令分级信息为1时,表示该第一下行控制信道是多级检测的第一级的控制信道。从而,可以根据该控制信令分级信息,当该控制信令分级信息为0时,确定检测方式为一级检测,反之,则为多级检测。当然,这里的控制信令分级信息的值与检测方式之间的对应关系可以自行定义。
步骤23,根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
具体的,在上述步骤21中,可以通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道上中读取所述控制信令分级信息;或者,根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
当在步骤22中,确定下行控制信道的检测方式为一级检测时,在步骤23中,终端可以继续从所述第一下行控制信道中读取数据信道检测所需的控制信息。而当在步骤22中,确定下行控制信道的检测方式为多级检测时,在步骤23中,终端从第一下行控制信道中读取下一级下行控制信道检测所需的控制信息。根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
例如,第一下行控制信道中承载的信息,记为DCI_1,作为一种实现方式且作为非限定性示例,DCI_1中包含的信息如下表2所示:
控制信令分级信息(1-bit) 其他字段
表2
例如,当控制信令分级信息(1-bit)取值为0时,表示多级检测。此时,表2中的其他字段为用于指示第一下行控制信道的下一级控制信道检测所需的控制信息。下表3则给出了一种具体示例,在表3中,CONTROL 2表示第 一下行控制信道的下一级控制信道。
Figure PCTCN2017108616-appb-000002
表3
其中,上述其他字段中的信息可以按照某种组合方式编成一张索引表,通过指示索引值的检测方式达到同样的上述效果。下表4给出了一种具体示例。
索引 子帧位置 频域出现的位置 空域出现的位置 子载波的位置
001 xx yy zz ww
002        
......        
016        
表4
例如,当控制信令分级信息(1-bit)取值为1时,表示为一级检测,此时,表2中的其他字段为数据信道检测所需的控制信息,下表5则给出了一种具体示例:
Figure PCTCN2017108616-appb-000003
表5
本实施例中,下行控制信道检测所需的控制信息包括以下信息中的至少 一种:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置、和下行控制信道所在的子载波编号等信息。所述数据信道检测所需的控制信息可以包括以下信息中的至少一种:数据信道的资源位置、数据信道采用的调制编码方式、数据信道对应的混合自动重传(HARQ)进程信息等信息。
本实施例可以直接在第一下行控制信道中进行检测方式的指示,这样,终端可以从第一下行控制信道,检测获取指示下行控制信道的检测方式的控制信令分级信息,从而确定当前的检测方式,由此实现了利用第一下行控制信道直接指示检测方式,可以节约高层信令开销。
第三实施例
请参照图3,本实施例提供的下行控制信道的检测方法,可应用于终端侧。如图3所示,该检测方法包括:
步骤31,根据预先接收到的高层控制信令,确定下行控制信道的检测方式。
这里,所述高层控制信令包括无线资源控制层(RRC,Radio Resource Control)信令或者媒体接入控制(MAC,MediaAccess Control)层消息。网络侧设备,如基站,预先通过上述高层控制信令,向终端指示具体的下行控制信道的检测方式。例如,通信系统中增加一种MAC层消息实体,该消息实体包含1-bit信息,网络侧设备向终端发送该MAC层消息实体的消息,用于开启或者关闭终端的多级检测对应的功能。终端根据该消息,若需要开启多级检测对应的功能,则确定下行控制信道的检测方式为多级检测,反之则为一级检测。又例如,还可以在RRC层增加一种RRC信令,该信令包含1-bit指示,用于开启或者关闭终端的多级检测对应的功能。终端根据该RRC信令,若需要开启多级检测对应的功能,则确定下行控制信道的检测方式为多级检测,反之则为一级检测。
步骤32,根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
本实施例中,当所确定的下行控制信道的检测方式为一级检测时,可以通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到 第一下行控制信道,从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。本实施例也可以由网络预先通过物理层信令或者高层控制信令,向终端指示第一下行控制信道的位置,这样终端根据上述物理层信令或者高层控制信令,检测到第一下行控制信道。在检测到第一下行控制信道后,终端可以从该第一下行控制信道上读取所述数据信道检测所需的控制信息。
本实施例中,当所确定的下行控制信道的检测方式为多级检测时,可以通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道,并从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息。根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。也就是说,终端根据从上一级下行控制信道上获取的下一级下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
本实施例中,下行控制信道检测所需的控制信息包括以下信息中的至少一种:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置、和下行控制信道所在的子载波编号等信息。所述数据信道检测所需的控制信息可以包括以下信息中的至少一种:数据信道的资源位置、数据信道采用的调制编码方式、数据信道对应的混合自动重传(HARQ)进程信息等信息。
本实施例通过高层控制信令,向终端指示下行控制信道的检测方式,可以降低第一下行控制信道的检测复杂度,降低终端实现的复杂度。另外,本公开文本实施例使得网络可以根据需要,调整终端采用一级检测或多级检测,可以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第四实施例
请参照图4,本实施例提供的下行控制信道的发送方法,可应用于网络侧设备,例如,应用于网络侧的基站。如图4所示,该发送方法包括:
步骤41,选择下行控制信道的发送方式。
这里,所述下行控制信道的发送方式包括一级发送和多级发送,一级发 送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。也就是说,所述一级发送是指只需要发送一次下行控制信道即可提供数据信道检测所需的控制信息,所述多级发送是指需要发送多次下行控制信道才能提供数据信道检测所需的控制信息。网络侧设备,如基站,可以根据需要,自行选择某个终端的下行控制信道的发送方式,例如,选择一级发送或多级发送。
步骤42,根据所选择的下行控制信道的发送方式,进行下行控制信道的发送。
本实施例中,当所选择的下行控制信道的发送方式为一级发送时,可以在第一控制信道上发送数据信道检测所需的控制信息。当所选择的下行控制信道的发送方式为多级发送时,可以在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
这里,下行控制信道检测所需的控制信息包括以下信息中的至少一种:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置、和下行控制信道所在的子载波编号等信息。所述数据信道检测所需的控制信息可以包括以下信息中的至少一种:数据信道的资源位置、数据信道采用的调制编码方式、数据信道对应的混合自动重传(HARQ)进程信息等信息。
通过以上步骤,本实施例实现了基站选择一种下行控制信道的发送方式,进而根据该发送方式向终端发送下行控制信道的控制信息。由此,基站可以支持下行控制信道的多种发送方式。对应的,终端能够支持下行控制信道的多种检测方式,如前文实施例中的一级检测和多级检测,从而为自适应调整下行控制信道检测方式提供技术支持,可以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第五实施例
请参照图5,本实施例提供的下行控制信道的发送方法,可应用于网络侧设备,例如,应用于网络侧的基站。如图5所示,该发送方法包括:
步骤51,选择下行控制信道的发送方式,当选择一级发送方式时,进入步骤52,当选择多级发送时,进入步骤53。
这里,网络侧设备,如基站,可以根据需要,自行选择某个终端的下行控制信道的发送方式,例如,选择一级发送或多级发送。所述下行控制信道的发送方式包括一级发送和多级发送,所述一级发送是指只需要发送一次下行控制信道即可提供数据信道检测所需的控制信息,所述多级发送是指需要发送多次下行控制信道才能提供数据信道检测所需的控制信息。
步骤52,当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送用于指示采用一级发送的发送方式的信令分级信息以及数据信道检测所需的控制信息。
步骤53,当所选择的下行控制信道的发送方式为多级发送时,在第一控制信道上发送用于指示采用多级发送方式的信令分级信息。在最后一级之前的第一控制信道上发送下一级下行控制信道检测所需的控制信息,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
这里,下行控制信道检测所需的控制信息包括以下信息中的至少一种:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置、和下行控制信道所在的子载波编号等信息。所述数据信道检测所需的控制信息可以包括以下信息中的至少一种:数据信道的资源位置、数据信道采用的调制编码方式、数据信道对应的混合自动重传(HARQ)进程信息等信息。
本实施例中,基站还可以预先向所述终端发送用于指示第一下行控制信道的资源位置的物理层信令或高层控制信令,以降低终端进行第一下行控制信道检测的复杂度。当然,基站也可以不发送上述物理层信令或高层控制信令,此时终端可以通过盲检测,检测到第一下行控制信道。
本实施例中,当所选择的下行控制信道的发送方式为多级发送时,每级下行控制信道上发送的控制消息的长度可能并不相等。本实施例可以对下行控制信道上发送的控制消息进行补零操作,或,对下行控制信道上发送的控制消息进行压缩操作,其中,经过所述补零操作或压缩操作后的各个控制消息的长度均相同,这样可以减少终端进行控制消息检测的复杂度。
例如,对于补零操作,本实施例可以确定各级下行控制信道的控制消息的最大长度。根据所述最大长度,对长度小于所述最大长度的控制消息进行补零操作,获取补零操作后的控制消息。这样,经过上述补零操作,各个控制消息的长度均相同。
又例如,对于压缩操作,本实施例可以根据各级下行控制信道的控制消息的长度,确定出一个最终长度。根据所述最终长度,将对长度大于所述最终长度的控制消息中的预定字段丢弃,得到压缩后的控制消息。通过高层控制信令,将丢弃的所述预定字段发送给所述终端。具体的,上述最终长度可以选择各级下行控制信道的控制消息的最小长度。上述高层控制信令可以是RRC信令或MAC层消息。
本公开文本实施例中网络侧设备通过第一下行控制信道承载的信令分级信息指示一级发送或多级发送,可以减少发送方式指示所需要的高层信令开销。同时,本公开文本实施例中网络侧设备能够控制终端调整下行控制信道的检测方式,进行一级检测或多级检测,从而能够为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第六实施例
请参照图6,本实施例提供的下行控制信道的发送方法,可应用于网络侧设备,例如,应用于网络侧的基站。如图6所示,该发送方法包括:
步骤61,选择下行控制信道的发送方式,当选择一级发送方式时,进入步骤62,当选择多级发送时,进入步骤63。
这里,网络侧设备,如基站,可以根据需要,自行选择某个终端的下行控制信道的发送方式,例如,选择一级发送或多级发送。
步骤62,当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送数据信道检测所需的控制信息。
步骤63,当所选择的下行控制信道的发送方式为多级发送时,在每一级下行控制信道上发送下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
本实施例中,基站在下行控制信道中发送下一级下行控制信道检测所需 的控制信息或发送数据信道检测所需的控制信息,而不再在第一下行控制信道中发送信令分级信息。
另外,为了使终端确定检测下行控制信道的检测方式,如一级检测或多级检测,本实施例中,可以预先向所述终端发送用于指示下行控制信道的检测方式的物理层信令或高层控制信令,其中,所述下行控制信道的检测方式,与所述的下行控制信道的发送方式一一对应。这样,终端根据上述物理层信令或高层控制信令,就可以确定需要采用的下行控制信道的检测方式。
这里,下行控制信道检测所需的控制信息包括以下信息中的至少一种:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置、和下行控制信道所在的子载波编号等信息。所述数据信道检测所需的控制信息可以包括以下信息中的至少一种:数据信道的资源位置、数据信道采用的调制编码方式、数据信道对应的混合自动重传(HARQ)进程信息等信息。
本公开文本实施例中网络侧设备通过高层控制信令指示一级发送或多级发送,可以减少终端进行第一下行控制信道检测的复杂度。同时,本公开文本实施例中网络侧设备能够控制终端调整下行控制信道的检测方式,进行一级检测或多级检测,从而能够为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第七实施例
以上实施例分别详细介绍了下行控制信道的发送及检测方法,下面将进一步介绍实施上述方法的设备。
请参照图7,本实施例提供了一种终端70,包括:
确定模块71,用于确定下行控制信道的检测方式。
检测模块72,用于根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
请参照图8,本实施例提供了另一种终端80,包括:
确定模块81,用于确定下行控制信道的检测方式。
检测模块82,用于根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
如图8所示,所述确定模块81包括:
第一检测单元811,用于检测第一下行控制信道,获取控制信令分级信息。
第一确定单元812,用于根据所述控制信令分级信息,确定下行控制信道的检测方式。
其中,所述控制信令分级信息用于指示下行控制信道的检测方式。
其中,所述第一检测单元811包括:
第一盲检测单元8111,用于通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道中读取所述控制信令分级信息。或者,
第二检测单元8112,用于根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
作为一种实现方式,所述检测模块82包括:
第一读取单元821,用于当所确定的下行控制信道的检测方式为一级检测时,从所述第一下行控制信道中读取所述数据信道检测所需的控制信息。
第二读取单元822,用于当所确定的下行控制信道的检测方式为多级检测时,从第一下行控制信道中读取第一下行控制信道的下一级下行控制信道检测所需的控制信息;根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
请参照图9,本实施例提供了另一种终端90,包括:
确定模块91,用于确定下行控制信道的检测方式。
检测模块92,用于根据所确定的下行控制信道的检测方式,进行下行控制信道的检测。
其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
如图9所示,所述确定模块91包括:
第二确定单元911,用于根据预先接收到的高层控制信令,确定下行控制信道的检测方式;其中,所述高层控制信令包括无线资源控制层信令或者媒体接入控制层消息。
作为一种实现方式,所述检测模块92包括:
第三读取单元921,用于当所确定的下行控制信道的检测方式为一级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。
第四读取单元922,用于当所确定的下行控制信道的检测方式为多级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息;根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
本实施例中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
本公开文本实施例中终端能够根据所确定的下行控制信道的检测方式,进行一级检测或多级检测,从而使终端能够支持下行控制信道的多种检测方式,可以为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第八实施例
请参照图10,本实施例提供了一种网络侧设备100,包括:
选择模块101,用于选择下行控制信道的发送方式。
第一发送模块102,用于根据所选择的下行控制信道的发送方式,进行下行控制信道的发送。
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
请参照图11,本实施例提供了另一种网络侧设备110,包括:
选择模块111,用于选择下行控制信道的发送方式。
第一发送模块112,用于根据所选择的下行控制信道的发送方式,进行下行控制信道的发送。
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息。
这里,所述第一发送模块112包括:
第一发送单元1121,用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送用于指示采用一级发送的发送方式的信令分级信息以及数据信道检测所需的控制信息。
第二发送单元1122,用于当所选择的下行控制信道的发送方式为多级发送时,在第一控制信道上发送用于指示采用多级发送方式的信令分级信息;在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
这里,上述网络侧设备110还可以包括:
第二发送模块113,用于在所述第一发送模块进行下行控制信道的发送之前,向所述终端发送用于指示第一下行控制信道的资源位置的物理层信令或高层控制信令。
这里,所述第一发送模块112,还可以包括:
控制消息调整单元1123,用于当所选择的下行控制信道的发送方式为多级发送时,对下行控制信道上发送的控制消息进行补零操作,或,对下行控制信道上发送的控制消息进行压缩操作,其中,经过所述补零操作或压缩操作后的各个控制消息的长度均相同。
作为一种实现方式,所述控制消息调整单元1123包括:
补零处理单元11231,用于确定各级下行控制信道的控制消息的最大长度;根据所述最大长度,对长度小于所述最大长度的控制消息进行补零操作,获取补零操作后的控制消息。
作为另一种实现方式,所述控制消息调整单元1123包括:
压缩处理单元11232,用于根据各级下行控制信道的控制消息的长度,确定出一个最终长度;根据所述最终长度,将对长度大于所述最终长度的控制消息中的预定字段丢弃,得到压缩后的控制消息;通过高层控制信令,将丢弃的所述预定字段发送给所述终端。
请参照图12,本实施例提供了另一种网络侧设备120,包括:
选择模块121,用于选择下行控制信道的发送方式。
第一发送模块122,用于根据所选择的下行控制信道的发送方式,进行下行控制信道的发送。
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
作为一种实现方式,所述第一发送模块122包括:
第三发送单元1221,用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送数据信道检测所需的控制信息。
第四发送单元1222,用于当所选择的下行控制信道的发送方式为多级发送时,在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
这里,上述的网络侧设备120还可以包括:
第三发送模块123,用于在第一发送模块进行下行控制信道的发送之前,向所述终端发送用于指示下行控制信道的检测方式的物理层信令或高层控制信令,其中,所述下行控制信道的检测方式,与所述的下行控制信道的发送方式一一对应。
本实施例中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
本公开文本实施例中网络侧设备能够根据需要,控制终端调整下行控制信道的检测方式,进行一级检测或多级检测,从而能够为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第九实施例
图13是本公开文本另一个实施例的终端130的框图。如图13所示的移动终端包括:至少一个处理器1301、存储器1302、拍照组件1303和用户接口1304。移动终端1300中的各个组件通过总线系统1305耦合在一起。可理解,总线系统1305用于实现这些组件之间的连接通信。总线系统1305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统1305。
其中,用户接口1304可以包括显示器或者点击设备(例如触感板或者触摸屏等)。
可以理解,本公开文本实施例中的存储器1302可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM), 其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器1302旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1302存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统13021和应用程序13022。
其中,操作系统13021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序13022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开文本实施例方法的程序可以包含在应用程序13022中。
在本公开文本的实施例中,通过调用存储器1302存储的程序或指令,具体地,可以是应用程序13022中存储的程序或指令。其中,处理器1301用于确定下行控制信道的检测方式;根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
上述本公开文本实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1301可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application  Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开文本实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开文本实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
具体地,处理器1301还用于检测第一下行控制信道,获取控制信令分级信息;根据所述控制信令分级信息,确定下行控制信道的检测方式;其中,所述控制信令分级信息用于指示下行控制信道的检测方式。
具体地,处理器1301还用于通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道中读取所述控制信令分级信息;或者,根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
具体地,处理器1301还用于当所确定的下行控制信道的检测方式为一级检测时,从所述第一下行控制信道中读取所述数据信道检测所需的控制信息。
进一步地,处理器1301还用于当所确定的下行控制信道的检测方式为多级检测时,从第一下行控制信道中读取第一下行控制信道的下一级下行控制信道检测所需的控制信息;根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
其中,处理器1301还用于根据预先接收到的高层控制信令,确定下行控制信道的检测方式;其中,所述高层控制信令包括无线资源控制层信令或者媒体接入控制层消息。
其中,处理器1301还用于当所确定的下行控制信道的检测方式为一级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。
其中,处理器1301还用于当所确定的下行控制信道的检测方式为多级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息;根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
具体的,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
本公开文本实施例的终端1300,能够根据所确定的下行控制信道的检测方式,进行一级检测或多级检测,从而使终端能够支持下行控制信道的多种检测方式,可以为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第十实施例
图14是本公开文本另一个实施例的终端的结构示意图。具体地,图14中的移动终端140可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图14中的移动终端1400包括电源1410、存储器1420、输入单元1430、显示单元1440、拍照组件1450、处理器1460、WIFI(Wireless Fidelity)模块1470、音频电路1480和RF电路14140,其中,拍照组件1450包括第一摄像头和第二摄像头。
其中,输入单元1430可用于接收用户输入的信息,以及产生与移动终端1400的用户设置以及功能控制有关的信号输入。具体地,本公开文本实施例中,该输入单元1430可以包括触控面板1431。触控面板1431,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1431上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1431可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器1460,并能接收处理器1460发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1431。除了触控面板1431,输入单元1430还可以包括其他输入设备1432,其他输入设备1432可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元1440可用于显示由用户输入的信息或提供给用户的信息以及移动终端的各种菜单界面。显示单元1440可包括显示面板1441,可选的,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1441。
应注意,触控面板1431可以覆盖显示面板1441,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器1460以确定触摸事件的类型,随后处理器1460根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显 示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器1460是移动终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器1421内的软件程序和/或模块,以及调用存储在第二存储器1422内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。可选的,处理器1460可包括一个或多个处理单元。
在本公开文本实施例中,通过调用存储该第一存储器1421内的软件程序和/或模块和/给第二存储器1422内的数据,确定下行控制信道的检测方式;根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
具体地,处理器1460还用于检测第一下行控制信道,获取控制信令分级信息;根据所述控制信令分级信息,确定下行控制信道的检测方式;其中,所述控制信令分级信息用于指示下行控制信道的检测方式。
具体地,处理器1460还用于通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道中读取所述控制信令分级信息;或者,根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
具体地,处理器1460还用于当所确定的下行控制信道的检测方式为一级检测时,从所述第一下行控制信道中读取所述数据信道检测所需的控制信息。
进一步地,处理器1460还用于当所确定的下行控制信道的检测方式为多级检测时,从第一下行控制信道中读取第一下行控制信道的下一级下行控制信道检测所需的控制信息;根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
其中,处理器1460还用于根据预先接收到的高层控制信令,确定下行控制信道的检测方式;其中,所述高层控制信令包括无线资源控制层信令或者媒体接入控制层消息。
其中,处理器1460还用于当所确定的下行控制信道的检测方式为一级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。
其中,处理器1460还用于当所确定的下行控制信道的检测方式为多级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息;根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
具体的,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
本公开文本实施例的终端140,能够根据所确定的下行控制信道的检测方式,进行一级检测或多级检测,从而使终端能够支持下行控制信道的多种检测方式,可以为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
第十一实施例
请参照图15,本公开文本实施例提供了网络侧设备的另一种结构,包括:
收发机1501,在处理器1504的控制下接收和发送数据,具体的,可以接收基站发送的能够确定寻呼类型的寻呼消息,所述寻呼类型包括接入网发起的接入网寻呼或核心网发起的核心网寻呼。
处理器1504,用于读取存储器1505中的程序,执行下列过程:
选择下行控制信道的发送方式;以及
根据所选择的下行控制信道的发送方式,进行下行控制信道的发送;
其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
在图15中,总线架构(用总线1500来代表)可以包括任意数量的互联的总线和桥,总线1500将包括由处理器1504代表的一个或多个处理器和存储器1505代表的存储器的各种电路链接在一起。总线1500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1503在总线1500和收发机1501之间提供接口。收发机1501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1504处理的数据通过收发机1501和天线1502在无线介质上进行传输,进一步,天线1502还接收数据并将数据经由收发机1501传送给处理器1504。
处理器1504负责管理总线1500和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1505可以被用于存储处理器1504在执行操作时所使用的数据。具体的,处理器1504可以是CPU、ASIC、FPGA或CPLD。
作为一种实现方式,处理器1504还可以用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送用于指示采用一级发送的发送方式的信令分级信息以及数据信道检测所需的控制信息。
作为一种实现方式,处理器1504还可以用于当所选择的下行控制信道的发送方式为多级发送时,在第一控制信道上发送用于指示采用多级发送方式的信令分级信息;在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
作为一种实现方式,处理器1504还可以用于向所述终端发送用于指示第一下行控制信道的资源位置的物理层信令或高层控制信令。
作为一种实现方式,处理器1504还可以用于当所选择的下行控制信道的 发送方式为多级发送时,对下行控制信道上发送的控制消息进行补零操作,或,对下行控制信道上发送的控制消息进行压缩操作,其中,经过所述补零操作或压缩操作后的各个控制消息的长度均相同。
作为一种实现方式,处理器1504还可以用于确定各级下行控制信道的控制消息的最大长度;根据所述最大长度,对长度小于所述最大长度的控制消息进行补零操作,获取补零操作后的控制消息。
作为一种实现方式,处理器1504还可以用于根据各级下行控制信道的控制消息的长度,确定出一个最终长度;根据所述最终长度,将对长度大于所述最终长度的控制消息中的预定字段丢弃,得到压缩后的控制消息;通过高层控制信令,将丢弃的所述预定字段发送给所述终端。
作为一种实现方式,处理器1504还可以用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送数据信道检测所需的控制信息。
作为一种实现方式,处理器1504还可以用于当所选择的下行控制信道的发送方式为多级发送时,在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
作为一种实现方式,处理器1504还可以用于向所述终端发送用于指示下行控制信道的检测方式的物理层信令或高层控制信令,其中,所述下行控制信道的检测方式,与所述的下行控制信道的发送方式一一对应。
这里,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
本公开文本实施例中网络侧设备能够根据需要,控制终端调整下行控制信道的检测方式,进行一级检测或多级检测,从而能够为自适应调整下行控制信道检测方式提供技术支持,以兼顾降低终端功耗的多级检测方式和降低检测复杂度的需求。
最后,为了帮助理解本公开文本实施例的多级检测的检测方案,在下文中将以多级检测中的两次检测为例,对多级检测的实现进行说明。
如图16所示,本公开文本的实施例提供了一种下行控制信道的检测方法,该方法具体包括:
步骤1601:在第一下行控制信道中,检测网络侧设备发送的物理层指示信息。
其中,第一下行控制信道可以是物理下行控制信道或物理下行共享信道。物理层指示信息指的是物理层控制信令,用于指示承载有控制信息的第二下行控制信道的资源位置信息;采用物理层控制信令的方式可在一定程度上降低终端的检测复杂度,节省终端的处理资源。
步骤1602:根据该物理层指示信息,确定承载有控制信息的第二下行控制信道的资源位置信息。
终端在检测第一下行控制信道得到物理层指示信息时,通过解析该物理层指示信息,可确定网络侧设备针对终端下发的控制信息所调度第二下行控制信道的资源位置信息。
步骤1603:根据该资源位置信息,在第二下行控制信道中检测控制信息。
终端通过解析接收到的物理层指示信息,能够获知对应的资源位信息,对该资源位置信息对应的第二下行控制信道进行检测,这样仅对承载有控制信息的下行控制信道进行检测,而无需对所有下行控制信道进行检测,可减少终端的检测次数,降低终端能耗。
本公开文本实施例的终端通过检测第一下行控制信道得到网络侧设备发送的指示信息,再通过解析该指示信息确定承载有下行控制信息的第二下行控制信道的资源位置信息,并仅在指示信息中指示的第二下行控制信道中检测下行控制信息,减少终端的检测次数,以降低终端的耗电。此外,由于将原在L2/L3进行的非连续传输的配置信令采用物理层指示信息来进行指示,以降低终端的检测复杂度。
第十二实施例
以上第一实施例对本公开文本的下行控制信道的检测方法进行了简单介绍,下面本实施例将结合附图和具体应用场景对其进行进一步地说明。
如图17所示,本公开文本实施例中的下行控制信道的检测方法,具体包括以下步骤:
步骤1701:在第一下行控制信道中,检测终端所在本小区或本小区的邻小区所属网络侧设备发送的物理层指示信息。
这里指的是:不同小区、扇区或组可以有各自的物理层指示信息,亦可以共享同一物理层指示信息,共享场景一般适用于邻近小区的共享。例如:终端对第一下行控制信道进行检测,得到的本小区所属网络侧设备下发的物理层指示信息,该物理层指示信息用于指示本小区的承载有控制信息的第二下行控制信道的资源位置信息;或者,终端在对第一下行控制信道进行检测,得到的邻小区所属网络侧设备下发的物理层指示信息,而邻小区与本小区共享同一物理指示信息,那么根据接收到的邻小区所述网络侧设备发送的物理层指示信息亦可获知本小区的承载有控制信息的第二下行控制信道的资源位置信息。
进一步地,该步骤1701具体可参照以下方式实现:获取网络侧设备发送的高层控制信令;根据该高层控制信令,确定物理层指示信息的发送周期及偏移量;根据发送周期及偏移量,确定承载有物理层指示信息的下行控制信道的子帧编号;在对应子帧编号的下行控制信道中检测网络侧设备发送的物理层指示信息。
具体地,根据发送周期及偏移量,确定承载有物理层指示信息的下行控制信道的子帧编号的步骤,具体为:根据公式idx mod T=offset,确定承载有物理层指示信息的下行控制信道的子帧编号。
其中,idx为承载有物理层指示信息的下行控制信道的子帧编号,T为指示信息的发送周期,offset为发送指示信息的偏移量;即T和offset由高层信令通知,mod是取余数操作,也就是说子帧编号idx=N*T+offset,只有idx满足上述关系式的子帧才有可能承载下行控制信道。如图18和图19所示,终端通过解析高层控制信令,获知物理层指示信息的发送周期为8个子帧,偏移量为0,即终端在编号为8的整数倍-1(子帧编号从0开始)的子帧检测是否有物理层指示信息。其中,如图18所示,在第一周期内检测到的物理层指示信息指示承载有控制信息的第二下行控制信道数量有三个(N=3),具体资 源位置如箭头所示;第二周期内检测到的物理层指示信息指示承载有控制信息的第二下行控制信道数量有六个(N=6),具体资源位置如箭头所示;第三周期内检测到的物理层指示信息指示承载有控制信息的第二下行控制信道数量有四个(N=4),具体资源位置如箭头所示。图19的检测和指示方式与图18基本相同,故不再赘述。
进一步地,在对应子帧编号的下行控制信道中检测网络侧设备发送的物理层指示信息的步骤之后,还包括:若终端未检测到物理层指示信息,则向网络侧设备反馈一非应答消息(NACK消息);或者,确定对应编号的下行控制信道中未承载物理层指示信息。也就是说终端对于检测物理层指示信息有两张处理方式,一种是发送确认方式,一种是发送无确认方式。
发送确认方式指的是,终端首先根据高层信令配置进行周期性检测,例如:终端根据高层信令获知物理层指示信息的发送周期为T、偏移量为offset,终端在子帧编号满足idx mod T=offset关系式的子帧内检测物理指示层信息。如果终端在上述子帧编号对应的子帧内没有检测到物理层指示信息,则发送NACK给网络侧设备以告知错误信息。
发送无确认方式指的是,终端首先根据高层信令配置进行周期性检测,例如:终端根据高层信令获知物理层指示信息的发送的周期为T、偏移量为offset,终端在子帧编号满足idx mod T=offset关系式的子帧内检测物理层指示信息。如果终端在上述子帧编号对应的子帧内没有检测到物理层指示信息,则终端认为在该子帧内没有需要检测的控制消息(也不需要给与网络发送NACK报告)。
值得指出的是,终端通过对第一下行控制信道检测以得到物理层指示的信息的具体实现除了上述利用高层信令配置方式得到外,终端还可通过盲检或先验物理层等方式实现,具体实现方式并不做限定。此外,需要说明的是,所有适用于步骤1701实现的方式,亦适用于第一实施例中的步骤1601的实现。
步骤1702:提取物理层指示信息得到承载有控制信息的第一下行控制信道的第一索引值。
其中,物理层指示信息可承载至预先定义的特殊字段进行指示,特殊字 段的不同取值指示不同的资源位置,索引值可以是特殊字段的取值,亦可以是与特殊字段取值具有一定映射关系的编码。
步骤1703:根据预设的索引值与资源位置之间的对应关系,确定第一索引值对应的第二下行控制信道的资源位置信息。
其中,第二下行控制信道的资源位置信息包括:第二下行控制信道所在的下行子帧编号、频域位置、空域位置和载波编号中的至少一项。进一步地,为了缩短索引值所占的字节数,可将这些特殊字段的可能取值按照某种组合方式编成一张索引表。如下表6所示,该索引表为索引值与指示资源位置的特殊字段的可能取值之间的对应关系,特殊字段的取值不同所对应的资源位置不同,那么只需解析物理层指示信息的索引值,即可通过查表方式得到对应的下行控制信道的资源位置。
索引值 子帧编号xx 频域位置yy 空域位置zz 载波编号ww
001 xx1 yy1 zz1 ww1
002 xx2 yy2 zz2 ww2
...... xx... yy... zz... ww...
016 xx16 yy16 zz16 ww16
表6
其中,索引值为与特殊字段取值具有一定映射关系的编码,字段xx为子帧编号的指示字段,字段yy为频域位置的指示字段,字段zz为空域位置的指示字段,字段ww为载波编号的指示字段。这里,通过查表方式可找到第一索引值对应的指示字段的取值信息,那么就可根据指示字段的具体取值获知具体的资源位置。
步骤1704:根据资源位置信息,在第二下行控制信道中检测控制信息。
其中,控制信息包括承载有业务数据的传输信道所占用的资源位置信息,如时频域分配、MCS等等。为了进一步简化终端的检测复杂度,网络侧设备发送的控制信息亦可承载至物理层信令中发送,即控制信息具体为物理层控制信息。
进一步地,上述物理层指示信息既可指示同载波内传输的控制信息,亦 可以指示与该物理层指示信息不同载波内传输的控制信息。即网络侧设备发送的物理层指示信息和控制信息可在单载波内传输(如图18所示),亦可在多载波内传输(如图19所示,指示信息在载波1中传输,控制信息在载波2内传输)。
这样,如图20所示,终端通过两次检测控制信令,以检测与己相关的控制信息的步骤具体为:
步骤2001:终端在承载第一控制信道信息的载波上接收和检测第一控制信道信息。检测方法可终端可以根据终端盲检测或者基于先验的物理层或者高层信令配置。
步骤2002:终端读取第一控制信道中给出的资源分配信息。如第二控制信道的时域出现位置、或者频域出现位置、或者波束信息、或者载波编号等。
步骤2003:终端根据上一步骤读取的信息检测第二控制信道信息。检测过程中可能结合其他有效的信息。
步骤2004:终端根据第二控制信道检测的结果,获知其数据信道传输的位置。如时间位置、或者频域位置、或者调制与编码策略(MCS,Modulationand Coding Scheme)、或者HARQ进程等等。这样,终端通过盲检测、先验物理层或解析高层控制信令以获知物理层指示信息对应的下行控制信道,检测该下行控制信道获得物理层指示信息,并根据该物理层指示信息,对该资源位置信息对应的第二下行控制信道进行检测,以得到对应的控制信息,以减少终端的检测次数,降低终端能耗。
本公开文本实施例的终端通过检测第一下行控制信道得到网络侧设备发送的指示信息,再通过解析该指示信息确定承载有下行控制信息的第二下行控制信道的资源位置信息,并仅在指示信息中指示的第二下行控制信道中检测下行控制信息,减少终端的检测次数,以降低终端的耗电。此外,由于将原在L2/L3进行的非连续传输的配置信令采用物理层指示信息来进行指示,以降低终端的检测复杂度。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开文本的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定 指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的检测方式结合在一个或多个实施例中。
在本公开文本的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开文本实施例的实施过程构成任何限定。另外,本文中术语“系统”和“网络”在本文中常可互换使用。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本公开文本以上各个实施例中,终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备(UE)、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
本公开文本以上各个实施例中,基站的形式不限,可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)等。
另外,随着5G技术的发展,基站可能替换为其他功能节点,如中央单元(CU,Central Unit)和分布式单元(DU,Distributed Unit)。本公开文本实施例可以应用于上述场景。在5G组网场景中,网络侧节点包括中央单元和分布式单元,用户侧节点则为终端(UE)。一个中央单元控制一定区域内部署的多个分布式单元,这些分布式单元也可以被称为传输点(TRP,Transmission Reception Point)。TRP与终端进行空口传输。一个或多个传输点可以同时为终端服务,进行数据传输。本文中将网络侧无线信令和数据收发节点都统称为基站,包括但不限于LTE系统的eNB以及5G技术中的CU/DU(具体收发点为TRP)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开文本的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开文本各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开文本的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开文本各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述的是本公开文本的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开文本所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开文本的保护范围内。

Claims (48)

  1. 一种下行控制信道的检测方法,包括:
    确定下行控制信道的检测方式;以及
    根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;
    其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
  2. 根据权利要求1所述的检测方法,其中,所述确定下行控制信道的检测方式的步骤,包括:
    检测第一下行控制信道,获取控制信令分级信息;以及
    根据所述控制信令分级信息,确定下行控制信道的检测方式;
    其中,所述控制信令分级信息用于指示下行控制信道的检测方式。
  3. 根据权利要求2所述的检测方法,其中,所述检测第一下行控制信道的步骤,包括:
    通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道中读取所述控制信令分级信息;或者
    根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
  4. 根据权利要求2所述的检测方法,其中,所述根据所确定的下行控制信道检测方式,进行下行控制信道的检测的步骤,包括:
    当所确定的下行控制信道的检测方式为一级检测时,从所述第一下行控制信道中读取所述数据信道检测所需的控制信息。
  5. 根据权利要求2所述的检测方法,其中,所述根据所确定的下行控制信道检测方式,进行下行控制信道的检测的步骤,包括:
    当所确定的下行控制信道的检测方式为多级检测时,从第一下行控制信道中读取第一下行控制信道的下一级下行控制信道检测所需的控制信息;以 及
    根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
  6. 根据权利要求1所述的检测方法,其中,所述确定下行控制信道的检测方式的步骤,包括:
    根据预先接收到的高层控制信令,确定下行控制信道的检测方式;
    其中,所述高层控制信令包括无线资源控制层信令或者媒体接入控制层消息。
  7. 根据权利要求6所述的检测方法,其中,所述根据所确定的下行控制信道检测方式,进行下行控制信道的检测的步骤,包括:
    当所确定的下行控制信道的检测方式为一级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;以及
    从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。
  8. 根据权利要求6所述的检测方法,其中,所述根据所确定的下行控制信道检测方式,进行下行控制信道的检测的步骤,包括:
    当所确定的下行控制信道的检测方式为多级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;
    从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息;以及
    根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
  9. 根据权利要求5或8所述的检测方法,其中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。
  10. 根据权利要求1所述的检测方法,其中,所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数 据信道对应的混合自动重传HARQ进程信息中的至少一项。
  11. 一种下行控制信道的发送方法,包括:
    选择下行控制信道的发送方式;以及
    根据所选择的下行控制信道的发送方式,进行下行控制信道的发送;
    其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
  12. 根据权利要求11所述的发送方法,其中,所述根据所选择的下行控制信道的发送方式,进行下行控制信道的发送的步骤,包括:
    当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送用于指示采用一级发送的发送方式的信令分级信息以及数据信道检测所需的控制信息。
  13. 根据权利要求12所述的发送方法,其中,所述根据所选择的下行控制信道的发送方式,进行下行控制信道的发送的步骤,包括:
    当所选择的下行控制信道的发送方式为多级发送时,在第一控制信道上发送用于指示采用多级发送方式的信令分级信息;
    在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
  14. 根据权利要求12所述的发送方法,其中,在所述进行下行控制信道的发送的步骤之前,所述方法还包括:
    向所述终端发送用于指示第一下行控制信道的资源位置的物理层信令或高层控制信令。
  15. 根据权利要求11所述的发送方法,其中,当所选择的下行控制信道的发送方式为多级发送时,对下行控制信道上发送的控制消息进行补零操作,或,对下行控制信道上发送的控制消息进行压缩操作,其中,经过所述补零操作或压缩操作后的各个控制消息的长度均相同。
  16. 根据权利要求15所述的发送方法,其中,所述对下行控制信道上发 送的控制消息进行补零操作的步骤包括:
    确定各级下行控制信道的控制消息的最大长度;以及
    根据所述最大长度,对长度小于所述最大长度的控制消息进行补零操作,获取补零操作后的控制消息。
  17. 根据权利要求15所述的发送方法,其中,所述对下行控制信道上发送的控制消息进行压缩操作的步骤包括:
    根据各级下行控制信道的控制消息的长度,确定出一个最终长度;
    根据所述最终长度,将对长度大于所述最终长度的控制消息中的预定字段丢弃,得到压缩后的控制消息;以及
    通过高层控制信令,将丢弃的所述预定字段发送给所述终端。
  18. 根据权利要求11所述的发送方法,其中,所述根据所选择的下行控制信道的发送方式,进行下行控制信道的发送的步骤,包括:
    当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送数据信道检测所需的控制信息。
  19. 根据权利要求11所述的发送方法,其中,所述根据所选择的下行控制信道的发送方式,进行下行控制信道的发送的步骤,包括:
    当所选择的下行控制信道的发送方式为多级发送时,在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
  20. 根据权利要求19所述的发送方法,其中,在所述进行下行控制信道的发送的步骤之前,所述方法还包括:
    向所述终端发送用于指示下行控制信道的检测方式的物理层信令或高层控制信令,其中,所述下行控制信道的检测方式,与所述的下行控制信道的发送方式一一对应。
  21. 根据权利要求13或19所述的发送方法,其中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。
  22. 根据权利要求11所述的发送方法,其中,所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
  23. 一种终端,包括:
    确定模块,用于确定下行控制信道的检测方式;以及
    检测模块,用于根据所确定的下行控制信道的检测方式,进行下行控制信道的检测;
    其中,所述下行控制信道的检测方式包括一级检测和多级检测,所述一级检测为通过一次下行控制信道检测获取数据信道检测所需的控制信息的检测方式,所述多级检测为通过至少两次下行控制信道检测获取数据信道检测所需的控制信息的检测方式。
  24. 根据权利要求23所述的终端,其中,所述确定模块包括:
    第一检测单元,用于检测第一下行控制信道,获取控制信令分级信息;以及
    第一确定单元,用于根据所述控制信令分级信息,确定下行控制信道的检测方式;
    其中,所述控制信令分级信息用于指示下行控制信道的检测方式。
  25. 根据权利要求24所述的终端,其中,所述第一检测单元包括:
    第一盲检测单元,用于通过盲检测方式检测到第一下行控制信道,并从第一下行控制信道中读取所述控制信令分级信息;或者
    第二检测单元,用于根据预先获取的物理层信令或高层控制信令,确定第一下行控制信道的资源位置,并检测所述第一下行控制信道,从第一下行控制信道中读取所述控制信令分级信息。
  26. 根据权利要求24所述的终端,其中,所述检测模块包括:
    第一读取单元,用于当所确定的下行控制信道的检测方式为一级检测时,从所述第一下行控制信道中读取所述数据信道检测所需的控制信息。
  27. 根据权利要求24所述的终端,其中,所述检测模块包括:
    第二读取单元,用于当所确定的下行控制信道的检测方式为多级检测时,从第一下行控制信道中读取第一下行控制信道的下一级下行控制信道检测所 需的控制信息;根据所读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
  28. 根据权利要求23所述的终端,其中,所述确定模块包括:
    第二确定单元,用于根据预先接收到的高层控制信令,确定下行控制信道的检测方式;
    其中,所述高层控制信令包括无线资源控制层信令或者媒体接入控制层消息。
  29. 根据权利要求28所述的终端,其中,所述检测模块包括:
    第三读取单元,用于当所确定的下行控制信道的检测方式为一级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从检测到的第一下行控制信道中读取所述数据信道检测所需的控制信息。
  30. 根据权利要求28所述的终端,其中,所述检测模块包括:
    第四读取单元,用于当所确定的下行控制信道的检测方式为多级检测时,通过盲检测方式或者根据预先获取的物理层信令或者高层控制信令,检测到第一下行控制信道;从第一下行控制信道上读取下一级下行控制信道检测所需的控制信息;根据读取的下行控制信道检测所需的控制信息,逐级进行下行控制信道的检测,直至获取所述数据信道检测所需的控制信息。
  31. 根据权利要求27或30所述的终端,其中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。
  32. 根据权利要求23所述的终端,其中,所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
  33. 一种网络侧设备,包括:
    选择模块,用于选择下行控制信道的发送方式;以及
    第一发送模块,用于根据所选择的下行控制信道的发送方式,进行下行控制信道的发送;
    其中,所述发送方式包括一级发送和多级发送,所述一级发送为通过发送一次下行控制信道提供数据信道检测所需的控制信息的发送方式,所述多级发送是通过发送多次下行控制信道提供数据信道检测所需的控制信息的发送方式。
  34. 根据权利要求33所述的网络侧设备,其中,所述第一发送模块包括:
    第一发送单元,用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送用于指示采用一级发送的发送方式的信令分级信息以及数据信道检测所需的控制信息。
  35. 根据权利要求34所述的网络侧设备,其中,所述第一发送模块包括:
    第二发送单元,用于当所选择的下行控制信道的发送方式为多级发送时,在第一控制信道上发送用于指示采用多级发送方式的信令分级信息;在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
  36. 根据权利要求34所述的网络侧设备,其中,所述网络侧设备还包括:
    第二发送模块,用于在所述第一发送模块进行下行控制信道的发送之前,向所述终端发送用于指示第一下行控制信道的资源位置的物理层信令或高层控制信令。
  37. 根据权利要求33所述的网络侧设备,其中,所述第一发送模块,还包括:
    控制消息调整单元,用于当所选择的下行控制信道的发送方式为多级发送时,对下行控制信道上发送的控制消息进行补零操作,或,对下行控制信道上发送的控制消息进行压缩操作,其中,经过所述补零操作或压缩操作后的各个控制消息的长度均相同。
  38. 根据权利要求33所述的网络侧设备,其中,所述控制消息调整单元包括:
    补零处理单元,用于确定各级下行控制信道的控制消息的最大长度;根据所述最大长度,对长度小于所述最大长度的控制消息进行补零操作,获取补零操作后的控制消息。
  39. 根据权利要求33所述的网络侧设备,其中,所述控制消息调整单元包括:
    压缩处理单元,用于根据各级下行控制信道的控制消息的长度,确定出一个最终长度;根据所述最终长度,将对长度大于所述最终长度的控制消息中的预定字段丢弃,得到压缩后的控制消息;通过高层控制信令,将丢弃的所述预定字段发送给所述终端。
  40. 根据权利要求33所述的网络侧设备,其中,第一发送模块包括:
    第三发送单元,用于当所选择的下行控制信道的发送方式为一级发送时,在第一控制信道上发送数据信道检测所需的控制信息。
  41. 根据权利要求33所述的网络侧设备,其中,第一发送模块包括:
    第四发送单元,用于当所选择的下行控制信道的发送方式为多级发送时,在最后一级之前的每一级下行控制信道上发送该每一级下行控制信道的下一级下行控制信道检测所需的控制信息,以及,在最后一级下行控制信道上发送数据信道检测所需的控制信息。
  42. 根据权利要求41所述的网络侧设备,其中,所述网络侧设备还包括:
    第三发送模块,用于在第一发送模块进行下行控制信道的发送之前,向所述终端发送用于指示下行控制信道的检测方式的物理层信令或高层控制信令,其中,所述下行控制信道的检测方式,与所述的下行控制信道的发送方式一一对应。
  43. 根据权利要求35或41所述的网络侧设备,其中,所述下行控制信道检测所需的控制信息包括:下行控制信道的时域位置、下行控制信道的频域位置、下行控制信道的空域位置以及下行控制信道所在的子载波编号中的至少一项。
  44. 根据权利要求33所述的网络侧设备,其中,所述数据信道检测所需的控制信息包括:数据信道的资源位置、数据信道采用的调制编码方式以及数据信道对应的混合自动重传HARQ进程信息中的至少一项。
  45. 一种终端,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的下行控制信道的检测方法中的步骤。
  46. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11至22中任一项所述的下行控制信道的发送方法中的步骤。
  47. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的下行控制信道的检测方法中的步骤。
  48. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求11至22中任一项所述的下行控制信道的发送方法中的步骤。
PCT/CN2017/108616 2016-11-04 2017-10-31 下行控制信道的检测方法、发送方法、网络侧设备及终端 WO2018082546A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/346,865 US11265102B2 (en) 2016-11-04 2017-10-31 Downlink control channel detection method, downlink control channel transmission method, network side device and user equipment
ES17866685T ES2889373T3 (es) 2016-11-04 2017-10-31 Procedimiento de detección y procedimiento de transmisión para canal de control de enlace descendente, dispositivo en el lado de la red y terminal
EP17866685.5A EP3537820B1 (en) 2016-11-04 2017-10-31 Detection method and transmission method for downlink control channel, network side device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610966566.9A CN108024349A (zh) 2016-11-04 2016-11-04 下行控制信道的检测方法、发送方法、网络侧设备及终端
CN201610966566.9 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082546A1 true WO2018082546A1 (zh) 2018-05-11

Family

ID=62075680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108616 WO2018082546A1 (zh) 2016-11-04 2017-10-31 下行控制信道的检测方法、发送方法、网络侧设备及终端

Country Status (5)

Country Link
US (1) US11265102B2 (zh)
EP (1) EP3537820B1 (zh)
CN (1) CN108024349A (zh)
ES (1) ES2889373T3 (zh)
WO (1) WO2018082546A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10171144B2 (en) * 2017-03-24 2019-01-01 At&T Intellectual Property I, L.P. Low complexity high performance single codeword MIMO for 5G wireless communication systems
CN111865511B (zh) * 2019-04-30 2022-01-11 华为技术有限公司 传输混合自动重传请求harq反馈信息的方法和通信装置
WO2020258273A1 (zh) * 2019-06-28 2020-12-30 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692739A (zh) * 2009-10-09 2010-04-07 中兴通讯股份有限公司 传输方式的指示方法及装置
CN103563284A (zh) * 2011-04-11 2014-02-05 高通股份有限公司 用于fdd-tdd载波聚合的控制信息的传输
CN103796327A (zh) * 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN104137440A (zh) * 2012-02-11 2014-11-05 Lg电子株式会社 在基于多小区的无线通信系统中接收下行链路数据信道的方法和设备
CN104144513A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统
CN105722239A (zh) * 2016-02-05 2016-06-29 宇龙计算机通信科技(深圳)有限公司 一种调度指令的检测方法和终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100546415C (zh) * 2007-01-05 2009-09-30 华为技术有限公司 通知终端处理消息的方法、系统、基站及进行消息处理的终端
CN101808281B (zh) * 2009-02-12 2014-12-10 中兴通讯股份有限公司 Mbms控制信令调度信息的传输方法、系统及设备
CN102448053B (zh) * 2010-09-30 2015-08-26 上海贝尔股份有限公司 在回程链路上执行多个mac pdu传递的方法和中继节点
US10638464B2 (en) 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
CN102858014B (zh) * 2011-06-30 2015-05-06 华为技术有限公司 控制信令的发送和接收方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692739A (zh) * 2009-10-09 2010-04-07 中兴通讯股份有限公司 传输方式的指示方法及装置
CN103563284A (zh) * 2011-04-11 2014-02-05 高通股份有限公司 用于fdd-tdd载波聚合的控制信息的传输
CN104137440A (zh) * 2012-02-11 2014-11-05 Lg电子株式会社 在基于多小区的无线通信系统中接收下行链路数据信道的方法和设备
CN103796327A (zh) * 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN104144513A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统
CN105722239A (zh) * 2016-02-05 2016-06-29 宇龙计算机通信科技(深圳)有限公司 一种调度指令的检测方法和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537820A4 *

Also Published As

Publication number Publication date
EP3537820A4 (en) 2019-11-20
US20190280807A1 (en) 2019-09-12
EP3537820A1 (en) 2019-09-11
EP3537820B1 (en) 2021-08-04
US11265102B2 (en) 2022-03-01
ES2889373T3 (es) 2022-01-12
CN108024349A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018082543A1 (zh) 下行控制信道的检测方法、指示方法、终端及网络侧设备
KR102394223B1 (ko) 무선 통신 시스템에서 페이징 프로세스 수행 장치 및 방법
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
US9391743B2 (en) Method and apparatus for defining HARQ functionality for cells having different time division duplex subframe configurations
JP2021533616A (ja) 通信方法及び装置
WO2018127241A1 (zh) Dci传输方法、用户终端和网络侧设备
WO2020063576A1 (zh) 传输块与码字的对应关系、相关设备以及系统
WO2018196529A1 (zh) 一种资源信息确定方法及终端设备、网络设备
EP3595383B1 (en) Resource mapping method, network device and terminal device
WO2021164482A1 (zh) 信息接收方法、信息发送方法及设备
EP4178139A1 (en) Pdcch monitoring method, sending method, and related device
JP2024502625A (ja) 伝送処理方法、端末、ネットワーク機器及びチップ
WO2018082546A1 (zh) 下行控制信道的检测方法、发送方法、网络侧设备及终端
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
WO2019015378A1 (zh) 一种数据传输的方法及设备
US10411942B2 (en) Techniques for using a modulation and coding scheme for downlink transmissions
WO2018166400A1 (zh) 一种传输方法和装置
KR20220158263A (ko) Harq 피드백 방법, 단말 및 기지국
CN107708210B (zh) 用于多用户叠加传输的方法、网络设备和终端设备
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
CN111327346B (zh) 一种信道跳频的确定方法及装置、计算机存储介质
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2022017354A1 (zh) Pdcch的校验方法、发送方法、终端及网络侧设备
KR20210044847A (ko) 다운링크 제어 정보 전송 방법 및 장치
WO2019056974A1 (zh) 上行链路调度方式确定方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866685

Country of ref document: EP

Effective date: 20190604