WO2019015378A1 - 一种数据传输的方法及设备 - Google Patents

一种数据传输的方法及设备 Download PDF

Info

Publication number
WO2019015378A1
WO2019015378A1 PCT/CN2018/085811 CN2018085811W WO2019015378A1 WO 2019015378 A1 WO2019015378 A1 WO 2019015378A1 CN 2018085811 W CN2018085811 W CN 2018085811W WO 2019015378 A1 WO2019015378 A1 WO 2019015378A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
value
control information
length
configuration
Prior art date
Application number
PCT/CN2018/085811
Other languages
English (en)
French (fr)
Inventor
戎璐
刘永
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18834352.9A priority Critical patent/EP3595386A4/en
Publication of WO2019015378A1 publication Critical patent/WO2019015378A1/zh
Priority to US16/674,764 priority patent/US20200068543A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and device.
  • the downlink transmission of LTE is taken as an example, and the codeword is subjected to scrambling, modulation, layer mapping, precoding, resource mapping, and orthogonal frequency division multiplexing (English full name: orthogonal frequency division multiplexing, English abbreviation: OFDM)
  • OFDM orthogonal frequency division multiplexing
  • the terminal Before the terminal receives or sends data, it needs to receive scheduling signaling from the network, so that the terminal knows what time-frequency resource location should be used, and what configuration is used to receive or send data.
  • the signaling such as dynamic scheduling is carried in the physical downlink control channel (physical downlink control channel, English abbreviation: PDCCH), and the signaling content is downlink control information (English name: downlink control information, English abbreviation) :DCI), the format of its signaling content is specified by DCI format.
  • DCI formats are defined in the LTE system.
  • a variety of DCI formats can support different types of transmissions. For example, some DCI formats can support downlink (English full name: downlink, English abbreviation: DL) transmission, and some DCI formats can be uplinked. English full name: uplink, English abbreviation: UL) transmission, some DCI format can support single codeword transmission, and some DCI format can support dual codeword transmission.
  • DCI format 2C in the LTE system supports multi-layer spatial multiplexing of DL transmission, and can support transmission of double codewords and single codewords.
  • DCI format 2C includes the following fields:
  • Antenna port information field Antenna port(s), scrambling identity and number of layers–3bit;
  • the length of each field in the DCI format is fixed, even if the length of the above field varies with a single codeword or a double codeword, in order to facilitate terminal detection, whether it is a single
  • the DCI format of the codeword or the double codeword must also be designed according to the maximum length of the single codeword and the double codeword. It can be seen that the setting method of the DCI format in the data transmission process in the prior art is not flexible.
  • the method for data transmission in the data transmission process is inflexible in the prior art.
  • the embodiment of the present application provides a data transmission method, which can flexibly determine the control information according to the number of transport blocks to be transmitted.
  • the length of the second field indicating the antenna port configuration information and the number of the third field indicating the configuration information of the transport block thereby improving the flexibility of the control information format setting and saving control information in various scenarios Signaling overhead.
  • the embodiment of the present application also provides a corresponding device.
  • the first aspect of the present application provides a data transmission method, where the method is applied to a data transmission process of a terminal and a network device, where the network device may be a base station, the method includes: the network device determines control information, and the control information may be DCI.
  • Format control information including a first field, a second field, and at least one third field; wherein the first field is used to indicate the number of transport blocks to be transmitted; the second field includes antenna port configuration information, the second field The length is related to the number of transport blocks; that is, the length of the second field can be determined according to the number of transport blocks, the third field includes configuration information of the transport block, and the number of third fields is related to the number of transport blocks, that is, the third The number of fields may be determined according to the number of transport blocks; the length of the second field is also the number of bits of the second field, and the number of the third field corresponds to the number of TBs.
  • one TB corresponds to a third field
  • the third field It usually consists of a combination of modulation and coding, a new data indication, and a redundancy version, usually a third field.
  • the length is 8bits.
  • the network device sends control information to the terminal, and the network device performs data transmission with the terminal according to the control information. That is to say, the terminal can perform data transmission with the network device according to the situation of each field in the control information. It can be seen from the first aspect that the length of the second field and the number of the third field can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in various scenarios.
  • the signaling overhead of the information can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in various scenarios.
  • the signaling overhead of the information can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting
  • the length of the second field is the first length
  • the number of the third field is the first value.
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value.
  • the first layer indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates When the number of transport blocks is 2, the length of the second field is 1 bit, and the number of the third field is 2.
  • the method further includes: determining, by the network device, a value of a high-level parameter, a value of the high-level parameter, and using the first field
  • the network device sends a high-level message to the terminal, where the high-level message is used to indicate the value of the high-level parameter.
  • the high-level parameters can be transmitted through radio resource control (English full name: Radio Resource Control, English abbreviation: RRC) signaling.
  • RRC Radio Resource Control
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • the control information further includes a fourth The field, the information on the fourth field is used to indicate the codeword used at the time of data transmission, and the codeword is the representation of the transport block at the physical layer.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • the method further includes: determining, by the network device, whether a format of the control information is configured; If the configuration is not configured, or the configuration is determined, and the value of the configuration parameter is set to a preset value, the first field is empty, and the configuration parameter is used to configure the format of the control information, and the preset value may be 0, can also be other values.
  • the first field may be flexibly determined according to requirements, so that the signaling overhead may be further saved in some scenarios.
  • the second aspect of the present application provides a data transmission method, where the method is applied to a data transmission process of a terminal and a network device, where the network device may be a base station, and the method includes: determining, by the network device, configuration parameters of the control information and the control information, The configuration parameter is used to configure the format of the control information.
  • the configuration parameter is used to configure the structure of the control information.
  • the control information includes the first field, the second field, and at least a third field; wherein the first field is used to indicate the number of transport blocks to be transmitted; the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks; and the third field includes the configuration of the transport block Information, the number of the third field is related to the number of the transport block; when the value of the configuration parameter is the second configuration value, the control information includes the second field and the at least one third field; the length of the second field and the third field The quantity is related to the format; the network device sends control information and configuration parameters to the terminal; the network device is based on the control information and Parameters for data transmission to the terminal.
  • the first configuration value and the second configuration value may take specific values, for example, the first configuration value is 0, and the second configuration value is 1. Of course, the values of the first configuration value and the second configuration value may also be other values. Value.
  • the second aspect provides a switch scheme for the first field. When the configuration parameter is the first configuration value, the first field is configured. When the configuration parameter is the second configuration value, the first field is not configured. When the configuration parameter is the first configuration value, the signaling overhead can be saved. When the configuration parameter is the second configuration value, the first field can be saved, and the signaling overhead can also be saved.
  • the length of the second field is the first length
  • the number of the third field is the first value.
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value.
  • a transmission scenario with a maximum number of layers of 6 layers is taken as an example.
  • the first field indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates the transport block.
  • the length of the second field is 1 bit, and the number of the third field is 2.
  • the first value is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1
  • the second value is 2
  • the length of the second field is 1 bit
  • the number of the third field is 2.
  • the method further includes: determining, by the network device, a value of a high-level parameter, a value of the high-level parameter, and using the first field
  • the network device sends a high-level message to the terminal, where the high-level message is used to indicate the value of the high-level parameter.
  • the higher layer parameters can be transmitted through RRC signaling.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second block may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping between the high-level parameter and the second field length according to the number of different transport blocks. To determine the length of the second field. In summary, in the second possible implementation, the length determination of the second field is flexible.
  • the control information further includes a fourth The field, the information on the fourth field is used to indicate the codeword used at the time of data transmission, and the codeword is the representation of the transport block at the physical layer.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • a third aspect of the present application provides a data transmission method, where the method is applied to a data transmission process of a terminal and a network device, where the terminal may be a device such as a mobile phone and a tablet computer, and the method includes: receiving, by the terminal, control information sent by the network device
  • the control information may be control information in a DCI format, where the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate the number of transport blocks to be transmitted; the second field includes an antenna.
  • the length of the second field is related to the number of transport blocks; the third field includes configuration information of the transport block, the number of the third field is related to the number of transport blocks; the length of the second field is also the bit of the second field.
  • the number of the third field corresponds to the number of TBs.
  • one TB corresponds to a third field, and the third field usually includes a combination of modulation and coding, a new data indication, and a redundancy version, usually a third.
  • the length of the field is 8bits.
  • the terminal performs data transmission with the network device according to the control information. That is to say, the terminal can perform data transmission according to the situation of each field in the control information.
  • the length of the second field and the number of the third field can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in various scenarios.
  • the signaling overhead of the information can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in various scenarios.
  • the method further includes: determining, by the terminal, the length of the second field and the number of the third field, respectively, according to the number of the transport blocks; The terminal determines antenna port configuration information of the transport block to be transmitted from the second field according to the length of the second field, and determines configuration information of the transport block to be transmitted from the third field according to the number of the third field; the terminal according to the transport block The number, antenna port configuration information, and configuration information are transmitted with the network device.
  • the length of the second field is the first The length
  • the number of the third field is a first value
  • the number of the second field is less than the first length
  • the number of the third field is the second value
  • the second The value is greater than the first value.
  • a transmission scenario with a maximum number of layers of 6 layers is taken as an example.
  • the first field indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates the transport block.
  • the length of the second field is 1 bit, and the number of the third field is 2.
  • the first value is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1
  • the second value is 2
  • the length of the second field is 1 bit
  • the number of the third field is 2.
  • the method further includes: receiving, by the terminal, a high layer message sent by the network device, where the high layer message is used Indicates the value of the high-level parameter, the value of the high-level parameter, and the first field is used to determine the length of the second field.
  • the higher layer parameters can be transmitted through RRC signaling.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • the control information when the first field indicates that the number of the transport blocks is 1, the control information further includes The fourth field, the information on the fourth field is used to indicate the codeword used in the data transmission, the codeword is the representation of the transport block at the physical layer; the terminal transmits the data using the codeword indicated by the information on the fourth field.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • the method further includes: the terminal does not receive the control information within the preset time If the configuration parameter corresponding to the format, or the received configuration parameter is a preset value, it is determined that the first field is empty.
  • the preset value can be 0 or other values.
  • the first field may be flexibly determined according to requirements, so that the signaling overhead may be further saved in some scenarios.
  • a fourth aspect of the present application provides a data transmission method, where the method is applied to a data transmission process of a terminal and a network device, where the network device may be a base station, and the method includes: receiving, by the terminal, control information and control information sent by the network device.
  • the configuration parameter is used to configure a format of the control information
  • the control information when the value of the configuration parameter is a first configuration value, the control information includes a first field, a second field, and at least one third field; wherein the first field is used for Indicates the number of transport blocks to be transmitted;
  • the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks;
  • the third field includes configuration information of the transport block, the number of third fields and the number of transport blocks Corresponding;
  • the control information when the value of the configuration parameter is the second configuration value, the control information includes a second field and at least one third field; the length of the second field and the number of the third field are related to the format; the terminal is configured according to the control information and the configuration parameter Data transmission with network devices.
  • the fourth aspect provides a switch scheme for the first field.
  • the configuration parameter is the first configuration value
  • the first field is configured
  • the configuration parameter is the second configuration value
  • the first configuration parameter is not configured.
  • a field is used to save the signaling overhead when the configuration parameter is the first configuration value, and the first field can be saved when the configuration parameter is the second configuration value, and the signaling overhead can also be saved.
  • the method further includes: determining, by the terminal, the length of the second field and the number of the third field, respectively, according to the number of the transport blocks; Determining antenna port configuration information of the transport block to be transmitted in the two fields, determining configuration information of the transport block to be transmitted from the third field according to the number of the third field; the terminal according to the number of transport blocks, antenna port configuration information, and configuration information Data transmission with network devices.
  • the length of the second field is the first The length
  • the number of the third field is a first value
  • the length of the second field is less than the first length
  • the number of the third field is the second value
  • the second The value is greater than the first value.
  • a transmission scenario with a maximum number of layers of 6 layers is taken as an example.
  • the first field indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates the transport block.
  • the length of the second field is 1 bit, and the number of the third field is 2.
  • the first value is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1
  • the second value is 2
  • the length of the second field is 1 bit
  • the number of the third field is 2.
  • the method further includes: receiving, by the terminal, a high-level message sent by the network device, where the high-level message is used to indicate The value of the high-level parameter, the value of the high-level parameter, and the first field are used to determine the length of the second field.
  • the higher layer parameters can be transmitted through RRC signaling.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • the control information when the first field indicates that the number of the transport blocks is 1, the control information further includes The fourth field, the information on the fourth field is used to indicate the codeword used in the data transmission, the codeword is the representation of the transport block at the physical layer; the terminal transmits the data using the codeword indicated by the information on the fourth field.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • a fifth aspect of the present application provides a network device, where the network device may be a base station, where the network device includes a transceiver and at least one processor. Further, the network device may further include: a memory, the memory, the transceiver, and at least one The processor is interconnected by a bus, and the memory stores instructions; the instructions are executed by at least one processor;
  • the processor is configured to determine control information, where the control information may be control information in a DCI format, where the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate the number of transport blocks to be transmitted.
  • the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field is related to the number of transport blocks;
  • the transceiver is configured to send control information to the terminal;
  • the processor controls the transceiver to perform data transmission with the terminal according to the control information.
  • the length of the second field and the number of the third field can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving in various scenarios.
  • the signaling overhead of control information can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving in various scenarios.
  • the length of the second field is the first length
  • the number of the third field is the first value.
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value.
  • the first layer indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates When the number of transport blocks is 2, the length of the second field is 1 bit, and the number of the third field is 2.
  • the processor is further configured to determine a value of the high-level parameter, and the value of the high-level parameter and the first field are used to determine the length of the second field;
  • the transceiver is further configured to send a high-level message to the terminal, where the high-level message is used to indicate the value of the high-level parameter.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • the control information further includes a fourth The field, the information on the fourth field is used to indicate the codeword used at the time of data transmission, and the codeword is the representation of the transport block at the physical layer.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • the processor is further configured to determine whether to configure a format of the control information; If the configuration is configured, or the value of the configuration parameter is set to a preset value, the first field is blank, and the configuration parameter is used to configure the format of the control information.
  • the preset value can be 0 or other values.
  • the first field may be flexibly determined according to requirements, so that the signaling overhead may be further saved in some scenarios.
  • the sixth aspect of the present application provides a network device, where the network device may be a base station, the network device includes a transceiver and at least one processor, and further, the network device may further include: a memory, the memory, the transceiver, and at least one
  • the processor is interconnected by a bus, and the memory stores instructions; the instructions are executed by at least one processor;
  • the processor is configured to determine a configuration parameter of the control information and the control information, where the configuration parameter is used to configure a format of the control information; where, when the value of the configuration parameter is the first configuration value, the control information includes the first field, the second field, and at least a third field; wherein the first field is used to indicate the number of transport blocks to be transmitted; the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks; and the third field includes the configuration of the transport block Information, the number of the third field is related to the number of the transport block; when the value of the configuration parameter is the second configuration value, the control information includes the second field and the at least one third field; the length of the second field and the third field The quantity is related to the format;
  • the transceiver is configured to send control information and configuration parameters to the terminal;
  • the processor controls the transceiver to perform data transmission with the terminal according to the control information and the configuration parameters.
  • the first configuration value and the second configuration value may take specific values, for example, the first configuration value is 0, and the second configuration value is 1. Of course, the values of the first configuration value and the second configuration value may also be Is other values.
  • the sixth aspect provides a switch scheme for the first field. When the configuration parameter is the first configuration value, the first field is configured. When the configuration parameter is the second configuration value, the first field is not configured. When the configuration parameter is the first configuration value, the signaling overhead can be saved. When the configuration parameter is the second configuration value, the first field can be saved, and the signaling overhead can also be saved.
  • the length of the second field is the first length
  • the number of the third field is the first value.
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value.
  • the first layer indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates When the number of transport blocks is 2, the length of the second field is 1 bit, and the number of the third field is 2.
  • the processor is further configured to determine a value of the high-level parameter, and the value of the high-level parameter and the first field are used to determine the length of the second field;
  • the transceiver is further configured to send a high-level message to the terminal, where the high-level message is used to indicate the value of the high-level parameter.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • the control information further includes a fourth The field, the information on the fourth field is used to indicate the codeword used at the time of data transmission, and the codeword is the representation of the transport block at the physical layer.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • the seventh aspect of the present application provides a terminal, which may be a device such as a mobile phone and a tablet computer, the terminal includes a transceiver and at least one processor. Further, the terminal may further include: a memory, the memory, the transceiver, and at least a processor interconnected by a bus, the memory storing instructions; the instructions being executed by at least one processor;
  • the transceiver is configured to receive control information sent by the network device, where the control information may be control information in a DCI format, where the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate to be The number of transport blocks transmitted; the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks; the third field includes configuration information of the transport block, and the number of third fields is related to the number of transport blocks;
  • the processor controls the transceiver to perform data transmission with the network device according to the control information.
  • the length of the second field and the number of the third field can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in multiple scenarios.
  • the signaling overhead of the information can be flexibly determined according to the number of transport blocks to be transmitted, thereby improving the flexibility of the control information format setting and saving control in multiple scenarios.
  • the processor is further configured to:
  • the transceiver is specifically configured to perform data transmission with the network device according to the number of the transport blocks, the antenna port configuration information, and the configuration information of the transport block.
  • the length of the second field is the first The length
  • the number of the third field is a first value
  • the length of the second field is less than the first length
  • the number of the third field is the second value
  • the second The value is greater than the first value.
  • a transmission scenario with a maximum number of layers of 6 layers is taken as an example.
  • the first field indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates the transport block.
  • the length of the second field is 1 bit, and the number of the third field is 2.
  • the first value is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1
  • the second value is 2
  • the length of the second field is 1 bit
  • the number of the third field is 2.
  • the transceiver is further configured to receive a high-level message sent by the terminal, where the high-level message is used to indicate a high-level parameter.
  • the value, the value of the upper layer parameter, and the first field are used to determine the length of the second field.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • any one of the first to the third possible implementation manners of the seventh aspect in the fourth possible implementation manner, when the first field indicates that the number of the transport blocks is 1, the control information is further The fourth field is included, and the information on the fourth field is used to indicate a codeword used in data transmission, and the codeword is a representation of the transport block at the physical layer; the terminal uses the codeword transmission indicated by the information on the fourth field. data.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • the processor is further configured to: the transceiver does not receive and control the preset time If the configuration parameter corresponding to the format of the information, or the received configuration parameter is a preset value, it is determined that the first field is empty.
  • the preset value can be 0 or other values.
  • the first field may be flexibly determined according to requirements, so that the signaling overhead may be further saved in some scenarios.
  • the eighth aspect of the present application provides a terminal, which may be a device such as a mobile phone and a tablet computer, the terminal includes a transceiver and at least one processor. Further, the terminal may further include: a memory, the memory, the transceiver, and at least a processor interconnected by a bus, the memory storing instructions; the instructions being executed by at least one processor;
  • the transceiver is configured to receive configuration parameters of the control information and the control information sent by the network device, where the configuration parameter is used to configure the format of the control information; when the value of the configuration parameter is the first configuration value, the control information includes the first field, a second field and at least one third field; wherein the first field is used to indicate the number of transport blocks to be transmitted; the second field includes antenna port configuration information, the length of the second field is related to the number of transport blocks; and the third field includes The configuration information of the transport block, the number of the third field is related to the number of the transport block; when the value of the configuration parameter is the second configuration value, the control information includes the second field and the at least one third field; the length of the second field and The number of third fields is related to the format;
  • the processor controls the transceiver to perform data transmission with the network device according to the control information and the configuration parameters.
  • the processor is further configured to:
  • the transceiver is specifically configured to perform data transmission with the network device according to the number of the transport blocks, the antenna port configuration information, and the configuration information of the transport block.
  • the length of the second field is the first The length
  • the number of the third field is a first value
  • the length of the second field is less than the first length
  • the number of the third field is the second value
  • the second The value is greater than the first value.
  • a transmission scenario with a maximum number of layers of 6 layers is taken as an example.
  • the first field indicates that the number of transport blocks is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1.
  • the first field indicates the transport block.
  • the length of the second field is 1 bit, and the number of the third field is 2.
  • the first value is 1
  • the length of the second field is 4 bits
  • the number of the third field is 1
  • the second value is 2
  • the length of the second field is 1 bit
  • the number of the third field is 2.
  • the transceiver is further configured to receive a high-level message sent by the terminal, where the high-level message is used to indicate a high-level parameter.
  • the value, the value of the upper layer parameter, and the first field are used to determine the length of the second field.
  • the length of the second field may also be different.
  • the corresponding table corresponding to the second field may be selected according to the configuration of the high-level parameter and the number of transport blocks.
  • the length of the second field may be determined according to the number of the transport block, the value of the high-level parameter, and the preset formula, or may be based on the mapping relationship between the high-level parameter and the second field length according to the number of different transport blocks. Determine the length of the second field.
  • the length determination of the second field is flexible.
  • any one of the first to the third possible implementation manners of the eighth aspect in the fourth possible implementation manner, when the first field indicates that the number of the transport blocks is 1, the control information is further The fourth field is included, and the information on the fourth field is used to indicate a codeword used in data transmission, and the codeword is a representation of the transport block at the physical layer; the terminal uses the codeword transmission indicated by the information on the fourth field. data.
  • the number of transmission blocks can be transmitted by selecting a codeword with better channel conditions according to channel conditions, thereby improving the efficiency of data transmission.
  • a ninth aspect of the present application provides a system chip, including: at least one processor and an interface circuit. Further, the method further includes: a memory, the memory, the interface circuit, and the at least one processor are interconnected by a bus, and the memory stores instructions. The instructions are executed by the at least one processor to cause the network device to perform any of the possible implementations of the first aspect or the first aspect, and the operation of the network device in any alternative implementation of the second aspect or the second aspect.
  • a tenth aspect of the present application provides a system chip, including: at least one processor and an interface circuit. Further, the method further includes: a memory, the memory, the interface circuit, and the at least one processor are interconnected by a bus, and the memory stores instructions. The instructions are executed by at least one processor to cause the terminal to perform any of the possible implementations of the third aspect or the third aspect, and the functionality of the method provided by any of the alternative aspects of the fourth or fourth aspect Terminal operation.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods of the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the various aspects described above.
  • Yet another aspect of the present application provides a system for data transmission, including: a network device and a terminal;
  • the network device is the network device described in any of the foregoing fifth or fifth possible implementation manners;
  • the terminal is the terminal described in any of the foregoing seventh or seventh possible implementation manners.
  • Yet another aspect of the present application provides a system for data transmission, including: a network device and a terminal;
  • the network device is the network device described in any of the foregoing sixth or sixth possible implementation manners;
  • the terminal is the terminal described in the foregoing eighth aspect or any possible implementation manner of the eighth aspect.
  • the first field in the control information includes a first field for indicating the number of transport blocks to be transmitted, and the length of the second field is determined by the number of transport blocks, and the third The number of fields is determined in relation to the number of transport blocks, thereby increasing the flexibility of the control information format setting and saving the signaling overhead of control information in various scenarios.
  • 1 is a schematic diagram showing an example of a codeword processing process
  • FIG. 2 is a schematic diagram of an embodiment of a system for data transmission in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an embodiment of a method for data transmission in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a method for data transmission in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a network device in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an embodiment of a terminal in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a terminal in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a terminal in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an embodiment of a network device in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a terminal in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a system chip in an embodiment of the present application.
  • An embodiment of the present application provides a data transmission method, which may flexibly determine, according to the number of transport blocks to be transmitted, a length of a second field used to indicate antenna port configuration information in the control information, and a configuration information used to indicate a transport block.
  • the number of the third field increases the flexibility of the control information format setting and saves the signaling overhead of the control information in various scenarios.
  • the embodiments of the present application also provide corresponding devices and systems. The details are described below separately.
  • FIG. 2 is a schematic diagram of an embodiment of a system for data transmission in an embodiment of the present application.
  • the data transmission system includes a network device and a terminal, and the network device may be a base station.
  • the base station may be referred to as an evolved base station eNobe, and the network device may also be a radio access network (radio access network).
  • Network, RAN radio access network
  • the network device can also be other devices that can perform corresponding control information configuration functions.
  • the terminal may include a device for transmitting data according to control information, such as a mobile phone and a tablet.
  • the network device determines the control information and transmits the control information to the terminal, thereby causing the terminal to complete the reception or transmission of the data.
  • an embodiment of a method for data transmission provided by an embodiment of the present application includes:
  • the network device determines control information.
  • the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate a number of transport blocks to be transmitted; the second field includes antenna port configuration information, The length of the second field is related to the number of transport blocks; the third field includes configuration information of the transport block, the number of the third field being related to the number of transport blocks.
  • the first field indicates the number of TBs, the number of TBs, or other information that can be used to determine the number of TBs.
  • the information that can be used to determine the number of TBs can be the number of codewords, which can be pre-agreed.
  • the first field indicates other information that can be used to determine the number of TBs.
  • the length of the second field that is, the number of bits, can be determined according to the number of TBs.
  • the number of the third field corresponds to the number of TBs.
  • one TB corresponds to a third field, and the third field usually includes a combination of modulation and coding, a new data indication, and a redundancy version, usually a third field.
  • the length is 8bits.
  • the length of the second field is determined according to the number of TBs, and the number of third fields may be determined according to the number of TBs.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the value of the first value may be 1, the length of the second field may be 4 bits, and the number of the third field may be one, if the number of TBs is the second value.
  • the value of the second value may be 2, and the length of the second field may be 1 bit, and the number of the third field may be two. If the number of the TB is 3 or other values, the length of the second field may be The value determines that the number of third fields can be determined corresponding to the number of TBs.
  • one TB usually corresponds to one code, one TB can be called a single codeword, and two TBs can be called double codewords.
  • the network device sends control information to the terminal.
  • the terminal After receiving the control information sent by the network device, the terminal performs data transmission with the network device according to the control information.
  • the data transmission method provided by the embodiment of the present application may flexibly determine the length of the second field used to indicate the antenna port configuration information in the control information according to the number of transport blocks to be transmitted, and for indicating The number of the third field of the configuration information of the transport block, thereby improving the flexibility of the control information format setting, and saving the signaling overhead of the control information in various scenarios.
  • the transmission system usually includes multiple layers.
  • the information of the second field includes the mapped layer and the antenna port number.
  • it is required to map to the corresponding layer according to the layer information and the antenna port number on the second field, and transmit by the corresponding antenna port number.
  • 6-layer transmission layer that is, the maximum number of layers is 6, usually 4 layers and 4 layers are transmitted by single code words, and 5 layers and 6 layers are transmitted by double code words.
  • a single codeword transmission requires 4 bits, and a double codeword requires only 1 bit because there are only 5 layers and 6 layers.
  • the information of the second field of a single codeword can be understood by referring to Table 1.
  • Value is the value of the second field
  • Message is the number of layers and antenna port information corresponding to the value of the second field.
  • the Layer is the layer
  • the port is the antenna port
  • the Reserved is the reserved field.
  • the corresponding layer and antenna port information can be configured in the Reserved field.
  • the information of the second field of the double code word can be understood by referring to Table 2.
  • Value is the value of the second field
  • Message is the number of layers and antenna port information corresponding to the value of the second field.
  • the Layer is the layer
  • the port is the antenna port
  • Reserved is the reserved field
  • the corresponding layer and antenna port information can be configured in the Reserved field according to requirements.
  • antenna port number and layer mapping indicated by the second field in Tables 1 and 2 above can also be represented by only one table, as shown in Table 3:
  • the content of the above-mentioned Table 1 to Table 3 is only an example in which the maximum number of layers is 6 layers.
  • the maximum number of transmission layers is not limited, and no matter how many transmission layers are used,
  • the idea in the present application is that the length of the second field can be determined according to the number of TBs, and the number of third fields can be determined according to the number of TBs.
  • the first field, the second field, and the third field may or may not appear consecutively in the control information; they may appear in any order.
  • the control information includes the second and third fields.
  • the length of the first field is 1 bit
  • the length of the second field is 4 bits
  • the number of the third field is 1 (ie, there is no second third field)
  • the length is 8. Bits
  • the length of the first field is 1 bit
  • the length of the second field is 1 bit
  • the number of the third field is 2
  • the maximum total length of these three fields is 18 bits, and it is necessary to occupy 18 bits of overhead in the DCI signaling. Compared with the signaling overhead of 20 bits in the prior art, the signaling overhead of 2 bits is saved. The most important thing is that the solution provided by the embodiment of the present application implements the length of the second field and the number of the third field. Flexible determination of TB requirements.
  • the length of the antenna port configuration information varies greatly depending on the number of transport blocks.
  • the length of the second field can be flexibly determined according to the number of transport blocks. In many scenarios, Signaling overhead can be saved.
  • the length of the second field described above may be determined according to the number of TBs, and in fact, it is not limited to determining the length of the second field based only on the number of TBs.
  • the length of the second field is also determined based on the first field in conjunction with the higher layer parameters.
  • the high-level parameters can be transmitted through radio resource control (English full name: Radio Resource Control, English abbreviation: RRC) signaling.
  • the length of the two fields can be determined according to Table 1. If the first field indicates that the number of transport blocks is 1, and the value of the higher layer parameter is another preset value, for example, when the other preset value is 0, the length of the second field may be determined according to Table 4.
  • the length of the second field may also be determined according to the number of transport blocks and higher layer parameters, and a preset formula.
  • the length of the second field 3-2N TB + Q;
  • N TB is the number of transport blocks and Q is the high-level parameter.
  • the length of the second field may also be determined by the indication flag_TB of the number of transport blocks:
  • the flag_TB is an indication of the number of the transport blocks, and Q is the high-level parameter.
  • the length of the second field may also be determined by the number of codewords and higher layer parameters, as well as a preset table.
  • Table 5 Mapping table of high-level parameters and length of the second field
  • the dmrs-table-index is a high-level parameter
  • N b is the length of the second field. It can be seen from Table 5. According to the case of a single code word or a double code word, the second field N b can be determined according to the value of the high-level parameter. length.
  • the remaining parameters in Table 5 can be understood by referring to the explanations in the Tables 1 and 2.
  • Reserved in the table is a reserved value, which is currently not defined and can be defined according to the usage requirements.
  • N b 0
  • the length of the second field is zero, that is, the second field is not transmitted in the signaling.
  • the length of the second field may also be determined by a preset another table according to the number of codewords, a DMRS pattern configuration parameter dmrs-pattern and a high-level parameter dmrs-tableAlt.
  • Table 6 Mapping table between the high-level parameters and the length of the second field under different pattern configuration parameters
  • dmrs-pattern is the pattern configuration parameter
  • dmrs-tableAlt is the high-level parameter
  • N b is the length of the second field. It can be seen from Table 6. According to the configuration parameters of the pattern and the single code word or double code word, it can be based on the high level. The value of the parameter determines the length of the second field N b .
  • the value range of the high-level parameter dmrs-tableAlt is configured according to the pattern configuration parameter dmrs-pattern.
  • the four tables may also be multiple tables corresponding to values of other various parameters.
  • dmrs-pattern 0 single codeword
  • dmrs-pattern 0 double codeword shown in Table 7
  • the control information when the first field indicates that the number of the transport blocks is 1, the control information further includes a fourth field, where the information on the fourth field is used to indicate that the data is transmitted during the data transmission.
  • a codeword used which is a representation of the transport block at the physical layer.
  • the channel corresponding to codeword 1 may be selected, or the channel corresponding to codeword 2 may be selected.
  • the channel conditions corresponding to codeword 1 and codeword 2 change differently with time, sometimes the code The channel condition of word 1 is better, and the channel condition of code word 2 is better.
  • the code word with better channel condition can be selected to transmit the number of one transmission block, thereby improving the efficiency of data transmission.
  • codeword 1 In the case of single codeword transmission, if codeword 1 is selected, only the first and third fields need to be included in the control information, and the second and third fields may not be included. When the codeword 2 is selected, only the second information needs to be included in the control information. The third field may not include the first third field.
  • the technical solution of the present application can effectively save signaling overhead.
  • the length difference of the antenna port configuration of the different codewords is small, the first field is introduced in the scheduling signaling, which may not save the signaling overhead.
  • FIG. 4 another embodiment of the method for data transmission provided by the embodiment of the present application includes:
  • the network device determines control information and configuration parameters of the control information, where the configuration parameter is used to configure a format of the control information.
  • the control information includes a first field, a second field, and at least one third field, where the first field includes a transport block for indicating to be transmitted. a first field of the number; the second field includes antenna port configuration information, a length of the second field is related to the number of the transport blocks; the third field includes configuration information of the transport block, The number of third fields is related to the number of transport blocks.
  • the control information includes a second field and at least one third field; a length of the second field and a quantity of the third field are related to the format .
  • the length of the second field is related to the number of transport blocks, that is, the length of the second field may be determined according to the number of transport blocks.
  • the number of third fields is related to the number of transport blocks, that is, the number of third fields may be determined according to the number of transport blocks.
  • the format can also be called a structure.
  • the network device sends the control information and the configuration parameter to the terminal.
  • the network device performs data transmission with the terminal according to the control information and the configuration parameter.
  • the embodiment of the present application provides a switching scheme of the first field, that is, conditionally enabling the first field, which is beneficial to ensure that the signaling length optimization effect can be obtained under different conditions.
  • the configuration parameter flag-TB-number-indication is not set for the format of the control information, or the configuration parameter is set by the network device, and the value of the configuration parameter is set to a preset value. For example, if the preset value is 0, the first field is not included, and the length of the second field and the number of the third sub-segment may be determined according to the configuration parameter of the format.
  • the scheduling signal includes the first field, and the number of the transport block may be determined according to the indication of the first field.
  • the length of the first field may be 2, and the number in the first field is
  • Table 10 The correspondence between a field and the number of transport blocks can be understood by referring to Table 10, as shown in Table 10:
  • the TB number indicator is an indication of the number of transport blocks
  • Number of Transport Blocks is the number of transport blocks.
  • an embodiment of the network device 20 provided by the embodiment of the present application includes:
  • a determining module 201 configured to determine control information, where the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate a quantity of transport blocks to be transmitted;
  • the two fields include antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, the number of the third field and the transport block Relevant quantity;
  • the sending module 202 is configured to send the control information determined by the determining module 201 to the terminal;
  • the transmission module 203 is configured to perform data transmission with the terminal according to the control information sent by the sending module 202.
  • the determining module 201 is configured to determine control information and configuration parameters of the control information, where the configuration parameter is used to configure a format of the control information;
  • the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate a transport block to be transmitted.
  • the second field includes antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field Related to the number of transport blocks;
  • the control information includes a second field and at least one third field; a length of the second field and a quantity of the third field are related to the format ;
  • the sending module 202 sends the control information format configuration parameter and the control information determined by the determining module 201 to the terminal;
  • the transmission module 203 performs data transmission with the terminal according to the control information sent by the sending module 202.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the determining module 201 is further configured to determine a value of the high-level parameter, where the value of the high-level parameter and the first field are used to determine a length of the second field;
  • the sending module 202 is further configured to send a high-level message to the terminal, where the high-level message is used to indicate a value of the high-level parameter.
  • the control information further includes a fourth field, where information on the fourth field is used to indicate a codeword used during data transmission,
  • the codeword is the representation of the transport block at the physical layer.
  • the determining module 201 is further configured to determine whether the format of the control information is configured; if it is determined not to be configured, or the configuration is determined, and the value of the configuration parameter is set to a preset value, the first The field is empty, and the configuration parameter is used to configure the format of the control information.
  • an embodiment of a terminal provided by an embodiment of the present application includes:
  • the receiving module 301 is configured to receive control information sent by the network device, where the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate the number of transport blocks to be transmitted.
  • the second field includes antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field is The number of transport blocks is related;
  • the transmission module 302 is configured to perform data transmission with the network device according to the control information.
  • the receiving module 301 is configured to receive control information sent by the network device and configuration parameters of the control information, where the configuration parameter is used to configure a format of the control information;
  • the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate a transport block to be transmitted.
  • the second field includes antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field Related to the number of transport blocks;
  • the control information includes a second field and at least one third field; a length of the second field and a quantity of the third field are related to the format ;
  • the transmission module 302 is configured to perform data transmission with the network device according to the control information.
  • another embodiment of the terminal provided by the embodiment of the present application further includes:
  • a first determining module 303 configured to separately determine a length of the second field and a quantity of the third field according to the number of the transport blocks;
  • a second determining module 304 configured to determine, according to the length of the second field, antenna port configuration information of the transport block to be transmitted from the second field, according to the number of the third field, from the Determining, in the three fields, configuration information of the transport block to be transmitted;
  • the transmission module 302 is specifically configured to perform data transmission according to the number of the transport blocks, the antenna port configuration information, and the configuration information.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the receiving module 301 is configured to receive a high-level message sent by the network device, where the high-level message is used to indicate a value of a high-level parameter, and the value of the high-level parameter and the first field are used to determine The length of the second field.
  • control information when the first field indicates that the number of the transport blocks is 1, the control information further includes a fourth field, where the information on the fourth field is used to indicate that the data is used during data transmission.
  • a codeword the codeword being a representation of the transport block at a physical layer
  • the transmitting module 302 is specifically configured to transmit data by using the codeword indicated by the information on the fourth field.
  • another embodiment of the terminal provided by the embodiment of the present application further includes: a third determining module 305,
  • the third determining module 305 is configured to: when the configuration parameter corresponding to the format of the control information is not received within the preset time, or the received configuration parameter is a preset value, determine that the first field is air.
  • FIG. 9 is a schematic structural diagram of a network device 40 according to an embodiment of the present application.
  • the network device 40 includes a processor 410, a memory 450, and a transceiver 430.
  • the memory 450 can include read only memory and random access memory, and provides operational instructions and data to the processor 410.
  • a portion of the memory 450 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 450 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 450 (the operation instruction can be stored in the operating system).
  • the processor 410 controls the operation of the network device 40, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 450 can include read only memory and random access memory and provides instructions and data to processor 410. A portion of the memory 450 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the specific components of the CPE 40 are coupled together by a bus system 420 in a specific application.
  • the bus system 420 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 420 in the figure.
  • Processor 410 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 410 or an instruction in a form of software.
  • the processor 410 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 450, and the processor 410 reads the information in the memory 450 and combines the hardware to complete the following steps:
  • the processor 410 is configured to determine control information, where the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate the number of transport blocks to be transmitted;
  • the field includes antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field is related to the transport block Quantity related;
  • the transceiver 430 is configured to send the control information to a terminal
  • the processor 410 controls the transceiver 430 to perform data transmission with the terminal according to the control information.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the processor 410 is further configured to determine a value of the high-level parameter, where the value of the high-level parameter and the first field are used to determine a length of the second field;
  • the transceiver 430 is further configured to send a high-level message to the terminal, where the high-level message is used to indicate a value of the high-level parameter.
  • control information when the first field indicates that the number of the transport blocks is 1, the control information further includes a fourth field, where the information on the fourth field is used to indicate that the data is used during data transmission.
  • a codeword which is a representation of the transport block at the physical layer.
  • the processor 410 is further configured to determine whether to configure a format of the control information; if it is determined not to be configured, or to determine a configuration, and set a value of the configuration parameter to a preset value, the first A field is empty, and the configuration parameter is used to configure the format of the control information.
  • the processor 410 and the transceiver 430 in the network device are configured to perform the following functions:
  • the processor 410 is configured to determine control information and a configuration parameter of the control information, where the configuration parameter is used to configure a format of the control information, where, when the value of the configuration parameter is a first configuration value,
  • the control information includes a first field, a second field, and at least one third field; wherein the first field is used to indicate a number of transport blocks to be transmitted; the second field includes antenna port configuration information, the second The length of the field is related to the number of the transport blocks; the third field includes configuration information of the transport block, the number of the third field is related to the number of the transport blocks; when the value of the configuration parameter is When the value is the second configuration value, the control information includes a second field and at least one third field; a length of the second field and a quantity of the third field are related to the format;
  • the transceiver 430 is configured to send the control information and the configuration parameter to the terminal.
  • the processor 410 controls the transceiver to perform data transmission with the terminal according to the control information and the configuration parameter.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the processor 410 is further configured to determine a value of the high-level parameter, where the value of the high-level parameter and the first field are used to determine a length of the second field;
  • the transceiver 430 is further configured to send a high-level message to the terminal, where the high-level message is used to indicate a value of the high-level parameter.
  • control information when the first field indicates that the number of the transport blocks is 1, the control information further includes a fourth field, where the information on the fourth field is used to indicate that the data is used during data transmission.
  • a codeword which is a representation of the transport block at the physical layer.
  • FIG. 10 is a block diagram showing a part of the structure of a mobile terminal 500 provided by an embodiment of the present application.
  • the mobile terminal includes: a radio frequency (English name: Radio Frequency, English abbreviation: RF) circuit 510, a memory 520, an input unit 530, a display unit 540, a sensor 550, an audio circuit 560, a WiFi module 570, a processor 580, And components such as power supply 590.
  • RF Radio Frequency
  • the mobile terminal structure shown in FIG. 10 does not constitute a limitation of the mobile terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the RF circuit 510 can be used for receiving and transmitting signals during the transmission or reception of information or during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 580. In addition, the uplink data is designed to be sent to the base station.
  • the RF circuit 510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (English name: Low Noise Amplifier, LNA for short), a duplexer, and the like.
  • RF circuitry 510 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to the global mobile communication system (English full name: Global System of Mobile communication, English abbreviation: GSM), general packet radio service (English full name: General Packet Radio Service, English Abbreviation: GPRS), code division multiple access (English full name: Code Division Multiple Access, English abbreviation: CDMA), wideband code division multiple access (English full name: Wideband Code Division Multiple Access, English abbreviation: WCDMA), long-term evolution (English full name : Long Term Evolution, English abbreviation: LTE), e-mail, short message service (English full name: Short Messaging Service, English abbreviation: SMS).
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the memory 520 can be used to store software programs and modules, and the processor 580 executes various functional applications and data processing of the mobile terminal by running software programs and modules stored in the memory 520.
  • the memory 520 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile terminal (such as audio data, phone book, etc.).
  • memory 520 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 530 can be configured to receive an operation instruction of the user, such as answering or rejecting, and generating a key signal input related to user setting and function control of the mobile terminal 500.
  • the input unit 530 may include a touch panel 531 and other input devices 532.
  • the touch panel 531 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 531 or near the touch panel 531. Operation), and according to a preset program to drive the corresponding connection to the mobile terminal.
  • the touch panel 531 can include two parts: a touch detection mobile terminal and a touch controller.
  • the touch detection mobile terminal detects a touch orientation of the user, and detects a signal brought by the touch operation, and transmits a signal to the touch controller; the touch controller receives the touch information from the touch detection mobile terminal, and converts the touch information into contact coordinates. And then sent to the processor 580, and can receive the command sent by the processor 580 and execute it.
  • the touch panel 531 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 530 may also include other input devices 532. Specifically, other input devices 532 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 540 can be used to display alarm prompt information.
  • the display unit 540 can include an indicator light 541.
  • the indicator light 541 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 531 can cover the indicator light 541. When the touch panel 531 detects a touch operation on or near the touch panel 531, it transmits to the processor 580 to determine the type of the touch event, and then the processor 580 according to the touch event. The type provides a corresponding visual output on the indicator light 541.
  • the touch panel 531 and the indicator light 541 are used as two independent components to implement the input and input functions of the mobile terminal, in some embodiments, the touch panel 531 and the indicator light 541 may be integrated. And realize the input and output functions of the mobile terminal.
  • the mobile terminal 500 can also include at least one type of sensor 550.
  • An audio circuit 560, a speaker 561, and a microphone 562 can provide an audio interface between the user and the mobile terminal.
  • the audio circuit 560 can transmit the converted electrical data of the received audio data to the speaker 561, and convert it into a sound signal output by the speaker 561.
  • the microphone 562 converts the collected sound signal into an electrical signal, and the audio circuit 560 is used by the audio circuit 560. After receiving, it is converted into audio data, and then processed by the audio data output processor 580, transmitted via the camera 510 to, for example, another mobile terminal, or the audio data is output to the memory 520 for further processing.
  • WiFi module 570 can be used for communication.
  • Processor 580 is the control center of the mobile terminal, connecting various portions of the entire mobile terminal using various interfaces and lines, by running or executing software programs and/or modules stored in memory 520, and recalling data stored in memory 520.
  • the mobile terminal performs various functions and processing data to perform overall monitoring on the mobile terminal.
  • the processor 580 may include one or more processing units; preferably, the processor 580 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 580.
  • the mobile terminal 500 further includes a power source 590 (such as a battery) for supplying power to the various components.
  • a power source 590 such as a battery
  • the power source can be logically connected to the processor 580 through the power management system to manage functions such as charging, discharging, and power management through the power management system. .
  • the mobile terminal 500 may further include a Bluetooth module or the like, and details are not described herein again.
  • the RF circuit 510 is equivalent to a transceiver, and the RF circuit 510 and the processor 580 perform the following functions in the process of data transmission of the present application:
  • the RF circuit 510 is configured to receive control information sent by the network device, where the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate a transport block to be transmitted.
  • the second field includes antenna port configuration information, the length of the second field is related to the number of the transport blocks;
  • the third field includes configuration information of the transport block, and the number of the third field Related to the number of transport blocks;
  • the processor 580 controls the transceiver to perform data transmission with the network device according to the control information.
  • processor 580 is further configured to:
  • the RF circuit 510 is specifically configured to perform data transmission with the network device according to the number of the transport blocks, the antenna port configuration information, and configuration information of the transport block.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the RF circuit 510 is further configured to receive a high-level message sent by the terminal, where the high-level message is used to indicate a value of a high-level parameter, and the value of the high-level parameter and the first field are used to determine the The length of the second field.
  • the processor 580 is further configured to: when the transceiver does not receive the configuration parameter corresponding to the format of the control information, or the received configuration parameter is a preset value, determine The first field is empty.
  • the processor 580 and the RF circuit 510 in the terminal are used to perform the following functions:
  • the RF circuit 510 is configured to receive the control information sent by the network device and the configuration parameter of the control information, where the configuration parameter is used to configure a format of the control information; when the value of the configuration parameter is a first configuration value
  • the control information includes a first field, a second field, and at least one third field, where the first field is used to indicate the number of transport blocks to be transmitted; the second field includes antenna port configuration information, The length of the second field is related to the number of the transport blocks; the third field includes configuration information of the transport block, and the number of the third field is related to the number of transport blocks; when the configuration When the value of the parameter is the second configuration value, the control information includes a second field and at least one third field; a length of the second field and a quantity of the third field are related to the format;
  • the processor 580 controls the RF circuit 510 to perform data transmission with the network device according to the control information and the configuration parameters.
  • processor 580 is further configured to:
  • the RF circuit 510 is specifically configured to perform data transmission with the network device according to the number of the transport blocks, the antenna port configuration information, and configuration information of the transport block.
  • the length of the second field is a first length
  • the number of the third field is the first value
  • the length of the second field is smaller than the first length
  • the number of the third field is the second value
  • the second value is greater than the first value
  • the RF circuit 510 is further configured to receive a high-level message sent by the terminal, where the high-level message is used to indicate a value of a high-level parameter, and the value of the high-level parameter and the first field are used to determine the The length of the second field.
  • FIG. 11 is a schematic structural diagram of a system chip 60 according to an embodiment of the present application.
  • the system chip 60 includes at least one processor 610, a memory 650, and an interface circuit 630.
  • the at least one processor 610, the memory 650, and the interface circuit 630 are interconnected by a bus.
  • the memory 650 can include a read only memory and a random access memory, and is directed to the processor. 610 provides operational instructions and data.
  • a portion of the memory 650 can also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 650 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the corresponding operation is performed by calling an operation instruction stored in the memory 650, which can be stored in the operating system.
  • the processor 610 controls the operation of the network device or the terminal, and the processor 610 may also be referred to as a CPU (Central Processing Unit).
  • Memory 650 can include read only memory and random access memory and provides instructions and data to processor 610. A portion of the memory 650 can also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the specific components of the CPE 140 are coupled together by a bus system 620 in a specific application.
  • the bus system 620 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 620 in the figure.
  • Processor 610 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the processor 610 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 650, and the processor 610 reads the information in the memory 650 and performs the steps of the above method in combination with its hardware.
  • the interface circuit 630 is configured to perform the steps of messaging and data transmission of the transceiver 430 of FIG. 9, or the steps of messaging and data transmission of the RF circuit 510 of FIG.
  • the processor 610 is configured to perform the step of determining the information or parameters of the processor 410 of FIG. 9, or the step of determining the information or parameters of the processor 580 of FIG.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法,包括:网络设备确定控制信息,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;网络设备向终端发送控制信息;网络设备根据控制信息与终端进行数据传输。本申请提供的方案可以依据待传输的传输块的数量来灵活确定控制信息中用于指示天线端口配置信息的第二字段的长度和用于指示传输块的配置信息的第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。

Description

一种数据传输的方法及设备
本申请要求于2017年7月20日提交中国专利局、申请号为201710596241.0、发明名称为“一种数据传输的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种数据传输的方法及设备。
背景技术
在长期演进(英文全称:long term evolution,英文缩写:LTE)系统中,发射机物理(英文全称:physical,英文缩写:PHY)层在接收到来自媒体访问控制(英文全称:medium access control,英文缩写:MAC)层的一个传输块(英文全称:transport block,英文缩写:TB)之后,经过CRC添加、信道编码、速率匹配、码块级联等传输块处理环节之后,产生一串比特数据,该比特数据在LTE系统中称为码字(英文全称:codeword,英文缩写:CW)。
在当前LTE系统中,最多支持2个传输块的同时传输,码字的数量等于传输块的数量。如图1所示,以LTE的下行传输为例,码字经过加扰、调制、层映射、预编码、资源映射、正交频分复用(英文全称:orthogonal frequency division multiplexing,英文缩写:OFDM)信号生成等物理信道处理环节之后,产生各天线端口上待发送的信号。
在终端接收或发送数据之前,需要从网络接收调度信令,以便终端获知应当在什么时频资源位置,采用什么配置,来接收或发送数据。
在LTE系统中,动态调度等信令承载于物理下行控制信道(英文全称:physical downlink control channel,英文缩写:PDCCH)中,其信令内容为下行控制信息(英文全称:downlink control information,英文缩写:DCI),其信令内容的格式(format)由DCI format规定。LTE系统中定义了多种DCI format,多种DCI format可以分别支持不同类型的传输,比如有的DCI format可以支持下行(英文全称:downlink,英文缩写:DL)传输、有的DCI format可以上行(英文全称:uplink,英文缩写:UL)传输,有的DCI format可以支持单码字传输、有的DCI format可以支持双码字传输等。
例如,LTE系统中的DCI format 2C,支持DL传输的多层空间复用,可以支持双码字和单码字的传输,DCI format 2C中包含了以下字段:
-第一字段(承载指示字段):Carrier indicator–1bit;
-第二字段(天线端口信息字段):Antenna port(s),scrambling identity and number of layers–3bit;
第1第三字段(传输块1配置信息字段):
-调制与编码的组合(Modulation and coding scheme)–5bits;
-新数据指示(New data indicator)–1bit;
-冗余版本(Redundancy version)–2bits;
第2第三字段(传输块2配置信息字段):
-调制与编码的组合(Modulation and coding scheme)–5bits;
-新数据指示(New data indicator)–1bit;
-冗余版本(Redundancy version)–2bits;
由以上DCI格式的描述可见,现有技术中,DCI格式中各字段的长度都是固定的,即使上述字段的长度随单码字或者双码字而不同,但为了便于终端检测,无论是单码字还是双码字的DCI format也必须按照单码字和双码字中的最大长度来设计,由此可见,现有技术中在数据传输过程中的DCI format的设置方式不灵活。
发明内容
为例解决现有技术中在数据传输过程中控制信息的格式设置不灵活的问题,本申请实施例提供一种数据传输的方法,可以依据待传输的传输块的数量来灵活确定控制信息中用于指示天线端口配置信息的第二字段的长度和用于指示传输块的配置信息的第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。本申请实施例还提供了相应的设备。
本申请第一方面提供一种数据传输的方法,该方法应用在终端与网络设备的数据传输过程中,该网络设备可以是基站,该方法包括:网络设备确定控制信息,该控制信息可以是DCI格式的控制信息,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;也就是第二字段的长度可以根据传输块的数量确定,第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关,也就是第三字段的数量可以根据传输块的数量确定;第二字段的长度也就是第二字段的比特数,第三字段的数量与TB的数量对应,通常,一个TB会对应一个第三字段,第三字段通常会包括调制与编码的组合、新数据指示和冗余版本三部分,通常一个第三字段的长度为8bits。网络设备向终端发送控制信息,网络设备根据所述控制信息与所述终端进行数据传输。也就是说,终端可以根据控制信息中各字段的情况与网络设备进行数据传输。由第一方面可见,可以根据待传输的传输块的数量来灵活确定第二字段的长度和第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
结合第一方面,在第一种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输层的场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第一方面或第一方面第一种可能的实现方式,在第二种可能的实现方式中,该方法还包括:网络设备确定高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度,网络设备向所述终端发送高层消息,该高层消息用于指示该高层参数的取值。 该高层参数可以通过无线资源控制(英文全称:Radio Resource Control,英文缩写:RRC)信令进行传输。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第二种可能的实现方式中,第二字段的长度确定是灵活的。
结合第一方面、第一方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式。该第三种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
结合第一方面、第一方面第一种、第二种或第三种可能的实现方式,在第四种可能的实现方式中,该方法还包括:网络设备确定是否配置控制信息的格式;若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则第一字段为空,所述配置参数用于配置所述控制信息的格式,该预设值可以是0,也可以是其他数值。该第四种可能的实现方式中,可以根据需求灵活确定是否使用第一字段,从而可以在一些场景下,进一步节省信令开销。
本申请第二方面提供一种数据传输的方法,该方法应用在终端与网络设备的数据传输过程中,该网络设备可以是基站,该方法包括:网络设备确定控制信息和控制信息的配置参数,配置参数用于配置控制信息的格式,当然,也可以说配置参数用于配置控制信息的结构;当配置参数的取值为第一配置值时,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;当配置参数的取值为第二配置值时,控制信息包括第二字段和至少一个第三字段;第二字段的长度和第三字段的数量与格式相关;网络设备向终端发送控制信息和配置参数;网络设备根据控制信息和配置参数,与终端进行数据传输。第一配置值和第二配置值都可以取具体的数值,例如:第一配置值为0,第二配置值为1,当然,第一配置值和第二配置值的取值也可以是其他数值。该第二方面提供了一种针对第一字段的开关方案,在配置参数为第一配置值时,配置第一字段,在配置参数为第二配置值时,不配置第一字段,这样,在配置参数为第一配置值时可以节省信令开销,在配置参数为第二配置值时还可以节省第一字段,也可以节省了信令开销。
结合第二方面,在第一种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时, 第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,该方法还包括:网络设备确定高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度,网络设备向所述终端发送高层消息,该高层消息用于指示该高层参数的取值。该高层参数可以通过RRC信令进行传输。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是与传输块的数量相关、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第二种可能的实现方式中,第二字段的长度确定是灵活的。
结合第二方面、第二方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式。该第三种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
本申请第三方面提供一种数据传输的方法,该方法应用在终端与网络设备的数据传输过程中,该终端可以是手机和平板电脑等设备,该方法包括:终端接收网络设备发送的控制信息,该控制信息可以是DCI格式的控制信息,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;第二字段的长度也就是第二字段的比特数,第三字段的数量与TB的数量对应,通常,一个TB会对应一个第三字段,第三字段通常会包括调制与编码的组合、新数据指示和冗余版本三部分,通常一个第三字段的长度为8bits。终端根据控制信息与网络设备进行数据传输。也就是说,终端可以根据控制信息中各字段的情况进行数据传输。由第三方面可见,可以根据待传输的传输块的数量来灵活确定第二字段的长度和第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
结合第三方面,在第一种可能的实现方式中,终端接收网络设备发送的控制信息之后,该方法还包括:终端根据传输块的数量分别确定第二字段的长度和第三字段的数量;终端根据第二字段的长度,从第二字段中确定待传输的传输块的天线端口配置信息,根据第三字段的数量从第三字段中确定待传输的传输块的配置信息;终端根据传输块的数量、天线端口配置信息和配置信息与网络设备进行数据传输。
结合第三方面或第三方面第一种可能的实现方式,在第二种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输场 景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第三方面、第三方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,该方法还包括:终端接收网络设备发送的高层消息,所述高层消息用于指示高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度。该高层参数可以通过RRC信令进行传输。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第三种可能的实现方式中,第二字段的长度确定是灵活的。
结合第三方面、第三方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式;终端使用第四字段上的信息所指示的码字传输数据。该第四种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
结合第三方面、第三方面第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,方法还包括:终端在预置时间内未接收到与所述控制信息的格式对应的配置参数,或者接收到的所述配置参数为预设值时,则确定所述第一字段为空。该预设值可以是0,也可以是其他数值。该第五种可能的实现方式中,可以根据需求灵活确定是否使用第一字段,从而可以在一些场景下,进一步节省信令开销。
本申请第四方面提供一种数据传输的方法,该方法应用在终端与网络设备的数据传输过程中,该网络设备可以是基站,该方法包括:终端接收网络设备发送的控制信息和控制信息的配置参数,配置参数用于配置控制信息的格式;当配置参数的取值为第一配置值时,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;当配置参数的取值为第二配置值时,控制信息包括第二字段和至少一个第三字段;第二字段的长度和第三字段的数量与格式相关;终端根据控制信息和配置参数与网络设备进行数据传输。由第四方面可见,该第四方面提供了一种针对第一字段的开关方案,在配置参数为第一配置值时,配置第一字段,在配置参数为第二配置值时,不配置第一字段,这样,在配置参数为第一配置值时可以节省信令开销,在配置参数为第二配置值时还可以节省第一字段,也可以节省了信令开销。
结合第四方面,在第一种可能的实现方式中,该方法还包括:终端根据传输块的数量分别确定第二字段的长度和第三字段的数量;终端根据第二字段的长度,从第二字段中确 定待传输的传输块的天线端口配置信息,根据第三字段的数量从第三字段中确定待传输的传输块的配置信息;终端根据传输块的数量、天线端口配置信息和配置信息与网络设备进行数据传输。
结合第四方面或第四方面第一种可能的实现方式,在第二种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第二种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第四方面、第四方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,该方法还包括:终端接收网络设备发送的高层消息,该高层消息用于指示高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度。该高层参数可以通过RRC信令进行传输。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第四种可能的实现方式中,第二字段的长度确定是灵活的。
结合第四方面、第四方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式;终端使用第四字段上的信息所指示的码字传输数据。该第五种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
本申请第五方面提供一种网络设备,该网络设备可以是基站,该网络设备包括收发器和至少一个处理器,进一步的,该网络设备还可以包括:存储器,该存储器、收发器和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行;
处理器用于确定控制信息,该控制信息可以是DCI格式的控制信息,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;
收发器用于向终端发送控制信息;
处理器控制收发器根据控制信息与终端进行数据传输。
由以上第五方面可见,可以根据待传输的传输块的数量来灵活确定第二字段的长度和第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
结合第五方面,在第一种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输层的场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第五方面或第五方面第一种可能的实现方式,在第二种可能的实现方式中,
处理器还用于确定高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度;
收发器还用于向终端发送高层消息,高层消息用于指示高层参数的取值。
由上述第五方面第二种可能的实现方式可见,高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第二种可能的实现方式中,第二字段的长度确定是灵活的。
结合第五方面、第五方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式。该第三种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
结合第五方面、第五方面第一种、第二种或第三种可能的实现方式,在第四种可能的实现方式中,处理器还用于确定是否配置控制信息的格式;若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则第一字段为空,配置参数用于配置控制信息的格式。该预设值可以是0,也可以是其他数值。该第四种可能的实现方式中,可以根据需求灵活确定是否使用第一字段,从而可以在一些场景下,进一步节省信令开销。
本申请第六方面提供一种网络设备,该网络设备可以是基站,该网络设备包括收发器和至少一个处理器,进一步的,该网络设备还可以包括:存储器,该存储器、收发器和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行;
处理器用于确定控制信息和控制信息的配置参数,配置参数用于配置控制信息的格式;其中,当配置参数的取值为第一配置值时,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;当配置参数的取值为第二配置值时,控制信息包括第二字段和至少一个第三字段;第二字段的长度和第三字段的数量与格式相关;
收发器用于向终端发送控制信息和配置参数;
处理器控制收发器根据控制信息和配置参数,与终端进行数据传输。
其中,第一配置值和第二配置值都可以取具体的数值,例如:第一配置值为0,第二配置值为1,当然,第一配置值和第二配置值的取值也可以是其他数值。该第六方面提供了一种针对第一字段的开关方案,在配置参数为第一配置值时,配置第一字段,在配置参数为第二配置值时,不配置第一字段,这样,在配置参数为第一配置值时可以节省信令开销,在配置参数为第二配置值时还可以节省第一字段,也可以节省了信令开销。
结合第六方面,在第一种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输层的场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第六方面或第六方面第一种可能的实现方式,在第二种可能的实现方式中,
处理器还用于确定高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度;
收发器还用于向终端发送高层消息,高层消息用于指示高层参数的取值。
由上述第六方面第二种可能的实现方式可见,高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第二种可能的实现方式中,第二字段的长度确定是灵活的。
结合第六方面、第六方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式。该第三种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
本申请第七方面提供一种终端,该终端可以是手机和平板电脑等设备,该终端包括收发器和至少一个处理器,进一步的,该终端还可以包括:存储器,该存储器、收发器和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行;
收发器用于接收网络设备发送的控制信息,该控制信息可以是DCI格式的控制信息,其中,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;
处理器控制收发器根据控制信息与网络设备进行数据传输。
由第七方面可见,可以根据待传输的传输块的数量来灵活确定第二字段的长度和第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
结合第七方面,在第一种可能的实现方式中,处理器还用于:
根据传输块的数量分别确定第二字段的长度和第三字段的数量;
根据第二字段的长度,从第二字段中确定待传输的传输块的天线端口配置信息,根据第三字段的数量从第三字段中确定待传输的传输块的配置信息;
收发器具体用于根据传输块的数量、天线端口配置信息和传输块的配置信息与网络设备进行数据传输。
结合第七方面或第七方面第一种可能的实现方式,在第二种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第七方面、第七方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,收发器还用于接收终端发送的高层消息,高层消息用于指示高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第三种可能的实现方式中,第二字段的长度确定是灵活的。
结合第七方面、第七方面第一种至第三种中任一可能的实现方式,在第四种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式;终端使用第四字段上的信息所指示的码字传输数据。该第四种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
结合第七方面、第七方面第一种至第四种中任一可能的实现方式,在第五种可能的实现方式中,处理器还用于在预置时间内收发器未接收到与控制信息的格式对应的配置参数,或者接收到的配置参数为预设值时,则确定第一字段为空。该预设值可以是0,也可以是其他数值。该第五种可能的实现方式中,可以根据需求灵活确定是否使用第一字段,从而可以在一些场景下,进一步节省信令开销。
本申请第八方面提供一种终端,该终端可以是手机和平板电脑等设备,该终端包括收 发器和至少一个处理器,进一步的,该终端还可以包括:存储器,该存储器、收发器和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行;
收发器用于接收网络设备发送的控制信息和控制信息的配置参数,其中,配置参数用于配置控制信息的格式;当配置参数的取值为第一配置值时,控制信息包括第一字段、第二字段和至少一个第三字段;其中,第一字段用于指示待传输的传输块的数量;第二字段包括天线端口配置信息,第二字段的长度与传输块的数量相关;第三字段包括传输块的配置信息,第三字段的数量与传输块的数量相关;当配置参数的取值为第二配置值时,控制信息包括第二字段和至少一个第三字段;第二字段的长度和第三字段的数量与格式相关;
处理器控制收发器根据控制信息和配置参数与网络设备进行数据传输。
结合第八方面,在第一种可能的实现方式中,处理器还用于:
根据传输块的数量分别确定第二字段的长度和第三字段的数量;
根据第二字段的长度,从第二字段中确定待传输的传输块的天线端口配置信息,根据第三字段的数量从第三字段中确定待传输的传输块的配置信息;
收发器具体用于根据传输块的数量、天线端口配置信息和传输块的配置信息与网络设备进行数据传输。
结合第八方面或第八方面第一种可能的实现方式,在第二种可能的实现方式中,当第一字段指示的传输块的数量为第一数值时,第二字段的长度为第一长度,第三字段的数量为第一数值;当第一字段指示的传输块的数量为第二数值时,第二字段的长度小于第一长度,第三字段的数量为第二数值,第二数值大于第一数值。如:以最大层数为6层的传输场景为例,第一字段指示传输块的数量为1时,第二字段的长度为4bits,第三字段的数量为1个,第一字段指示传输块的数量为2时,第二字段的长度为1bits,第三字段的数量为2个。在这个场景中,第一数值为1时,第二字段的长度为4bits,第三字段的数量为1,第二数值为2时,第二字段的长度为1bits,第三字段的数量为2。由该第一种可能的实现方式可见,相比于固定的字段设置方式,在多个场景中可以节省信令开销。
结合第八方面、第八方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,收发器还用于接收终端发送的高层消息,高层消息用于指示高层参数的取值,高层参数的取值以及第一字段用于确定第二字段的长度。高层参数的取值不同时,第二字段的长度也可能不同。如:可以根据高层参数的配置情况,以及传输块的数量选择对应的第二字段对应的表格。也可以是根据传输块的数量、高层参数的取值和预设的公式来确定第二字段的长度,还可以是根据在不同传输块的数量下,高层参数与第二字段长度的映射关系来确定第二字段的长度。总之,该第三种可能的实现方式中,第二字段的长度确定是灵活的。
结合第八方面、第八方面第一种至第三种中任一可能的实现方式,在第四种可能的实现方式中,当第一字段指示传输块的数量为1时,控制信息中还包括第四字段,第四字段上的信息用于指示在数据传输时被使用的码字,码字为传输块在物理层的表现形式;终端使用第四字段上的信息所指示的码字传输数据。该第四种可能的实现方式中,可以根据信道条件选择信道条件较好的码字来传输一个传输块的数量,从而提升了数据传输的效率。
本申请第九方面提供一种系统芯片,包括:至少一个处理器和接口电路,进一步的, 其还可以包括:存储器,该存储器、接口电路和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行,以使网络设备执行第一方面或第一方面任一可能的实现方式,以及第二方面或第二方面任一可选的实现方式中网络设备的操作。
本申请第十方面提供一种系统芯片,包括:至少一个处理器和接口电路,进一步的,其还可以包括:存储器,该存储器、接口电路和至少一个处理器通过总线互联,存储器中存储有指令;该指令被至少一个处理器执行,以使终端执行第三方面或第三方面任一可能的实现方式,以及第四方面或第四方面任一可选的实现方式所提供的方法的功能中终端的操作。
本申请的又一方面提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请的又一方面提供了一种数据传输的系统,包括:网络设备和终端;
所述网络设备为上述第五方面或第五方面任一可能的实现方式所描述的网络设备;
所述终端为上述第七方面或第七方面任一可能的实现方式所描述的终端。
本申请的又一方面提供了一种数据传输的系统,包括:网络设备和终端;
所述网络设备为上述第六方面或第六方面任一可能的实现方式所描述的网络设备;
所述终端为上述第八方面或第八方面任一可能的实现方式所描述的终端。
本申请实施例所提供的数据传输的方法,控制信息中的第一字段包括用于指示待传输的传输块的数量的第一字段,第二字段的长度与传输块的数量相关确定,第三字段的数量与传输块的数量相关确定,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
附图说明
图1是码字处理过程的一示例示意图;
图2是本申请实施例中数据传输的系统的一实施例示意图;
图3是本申请实施例中数据传输的方法的一实施例示意图;
图4是本申请实施例中数据传输的方法的一实施例示意图;
图5是本申请实施例中网络设备的一实施例示意图;
图6是本申请实施例中终端的一实施例示意图;
图7是本申请实施例中终端的另一实施例示意图;
图8是本申请实施例中终端的另一实施例示意图;
图9是本申请实施例中网络设备的一实施例示意图;
图10是本申请实施例中终端的另一实施例示意图;
图11是本申请实施例中系统芯片的一实施例示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展,本申 请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供一种数据传输的方法,可以依据待传输的传输块的数量来灵活确定控制信息中用于指示天线端口配置信息的第二字段的长度和用于指示传输块的配置信息的第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。本申请实施例还提供了相应的设备及系统。以下分别进行详细说明。
图2为本申请实施例中数据传输的系统的一实施例示意图。
如图2所示,该数据传输的系统包括网络设备和终端,该网络设备可以是基站,在LTE系统中,基站可以称为演进基站eNobe,该网络设备也可以是无线接入网络(radio access network,RAN)设备,当然,该网络设备还可以其他可以执行相应控制信息配置功能的设备。终端可以包括手机和平板电脑等根据控制信息进行数据传输的设备。
在图2所示的数据传输的系统中,无论是数据的上行传输还是下行传输,都由网络设备确定控制信息,并向终端发送该控制信息,从而使终端完成数据的接收或发送。
结合图2所示的数据传输的系统,下面结合图3介绍本申请实施例中的数据传输的方法。
如图3所示,本申请实施例提供的数据传输的方法的一实施例包括:
101、网络设备确定控制信息。
所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关。
第一字段所指示的可以是TB的数量、TB的数量的标识、或者其他可以用于确定TB的数量的信息,例如:该可以用于确定TB的数量的信息可以是码字数,可以预先约定TB的数量与CW的数量之间的映射关系,这样可以根据CW的数量确定TB的数据,当然,该第一字段所指示的还可以是其他可以用于确定TB的数量的信息。
第二字段的长度,也就是比特数可以根据TB的数量来确定。
第三字段的数量与TB的数量对应,通常,一个TB会对应一个第三字段,第三字段通常会包括调制与编码的组合、新数据指示和冗余版本三部分,通常一个第三字段的长度为8bits。
第二字段的长度根据TB的数量确定,第三字段的数量可以根据TB的数量确定。
当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
例如:若TB的数量为第一数值时,该第一数值的取值可以为1,则第二字段的长度可以是4bits,第三字段的数量可以一个,若TB的数量为第二数值时,该第二数值的取值可以为2,则第二字段的长度可以是1bit,第三字段的数量可以是两个,若TB的数量是3或者其他数值,则第二字段的长度可以根据该数值确定,第三字段的数量可以与该TB的数量对应 确定。
因为通常情况下一个TB对应一个码子,所以一个TB可以称为单码字,两个TB可以称为双码字。
102、网络设备向终端发送控制信息。
103、终端接收到网络设备发送的控制信息后,根据该控制信息与网络设备进行数据传输。
与现有技术相比,本申请实施例提供的数据传输的方法,可以依据待传输的传输块的数量来灵活确定控制信息中用于指示天线端口配置信息的第二字段的长度和用于指示传输块的配置信息的第三字段的数量,从而提高了控制信息格式设置的灵活度,并在多种场景下节省了控制信息的信令开销。
传输系统中通常包括多层,在多层传输中,第二字段的信息包括了所映射的层和天线端口号。数据传输过程中需要根据第二字段上的层信息和天线端口号映射到相应的层,并由相应的天线端口号传输。
以6层传输层为例,也就是最大层数为6,通常4层及4层以下都采用单码字传输,5层和6层采用双码字传输。这样,单码字传输时为了记录各个层和天线端口号,单码字传输需要4bits,双码字因为只有5层和6层,则只需要1bit。
单码字的第二字段的信息可以参阅表1进行理解。
表1:单码字的第二字段
Value Message
0 1layer,port0
1 1layer,port1
2 1layer,port2
3 1layer,port3
4 1layer,port4
5 1layer,port5
6 2layer,port 0-1
7 2layer,port 2-3
8 2layer,port 4-5
9 3layer,port 0-2
10 3layer,port 3-5
11 4layer,port 0-3
12 Reserved
15 Reserved
表1中,Value为第二字段的值,Message为第二字段的值所对应的层数和天线端口信息。Layer为层,port为天线端口,Reserved为保留字段,后续可以根据需求在Reserved 字段配置相应的层和天线端口信息。
双码字的第二字段的信息可以参阅表2进行理解。
表2:双码字的第二字段
Value Message
0 5layer,port 0-4(SU)
1 6layer,port 0-5(SU)
表2中,Value为第二字段的值,Message为第二字段的值所对应的层数和天线端口信息。Layer为层,port为天线端口,Reserved为保留字段,后续可以根据需求在Reserved字段配置相应的层和天线端口信息。
当然,上述表1和表2中第二字段所指示的天线端口号以及层映射,也可以只使用一个表格来表示,如表3所示:
表3:
Figure PCTCN2018085811-appb-000001
表3中,One Codeword为单码字,Two Codewords为双码字,Codeword 0 enabled表示码字0可被使用,Codeword 1disabled表示码字1不可以使用,另外表3中的其他信息可参阅表1和表2部分的解释进行理解。
当然,上述表1至表3的内容只是以最大层数是6层为例进行的说明,实际上,本申请实施例中对最大传输层数不做限制,无论是多少个传输层都可以采用本申请中的思想, 即:第二字段的长度可以根据TB的数量来确定,第三字段的数量可以根据TB的数量来确定。
第一字段、第二字段和第三字段在控制信息中可以连续出现,也可以不连续出现;可以按任意次序出现。
当第一字段指示的传输块数量为1时,控制信息中不包含第2第三字段;当第一字段指示的传输块数量为2时,控制信息中包含第2第三字段。
本申请实施例所提供的方案,当有一个传输块时,
当第一字段指示有1个传输块时,第一字段的长度为1比特,第二字段的长度为4比特,第三字段的数量为1(即没有第2第三字段),长度为8比特,这三种字段的总长度为1+4+8=13bits。
当第一字段指示有2个传输块时,此时,第一字段的长度为1比特,第二字段的长度为1比特,第三字段的数量为2,长度为2×8=16比特,这三种字段的总长度为1+1+16=18bits。
因此,这三种字段的最大总长度为18比特,需要在该DCI信令中占用18比特开销。相比于现有技术中的20bits的信令开销,节省了2bits的信令开销,最重要的是,本申请实施例所提供的方案实现了对第二字段的长度和第三字段的数量根据TB需求的灵活确定。
该处只是以6层传输层为例进行介绍,实际上,不同传输块数的天线端口配置信息的长度差异较大,能够根据传输块的数量灵活确定第二字段的长度,在很多场景下都可以节省信令开销。
以上所描述的第二字段的长度可以根据TB的数量确定,实际上,不限于只根据TB的数量来确定第二字段的长度。还在第一字段的基础上,结合高层参数来确定第二字段的长度。该高层参数可以通过无线资源控制(英文全称:Radio Resource Control,英文缩写:RRC)信令进行传输。
例如:在最大传输层数为6层的场景中,若第一字段指示传输块的数量为1,高层参数的取值为一预先设定值,例如该预先设定值为非0时,第二字段的长度可以根据表1来确定。若第一字段指示传输块的数量为1,高层参数的取值为另一预先设定值,例如:该另一预先设定值0时,第二字段的长度可以根据表4来确定。
表4:单码字的天线端口及层数(3比特)
Value Message
0 1layer,port0
1 1layer,port1
2 1layer,port2
3 1layer,port3
4 2layer,port 0-1
5 2layer,port 2-3
6 3layer,port 0-2
7 4layer,port 0-3
表4中各参数的含义可以参阅表1和表2部分的解释进行理解。
在另一示例中,还可以根据传输块的数量和高层参数,以及预设的公式来确定第二字段的长度。
例如:通过如下公式来确定第二字段的长度:
第二字段的长度=3-2N TB+Q;
其中,N TB为传输块的数量,Q为所述高层参数。
在另一示例中,还可以通过传输块数量的指示flag_TB来确定第二字段的长度:
第二字段的长度=5-2flag_TB+Q
其中,flag_TB为所述传输块的数量的指示标识,Q为所述高层参数。
当然,上述两个公式只是举例说明,还可以通过其他形式的公式来确定第二字段的长度。
在另一示例中,还可以通过码字数量和高层参数,以及预设的表格来确定第二字段的长度。
预设的表格可以参阅表5进行理解,如表5所示:
表5:高层参数与第二字段的长度的映射表
Figure PCTCN2018085811-appb-000002
其中,dmrs-table-index为高层参数,N b为第二字段的长度,由表5可见,依据单码字或者双码字的情况,就可以根据高层参数的取值确定第二字段N b的长度。表5中的其余参数可参阅表1和表2部分的解释进行理解。
表中reserved是保留值,当前暂不定义,可以根据使用需求再定义。N b=0时,第二字段的长度为零,即在信令中不传输第二字段。
另一个示例中,还可以根据码字数量,一个DMRS图样配置参数dmrs-pattern和一个高层参数dmrs-tableAlt,通过预设的另一表格来确定第二字段的长度。
预设的另一表格可以参阅表6进行理解,如表6所示:
表6:不同图样配置参数下高层参数与第二字段的长度的映射表
Figure PCTCN2018085811-appb-000003
其中,dmrs-pattern为图样配置参数,dmrs-tableAlt为高层参数,N b为第二字段的长度,由表6可见,根据图样配置参数以及单码字或者双码字的情况,就可以根据高层参数的取值确定第二字段N b的长度。
表6中“-”表示没有定义。在该例子中,高层参数dmrs-tableAlt的取值范围根据图样配置参数dmrs-pattern的配置。当dmrs-pattern=0时,dmrs-tableAlt有4种取值,可以用2比特指示;当dmrs-pattern=1时,dmrs-tableAlt有2种取值,可以用1比特指示。
确定第二字段长度所用的表格,可以是如表6这样的一个表格,也可以是分别对应于dmrs-pattern=0、dmrs-pattern=1的两个表格,也可以是分别对应于单码字、双码字的两个表格,也可以是分别对应于dmrs-pattern=0单码字、dmrs-pattern=0双码字、dmrs-pattern=1单码字、dmrs-pattern=1双码字的四个表格,也可以是对应于其它多种参数取值的多个表格。例如:表7所示的dmrs-pattern=0单码字、dmrs-pattern=0双码字的表格,以及表8所示的dmrs-pattern=1单码字、dmrs-pattern=1双码字的表格。
表7:高层参数与第二字段的长度的映射表(dmrs-pattern=0)
Figure PCTCN2018085811-appb-000004
表8:高层参数与第二字段的长度的映射表(dmrs-pattern=1)
Figure PCTCN2018085811-appb-000005
本申请实施例中,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为 所述传输块在物理层的表现形式。
例如:针对单码字的传输情况,可以选择码字1对应的信道,也可以选择码字2对应的信道,当码字1和码字2对应的信道条件会随时间发生不同变化,有时码字1的信道条件更好,有时码字2的信道条件更好,采用这种方法,可以选择利用信道条件较好的码字,来传输一个传输块的数量,从而提升了数据传输的效率。
第四字段中的信息可以参阅表9进行理解,如表9所示:
表9:传输块-码字映射
Codeword indicator Codeword
0 Codeword 1
1 Codeword 2
当第四字段上的码字指示信息(Codeword indicator)为0时,则确定选择码字1进行数据传输,当第四字段上的码字指示信息(Codeword indicator)为1时,则确定选择码字2进行数据传输。当然,映射关系可以调整,不限于表9中的一种方式。
单码字传输时,若选择码字1,则控制信息中只需要包括第1第三字段,可以不包括第2第三字段,当选择码字2时,则控制信息中只需要包括第2第三字段,则可以不包括第1第三字段。
当不同码字数量的天线端口配置的长度差异较大时,本申请技术方案可以有效地节省信令开销。反之,当不同码字数量的天线端口配置的长度差异较小时,在调度信令中引入第一字段,就不一定能够节省信令开销。
因此,如图4所示,本申请实施例提供的数据传输的方法的另一实施例包括:
111、网络设备确定控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式。
当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段包括用于指示待传输的传输块的数量的第一字段;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关。
当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关。
第二字段的长度与所述传输块的数量相关即第二字段的长度可以根据传输块的数量确定。
第三字段的数量与所述传输块的数量相关即第三字段的数量可以根据传输块的数量确定。
格式也可以称为结构。
112、网络设备向终端发送所述控制信息和所述配置参数。
113、网络设备根据所述控制信息和所述配置参数,与所述终端进行数据传输。
本申请实施例提供的是第一字段的开关方案,也就是有条件地启用第一字段,有利于保证在不同条件下,都能够取得信令长度优化的效果。
根据配置参数(比如RRC信令中携带的参数)flag-TB-number-indication,确定调度信令中是否包含第一字段:
当网络设备没有配置控制信息的格式,也就是没有为控制信息的格式设置配置参数flag-TB-number-indication,或者网络设备设置了配置参数,并将配置参数的取值设置为预设值,例如:该预设值为0时,则不包含第一字段,可以根据该格式的配置参数确定第二字段的长度和第三子段的数量。
当配置参数flag-TB-number-indication配置的值大于0时,调度信令中包含第一字段,此时可以直接根据第一字段的指示,确定传输块的数量。
以上所描述的是单码字或者双码字的示例,实际上,本申请实施例也适用于多码字的情况,例如:第一字段的长度可以为2,则第一字段中的数量第一字段与传输块的数量的对应关系可以参阅表10进行理解,如表10所示:
表10:多码字第一字段映射关系
Figure PCTCN2018085811-appb-000006
TB number indicator为传输块的数量指示,Number of Transport Blocks为传输块的数量。当第一字段指示的传输块数量为1时,信令中不包含第2个第三字段和第3个第三字段;当第一字段指示的传输块数量为2时,信令中不包含第3个第三字段。
以上表1至表10中所涉及到的相关参数的含义都可以互相参照理解,同一参数在不同表格中的含义是相同的。
以上是对本申请实施例中数据传输的方法的描述,下面结合附图介绍本申请实施例中的网络设备和终端。
如图5所示,本申请实施例提供的网络设备20的一实施例包括:
确定模块201,用于确定控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
发送模块202,用于向终端发送所述确定模块201确定的控制信息;
传输模块203,用于根据所述发送模块202发送的控制信息与所述终端进行数据传输。
另一种方案中还可以是,确定模块201,用于确定控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;
当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括 所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
发送模块202,向终端发送所述确定模块201确定的控制信息格式配置参数和所述控制信息;
传输模块203,根据所述发送模块202发送的控制信息,与所述终端进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,确定模块201,还用于确定高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度;
发送模块202,还用于向所述终端发送高层消息,所述高层消息用于指示所述高层参数的取值。
当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式。
可选地,确定模块201,还用于确定是否配置所述控制信息的格式;若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则所述第一字段为空,所述配置参数用于配置所述控制信息的格式。
参阅图6,本申请实施例提供的终端的一实施例包括:
接收模块301,用于接收网络设备发送的控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
传输模块302,用于根据所述控制信息与所述网络设备进行数据传输。
另一种方案中,还可以是:
接收模块301,用于接收网络设备发送的控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;
当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
传输模块302,用于根据所述控制信息与所述网络设备进行数据传输。
可选地,参阅图7,本申请实施例提供的终端的另一实施例中还包括:
第一确定模块303,用于根据所述传输块的数量分别确定所述第二字段的长度和所述第三字段的数量;
第二确定模块304,用于根据所述第二字段的长度,从所述第二字段中确定所述待传输的传输块的天线端口配置信息,根据所述第三字段的数量从所述第三字段中确定所述待传输的传输块的配置信息;
传输模块302,具体用于根据所述传输块的数量、所述天线端口配置信息和所述配置信息进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,接收模块301,用于接收所述网络设备发送的高层消息,所述高层消息用于指示高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度。
可选地,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式;
传输模块302,具体用于使用所述第四字段上的信息所指示的码字传输数据。
可选地,参阅图8,本申请实施例提供的终端的另一实施例中还包括:第三确定模块305,
第三确定模块305,用于在预置时间内未接收到与所述控制信息的格式对应的配置参数,或者接收到的所述配置参数为预设值时,则确定所述第一字段为空。
图9是本申请实施例提供的网络设备40的结构示意图。所述网络设备40包括处理器410、存储器450和收发器430,存储器450可以包括只读存储器和随机存取存储器,并向处理器410提供操作指令和数据。存储器450的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器450存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本申请实施例中,通过调用存储器450存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
处理器410控制网络设备40的操作,处理器410还可以称为CPU(Central Processing Unit,中央处理单元)。存储器450可以包括只读存储器和随机存取存储器,并向处理器410提供指令和数据。存储器450的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中CPE40的各个组件通过总线系统420耦合在一起,其中总线系统420除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统420。
上述本申请实施例揭示的方法可以应用于处理器410中,或者由处理器410实现。处理 器410可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器410中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器410可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器450,处理器410读取存储器450中的信息,结合其硬件完成如下步骤:
处理器410用于确定控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
所述收发器430用于向终端发送所述控制信息;
所述处理器410控制所述收发器430根据所述控制信息与所述终端进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,处理器410还用于确定高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度;
收发器430还用于向所述终端发送高层消息,所述高层消息用于指示所述高层参数的取值。
可选地,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式。
可选地,所述处理器410还用于确定是否配置所述控制信息的格式;若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则所述第一字段为空,所述配置参数用于配置所述控制信息的格式。
另一种网络设备的方案中,网络设备中的处理器410和收发器430用于执行如下功能:
处理器410用于确定控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;其中,当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量 相关;当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
收发器430用于向终端发送所述控制信息和所述配置参数;
处理器410控制所述收发器根据所述控制信息和所述配置参数,与所述终端进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,处理器410还用于确定高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度;
收发器430还用于向所述终端发送高层消息,所述高层消息用于指示所述高层参数的取值。
可选地,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式。
以上对网络设备的描述也可以参阅图2至图8部分的相关描述进行理解,本处不再重复赘述。
图10示出的是与本申请实施例提供的移动终端500的部分结构的框图。参考图10,移动终端包括:射频(英文全称:Radio Frequency,英文简称:RF)电路510、存储器520、输入单元530、显示单元540、传感器550、音频电路560、WiFi模块570、处理器580、以及电源590等部件。本领域技术人员可以理解,图10中示出的移动终端结构并不构成对移动终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图10对移动终端的各个构成部件进行具体的介绍:
RF电路510可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器580处理;另外,将设计上行的数据发送给基站。通常,RF电路510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(英文全称:Low Noise Amplifier,英文简称:LNA)、双工器等。此外,RF电路510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(英文全称:Global System of Mobile communication,英文简称:GSM)、通用分组无线服务(英文全称:General Packet Radio Service,英文简称:GPRS)、码分多址(英文全称:Code Division Multiple Access,英文简称:CDMA)、宽带码分多址(英文全称:Wideband Code Division Multiple Access,英文简称:WCDMA)、长期演进(英文全称:Long Term Evolution,英文简称:LTE)、电子邮件、短消息服务(英文全称:Short Messaging Service,英文简称:SMS)等。
存储器520可用于存储软件程序以及模块,处理器580通过运行存储在存储器520的 软件程序以及模块,从而执行移动终端的各种功能应用以及数据处理。存储器520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据移动终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元530可用于接收用户的操作指令,如:接听或者拒绝,以及产生与移动终端500的用户设置以及功能控制有关的键信号输入。具体地,输入单元530可包括触控面板531以及其他输入设备532。触控面板531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板531上或在触控面板531附近的操作),并根据预先设定的程式驱动相应的连接移动终端。可选的,触控面板531可包括触摸检测移动终端和触摸控制器两个部分。其中,触摸检测移动终端检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测移动终端上接收触摸信息,并将它转换成触点坐标,再送给处理器580,并能接收处理器580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板531。除了触控面板531,输入单元530还可以包括其他输入设备532。具体地,其他输入设备532可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元540可用于显示报警提示信息。显示单元540可包括指示灯541,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置指示灯541。进一步的,触控面板531可覆盖指示灯541,当触控面板531检测到在其上或附近的触摸操作后,传送给处理器580以确定触摸事件的类型,随后处理器580根据触摸事件的类型在指示灯541上提供相应的视觉输出。虽然在图10中,触控面板531与指示灯541是作为两个独立的部件来实现移动终端的输入和输入功能,但是在某些实施例中,可以将触控面板531与指示灯541集成而实现移动终端的输入和输出功能。
移动终端500还可包括至少一种传感器550。
音频电路560、扬声器561,传声器562可提供用户与移动终端之间的音频接口。音频电路560可将接收到的音频数据转换后的电信号,传输到扬声器561,由扬声器561转换为声音信号输出;另一方面,传声器562将收集的声音信号转换为电信号,由音频电路560接收后转换为音频数据,再将音频数据输出处理器580处理后,经摄像头510以发送给比如另一移动终端,或者将音频数据输出至存储器520以便进一步处理。
WiFi模块570可以用于通信。
处理器580是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器520内的软件程序和/或模块,以及调用存储在存储器520内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。可选的,处理器580可包括一个或多个处理单元;优选的,处理器580可集成应用处理器和 调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器580中。
移动终端500还包括给各个部件供电的电源590(比如电池),优选的,电源可以通过电源管理系统与处理器580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,移动终端500还可以包括蓝牙模块等,在此不再赘述。
在本申请实施例中,RF电路510相当于收发器,RF电路510和处理器580在本申请数据传输的过程中执行如下功能:
RF电路510用于接收网络设备发送的控制信息,其中,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
处理器580控制所述收发器根据所述控制信息与所述网络设备进行数据传输。
可选地,所述处理器580还用于:
根据所述传输块的数量分别确定所述第二字段的长度和所述第三字段的数量;
根据所述第二字段的长度,从所述第二字段中确定所述待传输的传输块的天线端口配置信息,根据所述第三字段的数量从所述第三字段中确定所述待传输的传输块的配置信息;
RF电路510具体用于根据所述传输块的数量、所述天线端口配置信息和所述传输块的配置信息与所述网络设备进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,RF电路510还用于接收所述终端发送的高层消息,所述高层消息用于指示高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度。
可选地,处理器580还用于在预置时间内所述收发器未接收到与所述控制信息的格式对应的配置参数,或者接收到的所述配置参数为预设值时,则确定所述第一字段为空。
另一种终端的方案中,终端中的处理器580和RF电路510用于执行如下功能:
RF电路510用于接收网络设备发送的控制信息和所述控制信息的配置参数,其中,所述配置参数用于配置所述控制信息的格式;当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
处理器580控制所述RF电路510根据所述控制信息和所述配置参数与所述网络设备进行数据传输。
可选地,所述处理器580还用于:
根据所述传输块的数量分别确定所述第二字段的长度和所述第三字段的数量;
根据所述第二字段的长度,从所述第二字段中确定所述待传输的传输块的天线端口配置信息,根据所述第三字段的数量从所述第三字段中确定所述待传输的传输块的配置信息;
RF电路510具体用于根据所述传输块的数量、所述天线端口配置信息和所述传输块的配置信息与所述网络设备进行数据传输。
可选地,当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
可选地,RF电路510还用于接收所述终端发送的高层消息,所述高层消息用于指示高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度。
图11是本申请实施例提供的系统芯片60的结构示意图。系统芯片60包括至少一个处理器610、存储器650和接口电路630,至少一个处理器610、存储器650和接口电路630通过总线互联,存储器650可以包括只读存储器和随机存取存储器,并向处理器610提供操作指令和数据。存储器650的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器650存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本申请实施例中,通过调用存储器650存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
处理器610控制网络设备或者终端的操作,处理器610还可以称为CPU(Central Processing Unit,中央处理单元)。存储器650可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器650的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中CPE140的各个组件通过总线系统620耦合在一起,其中总线系统620除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统620。
上述本申请实施例揭示的方法可以应用于处理器610中,或者由处理器610实现。处理器610可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器610可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程 存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器650,处理器610读取存储器650中的信息,结合其硬件完成上述方法的步骤。
可选地,接口电路630用于执行图9中收发器430的消息收发以及数据传输的步骤,或者,图10中RF电路510的消息收发以及数据传输的步骤。
处理器610用于执行图9中处理器410的信息或参数确定的步骤,或者,图10中处理器580的信息或参数确定的步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本申请实施例所提供的数据传输的方法及设备系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种数据传输的方法,其特征在于,包括:
    网络设备确定控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    所述网络设备向终端发送所述控制信息;
    所述网络设备根据所述控制信息与所述终端进行数据传输。
  2. 一种数据传输的方法,其特征在于,包括:
    网络设备确定控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;
    当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
    所述网络设备向终端发送所述控制信息和所述配置参数;
    所述网络设备根据所述控制信息和所述配置参数,与所述终端进行数据传输。
  3. 根据权利要求1或2所述的方法,其特征在于,
    当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
    当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度;
    所述网络设备向所述终端发送高层消息,所述高层消息用于指示所述高层参数的取值。
  5. 根据权利要求1-4任一所述的方法,其特征在于,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式。
  6. 根据权利要求1、3-5任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定是否配置所述控制信息的格式;
    若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则所述第一字段为空,所述配置参数用于配置所述控制信息的格式。
  7. 一种数据传输的方法,其特征在于,包括:
    终端接收网络设备发送的控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    所述终端根据所述控制信息与所述网络设备进行数据传输。
  8. 一种数据传输的方法,其特征在于,包括:
    终端接收网络设备发送的控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;
    当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
    所述终端根据所述控制信息和所述配置参数与所述网络设备进行数据传输。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述传输块的数量分别确定所述第二字段的长度和所述第三字段的数量;
    所述终端根据所述第二字段的长度,从所述第二字段中确定所述待传输的传输块的天线端口配置信息,根据所述第三字段的数量从所述第三字段中确定所述待传输的传输块的配置信息;
    所述终端根据所述控制信息与所述网络设备进行数据传输,包括:
    所述终端根据所述传输块的数量、所述天线端口配置信息和所述传输块的配置信息与所述网络设备进行数据传输。
  10. 根据权利要求7-9任一所述的方法,其特征在于,
    当所述第一字段指示的所述传输块的数量为第一数值时,所述第二字段的长度为第一长度,所述第三字段的数量为所述第一数值;
    当所述第一字段指示的所述传输块的数量为第二数值时,所述第二字段的长度小于所述第一长度,所述第三字段的数量为所述第二数值,所述第二数值大于所述第一数值。
  11. 根据权利要求7-10任一所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的高层消息,所述高层消息用于指示高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度。
  12. 根据权利要求7-11任一所述的方法,其特征在于,当所述第一字段指示所述传输块的数量为1时,所述控制信息中还包括第四字段,所述第四字段上的信息用于指示在数据传输时被使用的码字,所述码字为所述传输块在物理层的表现形式;
    所述终端使用所述第四字段上的信息所指示的码字传输数据。
  13. 根据权利要求7、9-12任一所述的方法,其特征在于,所述方法还包括:
    所述终端在预置时间内未接收到与所述控制信息的格式对应的配置参数,或者接收到的所述配置参数为预设值时,则确定所述第一字段为空。
  14. 一种网络设备,其特征在于,包括:处理器和收发器,所述处理器和所述收发器通过总线互联;
    所述处理器用于确定控制信息,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    所述收发器用于向终端发送所述控制信息;
    所述处理器控制所述收发器根据所述控制信息与所述终端进行数据传输。
  15. 一种网络设备,其特征在于,包括:处理器和收发器,所述处理器和所述收发器通过总线互联;
    所述处理器用于确定控制信息和所述控制信息的配置参数,所述配置参数用于配置所述控制信息的格式;其中,当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
    所述收发器用于向终端发送所述控制信息和所述配置参数;
    所述处理器控制所述收发器根据所述控制信息和所述配置参数,与所述终端进行数据传输。
  16. 根据权利要求14或15所述的网络设备,其特征在于,
    所述处理器还用于确定高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度;
    所述收发器还用于向所述终端发送高层消息,所述高层消息用于指示所述高层参数的取值。
  17. 根据权利要求14或16所述的网络设备,其特征在于,
    所述处理器还用于确定是否配置所述控制信息的格式;若确定不配置,或者,确定配置,并将配置参数的取值设置为预设值时,则所述第一字段为空,所述配置参数用于配置所述控制信息的格式。
  18. 一种终端,其特征在于,包括:收发器和处理器,所述处理器和所述收发器通过总线互联;
    所述收发器用于接收网络设备发送的控制信息,其中,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;
    所述处理器控制所述收发器根据所述控制信息与所述网络设备进行数据传输。
  19. 一种终端,其特征在于,包括:收发器和处理器,所述处理器和所述收发器通过总线互联;
    所述收发器用于接收网络设备发送的控制信息和所述控制信息的配置参数,其中,所述配置参数用于配置所述控制信息的格式;当所述配置参数的取值为第一配置值时,所述控制信息包括第一字段、第二字段和至少一个第三字段;其中,所述第一字段用于指示待传输的传输块的数量;所述第二字段包括天线端口配置信息,所述第二字段的长度与所述传输块的数量相关;所述第三字段包括所述传输块的配置信息,所述第三字段的数量与所述传输块的数量相关;当所述配置参数的取值为第二配置值时,所述控制信息包括第二字段和至少一个第三字段;所述第二字段的长度和所述第三字段的数量与所述格式相关;
    所述处理器控制所述收发器根据所述控制信息和所述配置参数与所述网络设备进行数据传输。
  20. 根据权利要求18或19所述的终端,其特征在于,
    所述处理器还用于:
    根据所述传输块的数量分别确定所述第二字段的长度和所述第三字段的数量;
    根据所述第二字段的长度,从所述第二字段中确定所述待传输的传输块的天线端口配置信息,根据所述第三字段的数量从所述第三字段中确定所述待传输的传输块的配置信息;
    所述收发器具体用于根据所述传输块的数量、所述天线端口配置信息和所述传输块的配置信息与所述网络设备进行数据传输。
  21. 根据权利要求18-20任一所述的终端,其特征在于,
    所述收发器还用于接收所述终端发送的高层消息,所述高层消息用于指示高层参数的取值,所述高层参数的取值以及所述第一字段用于确定所述第二字段的长度。
  22. 根据权利要求18、20或21所述的终端,其特征在于,
    所述处理器还用于在预置时间内所述收发器未接收到与所述控制信息的格式对应的配置参数,或者接收到的所述配置参数为预设值时,则确定所述第一字段为空。
PCT/CN2018/085811 2017-07-20 2018-05-07 一种数据传输的方法及设备 WO2019015378A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18834352.9A EP3595386A4 (en) 2017-07-20 2018-05-07 DATA TRANSMISSION METHOD AND DEVICE
US16/674,764 US20200068543A1 (en) 2017-07-20 2019-11-05 Data Transmission Method And Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710596241.0 2017-07-20
CN201710596241.0A CN109428668B (zh) 2017-07-20 2017-07-20 一种数据传输的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,764 Continuation US20200068543A1 (en) 2017-07-20 2019-11-05 Data Transmission Method And Device

Publications (1)

Publication Number Publication Date
WO2019015378A1 true WO2019015378A1 (zh) 2019-01-24

Family

ID=65015848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085811 WO2019015378A1 (zh) 2017-07-20 2018-05-07 一种数据传输的方法及设备

Country Status (4)

Country Link
US (1) US20200068543A1 (zh)
EP (1) EP3595386A4 (zh)
CN (1) CN109428668B (zh)
WO (1) WO2019015378A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020223960A1 (zh) * 2019-05-09 2020-11-12 北京小米移动软件有限公司 下行控制信息发送方法、装置及可读存储介质
WO2021062876A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Downlink control information for scheduling one or more transport blocks
US20220361212A1 (en) * 2019-11-04 2022-11-10 Beijing Xiaomi Mobile Software Co., Ltd. Method for transmitting dci, communication device and storage medium
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783700A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 对上行数据传输的指示方法、上行数据传输方法及装置
CN102781098A (zh) * 2011-05-09 2012-11-14 中兴通讯股份有限公司 参数指示方法、装置及参数确定方法、装置
EP2723009A2 (en) * 2011-06-15 2014-04-23 LG Electronics Inc. Method for receiving downlink control information in wireless access system and terminal therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641968B1 (ko) * 2009-09-14 2016-07-29 엘지전자 주식회사 다중입출력 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치
CN102149208B (zh) * 2010-02-05 2013-11-06 华为技术有限公司 载波激活相关信息的处理方法、基站及ue
US9941998B2 (en) * 2010-06-24 2018-04-10 Qualcomm Incorporated Control information signaling for MIMO transmissions
CN103139844B (zh) * 2011-11-22 2016-09-14 华为技术有限公司 控制信息的解析方法及终端
CN103491640B (zh) * 2012-06-12 2016-08-03 电信科学技术研究院 终端设备的调度方法和设备
JP2015046853A (ja) * 2013-08-02 2015-03-12 株式会社Nttドコモ ユーザ装置、基地局、干渉低減方法、及び干渉低減制御情報通知方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783700A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 对上行数据传输的指示方法、上行数据传输方法及装置
CN102781098A (zh) * 2011-05-09 2012-11-14 中兴通讯股份有限公司 参数指示方法、装置及参数确定方法、装置
EP2723009A2 (en) * 2011-06-15 2014-04-23 LG Electronics Inc. Method for receiving downlink control information in wireless access system and terminal therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595386A4

Also Published As

Publication number Publication date
US20200068543A1 (en) 2020-02-27
EP3595386A4 (en) 2020-04-08
CN109428668B (zh) 2021-06-22
EP3595386A1 (en) 2020-01-15
CN109428668A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
JP7259082B2 (ja) 上りリンク制御情報送信、受信方法、端末及びネットワーク側機器
CN109302273B (zh) Srs传输方法和设备
WO2019015378A1 (zh) 一种数据传输的方法及设备
CN110958089B (zh) 传输块与码字的对应关系、相关设备以及系统
WO2018202180A1 (zh) 一种信息传输的方法及装置
WO2018219011A1 (zh) 一种数据传输方法及通信设备
US11582783B2 (en) Resource mapping method, network device, and terminal device
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
WO2022028464A1 (zh) 资源调度方法、装置及设备
US11770833B2 (en) Communication method, terminal device, and network device
WO2019028843A1 (zh) 信息传输方法及相关产品
EP3657877B1 (en) Communication method and network device
US11265102B2 (en) Downlink control channel detection method, downlink control channel transmission method, network side device and user equipment
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
JP2023533258A (ja) 情報伝送方法、装置、端末及びネットワーク側機器
CN111278112B (zh) 一种功率余量的上报方法及装置
WO2019080059A1 (zh) 反馈应答信息传输方法及相关产品
WO2019228535A1 (zh) 一种信号发送方法、装置及系统
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
WO2019149073A1 (zh) 信息指示方法、终端设备、网络设备和系统
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2021218909A1 (zh) 频域偏移的确定方法及装置、通信设备和可读存储介质
US20220077995A1 (en) Information processing method, device, equipment, and computer readable storage medium
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018834352

Country of ref document: EP

Effective date: 20191011

NENP Non-entry into the national phase

Ref country code: DE