WO2020223960A1 - 下行控制信息发送方法、装置及可读存储介质 - Google Patents

下行控制信息发送方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2020223960A1
WO2020223960A1 PCT/CN2019/086195 CN2019086195W WO2020223960A1 WO 2020223960 A1 WO2020223960 A1 WO 2020223960A1 CN 2019086195 W CN2019086195 W CN 2019086195W WO 2020223960 A1 WO2020223960 A1 WO 2020223960A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
information
control information
field
mcs
Prior art date
Application number
PCT/CN2019/086195
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to BR112021022295A priority Critical patent/BR112021022295A2/pt
Priority to SG11202112337QA priority patent/SG11202112337QA/en
Priority to KR1020217040018A priority patent/KR20220004211A/ko
Priority to PCT/CN2019/086195 priority patent/WO2020223960A1/zh
Priority to CN202210381828.0A priority patent/CN114980201A/zh
Priority to JP2021566104A priority patent/JP7238169B2/ja
Priority to EP19927709.6A priority patent/EP3968555A4/en
Priority to US17/609,307 priority patent/US20220217581A1/en
Priority to CN201980000822.0A priority patent/CN110383748B/zh
Publication of WO2020223960A1 publication Critical patent/WO2020223960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, device and readable storage medium for sending downlink control information.
  • a terminal when a terminal transmits MTC-type data, it needs to know in advance the resource location and the corresponding modulation and demodulation mode when transmitting the MTC-type data. This information can be pre-determined by the base station.
  • the terminal is notified through Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the base station may send the generated physical resource block (PRB) to the terminal through DCI.
  • PRB physical resource block
  • the base station needs to allocate more bits in the DCI to express the PRB resource allocation indication field.
  • the base station can usually compress the resource allocation indication field of the PRB in the DCI issued to the terminal each time, thereby reducing the number of bits allocated by the base station to the DCI.
  • the present disclosure provides a method, device and readable storage medium for sending downlink control information.
  • the technical solution is as follows:
  • a method for sending downlink control information including:
  • the determining whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, sending the downlink control information according to a corresponding compression mode includes:
  • the obtaining the pre-compression information amount of the downlink control information according to the number of transmission blocks includes:
  • the sum of the number of bits before compression of the shared information field and the product is the amount of information before compression of the downlink control information.
  • the shared information field includes a physical resource block PRB field and/or a modulation and coding scheme (Modulation and Coding Scheme, MCS) field.
  • MCS Modulation and Coding Scheme
  • the compression mode is used to indicate a compression strategy for the information field in the downlink control information.
  • the compression strategy includes at least one of the following strategies:
  • the compressing the PRB indication field in the downlink control information includes:
  • the resource allocation amount indicated by the PRB field and the resource allocation position indicated by the PRB field are restricted.
  • the compressing the MCS field in the downlink control information includes:
  • the MCS indicated by the MCS domain is restricted to at least two MCS extracted from each MCS supported by the system according to a specified extraction manner.
  • the specified extraction method includes uniform extraction or non-uniform extraction.
  • a device for sending downlink control information including:
  • the quantity acquisition module is used to acquire the quantity of transmission blocks scheduled by the downlink control information
  • the information sending module is configured to determine whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is required, send the downlink control information according to a corresponding compression method.
  • the information sending module includes: an information volume acquisition submodule and a compression mode determination submodule;
  • the information volume acquisition submodule is configured to acquire the pre-compression information volume of the downlink control information according to the number of transmission blocks;
  • the compression mode determining sub-module is configured to determine the compression mode according to the magnitude relationship between the amount of information before compression and an information amount threshold.
  • the information volume acquiring submodule includes: a first acquiring unit and a second acquiring unit;
  • the first obtaining unit is configured to obtain the number of bits before compression of the shared information field of the transmission block and the number of bits before compression of the non-shared information field of the transmission block;
  • the second acquiring unit is configured to acquire the product of the number of bits before compression of the non-shared information field and the number of transmission blocks;
  • the sum of the number of bits before compression of the shared information field and the product is the amount of information before compression of the downlink control information.
  • the shared information field includes a physical resource block PRB field and/or a modulation and coding scheme MCS field.
  • the compression mode is used to indicate a compression strategy for the information field in the downlink control information.
  • the compression strategy includes at least one of the following strategies:
  • the compressing the PRB indication field in the downlink control information includes:
  • the resource allocation amount indicated by the PRB field and the resource allocation position indicated by the PRB field are restricted.
  • the compressing the MCS field in the downlink control information includes:
  • the MCS indicated by the MCS domain is restricted to at least two MCS extracted from each MCS supported by the system according to a specified extraction manner.
  • the specified extraction method includes uniform extraction or non-uniform extraction.
  • a device for sending downlink control information including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • a computer-readable storage medium contains executable instructions, and a processor in a base station invokes the executable instructions to implement the above-mentioned first aspect Or the downlink control information sending method described in any optional implementation of the first aspect.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information; and determines whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, sends the downlink control information according to the corresponding compression mode.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information, thereby obtaining a compression mode corresponding to the number of transmission blocks, and compresses the transmitted downlink control information to a corresponding degree according to the compression mode, so that the base station can according to the number of transmission blocks , Flexibly adjust the compression degree of the downlink control information, thereby increasing the flexibility of the downlink control information scheduling transmission block while limiting the number of bits of the downlink control information.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the correspondence between a narrowband and a PRB involved in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an MPDCCH continuously scheduling multiple MPDSCHs according to an embodiment of the present disclosure
  • FIG. 5 is a method flowchart of a method for sending downlink control information provided by an embodiment of the present disclosure
  • Fig. 6 is a block diagram showing a device for sending downlink control information according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an IoT terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • access terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user terminal user equipment
  • UE user equipment
  • the terminal 110 may also be a device of an unmanned aerial vehicle, a vehicle-mounted device, or the like.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 120.
  • PHY physical
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • the foregoing wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the terminals 110 can transmit MTC type data to each other.
  • the terminal can support a communication bandwidth of 6 PRBs.
  • the communication bandwidth of the entire system is divided into multiple narrowbands (NB), so that the terminal can support narrowband communication.
  • FIG. 2 shows a schematic diagram of the correspondence between a narrowband and a PRB involved in an embodiment of the present disclosure.
  • the base station can first allocate one of the multiple narrowbands to the terminal that needs to transmit MTC data, and further allocate the corresponding PRB resource in the allocated narrowband.
  • MTC-type data can be transmitted on PRB resources allocated by the base station.
  • the base station may instruct the terminal to start transmitting MTC type data at the position of the first PRB resource 202 in the first narrowband 201 in FIG. 2 above.
  • the terminal may be allocated from the base station. Transmission starts at the position of the first PRB resource 202 in a narrowband 201.
  • the base station can reuse the LTE (Long Term Evolution) uplink type 0 allocation method, that is, it can indicate the starting point of the PRB resources and the corresponding allocated amount of PRB resources.
  • the terminal is instructed to start from the position of the first PRB resource 202, and data can be transmitted continuously for 8 PRB resources.
  • LTE Long Term Evolution
  • the base station indicates the PRB of the terminal The starting position of the resource and the amount of PRB resources allocated correspondingly need to be indicated by a 5-bit number (bit).
  • the base station carries the content of the DCI for the narrowband indication and the PRB resource allocation indication in the narrowband.
  • Table 1 contains a mapping relationship between the 5-bit information carried in the DCI indication information and the specific PRB resource allocation manner in the embodiment of the present disclosure.
  • the terminal transmitting MTC type data can also support different modulation and demodulation schemes to deal with different channel scenarios.
  • the base station needs to use 5 bits to indicate the starting position of the PRB resources of the terminal and the corresponding amount of PRB resources allocated, and 4 bits to indicate the modulation and demodulation scheme of the terminal when transmitting MTC type data.
  • the terminal supports 16 modulation and demodulation schemes in the protocol, and the base station needs to use 4 bits in the DCI to indicate which modulation and demodulation scheme the terminal uses to transmit data.
  • Table 2 shows the mapping relationship between the 4-bit information used in the DCI indication information and the MCS scheme in an embodiment of the present disclosure.
  • I MCS indicates the number of modulation and coding schemes
  • I TBS indicates the number of transport block size
  • N PRB indicates the number of physical resource blocks.
  • the terminal can determine the corresponding modulation and demodulation scheme according to the 4-bit information corresponding to the MCS contained in the DCI sent by the base station.
  • I MCS is 3
  • N PRB is 1
  • the number in the corresponding table is 40, which means that the number of PRBs allocated by the base station to the terminal is 1, and the terminal is instructed to use the modulation and demodulation method numbered 3 for modulation and decoding. Tune.
  • the corresponding number 40 in the table indicates that the size of the transmission block is 40 bits.
  • the DCI sent by the base station to the terminal can carry a 5-bit narrowband in-band PRB resource allocation indication and 4-bit modulation and demodulation scheme indication information, thereby informing the terminal to perform MTC on the corresponding PRB resource according to the indicated modulation and demodulation scheme.
  • Type of data transmission
  • the base station can continuously schedule multiple MPDSCHs (MTC physical downlink shared channel, MTC physical downlink shared channel) on one MPDCCH (MTC physical downlink control channel).
  • MPUSCH MTC physical uplink shared channel, MTC physical uplink shared channel
  • FIG. 3 shows a schematic diagram of an MPDCCH continuously scheduling multiple MPDSCHs according to an embodiment of the present disclosure.
  • one MPDCCH continuously schedules 4 MPDSCHs, that is, when the base station sends one DCI in one MPDCCH, it can schedule the downlink TBs contained in each of the 4 MPDSCHs.
  • MTC CE mode A at most 8 uplink or downlink TBs can be scheduled in one DCI sent by the base station. That is, in FIG. 3, one MPDCCH can also schedule 8 MPUSCHs or 8 MPDSCHs continuously.
  • the DCI sent by the base station can schedule multiple TBs.
  • the shared information field in the DCI can be shared by multiple TBs.
  • the DCI indicates the resource allocation mode, modulation and demodulation mode, and the number of repeated transmissions. It may be the same in multiple TBs scheduled by the DCI. That is, different TBs use the same resource allocation method, modulation and demodulation method, and the number of repeated transmissions for transmission.
  • the DCI sent by the base station only one corresponding shared information field is needed to complete the scheduling of each TB.
  • the base station can reserve 8 bits for NDI and RV in DCI for transmission, and the reserved 8 bits are also carried in DCI. For example, when an NDI needs to occupy 1 bit of information, and an RV needs to occupy 1 bit of information, then the base station needs to allocate additional 16 bits of information to carry the NDI and RV information fields.
  • the shared information field in the DCI can be compressed to reduce the number of bits allocated by the base station for the DCI. For example, restrict the PRB allocation mode in the narrowband in the resource allocation domain allocated by the base station, thereby compressing the 5-bit information indicating the PRB resource, and restricting the allocation mode of the MCS allocated by the base station, so as to perform the 4-bit information indicating the MCS mode. Compression, thereby reducing the number of bits contained in the DCI.
  • the DCI shared information field is compressed to the same degree. For example, the 5-bit information indicating the PRB resource is compressed to 0 bit, and the 4-bit information indicating the MCS mode is compressed to 1 bit.
  • the actual increase in bit overhead for the entire DCI is 8 bits.
  • the shared information field in the DCI is The above compression method can achieve the effect of reducing the number of bits contained in DCI.
  • the number of bits required for NDI and RV is related to the actual number of TBs scheduled. For example, when only 2 TBs are scheduled in DCI, the actual The number of bits required for the required NDI and RV is 4 bits.
  • the 8 bits added by DCI can completely characterize the NDI and RV of each TB. There is no need to compress the shared information domain. If the shared information domain is still compressed, then This will lead to a reduction in the location of PRB resources used by the terminal or the use of the MCS scheme when transmitting TB, which affects the flexibility of the terminal when transmitting data.
  • the present disclosure provides a method for sending downlink control information.
  • FIG. 4 shows a method flow chart of a method for sending downlink control information provided by an embodiment of the present disclosure.
  • the method can be applied to the wireless communication system shown in FIG. 1 and executed by a base station in the system. As shown in Figure 4, the method can include the following steps.
  • step 401 the base station obtains the number of transmission blocks scheduled by the downlink control information.
  • the base station determines whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, sends the downlink control information according to the corresponding compression mode.
  • the foregoing determining whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is required, sending the downlink control information according to the corresponding compression method, including:
  • the foregoing obtaining the pre-compression information amount of the downlink control information according to the number of transmission blocks includes:
  • the sum of the number of bits before compression and the product of the shared information domain is the amount of information before compression of the downlink control information.
  • the aforementioned shared information field includes a physical resource block PRB field and/or a modulation and coding scheme MCS field.
  • the aforementioned compression method is used to indicate a compression strategy for the information field in the downlink control information.
  • the aforementioned compression strategy includes at least one of the following strategies:
  • the foregoing compressing the PRB indication field in the downlink control information includes:
  • the foregoing compression of the MCS field in the downlink control information includes:
  • the MCS indicated by the restricted MCS field is at least two MCS extracted from each MCS supported by the system according to a specified extraction method.
  • the aforementioned specified extraction method includes uniform extraction or non-uniform extraction.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information; and determines whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, it sends the downlink according to the corresponding compression method. Control information.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information, thereby obtaining a compression mode corresponding to the number of transmission blocks, and compresses the transmitted downlink control information to a corresponding degree according to the compression mode, so that the base station can according to the number of transmission blocks , Flexibly adjust the degree of compression of the downlink control information, thereby increasing the flexibility of the downlink control information scheduling transmission block while limiting the number of bits of the downlink control information, and expanding the application scenarios of compressing the downlink control information.
  • FIG. 5 is a method flowchart of a method for sending downlink control information according to an exemplary embodiment. As shown in FIG. 5, the method for sending downlink control information can be applied to the wireless communication system shown in FIG. Executed by the base station in the system, the method may include the following steps.
  • step 501 the base station obtains the number of transmission blocks scheduled by the downlink control information.
  • a terminal when a terminal sends data through a wireless cellular network, it often learns the time-frequency resource location of the sent data and the MCS method used when sending the data in the DCI signaling issued by the base station. For example, the terminal needs to perform When sending MTC-type data, it can receive the DCI issued by the base station, and obtain the PRB resource location and MCS allocated by the base station for itself according to the indication information carried in the DCI.
  • the base station When the base station generates the DCI that needs to be issued, it can first obtain the number of TBs that the DCI needs to schedule (for example, when a DCI needs to schedule 4 TBs, the number of TBs scheduled in the DCI obtained by the base station is 4) Therefore, a corresponding number of bits is allocated to the DCI to be issued, so as to satisfy the amount of information required by the DCI to indicate the resource transmission position of each TB scheduled therein and the MCS.
  • the base station obtains the amount of information before compression of the downlink control information according to the number of transmission blocks.
  • the number of bits allocated to the shared information field contained therein may be fixed.
  • the shared information field may include a physical resource block PRB field and/or a modulation and coding mode MCS field.
  • the base station can allocate 5 bits of information to the PRB domain, that is, use 5 bits of information to indicate the PRB domain contained in the DCI; in the aforementioned modulation and coding method MCS domain, the base station can be MCS The domain is allocated with 4 bits of information, that is, the 4 bits of information are used to indicate the MCS domain included in the DCI.
  • the number of bits allocated to the non-shared information field contained therein may be calculated by the number of TBs.
  • the non-shared information field may include the NDI field and the RV field.
  • N is an integer greater than 1
  • the number of bits required for the non-shared information field in the DCI is 2Nbit
  • the base station can allocate 2Nbit of information for the non-shared information field included in the DCI.
  • the base station may obtain the number of bits before compression in the shared information field of the transmission block and the number of bits before compression in the non-shared information field of the transmission block.
  • taking the number of allocated bits in the shared information domain is fixed, and the number of allocated bits in the non-shared information domain is related to the number of TBs scheduled in the actual DCI as an example, when the base station is the PRB domain in the shared information domain , When 5bit information is allocated, that is, the 5bit information is used to indicate the PRB field contained in the DCI; for the MCS field in the shared information field, when 4bit information is allocated, that is, the 4bit information is used to indicate that the DCI contains The MCS domain.
  • the number of bits before compression of the shared information domain acquired by the base station is 9 bits.
  • the number of bits before compression corresponding to the NDI field and the RV field of each TB is 1 bit as an example, the number of bits before compression of the non-shared information field acquired by the base station is 2 bits.
  • the base station may obtain the product of the number of bits before compression of the non-shared information domain and the number of transmission blocks according to the number of acquired transmission blocks. That is, the actual number of bits required for the non-shared information field in the DCI is calculated. For example, when the base station obtains the number of TBs scheduled by the DCI is N, the actual number of bits required for the non-shared information field in the DCI is 2Nbit.
  • the base station may obtain the sum of the number of bits before compression of the non-shared information domain and the product as the amount of information before compression of the downlink control information. That is, the sum of the number of bits before compression of the shared information domain acquired by the base station and the obtained product is the amount of information before compression of the downlink control information.
  • the amount of information before compression of the downlink control information obtained by the base station is (9+2N) bits.
  • the base station determines whether the information field in the downlink control information needs to be compressed according to the size relationship between the information volume before compression and the information volume threshold, and the compression method when compression is required.
  • the information amount threshold may be a fixed amount of information allocated to the DCI when the base station generates the DCI. That is, no matter how many TBs are scheduled by the DCI, the amount of information allocated by the base station for the DCI is equal to the information amount threshold.
  • the amount of information allocated by the base station for DCI for the PRB, MCS, NDI, and RV domains is Mbit (M is an integer greater than or equal to 16). No matter how much information is scheduled in the DCI For each TB, DCI carries Mbit of information to indicate the PRB, MCS, NDI, and RV fields respectively.
  • the base station can compare the acquired information volume before compression with the information volume threshold. When the information volume before compression is greater than the information volume threshold, it is determined that the shared information field in the DCI needs to be compressed; when the information volume before compression is not When it is greater than the information amount threshold, it is determined that it is not necessary to compress the shared information field in the DCI.
  • the amount of information before compression of the downlink control information obtained by the above base station as (9+2N) bits as an example, when (9+2N)>M, the shared information field in the DCI needs to be compressed. Otherwise, it may not be necessary to compress the shared information field in the DCI.
  • the base station compresses the shared information field in the DCI, the compressed information volume of the downlink control information should not be greater than M.
  • the compression method may be used to indicate a compression strategy for the information field in the downlink control information. That is, the compression method may also indicate to compress part or all of the information domains in the shared information domain in the downlink control information.
  • the compression strategy includes at least one of the following strategies: compressing the PRB field in the downlink control information; and compressing the MCS field in the downlink control information.
  • the base station can compress the 5bit information allocated by the PRB field in DCI, or the base station can compress the 4bit information allocated by the MCS field in DCI Or, the base station may also compress both the amount of information allocated by the PRB field and the MCS field in the DCI.
  • M 16 as an example, that is, the amount of information used by the base station in the DCI for the PRB, MCS, NDI, and RV fields is 16 bits.
  • the information volume is 5 bits
  • the MCS domain before compression The amount of information is 4 bits
  • the amount of information in the NDI domain is 1 bit
  • the amount of information in the RV domain is 1 bit.
  • the actual amount of information required by the NDI domain and the RV domain is 2N.
  • the compression strategy can refer to Table 3 below. Please refer to Table 3, which shows a compression schematic result of a base station involved in an embodiment of the present disclosure executing a corresponding compression strategy.
  • the base station can select the compression method corresponding to the number of TBs to compress the shared information field in the DCI.
  • the base station when the number of TBs is 4, the base station can compress the 5 bits of the PRB field to 4 bits, (that is, use 4 bits of information in the DCI to indicate the PRB field), so that the base station allocates the DCI
  • the number of bits is not more than the information threshold 16bit.
  • the base station when the number of TBs is 4, the base station can also compress the 4bit of the MCS domain to 3bit without compressing the 5bit of the PRB domain, etc., and the number of bits allocated by the base station for the DCI can also be different.
  • the effect of 16 bits greater than the information threshold The present disclosure does not limit the specific compression strategy.
  • Table 4 shows a compression schematic result of a base station involved in an embodiment of the present disclosure executing a corresponding compression strategy.
  • the base station can compress the 5bit of the PRB field in DCI to 2bit when the number of TBs is between 4 and 6, and compress the 4bit of the MCS field to 2bit; when the number of TBs is 7 or 8. , The base station compresses the 5 bits of the PRB field in the DCI to 0 bits, and compresses the 4 bits of the MCS field to 0 bits.
  • the base station can also use a single compression strategy to compress. For example, the base station can compress the PRB field in DCI when the number of TBs is greater than 4. Compress 5bit to 0bit, and compress 4bit of MCS domain to 0bit.
  • the base station compresses the 5bit of the PRB field in DCI to 0bit and compresses the 4bit of the MCS field to 0bit, that is, the base station does not indicate the specific PRB resources and MCS mode of the terminal in the DCI. Directly adopt the default PRB resource and MCS mode to transmit MTC data.
  • the base station compressing the PRB indication field in the downlink control information may include: limiting the amount of resource allocation indicated by the PRB field.
  • the base station compresses the PRB domain it limits the resource allocation indicated by the PRB domain to 6 PRB resource allocations, which is equivalent to all PRB resources in a narrowband without additional
  • the bits of the PRB domain indicate the PRB domain.
  • 5 bits of information can be directly compressed, that is, DCI can carry less 5 bits of information.
  • the base station when the base station compresses the PRB domain, it limits the resource allocation indicated by the PRB domain to 6 PRB resource allocation or 4 PRB resource allocation.
  • the base station can use 2 bits for The indication of the PRB domain, in the MTC CE mode A mode, can directly compress the amount of 3bit information, that is, the DCI can carry less 3bit information.
  • Table 5 shows the mapping relationship between the 3bit information carried in the DCI indication information and the specific PRB resource allocation manner in an embodiment of the present disclosure.
  • the base station can use 2 bits to indicate the PRB domain in the DCI.
  • the resource allocation position indicated by the PRB field may also be restricted.
  • the base station compresses the PRB field it can limit the resource allocation indicated by the PRB field to correspond to one kind of allocated resource position.
  • the allocated resource position corresponding to 4 PRB resource allocations is ( 3,4,5,6,), that is, when the resource allocation amount of the PRB domain in the DCI is 4, it indicates that the terminal can transmit data at a resource location of (3,4,5,6,) in a narrowband.
  • the base station can use 3 bits to indicate the PRB domain.
  • MTC CE mode A mode 2 bits of information can be directly compressed, that is, DCI can carry less 2 bits of information.
  • Table 6, shows the mapping relationship between the 3bit information carried in the DCI indication information and the specific PRB resource allocation manner in an embodiment of the present disclosure.
  • the base station when the base station compresses the PRB indication field in the downlink control information, it can limit both the amount of resource allocation indicated by the PRB field and the resource allocation position indicated by the PRB field.
  • the base station when the base station compresses the PRB field, it can limit the resource allocation indicated by the PRB field to 3, 4, 5, and 6, respectively, and for each resource allocation amount, the resource allocation is also restricted.
  • Table 7, shows the mapping relationship between the 2bit information carried in the DCI indication information and the specific PRB resource allocation manner in an embodiment of the present disclosure.
  • each has a unique corresponding allocation resource location.
  • the base station can also use 2 bits to indicate the PRB domain.
  • MTC CE mode A mode 3 bits of information can be directly compressed , That is, DCI can carry 3bit less information.
  • the base station compressing the MCS field in the downlink control information may include: restricting the MCS indicated by the MCS field to be a fixed MCS.
  • the base station compresses the MCS field it limits the MCS indicated by the MCS field to a fixed MCS.
  • the developer sets the fixed MCS to be the MCS with I MCS of 15 in Table 2 above, and the base station is in When assigning to the MCS domain, there is no need for additional bits to indicate the MCS domain.
  • the terminal does not indicate the MCS domain in the received DCI, it will automatically select the MCS mode with I MCS of 15 for modulation and demodulation. Therefore, in the MTC CE mode A mode, 4bit information can be directly compressed, that is, DCI can carry less 4bit information.
  • the base station compresses the MCS field in the downlink control information, and may also limit the MCS indicated by the MCS field to at least two designated MCSs, where the at least two MCSs are part of the MCSs in each MCS supported by the system.
  • MCS is the MCS with I MCS of 14 and 15 in Table 2 above.
  • the base station allocates the MCS domain, it only needs an extra 1 bit to indicate the MCS domain. Therefore, in the MTC CE mode A mode, you can directly Compress 3bit information volume, that is, DCI can carry less 3bit information volume. Please refer to Table 8, which shows the mapping relationship between 1-bit information used in the DCI indication information and the MCS scheme in an embodiment of the present disclosure.
  • the MCS indicated by the MCS field may also be restricted to at least two MCS extracted from each MCS supported by the system in a specified extraction manner.
  • the specified extraction method includes uniform extraction or non-uniform extraction.
  • the MCS indicated by the MCS domain is restricted to 4 fixed MCSs uniformly extracted, for example According to the 4 fixed MCS that are uniformly extracted, they are the MCS with I MCS of 3, 7, 11 and 15 in Table 2 above.
  • the base station allocates the MCS domain it only needs an extra 2 bits to indicate the MCS domain.
  • the MCS indicated by the MCS domain is restricted to the 4 fixed MCSs extracted non-uniformly.
  • the 4 fixed MCS extracted according to non-uniformity are the MCS with I MCS of 1, 7, 11 and 15 in Table 2 above.
  • the base station allocates the MCS domain, it only needs an extra 2bit
  • 2bit information can be directly compressed, that is, DCI can carry less 2bit information.
  • Table 10 shows the mapping relationship between the 2bit information used in the DCI indication information and the MCS scheme in an embodiment of the present disclosure.
  • step 504 the base station sends the downlink control information according to whether to compress the information field in the downlink control information, and the compression method when compression is required.
  • the base station may determine whether the information field in the downlink control information needs to be compressed through the above steps according to the number of transmission blocks.
  • the base station can compress the information field in the DCI according to a compression method corresponding to the number of transport blocks scheduled in the DCI, so as to send the compressed downlink control information to the terminal through the MPDCCH.
  • the base station determines that it is not necessary to compress the information field in the downlink control information, the base station can also choose not to compress the information field in the DCI and directly issue the downlink control information.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information; and determines whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, it sends the downlink according to the corresponding compression method. Control information.
  • the base station obtains the number of transmission blocks scheduled by the downlink control information, thereby obtaining a compression mode corresponding to the number of transmission blocks, and compresses the transmitted downlink control information to a corresponding degree according to the compression mode, so that the base station can according to the number of transmission blocks , Flexibly adjust the degree of compression of the downlink control information, thereby increasing the flexibility of the downlink control information scheduling transmission block while limiting the number of bits of the downlink control information, and expanding the application scenarios of compressing the downlink control information.
  • Fig. 6 is a block diagram showing a device for sending downlink control information according to an exemplary embodiment.
  • the device for sending downlink control information can be implemented as the implementation environment shown in Fig. 1 through hardware or a combination of software and hardware. All or part of the base station in FIG. 4 to perform the steps performed by the base station in any one of the embodiments shown in FIG. 4 or FIG. 5.
  • the device for sending downlink control information may include:
  • the quantity obtaining module 601 is configured to obtain the quantity of transmission blocks scheduled by downlink control information
  • the information sending module 602 is configured to determine whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is needed, send the downlink control information according to a corresponding compression mode.
  • the information sending module 602 includes: an information volume acquisition submodule and a compression mode determination submodule;
  • the information volume acquisition submodule is configured to acquire the pre-compression information volume of the downlink control information according to the number of transmission blocks;
  • the compression mode determining sub-module is configured to determine the compression mode according to the magnitude relationship between the amount of information before compression and an information amount threshold.
  • the information volume acquiring submodule includes: a first acquiring unit and a second acquiring unit;
  • the first obtaining unit is configured to obtain the number of bits before compression of the shared information field of the transmission block and the number of bits before compression of the non-shared information field of the transmission block;
  • the second acquiring unit is configured to acquire the product of the number of bits before compression of the non-shared information field and the number of transmission blocks;
  • the sum of the number of bits before compression of the shared information field and the product is the amount of information before compression of the downlink control information.
  • the shared information field includes a physical resource block PRB field and/or a modulation and coding scheme MCS field.
  • the compression mode is used to indicate a compression strategy for the information field in the downlink control information.
  • the compression strategy includes at least one of the following strategies:
  • the compressing the PRB indication field in the downlink control information includes:
  • the resource allocation amount indicated by the PRB field and the resource allocation position indicated by the PRB field are restricted.
  • the compressing the MCS field in the downlink control information includes:
  • the MCS indicated by the MCS domain is restricted to at least two MCS extracted from each MCS supported by the system according to a specified extraction manner.
  • the specified extraction method includes uniform extraction or non-uniform extraction.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used for illustration. In actual applications, the above functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a device for sending downlink control information, which can implement all or part of the steps performed by a base station in the embodiment shown in FIG. 4 or FIG. 5 of the present disclosure.
  • the device for sending downlink control information includes: A memory for storing executable instructions of the processor;
  • the processor is configured to:
  • the determining whether to compress the information field in the downlink control information according to the number of transmission blocks, and when compression is required, sending the downlink control information according to a corresponding compression mode, and the processing is configured as:
  • the processor is configured to:
  • the sum of the number of bits before compression of the shared information field and the product is the amount of information before compression of the downlink control information.
  • the shared information field includes a physical resource block PRB field and/or a modulation and coding scheme MCS field.
  • the compression mode is used to indicate a compression strategy for the information field in the downlink control information.
  • the compression strategy includes at least one of the following strategies:
  • the compressing the PRB indication field in the downlink control information includes:
  • the resource allocation amount indicated by the PRB field and the resource allocation position indicated by the PRB field are restricted.
  • the compressing the MCS field in the downlink control information includes:
  • the MCS indicated by the MCS domain is restricted to at least two MCS extracted from each MCS supported by the system according to a specified extraction manner.
  • the specified extraction method includes uniform extraction or non-uniform extraction.
  • the base station includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the base station 700 includes a communication unit 704 and a processor 702.
  • the processor 702 may also be a controller, which is represented as "controller/processor 702" in FIG. 7.
  • the communication unit 704 is used to support the base station to communicate with other network devices (for example, terminals, other base stations, gateways, etc.).
  • the base station 700 may further include a memory 703, where the memory 703 is used to store program codes and data of the base station 700.
  • FIG. 7 only shows a simplified design of the base station 700.
  • the base station 700 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the functions described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiment of the present disclosure also provides a computer storage medium for storing computer software instructions used by the above-mentioned base station, which includes a program designed to execute the above-mentioned downlink control information sending method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本公开揭示了一种下行控制信息发送方法,属于无线通信技术领域。所述方法包括:获取下行控制信息调度的传输块的数量;并根据传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息。本公开通过基站获取下行控制信息调度的传输块的数量,从而得到传输块的数量对应的压缩方式,按照该压缩方式对发送的下行控制信息进行相应程度的压缩,使得基站可以根据传输块的数量,灵活调整下行控制信息的压缩程度,从而在限制下行控制信息的比特数的同时,提高下行控制信息调度传输块的灵活性。

Description

下行控制信息发送方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,特别涉及一种下行控制信息发送方法、装置及可读存储介质。
背景技术
随着无线通信技术领域的发展,物联网(Internet of Thing,IoT)已经为人们的生活和工作带来了诸多便利,其中,机器类通信(Machine Type Communication,MTC)便是蜂窝物联网技术应用的典型代表之一。
在相关技术中,对于MTC类型的通信业务,终端在传输MTC类型的数据时,需要提前知道发送该MTC类型的数据时的资源位置以及相应的调制解调方式等信息,这些信息可以由基站预先通过下行控制信息(Downlink Control Information,DCI)告知终端。例如,基站可以将生成的物理资源块(Physical resource block,PRB)通过DCI发送至终端。通常基站需要在DCI中分配较多的比特数来表达PRB资源分配指示域。为了节约基站给DCI分配的比特数,基站通常可以对每次下发给终端的DCI中PRB的资源分配指示域进行压缩,从而减少基站给DCI分配的比特数。
发明内容
本公开提供一种下行控制信息发送方法、装置及可读存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种下行控制信息发送方法,所述方法包括:
获取下行控制信息调度的传输块的数量;
根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
可选的,所述根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控 制信息,包括:
根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
根据所述压缩前信息量与信息量阈值之间的大小关系确定是否需要对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时的所述压缩方式。
可选的,所述根据所述传输块的数量获取所述下行控制信息的压缩前信息量,包括:
获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
可选的,所述共享信息域包括物理资源块PRB域和/或调制编码方式(Modulation and Coding Scheme,MCS)域。
可选的,所述压缩方式用于指示对所述下行控制信息中的信息域的压缩策略。
可选的,所述压缩策略包括以下策略中的至少一种:
对所述下行控制信息中的PRB域进行压缩;以及,
对所述下行控制信息中的MCS域进行压缩。
可选的,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
限制所述PRB域指示的资源分配量;
或者,限制所述PRB域指示的资源分配位置;
或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
可选的,所述对所述下行控制信息中的MCS域进行压缩,包括:
限制所述MCS域指示的MCS为固定MCS;
或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
可选的,所述指定抽取方式包括均匀抽取或者非均匀抽取。
根据本公开实施例的第二方面,提供了一种下行控制信息发送装置,所述装置包括:
数量获取模块,用于获取下行控制信息调度的传输块的数量;
信息发送模块,用于根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
可选的,所述信息发送模块包括:信息量获取子模块以及压缩方式确定子模块;
所述信息量获取子模块,用于根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
所述压缩方式确定子模块,用于根据所述压缩前信息量与信息量阈值之间的大小关系确定所述压缩方式。
可选的,所述信息量获取子模块,包括:第一获取单元以及第二获取单元;
所述第一获取单元,用于获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
所述第二获取单元,用于获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
可选的,所述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
可选的,所述压缩方式用于指示对所述下行控制信息中的信息域的压缩策略。
可选的,所述压缩策略包括以下策略中的至少一种:
对所述下行控制信息中的PRB域进行压缩;以及,
对所述下行控制信息中的MCS域进行压缩。
可选的,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
限制所述PRB域指示的资源分配量;
或者,限制所述PRB域指示的资源分配位置;
或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
可选的,所述对所述下行控制信息中的MCS域进行压缩,包括:
限制所述MCS域指示的MCS为固定MCS;
或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
可选的,所述指定抽取方式包括均匀抽取或者非均匀抽取。
根据本公开实施例的第三方面,提供了一种下行控制信息发送装置,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
获取下行控制信息调度的传输块的数量;
根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
根据本公开实施例的第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,基站中的处理器调用所述可执行指令以实现上述第一方面或者第一方面的任一可选实现方式所述的下行控制信息发送方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
基站获取下行控制信息调度的传输块的数量;并根据传输块的数量确定是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息。本公开通过基站获取下行控制信息调度的传输块的数量,从而得到传输块的数量对应的压缩方式,按照该压缩方式对发送的下行控制信息进行相应程度的压缩,使得基站可以根据传输块的数量,灵活调整下行控制信息的压缩程度,从而在限制下行控制信息的比特数的同时,提高下行控制信息调度传输块的灵活性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是本公开实施例提供的一种无线通信系统的结构示意图;
图2是本公开实施例涉及的一种窄带与PRB之间对应的示意图;
图3是本公开实施例涉及的一种MPDCCH连续调度多个MPDSCH的示意图;
图4是本公开实施例提供的一种下行控制信息发送方法的方法流程图;
图5是本公开实施例提供的一种下行控制信息发送方法的方法流程图;
图6是根据一示例性实施例示出的一种下行控制信息发送装置的框图;
图7是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。为了便于理解,下面先对本公开涉及的一些应用场景进行简单介绍。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110 可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端110也可以是无人飞行器的设备、车载设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility  Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
在一种可能实现的方式中,上述通信系统中,终端110之间可以互相传输MTC类型的数据,通常情况下,对于MTC类型的数据,终端可以支持6个PRB的通信带宽,另外,在release 13中又将整个系统通信带宽划分为多个窄带(narrow band,NB),从而使得终端可以支持窄带通信的方式。
请参考图2,其示出了本公开实施例涉及的一种窄带与PRB之间对应的示意图。如图2所示,其中包含了第一窄带201,第一PRB资源202,以及每个窄带对应的PRB资源编号(1-6),由图2可知,一个窄带可以对应有6个PRB。对于基于图2所示的窄带通信方式,基站可以首先为需要传输MTC类型的数据的终端,分配多个窄带中的一个窄带,并在所分配的一个窄带中进一步分配相应的PRB资源,当终端需要传输MTC类型的数据时,可以在基站分配的PRB资源上传输MTC类型的数据。例如,基站可以指示终端可以在上述图2中的第一窄带201中的第一PRB资源202的位置上开始传输MTC类型的数据,当终端需要传输MTC类型的数据时,可以从基站分配的第一窄带201中的第一PRB资源202的位置上开始传输。可选的,基站对于窄带中PRB资源的分配,可以复用LTE(Long Term Evolution,长期演进)上行type 0的分配方式,即,可以指示PRB资源的起点以及相应分配的PRB资源量。例如,指示终端从第一PRB资源202的位置上开始,可以持续8个PRB资源量传输数据。
可选的,对于上述图2所示的窄带分配示意图,即,一个窄带对应6个PRB资源的情况,在MTC覆盖增强模式A(Coverage Enhancement mode A,CE mode A)下,基站指示终端的PRB资源起始位置以及相应分配的PRB资源量时,需要使用5比特数(bit)进行指示。其中,基站对上述资源分配中的窄带指示以及窄带内PRB资源分配指示都是通过DCI的内容承载。请参考表1,其包含了本公开实施例涉及的一种DCI指示信息中承载的5bit信息与具体PRB资源分配方式的映射关系。
Figure PCTCN2019086195-appb-000001
Figure PCTCN2019086195-appb-000002
Figure PCTCN2019086195-appb-000003
表1
在一种可能实现的方式中,类似于传统LTE中的终端,传输MTC类型数据的终端也可以支持不同调制解调方案以应对不同的信道场景。基站在DCI中除了需要使用5bit来指示终端的PRB资源起始位置以及相应分配的PRB资源量之外,还需要使用4bit来指示终端在传输MTC类型数据时的调制解调方案。例如,在MTC CE mode A下,终端支持协议中的16种调制解调方案,基站在DCI中需要使用4bit来指示终端使用哪种调制解调方案来传输数据。请参考表2,其示出了本公开实施例涉及的一种DCI指示信息中使用的4bit信息与MCS方案之间的映射关系。
Figure PCTCN2019086195-appb-000004
Figure PCTCN2019086195-appb-000005
表2
如表2所示,其中,I MCS:表示调制编码方式的编号;I TBS:表示传输块大小的编号;N PRB:表示物理资源块的个数。终端可以根据基站发送的DCI中包含的MCS对应的4bit信息,确定相应的调制解调方案。例如,I MCS为3,N PRB为1,对应表中的数字为40,其表示为,基站为终端分配的PRB数量为1个,并且指示终端采用编号为3的调制解调方式进行调制解调。其中,表格中对应的数字40表示传输块的大小为40bit。
即,基站在发送给终端的DCI中,可以携带5bit的窄带内PRB资源分配指示,以及4bit的调制解调方案指示信息,从而告知终端在相应的PRB资源上按 照指示的调制解调方案进行MTC类型数据的传输。
可选的,在MTC类型数据的传输过程中,基站在一个MPDCCH(MTC physical downlink control channel,MTC物理下行控制信道)上可以连续调度多个MPDSCH(MTC physical downlink shared channel,MTC物理下行共享信道)或者MPUSCH(MTC physical uplink shared channel,MTC物理上行共享信道),也就是说,基站下发至终端的DCI可以连续调度多个上行数据块(Transmission block,TB)或者下行数据块。请参考图3,其示出了本公开实施例涉及的一种MPDCCH连续调度多个MPDSCH的示意图。如图3所示,一个MPDCCH连续调度了4个MPDSCH,也就是说,基站在一个MPDCCH中下发一个DCI时,可以调度这4个MPDSCH各自包含的下行TB。可选的,在MTC CE mode A下,基站发送的一个DCI中最多可以调度8个上行或者下行TB,即,在图3中,一个MPDCCH也可以连续调度8个MPUSCH或者8个MPDSCH。
其中,针对基站发送的DCI可以调度多个TB的实现方式,DCI中的共享信息域可以由多TB共享,例如,DCI中指示资源分配方式、调制解调方式以及重复传输次数等共享信息域,在该DCI调度的多个TB中均可以相同。即,不同的TB使用相同的资源分配方式、调制解调方式以及重复传输次数等方式进行传输。基站在发送的DCI中,只需要一个对应的共享信息域,即可完成对每个TB的调度。可选的,基站发送的DCI中还存在非共享信息域,例如,DCI在指示NDI(new data indicator,新数据指示)以及RV(redundancy version,冗余版本)时,需要为每个TB预留对应的信息域(本公开中可以称为非共享信息域),来单独指示NDI以及RV传输时对应的信道编码等。可选的,在MTC CE mode A下,基站在DCI中可以分别为NDI以及RV预留8个bit来传输,将该预留的8个bit也承载在DCI中。例如,当一个NDI需要占用1bit信息,一个RV需要占用1bit信息时,那么基站就需要额外分配16bit的信息来承载NDI以及RV的信息域。
相关技术中,为了避免一个DCI调度多个TB的情况下,基站为单个DCI分配的比特数过度增加,可以对DCI中的共享信息域进行压缩,从而减少基站为DCI分配的比特数。比如,对基站分配的资源分配域中窄带内PRB分配方式进行限制,从而将指示PRB资源的5bit信息进行压缩,以及对基站分配的MCS的分配方式进行限制,从而将指示MCS方式的4bit信息进行压缩,从而减少DCI中包含的比特数。相关技术中对于DCI中包含的PRB域和MCS域进行压 缩时,在任何情况下,均对DCI的共享信息域进行相同程度的压缩。比如,将指示PRB资源的5bit信息压缩至0bit,将指示MCS方式的4bit信息压缩至1bit等。
当DCI中调度的TB数量为8个时,DCI中包含的NDI和RV所需要的bit数为16bit,那么此时整个DCI实际增加的bit开销为8bit,此时将DCI中的共享信息域按照上述压缩方式进行压缩,可以达到减少DCI包含的比特数的效果,但是由于NDI和RV所需要的bit数与实际所调度的TB数量相关,例如,当DCI中只调度2个TB时,实际所需的NDI和RV所需要的bit数为4bit,DCI所增加的8bit完全可以对每个TB的NDI和RV进行表征,不需要对共享信息域进行压缩,如果仍然对共享信息域进行压缩,则会导致终端在传输TB时,使用的PRB资源位置或者采用MCS方案的方式减少,影响终端在传输数据时的灵活性。
为了解决上述相关技术中存在的问题,在压缩DCI的比特数的情况下,不丧失终端传输数据的灵活性,本公开提供了一种下行控制信息发送方法。请参考图4,其示出了本公开实施例提供的一种下行控制信息发送方法的方法流程图,该方法可以应用于图1所示的无线通信系统中,由该系统中的基站执行,如图4所示,该方法可以包括如下几个步骤。
在步骤401中,基站获取下行控制信息调度的传输块的数量。
在步骤402中,基站根据传输块的数量确定是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息。
可选的,上述根据传输块的数量确定是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息,包括:
根据传输块的数量获取下行控制信息的压缩前信息量;
根据压缩前信息量与信息量阈值之间的大小关系确定是否需要对下行控制信息中的信息域进行压缩,以及当需要进行压缩时的压缩方式。
可选的,上述根据传输块的数量获取下行控制信息的压缩前信息量,包括:
获取传输块的共享信息域的压缩前比特数,以及传输块的非共享信息域的压缩前比特数;
获取非共享信息域的压缩前比特数与传输块的数量的乘积;
共享信息域的压缩前比特数与乘积之和即为下行控制信息的压缩前信息量。
可选的,上述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
可选的,上述压缩方式用于指示对下行控制信息中的信息域的压缩策略。
可选的,上述压缩策略包括以下策略中的至少一种:
对下行控制信息中的PRB域进行压缩;以及,
对下行控制信息中的MCS域进行压缩。
可选的,上述对下行控制信息中的PRB指示域进行压缩,包括:
限制PRB域指示的资源分配量;
或者,限制PRB域指示的资源分配位置;
或者,限制PRB域指示的资源分配量以及PRB域指示的资源分配位置。
可选的,上述对下行控制信息中的MCS域进行压缩,包括:
限制MCS域指示的MCS为固定MCS;
或者,限制MCS域指示的MCS为指定的至少两个MCS,至少两个MCS是系统支持的各个MCS中的部分MCS;
或者,限制MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
可选的,上述指定抽取方式包括均匀抽取或者非均匀抽取。
综上所述,基站获取下行控制信息调度的传输块的数量;并根据传输块的数量确定是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息。本公开通过基站获取下行控制信息调度的传输块的数量,从而得到传输块的数量对应的压缩方式,按照该压缩方式对发送的下行控制信息进行相应程度的压缩,使得基站可以根据传输块的数量,灵活调整下行控制信息的压缩程度,从而在限制下行控制信息的比特数的同时,提高下行控制信息调度传输块的灵活性,扩展了压缩下行控制信息的应用场景。
图5是根据一示例性实施例示出的一种下行控制信息发送方法的方法流程图,如图5所示,该下行控制信息发送方法可以应用于图1所示的无线通信系统中,且由该系统中的基站执行,该方法可以包括如下几个步骤。
在步骤501中,基站获取下行控制信息调度的传输块的数量。
在无线通信系统中,终端通过无线蜂窝网络发送数据时,往往是在基站下发的DCI信令中获知发送数据的时频资源位置以及发送数据时采用的MCS方式 等,例如,在终端需要进行MTC类型的数据发送时,可以接收基站下发的DCI,根据该DCI中携带的指示信息,得到基站为自己分配的PRB资源位置以及MCS。基站在生成需要下发的DCI时,可以先获取到该DCI需要调度的TB的数量(例如,当一个DCI需要调度4个TB时,基站获取到的该DCI中调度的TB的数量为4),从而为需要下发的DCI分配相应的比特数,以满足该DCI用于指示其中调度的各个TB的资源发送位置以及MCS等所需要的信息量。
在步骤502中,基站根据传输块的数量获取下行控制信息的压缩前信息量。
可选的,基站在生成一个DCI时,对其中包含的共享信息域分配的比特数可以是固定的,可选的,共享信息域可以包含物理资源块PRB域和/或调制编码方式MCS域。比如,在上述物理资源块PRB域中,基站可以为PRB域分配5bit的信息量,即,用5bit信息量指示该DCI中包含的PRB域;在上述调制编码方式MCS域中,基站可以为MCS域分配4bit的信息量,即,用4bit信息量指示该DCI中包含的MCS域。
可选的,基站在生成一个DCI时,对其中包含的非共享信息域分配的比特数可以通过TB的数量计算得到,可选的,非共享信息域可以包括NDI域以及RV域。例如,DCI调度的每个TB中,对于每个TB的NDI域以及RV域对应的压缩前比特数均为1bit,那么,当该DCI调度的TB的数量为N时(N为大于1的整数),该DCI中的非共享信息域需要的比特数为2Nbit,基站可以对该DCI中包含的非共享信息域分配的2Nbit的信息量。
可选的,基站可以获取传输块的共享信息域的压缩前比特数,以及传输块的非共享信息域的压缩前比特数。可选的,以上述共享信息域的分配的比特数是固定的,非共享信息域的分配的比特数与实际DCI中调度的TB的数量相关为例,当基站为共享信息域中的PRB域,分配5bit的信息量时,即,用5bit信息量指示该DCI中包含的PRB域;为共享信息域中的MCS域,分配4bit的信息量时,即,用4bit信息量指示该DCI中包含的MCS域。则基站获取到的共享信息域的压缩前比特数为9bit。可选的,以上述每个TB的NDI域以及RV域对应的压缩前比特数均为1bit为例,则基站获取到的非共享信息域的压缩前比特数为2bit。
可选的,基站可以根据获取的传输块的数量,获取非共享信息域的压缩前比特数与传输块的数量的乘积。即,计算出该DCI中非共享信息域的实际需要的比特数。例如,当基站获取DCI调度的TB的数量为N时,该DCI中非共享 信息域的实际需要的比特数为2Nbit。
可选的,基站可以将非共享信息域的压缩前比特数与该乘积之和获取为下行控制信息的压缩前信息量。即,上述基站获取的共享信息域的压缩前比特数与获取的乘积之和即为下行控制信息的压缩前信息量。以上述获取的非共享信息域的压缩前比特数为9bit,非共享信息域的实际需要的比特数为2Nbit为例,基站获取的下行控制信息的压缩前信息量为(9+2N)bit。
在步骤503中,基站根据压缩前信息量与信息量阈值之间的大小关系确定是否需要对下行控制信息中的信息域进行压缩,以及当需要进行压缩时的压缩方式。
可选的,该信息量阈值可以是基站在生成DCI时,为该DCI分配的固定信息量。即,无论该DCI调度多少个TB,基站为该DCI分配的信息量都等于该信息量阈值。例如,在一种可能实现的方式中,基站为DCI分配的用于PRB域、MCS域、NDI域以及RV域的信息量一共有Mbit(M为大于等于16的整数),在DCI无论调度多少个TB,DCI承载Mbit的信息量来分别指示PRB域、MCS域、NDI域以及RV域。
基站可以将获取到的压缩前信息量与该信息量阈值之间进行比较,当压缩前信息量大于该信息量阈值时,确定需要对DCI中的共享信息域进行压缩;当压缩前信息量不大于该信息量阈值时,则确定不需要对DCI中的共享信息域进行压缩。以上述基站获取的下行控制信息的压缩前信息量为(9+2N)bit为例,当(9+2N)>M时,需要对DCI中的共享信息域进行压缩。否则,可以不需要对DCI中的共享信息域进行压缩。其中,基站对DCI中的共享信息域进行压缩时,将下行控制信息的压缩后信息量不大于M即可。
可选的,该压缩方式可以用于指示对下行控制信息中的信息域的压缩策略。即,该压缩方式还可以指示对下行控制信息中的共享信息域中的部分信息域或者全部信息域进行压缩。可选的,该压缩策略包括以下策略中的至少一种:对下行控制信息中的PRB域进行压缩;以及,对下行控制信息中的MCS域进行压缩。
在一种可能实现的方式中,仍以基站获取的下行控制信息的压缩前信息量是(9+2N)bit为例,其中,基站为PRB域分配的5bit的信息量,为MCS域分配的4bit的信息量,当(9+2N)>M时,基站可以对DCI中的PRB域分配的5bit的信息量进行压缩,或者,基站可以对DCI中的MCS域分配的4bit的信息量进 行压缩,或者,基站也可以对DCI中的PRB域以及MCS域分配的信息量均进行压缩。
以M=16为例,即,基站对DCI中用于PRB域、MCS域、NDI域以及RV域的信息量一共有16bit,当基站获取的PRB域压缩前信息量为5bit,MCS域压缩前信息量为4bit,NDI域的信息量为1bit以及RV域的信息量为1bit,基站根据DCI调度的TB数量N,得到NDI域以及RV域的实际需要的信息量为2N,此时基站采用的压缩策略可以参考下表3。请参考表3,其示出了本公开实施例涉及的一种基站执行相应的压缩策略的压缩示意结果。
调度TB数 NDI/bit RV/bit MCS/bit PRB/bit 剩余bit
1 1 1 4 5 5
2 2 2 4 5 3
3 3 3 4 5 1
4 4 4 4 4 0
5 5 5 2 4 0
6 6 6 2 2 0
7 7 7 1 1 0
8 8 8 0 0 0
表3
如表3所示,当N小于4时,基站获取的下行控制信息的压缩前信息量小于16bit,因此可以不需要对DCI中的信息域进行压缩,当N大于等于4时,基站获取的下行控制信息的压缩前信息量大于16bit,此时基站需要对DCI中的信息域进行压缩,如表3所示,基站可以选择TB数量对应的压缩方式,将DCI中的共享信息域进行压缩。例如,由表3可知,当TB数量为4时,基站可以将PRB域的5bit压缩至4bit,(即改为DCI中使用4bit的信息量进行指示PRB域),从而使得基站为该DCI分配的比特数不大于该信息量阈值16bit。在一种可能实 现的方式中,当TB数量为4时,基站还可以将MCS域的4bit压缩至3bit,并不对PRB域的5bit进行压缩等,也可以使得基站为该DCI分配的比特数不大于该信息量阈值16bit的效果。本公开对于具体的压缩策略并不加以限定。
请参考表4,其示出了本公开实施例涉及的一种基站执行相应的压缩策略的压缩示意结果。
调度TB数 NDI/bit RV/bit MCS/bit PRB/bit 剩余bit
1 1 1 4 5 5
2 2 2 4 5 3
3 3 3 4 5 1
4 4 4 2 2 4
5 5 5 2 2 2
6 6 6 2 2 0
7 7 7 0 0 2
8 8 8 0 0 0
表4
如表4所示,基站可以在TB数处于4至6之间时,将DCI中的PRB域的5bit压缩至2bit,并将MCS域的4bit压缩也至2bit;当TB数为7或者8时,基站将DCI中的PRB域的5bit压缩至0bit,并将MCS域的4bit压缩也至0bit。在一种可能实现的方式中,当需要对DCI中的信息域进行压缩时,基站也可以采用单一的压缩策略进行压缩,比如,基站可以在TB数大于4时,将DCI中的PRB域的5bit压缩至0bit,并将MCS域的4bit压缩也至0bit。需要说明的是,当基站将DCI中的PRB域的5bit压缩至0bit,并将MCS域的4bit压缩也至0bit时,也就是基站在DCI中并不指示终端具体的PRB资源以及MCS方式,终端直接采用默认的PRB资源以及MCS方式传输MTC数据。
可选的,基站对下行控制信息中的PRB指示域进行压缩可以包括:限制PRB 域指示的资源分配量。在一种可能实现的方式中,基站在对PRB域进行压缩时,限制PRB域指示的资源分配量为6个PRB数量的资源分配,此时相当于一个窄带中所有的PRB资源,不需要额外的bit进行PRB域的指示,在MTC CE mode A模式下,可以直接压缩出5bit信息量,即DCI可以少承载5bit信息量。
在一种可能实现的方式中,基站在对PRB域进行压缩时,限制PRB域指示的资源分配量为6个PRB数量的资源分配或者4个PRB数量的资源分配,此时基站可以使用2bit进行PRB域的指示,在MTC CE mode A模式下,可以直接压缩出3bit信息量,即DCI可以少承载3bit信息量。请参考表5,其示出了本公开实施例涉及的一种DCI指示信息中承载的3bit信息与具体PRB资源分配方式的映射关系。
Figure PCTCN2019086195-appb-000006
表5
如表5所示,基站可以使用2bit在DCI中进行PRB域的指示。
可选的,基站对下行控制信息中的PRB指示域进行压缩时,也可以限制PRB域指示的资源分配位置。在一种可能实现的方式中,基站在对PRB域进行压缩时,可以限制PRB域指示的资源分配量对应一种分配资源位置,例如,对于4个PRB资源分配量对应的分配资源位置为(3,4,5,6,),即,当DCI中PRB域的资源分配量为4时,指示终端可以在一个窄带中的(3,4,5,6,)的资源位置上传输数据。此时基站可以使用3bit进行PRB域的指示,在MTC CE mode A模式下,可以直接压缩出2bit信息量,即DCI可以少承载2bit信息量。请参考表6,其示出了本公开实施例涉及的一种DCI指示信息中承载的3bit信息与具体PRB 资源分配方式的映射关系。
Figure PCTCN2019086195-appb-000007
表6
可选的,基站对下行控制信息中的PRB指示域进行压缩时,可以既限制PRB域指示的资源分配量,又限制PRB域指示的资源分配位置。在一种可能实现的方式中,基站在对PRB域进行压缩时,可以限制PRB域指示的资源分配量分别为3,4,5,6,并且,对于每种资源分配量,同样限制资源分配位置,请参考表7,其示出了本公开实施例涉及的一种DCI指示信息中承载的2bit信息与具体PRB资源分配方式的映射关系。
Figure PCTCN2019086195-appb-000008
Figure PCTCN2019086195-appb-000009
表7
由表7可知,对于限制的PRB分配资源量,均拥有唯一对应的分配资源位置,此时基站也可以使用2bit进行PRB域的指示,在MTC CE mode A模式下,可以直接压缩出3bit信息量,即DCI可以少承载3bit信息量。
可选的,基站对下行控制信息中的MCS域进行压缩可以包括:限制MCS域指示的MCS为固定MCS。在一种可能实现的方式中,基站在对MCS域进行压缩时,限制MCS域指示的MCS为固定MCS,例如,开发人员设置该固定MCS是上述表2中I MCS为15的MCS,基站在对MCS域进行的分配时,也可以不需要额外的bit进行MCS域的指示,终端在接收到的DCI中没有对MCS域的指示时,自动选择I MCS为15的MCS方式进行调制解调,因此,在MTC CE mode A模式下,便可以直接压缩出4bit信息量,即DCI可以少承载4bit信息量。
可选的,基站对下行控制信息中的MCS域进行压缩,也可以限制MCS域指示的MCS为指定的至少两个MCS,其中,该至少两个MCS是系统支持的各个MCS中的部分MCS。
在一种可能实现的方式中,以指定的MCS是两个为例,基站在对MCS域进行压缩时,限制MCS域指示的MCS为指定的两个固定MCS,例如,开发人员设置两个固定MCS分别是上述表2中I MCS为14和15的MCS,基站在对MCS域进行的分配时,只需要额外的1bit进行MCS域的指示,因此,在MTC CE mode A模式下,便可以直接压缩出3bit信息量,即DCI可以少承载3bit信息量。请参考表8,其示出了本公开实施例涉及的一种DCI指示信息中使用的1bit信息与MCS方案之间的映射关系。
Figure PCTCN2019086195-appb-000010
Figure PCTCN2019086195-appb-000011
表8
可选的,基站对下行控制信息中的MCS域进行压缩时,也可以限制MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。可选的,该指定抽取方式包括均匀抽取或者非均匀抽取。在一种可能实现的方式中,以指定抽取方式为均匀抽取4个的MCS为例,基站在对MCS域进行压缩时,限制MCS域指示的MCS为均匀抽取到的4个固定的MCS,例如,按照均匀抽取到的4个固定的MCS分别是上述表2中I MCS为3、7、11和15的MCS,基站在对MCS域进行的分配时,只需要额外的2bit进行MCS域的指示,因此,在MTC CE mode A模式下,便可以直接压缩出2bit信息量,即DCI可以少承载2bit信息量。请参考表9,其示出了本公开实施例涉及的一种DCI指示信息中使用的2bit信息与MCS方案之间的映射关系。
Figure PCTCN2019086195-appb-000012
表9
在一种可能实现的方式中,以指定抽取方式为非均匀抽取的4个MCS为例,基站在对MCS域进行压缩时,限制MCS域指示的MCS为非均匀抽取到的4个固定的MCS,例如,按照非均匀抽取到的4个固定的MCS分别是上述表2中I MCS为1、7、11和15的MCS,基站在对MCS域进行的分配时,也只需要额外的2bit进行MCS域的指示,因此,在MTC CE mode A模式下,便可以直接压缩出2bit信息量,即DCI可以少承载2bit信息量。请参考表10,其示出了 本公开实施例涉及的一种DCI指示信息中使用的2bit信息与MCS方案之间的映射关系。
Figure PCTCN2019086195-appb-000013
表10
在步骤504中,基站根据是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时的压缩方式,发送下行控制信息。
可选的,基站可以按照传输块的数量通过上述步骤,确定是否需要对下行控制信息中的信息域进行压缩。当确定需要进行压缩时,基站可以按照与该DCI中调度的传输块数量对应的压缩方式对DCI中的信息域进行压缩,从而将压缩后的下行控制信息通过MPDCCH发送给终端。当基站确定不需要对下行控制信息中的信息域进行压缩时,基站也可以选择不对DCI中的信息域进行压缩,直接下发下行控制信息,
综上所述,基站获取下行控制信息调度的传输块的数量;并根据传输块的数量确定是否对下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送下行控制信息。本公开通过基站获取下行控制信息调度的传输块的数量,从而得到传输块的数量对应的压缩方式,按照该压缩方式对发送的下行控制信息进行相应程度的压缩,使得基站可以根据传输块的数量,灵活调整下行控制信息的压缩程度,从而在限制下行控制信息的比特数的同时,提高下行控制信息调度传输块的灵活性,扩展了压缩下行控制信息的应用场景。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开 装置实施例中未披露的细节,请参照本公开方法实施例。
图6是根据一示例性实施例示出的一种下行控制信息发送装置的框图,如图6所示,该下行控制信息发送装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的基站的全部或者部分,以执行图4或图5任一所示实施例中由基站执行的步骤。该下行控制信息发送装置可以包括:
数量获取模块601,用于获取下行控制信息调度的传输块的数量;
信息发送模块602,用于根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
可选的,所述信息发送模块602包括:信息量获取子模块以及压缩方式确定子模块;
所述信息量获取子模块,用于根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
所述压缩方式确定子模块,用于根据所述压缩前信息量与信息量阈值之间的大小关系确定所述压缩方式。
可选的,所述信息量获取子模块,包括:第一获取单元以及第二获取单元;
所述第一获取单元,用于获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
所述第二获取单元,用于获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
可选的,所述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
可选的,所述压缩方式用于指示对所述下行控制信息中的信息域的压缩策略。
可选的,所述压缩策略包括以下策略中的至少一种:
对所述下行控制信息中的PRB域进行压缩;以及,
对所述下行控制信息中的MCS域进行压缩。
可选的,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
限制所述PRB域指示的资源分配量;
或者,限制所述PRB域指示的资源分配位置;
或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
可选的,所述对所述下行控制信息中的MCS域进行压缩,包括:
限制所述MCS域指示的MCS为固定MCS;
或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
可选的,所述指定抽取方式包括均匀抽取或者非均匀抽取。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种下行控制信息发送装置,能够实现本公开上述图4或图5所示实施例中由基站执行的全部或者部分步骤,该下行控制信息发送装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取下行控制信息调度的传输块的数量;
根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
可选的,所述根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息,所述处理器被配置为:
根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
根据所述压缩前信息量与信息量阈值之间的大小关系确定是否需要对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时的所述压缩方式。
可选的,所述根据所述传输块的数量获取所述下行控制信息的压缩前信息量,所述处理器被配置为:
获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
可选的,所述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
可选的,所述压缩方式用于指示对所述下行控制信息中的信息域的压缩策略。
可选的,所述压缩策略包括以下策略中的至少一种:
对所述下行控制信息中的PRB域进行压缩;以及,
对所述下行控制信息中的MCS域进行压缩。
可选的,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
限制所述PRB域指示的资源分配量;
或者,限制所述PRB域指示的资源分配位置;
或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
可选的,所述对所述下行控制信息中的MCS域进行压缩,包括:
限制所述MCS域指示的MCS为固定MCS;
或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
可选的,所述指定抽取方式包括均匀抽取或者非均匀抽取。
上述主要以基站为例,对本公开实施例提供的方案进行了介绍。可以理解的是,基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以 硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图7是根据一示例性实施例示出的一种基站的结构示意图。
基站700包括通信单元704和处理器702。其中,处理器702也可以为控制器,图7中表示为“控制器/处理器702”。通信单元704用于支持基站与其它网络设备(例如终端、其它基站、网关等)进行通信。
进一步的,基站700还可以包括存储器703,存储器703用于存储基站700的程序代码和数据。
可以理解的是,图7仅仅示出了基站700的简化设计。在实际应用中,基站700可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述下行控制信息发送方法所设计的程序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种下行控制信息发送方法,其特征在于,所述方法包括:
    获取下行控制信息调度的传输块的数量;
    根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息,包括:
    根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
    根据所述压缩前信息量与信息量阈值之间的大小关系确定是否需要对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时的所述压缩方式。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述传输块的数量获取所述下行控制信息的压缩前信息量,包括:
    获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
    获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
    所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
  4. 根据权利要求3所述的方法,其特征在于,所述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述压缩方式用于指示对所述下行控制信息中的信息域的压缩策略。
  6. 根据权利要求5所述的方法,其特征在于,所述压缩策略包括以下策略中的至少一种:
    对所述下行控制信息中的PRB域进行压缩;以及,
    对所述下行控制信息中的MCS域进行压缩。
  7. 根据权利要求6所述的方法,其特征在于,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
    限制所述PRB域指示的资源分配量;
    或者,限制所述PRB域指示的资源分配位置;
    或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
  8. 根据权利要求6所述的方法,其特征在于,所述对所述下行控制信息中的MCS域进行压缩,包括:
    限制所述MCS域指示的MCS为固定MCS;
    或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
    或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
  9. 根据权利要求8所述的方法,其特征在于,所述指定抽取方式包括均匀抽取或者非均匀抽取。
  10. 一种下行控制信息发送装置,其特征在于,所述装置包括:
    数量获取模块,用于获取下行控制信息调度的传输块的数量;
    信息发送模块,用于根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
  11. 根据权利要求10所述的装置,其特征在于,所述信息发送模块包括:信息量获取子模块以及压缩方式确定子模块;
    所述信息量获取子模块,用于根据所述传输块的数量获取所述下行控制信息的压缩前信息量;
    所述压缩方式确定子模块,用于根据所述压缩前信息量与信息量阈值之间的大小关系确定所述压缩方式。
  12. 根据权利要求11所述的装置,其特征在于,所述信息量获取子模块,包括:第一获取单元以及第二获取单元;
    所述第一获取单元,用于获取所述传输块的共享信息域的压缩前比特数,以及所述传输块的非共享信息域的压缩前比特数;
    所述第二获取单元,用于获取所述非共享信息域的压缩前比特数与所述传输块的数量的乘积;
    所述共享信息域的压缩前比特数与所述乘积之和即为所述下行控制信息的压缩前信息量。
  13. 根据权利要求12所述的装置,其特征在于,所述共享信息域包括物理资源块PRB域和/或调制编码方式MCS域。
  14. 根据权利要求10至13任一所述的装置,其特征在于,当所述压缩方式用于指示对所述下行控制信息中的信息域进行压缩时,所述压缩方式还用于指示对所述下行控制信息中的信息域的压缩策略。
  15. 根据权利要求14所述的装置,其特征在于,所述压缩策略包括以下策略中的至少一种:
    对所述下行控制信息中的PRB域进行压缩;以及,
    对所述下行控制信息中的MCS域进行压缩。
  16. 根据权利要求15所述的装置,其特征在于,所述对所述下行控制信息中的PRB指示域进行压缩,包括:
    限制所述PRB域指示的资源分配量;
    或者,限制所述PRB域指示的资源分配位置;
    或者,限制所述PRB域指示的资源分配量以及所述PRB域指示的资源分配位置。
  17. 根据权利要求15所述的装置,其特征在于,所述对所述下行控制信息中的MCS域进行压缩,包括:
    限制所述MCS域指示的MCS为固定MCS;
    或者,限制所述MCS域指示的MCS为指定的至少两个MCS,所述至少两个MCS是系统支持的各个MCS中的部分MCS;
    或者,限制所述MCS域指示的MCS为按照指定抽取方式从系统支持的各个MCS中抽取的至少两个MCS。
  18. 根据权利要求17所述的装置,其特征在于,所述指定抽取方式包括均匀抽取或者非均匀抽取。
  19. 一种下行控制信息发送装置,其特征在于,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    获取下行控制信息调度的传输块的数量;
    根据所述传输块的数量确定是否对所述下行控制信息中的信息域进行压缩,以及当需要进行压缩时,根据对应的压缩方式发送所述下行控制信息。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,基站中的处理器调用所述可执行指令以实现上述权利要求1至9任一所述的下行控制信息发送方法。
PCT/CN2019/086195 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质 WO2020223960A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112021022295A BR112021022295A2 (pt) 2019-05-09 2019-05-09 Método e aparelho para enviar informação de controle de enlace descendente, aparelho para informação de controle de enlace descendente, e, mídia de armazenamento legível por computador
SG11202112337QA SG11202112337QA (en) 2019-05-09 2019-05-09 Downlink control information sending method and apparatus, and readable storage medium
KR1020217040018A KR20220004211A (ko) 2019-05-09 2019-05-09 다운링크 제어 정보 송신 방법, 장치 및 판독 가능 저장 매체 (downlink control information sending method and apparatus, and readable storage medium)
PCT/CN2019/086195 WO2020223960A1 (zh) 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质
CN202210381828.0A CN114980201A (zh) 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质
JP2021566104A JP7238169B2 (ja) 2019-05-09 2019-05-09 ダウンリンク制御情報の送信方法、装置及び読み取り可能な記憶媒体
EP19927709.6A EP3968555A4 (en) 2019-05-09 2019-05-09 METHOD AND APPARATUS FOR TRANSMITTING DOWNLINK CONTROL INFORMATION AND READABLE STORAGE MEDIA
US17/609,307 US20220217581A1 (en) 2019-05-09 2019-05-09 Downlink control information sending method and apparatus, and readable storage medium
CN201980000822.0A CN110383748B (zh) 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086195 WO2020223960A1 (zh) 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2020223960A1 true WO2020223960A1 (zh) 2020-11-12

Family

ID=68261526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086195 WO2020223960A1 (zh) 2019-05-09 2019-05-09 下行控制信息发送方法、装置及可读存储介质

Country Status (8)

Country Link
US (1) US20220217581A1 (zh)
EP (1) EP3968555A4 (zh)
JP (1) JP7238169B2 (zh)
KR (1) KR20220004211A (zh)
CN (2) CN114980201A (zh)
BR (1) BR112021022295A2 (zh)
SG (1) SG11202112337QA (zh)
WO (1) WO2020223960A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148404A1 (zh) * 2021-01-08 2022-07-14 大唐移动通信设备有限公司 数据传输方法、数据传输装置、通信设备及存储介质
WO2022237789A1 (zh) * 2021-05-11 2022-11-17 维沃移动通信有限公司 共享信道调度方法、装置、终端及网络侧设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062876A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Downlink control information for scheduling one or more transport blocks
EP4057654A4 (en) * 2019-11-04 2022-11-16 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR OUTPUTTING DOWNLINK CONTROL INFORMATION (DCI) AND COMMUNICATION DEVICE AND STORAGE MEDIA
US20220417978A1 (en) * 2019-11-28 2022-12-29 Beijing Xiaomi Mobile Software Co., Ltd. Transmission block configuration parameter transmission method and apparatus, and communication device and storage medium
CN116266782A (zh) * 2021-12-17 2023-06-20 华为技术有限公司 通信方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605356A (zh) * 2008-06-12 2009-12-16 大唐移动通信设备有限公司 一种指示资源的方法、装置及系统
CN101714892A (zh) * 2009-11-02 2010-05-26 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
US20130107836A1 (en) * 2010-06-21 2013-05-02 Ntt Docomo, Inc. Base station apparatus and communication control method
CN109196936A (zh) * 2018-08-07 2019-01-11 北京小米移动软件有限公司 一种资源分配指示方法及装置、基站及终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557676B1 (ko) * 2008-10-31 2015-10-06 삼성전자주식회사 이동무선 통신시스템의 하향링크 제어채널의 페이로드 크기결정장치 및 방법
CN101801101A (zh) * 2010-02-24 2010-08-11 中兴通讯股份有限公司 一种下行控制信息的传输方法和装置
CN103326806B (zh) * 2012-03-19 2016-08-03 电信科学技术研究院 一种下行控制信令的传输方法及装置
US9913264B2 (en) * 2013-05-10 2018-03-06 Nokia Technologies Oy Compact downlink control information for machine type communications
CN104580034B (zh) * 2013-10-25 2018-04-10 华为技术有限公司 一种上行信道估计的方法、发送装置及接收装置
ES2858302T3 (es) * 2015-03-11 2021-09-30 Commscope Technologies Llc Red de acceso por radio distribuida con Fronthaul adaptativa
WO2017045180A1 (zh) * 2015-09-16 2017-03-23 华为技术有限公司 一种控制信息的传输方法、装置以及系统
WO2017142377A1 (ko) * 2016-02-20 2017-08-24 엘지전자(주) 무선 통신 시스템에서 v2x 메시지를 전송하는 방법 및 이를 위한 장치
CN109428668B (zh) * 2017-07-20 2021-06-22 华为技术有限公司 一种数据传输的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605356A (zh) * 2008-06-12 2009-12-16 大唐移动通信设备有限公司 一种指示资源的方法、装置及系统
CN101714892A (zh) * 2009-11-02 2010-05-26 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
US20130107836A1 (en) * 2010-06-21 2013-05-02 Ntt Docomo, Inc. Base station apparatus and communication control method
CN109196936A (zh) * 2018-08-07 2019-01-11 北京小米移动软件有限公司 一种资源分配指示方法及装置、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968555A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022148404A1 (zh) * 2021-01-08 2022-07-14 大唐移动通信设备有限公司 数据传输方法、数据传输装置、通信设备及存储介质
WO2022237789A1 (zh) * 2021-05-11 2022-11-17 维沃移动通信有限公司 共享信道调度方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN110383748B (zh) 2022-05-13
JP7238169B2 (ja) 2023-03-13
CN114980201A (zh) 2022-08-30
KR20220004211A (ko) 2022-01-11
EP3968555A1 (en) 2022-03-16
JP2022531715A (ja) 2022-07-08
BR112021022295A2 (pt) 2022-01-18
CN110383748A (zh) 2019-10-25
SG11202112337QA (en) 2021-12-30
EP3968555A4 (en) 2022-05-18
US20220217581A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020223960A1 (zh) 下行控制信息发送方法、装置及可读存储介质
US10805889B2 (en) Power configuration method, user equipment, and base station
CN107925999B (zh) 资源分配方法及装置
CN111818569B (zh) 用于对harq反馈进行压缩的方法和用户设备
US11044147B2 (en) Resource configuration method and apparatus
KR20200015944A (ko) 버퍼 상태 보고를 전송하기 위한 방법 및 사용자 장치
WO2018112700A1 (zh) 传输信息的方法、网络设备和终端设备
JP2020039170A (ja) 伝送パラメータを決定するための方法、装置、およびコンピュータプログラムプロダクト
TWI679904B (zh) 在頻寬部分中執行資料傳輸的裝置及方法
EP3817477B1 (en) Communication method and apparatus
EP3876652A1 (en) Data transmission method and apparatus based on unlicensed uplink scheduling, and storage medium
CN106162914B (zh) 一种lte系统中半静态与动态混合调度的方法
CN113647163B (zh) 一种通信方法及设备
WO2018133802A1 (zh) 一种资源调度方法和基站及终端
RU2777044C1 (ru) Способ и устройство для передачи информации управления нисходящей линии связи и машиночитаемый носитель данных
WO2020168557A1 (zh) 数据传输方法、装置及存储介质
WO2022148404A1 (zh) 数据传输方法、数据传输装置、通信设备及存储介质
CN111699735B (zh) 一种信息指示方法及相关设备
WO2018027916A1 (zh) 一种控制信息的传输方法和基站以及用户设备
CN111711993A (zh) 一种传输信息的方法和装置
CN111602463A (zh) 一种信息指示方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021022295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217040018

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019927709

Country of ref document: EP

Effective date: 20211209

ENP Entry into the national phase

Ref document number: 112021022295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211105