WO2020063576A1 - 传输块与码字的对应关系、相关设备以及系统 - Google Patents

传输块与码字的对应关系、相关设备以及系统 Download PDF

Info

Publication number
WO2020063576A1
WO2020063576A1 PCT/CN2019/107478 CN2019107478W WO2020063576A1 WO 2020063576 A1 WO2020063576 A1 WO 2020063576A1 CN 2019107478 W CN2019107478 W CN 2019107478W WO 2020063576 A1 WO2020063576 A1 WO 2020063576A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
bit field
codeword
dai
terminal device
Prior art date
Application number
PCT/CN2019/107478
Other languages
English (en)
French (fr)
Inventor
邵家枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19865691.0A priority Critical patent/EP3849119A4/en
Publication of WO2020063576A1 publication Critical patent/WO2020063576A1/zh
Priority to US17/214,149 priority patent/US20210227560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present application relates to the field of communications, and in particular, to a correspondence relationship between a transmission block and a codeword, a related device, and a system.
  • the International Telecommunication Union defines three major application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable, and low-latency communication. communications (URLLC) and mass machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable
  • mMTC mass machine type communications
  • Typical URLLC services are: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and haptic interaction applications such as remote repair and remote surgery.
  • the main characteristics of these services are ultra-high reliability. It has low latency, low transmission data volume and burstiness.
  • Typical mMTC services are: smart grid power distribution automation, smart cities, etc. The main characteristics are the huge number of connected devices, the small amount of data transmitted, and the data not sensitive to transmission delay. These mMTC terminals need to meet low cost and very long standby The need for time.
  • Typical eMBB services are: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc. The main characteristics of these services are large amount of data transmitted and high transmission rate.
  • the network device sends downlink control information (downlink control information) to the terminal device, where DCI indicates that the DCI It carries indication information indicating the length, frequency domain resources, and modulation method of the time domain resources occupied by the physical downlink shared channel (PDSCH).
  • DCI indicates that the DCI It carries indication information indicating the length, frequency domain resources, and modulation method of the time domain resources occupied by the physical downlink shared channel (PDSCH).
  • the terminal device After receiving the downlink control information, receives a transmission block on a corresponding time-frequency resource according to an instruction of the DCI, and maps the transmission block to a codeword (CW).
  • CW codeword
  • the terminal device decodes the CW and obtains a decoding result, and feeds the decoding result to the network device through a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) indicated by the DCI.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the terminal device decodes the CW successfully, the decoding result is Acknowledgement (ACK), and if the terminal device fails to decode the CW, the decoding result is Negative Acknowledgement (NACK).
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the embodiments of the present application provide a correspondence between a transmission block and a codeword, a related device, and a system, which can reasonably determine a mapping relationship between a transmission block and a codeword.
  • a method for determining a correspondence between a transmission block and a codeword including: receiving, by a terminal device, first downlink control information DCI, wherein the first DCI is used to instruct the terminal device to Receiving a first transmission block on a time-frequency resource, and determining that the first transmission block is mapped to a first codeword according to first information, the first information includes at least one of the following: a first search space where the first DCI is located A set, a first DCI format corresponding to the first DCI, a first wireless network identifier RNTI that scrambles the first DCI, or a first bit field included in the first DCI.
  • the terminal device may determine that the first transmission block is mapped to the first codeword according to the first information, so that the mapping relationship between the transmission block and the codeword is reasonably determined, and the decoding result of the transmission block is correctly fed back. It can be understood that when using the prior art solution, if the terminal device receives one transport block among multiple transport blocks, it will map the received transport block to codeword 0 for decoding by default, and decode this transport block. The result is fed back as the decoding results of multiple transport blocks, resulting in that the decoding results of different transport blocks cannot be fed back correctly.
  • the terminal device determines that the first transport block is mapped to the first codeword for decoding according to the first information, and the decoding result of the first transport block is only used as the decoding result of the first transport block for feedback, which can correctly feedback the decoding result of the transport block.
  • the terminal device may determine that the second transmission block is mapped to the second codeword in at least two ways: In the first mode, the terminal device determines that a second transmission block exists, and according to the first Information, it is determined that the second transmission block is mapped to a second codeword, and the second codeword is different from the first codeword; in a second manner, the terminal device receives a second DCI, wherein the first Two DCIs are used to instruct the terminal device to receive a second transmission block on a second time-frequency resource; determining that the second transmission block is mapped to a second codeword according to the second information, wherein the second information includes at least the following One: a second search space set where the second DCI is located, a second DCI format corresponding to the second DCI, a second RNTI that scrambles the second DCI, and a second bit included in the second DCI Field or said first codeword.
  • the terminal device may determine that the first transmission block is mapped to the first codeword and the second transmission block is mapped to the second codeword according to the first information, that is, different transmission blocks scheduled by different DCIs are mapped to different codewords. , Even if the terminal device does not receive the DCI indicating the second transmission block, the codeword corresponding to the second transmission block can be determined according to the first information, and the terminal device can separately feedback the HARQ information corresponding to the first transmission block and the second transmission block.
  • the HARQ information corresponding to the second transmission block is NACK, that is, the decoding result is unsuccessful, so that the first network device retransmits the second transmission block, for example, the HARQ information corresponding to the first transmission block It is ACK, that is, the decoding result is successful, so that the second network device does not need to retransmit the first transmission block, thereby improving the use efficiency of system resources. Therefore, by determining the correspondence between the transmission block and the codeword, the feedback accuracy of the HARQ information can be improved, and the use efficiency of system resources can be improved.
  • the first bit field included in the first DCI is at least one of the following: a first modulation and coding mode MCS bit field, a first redundant version RV bit field, and a first count downlink allocation indicator C -DAI, the first total downlink allocation indication T-DAI and the corresponding relationship indication field of the first transport block and the codeword.
  • determining that the first transmission block is mapped to the first codeword according to a first bit field included in the first DCI includes at least the following types:
  • the terminal device can determine the mapping relationship between the first transmission block and the first codeword by using a bit field that already exists in the first DCI, without adding an additional bit field, which can effectively improve transmission efficiency. Save transmission resources.
  • determining that the first transmission block is mapped to a first codeword according to the first information includes: :
  • the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, and according to the first T-DAI bit field and the second T-DAI bit field, Take a value to determine that the first transmission block is mapped to a first codeword; or, the first bit field included in the first DCI is a first C-DAI bit field and a second C-DAI bit field, and according to the The values of the first C-DAI bit field and the second C-DAI bit field determine that the first transmission block is mapped to a first codeword; or, the first bit field included in the first DCI is the first A T-DAI bit field and a second T-DAI bit field, and a first C-DAI bit field and a second C-DAI bit field, according to the first C-DA
  • the terminal device even if the terminal device does not detect the PDCCH, it can be detected according to the C-DAI bit field and / or T-DAI, that is, the detected PDCCH can be used to determine the corresponding undetected PDCCH. Codeword.
  • the network device may also determine that the terminal device has the ability to receive two transmission blocks with full or partial overlap of time-frequency resources simultaneously in at least the following two ways. Specifically, in the first way, the terminal The device sends first notification information, where the first notification information is used to notify the network device that the terminal device has the ability to receive two transmission blocks with full or partial overlap of time-frequency resources at the same time; in a second manner, the terminal device receives the first A configuration information, where the first configuration information is used to configure an indication that the terminal device can simultaneously receive two transmission blocks whose time-frequency resources completely overlap or partially overlap.
  • the terminal device uses the method of this application to determine the codeword to which the transmission block is mapped.
  • the method of the prior art is used to determine the codeword to which the transmission block is mapped, so that the network device can decide according to the capabilities of the terminal device or the current transmission policy. How to determine the codeword to which the transport block of the terminal device is mapped.
  • the first search space set in which the first DCI is located and the second search space set in which the second DCI is located are a public search space set and a user-specific search space set, respectively;
  • the first The first DCI format corresponding to the DCI and the second DCI format corresponding to the second DCI are respectively DCI format 1_0 and DCI format 1_1;
  • the two RNTIs are the cell radio network temporary identifier C-RNTI and the modulation and coding mode cell radio network temporary identifier MCS-C-RNTI, respectively.
  • one or more of the following conditions are satisfied between the first DCI and the second DCI: the PDCCH monitoring timing where the first physical downlink control channel PDCCH carrying the first DCI is located and carrying the PDCCH
  • the PDCCH monitoring timing of the second PDCCH of the second DCI is the same; or, the aggregation level of the first PDCCH carrying the first DCI and the aggregation level of the second PDCCH carrying the second DCI are the same; or
  • the antenna port information indicated by the first DCI and the antenna port information indicated by the second DCI are different.
  • the network device can transmit the same information to the terminal device through different PDCCHs at the same time, thereby improving the reliability of data transmission, or the network device uses different PDCCHs. At the same time, different information is transmitted to the terminal device, thereby reducing the delay of data transmission.
  • one or more of the following conditions are satisfied between the first transmission block and the second transmission block: time-frequency resources where the first transmission block is located and time when the second transmission block is located Frequency resources are completely overlapped or partially overlapped; or, the antenna port corresponding to the demodulation reference signal of the first transmission block and the antenna port corresponding to the demodulation reference signal of the second transmission block are different; the first transmission The HARQ information corresponding to the block and the HARQ information corresponding to the second transmission block are carried on the same uplink channel.
  • the network device when the above conditions are satisfied between the first transmission block and the second transmission block, the network device can simultaneously transmit the same information to the terminal device through different PDCCHs, thereby improving the reliability of data transmission, or the network device passes different The PDCCH simultaneously transmits different information to the terminal device, thereby reducing the delay of data transmission.
  • a method for determining a correspondence between a transport block and a codeword including:
  • the network device generates first downlink control information DCI, where the first DCI is used to instruct a terminal device to receive a first transport block on a first time-frequency resource, and the first transport block has a mapping relationship with a first codeword
  • the first mapping relationship is determined according to first information, and the first information includes at least one of the following: a first search space set where the first DCI is located, and a first DCI format corresponding to the first DCI 2.
  • a first wireless network identifier RNTI that scrambles the first DCI or a first bit field included in the first DCI, and sends the first DCI to the terminal device.
  • the network device generates a DCI for indicating the codeword to which the transport block is mapped, thereby achieving a reasonable determination of the mapping relationship between the transport block and the codeword, and correctly feeding back the decoding result of the transport block. It can be understood that the DCI generated by the network device cannot be used to indicate the codeword to which the transmission block is mapped when the existing technology solution is adopted. Therefore, the transmission block is mapped to the codeword 0 by default. When the network device sends multiple transmissions, Block, the terminal device will not be able to send multiple transport block decoded messages to the network device.
  • the network device when the network device sends multiple transmission blocks, but the terminal device only receives one transmission block, for example, if the terminal device feeds back a decoded message, the network device will not be able to know whether the other transmission blocks are successfully transmitted.
  • the network device When the solution of this application is adopted, the network device generates a DCI for indicating the codeword to which the transmission block is mapped, and the transmission block is mapped to the corresponding codeword according to the mapping relationship. If one or more of the multiple transmission blocks sent by the network device Multiple transmission blocks were lost or failed to receive, but some of the transmission blocks were received by the terminal device. The terminal device will still send a message that these transmission block reception failures to the network device, which solves the problem that the network device cannot know whether the other transmission blocks are successful. Problems with transmission.
  • the first bit field included in the first DCI is at least one of the following: a first modulation and coding mode MCS bit field, a first redundant version RV bit field, and a first count downlink allocation indicator C- DAI, the first total downlink allocation indication T-DAI and the corresponding relationship indication field of the first transport block and the codeword.
  • the first bit field included in the first DCI is a first modulation and coding mode MCS bit field and / or a first redundant version RV bit field, and the MCS indicated by the first MCS bit field
  • the index is a first MCS index
  • the RV indicated by the first RV bit field is a first RV value.
  • the method further includes: the network device sends a second DCI to the terminal device, where the second DCI is used to instruct the terminal device to receive a second DCI on a second time-frequency resource Transport block, the second transport block and the second codeword have a second mapping relationship, the second mapping relationship is determined according to the second information, the second information includes at least one of the following: the second DCI The second search space set, the second DCI format corresponding to the second DCI, the second RNTI that scrambles the second DCI, the second bit field included in the second DCI, and the first codeword Or the first mapping relationship.
  • the first information includes a first bit field included in the first DCI, and the first mapping relationship is determined according to the first information, including: the first information included in the first DCI One bit field is a first C-DAI bit field and a second C-DAI bit field, and the first mapping relationship is determined according to the first C-DAI bit field and the second C-DAI bit field; or
  • the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, and according to the first T-DAI bit field and the second T-DAI bit field, Determining the first mapping relationship; or, the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, and a first C-DAI bit field and a second C -A DAI bit field, determining the first mapping relationship according to the first C-DAI bit field and the first T-DAI bit field, and the second C-DAI and the second T-DAI .
  • the network device may also determine that the terminal device has the ability to receive two transmission blocks with full or partial overlap of time-frequency resources simultaneously in at least the following two ways. Specifically, in the first way, the terminal The device sends first notification information, where the first notification information is used to notify the network device that the terminal device has the ability to receive two transmission blocks with full or partial overlap of time-frequency resources at the same time; in a second manner, the terminal device receives the first A configuration information, where the first configuration information is used to configure an indication that the terminal device can simultaneously receive two transmission blocks whose time-frequency resources completely overlap or partially overlap.
  • the first search space set in which the first DCI is located and the second search space set in which the second DCI is located are a public search space set and a user-specific search space set, respectively;
  • the first The first DCI format corresponding to the DCI and the second DCI format corresponding to the second DCI are respectively DCI format 1_0 and DCI format 1_1;
  • the two RNTIs are the cell radio network temporary identifier C-RNTI and the modulation and coding mode cell radio network temporary identifier MCS-C-RNTI, respectively.
  • one or more of the following conditions are satisfied between the first DCI and the second DCI: the PDCCH monitoring timing where the first physical downlink control channel PDCCH carrying the first DCI is located and carrying the PDCCH
  • the PDCCH monitoring timing of the second PDCCH of the second DCI is the same; or, the aggregation level of the first PDCCH carrying the first DCI and the aggregation level of the second PDCCH carrying the second DCI are the same; or
  • the antenna port information indicated by the first DCI and the antenna port information indicated by the second DCI are different.
  • one or more of the following conditions are satisfied between the first transmission block and the second transmission block: time-frequency resources where the first transmission block is located and time when the second transmission block is located Frequency resources are completely overlapped or partially overlapped; or, the antenna port corresponding to the demodulation reference signal of the first transmission block and the antenna port corresponding to the demodulation reference signal of the second transmission block are different; the first transmission The HARQ information corresponding to the block and the HARQ information corresponding to the second transmission block are carried on the same uplink channel.
  • an apparatus for determining a correspondence between a transmission block and a codeword has a function of implementing the behavior of a terminal device in the foregoing method design.
  • the functions may be implemented by hardware, or the corresponding software may be implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions.
  • the modules may be software and / or hardware.
  • the structure of the device includes a receiver and a processor, and the receiver is configured to support the device to receive the first DCI sent by the network device for the device, where the first DCI is used to indicate
  • the terminal device receives a first transmission block on a first time-frequency resource.
  • the processor is configured to determine, according to the first information, that the first transmission block prompted by the receiving module to receive the first DCI is mapped to a first codeword.
  • an apparatus for determining a correspondence between a transmission block and a codeword has a function of implementing the behavior of a network device in the foregoing method.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the apparatus includes a processor and a transmitter, the processor being configured to generate a first DCI.
  • the transmitter is configured to send the first DCI generated by the processing module to the terminal device.
  • the device may also include a memory for coupling with the processor, which stores program instructions and data necessary for the device.
  • a terminal device including: a processor and a memory, where the processor executes code in the memory and the method according to any one of the first aspect.
  • a network device including: a processor and a memory, where the processor executes code in the memory and the method according to any one of the second aspect.
  • a computer non-transitory storage medium which includes instructions that, when the instructions run on a terminal device, cause the terminal device to execute the method according to any one of the first aspects.
  • a computer non-transitory storage medium including instructions, which, when the instructions are run on a network device, cause the network device to execute the method according to any one of the second aspects.
  • a communication system including a terminal device and a network device, wherein the terminal device and the network device can communicate with each other;
  • the terminal device is configured to execute the method according to any one of the first aspects
  • the network device is configured to perform the method according to any one of the second aspects.
  • FIG. 1 is a schematic diagram of a multiple transmit and receive point scenario involved in this application
  • FIG. 2 is a schematic diagram of a mapping relationship between a transport block and a codeword involved in the present application
  • FIG. 3 is a schematic structural diagram of a communication system involved in the present application.
  • FIG. 4 is a schematic flowchart of a method for determining a correspondence between a transport block and a codeword provided by the present application
  • FIG. 6 is a schematic diagram of using C-DAI and T-DAI involved in the present application.
  • FIG. 7 is a schematic diagram of determining a missing transmission block through C-DAI and T-DAI involved in the present application
  • FIG. 8 is a schematic flowchart of another method for determining a correspondence between a transport block and a codeword according to an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by the present application.
  • a multiple transmit and receive point (Tx / Rx point, TRP) is introduced as a network device scenario.
  • the transmitting and receiving points may be antennas, radio frequency units, femto base stations, pico base stations, pico base stations, urban base stations, and the like, which are not specifically limited herein.
  • a first TRP 110 sends a first DCI to a terminal device 120 over a first physical downlink control channel (PDCCH), where the first DCI is used to indicate that the terminal device is in the first
  • the first transmission block is received on a time-frequency resource
  • the second TRP 130 sends the second downlink control information DCI to the terminal device 120 on the second PDCCH, where the second DCI is used to instruct the terminal device on the second time-frequency resource Receive a second transmission block on the.
  • the first time-frequency resource and the second time-frequency resource may be overlapped or non-overlapping.
  • the first transport block and the second transport block will always be mapped into the first CW, in other words, the first transport block and the second transport block will always be mapped into the same CW.
  • the terminal device can only obtain a decoding result when decoding a CW, after the terminal device decodes the first CW and obtains the first decoding result, it will feed back the first decoding result to the first TRP and / or the second TRP. . Therefore, if the terminal device fails to decode the first transmission block and successfully decodes the second transmission block, the terminal device may only be able to feedback NACK due to the existing conditions, thereby causing the first TRP to retransmit the first transmission block. The second TRP also retransmits the second transmission block. It can be seen that the method for determining the correspondence between the transport block and the codeword shown in FIG. 2 is unreasonable.
  • the present application proposes a method, a related device, and a system for determining a correspondence relationship between a transport block and a codeword, which can reasonably determine a correspondence relationship between a transport block and a codeword.
  • This application can be applied to the 5GNR system and other communication systems as long as one of the entities in the communication system needs to send transmission direction instruction information, and the other entity needs to receive the instruction information and determine a certain time based on the instruction information Within the transmission direction.
  • the network device and the terminal devices 1 to 6 constitute a communication system.
  • the terminal devices 1 to 6 can send uplink data to the base station, and the network device needs to receive the uplink data sent by the terminal devices 1 to 6.
  • the terminal devices 4 to 6 may also constitute a communication system.
  • a network device may send downlink information to terminal device 1, terminal device 2, terminal device, and the like; terminal device 5 may also send downlink information to terminal device 4, terminal device 6.
  • the network device may be an entity for transmitting or receiving signals on the network side, such as a new generation base station (new NodeB, gNodeB).
  • the network device may also be a device for communicating with a mobile device.
  • the network device may be an access point (AP) in a wireless local area network (Wireless LAN, WLAN), a Global System for Mobile Communication (GSM) ) Or a base station (Base Transceiver Station (BTS)) in Code Division Multiple Access (CDMA), or a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA)
  • AP access point
  • GSM Global System for Mobile Communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • It can also be an evolutionary base station (Evolutionary NodeB, eNB or eNodeB) in long-term evolution (Long Term Evolution, LTE), or a relay station or
  • a network device provides services to a cell
  • a terminal device communicates with the network device through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell
  • the cell may be a network device (For example, a base station)
  • the corresponding cell can belong to a macro base station or a small cell.
  • the small cell here can include: urban cell, micro cell, and pico cell. (pico cell), femto cell (femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the terminal device may be a user-side entity for receiving or transmitting signals, such as a new generation UE (gUE).
  • Terminal equipment can also be called terminal equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • UE terminal equipment
  • Terminal equipment can be stations (STAION, ST) in Wireless Local Area Networks (WLAN), cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop (WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems,
  • a terminal device in a fifth-generation (5G) network or a terminal device in a future evolved Public Land Mobile Network (PLMN) network and a new wireless (New Radio) communication system Terminal equipment, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction. Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • FIG. 4 is a schematic flowchart of a method for determining a correspondence between a transport block and a codeword according to an embodiment of the present application.
  • the method for determining the correspondence between a transport block and a codeword in the embodiment of the present application includes the following steps:
  • the first network device generates a first DCI.
  • the first DCI is used to instruct the terminal device to receive a first transmission block on a first time-frequency resource.
  • the first DCI is carried on a first PDCCH channel
  • the first transmission block is carried on a first downlink channel.
  • the first downlink channel may be a first PDSCH.
  • the first network device sends a first DCI to the terminal device.
  • the terminal device receives the first DCI sent by the first network device.
  • the second network device generates a second DCI.
  • the second DCI is used to instruct the terminal device to receive a second transmission block on a second time-frequency resource.
  • the second transmission block is carried in a second downlink channel.
  • S104 The second network device sends the second DCI to the terminal device.
  • the terminal device receives the second DCI sent by the second network device.
  • the second DCI is carried on a second PDCCH channel
  • the second transmission block is carried on a second downlink channel.
  • the second downlink channel may be a second PDSCH.
  • the terminal device determines that the first transmission block is mapped to a first codeword according to the first information.
  • the first information includes at least one of the following: a first search space set where the first DCI is located, a first DCI format corresponding to the first DCI, and scramble the first DCI format of the first DCI
  • the terminal device may determine that the second transmission block is mapped to a second codeword according to the first information.
  • the terminal device determines that the second transmission block is mapped to a second codeword according to second information, where the second information includes at least one of the following: a second search space set where the second DCI is located, and the A second DCI format corresponding to the second DCI scrambles a second wireless network identifier RNTI of the second DCI and a second bit field included in the second DCI.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the second information.
  • steps S103 and S104 are performed after steps S101 and S102 as an example for description. However, in practical applications, the above steps S103 and S104 may be performed simultaneously with steps S101 and S102, or The above steps S103 and S104 may be performed before steps S101 and S102, and are not specifically limited herein.
  • the terminal device may encounter a Hybrid Automatic Repeat Request (HARQ) information mapping problem corresponding to the same codeword.
  • the HARQ information includes Acknowledgment (ACK) and / or Negative Acknowledgement (NACK).
  • ACK Acknowledgment
  • NACK Negative Acknowledgement
  • the terminal device may determine that the first transmission block is mapped to the first codeword and the second transmission block is mapped to the second codeword according to the first information, that is, different transmission blocks scheduled by different DCIs may be mapped to different codewords. It is realized that the terminal device can separately feedback the HARQ information corresponding to the first transmission block and the HARQ information corresponding to the second transmission block.
  • the decoding result is unsuccessful, so that the first network device Retransmit the first transmission block, and at the same time, if the HARQ information corresponding to the second transmission block is ACK, the decoding result is successful, so that the second network device does not need to retransmit the second transmission block, thereby increasing system resources.
  • Use efficiency Therefore, by determining the correspondence between the transmission block and the codeword, the feedback accuracy of the HARQ information can be improved, and the use efficiency of system resources can be improved.
  • the first network device may be a first TRP shown in FIG. 1, and the second network device may be a second TRP shown in FIG. 2. Therefore, the first network device and the second network device The network device also has a problem between the first TRP and the second TRP shown in FIG. 1.
  • the first DCI is further used to indicate transmission information of the first downlink channel, for example, the transmission information of the first downlink channel includes at least one of the following: a first downlink carrying a first transmission block Time-frequency resource information of the channel, modulation and coding mode information of the first transport block, redundant version information of the first transport block, and reference signal information corresponding to the first transport block.
  • the first DCI may also be used to carry transmission information of other first downlink channels, which is not specifically limited herein.
  • the number of the first downlink channels may be one or multiple, which is not specifically limited herein.
  • the second DCI is further used to indicate transmission information of the second downlink channel, for example, time-frequency resource information of the second downlink channel carrying the second transmission block, and modulation and coding mode information of the second transmission block. , The redundancy version information of the second transport block, and reference signal information corresponding to the second transport block. It can be understood that the second DCI can also be used to carry transmission information of other second downlink channels, which is not specifically limited herein.
  • the number of the second downlink channels may be one or multiple, which is not specifically limited herein.
  • the time-frequency resource information includes time-domain information and / or frequency-domain information.
  • the frequency domain resource may be one or more resource blocks (resource blocks, RBs), one or more resource elements (resource elements, REs), one or more carrier / serving cells, or One or more partial bandwidths (BWPs), one or more RBs on one or more BWPs, or one or more RBs on one or more carriers One or more REs on one or more RBs of a BWP.
  • the time domain resource may be one or more time slots, or one or more symbols on one or more time slots.
  • the symbol may be an orthogonal frequency division multiplexing symbol (OFDM).
  • OFDM orthogonal frequency division multiplexing symbol
  • the OFDM symbol may use transform precoding (transform precoding), or may not use transform precoding. If transform precoding is used, it can also be called single carrier-frequency division multiplexing (SC-FDM).
  • the modulation and coding mode information includes a modulation mode and a coding rate.
  • the modulation method includes at least one of the following: binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM) ), 64QAM and 256QAM.
  • the modulation method is generally represented by the modulation order.
  • the modulation order 1 corresponds to pi / 2BPSK
  • the modulation order 2 corresponds to QPSK
  • the modulation order 4 corresponds to 16QAM
  • the modulation order 6 corresponds to 64QAM
  • the modulation order 8 corresponds to 256QAM.
  • the value of the encoding rate * 1024 includes a value of 30 or more and 948 or less.
  • the redundant version information includes one of ⁇ 0,1,2,3 ⁇ .
  • the reference signal information includes an antenna port number.
  • high-level signaling may refer to signaling sent by a high-level protocol layer, and the high-level protocol layer is at least one protocol layer in each protocol layer above the physical layer.
  • the high-level protocol layer may be at least one of the following protocol layers: a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, and a Packet Data Convergence protocol. Protocol (PDCP) layer, Radio Resource Control (RRC) layer and Non Access Stratum (NAS).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence protocol
  • RRC Radio Resource Control
  • NAS Non Access Stratum
  • the terminal device determines a manner in which the first transmission block is mapped to the first codeword according to the first information, and / or the terminal device determines that the second transmission block is mapped to the first codeword according to the second information.
  • the method of the second codeword includes at least the following:
  • the terminal device determines that the first transmission block is mapped to the first codeword according to a first bit field included in the first DCI, and / or the terminal device determines a second codeword included in the second DCI.
  • the bit field determines that the second transport block is mapped to a second codeword.
  • the first bit field included in the first DCI is at least one of the following: a first modulation and coding mode MCS bit field, a first redundant version RV bit field, a first count downlink allocation indicator C-DAI, and a first total
  • the downlink assignment indicates the T-DAI and the corresponding relationship between the first transport block and the codeword indicates a field.
  • the second bit field included in the second DCI is at least one of the following: a second MCS bit field, a second RV bit field, a second C-DAI, a second T-DAI, and a second transmission block corresponding to a codeword. Relationship indicating domain.
  • the DCI may include one or more bit fields.
  • the multiple bit fields may include: 1 bit DCI format bit field, multiple bit frequency domain resource bit field, 5 bit first MCS bit field, 2 bit first RV bit field, 5 bit second MCS bit field, 2 bit second RV bit field, 4 bit DAI bit fields (including C-DAI and T-DAI), 3 to 4 bit HARQ-ID bit fields, 2 bit TPC command for PUCCH bit fields, and so on.
  • the multiple bit fields may include two bit fields or more than two bit fields.
  • the specific implementation of the first manner includes at least the following types, which will be described in detail below.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the first MCS bit field and / or the first RV bit field included in the first DCI, and / or the terminal device
  • the second MCS bit field and / or the second RV included in the second DCI determine that the second transport block is mapped to a second codeword.
  • the maximum number of codewords supported by the high-level signaling configuration of the terminal device on any serving cell is two.
  • the value of the bit field and / or the RV bit field involved in the foregoing solution may be a specific value or a non-specific value.
  • the specific value can be configured by high-level signaling, or it can be predefined. It can be understood that the value of the first MCS bit field is used to indicate the first MCS index, the value of the first RV bit field is used to indicate the first RV, and the value of the second MCS bit field is used to indicate the second MCS index, the value of the second RV bit field is used to indicate the second RV.
  • the terminal device when the value of the first MCS bit field and / or the first RV bit field is a specific value, the terminal device according to the first MCS bit field and / or the first RV The value of the bit field determines that the first transmission block is mapped to a first codeword.
  • the first transport block corresponds to transport block 1 and the second transport block corresponds to transport block 2 (transport block 2).
  • the first codeword is a codeword corresponding to transport block 2.
  • the first transport block corresponds to transport block 2 and the second transport block corresponds to transport block 1
  • the first codeword is a codeword corresponding to transport block 1.
  • the value of the second MCS bit field and / or the second RV bit field is a non-specific value.
  • the terminal device determines the first MCS bit field and / or the first RV bit field.
  • the transport block is mapped to the first codeword. For example, if the first transport block corresponds to transport block 1 and the second transport block corresponds to transport block 2, the first codeword is a codeword corresponding to transport block 1. For example, if the first transport block corresponds to transport block 2 and the second transport block corresponds to transport block 1, the first codeword is a codeword corresponding to transport block 2.
  • the value of the second MCS bit field and / or the second RV bit field is a specific value.
  • the terminal device determines that the second transmission block is mapped to the second codeword according to whether the value of the second MCS bit field and / or the second RV bit field is a specific value or a non-specific value. For details, see The terminal device determines, according to whether the value of the first MCS bit field and / or the first RV bit field is a specific value or a non-specific value, the content of the first transmission block mapped to the first codeword, which is not described herein again. .
  • the mapping relationship between transmission block 1 and transmission block 2 corresponding to codeword 0 (codeword 0) and codeword 1 (codeword 1) is determined by high-level signaling or predefined.
  • the mapping relationship may be: the codeword corresponding to transmission block 1 is codeword 0, the codeword corresponding to transmission block 2 is codeword 1, or the codeword corresponding to transmission block 1 is codeword 1, and the codeword corresponding to transmission block 2 is The codeword is codeword 0, and the present application does not limit the mapping relationship between the transmission block and the codeword, as long as the terminal device can obtain the correspondence between the transmission block and the codeword, all belong to the scope to be protected by this application.
  • the codeword corresponding to transport block 1 is codeword 0, and the codeword corresponding to transport block 2 is codeword 1.
  • the terminal device determines that the first transmission block uses the transmission block.
  • the corresponding codeword 0 of 1 is used as the first codeword.
  • the terminal device determines that the second transmission block uses codeword 1 corresponding to transmission block 2 as the second codeword according to the values of the second MCS bit field and / or the second RV bit field being non-specific values.
  • the terminal device determines that the first transmission block adopts the corresponding codeword 1 of the transmission block 2 as the first codeword according to the value of the first MCS bit field and / or the first RV bit field.
  • the terminal device determines that the second transmission block uses the codeword 0 corresponding to the transmission block 1 as the second codeword according to the values of the second MCS bit field and / or the second RV bit field.
  • a case where a codeword corresponding to transport block 1 is codeword 0 and a codeword corresponding to transport block 2 is codeword 1 at a high-level signaling or in advance is defined.
  • the terminal device determines that the first transport block uses the transport block according to the values of the first MCS bit field and / or the first RV bit field are non-specific values.
  • the corresponding codeword 1 of 2 is used as the first codeword.
  • the terminal device determines that the second transmission block adopts codeword 0 corresponding to transmission block 1 as the second codeword according to the values of the second MCS bit field and / or the second RV bit field being non-specific values.
  • the terminal device determines that the first transmission block uses the corresponding codeword 0 of the transmission block 1 as the first codeword according to the values of the first MCS bit field and / or the first RV bit field.
  • the terminal device determines that the second transmission block uses the codeword 1 corresponding to the transmission block 2 as the second codeword according to the value of the second MCS bit field and / or the second RV bit field.
  • the terminal device determines the first according to the first Count-Downlink Assignment Index (C-DAI) bit field and / or the first Total-Downlink Assignment Index (T-DAI) bit field
  • C-DAI Count-Downlink Assignment Index
  • T-DAI Total-Downlink Assignment Index
  • C-DAI is based on an increase in PDCCH monitoring timing after serving the cell (carrier) first, that is, from small to large according to the carrier index, and then from the earliest timing to the last timing according to the PDCCH monitoring timing.
  • C-DAI is used to indicate the counting index number corresponding to the current PDSCH scheduling.
  • T-DAI is increased according to the monitoring timing of each PDCCH.
  • the physical meaning is: T-DAI is used to indicate the total number of scheduled PDSCHs corresponding to the current PDCCH monitoring timing.
  • C-DAI and T-DAI are downlink control information DCIs carried on the PDSCH. If the ACK / NACK feedback is on the uplink shared channel PUSCH, the T-DAI also carries the downlink control information DCI corresponding to the PUSCH.
  • both C-DAI and T-DAI are 2 bits, and the accumulated counts expressed by the four states ⁇ 00, 01, 10, 11 ⁇ can be ⁇ 1, 2, 3, 4 ⁇ . If it exceeds 4, you can cycle through the counts, that is, ⁇ 1, 2, 3, 4, 5 (1), 6 (2), 7 (3) ... ⁇ .
  • C-DAI value (C-DAI value) / (T-DAI value) carried in the DCI of PDSCH 1_1 is 1/2.
  • the value of C-DAI is 1 to indicate that the current PDSCH is the first scheduled PDSCH, and the value of T-DAI is 2 to indicate that there are a total of 2 PDSCH schedulings at the current PDCCH monitoring time.
  • C-DAI value (C-DAI value) / (T-DAI value) carried in the DCI of PDSCH 2_1 is 2/2.
  • the value of C-DAI is 2 to indicate that the PDSCH is currently the second scheduled PDSCH, and the value of T-DAI is 2 to indicate that there are a total of 2 PDSCH schedulings at the current PDCCH monitoring time.
  • C-DAI value C-DAI value/ (T-DAI value) carried in the DCI scheduling PDSCH 1_2 is 3/4.
  • the value of C-DAI is 3, which means that the current PDSCH is the third scheduled PDSCH, and the value of T-DAI is 4, which means that there are a total of 4 PDSCH schedules at the current PDCCH monitoring time.
  • C-DAI value (C-DAI value) / (T-DAI value) carried in the DCI of PDSCH 2_1 is 4/4.
  • the value of C-DAI is 4 to indicate that the current PDSCH is the fourth scheduled PDSCH, and the value of T-DAI is 4 to indicate the scheduling of a total of 4 PDSCHs at the current PDCCH monitoring time.
  • the terminal device knows that there should be two PDSCHs (1/2 and 2/2) at the PDCCH monitoring timing 0, but only A 1/2 is received so that the UE can determine that it has not received 2/2.
  • the subsequent terminal device receives 4/4, it proves that the UE knows that 4 PDSCHs should be received on the previous PDCCH monitoring opportunity 0 and PDCCH monitoring opportunity 1, except that there are two known PDCCH monitoring opportunities 0 (one receives 1/2 , One judged that it did not receive 2/2), then one 3/4 should be lost.
  • the terminal device determines whether the first transmission block is mapped to the first codeword according to the first C-DAI bit field and / or the second T-DAI bit field, and / or the terminal device determines the first C-DAI bit field and / or the second C-DAI bit field and / or
  • the two T-DAI bit fields determine that the second transmission block is mapped to the second codeword, and can also be subdivided into the following ways:
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the value of the first C-DAI bit field and the value of the second C-DAI bit field, and / or determines the second transmission block mapping. To the second codeword.
  • the terminal device compares the value of the first C-DAI bit field with the value of the second C-DAI bit field.
  • the value of the first C-DAI bit field is greater than the value of the second C-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 0.
  • the value of the first C-DAI bit field is smaller than the value of the second C-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 1.
  • the value of the first C-DAI bit field is greater than the value of the second C-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 1.
  • the value of the first C-DAI bit field is smaller than the value of the second C-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 0.
  • the larger and smaller corresponding codewords of the C-DAI bit field may be predefined or configured by high-level signaling.
  • the terminal device determines that the first transmission block is mapped to the first codeword as codeword 0, and / or, the terminal The device determines that the second transmission block is mapped to the second codeword as codeword 1.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the value of the first T-DAI bit field and the value of the second T-DAI bit field, and / or determines the second transmission block mapping To the second codeword.
  • the terminal device compares the value in the first T-DAI bit field with the value in the second T-DAI bit field.
  • the value of the first T-DAI bit field is greater than the value of the second T-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 0.
  • the value of the first T-DAI bit field is smaller than the value of the second T-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 1.
  • the value of the first T-DAI bit field is greater than the value of the second T-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 1.
  • the value of the first T-DAI bit field is smaller than the value of the second T-DAI bit field, and it is determined that the first transmission block is mapped to the first codeword, for example, codeword 0.
  • the larger and smaller corresponding codewords in the T-DAI bit field may be predefined or configured by high-level signaling.
  • the terminal device determines that the first transmission block is mapped to the first codeword, and / or the terminal device determines the second The transport block is mapped to a second codeword.
  • the terminal device determines the first transmission block according to the values of the first C-DAI bit field and the second C-DAI bit field, and the values of the first T-DAI bit field and the second T-DAI bit field. Map to the first codeword, and / or determine that the second transport block is mapped to the second codeword.
  • the terminal device first compares the value of the first T-DAI bit field with the value of the second T-DAI bit field. If the value of the first T-DAI bit field is different from the value of the second T-DAI bit field, the terminal device executes mode (b). If the value of the first T-DAI bit field is the same as the value of the second T-DAI bit field, the terminal device executes mode (a).
  • the value of the first C-DAI bit field is 1, the value of the first T-DAI bit field is 2, the value of the second C-DAI bit field is 2, and the first T-DAI bit field is The value is 2. Because the value of the first T-DAI bit field is the same as the value of the second T-DAI bit field, the terminal device may use the method (a), that is, the terminal device may use the value of the first C-DAI bit field. And the value of the second C-DAI bit field, determine that the first transmission block is mapped to the first codeword, and / or, determine that the second transmission block is mapped to the second codeword.
  • the value of the first C-DAI bit field is 1, the value of the first T-DAI bit field is 2, the value of the second C-DAI bit field is 3, and the first T-DAI bit field is The value is 4. Because the value of the first T-DAI bit field is different from the value of the second T-DAI bit field, the terminal device executes the method (b), that is, the terminal device can use the value of the first T-DAI bit field and the The value of the two T-DAI bit fields determines that the first transmission block is mapped to the first codeword, and / or determines that the second transmission block is mapped to the second codeword.
  • the transmission block and the value of the C-DAI bit field and the value of the T-DAI bit field may be used to determine Correspondence between codewords.
  • the corresponding codewords with larger and smaller C-DAI and T-DAI values can be predefined or configured by high-level signaling.
  • the corresponding relationship may be: when the value of the first T-DAI bit field and the value of the second T-DAI bit field are different, the transmission block corresponding to the smaller T-DAI value is mapped to codeword 0, The transport block corresponding to the larger T-DAI is mapped to codeword 1.
  • the transport block corresponding to the smaller C-DAI value is mapped to codeword 0
  • the larger C-DAI value is The transmission block corresponding to DAI is mapped to codeword 1.
  • the correspondence relationship may be: when the value of the first T-DAI bit field and the value of the second T-DAI bit field are different, the transport block corresponding to the smaller T-DAI value is mapped to codeword 1 , The transport block corresponding to the larger T-DAI is mapped to the codeword 0.
  • the transport block corresponding to the smaller C-DAI value is mapped to codeword 1
  • the larger C-DAI value is The DAI corresponding transport block is mapped to codeword 0.
  • the correspondence relationship may be: when the value of the first T-DAI bit field and the value of the second T-DAI bit field are different, the transport block corresponding to the smaller T-DAI value is mapped to codeword 1 , The transport block corresponding to the larger T-DAI is mapped to the codeword 0.
  • the transport block corresponding to the smaller C-DAI value is mapped to codeword 0
  • the larger C-DAI value is The transmission block corresponding to DAI is mapped to codeword 1. That is, the correspondence between the C-DAI and T-DAI values and the codeword may be the same or different, which is not limited in this application.
  • the terminal device can determine the lost second DCI according to the C-DAI and / or T-DAI.
  • the corresponding C-DAI and / or T-DAI can further determine the first codeword mapped by the first transport block. Therefore, the present invention utilizes DAI to implicitly determine the codeword mapped by the transmission block, which can not only solve the problem that different transmission blocks are mapped to the same codeword in the prior art, but also solve the problem of PDCCH miss detection and improve the reliability of system transmission. .
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the indication field of the correspondence relationship between the first transmission block and the codeword included in the first DCI, and / or the terminal device determines The correspondence between the second transmission block and the codeword indicates that the domain determines that the second transmission block is mapped to the second codeword.
  • the indication field of the correspondence relationship between the first transmission block and the codeword or the indication field of the correspondence relationship between the second transmission block and the codeword is an extended bit field of DCI, and the extended bit field may be 1 bit, 2 bits, or 3 bits. Or more than 3 bits, which is not specifically limited here.
  • the first transport block and codeword correspondence relationship indication field or the second transport block and codeword correspondence relationship indication field is used to indicate a mapping relationship between a transport block and a codeword, such as the first transport block and a codeword.
  • the corresponding indication field of the codeword is 1 bit.
  • the terminal device determines that the first transmission block is mapped to the first codeword.
  • the first codeword is codeword 0.
  • the terminal device determines that the first transmission block is mapped to the first codeword, for example, the first codeword is codeword 1 .
  • the terminal device determines that the first transport block is mapped to the first codeword, for example, the first codeword is a code Word 1.
  • the terminal device determines that the first transmission block is mapped to the first codeword, for example, the first codeword is codeword 0 .
  • the terminal device determines that the second transmission block is mapped to the second codeword according to the value of the indication field of the correspondence relationship between the second transmission block and the codeword included in the second DCI, and details are not described herein again.
  • the correspondence relationship indication field of the first transport block and the codeword or the correspondence relationship indication field of the second transport block and the codeword is used to indicate a mapping relationship between at least two transport blocks and at least two codewords.
  • the corresponding indicator field of a transmission block and a codeword is 2 bits. If the value of the corresponding indicator field of a first transmission block and a codeword included in the first DCI is 01, it is determined that the first transmission block is mapped to the first codeword.
  • the first transmission block is determined Map to a first codeword, such as codeword 0, and map a second transport block to a second codeword, such as codeword 1. If the value of the codeword indicator field included in the second DCI is 11, determine the first transport block mapping To the first codeword, such as codeword 1, and the second transport block is mapped to the second codeword, such as codeword 0.
  • the corresponding indication field of the first transmission block and the codeword may further indicate that the first transmission block and the second transmission block are mapped to the same codeword, for example, the value of the codeword indication field included in the first DCI is 00, It is determined that the first transport block and the second transport block are mapped to a first codeword such as codeword 0. It can be understood that at this time, the same data packet information carried by the two transport blocks is carried out.
  • the terminal device obtains the correspondence between the transmission block and the codeword.
  • the present invention uses the explicit indication field of the correspondence between the transmission block and the codeword in the DCI to indicate the codeword mapped by the transmission block, which can solve the problem that different transmission blocks are mapped to the same codeword in the prior art, and improve system transmission efficiency.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located, and / or the terminal device is based on the second DCI where the first DCB is located.
  • a second search space set determines that the second transport block is mapped to a second codeword.
  • the search space includes a common search space (CSS) or a user-specific search space (UES).
  • RNTI includes system information RNTI (system information-RNTI, SI-RNTI), temporary cell RNTI (temporary cell-RNTI, TC-RNTI), paging RNTI (paging-RNTI, P-RNTI), and cell RNTI (cell-RNTI, C-RNTI), configured scheduling-RNTI (CS-RNTI), and modulation-coding-cell RNTI (modulation-coding-scheme-cell-RNTI, MCS-C-RNTI).
  • the search space set is a set of a set of candidate PDCCHs that the terminal device can monitor.
  • the search space set may include a common search space set (CSSS) and a user-specific search space set (UE-SSS).
  • CSSS common search space set
  • UE-SSS user-specific search space set
  • Each PDCCH can use the RNTI to scramble the CRC of the PDCCH, and the terminal device can also distinguish different PDCCH channels through the RNTI.
  • a user can monitor candidate PDCCHs in one or more of the following search space sets.
  • the common search space set may include one of the following Type0-PDCCH common search space set, Type0A-PDCCH common search space set, Type1-PDCCH common search space set, Type2-PDCCH common search space set, or Type3-PDCCH common search space set Or multiple:
  • the candidate PDCCHs in the Type0-PDCCH common search space set are configured by high-level signaling (for example, searchspacezero), and the RNTI of the scrambled PDCCH is SI-RNTI.
  • the candidate PDCCHs in the Type0A-PDCCH common search space set are configured by higher layer signaling (for example, searchspace-osi), and the RNTI that scrambles the PDCCH is SI-RNTI.
  • the candidate PDCCHs in the Type1-PDCCH common search space set are configured by high-level signaling (for example, ra-searchspace), and the RNTI of the scrambled PDCCH is RA-RNTI or TC-RNT.
  • the candidate PDCCHs in the Type2-PDCCH common search space set are configured by high-level signaling (for example, pagingsearchspace), and the RNTI of the scrambled PDCCH is P-RNTI.
  • the candidate PDCCHs in the Type3-PDCCH common search space set are configured by high-level signaling (such as searchspace), and the RNTI that scrambles the PDCCH is scrambled by other RNTIs such as C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • the candidate PDCCH in the user-specific search space set is configured by high-level signaling (such as searchspace), and the RNTI that scrambles the PDCCH is C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • the correspondence between high-level signaling or a predefined search space set and a codeword obtains the correspondence between the search space set and the codeword.
  • the specific implementation manners of the second manner include at least the following types, which will be described in detail below.
  • the common search space set corresponds to codeword 0, and the user-specific search space set corresponds to codeword 1.
  • the common search space set corresponds to codeword 1 and the user-specific search space set corresponds to codeword 0.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the first search space set in which the first DCI is located, for example, the first codeword is codeword 0, and / or, the terminal The device determines that the second transmission block is mapped to a second codeword according to the second search space set in which the second DCI is located as a user-specific search space set, for example, the second codeword is codeword 1.
  • the terminal device may also determine that the first transmission block is mapped to the first codeword according to the first search space set in which the first DCI is located, for example, the first codeword is codeword 1 And / or, the terminal device determines that the second transmission block is mapped to a second codeword according to the second search space set where the second DCI is located as a public dedicated search space set, for example, the second codeword is codeword 0 .
  • the first common search space set corresponds to codeword 0, and the second common search space set corresponds to codeword 1.
  • the first common search space set corresponds to codeword 1 and the second common search space set corresponds to codeword 0.
  • the terminal device determines that the first transmission block is mapped to a first codeword, such as the first codeword, according to the first search space set in which the first DCI is located, for example, a first common search space set. Is codeword 0, and / or, the terminal device is a second common search space set according to the second search space set where the second DCI is located, for example: Type1-PDCCH, etc .; determining that the second transmission block is mapped to the first Two code words, for example, the first code word is code word 1.
  • the terminal device may also determine that the first transmission block is mapped to the first codeword according to the first search space set in which the first DCI is located, for example, the first codeword is a codeword 1, and / or, the terminal device determines that the second transmission block is mapped to the second codeword according to the second search space set in which the second DCI is located, and for example, the first codeword is Codeword 0.
  • the first user-specific search space set corresponds to codeword 0, and the second user-specific search space set corresponds to codeword 1.
  • the first user-specific search space set corresponds to codeword 1
  • the second user-specific search space set corresponds to codeword 0.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the first search space set in which the first DCI is located as the first user-specific search space set, for example, the first codeword is codeword 0, and /
  • the terminal device determines that the second transmission block is mapped to a second codeword according to the second search space set where the second DCI is located as a second user-specific search space set, for example, the first codeword is codeword 1.
  • the terminal device may also determine that the first transmission block is mapped to the first codeword according to the first search space set in which the first DCI is located as the second user-specific search space set, for example, the first codeword is a code Word 1, and / or, the terminal device determines that the second transmission block is mapped to a second codeword, for example, the first code, according to the second search space set where the second DCI is located is a first user-specific dedicated search space set Word is codeword 0.
  • the first search space set corresponds to codeword 0
  • the second search space set corresponds to codeword 1.
  • the first search space set corresponds to codeword 1
  • the second search space set corresponds to codeword 0.
  • the above examples of search space sets are only examples, and should not constitute specific limitations. When new search spaces appear in 3G systems, 4G systems, 5G systems, and even future evolved systems, the above methods can also be used to determine transmission blocks and codewords. Mapping relationship.
  • the present invention utilizes an implicit indication of the codeword mapping of the transmission block mapping of the correspondence between the search space set and the codeword, which can solve the problem of mapping different transmission blocks to the same codeword in the prior art, and improve system transmission efficiency.
  • the type indication method does not need to introduce bits in the DCI, thereby avoiding system overhead.
  • the terminal device determines that the first transmission block is mapped to a first codeword according to a first DCI format corresponding to the first DCI, and the terminal device determines a second DCI corresponding to the second DCI The format determines that the second transport block is mapped to a second codeword.
  • the DCI format is the format used by DCI.
  • DCI formats There are various DCI formats, for example, DCI format 1_0, DCI format 1_1, DCI format 1_2, DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3, and DCI format 2_5, etc., different DCI formats can carry resources Not the same.
  • the DCI format may be as shown in Table 2:
  • the correspondence between high-level signaling or a predefined DCI format and codeword For example, the first DCI format corresponds to codeword 0, and the second DCI format corresponds to codeword 1. Alternatively, for example, the first DCI format corresponds to codeword 1 and the second DCI format corresponds to codeword 0.
  • the terminal device obtains the correspondence between the DCI format and the codeword.
  • the terminal device determines, according to the DCI format 1_0 adopted by the first DCI, that the first transmission block is mapped to the first codeword, for example, the first codeword is codeword 0, and / or, the terminal device according to the second DCI In the adopted DCI format 1_1, it is determined that the second transmission block is mapped to a second codeword, for example, the second codeword is codeword 1.
  • the terminal device may also determine that the first transmission block is mapped to the first codeword according to the DCI format 1_1 adopted by the first DCI, for example, the first codeword is codeword 1, and / or, the terminal device may The DCI format 1_0 adopted by the second DCI determines that the second transmission block is mapped to a second codeword, for example, the second codeword is codeword 0.
  • DCI format 1_0 and DCI format 1_1 are merely examples, and should not constitute specific limitations. When new DCI formats appear in 3 systems, 4G systems, 5G systems, and even future evolved systems, the above may also be adopted.
  • the method determines the mapping relationship between the transport block and the codeword.
  • the present invention utilizes an implicit indication of a codeword mapping of a transmission block mapping relationship between a DCI format and a codeword to solve the problem of mapping different transmission blocks to the same codeword in the prior art, improves system transmission efficiency, and uses implicit Indication mode, that is, it does not need to introduce extra bits in DCI, thereby avoiding extra system overhead.
  • implicit Indication mode that is, it does not need to introduce extra bits in DCI, thereby avoiding extra system overhead.
  • the terminal device can know that another PDCCH that is not detected should be in the second DCI format, that is, the transport block indicated by the undetected PDCCH should be mapped to the first On the codeword corresponding to the two DCI formats.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the first RNTI that scrambles the first DCI, and / or the terminal device determines that the second transmission block is scrambled according to The second RNTI determines that the second transport block is mapped to a second codeword.
  • the RNTI involved in the above manner can be used to scramble the cyclic redundancy check (CRC) of the PDCCH.
  • the scrambling is to multiply the spreading code with a pseudo-random code sequence, and
  • the signal is encrypted.
  • RNTI such as system information RNTI, temporary cell RNTI, paging RNTI, random access RNTI, cell RNTI, configuration scheduling RNTI, cell wireless network temporary identification (C-RNTI), and modulation and coding mode cell RNTI (MCS -C-RNTI) and so on.
  • the MCS information of the MCS-C-RNTI scrambled DCI is a piece of MCS information with a spectral efficiency of 0.0586 in the MCS table.
  • MCS-C-RNTI can indicate lower spectrum efficiency, that is, it may be applied to high-reliability transmission.
  • the MCS table may be as shown in Table 3 or Table 4. It should be understood that the above MCS table is for illustration only and should not constitute a specific limitation.
  • the MCS index corresponding to the spectral efficiency of 0.0586 in Table 3 or Table 4 above is 0.
  • the MCS information including the spectral efficiency of 0.0586 may also be in other representations, which are not specifically limited in the embodiment of the present application.
  • the correspondence between high-level signaling or a predefined RNTI and codeword For example, the first RNTI corresponds to codeword 0, and the second RNTI corresponds to codeword 1. Or, for example, the first RNTI corresponds to codeword 1 and the second RNTI corresponds to codeword 0.
  • the terminal device obtains the correspondence between the RNTI and the codeword.
  • the first RNTI is a C-RNTI
  • the second RNTI is an MCS-C-RNTI.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the RNTI that scrambles the first DCI as a C-RNTI, for example, the first codeword is codeword 0, and / or
  • the MCS-C-RNTI of the second DCI determines that the second transmission block is mapped to a second codeword, for example, the second codeword is codeword 1.
  • the terminal device may also determine that the first transmission block is mapped to the first codeword according to the MCS-C-RNTI that scrambles the first DCI, for example, the first codeword is codeword 1, and / or, The terminal device determines that the second transmission block is mapped to a second codeword according to a C-RNTI that scrambles the second DCI, for example, the second codeword is codeword 0.
  • C-RNTI and MCS-C-RNTI are merely examples, and may also be other RNTIs, which should not constitute a specific limitation.
  • 3G systems, 4G systems, 5G systems, or even future evolved systems appear new RNTI can also determine the mapping relationship between the transport block and the codeword in the above manner.
  • the above correspondence is unique, that is, the codeword corresponding to the undetected PDCCH can be determined through the detected PDCCH.
  • the terminal device can know that another PDCCH that is not detected corresponds to the second RNTI, that is, the transport block indicated by the undetected PDCCH is mapped to the code corresponding to the second RNTI.
  • the technical solution adopted in this application uses the correspondence between the RNTI and the codeword to implicitly indicate the codeword mapped by the transmission block, which can solve the problem of mapping different transmission blocks to the same codeword in the prior art, and improve system transmission efficiency.
  • the implicit indication does not need to introduce extra bits in the DCI, thereby avoiding system overhead.
  • the terminal device determines that the first transmission block is mapped to the first codeword through a plurality of implementable manners in the first manner to the fourth manner.
  • the terminal device may also be used in combination of two or more of the different implementable ways to determine that the first transmission block is mapped to the first codeword, and / or, the second transmission block Maps to the second codeword.
  • the first mapping relationship is that the first transmission block is mapped to codeword 0, the second mapping relationship is that the first transmission block is mapped to codeword 0, and the third mapping relationship is that the first transmission block is mapped to codeword 0,
  • the fourth mapping relationship is that the first transmission block is mapped to codeword 1; or, the first mapping relationship is that the second transmission block is mapped to codeword 1, the second mapping relationship is that the second transmission block is mapped to codeword 1, and the third mapping is The relationship is that the second transmission block is mapped to codeword 1, and the fourth mapping relationship is that the second transmission block is mapped to codeword 0; or the fifth mapping relationship is that the first transmission block is mapped to codeword 0 and the second transmission block is mapped to Codeword 1, the sixth mapping relationship is that the first transmission block and the second transmission block are mapped to codeword 0, and the seventh mapping relationship is that the first transmission block is mapped to codeword 1 and the second transmission block is mapped to codeword 0, the first The eight mapping relationship is that the first transport block and the second transport block are mapped
  • Method 1 The terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located and a first RNTI that scrambles the first DCI.
  • the correspondence between the first search space set and the first RNTI and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first search space set includes a public search space set CSS and a user-specific search space set USS
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C, respectively.
  • -The RNTI may also be another RNTI, which is not limited in the present invention.
  • the search space and the first RNTI the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • First RNTI Mapping relationship of the first transmission block to the first codeword CSS First RNTI_1 First mapping relationship USS First RNTI_1 Second mapping CSS First RNTI_2 Third mapping relationship USS First RNTI_2 Fourth mapping relationship
  • Manner 2 The terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located and a first DCI format corresponding to the first DCI.
  • the correspondence between the first search space set and the first DCI format and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first DCI format includes a first DCI format_1 and a first DCI format_2, for example, the first DCI format_1 and the first DCI format_2 is respectively DCI 1_0 and DCI 1_1, and may also be other formats, which are not limited in the present invention.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • Manner 3 The terminal device determines that the first transmission block is mapped to the first codeword according to the first RNTI that scrambles the first DCI and the first DCI format corresponding to the first DCI.
  • the correspondence between the first RNTI and the first DCI format and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, and may also be other RNTIs, which are not limited in the present invention.
  • the first DCI format includes a first DCI format_1 and a first DCI format_2.
  • the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats.
  • the present invention No restrictions.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First RNTI First DCI format Mapping relationship of the first transmission block to the first codeword First RNTI_1 First DCI format_1 First mapping relationship First RNTI_1 First DCI format_1 Second mapping First RNTI_2 First DCI format_2 Third mapping relationship First RNTI_2 First DCI format_2 Fourth mapping relationship
  • Manner 4 The terminal device determines that the first transmission block is mapped to the first codeword according to a first RNTI that scrambles the first DCI and a first bit field included in the first DCI.
  • the correspondence between the first RNTI and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, and may also be other RNTIs, which are not limited in the present invention.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First RNTI First bit field Mapping relationship of the first transmission block to the first codeword First RNTI_1 Specific value First mapping relationship First RNTI_1 Specific value Second mapping First RNTI_2 Non-specific value Third mapping relationship First RNTI_2 Non-specific value Fourth mapping relationship
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First RNTI First bit field Mapping relationship of the first transmission block to the first codeword
  • First RNTI_1 First mapping relationship First RNTI_1 0
  • Manner 5 The terminal device determines that the first transmission block is mapped to the first codeword according to a first DCI format corresponding to the first DCI and a first bit field included in the first DCI.
  • the correspondence between the first DCI format and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first DCI format includes the first DCI format_1 and the first DCI format_2.
  • the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats.
  • the invention is not limited.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First DCI format First bit field Mapping relationship of the first transmission block to the first codeword First DCI format_1 Specific value First mapping relationship First DCI format_1 Specific value Second mapping First DCI format_2 Non-specific value Third mapping relationship First DCI format_2 Non-specific value Fourth mapping relationship
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First DCI format First bit field Mapping relationship of the first transmission block to the first codeword
  • First DCI format_1 First mapping relationship First DCI format_1 0
  • Manner 6 The terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located and a first bit field included in the first DCI.
  • the correspondence between the first search space set and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first search space set includes CSS and USS, and may also be other search space sets, which is not limited in the present invention.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First search space collection First bit field Mapping relationship of the first transmission block to the first codeword CSS Specific value First mapping relationship USS Specific value Second mapping CSS Non-specific value Third mapping relationship USS Non-specific value Fourth mapping relationship
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First search space collection First bit field Mapping relationship of the first transmission block to the first codeword CSS 0 First mapping relationship USS 0 Second mapping CSS 1 Third mapping relationship USS 1 Fourth mapping relationship
  • Method 7 The terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located, a first RNTI that scrambles the first DCI, and a first DCI format corresponding to the first DCI. .
  • the correspondence between the first search space set, the first DCI format, and the first RNTI and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first search space set includes a public search space set CSS and a user-specific search space set USS, and may also be another search space set, which is not limited in the present invention.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, or other RNTIs.
  • the first DCI format includes the first DCI format_1.
  • the first DCI format_2, for example, the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats, which are not limited in the present invention.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • Method eight The terminal device determines that the first transmission block is mapped to the first codeword according to a first search space set where the first DCI is located, a first RNTI that scrambles the first DCI, and a first bit field included in the first DCI. .
  • the corresponding relationship between the first search space set, the first RNTI, the first bit field, and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first search space set includes CSS and USS, and may also be other search space sets, which is not limited in the present invention.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, and may also be other RNTIs.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First RNTI First search space collection First bit field Mapping relationship of the first transmission block to the first codeword
  • First RNTI_1 CSS Specific value First mapping relationship First RNTI_1 USS Specific value
  • Second mapping First RNTI_2 CSS Non-specific value
  • Third mapping relationship First RNTI_2 USS Non-specific value
  • Fourth mapping relationship
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • First RNTI First search space collection
  • First bit field Mapping relationship of the first transmission block to the first codeword First RNTI_1 CSS 0
  • First mapping relationship First RNTI_1 USS 0
  • Second mapping First RNTI_2 CSS 1
  • Third mapping relationship First RNTI_2 USS 1
  • Fourth mapping relationship
  • the terminal device determines that the first transmission block is mapped to the first codeword according to a first DCI format corresponding to the first DCI, a first RNTI that scrambles the first DCI, and a first bit field included in the first DCI.
  • the correspondence between the first RNTI, the first DCI format, and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first DCI format includes the first DCI format_1 and the first DCI format_2.
  • the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats.
  • the invention is not limited.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, and may also be other RNTIs.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • Method ten The terminal device determines that the first transmission block is mapped to the first codeword according to a first DCI format corresponding to the first DCI, a first search space set where the first DCI is located, and a first bit field included in the first DCI. .
  • the correspondence between the first search space set, the first DCI format, and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first DCI format includes the first DCI format_1 and the first DCI format_2.
  • the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats.
  • the invention is not limited.
  • the first search space set includes CSS and USS, and may also be other search space sets, which is not limited in the present invention.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be other corresponding relationships, which are not limited in this embodiment of the present application.
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • the terminal device determines the first DCI format corresponding to the first DCI, the first RNTI scrambled the first DCI, the first search space set where the first DCI is located, and the first bit field included in the first DCI.
  • the first transport block is mapped to a first codeword.
  • the correspondence between the first RNTI, the first search space set, the first DCI format, and the first bit field and the first codeword may be configured by high-level signaling. Or part of the correspondence is a high-level signaling configuration, and part of the correspondence is predefined. Or they are all predefined. It can be understood that the corresponding relationship of the high-level signaling configuration can be set in different fields of a high-level signaling, or can be set through different high-level signaling.
  • the first DCI format includes the first DCI format_1 and the first DCI format_2.
  • the first DCI format_1 and the first DCI format_2 are respectively DCI1_0 and DCI1_1, and may also be other formats.
  • the invention is not limited.
  • the first search space set includes CSS and USS, and may also be other search space sets, which is not limited in the present invention.
  • the first RNTI includes a first RNTI_1 and a second RNTI_2.
  • the first RNTI_1 and the second RNTI_2 are C-RNTI and MCS-C-RNTI, respectively, and may also be other RNTIs.
  • the first bit field includes a first MCS bit field and / or a first RV bit field.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • the first bit field includes a correspondence between a first transport block and a codeword, and the indication field is 1 bit.
  • the corresponding relationship with the first codeword may also be another corresponding relationship, which is not limited in this embodiment of the present application.
  • table 40 may include fewer rows. Specifically, table 40 may retain only the first row, or table 40 may retain only the second row, and table 40 may retain only the third row. Alternatively, the table 40 may retain only the fourth row, or the table 40 may retain only the contents of the first and second rows, or the table 40 may retain only the contents of the first and third rows, or the table 40 may Only the contents of the first and fourth rows are retained.
  • Table 40 may retain only the contents of the second and third rows, or the table 40 may retain only the contents of the second and fourth rows, or the table 40 may only contain Keep the contents of the third and fourth rows, or the table 40 may keep only the contents of the first, second, and third rows, or the table 40 may keep only the contents of the first, second, and fourth rows. Contents, or the table 40 may retain only the contents of the second row, the third and fourth rows, and the like, which are not specifically limited herein. In order to save space, the contents of each table in Tables 5 to 39 are no longer illustrated one by one, and Tables 5 to 39 can also adopt various examples of the tables in Table 40.
  • the above tables 5 to 40 may also include more rows.
  • the first DCI format_1, the first RNTI_1, the bit state of the CSS and the first bit field are 1, corresponding to the fifth mapping relationship, and so on. Examples are no longer given one by one.
  • Tables 5 to 22 are described by using the combination of two kinds of first information to determine the correspondence between the transmission block and the codeword as an example, and Tables 23 to 37 are based on the combination of the three kinds of first information to determine the transmission block and the codeword.
  • the correspondence relationship between the transmission block and the codeword is taken as an example for description, and Tables 38 to 40 are described by taking the combination of the four kinds of first information as an example for description. It can be understood that, in practical applications, the method shown in Tables 5 to 22 is not limited to the combination of the two types of first information to determine the correspondence between the transmission block and the codeword, but also other methods to determine the transmission block by combining the two types of first information.
  • the method of corresponding to the codeword is not limited to the combination of the three first methods shown in Tables 23 to 37 to determine the corresponding relationship between the transmission block and the codeword, and may also be other combinations of the three first information to determine the relationship between the transmission block and the codeword.
  • the method of the correspondence between codewords is not limited to the combination of the four first methods shown in Table 38 to Table 40 to determine the correspondence between the transmission block and the codeword. It may also be another combination of the four first information to determine the transmission block and the code. The way the words correspond.
  • the first information is not limited to the above-mentioned first types of information, and may be other first information.
  • first information of future system evolution and the like are not specifically limited here.
  • the network device before the method shown in FIG. 4 is performed, the network device also needs to determine that the terminal device has the ability to simultaneously receive two transmission blocks whose time-frequency resources completely overlap or partially overlap, and may specifically include the following: At least one of the methods:
  • the terminal device sends the first notification information to the network device, wherein the first notification information is used to notify the network device that the terminal device has two transmissions capable of simultaneously receiving full or partial overlap of time-frequency resources. Block ability.
  • the terminal device sends the second notification information to the network device, and the second notification information is used to notify the network device that the terminal device does not have the capability of receiving two transmission blocks whose time-frequency resources completely overlap or partially overlap at the same time. It can be understood that when the terminal device sends the second notification information, the terminal device uses the existing technology to determine the correspondence between the transmission block and the codeword. The terminal device does not need to perform joint reception in the manner shown in FIG.
  • the transmission blocks indicated by the DCI and the second DCI are not in different codewords that are limited to the same downlink channel, so there will not be a collision problem with HARQ feedback in the terminal equipment as shown in FIG. 1.
  • the terminal device may use the method of this application to determine the correspondence between the transmission block and the codeword.
  • the terminal device sends third notification information to the network device, where the third notification information is used to notify the network device that the terminal device has a capability of supporting at least two PDCCHs to indicate different codewords, respectively.
  • the terminal device sends fourth notification information to the network device, where the fourth notification information is used to notify the network device that the terminal device does not have the capability of supporting at least two PDCCHs to indicate different codewords, respectively. It can be understood that when the terminal device sends the fourth notification information, the terminal device uses the existing technology to determine the codeword to which the transmission block is mapped, and the terminal device does not need to perform joint reception in the manner shown in FIG. 1.
  • the first DCI The transmission block indicated by the second DCI is not in a different codeword that is limited to the same downlink channel, so there will not be a collision problem with HARQ feedback from the terminal equipment shown in FIG. 1.
  • the terminal device may use the method of the present application to determine the correspondence between the transmission block and the codeword.
  • the terminal device sends fifth notification information to the network device, where the fifth notification information is used to notify the network device that the terminal device has a capability of being able to jointly receive transmissions from different TRPs.
  • the terminal device sends sixth notification information to the network device, where the sixth notification information is used to notify the network device that the terminal device does not have a capability of jointly receiving transmissions from different TRPs. It can be understood that when the terminal device sends the sixth notification information, the terminal device uses the existing technology to determine the correspondence between the transmission block and the codeword. The terminal device does not need to perform joint reception in the manner shown in FIG.
  • the transmission blocks indicated by the DCI and the second DCI are not in different codewords that are limited to the same downlink channel, so there will not be a collision problem with HARQ feedback in the terminal equipment as shown in FIG. 1.
  • the terminal device may use the method of the present application to determine the correspondence between the transmission block and the codeword.
  • the terminal device reports the corresponding capability information to the network device, so that the network device determines the terminal device support capability based on the information, thereby improving communication for the terminal device by performing multiple TRPs. effectiveness.
  • the network device before executing the method shown in FIG. 4, the network device also needs to configure the terminal device to have two transmission blocks capable of simultaneously receiving full or partial overlap of time-frequency resources, which may specifically include the following methods: At least one of:
  • the network device sends the first configuration information to the terminal device, where the first configuration information is used to configure the terminal device to receive two transmission blocks that completely overlap or partially overlap the time-frequency resources at the same time.
  • the network device sends the second configuration information to the terminal device, where the second configuration information is used to configure the terminal device to be unable to simultaneously receive two transmission blocks that completely overlap or partially overlap the time-frequency resources. It can be understood that when the network device sends the first configuration information to the terminal device, the terminal device can use the method of this application to determine the correspondence between the transmission block and the codeword, and the terminal device does not need to perform joint reception in the manner shown in FIG.
  • the transmission blocks indicated by the first DCI and the second DCI are no longer limited to different codewords of the same downlink channel, so there will not be a collision problem of HARQ feedback from the terminal device shown in FIG. 1.
  • the network device sends the second configuration information to the terminal device, then the terminal device uses the existing technology to determine the correspondence between the transmission block and the codeword.
  • the network device sends third configuration information to the terminal device, where the third configuration information is used to configure the terminal device to support at least two PDCCHs to indicate different codewords, respectively.
  • the network device sends fourth configuration information to the terminal device, where the fourth configuration information is used to configure an ability to indicate that the terminal device cannot support at least two PDCCHs to indicate different codewords, respectively. It can be understood that when the network device sends the fourth configuration information to the terminal device, the terminal device uses the existing technology to determine the correspondence between the transmission block and the codeword. The terminal device does not need to perform joint reception in the manner shown in FIG.
  • the transmission blocks indicated by the first DCI and the second DCI are no longer limited to different codewords of the same downlink channel, so there will not be a collision problem in which HARQ feedback occurs in the terminal device shown in FIG. 1.
  • the terminal device may use the method of this application to determine the correspondence between the transmission block and the codeword.
  • the network device sends fifth configuration information to the terminal device, where the fifth configuration information is used to configure the terminal device's ability to jointly receive transmissions from different TRPs.
  • the terminal device sends sixth configuration information to the network device, where the sixth configuration information is used to configure the terminal device's ability to jointly receive transmissions from different TRPs. It can be understood that when the network device sends the sixth configuration information to the terminal device, the terminal device uses the existing technology to determine the codeword to which the transmission block is mapped, and the terminal device does not need to use the method shown in FIG. 1 for joint reception.
  • the transmission blocks indicated by the first DCI and the second DCI are not in different codewords that are limited to the same downlink channel, so there will not be a collision problem with HARQ feedback in the terminal equipment as shown in FIG. 1.
  • the terminal device may use the method of this application to determine the correspondence between the transmission block and the codeword.
  • the first DCI and the second DCI may also meet one or more of the following conditions:
  • the PDCCH monitoring timing of the first PDCCH carrying the first DCI and the PDCCH monitoring timing of the second PDCCH carrying the second DCI are the same; and / or, the first PDCCH carrying the first DCI is the same.
  • the set of search spaces where a PDCCH is located and the set of search spaces where a second PDCCH carrying the second DCI is the same; and / or, a set of control channel resources and bearer locations where the first PDCCH carrying the first DCI is located.
  • the control channel resource set where the second PDCCH of the second DCI is located is the same.
  • the two DCIs can be considered to be DCIs from different TRPs, and this The two DCIs schedule different codewords correspondingly, then the method of the present invention can be used to determine the correspondence between the transmission block and the codeword.
  • the terminal device may determine according to the existing technology For the correspondence between transmission blocks and codewords, terminal devices do not need to perform joint reception in the manner shown in Figure 1.
  • the transmission blocks indicated by the first DCI and the second DCI are not limited to different codewords on the same downlink channel, that is, The collision problem of HARQ feedback in the terminal equipment shown in FIG. 1 does not occur.
  • the aggregation level of the first PDCCH carrying the first DCI and the aggregation level of the second PDCCH carrying the second DCI are the same.
  • the aggregation level belongs to one of a plurality of aggregation levels, and the plurality of aggregation levels includes at least one of 1, 2, 4, 8, and 16.
  • the first PDCCH and the second PDCCH may use the same aggregation level. It can be understood that when the first PDCCH and the second PDCCH have the same aggregation level, the method in this application can be used to determine the correspondence between the transmission block and the codeword, that is, the first DCI and the second DCI respectively indicate different codes. word. In contrast, when the first PDCCH and the second PDCCH have different aggregation levels, the terminal device can determine the corresponding relationship between the transmission block and the codeword according to the existing technology, that is, the first DCI and the second DCI will not indicate different CW. That is, when the first PDCCH and the second PDCCH have different aggregation levels, the terminal device does not need to perform joint reception in the manner shown in FIG. 1, and at this time, the transmission blocks indicated by the first DCI and the second DCI are not limited to the same. For different codewords of a downlink channel, the collision problem of HARQ feedback occurring in the terminal device shown in FIG. 1 will not occur.
  • the antenna port information indicated by the first DCI and the antenna port information indicated by the second DCI are different, and / or, the first DCI and the second DCI have the same DCI format.
  • the method in the present invention can be used to determine the correspondence between the transmission block and the codeword, that is, the first DCI and the second DCI respectively indicate different codewords.
  • the terminal device can determine the corresponding relationship between the transmission block and the codeword according to the existing technology, that is, the first DCI and the first DCI The two DCIs do not indicate different codewords respectively.
  • the terminal device does not need to perform joint reception in the manner shown in FIG. 1.
  • the transmission blocks indicated by the first DCI and the second DCI are no longer limited. For different codewords on the same downlink channel, the HARQ information conflict problem of the terminal device shown in FIG. 1 does not occur.
  • the first DCI and the second DCI have different reference signal information (such as different antenna ports). It can be understood that when the first DCI and the second DCI have different reference signal information, the method in the present invention can be used to determine the corresponding relationship between the transmission block and the codeword, that is, the first DCI and the second DCI respectively indicate different Codeword. In contrast, when the first DCI and the second DCI have the same reference signal information, and the two DCIs indicate the same space, the terminal device can determine the corresponding relationship between the transmission block and the codeword according to the existing technology, that is, the first DCI and the The second DCI does not indicate different codewords.
  • the existing technology that is, the first DCI and the The second DCI does not indicate different codewords.
  • the terminal device when the first DCI and the second DCI have the same reference signal information, the terminal device does not need to perform joint reception in the manner shown in FIG. 1, and at this time, the transmission blocks indicated by the first DCI and the second DCI are no longer Limited to different codewords on the same downlink channel, the problem of HARQ information feedback conflicts occurring in the terminal equipment as shown in FIG. 1 will not occur.
  • the first transmission block and the second transmission block may also meet one or more of the following conditions:
  • the method in the present invention can be used to determine the correspondence between the transmission block and the codeword, that is, the first transmission The block and the second transport block are respectively mapped to different codewords.
  • the terminal device can determine the correspondence between the transmission block and the codeword according to the existing technology. That is, the first transmission block and the second transmission block are not mapped to different codewords respectively. That is, when the resources where the first transmission block and the second transmission block do not overlap in the time domain, the terminal device does not need to perform joint reception in the manner shown in FIG. 1, at this time, the first transmission block and the second transmission block The transmission block is no longer limited to different codewords of the same downlink channel, and the problem of HARQ information feedback conflicts occurring in the terminal equipment shown in FIG. 1 will not occur.
  • the resources where the first transport block and the second transport block are located overlap in the frequency domain.
  • the resources where the first transmission block and the second transmission block are located are in the same downlink bandwidth portion and / or are in the same serving cell.
  • the antenna port corresponding to the demodulation reference signal of the first transmission block and the antenna port corresponding to the demodulation reference signal of the second transmission block are different.
  • the demodulation reference signal of the first transmission block and the demodulation reference signal of the second transmission block correspond to different antenna ports, respectively. It can be understood that when the demodulation reference signal of the first transmission block and the demodulation reference signal of the second transmission block correspond to different antenna ports, the method in this application can be used to determine the correspondence between the transmission block and the codeword. That is, the first transport block and the second transport block are respectively mapped to different codewords. In contrast, when the demodulation reference signal of the first transmission block and the demodulation reference signal of the second transmission block correspond to the same antenna port, the terminal device can determine the correspondence between the transmission block and the codeword according to the existing technology, that is, the first The transport block and the second transport block are not mapped to different codewords.
  • the terminal device when the demodulation reference signal of the first transmission block and the demodulation reference signal of the second transmission block correspond to the same antenna port, the terminal device does not need to perform joint reception in the manner shown in FIG. 1. At this time, the first The transmission block and the second transmission block are no longer limited to different codewords of the same downlink channel, and thus the problem of HARQ information feedback conflicts occurring in the terminal device shown in FIG. 1 will not occur.
  • the HARQ information corresponding to the first transmission block and the HARQ information corresponding to the second transmission block are carried on the same uplink channel.
  • the feedback information of the first transport block and the second transport block are transmitted on the same PUSCH or PUCCH. It can be understood that when the feedback information of the first transmission block and the feedback information of the second transmission block are transmitted on the same PUSCH or PUCCH, the method in this application can be used to determine the corresponding relationship between the transmission block and the codeword, that is, the first One transport block and the second transport block are respectively mapped to different codewords.
  • the terminal device can determine the corresponding relationship between the transmission block and the codeword according to the existing technology, that is, the first One transport block and the second transport block are not mapped to different codewords respectively.
  • the terminal device when the feedback information of the first transmission block and the second transmission block are transmitted on different PUSCH or PUCCH, the terminal device does not need to perform joint reception in the manner shown in FIG. 1, at this time, the first transmission block and the The second transmission block is no longer limited to different codewords of the same downlink channel, and thus no HARQ information feedback conflict problem occurs in the terminal device shown in FIG. 1.
  • FIG. 8 is a schematic flowchart of another method for determining a correspondence between a transport block and a codeword according to an embodiment of the present application.
  • the method for determining the correspondence between a transport block and a codeword in the embodiment of the present application includes the following steps:
  • the first network device generates a first DCI.
  • the first DCI is used to instruct the terminal device to receive a first transmission block on a first time-frequency resource.
  • the first DCI is carried on a first PDCCH channel
  • the first transmission block is carried on a first downlink channel.
  • the first downlink channel may be a first PDSCH.
  • the first network device receives the first DCI from the terminal device.
  • the terminal device receives the first DCI sent by the first network device.
  • the terminal device determines that the first transmission block is mapped to a first codeword according to first information, where the first information includes at least one of the following: a first search space set where the first DCI is located, and the first The first DCI format corresponding to the DCI scrambles a first wireless network identifier RNTI of the first DCI and a first bit field included in the first DCI.
  • S204 The terminal device determines that the second transmission block is mapped to a second codeword according to the first information.
  • the second TPR sends a second DCI to the terminal device, and the second DCI is used to instruct the terminal device to receive the second transmission block on the second time-frequency resource.
  • the terminal device will have a problem of conflicting HARQ information corresponding to the same codeword.
  • HARQ information includes ACK and / or NACK.
  • the terminal device may determine that the first transmission block is mapped to the first codeword and the second transmission block is mapped to the second codeword according to the first information, that is, different transmission blocks scheduled by different DCIs are mapped to different codewords, It is realized that the terminal device can separately feedback the HARQ information corresponding to the first transmission block and the HARQ information corresponding to the second transmission block. If the HARQ information corresponding to the first transmission block is NACK, the decoding result is unsuccessful, so that the first network device can The first transmission block is retransmitted.
  • the terminal device can determine that the second transmission block is mapped to the second codeword according to the first information, thereby instructing the second transmission block to retransmit, and improving the reliability of data transmission.
  • the terminal device if the second network device does not send the second DCI, or if the network device sends the second DCI but the terminal device does not detect the second DCI, then the terminal device does not receive the indication of the second transmission block Second transmission block. Specifically, because the current codeword includes only codeword 0 and codeword 1. Therefore, the terminal device can infer from the received codeword that the codeword corresponding to the transport block is not received. For example, if the received first transmission block corresponds to codeword 0, then the codeword 1 corresponding to the unreceived second transmission block may be determined.
  • the terminal device assumes that two transmission blocks respectively scheduled by the DCI at the same time correspond to different codewords.
  • the predefined terminal device assumes that there are two simultaneous transmission blocks scheduled by the DCI corresponding to different codewords.
  • the terminal device can then determine that a second transport block exists. Therefore, even if the terminal device does not receive one of the transport blocks, the codeword corresponding to the unreceived transport block may be determined in step 204.
  • a NACK is filled in the HARQ feedback information position corresponding to the second codeword.
  • the terminal device determines that the first transmission block is mapped to the first codeword according to the first information. For details, refer to FIG. 4 and related content, and details are not described herein again.
  • FIG. 9 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a terminal device 210 and a network device 220. among them,
  • the terminal device 210 has a function of implementing the behavior of the terminal device in the method shown in FIG. 4 or FIG. 8 in practice.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device 210 may include a sending module 211, a receiving module 213, and a processing module 215.
  • the sending module 211 may be a software module or a hardware module, such as a transmitter.
  • the receiving module 213 may be a software module or a hardware module, such as a receiver.
  • the sending module 211 and the receiving module 213 may be separately provided or integrated, such as a transceiver.
  • the processing module 215 may be a software module or a hardware module, such as a processor.
  • the processor may be a central processing unit, a digital processor, a baseband processing chip, an ARM, and the like, which are not specifically limited herein.
  • the receiving module 213 is configured to receive first downlink control information DCI, where the first DCI is used to instruct the terminal device to receive a first transmission block on a first time-frequency resource;
  • the processing module 215 is configured to determine, according to the first information, that the receiving module receives the first transmission block prompted by the first DCI to be mapped to a first codeword, and the first information includes at least one of the following: the first The first search space where the DCI is located, the first DCI format corresponding to the first DCI, the first wireless network identifier RNTI that scrambles the first DCI, or the first bit field included in the first DCI.
  • the first bit field included in the first DCI is at least one of the following: a first modulation and coding mode MCS bit field, a first redundant version RV bit field, a first count downlink allocation indicator C-DAI, and a first total
  • the downlink assignment indicates the T-DAI and the corresponding relationship between the first transport block and the codeword indicates a field.
  • the processing module 215 is configured to: the first bit field included in the first DCI is a first modulation and coding mode MCS bit field and / or a first redundant version RV bit field, according to the first MCS
  • the MCS index indicated by the bit field is a first MCS index and / or the RV indicated by the first RV bit field is a first RV value, and it is determined that the first transport block is mapped to a first codeword.
  • the processing module 215 is further configured to determine that a second transmission block exists, and determine that the second transmission block is mapped to a second codeword, and the second codeword and the second codeword are determined according to the first information.
  • the first codeword is different.
  • the processing module 215 is further configured to: the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, and according to the first T-DAI bit The values of the domain and the second T-DAI bit domain to determine that the first transmission block is mapped to a first codeword; or
  • the processing module 215 is further configured to: the first bit field included in the first DCI is a first C-DAI bit field and a second C-DAI bit field, and according to the first C-DAI bit Values of the domain and the second C-DAI bit domain to determine that the first transmission block is mapped to a first codeword; or
  • the processing module 215 is further configured to: the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, and the first C-DAI bit field and A second C-DAI bit field according to the values of the first C-DAI bit field and the second C-DAI bit field, and the first T-DAI bit field and the second T-DAI The value of the bit field determines that the first transmission block is mapped to a first codeword.
  • the receiving module 213 is further configured to receive a second DCI, where the second DCI is used to instruct the terminal device to receive a second transmission block on a second time-frequency resource; the processing module 215 And is further configured to determine that the second transmission block is mapped to a second codeword according to second information, where the second information includes at least one of the following: a second search space set where the second DCI is located, the first A second DCI format corresponding to the two DCIs, a second RNTI that scrambles the second DCI, a second bit field included in the second DCI, or the first codeword.
  • the apparatus further includes a sending module 217, configured to send first notification information, where the first notification information is used to notify the network device that the terminal device has two devices capable of simultaneously receiving full or partial overlap of time-frequency resources.
  • a sending module 217 configured to send first notification information, where the first notification information is used to notify the network device that the terminal device has two devices capable of simultaneously receiving full or partial overlap of time-frequency resources.
  • the receiving module 213 is configured to receive first configuration information, where the first configuration information is used to configure an indication that the terminal device can simultaneously receive two transmission blocks whose time-frequency resources completely overlap or partially overlap.
  • the first search space set in which the first DCI is located and the second search space set in which the second DCI is located are a public search space set and a user-specific search space set, respectively;
  • a DCI format and a second DCI format corresponding to the second DCI are DCI format 1_0 and DCI format 1_1, respectively;
  • a first RNTI that scrambles the first DCI and a second RNTI that scrambles the second DCI are respectively Cell wireless network temporary identification C-RNTI and modulation and coding mode Cell wireless network temporary identification MCS-C-RNTI.
  • the PDCCH monitoring timing of the first physical downlink control channel PDCCH carrying the first DCI and the PDCCH monitoring timing of the second PDCCH carrying the second DCI are the same; or, the first PDCCH monitoring timing carrying the second DCI is the same; or The aggregation level of the first PDCCH of the DCI and the aggregation level of the second PDCCH carrying the second DCI are the same; or, the antenna port information indicated by the first DCI and the antenna port information indicated by the second DCI are different.
  • the port and the antenna port corresponding to the demodulation reference signal of the second transmission block are different; or the HARQ information corresponding to the first transmission block and the HARQ information corresponding to the second transmission block are carried on the same uplink channel.
  • the terminal device may perform the steps performed by the terminal device in the method for determining the correspondence between a transmission block and a codeword as shown in FIG. 4 and FIG. 8, which will not be repeated here. For details, refer to FIG. 4, FIG. 8, and related content.
  • the network device 220 has a function of realizing the behavior of the network device in the above method.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device 210 may include a sending module 221, a receiving module 223, and a processing module 225.
  • the sending module 221 may be a software module or a hardware module, such as a transmitter.
  • the receiving module 223 may be a software module or a hardware module, such as a receiver.
  • the sending module 221 and the receiving module 223 may be separately provided or integrated, such as a transceiver.
  • the processing module 225 may be a software module or a hardware module, such as a processor.
  • the processor may be a central processing unit, a digital processor, a baseband processing chip, an ARM, and the like, which are not specifically limited herein.
  • the processing module 225 is configured to generate first downlink control information DCI, where the first DCI is used to instruct a terminal device to receive a first transmission block on a first time-frequency resource, and the first transmission block and the first code There is a mapping relationship between words, and the first mapping relationship is determined according to first information, and the first information includes at least one of the following: a first search space where the first DCI is located, a first search space corresponding to the first DCI A DCI format that scrambles the first wireless network identifier RNTI of the first DCI or the first bit field included in the first DCI;
  • the processing module 225 is configured to send the first DCI generated by the processing module to the terminal device.
  • the first bit field included in the first DCI is at least one of the following: a first modulation and coding mode MCS bit field, a first redundant version RV bit field, a first count downlink allocation indicator C-DAI, A total downlink indication T-DAI indicates the correspondence between the first transport block and the codeword.
  • a first bit field included in the first DCI is a first modulation and coding mode MCS bit field and / or a first redundant version RV bit field
  • an MCS index indicated by the first MCS bit field is a first MCS index
  • the RV indicated by the first RV bit field is the first RV value.
  • the sending module 221 is further configured to send a second DCI to the terminal device, where the second DCI is used to instruct the terminal device to receive a second transmission block on a second time-frequency resource.
  • There is a second mapping relationship between the two transmission blocks and the second codeword and the second mapping relationship is determined according to the second information, and the second information includes at least one of the following: a second search space where the second DCI is located A set, a second DCI format corresponding to the second DCI, a second RNTI that scrambles the second DCI, a second bit field included in the second DCI, the first codeword, or the first mapping relationship.
  • the processing module 225 is further configured to: the first bit field included in the first DCI is a first C-DAI bit field and a second C-DAI bit field, and according to the first C-DAI bit Field and the second C-DAI bit field to determine the first mapping relationship; or, the first bit field included in the first DCI is a first T-DAI bit field and a second T-DAI bit field, Determine the first mapping relationship according to the first T-DAI bit field and the second T-DAI bit field; or, the first bit field included in the first DCI is the first T-DAI bit field And a second T-DAI bit field, and a first C-DAI bit field and a second C-DAI bit field, according to the first C-DAI bit field and the first T-DAI bit field, and the A second C-DAI bit field and the second T-DAI bit field determine the first mapping relationship.
  • the apparatus further includes a receiving module 223, configured to receive first notification information, where the first notification information is used to notify the network device that the terminal device is capable of receiving time-frequency resources that are completely overlapped or partially overlapped. The ability to overlap two transport blocks.
  • the sending module 221 is further configured to send first configuration information, where the first configuration information is configured to indicate that the terminal device can simultaneously receive two transmission blocks whose time-frequency resources completely overlap or partially overlap.
  • the first search space set in which the first DCI is located and the second search space set in which the second DCI is located are a public search space set and a user-specific search space set, respectively; or
  • the first DCI format and the second DCI format corresponding to the second DCI are respectively DCI format 1_0 and DCI format 1_1; or the first RNTI scrambled by the first DCI and the second RNTI scrambled by the second DCI
  • the cell wireless network temporary identification C-RNTI and the modulation and coding mode cell wireless network temporary identification MCS-C-RNTI are respectively.
  • the PDCCH monitoring timing of the first physical downlink control channel PDCCH carrying the first DCI and the PDCCH monitoring timing of the second PDCCH carrying the second DCI are the same; or, the first PDCCH monitoring timing carrying the second DCI is the same; or The aggregation level of the first PDCCH of the DCI and the aggregation level of the second PDCCH carrying the second DCI are the same; or, the antenna port information indicated by the first DCI and the antenna port information indicated by the second DCI are different.
  • the port and the antenna port corresponding to the demodulation reference signal of the second transmission block are different; or the HARQ information corresponding to the first transmission block and the HARQ information corresponding to the second transmission block are carried on the same uplink channel.
  • the physical device corresponding to the processing module is a processor
  • the physical device corresponding to the receiving module is a receiver
  • the physical device corresponding to the sending module is a transmitter
  • the network device may perform the steps performed by the network device in the method for determining the correspondence between a transmission block and a codeword as shown in FIG. 4 and FIG. 8, which will not be repeated here. For details, refer to FIG. 4, FIG. 8, and related content.
  • the present application also provides a communication system including a terminal device and a network device, wherein the terminal device and the network device can communicate with each other in a wireless manner.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device in this embodiment includes a mobile phone, a tablet computer, a Personal Digital Assistant (PDA), a Point of Sale (POS), a vehicle-mounted computer, and the like.
  • PDA Personal Digital Assistant
  • POS Point of Sale
  • vehicle-mounted computer and the like.
  • FIG. 10 is a block diagram showing a part of the structure of the mobile phone 300 related to the embodiment of the present invention.
  • the mobile phone 300 includes an RF (Radio Frequency) circuit 310, a memory 320, other input devices 330, a display screen 340, a sensor 350, an audio circuit 360, an I / O subsystem 370, a processor 380, and a power supply 390. And other parts.
  • RF Radio Frequency
  • FIG. 10 does not constitute a limitation on the mobile phone, and may include more or fewer parts than shown in the figure, or combine certain parts, or disassemble certain parts, or Different component arrangements.
  • the display screen 340 belongs to a user interface (UI), and the mobile phone 300 may include a user interface more than illustrated or less.
  • UI user interface
  • the RF circuit 110 may be used for receiving and transmitting signals during information transmission and reception or during a call.
  • the downlink information of the base station is received and processed by the processor 380; in addition, the uplink data of the design is transmitted to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • the RF circuit 110 can also communicate with a network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to GSM (Global System, Mobile Communication), GPRS (General Packet Radio Service), and CDMA (Code Division Multiple Access) , Code Division Multiple Access), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution, Long Term Evolution), email, SMS (Short Messaging Service, Short Message Service) and so on.
  • GSM Global System, Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • email Short Messaging Service
  • SMS Short Message Service
  • SMS Short Message Service
  • the memory 320 may be configured to store software programs and modules.
  • the processor 380 runs the software programs and modules stored in the memory 320 to execute various functional applications and data processing of the mobile phone 300.
  • the memory 320 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store Data (such as audio data, phone book, etc.) created according to the use of the mobile phone 300.
  • the memory 320 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices. In a specific embodiment of the present application, the memory 320 may store a correspondence between a transmission block and a codeword.
  • the other input devices 330 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the mobile phone 300.
  • the other input devices 330 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, an joystick, and a light mouse (a light mouse is a touch-sensitive device that does not display a visual output). Or one or more of a touch sensitive surface formed by a touch screen).
  • the other input device 330 is connected to the other input device controller 371 of the I / O subsystem 370, and performs signal interaction with the processor 380 under the control of the other device input controller 371.
  • the display screen 340 may be used to display information input by the user or information provided to the user and various menus of the mobile phone 300, and may also accept user input.
  • the specific display screen 340 may include a display panel 341 and a touch panel 342.
  • the display panel 341 may be configured with a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • Touch panel 342 also known as touch screen, touch-sensitive screen, etc.
  • Touch panel 342 can collect user's contact or non-contact operation on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 342 Or the operation near the touch panel 342 may also include somatosensory operation; the operation includes single-point control operation, multi-point control operation and other operation types.), And the corresponding connection device is driven according to a preset program.
  • the touch panel 342 may include a touch detection device and a touch controller.
  • the touch detection device detects a user's touch orientation and posture, and detects signals brought by the touch operation, and transmits the signals to the touch controller; the touch controller receives touch information from the touch detection device and converts it into a processor capable of The processed information is then sent to the processor 380, which can receive commands from the processor 380 and execute them.
  • the touch panel 342 may be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave, and the touch panel 342 may also be implemented using any technology developed in the future.
  • the touch panel 342 may cover the display panel 341, and the user may display the display panel 341 (the display content includes, but is not limited to, a soft keyboard, a virtual mouse, virtual keys, icons, etc.) on the display panel 341.
  • An operation is performed on or near the covered touch panel 342.
  • the touch panel 342 detects an operation on or near the touch panel 342, it is transmitted to the processor 380 through the I / O subsystem 370 to determine user input, and then the processor 380
  • the inputs provide corresponding visual outputs on the display panel 341 through the I / O subsystem 370.
  • the touch panel 342 and the display panel 341 are implemented as two separate components to implement the input and input functions of the mobile phone 300, in some embodiments, the touch panel 342 and the display panel 341 may be integrated The input and output functions of the mobile phone 300 are realized.
  • the mobile phone 300 may further include at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 341 according to the brightness of the ambient light, and the proximity sensor may close the display panel 341 and the mobile phone 300 when the mobile phone 300 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 360, the speaker 361, and the microphone 362 can provide an audio interface between the user and the mobile phone 300.
  • the audio circuit 360 may transmit the received converted signal of the audio data to the speaker 361, and the speaker 361 converts it into a sound signal for output.
  • the microphone 362 converts the collected sound signal into a signal and is received by the audio circuit 360. It is converted into audio data, and then the audio data is output to the RF circuit 308 for transmission to, for example, another mobile phone, or the audio data is output to the memory 320 for further processing.
  • the I / O subsystem 370 is used to control input and output external devices, and may include other device input controllers 371, sensor controllers 372, and display controllers 373.
  • one or more other input control device controllers 371 receive signals from and / or send signals to other input devices 330.
  • the other input devices 330 may include physical buttons (press buttons, rocker buttons, etc.) , Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of a touch-sensitive surface formed by a touch screen). It is worth noting that the other input control device controller 371 may be connected to any one or more of the above devices.
  • the display controller 373 in the I / O subsystem 370 receives signals from the display screen 340 and / or sends signals to the display screen 340. After the display screen 340 detects a user input, the display controller 373 converts the detected user input into interaction with a user interface object displayed on the display screen 340, that is, realizes human-computer interaction.
  • the sensor controller 372 may receive signals from and / or send signals to one or more sensors 350.
  • the processor 380 is the control center of the mobile phone 300, and uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and / or modules stored in the memory 320, and calling data stored in the memory 320, Perform various functions and process data of the mobile phone 300, so as to monitor the mobile phone as a whole.
  • the processor 380 may include one or more processing units; preferably, the processor 380 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 380.
  • the processor 300 may be configured to determine that the first transmission block is mapped to the first codeword and the second transmission block is mapped to the second code according to the first information of the first DCI and / or the second DCI. word.
  • the mobile phone 300 further includes a power source 390 (such as a battery) for supplying power to various components.
  • a power source 390 such as a battery
  • the power source can be logically connected to the processor 180 through a power management system, so as to implement functions such as management of charging, discharging, and power consumption through the power management system.
  • the mobile phone 300 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the terminal device can perform the steps performed by the terminal device in the method for determining the correspondence between a transmission block and a codeword as shown in FIG. 4 and FIG. 8, which will not be repeated here. For details, please refer to FIG. 4, FIG. 8, and related content.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device in this embodiment may be described by using a base station as an example.
  • the base station includes: an antenna, a cyclic prefix (CP) remover, a serial-to-parallel (S / P) converter, a fast Fourier transform (FFT) processor, and demapping.
  • Converter inverse fast Fourier transform (IFFT) processor, parallel-to-serial (P / S) converter, demultiplexer (DEMUX), controller, control channel signal receiver, channel estimator and data demodulator and decoder.
  • the antenna may be an array antenna.
  • the array antenna may adopt a single-input single-output method, a single-input multiple-output method, a multiple-input single-output method, or a multiple-input multiple-output method.
  • the antenna may be configured to send the first DCI or the second DCI, the antenna may also be configured to send the first configuration information, and the antenna may also be configured to receive the terminal device. The first notification message sent.
  • the controller pair provides overall control. It also generates the control signals required by the DEMUX, IFFT processor, demapper, control channel signal receiver, channel estimator, and data demodulator and decoder. Control signals related to UL control information and data are provided to a control channel signal receiver and a data demodulator and decoder 2. A control channel signal indicating a sequence index and a time-domain cyclic shift value is provided to a channel estimator. The sequence index and time-domain cyclic shift value are used to generate a pilot sequence allocated to the UE. In a specific embodiment of the present application, the controller may store a correspondence between a transmission block and a codeword.
  • DEMUX demultiplexes the signals received from the P / S converter into control channel signals, data signals and pilot signals according to the timing information received from the controller.
  • the demapper extracts those signals from the frequency resources according to the timing information and frequency allocation information received from the controller.
  • the CP remover removes the CP from the received signal.
  • the S / P conversion converts a signal without a CP into a parallel signal, and the FFT processor processes the parallel signal through an FFT. After demapping in the demapper, the FFT signal is converted into a time signal in the IFFT processor.
  • the input / output size of the IFFT processor varies according to the control signal received from the controller.
  • a P / S converter serializes the IFFT signal, and DEMUX demultiplexes the serial signal into a control channel signal, a pilot signal, and a data signal.
  • the channel estimator obtains a channel estimate from a pilot signal received from the DEMUX.
  • the control channel signal receiver performs channel compensation on the control channel signal received from the DEMUX through channel estimation, and obtains control information sent by the UE.
  • the data demodulator and decoder perform channel compensation on the data signal received from the DEMUX through channel estimation, and then obtains the data sent by the UE based on the control information.
  • the network device may perform the steps performed by the network device in the method for determining the correspondence between a transmission block and a codeword as shown in FIG. 4 and FIG. 8, which will not be repeated here. For details, refer to FIG. 4, FIG. 8, and related content.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a storage disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a storage disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Abstract

本申请提供了一种传输块与码字的对应关系的确定方法、相关设备以及系统。所述方法包括:终端设备接收第一下行控制信息DCI,其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块;根据第一信息确定所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域。上述方法能够合理地确定传输块与码字之间的映射关系。

Description

传输块与码字的对应关系、相关设备以及系统 技术领域
本申请涉及通信领域,尤其涉及一种传输块与码字的对应关系、相关设备以及系统。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。
在新无线接入网(New RAN,NR)中,对于下行传输来说,大体执行如下的流程:网络设备向终端设备发送下行控制信息(downlink control information,DCI),其中,DCI指示了DCI中携带指示物理下行共享信道(physical downlink shared channel,PDSCH)占用的时域资源的长度、频域资源、调制方式等指示信息。终端设备接收到下行控制信息之后,根据DCI的指示在对应的时频资源上接收传输块,并将传输块映射到码字(Codeword,CW)上。然后,终端设备对CW进行解码并得到解码结果,并将解码结果通过DCI指示的物理上行控制信道(physical uplink control channel,PUCCH)或者物理上行共享信道(physical uplink shared channel,PUSCH)反馈给网络设备,以便于网络设备在获知终端设备接收错误后,可以快速进行数据重传以保证数据传输的可靠性。其中,如果终端设备对CW解码成功,则解码结果为确认信息(Acknowledgement,ACK),如果终端设备对CW解码不成功,则解码结果为否认信息(Negative Acknowledgement,NACK)。
但是,本领域的技术人员在长期研究中发现,如何合理确定传输块和码字之间的对应关系是一个尚未解决的问题。
发明内容
本申请实施例提供了一种传输块与码字的对应关系、相关设备以及系统,能够合理地确定传输块与码字之间的映射关系。
第一方面,提供了一种传输块与码字的对应关系的确定方法,包括:终端设备接收第一下行控制信息DCI,其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收 第一传输块,根据第一信息确定所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域。上述方案中,终端设备可以根据第一信息确定第一传输块映射到第一码字,从而实现了合理地确定传输块与码字之间的映射关系,正确地反馈传输块的解码结果。可以理解,当采用现有技术的方案时,如果终端设备收到多个传输块中的一个传输块,会默认将接收到的传输块映射到码字0上进行解码,并这个传输块的解码结果作为多个传输块的解码结果进行反馈,导致不同传输块的解码结果无法正确进行反馈,而当采用本申请的技术方案时,即使终端设备只接收到多个传输块中的一个传输块时,终端设备会根据第一信息确定第一传输块映射到第一码字进行解码,并第一传输块的解码结果只作为第一传输块的解码结果进行反馈,能够正确反馈传输块的解码结果。
在一个可能的设计中,所述终端设备可以通过至少两种方式确定第二传输块映射到第二码字:在第一种方式中,终端设备确定存在第二传输块,根据所述第一信息,确定所述第二传输块映射到第二码字,所述第二码字和所述第一码字不同;在第二种方式中,终端设备接收第二DCI,其中,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块;根据第二信息确定所述第二传输块映射到第二码字,其中,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域或所述第一码字。上述方案中,终端设备可以根据第一信息确定第一传输块映射到第一码字,第二传输块映射到第二码字,即使得不同DCI调度的不同的传输块映射到不同码字上,实现即使终端设备没有接收到指示第二传输块的DCI,也可以根据第一信息确定第二传输块对应的码字,终端设备可以单独反馈第一传输块对应的HARQ信息和第二传输块对应的HARQ信息,例如,第二传输块对应的HARQ信息为NACK,即解码结果为未成功,从而使得第一网络设备对第二传输块进行重传,例如,第一传输块对应的HARQ信息为ACK,即解码结果为成功,从而使得第二网络设备不用对第一传输块进行重传,因此提高系统资源的使用效率。所以,通过传输块与码字的对应关系的确定,可以提高HARQ信息的反馈准确性,进而提高系统资源的使用效率。
在另一个可能的设计中,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
在另一个可能的设计中,根据所述第一DCI包括的第一比特域确定所述第一传输块映射到第一码字至少包括以下几种:
在第一种方式中,在所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域的情况下,根据第一信息确定所述第一传输块映射到第一码字,包括:根据所述第一MCS比特域指示的MCS索引为第一MCS索引和/或所述第一RV比特域指示的RV为第一RV值,确定所述第一传输块映射到第一码字。在第一种方式中,终端设备可以利用第一DCI中已经存在的比特域确定第一传输块和第一码字之间的映射关系,无需增加额外的比特域,能够有效地提高传输效率,节省传输资源。
在第二种方式中,在所述第一信息为所述第一DCI包括的第一比特域的情况下,所述根据第一信息确定所述第一传输块映射到第一码字,包括:所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,以及所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字。在第二种方式中,终端设备即使有PDCCH没有检测到,也可以根据C-DAI比特域和/或T-DAI检测出来,即,可以通过检测到的PDCCH,确定未检测到的PDCCH对应的码字。
在另一个可能的设计中,网络设备至少还可以通过以下两种方式确定终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力,具体地,第一种方式,终端设备发送第一通知信息,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力;第二种方式,终端设备接收第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。上述两种方式中,当终端设备发送第一通知信息和/或终端设备接收第一配置信息时,终端设备使用本申请的方法来确定传输块映射到的码字,相反,当终端设备没有发送第一通知信息和/或终端设备没有接收第一配置信息时,使用现有技术的方法来确定传输块映射到的码字,从而使得网络设备可以根据终端设备的能力或当前的传输策略,决定终端设备的传输块映射到的码字确定方式。
在另一个可能的设计中,所述第一DCI所在的第一搜索空间集合和所述第二DCI所在的第二搜索空间集合分别为公共搜索空间集合和用户专用搜索空间集合;所述第一DCI对应的第一DCI格式和所述第二DCI对应的第二DCI格式分别为DCI格式1_0和DCI格式1_1;加扰所述第一DCI的第一RNTI和加扰所述第二DCI的第二RNTI分别为小区无线网络临时标识C-RNTI和调制编码方式小区无线网络临时标识MCS-C-RNTI。
在另一个可能的设计中,第一DCI和第二DCI之间满足以下条件中的一个或者多个:承载所述第一DCI的第一物理下行控制信道PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;或者,承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的;或者,所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的。上述方案中,当第一DCI和第二DCI之间满足上述条件时,网络设备可以通过不同PDCCH同时向终端设备传输相同的信息,从而提高数据传输的可靠性,或者,网络设备通过不同的PDCCH同时向终端设备传输不同的信息,从而降低数据传输的时延。
在另一个可能的设计中,第一传输块和第二传输块之间满足以下条件中的一个或者多个:所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠;或者,所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同;所述第一传输块对应的HARQ信息和所述第二传输块对应 的HARQ信息承载在同一个上行信道。上述方案中,当第一传输块和第二传输块之间满足上述条件时,网络设备可以通过不同PDCCH同时向终端设备传输相同的信息,从而提高数据传输的可靠性,或者,网络设备通过不同的PDCCH同时向终端设备传输不同的信息,从而降低数据传输的时延。
第二方面,提供了一种传输块与码字的对应关系的确定方法,包括:
网络设备生成第一下行控制信息DCI,其中,所述第一DCI用于指示终端设备在第一时频资源上接收第一传输块,所述第一传输块与第一码字存在映射关系,所述第一映射关系是根据第一信息确定的,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域,向所述终端设备发送所述第一DCI。
上述方案中,网络设备生成用于指示传输块映射到的码字的DCI,从而实现了合理地确定传输块与码字之间的映射关系,正确地反馈传输块的解码结果。可以理解,当采用现有技术的方案时网络设备生成的DCI不可以用于指示传输块映射到的码字,因此,传输块都会被默认映射到码字0上,当网络设备发送多个传输块,终端设备将无法向网络设备发送多个传输块的解码消息。特别的,当网络设备发送多个传输块,但是终端设备只接收了一个传输块时,如终端设备反馈一个解码消息,那么网络设备将无法获知其他传输块是否成功传输。当采用本申请的方案时,网络设备生成用于指示传输块映射到的码字的DCI,传输块会根据映射关系映射到对应的码字上,如果网络设备发送的多个传输块中一个或多个传输块丢失或者接收失败了,但是有部分的传输块被终端设备接收了,终端设备依然会向网络设备发送这些传输块接收失败的消息,解决了网络设备将无法获知其他传输块是否成功传输的问题。
在一个可能的设计中,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。在一具体的实施方式中,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,所述第一MCS比特域指示的MCS索引为第一MCS索引,所述第一RV比特域指示的RV为第一RV值。
在另一个可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送第二DCI,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块,所述第二传输块与第二码字存在第二映射关系,所述第二映射关系是根据第二信息确定的,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域、所述第一码字或所述第一映射关系。
在另一个可能的设计中,所述第一信息包括所述第一DCI包括的第一比特域,所述第一映射关系是根据第一信息确定的,包括:所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域,确定所述第一映射关系;或者,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域,确定所述第一映射 关系;或者,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第一T-DAI比特域,以及所述第二C-DAI和所述第二T-DAI,确定所述第一映射关系。
在另一个可能的设计中,网络设备至少还可以通过以下两种方式确定终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力,具体地,第一种方式,终端设备发送第一通知信息,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力;第二种方式,终端设备接收第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
在另一个可能的设计中,所述第一DCI所在的第一搜索空间集合和所述第二DCI所在的第二搜索空间集合分别为公共搜索空间集合和用户专用搜索空间集合;所述第一DCI对应的第一DCI格式和所述第二DCI对应的第二DCI格式分别为DCI格式1_0和DCI格式1_1;加扰所述第一DCI的第一RNTI和加扰所述第二DCI的第二RNTI分别为小区无线网络临时标识C-RNTI和调制编码方式小区无线网络临时标识MCS-C-RNTI。
在另一个可能的设计中,第一DCI和第二DCI之间满足以下条件中的一个或者多个:承载所述第一DCI的第一物理下行控制信道PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;或者,承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的;或者,所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的。
在另一个可能的设计中,第一传输块和第二传输块之间满足以下条件中的一个或者多个:所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠;或者,所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同;所述第一传输块对应的HARQ信息和所述第二传输块对应的HARQ信息承载在同一个上行信道。
第三方面,提供了一种传输块与码字的对应关系的确定装置,该装置具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,本装置的结构中包括接收器和处理器,所述接收器被配置为支持本装置接收上述网络设备为本装置发送的第一DCI,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块。所述处理器用于根据第一信息确定所述接收模块接收第一DCI所提示的所述第一传输块映射到第一码字。
第四方面,提供了一种传输块与码字的对应关系的确定装置,该装置具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,本装置的结构中包括处理器和发射器,所述处理器被配置为生成第一DCI。所述发射器用于向所述终端设备发送所述处理模块生成的所述第一DCI。本装置还可以包括存储器,所述存储器用于与处理器耦合,其保存本装置必要的程序指令和 数据。
第五方面,提供了一种终端设备,包括:处理器和存储器,所述处理器执行所述存储器中的代码执行如第一方面任一项所述的方法。
第六方面,提供了一种网络设备,包括:处理器和存储器,所述处理器执行所述存储器中的代码执行如第二方面任一项所述的方法。
第七方面,提供一种计算机非瞬态存储介质,包括指令,当所述指令在终端设备上运行时,使得所述终端设备执行如第一方面任一项所述的方法。
第八方面,提供了一种计算机非瞬态存储介质,包括指令,当所述指令在网络设备上运行时,使得所述网络设备执行如第二方面任一项所述的方法。
第九方面,提供了一种通信系统,包括终端设备和网络设备,其中,所述终端设备和所述网络设备之间可以进行通信;
所述终端设备用于执行如第一方面任一项所述的方法;
所述网络设备用于执行如第二方面任一项所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请涉及的一种多发射接收点场景的示意图;
图2是本申请涉及的一种传输块和码字之间的对应映射关系示意图;
图3是本申请涉及的一种通信系统的结构示意图;
图4是本申请提供的一种传输块与码字的对应关系的确定方法的流程示意图;
图5是本申请涉及的一种DCI的结构示意图;
图6是本申请涉及的C-DAI和T-DAI的使用示意图;
图7是本申请涉及的通过C-DAI和T-DAI的确定缺失的传输块的示意图
图8是本申请实施例提供的另一种传输块与码字的对应关系的确定方法的流程示意图;
图9是本申请提供的一种通信系统的结构示意图;
图10是本申请提供的一种终端设备的结构示意图;
图11是本申请提供的一种网络设备的结构示意图。
具体实施方式
为了提高NR在小区边缘用户的速率体验,如图1所示,引入了多发射接收点(Tx/Rx point,TRP)作为网络设备的场景。其中,发射接收点可以是天线、射频单元、毫微微基站、微微基站、微基站、城市基站等等,此处不作具体限定。在一个典型的场景中,第一TRP 110通过第一物理下行控制信道(physical downlink control channel,PDCCH)上向终端设备120发送第一DCI,其中,第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块;第二TRP 130通过第二PDCCH上向终端设备120发送第二下行控制信息DCI,其中,第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块。其中,第一时 频资源和第二时频资源可以是重叠的,也可以是不重叠的。
如图2所示,第一传输块和第二传输块将一直映射到第一CW中,换句话来说,第一传输块和第二传输块将一直映射到同一个CW中。由于终端设备对一个CW进行解码只会得到一个解码结果,所以,终端设备对第一CW进行解码并得到第一解码结果之后,会将第一解码结果反馈给第一TRP和/或第二TRP。因此,如果终端设备对第一传输块解码失败,对第二传输块解码成功,则受限于现有条件,终端设备可能只能反馈NACK,从而导致第一TRP将第一传输块进行重传,第二TRP也将第二传输块进行重传。可以看出,图2所示的传输块和码字的对应关系确定方法是不合理的。
为了解决上述问题,本申请提出了一种传输块与码字的对应关系的确定方法、相关设备以及系统,能够合理地确定传输块和码字之间的对应关系。
本申请可以应用于5GNR系统,也可以应用于其它的通信系统,只要该通信系统中存在其中一个实体需要发送传输方向指示信息,另一个实体需要接收该指示信息,并根据该指示信息确定一定时间内的传输方向。
在一个具体的实施例中,如图3所示,网络设备和终端设备1~终端设备6组成一个通信系统。在该通信系统中,终端设备1~终端设备6可以发送上行数据给基站,网络设备需要接收终端设备1~终端设备6发送的上行数据。此外,终端设备4~终端设备6也可以组成一个通信系统。在该通信系统中,网络设备可以发送下行信息给终端设备1、终端设备2、终端设备等;终端设备5也可以发送下行信息给终端设备4、终端设备6。
网络设备可以是网络侧的一种用于发射或接收信号的实体,如新一代基站(new generation Node B,gNodeB)。网络设备还可以是用于与移动设备通信的设备,网络设备可以是无线局域网(Wireless LAN,WLAN)中的接入点(Access Point,AP),全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备,或NR系统中的gNodeB等。另外,在本发明实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是用户侧的一种用于接收或发射信号的实体,如新一代用户设备(new generation UE,gUE)。终端设备也可以称为终端设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协 议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,新无线(New Radio,NR)通信系统中的终端设备等。作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
如图4所示,图4是本申请实施例提供的一种传输块与码字的对应关系的确定方法的流程示意图。如图4所述,本申请实施例的传输块与码字的对应关系的确定方法包括如下步骤:
S101:第一网络设备生成第一DCI。其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块。在一具体的实施例中,所述第一DCI承载于第一PDCCH信道中,所述第一传输块承载于第一下行信道中。可选地,第一下行信道可以为第一PDSCH。
S102:第一网络设备向终端设备发送第一DCI。相应地,所述终端设备接收所述第一网络设备发送的所述第一DCI。
S103:第二网络设备生成第二DCI。其中,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块。
在一具体的实施例中,所述第二传输块承载于第二下行信道中。
S104:所述第二网络设备向所述终端设备发送所述第二DCI。相应地,所述终端设备接收所述第二网络设备发送的所述第二DCI。
在一具体的实施例中,所述第二DCI承载于第二PDCCH信道中,所述第二传输块承载于第二下行信道中。例如,所述第二下行信道可以为第二PDSCH。
S105:所述终端设备根据第一信息确定所述第一传输块映射到第一码字。
示例性的,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合,所述第一DCI对应的第一DCI格式,加扰所述第一DCI的第一无线网络标识RNTI和所述第一DCI包括的第一比特域。
示例性的,所述终端设备可以根据所述第一信息确定所述第二传输块映射到第二码字。
S106:所述终端设备根据第二信息确定所述第二传输块映射到第二码字,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合,所述第二DCI对应的第二DCI格式,加扰所述第二DCI的第二无线网络标识RNTI和所述第二DCI包括的第二比特域。可选地,终端设备根据第二信息确定所述第一传输块映射到第一码字。
可以理解,上述例子中是以步骤S103和步骤S104在步骤S101和步骤S102之后执行为例进行说明,但是,在实际应用中,上述步骤S103和步骤S104可以和步骤S101和步骤 S102同时执行,或者,上述步骤S103和步骤S104可以在步骤S101和步骤S102之前执行,此处不作具体限定。
在本申请实施例中,终端设备会出现映射到相同码字对应的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)信息冲突问题。HARQ信息包括确认应答信息(Acknowledgment,ACK)和/或否认应答信息(Negative Acknowledgement,NACK)。具体地,终端设备可以根据第一信息确定第一传输块映射到第一码字,第二传输块映射到第二码字,即可以使不同DCI调度的不同的传输块映射到不同码字上,实现终端设备可以单独反馈第一传输块对应的HARQ信息和第二传输块对应的HARQ信息,若第一传输块对应的HARQ信息为NACK,即解码结果为未成功,从而使得第一网络设备对第一传输块进行重传,与此同时若第二传输块对应的HARQ信息为ACK,即解码结果为成功,从而使得第二网络设备不用对第二传输块进行重传,因此提高系统资源的使用效率。所以,通过传输块与码字的对应关系的确定,可以提高HARQ信息的反馈准确性,进而提高系统资源的使用效率。
在本申请具体的实施例中,第一网络设备可以是图1所示的第一TRP,所述第二网络设备可以是图2所示的第二TRP,因此,第一网络设备和第二网络设备同样存在图1所示的第一TRP和第二TRP之间的问题。
在本申请具体的实施例中,第一DCI还用于指示第一下行信道的传输信息,例如第一下行信道的传输信息包括以下至少一种:承载第一传输块的第一下行信道的时频资源信息,第一传输块的调制编码方式信息,第一传输块的冗余版本信息和第一传输块对应的参考信号信息等。可以理解,第一DCI还可以用于承载其他的第一下行信道的传输信息,此处不作具体限定。此处的第一下行信道的数量可以是一个也可以是多个,此处不作具体限定。
在本申请具体的实施例中,第二DCI还用于指示第二下行信道的传输信息,例如承载第二传输块的第二下行信道的时频资源信息,第二传输块的调制编码方式信息,第二传输块的冗余版本信息和第二传输块对应的参考信号信息等。可以理解,第二DCI还可以用于承载其他的第二下行信道的传输信息,此处不作具体限定。此处的第二下行信道的数量可以是一个也可以是多个,此处不作具体限定。
在本申请具体的实施例中,时频资源信息包括时域信息和/或频域信息。所述频域资源可以是一个或多个资源块(resource block,RB),也可以是一个或多个资源单元(resource element,RE),也可以是一个或多个载波/服务小区,也可以是一个或多个部分带宽(bandwidth part,BWP),也可以是一个或多个载波上的一个或多个BWP上的一个或多个RB,也可以是一个或多个载波上的一个或多个BWP上的一个或多个RB上的一个或多个RE。时域资源可以是一个或多个时隙,也可以是一个或多个时隙上的一个或多个符号。符号可以是正交频分复用符号(orthogonal frequency division multiplexing,OFDM)。其中OFDM符号可以使用转换预编码(transform precoding),也可以不使用transform precoding。如果使用transform precoding,又可以被称为单载波频分复用(single carrier–frequency division multiplexing,SC-FDM)。
在本申请具体的实施例中,调制编码方式信息包括调制方式和编码速率。其中调制方式包括以下中的至少一个:二进制相移键控(binary phase shift keying,BPSK),正交相移 键控(quadrature phase shift keyin,QPSK),16正交振幅调制(quadrature amplitude modulation,QAM),64QAM和256QAM。其中调制方式一般由调制阶数表示,调制阶数1对应于pi/2BPSK,调制阶数2对应于QPSK,调制阶数4对应于16QAM,调制阶数6对应于64QAM,调制阶数8对应于256QAM。编码速率*1024的取值包括大于等于30,且小于等于948的值。
在本申请具体的实施例中,冗余版本信息包括{0,1,2,3}中的一个。
在本申请具体的实施例中,参考信号信息包括天线端口号。
在本申请具体的实施例中,高层信令可以指高层协议层发出的信令,高层协议层为物理层以上的每个协议层中的至少一个协议层。其中,高层协议层具体可以为以下协议层中的至少一个:媒体接入控制(Medium Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层、无线资源控制(Radio Resource Control,RRC)层和非接入层(Non Access Stratum,NAS)。
在本申请具体的实施例中,终端设备根据第一信息确定所述第一传输块映射到第一码字的方式,和/或,终端设备根据第二信息确定所述第二传输块映射到第二码字的方式至少包括以下几种:
第一种方式中,终端设备根据所述第一DCI包括的第一比特域确定所述第一传输块映射到第一码字,和/或,终端设备根据所述第二DCI包括的第二比特域确定所述第二传输块映射到第二码字。其中,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。所述第二DCI包括的第二比特域为以下至少一种:第二MCS比特域,第二RV比特域,第二C-DAI,第二T-DAI和第二传输块与码字的对应关系指示域。
在一具体的实施例中,如图5所示,DCI可以包括一个或多个比特域,例如,在配置终端设备最多支持的码字数为2的情况下,那么多个比特域可以包括:1bit的DCI格式比特域,多个bit的频域资源比特域,5bit的第一MCS比特域,2bit的第一RV比特域,5bit的第二MCS比特域,2bit的第二RV比特域,4bit的DAI比特域(包括C-DAI和T-DAI)、3~4bit的HARQ-ID比特域、2bit的TPC command for PUCCH比特域等等。应理解,上述比特域仅仅作为一种示例,不应构成具体限定。需要特别说明的是,本发明实施例中,多个比特域可以包括2个比特域或者2个以上的比特域。
具体地,第一种方式的具体实现方式至少包括以下几种,下面将分别进行详细的介绍。
(1)终端设备根据所述第一DCI包括的所述第一MCS比特域和/或第一RV比特域确定所述第一传输块映射到第一码字,和/或,终端设备根据所述第二DCI包括的第二MCS比特域和/或第二RV确定所述第二传输块映射到第二码字。具体地,
可选的,终端设备在任一个服务小区上被高层信令配置最多支持的码字数为2。
其中,需要说明的是,上述方案中所涉及的比特域和/或RV比特域的取值可以是特定值,也可以是非特定值。特定值可以是高层信令配置的,也可以是预先定义的。可以理解的是,第一调MCS比特域的取值用于指示第一MCS索引,第一RV比特域的取值用于指示第一RV,第二MCS比特域的取值用于指示第二MCS索引,第二RV比特域的取值用于 指示第二RV。例如,特定值可以是MCS索引=26且RV=1,或者是MCS索引=26且RV=2,或者是MCS索引=27且RV=1,或者是MCS索引=28且RV=1等等。例如,特定值可以是MCS索引=26,或者27,或者28,或者29,或者30,或者31等等。例如,特定值可以是RV=1,或者2,或者3,或者0等等。应理解,上述特定值仅仅是用于举例,不应构成具体限定。
在一具体的实施例中,例如,当所述第一MCS比特域和/或第一RV比特域的取值是特定值时,终端设备根据所述第一MCS比特域和/或第一RV比特域的取值确定所述第一传输块映射到第一码字。如第一传输块对应传输块1(transport block 1)和第二传输块对应传输块2(transport block 2),所述第一码字为传输块2对应的码字。如第一传输块对应传输块2和第二传输块对应传输块1,所述第一码字为传输块1对应的码字。示例性的,所述第二MCS比特域和/或第二RV比特域的取值是非特定值。当所述第一MCS比特域和/或第一RV比特域的取值是非特定值时,终端设备根据所述第一MCS比特域和/或第一RV比特域的取值确定所述第一传输块映射到第一码字。如第一传输块对应传输块1和第二传输块对应传输块2,所述第一码字为传输块1对应的码字。如第一传输块对应传输块2和第二传输块对应传输块1,所述第一码字为传输块2对应的码字。示例性的,所述第二MCS比特域和/或第二RV比特域的取值是特定值。同理可知,终端设备根据所述第二MCS比特域和/或第二RV比特域的取值是特定值或非特定值,确定所述第二传输块映射到第二码字,具体请参见终端设备根据所述第一MCS比特域和/或第一RV比特域的取值是特定值或非特定值,确定所述第一传输块映射到第一码字的内容,此处不再赘述。
示例性的,通过高层信令或预先定义传输块1和传输块2分别与码字0(codeword 0)和码字1(codeword 1)对应的映射关系。例如:映射关系可以是:传输块1对应的码字为码字0,传输块2对应的码字为码字1;或者,传输块1对应的码字为码字1,传输块2对应的码字为码字0,本申请并不限定传输块与码字的映射关系,只要终端设备可以获取传输块和码字的对应关系都属于本申请所要保护的范围。
例如,在高层信令或预先定义传输块1对应的码字为码字0,传输块2对应的码字为码字1的情况。假设第一传输块对应传输块1和第二传输块对应传输块2,终端设备根据第一MCS比特域和/或第一RV比特域的取值是非特定值,确定第一传输块采用传输块1的对应的码字0作为第一码字。终端设备根据第二MCS比特域和/或第二RV比特域的取值是非特定值,确定第二传输块采用传输块2对应的码字1作为第二码字。或者,终端设备根据第一MCS比特域和/或第一RV比特域的取值是特定值,确定第一传输块采用传输块2的对应的码字1作为第一码字。终端设备根据第二MCS比特域和/或第二RV比特域的取值是特定值,确定第二传输块采用传输块1对应的码字0作为第二码字。
又例如,在高层信令或预先定义传输块1对应的码字为码字0,传输块2对应的码字为码字1的情况。假设第一传输块对应传输块2和第二传输块对应传输块1,终端设备根据第一MCS比特域和/或第一RV比特域的取值是非特定值,确定第一传输块采用传输块2的对应的码字1作为第一码字。终端设备根据第二MCS比特域和/或第二RV比特域的取值是非特定值,确定第二传输块采用传输块1对应的码字0作为第二码字。或者,终端设备根据第一MCS比特域和/或第一RV比特域的取值是特定值,确定第一传输块采用传输块1 的对应的码字0作为第一码字。终端设备根据第二MCS比特域和/或第二RV比特域的取值是特定值,确定第二传输块采用传输块2对应的码字1作为第二码字。
(2)终端设备根据第一计数下行分配指示(Count-Downlink Assignment Index,C-DAI)比特域和/或第一总共下行分配指示(Total-Downlink Assignment Index,T-DAI)比特域确定第一传输块映射到第一码字,和/或,终端设备根据第二C-DAI比特域和/或第二T-DAI比特域确定第二传输块映射到第二码字。
具体的,C-DAI是按照先服务小区(载波)后PDCCH监听时机的增加,即先按照载波索引从小到大,再按照PDCCH监听时机从最早的时机到最后的时机。物理含义:C-DAI用于指示当前PDSCH调度对应的计数索引号。T-DAI是按照每个PDCCH监听时机进行增加。物理含义为:T-DAI用于指示截止到当前PDCCH监听时机对应的已调度PDSCH总数。
C-DAI和T-DAI是承载在PDSCH对应的下行控制信息DCI。如果ACK/NACK反馈是在上行共享信道PUSCH,T-DAI还承载于PUSCH对应的下行控制信息DCI。为了节省DCI中的比特值,所以C-DAI和T-DAI都是2bit,代表的四个状态{00,01,10,11}表达的累计计数取值可以分别为{1,2,3,4}。如果超过4,就可以循环计数,即{1,2,3,4,5(1),6(2),7(3)...}。具体可以由公式表示:mod(Y-1,4)+1=1其中,Y为实际累计的计数值,比如上述1至7,Y为循环取模后的数值,即对应上述{1,2,3,4,1,2,3}。例如Y=1、5、9…的时候,C-DAI的取值为1,T-DAI的取值为1。例如,如表1所示,
表1 C-DAI或T-DAI的循环计数表
Figure PCTCN2019107478-appb-000001
下面将详细说明C-DAI和T-DAI的使用方法,如图6所示,在一个PDCCH监听时机上一共有2个PDSCH的调度的情况下,
调度PDSCH 1_1的DCI中承载的(C-DAI的取值)/(T-DAI的取值)为1/2。C-DAI的取值为1代表目前这个PDSCH为第1个调度的PDSCH,T-DAI的取值为2代表截止目前的PDCCH监听时机上一共有2个PDSCH的调度。
调度PDSCH 2_1的DCI中承载的(C-DAI的取值)/(T-DAI的取值)为2/2。C-DAI的取值为2代表目前这个PDSCH为第2个调度的PDSCH,T-DAI的取值为2代表截止目前的PDCCH监听时机上一共有2个PDSCH的调度。
调度PDSCH 1_2的DCI中承载的(C-DAI的取值)/(T-DAI的取值)为3/4。C-DAI的取值为3代表目前这个PDSCH为第3个调度的PDSCH,T-DAI的取值为4代表截止目前的PDCCH监听时机上一共有4个PDSCH的调度。
调度PDSCH 2_1的DCI中承载的(C-DAI的取值)/(T-DAI的取值)为4/4。C-DAI的取值为4代表目前这个PDSCH为第4个调度的PDSCH,T-DAI的取值为4代表截止目 前的PDCCH监听时机上一共有4个PDSCH的调度。
如图7所示,假设其中一个未接收到PDCCH的情况出现,从图7可以看出来,终端设备知道在PDCCH监听时机0上应该有两个PDSCH(1/2和2/2),但仅仅收到一个1/2,这样UE就能判断出来它没有接收到的是2/2。当后续终端设备收到4/4,证明UE知道之前PDCCH监听时机0和PDCCH监听时机1上应该收到4个PDSCH,除去已知的PDCCH监听时机0上有两个(一个接收到1/2,一个判断出来没有接收到2/2),那么应该还丢失了一个3/4。
终端设备根据第一C-DAI比特域和/或者第二T-DAI比特域确定第一传输块映射到第一码字,和/或,终端设备根据第二C-DAI比特域和/或第二T-DAI比特域确定第二传输块映射到第二码字,还可以细分为以下几种方式:
(a)终端设备根据第一C-DAI比特域的取值和第二C-DAI比特域的取值,确定第一传输块映射到第一码字,和/或,确定第二传输块映射到第二码字。
可选的,终端设备比较第一C-DAI比特域的取值和第二C-DAI比特域的取值。示例性的,第一C-DAI比特域的取值大于第二C-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字0。第一C-DAI比特域的取值小于第二C-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字1。或者,示例性的,第一C-DAI比特域的取值大于第二C-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字1。第一C-DAI比特域的取值小于第二C-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字0。其中,C-DAI比特域的取值较大和较小对应码字可以是预先定义或高层信令配置的。
示例性的,第一C-DAI的取值为1和第二C-DAI的取值为2时,终端设备确定第一传输块映射到第一码字为码字0,和/或,终端设备确定第二传输块映射到第二码字为码字1。
(b)终端设备根据第一T-DAI比特域的取值和第二T-DAI比特域的取值,确定第一传输块映射到第一码字,和/或,确定第二传输块映射到第二码字。
可选的,终端设备比较第一T-DAI比特域的取值和第二T-DAI比特域的取值。示例性的,第一T-DAI比特域的取值大于第二T-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字0。第一T-DAI比特域的取值小于第二T-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字1。或者,示例性的,第一T-DAI比特域的取值大于第二T-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字1。第一T-DAI比特域的取值小于第二T-DAI比特域的取值,确定第一传输块映射到第一码字,例如码字0。其中,T-DAI比特域的取值较大和较小对应码字可以是预先定义或高层信令配置的。
示例性的,第一T-DAI的取值为2和第二T-DAI的取值为4时,终端设备确定第一传输块映射到第一码字,和/或,终端设备确定第二传输块映射到第二码字。
(c)终端设备根据第一C-DAI比特域和第二C-DAI比特域的取值,以及第一T-DAI比特域和第二T-DAI比特域的取值,确定第一传输块映射到第一码字,和/或,确定第二传输块映射到第二码字。
可选的,终端设备先比较第一T-DAI比特域的取值和第二T-DAI比特域的取值。如第一T-DAI比特域的取值和第二T-DAI比特域的取值不同,则终端设备执行方式(b)。如第一T-DAI比特域的取值和第二T-DAI比特域的取值相同,则终端设备执行方式(a)。
示例性的,第一C-DAI比特域的取值为1,第一T-DAI比特域的取值为2,第二C-DAI比特域的取值为2,第一T-DAI比特域的取值为2。由于第一T-DAI比特域的取值和第二T-DAI比特域的取值相同,所述终端设备可以根据方式(a),即终端设备可以根据第一C-DAI比特域的取值和第二C-DAI比特域的取值,确定第一传输块映射到第一码字,和/或,确定第二传输块映射到第二码字。
示例性的,第一C-DAI比特域的取值为1,第一T-DAI比特域的取值为2,第二C-DAI比特域的取值为3,第一T-DAI比特域的取值为4。由于第一T-DAI比特域的取值和第二T-DAI比特域的取值不同,则终端设备执行方式(b),即终端设备可以根据第一T-DAI比特域的取值和第二T-DAI比特域的取值,确定第一传输块映射到第一码字,和/或,确定第二传输块映射到第二码字。
应理解,上述举例仅仅是用于说明,不应构成具体限定,在其他的实施方式中,可以根据其他的C-DAI比特域的取值和T-DAI比特域的取值大小确定传输块与码字的对应关系。其中C-DAI和T-DAI取值较大和较小对应码字可以是预先定义或高层信令配置的。例如,对应关系可以是:当第一T-DAI比特域的取值和第二T-DAI比特域的取值不同时,取值较小的T-DAI对应的传输块映射到码字0,取值较大的T-DAI对应的传输块映射到码字1。当第一T-DAI比特域的取值和第二T-DAI比特域的取值相同时,取值较小的C-DAI对应的传输块映射到码字0,取值较大的C-DAI对应的传输块映射到码字1。又例如,对应关系可以是:当第一T-DAI比特域的取值和第二T-DAI比特域的取值不同时,取值较小的T-DAI对应的传输块映射到码字1,取值较大的T-DAI对应的传输块映射到码字0。当第一T-DAI比特域的取值和第二T-DAI比特域的取值相同时,取值较小的C-DAI对应的传输块映射到码字1,取值较大的C-DAI对应的传输块映射到码字0。又例如,对应关系可以是:当第一T-DAI比特域的取值和第二T-DAI比特域的取值不同时,取值较小的T-DAI对应的传输块映射到码字1,取值较大的T-DAI对应的传输块映射到码字0。当第一T-DAI比特域的取值和第二T-DAI比特域的取值相同时,取值较小的C-DAI对应的传输块映射到码字0,取值较大的C-DAI对应的传输块映射到码字1。即C-DAI和T-DAI取值大小与码字的对应关系可以相同也可以不同,本申请并不限定。
由于C-DAI和T-DAI的作用是用于识别PDCCH是否丢失,所以即使终端设备没有接收到第二DCI,那么根据终端设备可以根据C-DAI和/或T-DAI判断丢失的第二DCI对应的C-DAI和/或T-DAI,进而可以判断第一传输块映射的第一码字。因此,本发明利用DAI隐式判断传输块映射的码字,不仅可以解决现有技术不同传输块映射到同一个码字的问题,还可以解决PDCCH漏检的问题,提高了系统传输的可靠性。
(3)终端设备根据所述第一DCI包括的所述第一传输块与码字的对应关系指示域确定所述第一传输块映射到第一码字,和/或,终端设备根据所述第二传输块与码字的对应关系指示域确定所述第二传输块映射到第二码字。
可选的,第一传输块与码字的对应关系指示域或第二传输块与码字的对应关系指示域是DCI的扩展比特域,该扩展比特域可以是1比特、2比特、3比特或者大于3比特,此处不作具体限定。
具体的,第一传输块与码字的对应关系指示域或第二传输块与码字的对应关系指示域 用于指示一个传输块与一个码字之间的映射关系,例如第一传输块与码字的对应关系指示域为1比特,当第一DCI包括的第一传输块与码字的对应关系指示域的值为0时,则终端设备确定第一传输块映射到第一码字,例如所述第一码字为码字0。当第一DCI包括的第一传输块与码字的对应关系指示域的值为1时,则终端设备确定第一传输块映射到第一码字,例如所述第一码字为码字1。或者,当第一DCI包括的第一传输块与码字的对应关系指示域的值为0时,则终端设备确定第一传输块映射到第一码字,例如所述第一码字为码字1。当第一DCI包括的第一传输块与码字的对应关系指示域的值为1时,则终端设备确定第一传输块映射到第一码字,例如所述第一码字为码字0。同理的,终端设备根据第二DCI包括的第二传输块与码字的对应关系指示域的值,确定第二传输块映射到第二码字,此处不再赘述。
具体的,第一传输块与码字的对应关系指示域或第二传输块与码字的对应关系指示域用于指示至少两个传输块与至少两个码字之间的映射关系,例如第一传输块与码字的对应关系指示域为2比特,如果第一DCI包括的第一传输块与码字的对应关系指示域的值为01,则确定第一传输块映射到第一码字;如果第一DCI包括的码字指示域的值为10,则确定第二传输块映射到第二码字;如果第一DCI包括的码字指示域的值为11,则确定第一传输块映射到第一码字例如码字0,并且,第二传输块映射到第二码字例如码字1;如果第二DCI包括的码字指示域的值为11,则确定第一传输块映射到第一码字例如码字1,并且,第二传输块映射到第二码字例如码字0。进一步的,第一传输块与码字的对应关系指示域还可以指示第一传输块和第二传输块映射到同一个码字上,例如第一DCI包括的码字指示域的值为00,确定第一传输块和第二传输块映射到第一码字例如码字0。可以理解的是,此时两个传输块承载的相同的数据包信息。
可选的,高层信令或预先定义的传输块与码字的对应关系。终端设备获取传输块与码字的对应关系。
因此,本发明利用DCI中传输块与码字的对应关系指示域的显式指示传输块映射的码字,可以解决现有技术不同传输块映射到同一个码字的问题,提高系统传输效率。
在第二种方式中,终端设备根据所述第一DCI所在的第一搜索空间集合确定所述第一传输块映射到第一码字,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合确定所述第二传输块映射到第二码字。
其中,搜索空间包括公共搜索空间(common search space,CSS)或用户专用搜索空间(UE specific search space,USS)。RNTI包括系统信息RNTI(system information-RNTI,SI-RNTI)、临时小区RNTI(temporary cell-RNTI,TC-RNTI)、寻呼RNTI(paging-RNTI,P-RNTI)、小区RNTI(cell-RNTI,C-RNTI)、配置调度RNTI(configured scheduling-RNTI,CS-RNTI)和调制编码方式小区RNTI(modulation and coding scheme-cell-RNTI,MCS-C-RNTI)。
搜索空间集合为终端设备可以监听的一组候选PDCCH组成的集合。其中,搜索空间集合(search space set)可以包括公共搜索空间集合(common search space set,CSSS)以及用户专用搜索空间集合(UE-specific search space set,UE-SSS)。每个PDCCH可以使用 RNTI对PDCCH的CRC进行加扰,终端设备也可以通过RNTI来区别不同的PDCCH信道。一个用户可以在一个或多个下列搜索空间集合监听候选PDCCH。
公共搜索空间集合可以包括以下Type0-PDCCH公共搜索空间集合、Type0A-PDCCH公共搜索空间集合、Type1-PDCCH公共搜索空间集合、Type2-PDCCH公共搜索空间集合或Type3-PDCCH公共搜索空间集合中的一种或者多种:
Type0-PDCCH公共搜索空间集合中的候选PDCCH是被高层信令(例如searchspacezero)配置的,且加扰PDCCH的RNTI是SI-RNTI。
Type0A-PDCCH公共搜索空间集合中的候选PDCCH是被高层信令(例如searchspace-osi)配置的,且加扰PDCCH的RNTI是SI-RNTI。
Type1-PDCCH公共搜索空间集合中的候选PDCCH是高层信令(例如ra-searchspace)配置的,且加扰PDCCH的RNTI是RA-RNTI或TC-RNT。
Type2-PDCCH公共搜索空间集合中的候选PDCCH是高层信令(例如pagingsearchspace)配置的,且加扰PDCCH的RNTI是P-RNTI。
Type3-PDCCH公共搜索空间集合中的候选PDCCH是高层信令(例如searchspace)配置的,且加扰PDCCH的RNTI是C-RNTI、CS-RNTI或MCS-C-RNTI等其他RNTI加扰。
用户专用搜索空间集合中的候选PDCCH是高层信令(例如searchspace)配置的,且加扰PDCCH的RNTI是C-RNTI、CS-RNTI或MCS-C-RNTI。
可选的,高层信令或预先定义的搜索空间集合和码字的对应关系。终端设备获取搜索空间集合和码字的对应关系。
具体地,第二种方式的具体实现方式至少包括以下几种,下面将分别进行详细的介绍。
(1)例如公共搜索空间集合对应码字0,用户专用搜索空间集合对应码字1。或者,例如公共搜索空间集合对应码字1,用户专用搜索空间集合对应码字0。终端设备根据所述第一DCI所在的第一搜索空间集合为公共搜索空间集合,确定所述第一传输块映射到第一码字,例如第一码字为码字0,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为用户专用搜索空间集合,确定所述第二传输块映射到第二码字,例如第二码字为码字1。相反地,终端设备也可以根据所述第一DCI所在的第一搜索空间集合为用户专用搜索空间集合,确定所述第一传输块映射到第一码字,例如第一码字为码字1,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为公共专用搜索空间集合,确定所述第二传输块映射到第二码字,例如第二码字为码字0。
(2)例如第一公共搜索空间集合对应码字0,第二公共搜索空间集合对应码字1。或者,例如第一公共搜索空间集合对应码字1,第二公共搜索空间集合对应码字0。终端设备根据所述第一DCI所在的第一搜索空间集合为第一公共搜索空间集合,例如:Type0-PDCCH等等,确定所述第一传输块映射到第一码字,例如第一码字为码字0,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为第二公共搜索空间集合,例如:Type1-PDCCH等等;确定所述第二传输块映射到第二码字,例如第一码字为码字1。相反地,终端设备也可以根据所述第一DCI所在的第一搜索空间集合为第二公共搜索空间集合,确定所述第一传输块映射到第一码字,例如第一码字为码字1,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为第一公共专用搜索空间集合,确定所述第二传输块映射到第二码 字,例如第一码字为码字0。
(3)例如第一用户专用搜索空间集合对应码字0,第二用户专用搜索空间集合对应码字1。或者,例如第一用户专用搜索空间集合对应码字1,第二用户专用搜索空间集合对应码字0。终端设备根据所述第一DCI所在的第一搜索空间集合为第一用户专用搜索空间集合,确定所述第一传输块映射到第一码字,例如第一码字为码字0,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为第二用户专用搜索空间集合,确定所述第二传输块映射到第二码字,例如第一码字为码字1。相反地,终端设备也可以根据所述第一DCI所在的第一搜索空间集合为第二用户专用搜索空间集合,确定所述第一传输块映射到第一码字,例如第一码字为码字1,和/或,终端设备根据所述第二DCI所在的第二搜索空间集合为第一用户专用专用搜索空间集合,确定所述第二传输块映射到第二码字,例如第一码字为码字0。
应理解,例如第一搜索空间集合对应码字0,第二搜索空间集合对应码字1。或者,例如第一搜索空间集合对应码字1,第二搜索空间集合对应码字0。上述搜索空间集合的举例仅仅作为举例,不应构成具体限定,当3G系统、4G系统、5G系统的甚至未来演进的系统中出现了新的搜索空间,也可以采用上述方式确定传输块与码字之间的映射关系。
在这种方式中,即使有PDCCH没有检测到,也由于上述对应关系是唯一的,即可以通过检测到的PDCCH,确定未检测到的PDCCH对应的码字。例如,即使只在用户专用搜索空间集合中检测到一个PDCCH,那么终端设备就可以获知另一个没有检测到的PDCCH应在公共搜索空间集合中,即没有检测到的PDCCH对应的传输块应该映射到公共搜索空间集合对应的码字上。因此,本发明利用搜索空间集合与码字的对应关系的隐式指示传输块映射的码字,可以解决现有技术不同传输块映射到同一个码字的问题,提高系统传输效率,并且此隐式指示方式无需引入DCI中的比特,从而避免了系统开销。
在第三种方式中,终端设备根据所述第一DCI对应的第一DCI格式确定所述第一传输块映射到第一码字,并且,终端设备根据所述第二DCI对应的第二DCI格式确定所述第二传输块映射到第二码字。
DCI格式为DCI采用的格式。DCI格式有多种,例如,DCI格式1_0、DCI格式1_1,DCI格式1_2、DCI格式2_0、DCI格式2_1、DCI格式2_2、DCI格式2_3以及DCI格式2_5等等,不同DCI格式的可以承载的资源并不相同。在一具体的实施方式中,DCI格式可以如表2所示:
表2 DCI格式列表
Figure PCTCN2019107478-appb-000002
Figure PCTCN2019107478-appb-000003
可选的,高层信令或预先定义的DCI格式和码字的对应关系。例如第一DCI格式对应码字0,第二DCI格式对应码字1。或者,例如第一DCI格式对应码字1,第二DCI格式对应码字0。终端设备获取DCI格式和码字的对应关系。
终端设备根据所述第一DCI采用的DCI格式1_0,确定所述第一传输块映射到第一码字,例如第一码字为码字0,和/或,终端设备根据所述第二DCI采用的DCI格式1_1,确定所述第二传输块映射到第二码字,例如第二码字为码字1。相反地,终端设备也可以根据所述第一DCI采用的DCI格式1_1,确定所述第一传输块映射到第一码字例如第一码字为码字1,和/或,终端设备根据所述第二DCI采用的DCI格式1_0,确定所述第二传输块映射到第二码字,例如第二码字为码字0。
应理解,上述DCI格式1_0和DCI格式1_1的举例仅仅作为举例,不应构成具体限定,当3系统、4G系统、5G系统的甚至未来演进的系统中出现了新的DCI格式,也可以采用上述方式确定传输块与码字之间的映射关系。
因此,本发明利用DCI格式与码字的对应关系的隐式指示传输块映射的码字,可以解决现有技术不同传输块映射到同一个码字的问题,提高系统传输效率,并且采用隐式指示方式,即无需引入DCI中额外的比特,从而避免了额外的系统开销。在这种方式中,即使有PDCCH没有检测到,也由于上述对应关系是唯一的,即可以通过检测到的PDCCH,确定未检测到的PDCCH指示的传输块对应的码字。例如,即使只在检测到第一DCI格式的PDCCH,那么终端设备就可以获知另一个没有检测到的PDCCH应为第二DCI格式的,即,未检测到的PDCCH指示的传输块应该映射到第二DCI格式对应的码字上。
在第四种方式中,终端设备根据加扰所述第一DCI的第一RNTI确定所述第一传输块映射到第一码字,和/或,终端设备根据加扰所述第二DCI的第二RNTI确定所述第二传输块映射到第二码字。
上述方式中所涉及的RNTI可以用于对PDCCH的循环冗余校验(Cyclic Redundancy Check,CRC)进行加扰,其中,加扰就是就是用一个伪随机码序列对扩频码进行相乘,对信号进行加密。RNTI有多种,例如,系统信息RNTI、临时小区RNTI、寻呼RNTI、随机接入RNTI、小区RNTI、配置调度RNTI、小区无线网络临时标识(C-RNTI),以及调制编码方式小区RNTI(MCS-C-RNTI)等等。
MCS-C-RNTI加扰的DCI的MCS信息为MCS表格中频谱效率为0.0586的一项MCS信息。其中,MCS-C-RNTI可以指示更低的频谱效率,即,可能被应用于高可靠性的传输中。在一具体的实施例中,MCS表格可以如表3或者表4所示,应理解,上述MCS表格仅仅是用于说明,不应构成具体限定。
表3 MCS表格1
Figure PCTCN2019107478-appb-000004
表4 MCS表格2
Figure PCTCN2019107478-appb-000005
可以理解,上述表3或表4中的频谱效率0.0586对应的MCS索引为0,在其他示例中, 包含频谱效率为0.0586的MCS信息也可以是其他表示形式,本申请实施例并不作具体限定。
可选的,高层信令或预先定义的RNTI和码字的对应关系。例如,第一RNTI对应码字0,第二RNTI对应码字1。或者,例如,第一RNTI对应码字1,第二RNTI对应码字0。终端设备获取RNTI和码字的对应关系。
示例性的,第一RNTI为C-RNTI,第二RNTI为MCS-C-RNTI。终端设备根据加扰所述第一DCI的RNTI为C-RNTI,确定所述第一传输块映射到第一码字,例如第一码字为码字0,和/或,终端设备根据加扰所述第二DCI的MCS-C-RNTI,确定所述第二传输块映射到第二码字,例如第二码字为码字1。相反地,终端设备也可以根据加扰所述第一DCI的MCS-C-RNTI,确定所述第一传输块映射到第一码字,例如第一码字为码字1,和/或,终端设备根据加扰所述第二DCI的C-RNTI,确定所述第二传输块映射到第二码字,例如第二码字为码字0。
应理解,上述C-RNTI和MCS-C-RNTI的举例仅仅作为举例,也可以是其他RNTI,不应构成具体限定,当3G系统、4G系统、5G系统的甚至未来演进的系统中出现了新的RNTI,也可以采用上述方式确定传输块与码字之间的映射关系。
在这种方式中,即使有PDCCH没有检测到,也由于上述对应关系是唯一的,即可以通过检测到的PDCCH,确定未检测到的PDCCH对应的码字。例如,即使只检测到第一RNTI对应的PDCCH,那么终端设备就可以获知另一个没有检测到的PDCCH对应第二RNTI,即,未检测到的PDCCH指示的传输块映射到第二RNTI对应的码字上。因此,本申请采用的技术方案利用RNTI与码字的对应关系隐式指示传输块映射的码字,可以解决现有技术不同传输块映射到同一个码字的问题,提高系统传输效率,并且此隐式指示方式无需引入DCI中额外的比特,从而避免了系统开销。
以上对终端设备确定第一传输块映射到第一码字通过上述第一种方式至第四种方式中多种的可实现方式进行了详细阐述。当然也可以是,将多种不同中的两种或者两种以上的可实现方式进行结合使用,以确定所述第一传输块映射到第一码字,和/或,所述第二传输块映射到第二码字。
以下结合方法中,第一映射关系为第一传输块映射到码字0,第二映射关系为第一传输块映射到码字0,第三映射关系为第一传输块映射到码字0,第四映射关系为第一传输块映射到码字1;或者,第一映射关系为第二传输块映射到码字1,第二映射关系为第二传输块映射到码字1,第三映射关系为第二传输块映射到码字1,第四映射关系为第二传输块映射到码字0;或者,第五映射关系为第一传输块映射到码字0和第二传输块映射到码字1,第六映射关系为第一传输块和第二传输块映射到码字0,第七映射关系为第一传输块映射到码字1和第二传输块映射到码字0,第八映射关系为第一传输块和第二传输块映射到码字1。也可以是其他映射关系,本申请不做具体限定。
方式一,终端设备根据第一DCI所在的第一搜索空间集合和加扰所述第一DCI的第一RNTI,确定第一传输块映射到第一码字。
第一搜索空间集合和第一RNTI,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表5和表6所示。假设第一搜索空间集合包括公共搜索空间集合CSS和用户专用搜索空间集合USS,第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI,本发明不做限定。对于搜索空间和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表5
搜索空间 第一RNTI 第一传输块映射到第一码字的映射关系
CSS 第一RNTI_1 第一映射关系
USS 第一RNTI_1 第二映射关系
CSS 第一RNTI_2 第三映射关系
USS 第一RNTI_2 第四映射关系
表6
Figure PCTCN2019107478-appb-000006
方式二,终端设备根据第一DCI所在的第一搜索空间集合和第一DCI对应的第一DCI格式,确定所述第一传输块映射到第一码字。
第一搜索空间集合和第一DCI格式,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表7和表8所示。假设第一搜索空间集合包括公共搜索空间集合CSS和用户专用搜索空间集合USS,第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。对于第一搜索空间集合和第一DCI格式,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表7
搜索空间 第一DCI格式 第一传输块映射到第一码字的映射关系
CSS 第一DCI格式_1 第一映射关系
USS 第一DCI格式_1 第二映射关系
CSS 第一DCI格式_2 第三映射关系
USS 第一DCI格式_2 第四映射关系
表8
Figure PCTCN2019107478-appb-000007
方式三,终端设备根据加扰第一DCI的第一RNTI和第一DCI对应的第一DCI格式,确定所述第一传输块映射到第一码字。
第一RNTI和第一DCI格式,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表9和表10所示。假设第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI,本发明不做限定。第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。对于第一RNTI和第一DCI格式,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表9
第一RNTI 第一DCI格式 第一传输块映射到第一码字的映射关系
第一RNTI_1 第一DCI格式_1 第一映射关系
第一RNTI_1 第一DCI格式_1 第二映射关系
第一RNTI_2 第一DCI格式_2 第三映射关系
第一RNTI_2 第一DCI格式_2 第四映射关系
表10
Figure PCTCN2019107478-appb-000008
Figure PCTCN2019107478-appb-000009
方式四,终端设备根据加扰第一DCI的第一RNTI和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一RNTI和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表11和表12所示。假设第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI,本发明不做限定。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表11
第一RNTI 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 特定值 第一映射关系
第一RNTI_1 特定值 第二映射关系
第一RNTI_2 非特定值 第三映射关系
第一RNTI_2 非特定值 第四映射关系
表12
Figure PCTCN2019107478-appb-000010
示例的,如表13和表14所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表13
第一RNTI 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 0 第一映射关系
第一RNTI_1 0 第二映射关系
第一RNTI_2 1 第三映射关系
第一RNTI_2 1 第四映射关系
表14
Figure PCTCN2019107478-appb-000011
方式五,终端设备根据第一DCI对应的第一DCI格式和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一DCI格式和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表15和表16所示。假设第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域和第一DCI格式,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表15
第一DCI格式 第一比特域 第一传输块映射到第一码字的映射关系
第一DCI格式_1 特定值 第一映射关系
第一DCI格式_1 特定值 第二映射关系
第一DCI格式_2 非特定值 第三映射关系
第一DCI格式_2 非特定值 第四映射关系
表16
Figure PCTCN2019107478-appb-000012
示例的,如表17和表18所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域和第一DCI格式,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表17
第一DCI格式 第一比特域 第一传输块映射到第一码字的映射关系
第一DCI格式_1 0 第一映射关系
第一DCI格式_1 0 第二映射关系
第一DCI格式_2 1 第三映射关系
第一DCI格式_2 1 第四映射关系
表18
Figure PCTCN2019107478-appb-000013
方式六,终端设备根据第一DCI所在的第一搜索空间集合和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一搜索空间集合和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表19和表20所示。假设第一搜索空间集合包括CSS和USS,也可以是其他搜索空间集合,本发明不做限定。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表19
第一搜索空间集合 第一比特域 第一传输块映射到第一码字的映射关系
CSS 特定值 第一映射关系
USS 特定值 第二映射关系
CSS 非特定值 第三映射关系
USS 非特定值 第四映射关系
表20
Figure PCTCN2019107478-appb-000014
Figure PCTCN2019107478-appb-000015
示例的,如表21和表22所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表21
第一搜索空间集合 第一比特域 第一传输块映射到第一码字的映射关系
CSS 0 第一映射关系
USS 0 第二映射关系
CSS 1 第三映射关系
USS 1 第四映射关系
表22
Figure PCTCN2019107478-appb-000016
方式七,终端设备根据第一DCI所在的第一搜索空间集合、加扰第一DCI的第一RNTI和第一DCI对应的第一DCI格式,确定所述第一传输块映射到第一码字。
第一搜索空间集合、第一DCI格式和第一RNTI,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表23和表24所示。假设第一搜索空间集合包括公共搜索空间集合CSS和用户专用搜索空间集合USS,也可以是其他搜索空间集合,本发明不做限定。第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI,第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。对于第一搜索空间集合、第一DCI格式和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表23
第一DCI格式 搜索空间 第一RNTI 第一传输块映射到第一码字的映射关系
第一DCI格式_1 CSS 第一RNTI_1 第一映射关系
第一DCI格式_1 USS 第一RNTI_1 第二映射关系
第一DCI格式_2 CSS 第一RNTI_2 第三映射关系
第一DCI格式_2 USS 第一RNTI_2 第四映射关系
表24
Figure PCTCN2019107478-appb-000017
方式八,终端设备根据第一DCI所在的第一搜索空间集合、加扰第一DCI的第一RNTI和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一搜索空间集合、第一RNTI和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表25和表26所示。假设第一搜索空间集合包括CSS和USS,也可以是其他搜索空间集合,本发明不做限定。第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域、第一RNTI和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表25
第一RNTI 第一搜索空间集合 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 CSS 特定值 第一映射关系
第一RNTI_1 USS 特定值 第二映射关系
第一RNTI_2 CSS 非特定值 第三映射关系
第一RNTI_2 USS 非特定值 第四映射关系
表26
Figure PCTCN2019107478-appb-000018
示例的,如表27和表28所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域、第一RNTI和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表27
第一RNTI 第一搜索空间集合 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 CSS 0 第一映射关系
第一RNTI_1 USS 0 第二映射关系
第一RNTI_2 CSS 1 第三映射关系
第一RNTI_2 USS 1 第四映射关系
表28
Figure PCTCN2019107478-appb-000019
方式九,终端设备根据第一DCI对应的第一DCI格式、加扰第一DCI的第一RNTI和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一RNTI、第一DCI格式和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表29和表30所示。假设第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域、第一DCI格式和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表29
第一RNTI 第一DCI格式 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 第一DCI格式_1 特定值 第一映射关系
第一RNTI_1 第一DCI格式_1 特定值 第二映射关系
第一RNTI_2 第一DCI格式_2 非特定值 第三映射关系
第一RNTI_2 第一DCI格式_2 非特定值 第四映射关系
表30
Figure PCTCN2019107478-appb-000020
示例的,如表31和表32所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域、第一DCI格式和第一RNTI,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表31
第一RNTI 第一DCI格式 第一比特域 第一传输块映射到第一码字的映射关系
第一RNTI_1 第一DCI格式_1 0 第一映射关系
第一RNTI_1 第一DCI格式_1 0 第二映射关系
第一RNTI_2 第一DCI格式_2 1 第三映射关系
第一RNTI_2 第一DCI格式_2 1 第四映射关系
表32
Figure PCTCN2019107478-appb-000021
方式十,终端设备根据第一DCI对应的第一DCI格式、第一DCI所在的第一搜索空间集合和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一搜索空间集合、第一DCI格式和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表33和表34所示。假设第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。假设第一搜索空间集合包括CSS和USS,也可以是其他搜索空间集合,本发明不做限定。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一比特域第一DCI格式和第一DCI格式,与第一码字的对应关系也可以是其他对应关系, 本申请实施例对此不作限定。
表33
Figure PCTCN2019107478-appb-000022
表34
Figure PCTCN2019107478-appb-000023
示例的,如表35和表36所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一比特域、第一DCI格式和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表35
Figure PCTCN2019107478-appb-000024
表36
Figure PCTCN2019107478-appb-000025
方式十一,终端设备根据第一DCI对应的第一DCI格式、加扰第一DCI的第一RNTI、 第一DCI所在的第一搜索空间集合和第一DCI包括的第一比特域,确定所述第一传输块映射到第一码字。
第一RNTI、第一搜索空间集合、第一DCI格式和第一比特域,与第一码字的对应关系可以是均为高层信令配置的。或者部分对应关系为高层信令配置,部分对应关系为预先定义。或者是均为预先定义的。可以理解的是,高层信令配置的对应关系可以在一个高层信令的不同字段设置,也可以通过不同的高层信令设置。
示例的,如表37和表38所示。假设第一DCI格式包括第一DCI格式_1和第一DCI格式_2,例如,第一DCI格式_1和第一DCI格式_2分别为DCI 1_0和DCI 1_1,也可以是其他格式,本发明不做限定。假设第一搜索空间集合包括CSS和USS,也可以是其他搜索空间集合,本发明不做限定。第一RNTI包括第一RNTI_1和第二RNTI_2,例如,第一RNTI_1和第二RNTI_2分别为C-RNTI和MCS-C-RNTI,也可以是其他RNTI。第一比特域包括第一MCS比特域和/或第一RV比特域。对于第一RNTI、第一比特域第一DCI格式和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表37
Figure PCTCN2019107478-appb-000026
表38
Figure PCTCN2019107478-appb-000027
示例的,如表39和表40所示。第一比特域包括第一传输块与码字的对应关系指示域为1比特。对于第一RNTI、第一比特域、第一DCI格式和第一搜索空间集合,与第一码字的对应关系也可以是其他对应关系,本申请实施例对此不作限定。
表39
Figure PCTCN2019107478-appb-000028
表40
Figure PCTCN2019107478-appb-000029
上述表5至表40中每个表的内容可以是全部也可以是部分,只要能体现出上述映射关系,都属于本申请所要保护的范围。以表40为例,例如,表40中可以包括更少的行,具体的,表40可以只保留第一行,或者,表40可以只保留第二行,表40可以只保留第三行,或者,表40可以只保留第四行,或者,表40可以只保留第一行和第二行的内容,或者,表40可以只保留第一行和第三行的内容,或者,表40可以只保留第一行和第四行的内容,表40可以只保留第二行和第三行的内容,或者,表40可以只保留第二行和第四行的内容,或者,表40可以只保留第三行和第四行的内容,或者,表40可以只保留第一、第二行和第三行的内容,或者,表40可以只保留第一行、第二行和第四行的内容,或者,表40可以只保留第二行、第三和第四行的内容等等,此处不作具体限定。为了节省篇幅,表5至表39中每个表的内容不再一一举例说明,表5至表39也可以采用表40中表格的各种举例形式。
另外,上述表5至表40也可以包括更多的行,例如,第一DCI格式_1、第一RNTI_1、CSS和第一比特域的比特状态为1对应于第五映射关系等等,此处不再一一举例。
应理解,上述表5至表22是以结合两种第一信息确定传输块与码字的对应关系为例进行说明,表23至表37是以结合三种第一信息确定传输块与码字的对应关系为例进行说明, 表38至表40是以结合四种第一信息确定传输块与码字的对应关系为例进行说明。可以理解,在实际应用中,不限于表5至表22所示的结合两种第一信息确定传输块与码字的对应关系的方式,还可以是其他的结合两种第一信息确定传输块与码字的对应关系的方式,不限于表23至表37所示的结合三种第一方式确定传输块与码字的对应关系,还可以是其他的结合三种第一信息确定传输块与码字的对应关系的方式,不限于表38至表40所示的结合四种第一方式确定传输块与码字的对应关系,还可以是其他的结合四种第一信息确定传输块与码字的对应关系的方式。甚至,还可以是结合五种或者更多种第一信息确定传输块与码字的对应关系的方式,而且,第一信息也不限于上述的几种第一信息,还可以是其他第一信息,例如未来系统演进的其他第一信息等等,此处不作具体限定。
在本申请具体的实施例中,在执行图4所示的方法之前,网络设备还需要确定终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力,具体可以包括以下方法中的至少一种:
在第一种方式中,终端设备向网络设备发送第一通知信息,其中,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。可选的,终端设备向网络设备发送第二通知信息,所述第二通知信息用于向网络设备通知终端设备不具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。可以理解的是,当终端设备发送第二通知信息,那么终端设备则使用现有技术确定传输块与码字的对应关系,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当终端设备发送第一通知信息时,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系。
在第二种方式中,终端设备向网络设备发送第三通知信息,其中,所述第三通知信息用于向网络设备通知终端设备具有支持至少两个PDCCH分别指示不同码字的能力。可选的,终端设备向网络设备发送第四通知信息,所述第四通知信息用于向网络设备通知终端设备不具有支持至少两个PDCCH分别指示不同码字的能力。可以理解的是,当终端设备发送第四通知信息,那么终端设备则使用现有技术确定传输块映射到的码字,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当终端设备发送第三通知信息时,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系。
在第三种方式中,终端设备向网络设备发送第五通知信息,其中,所述第五通知信息用于向网络设备通知终端设备具有能够联合接收来自不同TRP的传输的能力。可选的,终端设备向网络设备发送第六通知信息,所述第六通知信息用于向网络设备通知终端设备不具有联合接收来自不同TRP的传输的能力。可以理解的是,当终端设备发送第六通知信息,那么终端设备则使用现有技术确定传输块与码字的对应关系,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当终端设 备发送第五通知信息时,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系。
在第一种方式至第三种方式中,终端设备向网络设备上报对应的能力的信息,以便于所述网络设备根据所述信息确定终端设备支持能力,从而为终端设备进行多TRP提高了通信效率。
在本申请具体的实施例中,在执行图4所示的方法之前,网络设备还需要配置终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块,具体可以包括以下方法中的至少一种:
在第一种方式中,网络设备向终端设备发送第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。可选的,网络设备向终端设备发送第二配置信息,所述第二配置信息用于配置指示终端设备不能够同时接收时频资源完全重叠或部分重叠的两个传输块。可以理解的是,当网络设备向终端设备发送第一配置信息,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当网络设备向终端设备发送第二配置信息时,那么终端设备则使用现有技术确定传输块与码字的对应关系。
在第二种方式中,网络设备向终端设备发送第三配置信息,其中,所述第三配置信息用于配置终端设备能够支持至少两个PDCCH分别指示不同码字。可选的,网络设备向终端设备发送第四配置信息,所述第四配置信息用于配置指示终端设备不能够支持至少两个PDCCH分别指示不同码字的能力。可以理解的是,当网络设备向终端设备发送第四配置信息,那么终端设备则使用现有技术确定传输块与码字的对应关系,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当网络设备向终端设备发送第三配置信息时,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系。
在第三种方式中,网络设备向终端设备发送第五配置信息,其中,所述第五配置信息用于配置终端设备能够联合接收来自不同TRP的传输的能力。可选的,终端设备向网络设备发送第六配置信息,所述第六配置信息用于配置终端设备不能够联合接收来自不同TRP的传输的能力。可以理解的是,当网络设备向终端设备发送第六配置信息,那么终端设备则使用现有技术确定传输块映射到的码字,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。当网络设备向终端设备发送第五配置信息时,那么终端设备可以使用本申请的方法来确定传输块与码字的对应关系。
应理解,上述两种方式仅仅是用于举例,在其他的实施例中,还可以包括其他的方式。
在本申请具体的实施例中,第一DCI和第二DCI还可以满足以下条件中的一种或者多种:
(1)承载所述第一DCI的第一PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;和/或,承载所述第一DCI的第一PDCCH所在的搜索空间集合和承载所述第二DCI的第二PDCCH所在的搜索空间集合是相同的;和/或,承载所述第一DCI的第一PDCCH所在的控制信道资源集合和承载所述第二DCI的第二PDCCH所在的控制信道资源集合是相同的。
具体的,由于第一DCI和第二DCI在相同的PDCCH监听时机,相同的搜索空间集合,或者是相同的控制信道资源集合,此时可以认为两个DCI是来自与不同TRP的DCI,并且这两个DCI对应调度不同的码字,则可以使用本发明中的方法确定传输块与码字的对应关系。可选的是,若第一DCI和第二DCI在不同的PDCCH监听时机,和/或不同的搜索空间集合,和/或,不同的控制信道资源集合时,那么终端设备可以根据现有技术确定传输块与码字的对应关系,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。
(2)承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的。其中,所述聚合等级属于多个聚合等级中的一个,所述多个聚合等级包括1,2,4,8和16中的至少一个。
第一PDCCH和第二PDCCH可以使用相同的聚合等级。可以理解为,当第一PDCCH和第二PDCCH具有相同的聚合等级时,则可以使用本申请中的方法确定传输块与码字的对应关系,即第一DCI和第二DCI分别指示不同的码字。相反,当第一PDCCH和第二PDCCH具有不相同的聚合等级,那么终端设备可以根据现有技术确定传输块与码字的对应关系,即第一DCI和第二DCI则不会分别指示不同的CW。也就是说,当第一PDCCH和第二PDCCH具有不相同的聚合等级,终端设备不用采用图1所示的方式进行联合接收,此时第一DCI和第二DCI指示的传输块不在限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ反馈的冲突问题。
(3)所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的,和/或,所述第一DCI与所述第二DCI的DCI格式相同。
具体地,当第一DCI和第二DCI对应相同的DCI格式时,则可以使用本发明中的方法确定传输块与码字的对应关系,即第一DCI和第二DCI分别指示不同的码字。相反,当第一DCI和第二DCI具有不相同的DCI格式,两个DCI承载的DCI内容不同,那么终端设备可以根据现有技术确定传输块与码字的对应关系,即第一DCI和第二DCI则不会分别指示不同的码字。也就是说,当第一DCI和第二DCI具有不相同的DCI格式,终端设备不用采用图1所示的方式进行联合接收,此时,第一DCI和第二DCI指示的传输块不再限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ信息冲突问题。
具体地,第一DCI和第二DCI不同的参考信号信息(如不同的天线端口)。可以理解为,当第一DCI和第二DCI具有不相同的参考信号信息时,则可以使用本发明中的方法确定传输块与码字的对应关系,即第一DCI和第二DCI分别指示不同的码字。相反,当第一DCI和第二DCI具有相同的参考信号信息,两个DCI指示的是相同的空间,那么终端设备 可以根据现有技术确定传输块与码字的对应关系,即第一DCI和第二DCI则不会分别指示不同的码字。也就是说,当第一DCI和第二DCI具有相同的参考信号信息时,终端设备不用采用图1所示的方式进行联合接收,此时,第一DCI和第二DCI指示的传输块不再限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ信息反馈冲突问题。
应理解,上述第一DCI和第二DCI需要满足的条件仅仅是作为一种举例,不应该构成具体限定。
在本申请具体的实施例中,第一传输块和第二传输块还可以满足以下条件中的一种或者多种:
(1)所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠。
具体的,当第一传输块和第二传输块所在的资源在时域上存在部分重叠或完全重叠时,则可以使用本发明中的方法确定传输块与码字的对应关系,即第一传输块和第二传输块分别映射到不同的码字。相反地,当第一传输块和第二传输块所在的资源在时域上不存在重叠,因为可以各自独立反馈和传输,那么终端设备可以根据现有技术确定传输块与码字的对应关系,即第一传输块和第二传输块则不会分别映射到不同的码字。也就是说,当第一传输块和第二传输块所在的资源在时域上不存在重叠时,终端设备不用采用图1所示的方式进行联合接收,此时,第一传输块和第二传输块不再限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ信息反馈冲突问题。
可选的,第一传输块和第二传输块所在的资源在频域上存在重叠。具体的,第一传输块和第二传输块所在的资源在相同的下行带宽部分和/或在相同的服务小区。
(2)所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同。
具体地,第一传输块的解调参考信号和第二传输块的解调参考信号分别对应不同的天线端口。可以理解为,当第一传输块的解调参考信号和第二传输块的解调参考信号分别对应不同的天线端口时,则可以使用本申请中的方法确定传输块与码字的对应关系,即第一传输块和第二传输块分别映射到不同的码字。相反,当第一传输块的解调参考信号和第二传输块的解调参考信号对应相同的天线端口时,那么终端设备可以根据现有技术确定传输块与码字的对应关系,即第一传输块和第二传输块则不会分别映射到不同的码字。也就是说,当第一传输块的解调参考信号和第二传输块的解调参考信号对应相同的天线端口时,终端设备不用采用图1所示的方式进行联合接收,此时,第一传输块和第二传输块不再限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ信息反馈冲突问题。
(3)所述第一传输块对应的HARQ信息和所述第二传输块对应的HARQ信息承载在同一个上行信道。
第一传输块和第二传输块的反馈信息在相同的PUSCH或PUCCH上传输。可以理解为,当第一传输块的反馈信息和第二传输块的反馈信息在相同的PUSCH或PUCCH上传输时,则可以使用本申请中的方法确定传输块与码字的对应关系,即第一传输块和第二传输块分别映射到不同的码字。当第一传输块和第二传输块的反馈信息在不相同的PUSCH或PUCCH上传输时,因为可以各自独立反馈,那么终端设备可以根据现有技术确定传输块与码字的对应关系,即第一传输块和第二传输块则不会分别映射到不同的码字。也就是说,当第一传输块和第二传输块的反馈信息在不相同的PUSCH或PUCCH上传输时,终端设备不用采用图1所示的方式进行联合接收,此时,第一传输块和第二传输块不再限定于同一个下行信道的不同码字,也就不会出现如图1所示的终端设备发生HARQ信息反馈冲突问题。
如图8所示,图8是本申请实施例提供的另一种传输块与码字的对应关系的确定方法的流程示意图。如图8所述,本申请实施例的传输块与码字的对应关系的确定方法包括如下步骤:
S201:第一网络设备生成第一DCI。其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块。在一具体的实施例中,所述第一DCI承载于第一PDCCH信道中,所述第一传输块承载于第一下行信道中。可选地,第一下行信道可以为第一PDSCH。
S202:第一网络设备向终端设备接收第一DCI。相应地,终端设备接收第一网络设备发送的第一DCI。
S203:终端设备根据第一信息确定所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合,所述第一DCI对应的第一DCI格式,加扰所述第一DCI的第一无线网络标识RNTI和所述第一DCI包括的第一比特域。
S204:终端设备根据第一信息确定所述第二传输块映射到第二码字。
其中,第二TPR向终端设备发送第二DCI,第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块。
在本申请实施例中,终端设备会出现映射到相同码字对应的HARQ信息冲突问题。HARQ信息包括ACK和/或NACK。具体地,终端设备可以根据第一信息确定第一传输块映射到第一码字,第二传输块映射到第二码字,即使得不同DCI调度的不同的传输块映射到不同码字上,实现终端设备可以单独反馈第一传输块对应的HARQ信息和第二传输块对应的HARQ信息,若第一传输块对应的HARQ信息为NACK,即解码结果为未成功,从而使得第一网络设备对第一传输块进行重传,与此同时若第二传输块对应的HARQ信息为ACK,即解码结果为成功,从而使得第二网络设备不用对第二传输块进行重传,因此提高系统资源的使用效率。所以,通过传输块与码字的对应关系的确定,可以提高HARQ信息的反馈准确性,进而提高系统资源的使用效率。而且,即使终端设备没有接受到第二DCI,终端设备也可以根据第一信息确定第二传输块映射到第二码字,从而指示第二传输块进行重传,提高了数据传输的可靠性。
在本申请具体的实施例中,第二网络设备没有发送第二DCI,或者,网络设备发送了 第二DCI但终端设备没有检测到第二DCI,那么终端设备则没有接收到指示第二传输块的第二传输块。具体的,因为目前码字只包含码字0和码字1。因此,终端设备可以通过接收到的码字推断出未接收到传输块对应码字。例如,接收到第一传输块对应的是码字0,则可以确定未接收到的第二传输块对应的码字1。
可选的,当终端设备接收到第一配置信息或者发送了第一通知信息之后,终端设备会假设同时存在两个DCI分别调度的传输块对应不同的码字。或者,预先定义终端设备会假设同时存在两个DCI分别调度的传输块对应不同的码字。于是终端设备可以确定存在第二传输块。于是,即使终端设备没有接收到其中一个传输块,则可以通过步骤204,确定未接收到的传输块对应的码字。
进一步的,当终端设备没有接收到第二传输块,在第二码字对应的HARQ反馈信息位置填充NACK。
为了简便起见,此处不再详细介绍终端设备如何根据第一信息确定所述第一传输块映射到第一码字,具体请参见图4以及相关内容,此处不再赘述。
参见图9,图9是本申请实施例提供的一种通信系统的示意图。如图9所示,所述通信系统包括终端设备210和网络设备220。其中,
终端设备210具有实现上述图4或者图8所示方法实际中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一具体的实施例中,终端设备210可以包括:发送模块211、接收模块213以及处理模块215。其中,发送模块211可以是软件模块,也可以是硬件模块,例如发送器。接收模块213可以是软件模块,也可以是硬件模块,例如接收器。发送模块211和接收模块213可以是分开单独设置,也可以是一体化设置,例如,收发器。处理模块215可以是软件模块,也可以是硬件模块,例如处理器。处理器可以是中央处理器、数字处理器、基带处理芯片、ARM等等,此处不作具体限定。
接收模块213,用于接收第一下行控制信息DCI,其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块;
处理模块215,用于根据第一信息确定所述接收模块接收第一DCI所提示的所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域。
其中,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
示例性的,所述处理模块215用于,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,根据所述第一MCS比特域指示的MCS索引为第一MCS索引和/或所述第一RV比特域指示的RV为第一RV值,确定所述第一传输块映射到第一码字。
示例性的,所述处理模块215还用于确定存在第二传输块,以及根据所述第一信息,确定所述第二传输块映射到第二码字,所述第二码字和所述第一码字不同。
示例性的,所述处理模块215还用于,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
示例性的,所述处理模块215还用于,所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
示例性的,所述处理模块215还用于,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,以及所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字。
示例性的,所述接收模块213,还用于接收第二DCI,其中,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块;所述处理模块215还用于根据第二信息确定所述第二传输块映射到第二码字,其中,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域或所述第一码字。
示例性的,所述装置还包括发送模块217,用于发送第一通知信息,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。
示例性的,所述接收模块213,用于接收第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
示例性的,所述第一DCI所在的第一搜索空间集合和所述第二DCI所在的第二搜索空间集合分别为公共搜索空间集合和用户专用搜索空间集合;所述第一DCI对应的第一DCI格式和所述第二DCI对应的第二DCI格式分别为DCI格式1_0和DCI格式1_1;加扰所述第一DCI的第一RNTI和加扰所述第二DCI的第二RNTI分别为小区无线网络临时标识C-RNTI和调制编码方式小区无线网络临时标识MCS-C-RNTI。
示例性的,承载所述第一DCI的第一物理下行控制信道PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;或者,承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的;或者,所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的。
示例性的,所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠;或者,所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同;或者所述第一传输块对应的HARQ信息和所述第二传输块对应的HARQ信息承载在同一个上行信道。
终端设备可以执行如图4以及图8所示传输块与码字的对应关系确定方法中终端设备 执行的步骤,此处不再展开赘述,具体请参见图4、图8以及相关内容。
网络设备220具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一具体的实施例中,网络设备210可以包括:发送模块221、接收模块223以及处理模块225。其中,发送模块221可以是软件模块,也可以是硬件模块,例如发送器。接收模块223可以是软件模块,也可以是硬件模块,例如接收器。发送模块221和接收模块223可以是分开单独设置,也可以是一体化设置,例如,收发器。处理模块225可以是软件模块,也可以是硬件模块,例如处理器。处理器可以是中央处理器、数字处理器、基带处理芯片、ARM等等,此处不作具体限定。
处理模块225,用于生成第一下行控制信息DCI,其中,所述第一DCI用于指示终端设备在第一时频资源上接收第一传输块,所述第一传输块与第一码字存在映射关系,所述第一映射关系是根据第一信息确定的,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域;
处理模块225,用于向所述终端设备发送所述处理模块生成的所述第一DCI。
示例性的,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
示例性的,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,所述第一MCS比特域指示的MCS索引为第一MCS索引,所述第一RV比特域指示的RV为第一RV值。
示例性的,所述发送模块221还用于向所述终端设备发送第二DCI,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块,所述第二传输块与第二码字存在第二映射关系,所述第二映射关系是根据第二信息确定的,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域、所述第一码字或所述第一映射关系。
示例性的,所述处理模块225还用于:所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域,确定所述第一映射关系;或者,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域,确定所述第一映射关系;或者,所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第一T-DAI比特域,以及所述第二C-DAI比特域和所述第二T-DAI比特域,确定所述第一映射关系。
示例性的,所述装置还包括接收模块223,用于接收第一通知信息,所述第一通知信息用于向所述网络设备通知所述终端设备具有能够同时接收时频资源完全重叠或部分重叠 的两个传输块的能力。
示例性的,所述发送模块221还用于发送第一配置信息,所述第一配置信息用于配置指示所述终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
示例性的,所述第一DCI所在的第一搜索空间集合和所述第二DCI所在的第二搜索空间集合分别为公共搜索空间集合和用户专用搜索空间集合;或者所述第一DCI对应的第一DCI格式和所述第二DCI对应的第二DCI格式分别为DCI格式1_0和DCI格式1_1;或者加扰所述第一DCI的第一RNTI和加扰所述第二DCI的第二RNTI分别为小区无线网络临时标识C-RNTI和调制编码方式小区无线网络临时标识MCS-C-RNTI。
示例性的,承载所述第一DCI的第一物理下行控制信道PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;或者,承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的;或者,所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的。
示例性的,所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠;或者,所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同;或者所述第一传输块对应的HARQ信息和所述第二传输块对应的HARQ信息承载在同一个上行信道。
需要特别说明的是,上述装置实施例中处理模块对应的实体设备为处理器,接收模块对应的实体设备为接收器,发送模块对应的实体设备为发射器。
网络设备可以执行如图4以及图8所示传输块与码字的对应关系确定方法中网络设备执行的步骤,此处不再展开赘述,具体请参见图4、图8以及相关内容。
本申请还提供了一种通信系统,包括终端设备和网络设备,其中,终端设备和网络设备之间可以通过无线的方式进行通信。
参见图10,图10是本申请实施例提供的一种终端设备的结构示意图。本实施方式的终端设备包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等。
以终端为手机为例,图10示出的是与本发明实施例相关的手机300的部分结构的框图。参考图10,手机300包括、RF(RadioFrequency,射频)电路310、存储器320、其他输入设备330、显示屏340、传感器350、音频电路360、I/O子系统370、处理器380、以及电源390等部件。本领域技术人员可以理解,图10中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏340属于用户界面(UserInterface,UI),且手机300可以包括比图示或者更少的用户界面。
下面结合图10对手机300的各个构成部件进行具体的介绍:
RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器380处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、LNA(Low Noise Amplifier,低噪声放大器)、双工器等。此外,RF电路110还可以通过无线通信与网络和其他设备通信。 所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)、电子邮件、SMS(Short Messaging Service,短消息服务)等。在本申请实施例中,RF电路110可以被配置为用于接收第一DCI、第二DCI、第一配置信息,此外,RF电路110还可以被配置为用于发送第一通知信息。
存储器320可用于存储软件程序以及模块,处理器380通过运行存储在存储器320的软件程序以及模块,从而执行手机300的各种功能应用以及数据处理。存储器320可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据手机300的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。在本申请具体的实施例中,存储器320可以存储了传输块与码字的对应关系。
其他输入设备330可用于接收输入的数字或字符信息,以及产生与手机300的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备330可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备330与I/O子系统370的其他输入设备控制器371相连接,在其他设备输入控制器371的控制下与处理器380进行信号交互。
显示屏340可用于显示由用户输入的信息或提供给用户的信息以及手机300的各种菜单,还可以接受用户输入。具体的显示屏340可包括显示面板341,以及触控面板342。其中显示面板341可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板341。触控面板342,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板342上或在触控面板342附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型。),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板342可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器380,并能接收处理器380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板342,也可以采用未来发展的任何技术实现触控面板342。进一步的,触控面板342可覆盖显示面板341,用户可以根据显示面板341显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板341上覆盖的触控面板342上或者附近进行操作,触控面板342检测到在其上或附近的操作后,通过I/O子系统370传送给处理器380以确定用户输入,随后处理器380根据用户输入通过I/O子系统370在显示面板341上提供相 应的视觉输出。虽然在图10中,触控面板342与显示面板341是作为两个独立的部件来实现手机300的输入和输入功能,但是在某些实施例中,可以将触控面板342与显示面板341集成而实现手机300的输入和输出功能。
手机300还可包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在手机300移动到耳边时,关闭显示面板341和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机300还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路360、扬声器361,麦克风362可提供用户与手机300之间的音频接口。音频电路360可将接收到的音频数据转换后的信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,麦克风362将收集的声音信号转换为信号,由音频电路360接收后转换为音频数据,再将音频数据输出至RF电路308以发送给比如另一手机,或者将音频数据输出至存储器320以便进一步处理。
I/O子系统370用来控制输入输出的外部设备,可以包括其他设备输入控制器371、传感器控制器372、显示控制器373。可选的,一个或多个其他输入控制设备控制器371从其他输入设备330接收信号和/或者向其他输入设备330发送信号,其他输入设备330可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他输入控制设备控制器371可以与任一个或者多个上述设备连接。所述I/O子系统370中的显示控制器373从显示屏340接收信号和/或者向显示屏340发送信号。显示屏340检测到用户输入后,显示控制器373将检测到的用户输入转换为与显示在显示屏340上的用户界面对象的交互,即实现人机交互。传感器控制器372可以从一个或者多个传感器350接收信号和/或者向一个或者多个传感器350发送信号。
处理器380是手机300的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行手机300的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器380可包括一个或多个处理单元;优选的,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。在本申请具体的实施例中,处理器300可以用于根据第一DCI的第一信息和/或第二DCI确定第一传输块映射到第一码字,第二传输块映射到第二码字。
手机300还包括给各个部件供电的电源390(比如电池),优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,手机300还可以包括摄像头、蓝牙模块等,在此不再赘述。
终端设备可以执行如图4以及图8所示传输块与码字的对应关系确定方法中终端设备执行的步骤,此处不再展开赘述,具体请参见图4、图8以及相关内容。
参见图11,图11本申请实施例提供的一种网络设备的结构示意图。本实施方式的网络设备可以以基站为例进行说明,基站包括:天线、循环前缀(CP)去除器、串并(S/P)转换器、快速傅里叶变换(FFT)处理器、解映射器、逆快速傅里叶变换(IFFT)处理器、并串(P/S)转换器、解复用器(DEMUX)、控制器、控制信道信号接收机、信道估计器和数据解调器和解码器。
天线可以是阵列天线,阵列天线可以采用单输入单输出方式,采用单输入多输出方式,采用多输入单输出方式,也可以采用多输入多输出方式。在本申请实施例中,天线可以被配置为用于发送第一DCI或者第二DCI,天线还可以被配置为用于发送第一配置信息,而且,天线也可以被配置为用于接收终端设备发送的第一通知信息。
控制器对提供总体控制。其也产生DEMUX、IFFT处理器、解映射器、控制信道信号接收机、信道估计器和数据解调器和解码器所需的控制信号。和UL控制信息和数据有关的控制信号被提供给控制信道信号接收机和数据解调器和解码器2。指示序列索引和时域循环移位值的控制信道信号被提供给信道估计器。序列索引和时域循环移位值被用来产生分配给UE的导频序列。在本申请具体的实施例中,控制器可以存储了传输块与码字的对应关系。
DEMUX根据从控制器接收到的定时信息把从P/S转换器接收到的信号解复用为控制信道信号、数据信号和导频信号。解映射器根据从控制器接收到的定时信息和频率分配信息,从频率资源中提取那些信号。
在通过天线从UE接收到包括控制信息的信号时,CP去除器从接收到的信号中去除CP。S/P转换把无CP的信号转换为并行信号,并且FFT处理器通过FFT处理所述并行信号。在解映射器中解映射后,FFT信号在IFFT处理器中被转换为时间信号。IFFT处理器的输入/输出大小根据从控制器接收到的控制信号变化。P/S转换器串行化所述IFFT信号,并且DEMUX把串行信号解复用为控制信道信号、导频信号和数据信号。
信道估计器由从DEMUX接收到的导频信号中获取信道估计。控制信道信号接收机通过信道估计对从DEMUX接收到的控制信道信号进行信道补偿,并获取UE所发送的控制信息。数据解调器和解码器通过信道估计对从DEMUX接收到的数据信号进行信道补偿,然后基于控制信息获取UE所发送的数据。
网络设备可以执行如图4以及图8所示传输块与码字的对应关系确定方法中网络设备执行的步骤,此处不再展开赘述,具体请参见图4、图8以及相关内容。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、 数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。

Claims (38)

  1. 一种传输块与码字的对应关系的确定方法,其特征在于,包括:
    终端设备接收第一下行控制信息DCI,其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块;
    所述终端设备根据第一信息确定所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域。
  2. 根据权利要求1所述的方法,其特征在于,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
  3. 根据权利要求2所述的方法,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,根据第一信息确定所述第一传输块映射到第一码字,包括以下一种:
    所述终端设备根据所述第一MCS比特域指示的MCS索引为第一MCS索引和/或所述第一RV比特域指示的RV为第一RV值,确定所述第一传输块映射到第一码字。
  4. 根据权利要求1至3任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定存在第二传输块;
    所述终端设备根据所述第一信息,确定所述第二传输块映射到第二码字,所述第二码字和所述第一码字不同。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息为所述第一DCI包括的第一比特域,所述根据第一信息确定所述第一传输块映射到第一码字,包括:
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
    所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,以及所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字。
  6. 根据权利要求1至5任一权利要求所述的方法,其特征在于,所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二DCI,其中,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块;
    所述终端设备根据第二信息确定所述第二传输块映射到第二码字,其中,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域或所述第一码字。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第一通知信息,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
  9. 一种传输块与码字的对应关系的确定方法,其特征在于,包括:
    网络设备生成第一下行控制信息DCI,其中,所述第一DCI用于指示终端设备在第一时频资源上接收第一传输块,所述第一传输块与第一码字存在映射关系,所述第一映射关系是根据第一信息确定的,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间集合、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域;
    所述网络设备向所述终端设备发送所述第一DCI。
  10. 根据权利要求9所述的方法,其特征在于,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
  11. 根据权利要求10所述的方法,其特征在于,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,所述第一MCS比特域指示的MCS索引为第一MCS索引,所述第一RV比特域指示的RV为第一RV值。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述网络设备向所述终端设备发送第二DCI,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块,所述第二传输块与第二码字存在第二映射关系,所述第二映射关系是根据第二信息确定的,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域、所述第一码字或所述第一映射关系。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息包括所述第一DCI包括的第一比特域,所述第一映射关系是根据第一信息确定的,包括:
    所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域,确定所述第一映射关系;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域,确定所述第一映射关系;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第一T-DAI比特域,以及所述第二C-DAI和所述第二T-DAI,确定所述第一映射关系。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第一通知信息,所述第一通知信息用于向所述网络设备通知所述终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。
  15. 根据权利要求12至14任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一配置信息,所述第一配置信息用于配置指示所述终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
  16. 一种传输块与码字的对应关系的确定装置,其特征在于,包括:
    接收模块,用于接收第一下行控制信息DCI,其中,所述第一DCI用于指示所述终端设备在第一时频资源上接收第一传输块;
    处理模块,用于根据第一信息确定所述接收模块接收第一DCI所提示的所述第一传输块映射到第一码字,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域。
  17. 根据权利要求16所述的装置,其特征在于,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
  18. 根据权利要求17所述的装置,
    所述处理模块用于,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,根据所述第一MCS比特域指示的MCS索引为第一MCS索引和/或所述第一RV比特域指示的RV为第一RV值,确定所述第一传输块映射到第一码字。
  19. 根据权利要求16至18任一权利要求所述的装置,其特征在于,
    所述处理模块还用于确定存在第二传输块;
    所述处理模块还用于根据所述第一信息,确定所述第二传输块映射到第二码字,所述第二码字和所述第一码字不同。
  20. 根据权利要求19所述的装置,其特征在于,所述处理模块还用于:
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
    所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,确定所述第一传输块映射到第一码字;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域的取值,以及所述第一T-DAI比特域和所述第二T-DAI比特域的取值,确定所述第一传输块映射到第一码字。
  21. 根据权利要求16至20任一权利要求所述的装置,其特征在于,
    所述接收模块还用于接收第二DCI,其中,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块;
    所述处理模块还用于根据第二信息确定所述第二传输块映射到第二码字,其中,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域或所述第一码字。
  22. 根据权利要求21所述的装置,其特征在于,所述装置还包括发送模块,
    所述发送模块用于发送第一通知信息,所述第一通知信息用于向网络设备通知终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。
  23. 根据权利要求21或22所述的装置,其特征在于,
    所述接收模块用于接收第一配置信息,所述第一配置信息用于配置指示终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
  24. 一种传输块与码字的对应关系的确定装置,其特征在于,包括:
    处理模块,用于生成第一下行控制信息DCI,其中,所述第一DCI用于指示终端设备在第一时频资源上接收第一传输块,所述第一传输块与第一码字存在映射关系,所述第一映射关系是根据第一信息确定的,所述第一信息包括以下至少一种:所述第一DCI所在的第一搜索空间、所述第一DCI对应的第一DCI格式、加扰所述第一DCI的第一无线网络标识RNTI或所述第一DCI包括的第一比特域;
    发送模块,用于向所述终端设备发送所述处理模块生成的所述第一DCI。
  25. 根据权利要求24所述的装置,其特征在于,所述第一DCI包括的第一比特域为以下至少一种:第一调制编码方式MCS比特域,第一冗余版本RV比特域,第一计数下行分配指示C-DAI,第一总共下行分配指示T-DAI和第一传输块与码字的对应关系指示域。
  26. 根据权利要求25所述的装置,其特征在于,所述第一DCI包括的第一比特域为第一调制编码方式MCS比特域和/或第一冗余版本RV比特域,所述第一MCS比特域指示的MCS索引为第一MCS索引,所述第一RV比特域指示的RV为第一RV值。
  27. 根据权利要求24至26任一权利要求所述的装置,其特征在于,
    所述发送模块还用于向所述终端设备发送第二DCI,所述第二DCI用于指示所述终端设备在第二时频资源上接收第二传输块,所述第二传输块与第二码字存在第二映射关系,所述第二映射关系是根据第二信息确定的,所述第二信息包括以下至少一种:所述第二DCI所在的第二搜索空间集合、所述第二DCI对应的第二DCI格式、加扰所述第二DCI的第二RNTI、所述第二DCI包括的第二比特域、所述第一码字或所述第一映射关系。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块还用于:
    所述第一DCI包括的第一比特域为第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第二C-DAI比特域,确定所述第一映射关系;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,根据所述第一T-DAI比特域和所述第二T-DAI比特域,确定所述第一映射关系;或者,
    所述第一DCI包括的第一比特域为第一T-DAI比特域和第二T-DAI比特域,以及第一C-DAI比特域和第二C-DAI比特域,根据所述第一C-DAI比特域和所述第一T-DAI比特域,以及所述第二C-DAI比特域和所述第二T-DAI比特域,确定所述第一映射关系。
  29. 根据权利要求27或28所述的装置,其特征在于,所述装置还包括接收模块,
    所述接收模块用于接收第一通知信息,所述第一通知信息用于向所述网络设备通知所述终端设备具有能够同时接收时频资源完全重叠或部分重叠的两个传输块的能力。
  30. 根据权利要求27至29任一权利要求所述的装置,其特征在于,
    所述发送模块还用于发送第一配置信息,所述第一配置信息用于配置指示所述终端设备能够同时接收时频资源完全重叠或部分重叠的两个传输块。
  31. 根据权利要求6所述的方法、权利要求13所述的方法、权利要求21所述的装置或者权利要求27所述的装置,其特征在于,
    所述第一DCI所在的第一搜索空间集合和所述第二DCI所在的第二搜索空间集合分别为公共搜索空间集合和用户专用搜索空间集合;
    所述第一DCI对应的第一DCI格式和所述第二DCI对应的第二DCI格式分别为DCI格式1_0和DCI格式1_1;
    加扰所述第一DCI的第一RNTI和加扰所述第二DCI的第二RNTI分别为小区无线网络临时标识C-RNTI和调制编码方式小区无线网络临时标识MCS-C-RNTI。
  32. 根据权利要求6至8、31任一权利要求所述的方法、12至15、31任一权利要求所述的方法、权利要求21至23、31任一权利要求所述的装置或者27至31任一权利要求所述的装置,其特征在于,
    承载所述第一DCI的第一物理下行控制信道PDCCH所在的PDCCH监听时机和承载所述第二DCI的第二PDCCH所在的PDCCH监听时机是相同的;或者,
    承载所述第一DCI的第一PDCCH的聚合等级和承载所述第二DCI的第二PDCCH的聚合等级是相同的;或者,
    所述第一DCI指示的天线端口信息和所述第二DCI指示的天线端口信息是不同的。
  33. 根据权利要求4至8、31至32任一权利要求所述的方法、权利要求12至15、31至32任一权利要求所述的方法,权利要求19至23、31至32任一权利要求所述的装置、权利要求27至32任一权利要求所述的装置,其特征在于,
    所述第一传输块所在的时频资源和所述第二传输块所在的时频资源是完全重叠或部分重叠;或者,
    所述第一传输块的解调参考信号对应的天线端口和所述第二传输块的解调参考信号对应的天线端口是不同;或者
    所述第一传输块对应的HARQ信息和所述第二传输块对应的HARQ信息承载在同一个上行信道。
  34. 一种终端设备,其特征在于,包括:处理器和存储器,所述处理器执行所述存储器中的代码执行如权利要求1至8、31至33任一权利要求所述的方法。
  35. 一种网络设备,其特征在于,包括:处理器和存储器,所述处理器执行所述存储器中的代码执行如权利要求9至15、31至33任一权利要求所述的方法。
  36. 一种计算机非瞬态存储介质,其特征在于,包括指令,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求1至8、31至33任一权利要求所述的方法。
  37. 一种计算机非瞬态存储介质,其特征在于,包括指令,当所述指令在网络设备上运行时,使得所述网络设备执行如权利要求9至15、31至33任一权利要求所述的方法。
  38. 一种通信系统,其特征在于,包括终端设备和网络设备,其中,所述终端设备和所述网络设备之间可以进行通信;
    所述终端设备用于执行如权利要求1至8、31至33任一权利要求所述的方法;
    所述网络设备用于执行如权利要求9至15、31至33任一权利要求所述的方法。
PCT/CN2019/107478 2018-09-27 2019-09-24 传输块与码字的对应关系、相关设备以及系统 WO2020063576A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865691.0A EP3849119A4 (en) 2018-09-27 2019-09-24 CORRESPONDING RELATIONSHIP BETWEEN A TRANSMISSION BLOCK AND A CODEWORD, ASSOCIATED DEVICE AND SYSTEM
US17/214,149 US20210227560A1 (en) 2018-09-27 2021-03-26 Correspondence between transport block and codeword, related device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811134449.1A CN110958089B (zh) 2018-09-27 2018-09-27 传输块与码字的对应关系、相关设备以及系统
CN201811134449.1 2018-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/214,149 Continuation US20210227560A1 (en) 2018-09-27 2021-03-26 Correspondence between transport block and codeword, related device, and system

Publications (1)

Publication Number Publication Date
WO2020063576A1 true WO2020063576A1 (zh) 2020-04-02

Family

ID=69950270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107478 WO2020063576A1 (zh) 2018-09-27 2019-09-24 传输块与码字的对应关系、相关设备以及系统

Country Status (4)

Country Link
US (1) US20210227560A1 (zh)
EP (1) EP3849119A4 (zh)
CN (1) CN110958089B (zh)
WO (1) WO2020063576A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022607A1 (zh) * 2020-07-31 2022-02-03 展讯通信(上海)有限公司 下行分配指示的确定方法及装置、下行分配指示的配置方法及装置、存储介质、终端、基站
WO2024065231A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 一种通信方法、装置及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304077B2 (en) * 2018-08-09 2022-04-12 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
US11647504B2 (en) * 2018-12-21 2023-05-09 Qualcomm Incorporated PUCCH carrying HARQ-A for multi-TRP with non-ideal backhaul
US11711837B2 (en) * 2020-01-14 2023-07-25 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN115189804B (zh) * 2021-04-02 2023-06-23 大唐移动通信设备有限公司 一种检测接收pdcch的方法及装置
WO2023060383A1 (en) * 2021-10-11 2023-04-20 Zte Corporation Methods, devices, and systems for transmitting multiple transport blocks
WO2023130283A1 (zh) * 2022-01-05 2023-07-13 北京小米移动软件有限公司 一种映射方式确定方法/装置/设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699780A (zh) * 2009-10-30 2010-04-28 上海华为技术有限公司 一种数据传输方法、用户设备、基站及数据传输系统
CN101741517A (zh) * 2010-01-08 2010-06-16 中兴通讯股份有限公司 多天线系统上行链路的传输块发送方法及装置
WO2018149273A1 (zh) * 2017-02-17 2018-08-23 华为技术有限公司 一种多码字传输方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028261A1 (en) * 2007-07-26 2009-01-29 Interdigital Technology Corporation Method and apparatus for reducing signaling overhead during a dual codeword hybrid automatic repeat request operation
US20100056079A1 (en) * 2008-09-04 2010-03-04 Texas Instruments Incorporated Retransmission between dci format 1a and format 2/2a
US8437300B2 (en) * 2009-10-12 2013-05-07 Samsung Electronics Co., Ltd Method and system of multi-layer beamforming
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
EP2555459B1 (en) * 2010-03-29 2016-02-10 LG Electronics Inc. Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
EP2727275A1 (en) * 2011-06-29 2014-05-07 Fujitsu Limited Downlink control signalling for indication of interfering layers
US9923684B2 (en) * 2013-01-09 2018-03-20 Samsung Electronics Co., Ltd. Methods to support inter-eNodeB CoMP
WO2016171494A1 (ko) * 2015-04-22 2016-10-27 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
KR102108474B1 (ko) * 2015-07-01 2020-05-08 엘지전자 주식회사 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2017188548A1 (ko) * 2016-04-25 2017-11-02 엘지전자(주) 무선 통신 시스템에서 비-직교 다중 접속을 이용하여 데이터를 송수신하기 위한 방법 및 장치
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置
US11063644B2 (en) * 2017-04-05 2021-07-13 Samsung Electronics Co., Ltd. Method and apparatus for control signaling for multi-stream transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699780A (zh) * 2009-10-30 2010-04-28 上海华为技术有限公司 一种数据传输方法、用户设备、基站及数据传输系统
CN101741517A (zh) * 2010-01-08 2010-06-16 中兴通讯股份有限公司 多天线系统上行链路的传输块发送方法及装置
WO2018149273A1 (zh) * 2017-02-17 2018-08-23 华为技术有限公司 一种多码字传输方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AT &T: "A Scalable Transport Block to Codeword Mapping Scheme for NR", 3GPP TSG RAN WG1 MEETING #88 RL-1702263, 17 February 2017 (2017-02-17), XP051209418 *
ERICSSON: "Remaining issues on CW mapping and data scrambling", 3GPP TSG RAN WG1 MEETING #93 RL-1806210, 25 May 2018 (2018-05-25), XP051441419 *
See also references of EP3849119A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022607A1 (zh) * 2020-07-31 2022-02-03 展讯通信(上海)有限公司 下行分配指示的确定方法及装置、下行分配指示的配置方法及装置、存储介质、终端、基站
CN114070498A (zh) * 2020-07-31 2022-02-18 展讯通信(上海)有限公司 下行分配指示的确定方法及装置、下行分配指示的配置方法及装置、存储介质、终端、基站
CN114070498B (zh) * 2020-07-31 2023-03-14 展讯通信(上海)有限公司 下行分配指示的确定方法及装置、下行分配指示的配置方法及装置、存储介质、终端、基站
WO2024065231A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 一种通信方法、装置及存储介质

Also Published As

Publication number Publication date
EP3849119A1 (en) 2021-07-14
CN110958089B (zh) 2021-12-03
CN110958089A (zh) 2020-04-03
US20210227560A1 (en) 2021-07-22
EP3849119A4 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2020063576A1 (zh) 传输块与码字的对应关系、相关设备以及系统
US11917632B2 (en) Physical uplink control channel (PUCCH) resource allocation
CA3079375C (en) Physical uplink control channel (pucch) resource allocation
JP2021192536A (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US20190260521A1 (en) Harq-ack feedback information transmission method and related apparatus
US9913254B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
US11533150B2 (en) Feedback information transmission method and communication device
US20200127775A1 (en) Data transmission method, user equipment, and network device
IL273027B1 (en) A method for transmitting information and a related product
EP3920454B1 (en) Transmission direction configuration method, device, and system
CN114025388A (zh) 一种数据传输的方法、相关设备以及系统
US20230389006A1 (en) Physical downlink shared channel receiving and time domain resource indicating method, device, storage medium, base station, and terminal
US20230091988A1 (en) Methods and devices for configuring harq-ack feedback
US11082995B2 (en) Data transmission method, network side device and terminal
EP3657877B1 (en) Communication method and network device
WO2018199643A1 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
US20230361942A1 (en) Uplink data sending method and configuration method, terminal, and network side device
WO2020187217A1 (zh) 一种传输信息的方法和装置
WO2018191868A1 (zh) 一种指示子帧配置的方法及装置
KR20240000453A (ko) 무선 통신 시스템에서 논리 채널 처리
CN117040703A (zh) 物理下行共享信道处理能力确定方法、装置及相关设备
CN114503722A (zh) 传输上行控制信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865691

Country of ref document: EP

Effective date: 20210407