WO2020063266A1 - 一种harq进程id的确定方法、装置、终端及介质 - Google Patents

一种harq进程id的确定方法、装置、终端及介质 Download PDF

Info

Publication number
WO2020063266A1
WO2020063266A1 PCT/CN2019/104055 CN2019104055W WO2020063266A1 WO 2020063266 A1 WO2020063266 A1 WO 2020063266A1 CN 2019104055 W CN2019104055 W CN 2019104055W WO 2020063266 A1 WO2020063266 A1 WO 2020063266A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq process
configuration authorization
configuration
harq
authorization
Prior art date
Application number
PCT/CN2019/104055
Other languages
English (en)
French (fr)
Inventor
苗金华
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19865399.0A priority Critical patent/EP3860259B1/en
Priority to US17/279,598 priority patent/US20210336727A1/en
Publication of WO2020063266A1 publication Critical patent/WO2020063266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method, a device, a terminal, and a medium for determining a HARQ process ID.
  • the network can pre-configure some uplink (UL) or downlink (DL) resources to allow the UE to pass multiple Hybrid Automatic Repeat Request (HARQ) processes transmit data in parallel to facilitate services that require high latency, such as Ultra-Reliable and Low Delay Communications (URLLC) services, or Services with relatively regular service formats: such as Voice over IP (Internet Voice Protocol) services.
  • UL uplink
  • DL downlink
  • HARQ Hybrid Automatic Repeat Request
  • the base station can schedule UL resources or DL resources by configuring and granting resources.
  • the process of sending data based on a configuration grant is shown in Figure 1, and the same bandwidth is in the same serving cell.
  • a schematic diagram of data transmission based on multiple configuration authorizations on a band (BWP) is shown in FIG. 2.
  • BWP configuration authorizations on a band
  • formulas for calculating the HARQ process identification number (IDentity, ID) of each HARQ process are proposed for DL and UL.
  • HARQ process ID [floor (CURRENT_slot ⁇ 10 / (number of time slots in a radio frame ⁇ configuration grant period))]% configures the number of authorized HARQ processes.
  • HARQ process ID [floor (CURRENT_symbol / configuration authorization period)]% Configure the number of HARQ processes authorized.
  • CURRENT_slot [(SFN ⁇ the number of time slots in a radio frame) + in a radio frame Timeslot transmission sequence number]
  • CURRENT_symbol (SFN ⁇ the number of time slots in a radio frame ⁇ the number of symbols in a time slot + The transmission sequence number of a slot in a radio frame x the number of symbols in a slot + the symbol sequence number in a slot).
  • the number of timeslots in a radio frame represents the number of consecutive timeslots in each system frame. For example, when the subcarrier interval is 15KHz, then a system frame contains 10 timeslots, one
  • the number of symbols in a time slot indicates the number of consecutive symbols in each time slot. For example, in a normal cyclic prefix, there are 14 symbols in a time slot.
  • the slot transmission sequence number in a radio frame indicates the sequence number of a radio frame slot during the transmission process, such as the 0th slot, the 1st slot, and so on.
  • the symbol sequence number in a time slot indicates the sequence number of a time slot symbol during transmission, such as the 0th symbol and the 1st symbol.
  • SFN represents the system frame number (System Frame Number, SFN) corresponding to the system frame during transmission
  • the configuration authorization period is the period during which the configuration authorization occurs, such as 10 ms.
  • This application provides a method, a device, a terminal, and a medium for determining a HARQ process ID, which are used to solve a conflict in the HARQ process IDs of HARQ processes corresponding to multiple configuration authorizations when data transmission is performed based on multiple configuration authorizations in the prior art problem.
  • a method for determining a HARQ process ID includes:
  • the terminal device determines a target parameter, where the target parameter is an offset time domain domain offset from the system frame number SFN 0 in the time domain configured in the configuration authorization or the HARQ process information configured in the configuration authorization;
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration authorization period + configuration authorization index number)]%, the number of authorized HARQ processes is configured to calculate and determine the HARQ process ID of the HARQ process.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configured authorization period) + configured authorization index number)]% configure the number of authorized HARQ processes, calculate and determine the HARQ process ID of the HARQ process.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant period + time Domain Offset)]%, the number of authorized HARQ processes is configured, and the HARQ process ID of the HARQ process is calculated and determined.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configuration authorization period) + time Domain Offset)]% configure the number of authorized HARQ processes, and calculate and determine the HARQ The HARQ process ID of the process.
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured by the configuration authorization or the HARQ process number information configured by the configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • the HARQ process information configured in the configuration authorization includes one HARQ process ID, determine the HARQ process ID configured by the configuration authorization as the HARQ process ID of the HARQ process.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter further includes:
  • the HARQ process ID of the HARQ process is determined according to the multiple HARQ process IDs configured in the configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant period)]% M i + offset i , calculate and determine the HARQ process ID of the HARQ process, where i is the configuration authorization index number, and M i is The number of HARQ processes configured in the i-th configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • a device for determining a HARQ process ID includes:
  • a first determining module configured to determine a target parameter, where the target parameter is an offset time index and a system frame number of 0 in a time domain configured in the configuration authorization or a HARQ configured in the configuration authorization Process information
  • a second determining module is configured to determine a HARQ process ID of a HARQ process corresponding to the configuration authorization according to the target parameter.
  • the number of processes calculates and determines the HARQ process ID of the HARQ process.
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured by the configuration authorization or the HARQ process number information configured by the configuration authorization
  • the second determining module is specifically configured to:
  • the HARQ process information configured in the configuration authorization includes a HARQ process ID, and the HARQ process ID configured by the configuration authorization is determined as the HARQ process ID of the HARQ process.
  • the second determining module is further specifically configured to determine the HARQ process information configured in the configuration authorization according to the multiple HARQ process IDs configured in the configuration authorization.
  • HARQ process ID of the HARQ process is further specifically configured to determine the HARQ process information configured in the configuration authorization according to the multiple HARQ process IDs configured in the configuration authorization.
  • a terminal is further provided.
  • the terminal includes: a processor and a memory;
  • the processor is configured to read a program in the memory and execute the following processes:
  • Target parameter configures an authorization index number or an offset time domain offset from the system frame number of 0 in the time domain configured in the configuration authorization or a HARQ process information configured in the configuration authorization;
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured in the configuration authorization or the HARQ process number information configured in the configuration authorization, and the processor, specifically, if configured in the configuration authorization
  • the HARQ process information includes 1 HARQ process ID, and the HARQ process ID configured by the configuration authorization is determined as the HARQ process ID of the HARQ process.
  • the processor is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine each HARQ process from the multiple HARQ process IDs configured in the configuration authorization HARQ process ID.
  • a computer-readable storage medium which stores a computer program executable by an electronic device, and when the program runs on the electronic device, the electronic device The steps in the above method for determining a HARQ process ID are performed.
  • a computer program product is also provided, and when the instructions in the computer program product are run on an electronic device, the electronic device can execute the steps in the method for determining a HARQ process ID.
  • the electronic device may be a transmitting device or a receiving device.
  • This application provides a method, a device, a terminal, and a medium for determining a HARQ process ID.
  • the method includes: a terminal device determines a target parameter, where the target parameter is a configuration authorization index number or a time domain configured in the configuration authorization. Offset time Domain Offset with system frame number 0 or HARQ process information configured in the configuration authorization; determine the HARQ process ID of each HARQ process corresponding to the configuration authorization according to the target parameter.
  • the HARQ process ID of each HARQ process corresponding to the configuration authorization is a different value, which can solve the problem that the HARQ process IDs corresponding to multiple configuration authorizations conflict before the HARQ process does not receive feedback or the configuration authorization timer expires.
  • FIG. 1 is a schematic diagram of sending data based on a configuration authorization
  • FIG. 2 is a schematic diagram of data transmission based on multiple configuration authorizations
  • FIG. 3 is a flowchart of a method for determining a HARQ process ID according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of determining a HARQ process ID according to a configuration authorization index number according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of determining a HARQ process ID according to time Domain Offset according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of determining a HARQ process ID according to configured HARQ process information according to an embodiment of the present application
  • FIG. 7 is a structural block diagram of an apparatus for determining a HARQ process ID according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of a terminal according to an embodiment of the present application.
  • the number of timeslots in a radio frame represents the number of consecutive timeslots in each system frame. For example, when the subcarrier interval is 15KHz, then a system frame contains 10 timeslots; one The number of symbols in a time slot indicates the number of consecutive symbols in each time slot. For example, in a normal cyclic prefix, there are 14 symbols in a time slot.
  • the time slot transmission sequence number in a radio frame indicates the transmission process.
  • the sequence number of a radio frame slot such as the 0th slot, the 1st slot, etc .
  • the symbol sequence number in a slot represents the sequence number of a slot symbol during the transmission process, such as the 0th symbol, the 1 symbol.
  • SFN indicates the system frame number corresponding to the system frame during transmission;
  • the configuration authorization period is the period during which the configuration authorization occurs, such as 10ms.
  • the current transmission time unit is the current configuration.
  • the first transmission time of the repeated data transmission can be the current time slot and the current symbol, or it can be determined based on the CURRENT_symbol in the formula for determining the HARQ process ID in the prior art.
  • the number of authorized HARQ processes is the number of HARQ processes reserved in the configuration authorization.
  • the network side reserves 8 HARQ processes for the configuration authorization. This can be expressed as the number of DL and HARQ processes reserved in the configuration authorization. Represents the number of UL HARQ processes reserved for configuration authorization.
  • the terminal device includes a device that provides voice and / or data connectivity to a user, and may include, for example, a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the network device may be a base station.
  • the base station may be a commonly used base station, an evolved base station (eNB), or a network device in a 5G system (for example, a next-generation base station ( next generation node (base station, gNB) or transmission and reception point (TRP)).
  • eNB evolved base station
  • TRP transmission and reception point
  • the Media Access Control Packet Data Unit (MAC, PDU) is composed of character strings arranged in bytes.
  • the MAC PDU includes the following types of MAC PDUs used for data transmission, MAC PDUs during transparent transmission, and MAC PDUs during random access response.
  • the MAC PDU used for data transmission is, for example, a downlink shared channel (DL-SCH) or an uplink shared channel (UL-SCH).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • Different types of MAC PDUs have different structures and the information they contain is not exactly the same.
  • the structure of the MAC PDU for data transmission may include a MAC header, zero or more media access control layer packet data units (Media Access Control, Data Unit, MAC SDU), zero or more media access control layer control Unit (Media, Control, Control, Unit, MAC) and padding.
  • the MAC PDU in the transparent transmission process does not have a MAC header, and only includes a MAC SDU.
  • the structure of the MAC PDU in the random access response process may include a MAC header, zero or more MAC SDUs, zero or more MAC RARs, and padding. Each transmission block of the UE can only carry one MAC PDU.
  • a Hybrid Automatic Repeat Request (HARQ) entity each terminal device corresponds to a HARQ entity, and one HARQ entity includes multiple HARQ processes.
  • Each HARQ process corresponds to a unique HARQ process identification number (Identification, ID), and each HARQ process will save a new data indicator (New Data Indicator (NDI), NDI is used to indicate that the scheduled data is New or retransmissions.
  • ID HARQ process identification number
  • NDI New Data Indicator
  • the configuration authorization can be divided into a configuration authorization type 1 (Configured Grant Type 1) and a configuration authorization type 2 (Configured Grant type 2).
  • Configured Grant Type 1 is the radio resource control (RRC) configuration resource location, Modulation Coding Scheme (MCS), RB size, Hybrid Automatic Repeat Request (HARQ) number, period, etc. The content does not need the physical layer activation and deactivation process. It takes effect after RRC configuration.
  • Configured grant type 2 is also the RRC configuration resource location, the number of HARQs, and the period, but it will not configure the RB and MCS methods. At the same time, the physical layer needs to send DCI to activate and deactivate resources.
  • an embodiment of the present application provides a method for determining a HARQ process ID. As shown in FIG. 3, the method includes the following steps:
  • Step S301 The terminal device determines a target parameter.
  • the target parameter is an offset time domain domain offset from the system frame number 0 configured in the configuration authorization index number or the configuration authorization time domain or HARQ process information configured in the configuration authorization.
  • Step S302 Determine the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter.
  • the target parameters used in determining the HARQ process ID are not specifically limited, that is to say, the target parameters are not limited to the above three parameters, and the configuration authorizes other Relevant parameters can also be used as target parameters when determining the HARQ process ID.
  • the target parameter When determining the HARQ process ID through the target parameter, the target parameter may be determined together with the formula for determining the HARQ process ID in the prior art, or the HARQ process ID may be directly determined according to the target parameter. In the embodiment of the present application, for determining the The manner of the HARQ process ID is not specifically limited.
  • the configuration authorization index number, the time domain configured in the configuration authorization, or the HARQ process information configured in the configuration authorization are not corresponding to the same value. Therefore, whether the HARQ process ID is determined by combining the formula for determining the HARQ process ID in the prior art, or the HARQ process ID is directly determined according to the target parameter, it is possible to ensure that the HARQ process ID of each HARQ process corresponding to multiple configuration authorizations is different. Value, thereby solving the problem of conflicting HARQ process IDs corresponding to multiple configuration authorizations before the HARQ process does not receive feedback or the configuration authorization timer expires.
  • the base station can schedule UL resources or DL resources by configuring and authorizing resources, in the embodiment of the present application, if the HARQ process is UL transmission, the determining is performed according to the target parameter.
  • the HARQ process ID of the HARQ process corresponding to the authorization includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant cycle + configuration grant index number)]% configure the number of authorized HARQ processes to calculate the HARQ process ID of the HARQ process.
  • the configuration authorization index number indicates the identification number or number of the current configuration authorization.
  • the configuration authorization 1 indicates the first configuration authorization
  • the configuration authorization 2 indicates the second configuration authorization, and then And so on.
  • the target parameter is the configuration authorization index number.
  • the configuration authorization index is added in the rounding down process.
  • Each configuration authorization index number is different, so the value obtained by rounding down is different. Therefore, when the number of HARQ processes authorized by the configuration is modulo, the obtained HARQ process ID is also different.
  • the squares of different gray levels in the figure represent different resource locations of the configuration.
  • there are 4 configuration authorizations in UL which are configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3, configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3.
  • the first HARQ process corresponds to The current transmission time units are 0, 2, 4, and 6, and the configuration authorization cycle is 20 time slots. If the index numbers defined for configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3 are 0, respectively , 1, 2, 3, which are substituted into the formula provided in the embodiment of the present application, and the HARQ process IDs corresponding to configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3 are 0, 1, 2, and 3, respectively. It should be noted that the index number defined for each configuration authorization is not specifically limited.
  • HARQ process ID [floor (current transmission time unit / configuration authorization cycle + configuration authorization index number)] % Configure the number of authorized HARQ processes.
  • the target parameter is the configuration authorization index number
  • the HARQ process ID [floor (current transmission time unit / configuration authorization cycle + configuration authorization index number)]% configuration authorized HARQ
  • the value of the HARQ process ID obtained by calculation can also be different.
  • the HARQ process corresponding to the configuration authorization is determined according to the target parameter.
  • the HARQ process ID includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configured authorization period) + configured authorization index number)]% configure the number of authorized HARQ processes, calculate and determine the HARQ process ID of the HARQ process.
  • the configuration authorization index number is also added during the rounding down process.
  • the value obtained by rounding down is different. Therefore, when the number of HARQ processes authorized for configuration is modulo, the obtained HARQ process IDs are also different.
  • configuration authorizations Taking the four configuration authorizations shown in FIG. 4 as an example, if there are four configuration authorizations in the DL, they are configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3, configuration authorization 0, and configuration authorization 1.
  • the current HARQ process corresponding to the first HARQ process in configuration authorization 2, and authorization authorization 3 are 0, 2, 4, and 6, respectively. If you define indexes for configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3
  • the numbers are 0, 1, 2, and 3, which are substituted into the formulas provided in the examples of this application, and the configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3 corresponding HARQ process IDs are 0, 1, and 2, respectively. , 3.
  • the time domain and offset configured in each configuration authorization are not specifically limited.
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (time slot in a wireless frame) Number ⁇ configuration authorization cycle) + configuration authorization index number)]% configuration authorized HARQ process number, you can calculate and obtain different HARQ process IDs, so that the HARQ process ID of each HARQ process corresponding to multiple configuration authorizations is different Value, which can solve the problem that the HARQ process IDs of the HARQ processes corresponding to multiple configuration authorizations conflict before the HARQ process does not receive feedback or the configuration authorization timer expires in the prior art.
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configuration authorization) Period) + configuration authorization index number)]%
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configuration authorization cycle) ) + Configuration authorization index number]%
  • Configure the number of authorized HARQ processes that is, after the current transmission time unit ⁇ 10 / (the number of time slots in a wireless frame ⁇ the configuration authorization period is rounded down, then add Configure the authorization index number, and then configure the number of authorized HARQ processes.
  • the deformation formula obtained by the number of configured authorized HARQ processes is also within the protection scope of the embodiment of this application.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration authorization period + time Domain Offset)]%, the number of authorized HARQ processes is configured, and the HARQ process ID of the HARQ process is calculated and determined.
  • the target parameter is time Domain Offset.
  • the target parameter is time Domain Offset.
  • the current transmission time unit / configuration authorization period + time domain offset is rounded down to obtain a different value, so when the number of HARQ processes authorized by the configuration is modulo , The obtained HARQ process ID is also different.
  • HARQ process ID [floor (current transmission time unit / configuration authorization cycle + time Domain Offset)]% configures the number of authorized HARQ processes, and calculates and obtains different HARQ process IDs, so that the HARQ process ID of each HARQ process corresponding to multiple configuration authorizations is a different value, which can solve the problem of HARQ in the prior art.
  • the HARQ process ID conflicts of multiple HARQ processes corresponding to the configuration authorization may occur.
  • the target parameter is the time domain configured in the configuration authorization
  • the HARQ process ID [floor (current transmission time unit / configuration authorization cycle + time domain offset)]% configuration
  • the value of the HARQ process ID obtained by calculation can also be different.
  • the deformation formula obtained by the number of HARQ processes is also within the protection scope of the embodiments of the present application.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configuration authorization period) + time Domain Offset)]% configure the number of authorized HARQ processes configure the number of authorized HARQ processes , Calculating and determining a HARQ process ID of the HARQ process.
  • the target parameter is time Domain Offset.
  • the current transmission time unit ⁇ 10 / (the number of time slots in a wireless frame ⁇ the configuration authorization period) + time domain value is obtained by rounding down the offset
  • the obtained HARQ process IDs are also different.
  • the four configuration authorizations shown in FIG. 5 if there are four configuration authorizations in the DL, they are configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3, configuration authorization 0, and configuration authorization 1.
  • the current transmission time units corresponding to the first HARQ process in configuration authorization 2 and configuration authorization 3 are 0, 2, 4, and 6, respectively. If the time domain Offset of authorization 0 is set to 1, the time domain Offset of authorization 1 is 2 , Configure the time of authorization 2 as Domain 3, set the time of authorization 3 as Domain 3 and substitute it into the formula provided in the embodiment of this application to calculate the configuration authorization 0, configuration authorization 1, configuration authorization 2 and configuration authorization 3.
  • the HARQ process IDs are 0, 1, 2, and 3, respectively. It should be noted that the time domain and offset configured in each configuration authorization are not specifically limited.
  • the HARQ process ID [floor (current transmission time unit ⁇ 10 / (one wireless) Number of timeslots in the frame ⁇ configuration authorization period) + time Domain Offset)]% Configure the number of authorized HARQ processes, calculate and obtain different HARQ process IDs, so that multiple configuration authorizations correspond to each HARQ process HARQ process
  • the IDs are different values, which can solve the problem of conflicting HARQ process IDs of the HARQ processes corresponding to multiple configuration authorizations before the HARQ process does not receive feedback or the configuration authorization timer times out in the prior art.
  • the target parameter is the time domain configured in the configuration authorization
  • the HARQ process ID [floor (current transmission time unit ⁇ 10 / (slots in a radio frame Number ⁇ configuration authorization period) + time Domain Offset)]%
  • the deformation formula obtained by configuring the number of authorized HARQ processes is also in this Within the protection scope of the application examples.
  • the target parameter is the configuration authorization index number or time Domain Offset
  • the formula is based on the configuration authorization index number or time Domain Offset as the input parameter, it can also be based on the above formula or extended formula. Calculating the HARQ process ID is also within the protection scope of this application.
  • the configuration authorization is determined according to the target parameter.
  • the HARQ process ID of the corresponding HARQ process includes:
  • the HARQ process ID configured in the configuration authorization is determined as the HARQ process ID of each HARQ process.
  • the HARQ process ID authorized in the configuration is the value.
  • configuration authorization 1 configured for configuration authorization 0
  • configuration authorization 2 configured for configuration authorization 0
  • configuration authorization 3 are A, B, C, and D
  • configure The HARQ process ID of the HARQ process on each cycle of authorization 0 is A
  • the HARQ process ID of the HARQ process on each cycle of authorization 0 is B
  • the The HARQ process ID of the HARQ process is C
  • the HARQ process ID of each HARQ process on each cycle of configuration authorization 0 is D.
  • A, B, C, and D are different values, the authorized Periodically, there will be no duplicate HARQ process IDs, so the problem of conflicts in HARQ process IDs in the prior art can be solved.
  • the HARQ process ID of the HARQ process is determined according to the multiple HARQ process IDs configured in the configuration authorization.
  • the UE can arbitrarily select from multiple HARQ process IDs, and since each HARQ process ID value is different, it is also possible to avoid conflicts in HARQ process IDs The problem.
  • the HARQ process ID of the HARQ process corresponding to the authorization includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant period)]% M i + offset i , calculate and determine the HARQ process ID of the HARQ process, where i is the configuration authorization index number, and M i is The number of HARQ processes configured in the i-th configuration authorization.
  • the HARQ process IDs configured for configuration authorization 0 configuration authorization 1, configuration authorization 2, and configuration authorization 3 are A, B, C, and D, respectively, where A , B, C, and D respectively represent the set of HARQ process IDs configured for configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3.
  • the index number of configuration authorization 0 is 0, and the CURRENT_symbol corresponding to the first HARQ process of configuration authorization 0 is 0, which is the current transmission.
  • the time unit is 0 and the authorization period is set to 20 timeslots.
  • offset 0 0.
  • the HARQ process ID of authorization 0 ranges from 0 to 1.
  • the range of HARQ process ID is 2, 3, 4; and so on, and the configuration of HARQ process ID on authorization 3 is 5, 6; the configuration of HARQ process ID on authorization 3 is 7, 8.
  • the HARQ process ID corresponding to each configuration authorization can also be calculated, and the HARQ process ID obtained for each configuration authorization calculation is a different value, so
  • the terminal device can be arbitrarily selected according to different values obtained by calculation, thereby also solving the problem of conflicts in HARQ process IDs in the prior art.
  • the HARQ process ID of the HARQ process is determined from the multiple HARQ process IDs configured according to the configuration authorization:
  • the HARQ process IDs configured for configuration authorization 0 configuration authorization 1, configuration authorization 2, and configuration authorization 3 are A, B, C, and D, respectively, where A , B, C, and D respectively represent the set of HARQ process IDs configured for configuration authorization 0, configuration authorization 1, configuration authorization 2, and configuration authorization 3.
  • the number of HARQ process IDs configured on authorization 3 is 2.
  • the index number of configuration authorization 0 is 0, and the CURRENT_symbol corresponding to the first HARQ process of configuration authorization 0 is 0, which is the current transmission.
  • the time unit is 0 and the authorization period is set to 20 timeslots.
  • offset 0 0.
  • the HARQ process ID of authorization 0 ranges from 0 to 1.
  • the HARQ process ID corresponding to each configuration authorization can also be calculated, and the HARQ process ID obtained for each configuration authorization calculation is a different value, so
  • the terminal device can be arbitrarily selected according to different values obtained by calculation, thereby also solving the problem of conflicts in HARQ process IDs in the prior art.
  • a device for determining a HARQ process ID is also provided. As shown in FIG. 7, the device includes:
  • the first determining module 701 is configured to determine a target parameter, where the target parameter is an offset time or domain offset of the configuration authorization index number or the system frame number 0 in the time domain configured in the configuration authorization.
  • the HARQ process information configured in the configuration authorization is described;
  • a second determining module 702 is configured to determine a HARQ process ID of a HARQ process corresponding to the configuration authorization according to the target parameter.
  • HARQ process ID [floor (current transmission time unit / configuration authorization cycle + time Domain Offset)]% configuration authorization
  • the number of HARQ processes, and a HARQ process ID of the HARQ process is calculated and determined.
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured by the configuration authorization or the HARQ process number information configured by the configuration authorization
  • the second determining module 702 is specifically configured to: If the HARQ process information configured in the configuration authorization includes a HARQ process ID, the HARQ process ID configured by the configuration authorization is determined as the HARQ process ID of the HARQ process.
  • the second determining module 702 is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine the IP address based on the multiple HARQ process IDs configured in the configuration authorization.
  • the HARQ process ID of the HARQ process is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine the IP address based on the multiple HARQ process IDs configured in the configuration authorization.
  • the HARQ process ID of the HARQ process is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine the IP address based on the multiple HARQ process IDs configured in the configuration authorization.
  • the HARQ process ID of the HARQ process is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine the IP address based on the multiple HARQ process IDs configured in the configuration authorization. The HARQ process ID of the
  • a terminal 800 is also provided. As shown in FIG. 8, the terminal 800 includes: a processor 801 and a memory 802.
  • the processor 801 is configured to read a program in the memory 802 and execute the following processes:
  • Target parameter is an offset time index from the time domain configured in the configuration authorization or a system frame number of 0 in the configuration authorization time Domain Offset or HARQ process information configured in the configuration authorization;
  • the number of processes calculates and determines the HARQ process ID of the HARQ process.
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured by the configuration authorization or the HARQ process number information configured by the configuration authorization, and the processor 801 is specifically configured to:
  • the HARQ process information configured in the authorization includes a HARQ process ID, and the HARQ process ID configured in the configuration authorization is determined as the HARQ process ID of the HARQ process.
  • the processor 801 is further specifically configured to: if the HARQ process information configured in the configuration authorization includes multiple HARQ process IDs, determine each HARQ from the multiple HARQ process IDs configured in the configuration authorization The HARQ process ID of the process.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 801 and various circuits of the memory represented by the memory 802 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the processor 801 may be a CPU (central embedded device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logical Device) , Complex programmable logic device).
  • CPU central embedded device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logical Device
  • a computer-readable storage medium which stores a computer program executable by an electronic device, and when the program runs on the electronic device, the electronic device Perform the steps in the following methods:
  • Target parameter is an offset time index from the time domain configured in the configuration authorization or a system frame number of 0 in the configuration authorization time Domain Offset or HARQ process information configured in the configuration authorization;
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant period + configuration grant index number)]% configuration authorized HARQ process number
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configured authorization period) + configured authorization index number)]% configure the number of authorized HARQ processes, calculate and determine the HARQ process ID of the HARQ process.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration authorization period + time Domain Offset)]%, the number of authorized HARQ processes is configured, and the HARQ process ID of the HARQ process is calculated and determined.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit ⁇ 10 / (number of time slots in a radio frame ⁇ configuration authorization period) + time Domain Offset)]% configure the number of authorized HARQ processes, and calculate and determine the HARQ The HARQ process ID of the process.
  • the HARQ process information configured in the configuration authorization is the HARQ process ID information configured by the configuration authorization or the HARQ process number information configured by the configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter further includes:
  • the HARQ process ID of the HARQ process is determined according to the multiple HARQ process IDs configured in the configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • HARQ process ID [floor (current transmission time unit / configuration grant period)]% M i + offset i , calculate and determine the HARQ process ID of the HARQ process, where i is the configuration authorization index number, and M i is The number of HARQ processes configured in the i-th configuration authorization.
  • determining the HARQ process ID of the HARQ process corresponding to the configuration authorization according to the target parameter includes:
  • the computer-readable storage medium may be any available medium or data storage device that can be accessed by a processor in an electronic device, including, but not limited to, magnetic storage such as a floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc. , DVD, BD, HVD, etc., and semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state hard disk (SSD), etc.
  • a computer program product is also provided, and when the instructions in the computer program product are run on an electronic device, the electronic device can execute any one of the foregoing HARQ process ID determination methods. Steps.
  • the electronic device may be the terminal 800.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Abstract

本申请涉及无线通信技术领域,尤其涉及一种HARQ进程ID的确定方法、装置、终端及介质,该方法包括终端设备确定目标参数,其中目标参数为配置授权索引号或配置授权中配置的time Domain Offset或配置授权中配置的HARQ进程信息;根据所述目标参数确定所述配置授权对应的每个HARQ进程的HARQ进程ID。在本申请中,通过在确定HARQ进程的HARQ进程ID的过程中引入上述目标参数中的一种,可以使多个配置授权对应的HARQ进程的HARQ进程ID为不同值,从而解决在HARQ进程未收到反馈,或配置授权定时器超时之前,出现HARQ进程ID冲突的问题。

Description

一种HARQ进程ID的确定方法、装置、终端及介质
相关申请的交叉引用
本申请要求在2018年09月28日提交中国专利局、申请号为201811143471.2、申请名称为“一种HARQ进程ID的确定方法、装置、终端及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种HARQ进程ID的确定方法、装置、终端及介质。
背景技术
在下一代无线(New radio,NR)系统中,网络侧可以预先配置一些上行链路(Uplink,UL)资源或者下行链路(Downlink,DL)资源,使UE按照基站配置的资源位置通过多个混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程并行传输数据,以方便一些对延时要求高的业务,比如高可靠低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)业务,或者业务格式比较规则的业务:如基于IP的语音传输(Voice over Internet Protocol,VoIP)业务等。
在NR系统中,基站可通过对资源进行配置授权的方式对UL资源或DL资源进行调度,其中基于一个配置授权进行数据发送的过程如图1所示,而在同一个服务小区的同一个带宽片段(Band width part,BWP)上基于多种配置授权进行数据传输的示意图如图2所示。目前标准中针对DL和UL分别提出了计算每个HARQ进程的HARQ进程标识号(IDentity,ID)的公式。
针对DL传输:
HARQ进程ID=[floor(CURRENT_slot×10/(一个无线帧中的时隙个数×配置授权周期))]%配置授权的HARQ进程数量。
针对UL传输:
HARQ进程ID=[floor(CURRENT_symbol/配置授权周期)]%配置授权的HARQ进程数量。
其中,针对每个HARQ进程,在DL中重复传输的同一组数据包当前HARQ进程中进行数据传输的首次时刻CURRENT_slot=[(SFN×一个无线帧中的时隙个数)+一个无线帧中的时隙传输序号],在UL中重复传输的同一组数据包当前HARQ进程中进行数据传输的首次时刻CURRENT_symbol=(SFN×一个无线帧中的时隙个数×一个时隙内的符号个数+一个无线帧中的时隙传输序号×一个时隙内的符号个数+一个时隙内的符号序列号)。其中,一个无线帧中的时隙个数表示每个系统帧内连续的时隙个数,举例来讲,比如当子载波间隔为15KHz时,那么一个系统帧内则包含10个时隙,一个时隙内的符号个数,表示每个时隙内的连续符号个数,比如在正常的循环前缀时,一个时隙内有14个符号。一个无线帧中的时隙传输序号表示传输过程中一个无线帧时隙的序列号,比如第0个时隙,第1个时隙等。一个时隙内的符号序列号表示传输过程中一个时隙符号的序列号,比如第0个符号,第1个符号。SFN表示传输过程中系统帧对应的系统帧号(System Frame Number,SFN),配置授权周期为配置授权出现的周期,比如10ms等。
然而,如图4所示,假如在UL中存在4个配置授权,分别为配置授权0、配置授权1、配置授权2和配置授权3,而配置授权0、配置授权1、配置授权2和配置授权3中第一个HARQ进程对应的CURRENT_symbol分别为0、2、4、6,若配置授权0、配置授权1、配置授权2和配置授权3对应的配置授权周期均为20个时隙,在通过上述公式计算HARQ进程ID时,由于计算floor(CURRENT_symbol/配置授权周期)时,需要向下取整,因此针对配置授权0、配置授权1、配置授权2和配置授权3中HARQ进程的HARQ进程ID分别为0、0、0、0,因此在HARQ进程未收到反馈,或配置授权定时器超时之前会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的场景。 所以如何解决现有技术中基于多个配置授权进行数据传输时HARQ进程ID存在冲突,是一个值得研究的问题。
发明内容
本申请提供一种HARQ进程ID的确定方法、装置、终端及介质,用以解决现有技术中基于多个配置授权进行数据传输时,多个配置授权对应的HARQ进程的HARQ进程ID存在冲突的问题。
为克服上述技术问题,依据本申请的一个方面,提供了一种HARQ进程ID的确定方法,所述方法包括:
终端设备确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号SFN为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定HARQ进程的HARQ进程ID。
可选地,如果HARQ为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ 进程的HARQ进程ID。
可选地,如果HARQ进程为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息。
可选地,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
可选地,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID还包括:
如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000001
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,如果HARQ进程为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000002
其中M j表示第j个配置授权配置的HARQ进程数量。
依据本申请实施例的另一个方面,还提供了一种HARQ进程ID的确定装置,所述装置包括:
第一确定模块,用于确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
第二确定模块,用于根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数 量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息,所述第二确定模块,具体用于如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,还具体用于如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000003
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,所述第二确定模块,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000004
其中M j表示第j个配置授权配置的HARQ进程数量。
依据本申请实施例的另一个方面,还提供了一种终端,所述终端包括:处理器和存储器;
所述处理器,用于读取所述存储器中的程序,执行下列过程:
确定目标参数,其中所述目标参数配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
可选地,所述处理器,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息,所述处理器,具体如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
可选地,所述处理器,还具体用于如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则从所述配置授权配置的多个HARQ进程ID中确定每个HARQ进程的HARQ进程ID。
可选地,所述处理器,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计 算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000005
Figure PCTCN2019104055-appb-000006
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,所述处理器,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000007
其中M j表示第j个配置授权配置的HARQ进程数量。
依据本申请实施例的另一个方面,还提供了一种计算机可读存储介质,其存储有电子设备可执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行上述HARQ进程ID的确定方法中的步骤。
依据本申请实施例的另一个方面,还提供了一种计算机程序产品,当所述计算机程序产品中的指令在电子设备上运行时,使得电子设备能够执行上述HARQ进程ID的确定方法中的步骤。上述电子设备可以是发送设备或接收设备。
本申请的有益效果如下:
本申请提供了一种HARQ进程ID的确定方法、装置、终端及介质,所述方法包括:终端设备确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;根据所述目标参数确定所述配置授权对应的每个HARQ进程的HARQ进程ID。在本申请中,通过在确定HARQ进程的HARQ进程ID的过程中引入配置授权索引号、配置授权中配置的time Domain Offset以及配置授权中配置的HARQ进程信息中的至少一种,可以使多个配置授权对应的每个HARQ进程的HARQ进程ID均为不同值,从而能够解决在HARQ进程未收到反馈,或配置授权定时器超时之前出现多个配置授权对 应的HARQ进程ID存在冲突的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为基于一个配置授权进行数据发送的示意图;
图2为基于多种配置授权进行数据传输的示意图;
图3为本申请实施例提供的HARQ进程ID的确定方法的流程图;
图4为本申请实施例提供的根据配置授权索引号确定HARQ进程ID的示意图;
图5为本申请实施例提供的根据time Domain Offset确定HARQ进程ID的示意图;
图6为本申请实施例提供的根据配置的HARQ进程信息确定HARQ进程ID的示意图;
图7为本申请实施例提供的HARQ进程ID的确定装置的结构框图;
图8为本申请实施例提供的一种终端的结构框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而 不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对本申请实施例中涉及的基础定义在此优先进行说明,后续不再赘述。其中,一个无线帧中的时隙个数表示每个系统帧内连续的时隙个数,举例来讲,比如当子载波间隔为15KHz时,那么一个系统帧内则包含10个时隙;一个时隙内的符号个数,表示每个时隙内的连续符号个数,比如在正常的循环前缀时,一个时隙内有14个符号;一个无线帧中的时隙传输序号表示传输过程中一个无线帧时隙的序列号,比如第0个时隙,第1个时隙等;一个时隙内的符号序列号表示传输过程中一个时隙符号的序列号,比如第0个符号,第1个符号。SFN表示传输过程中系统帧对应的系统帧号;配置授权周期为配置授权出现的周期,比如10ms等。当前传输时间单元为当前配置授权传输为重复传输时,重复数据传输的首次发送时刻,可以是当前时隙,当前符号,也可以根据现有技术中确定HARQ进程ID的公式中CURRENT_symbol进行确定,配置授权的HARQ进程数量为所述配置授权中预留的HARQ进程的数量,比如网络侧给配置授权预留了8个HARQ进程,可以表示为配置授权中预留的DL HARQ进程的数量,也可以表示为配置授权中预留的UL HARQ进程的数量。
在本申请中,终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、 手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
在本申请中,网络设备可以为基站,基站可以是通常所用的基站,也可以是演进型基站(evolved node base station,eNB),还可以是5G系统中的网络设备(例如,下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。
在本申请中,媒体介入控制层分组数据单元(Media Access Control Packet Data Unit,MAC PDU),是由按字节排布的字符串组成。MAC PDU包括以下几种类型用于数据发送的MAC PDU,透明传输过程中的MAC PDU,以及随机接入响应过程中的MAC PDU。用于数据发送的MAC PDU例如下行共享信道(Downlink share channel,DL–SCH)或上行共享信道(Uplink share channel,UL–SCH)。不同类型的MAC PDU的结构不同,所包含的信息也不完全相同。用于数据发送的MAC PDU的结构上可以包括一个MAC头、零个或多个媒体介入控制层分组数据单元(Media Access Control Service Data Unit,MAC SDU)、零个或多个媒体介入控制层控制单元(Media Access Control Control Unit,MAC CE)以及填充信息(padding)。透明传输过程中的MAC PDU没有MAC头,只包括MAC SDU。随机接入响应过程中的MAC PDU的结构上可以包括一个MAC头、零个或多个MAC SDU、零个或多个MAC RAR以及padding。UE的每一个传输块只能携带一个MAC PDU。
在本申请中,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)实体,每个终端设备对应有一个HARQ实体,一个HARQ实体中包括多个 HARQ进程。每个HARQ进程对应会有一个唯一的HARQ进程身份标识号码(Identification,ID),同时每个HARQ进程都会保存一个新数据指示符(New Data Indicator,NDI),NDI用于指示所调度的数据为新传还是重传。
在本申请中,配置授权,可以分为配置授权类型1(Configured Grant Type1)和配置授权类型2(Configured Grant type2)。Configured Grant Type1是无线资源控制(Radio Resource Control,RRC)配置资源位置,调制编码方式(Modulation Coding Scheme,MCS),RB大小,混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)个数,周期等内容,不需要物理层激活、去激活过程,在RRC配置后即生效。Configured grant type2同样是RRC配置资源位置,HARQ个数,周期,但并不会配置RB,MCS方式,同时需要物理层发送DCI对资源进行激活和去激活操作。
当存在多个配置授权时,在基于现有技术中计算HARQ进程ID的公式计算HARQ进程ID时,在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的场景。因此为克服该技术问题,本申请的实施例提供了一种HARQ进程ID的确定方法,如图3所示,该方法包括以下步骤:
步骤S301:终端设备确定目标参数。
在本申请实施例中,所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息。
步骤S302:根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
也就是说,在本申请实施例中,在确定配置授权对应的HARQ进程的HARQ进程ID时,可以根据配置授权索引号进行确定,也可以根据配置授权中配置的time Domain Offset进行确定,也可以根据配置授权中配置的HARQ进程信息进行确定。需要说明的是,在本申请实施例中,对于确定HARQ进程ID时选用的目标参数并不进行具体限定,也就是说针对目标参数,也并不 仅仅局限于上述三种参数,与配置授权其他相关的参数也可以作为确定HARQ进程ID时选用的目标参数。
其中,在通过目标参数确定HARQ进程ID时,可以使目标参数结合现有技术中确定HARQ进程ID的公式共同确定,也可以根据目标参数直接确定HARQ进程ID,在本申请实施例中,对于确定HARQ进程ID的方式并不进行具体限定。
由于在本申请实施例中,在确定HARQ进程的HARQ进程ID的过程中引入配置授权索引号、配置授权中配置的time Domain Offset或者针对配置授权中配置的HARQ进程信息对应的并不是相同数值,因此无论是通过结合现有技术中确定HARQ进程ID的公式确定HARQ进程ID,还是根据目标参数直接确定HARQ进程ID,都可以保证多个配置授权对应的每个HARQ进程的HARQ进程ID均为不同值,从而解决在HARQ进程未收到反馈,或配置授权定时器超时之前,多个配置授权对应的HARQ进程ID存在冲突的问题。
可选地,由于基站可通过对资源进行配置授权的方式对UL资源或DL资源进行调度,所以在本申请实施例中,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算HARQ进程的HARQ进程ID。
其中,需要说明的是,在本申请实施例中,配置授权索引号表示当前配置授权的标识号或编号,比如配置授权1表示第一个配置授权,配置授权2表示第二个配置授权,然后以此类推。
由上述公式可知,在本申请实施例中,目标参数为配置授权索引号,与现有技术中UL传输中确定HARQ进程ID的公式相比,通过在向下取整过程中增加了配置授权索引号,而每个配置授权索引号不同,因此向下取整获取的数值也就不同,所以在对配置授权的HARQ进程数量取模时,获取的到的 HARQ进程ID也就不同。
以图4中所示的4个配置授权为例,图中不同灰度的方格代表配置的不同资源位置。假设在UL中存在4个配置授权,分别为配置授权0、配置授权1、配置授权2和配置授权3,配置授权0、配置授权1、配置授权2和配置授权3中第一个HARQ进程对应的当前传输时间单元分别为0、2、4、6,且配置授权周期均为20个时隙,如果针对配置授权0、配置授权1、配置授权2和配置授权3定义的索引号分别为0、1、2、3,代入本申请实施例提供的公式中,计算得到配置授权0、配置授权1、配置授权2和配置授权3对应的HARQ进程ID分别为0、1、2、3。其中需要说明的是,针对每个配置授权定义的索引号并不进行具体限定。
因此由上述可知,通过网络侧在进行配置授权时,针对每个配置授权定义不同的索引号,可以根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,可以计算获取到不同的HARQ进程ID,以使得多个配置授权对应的每个HARQ进程的HARQ进程ID为不同值,从而可以解决现有技术中在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的问题。
其中,需要说明的是,当目标参数为配置授权索引号时,在UL传输中,作为HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量的拓展,可以使HARQ进程ID=[floor(当前传输时间单元/配置授权周期)+配置授权索引号]%配置授权的HARQ进程数量,也就是说在对当前传输时间单元/配置授权周期向下取整后,再加上配置授权索引号,然后再对配置授权的HARQ进程数量。这样计算时同样可以使计算获取到的HARQ进程ID的数值不同,因此在本申请实施例中,根据HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量得到的变形公式也在本申请实施例的保护范围内。
在上述各实施例的基础上,在本申请实施例中,如果所述目标参数为配 置授权索引号,且HARQ为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
由上述公式可知,在本申请实施例中,与现有技术中DL传输中确定HARQ进程ID的公式相比,在本申请实施例中,在向下取整过程中也增加了配置授权索引号,其中,由于每个配置授权索引号不同,因此向下取整获取的数值也就不同,所以在对配置授权的HARQ进程数量取模时,获取的到的HARQ进程ID也就不同。
仍以图4中所示的4个配置授权为例,假如在DL中存在4个配置授权,分别为配置授权0、配置授权1、配置授权2和配置授权3,配置授权0、配置授权1、配置授权2和配置授权3中第一个HARQ进程对应的当前传输时间单元分别为0、2、4、6,如果针对配置授权0、配置授权1、配置授权2和配置授权3定义的索引号分别为0、1、2、3,代入本申请实施例提供的公式中,计算得到配置授权0、配置授权1、配置授权2和配置授权3对应的HARQ进程ID分别为0、1、2、3。其中需要说明的是,针对每个配置授权中配置的time Domain Offset并不进行具体限定。
因此由上述可知,通过网络侧在进行配置授权时,针对每个配置授权定义不同的索引号,可以根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,可以计算获取到不同的HARQ进程ID,以使得多个配置授权对应的每个HARQ进程的HARQ进程ID为不同值,从而可以解决现有技术中在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的问题。
其中,需要说明的是,当目标参数为配置授权索引号时,在DL传输中,作为HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个 数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量的拓展,可以使HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))+配置授权索引号]%配置授权的HARQ进程数量,也就是说在对当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期向下取整后,再加上配置授权索引号,然后再对配置授权的HARQ进程数量。这样计算时同样可以使计算获取到的HARQ进程ID的数值不同,因此在本申请实施例中,根据HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量得到的变形公式也在本申请实施例的保护范围内。
在上述实施例的基础上,在本申请实施例中,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
由上述公式可知,在本申请实施例中,目标参数为time Domain Offset,与现有技术中UL传输中确定HARQ进程ID的公式相比,通过在向下取整过程中增加time Domain Offset,当每个配置授权中配置的time Domain Offset不同时,则对当前传输时间单元/配置授权周期+time Domain Offset向下取整获取的数值也就不同,所以在对配置授权的HARQ进程数量取模时,获取的到的HARQ进程ID也就不同。
以图5中所示的4个配置授权为例,假如在UL中存在4个配置授权,分别为配置授权0、配置授权1、配置授权2和配置授权3,配置授权0、配置授权1、配置授权2和配置授权3中第一个HARQ进程对应的当前传输时间单元分别为0、2、4、6,如果配置授权0的time Domain Offset为1,配置授权1的time Domain Offset为2,配置授权2的time Domain Offset为3,配置授权3的time Domain Offset为4,代入本申请实施例提供的公式中,计算得 到配置授权0、配置授权1、配置授权2和配置授权3对应的HARQ进程ID分别为0、1、2、3。其中需要说明的是,针对每个配置授权中配置的time Domain Offset并不进行具体限定。
因此由上述可知,通过网络侧在进行配置授权时,如果每个配置授权中配置了不同的time Domain Offset,那么就可以根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算获取到不同的HARQ进程ID,以使得多个配置授权对应的每个HARQ进程的HARQ进程ID为不同值,从而可以解决现有技术中在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的问题。
其中,需要说明的是,当目标参数为配置授权中配置的time Domain Offset时,在UL传输中,作为HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量的拓展,可以使HARQ进程ID=[floor(当前传输时间单元/配置授权周期)+time Domain Offset]%配置授权的HARQ进程数量,也就是说在对当前传输时间单元/配置授权周期向下取整后,再加上配置授权中配置的time Domain Offset,然后再对配置授权的HARQ进程数量。这样计算时同样可以使计算获取到的HARQ进程ID的数值不同,因此在本申请实施例中,根据HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量得到的变形公式也在本申请实施例的保护范围内。
在上述各实施例的基础上,在本申请实施例中,如果HARQ为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
由上述公式可知,在本申请实施例中,目标参数为time Domain Offset,与现有技术中UL传输中确定HARQ进程ID的公式相比,通过在向下取整过程中增加time Domain Offset,当每个配置授权中配置的time Domain Offset不同时,则对当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset向下取整获取的数值也就不同,所以在对配置授权的HARQ进程数量取模时,获取的到的HARQ进程ID也就不同。
仍以图5中所示的4个配置授权为例,假如在DL中存在4个配置授权,分别为配置授权0、配置授权1、配置授权2和配置授权3,配置授权0、配置授权1、配置授权2和配置授权3中第一个HARQ进程对应的当前传输时间单元分别为0、2、4、6,如果配置授权0的time Domain Offset为1,配置授权1的time Domain Offset为2,配置授权2的time Domain Offset为3,配置授权3的time Domain Offset为4,代入本申请实施例提供的公式中,计算得到配置授权0、配置授权1、配置授权2和配置授权3对应的HARQ进程ID分别为0、1、2、3。其中需要说明的是,针对每个配置授权中配置的time Domain Offset并不进行具体限定。
因此由上述可知,通过网络侧在进行配置授权时,如果每个配置授权中配置了不同的time Domain Offset,那么就可以根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算获取到不同的HARQ进程ID,以使得多个配置授权对应的每个HARQ进程的HARQ进程ID为不同值,从而可以解决现有技术中在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的问题。
其中,需要说明的是,当目标参数为配置授权中配置的time Domain Offset时,在DL传输中,作为HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量的拓展,可以使HARQ进程ID=[floor(当前传输时间单元× 10/(一个无线帧中的时隙个数×配置授权周期))+time Domain Offset]%配置授权的HARQ进程数量,也就是说在当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期向下取整后,再加上配置授权中配置的time Domain Offset,然后再对配置授权的HARQ进程数量。这样计算时同样可以使计算获取到的HARQ进程ID的数值不同,因此在本申请实施例中,根据HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量得到的变形公式也在本申请实施例的保护范围内。
其中,需要说明的是,当目标参数为配置授权索引号或time Domain Offset时,作为拓展,如果是以配置授权索引号或time Domain Offset为输入参数的公式,也可以在基于上述公式或者拓展公式计算HARQ进程ID,也在本申请的保护范围内。
由于所述配置授权中配置的HARQ进程信息可以为所述配置授权配置的HARQ进程ID信息,因此在上述实施例的基础上,在本申请实施例中,根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为每个HARQ进程的HARQ进程ID。
也就是说,针对某个配置授权,如果网络侧已经配置该配置授权的HARQ进程ID,且该HARQ进程ID为一个数值,那么在该配置授权的HARQ进程ID均为该数值。
以如图6中所示的4个配置授权为例,假如针对配置授权0、配置授权1、配置授权2和配置授权3配置的HARQ进程ID分别为A、B、C、D,那么在配置授权0的每个周期上的HARQ进程的HARQ进程ID均为A,而在配置授权0的每个周期上的HARQ进程的HARQ进程ID均为B,而在配置授权0的每个周期上的HARQ进程的HARQ进程ID均为C,而在配置授权0的每个周期上的HARQ进程的HARQ进程ID均为D,由于A、B、C、D为 不同数值,因此针对每个配置授权的周期来说,都不会出现HARQ进程ID重复的情况,所以可以解决现有技术中HARQ进程ID存在冲突的问题。
其中,如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
具体地,当网络侧配置了授权配置的多个HARQ进程ID时,UE可以从多个HARQ进程ID任意选择,其中,由于每个HARQ进程ID的数值不同,因此也可以避免HARQ进程ID发生冲突的问题。
因此由上述可知,通过网络侧在进行配置授权时,为每个配置授权配置不同HARQ进程ID,可以使多个配置授权对应的每个HARQ进程的HARQ进程ID为不同值,从而可以解决现有技术中在HARQ进程未收到反馈,或配置授权定时器超时之前,会出现多个配置授权对应的HARQ进程的HARQ进程ID冲突的问题。
由于所述配置授权中配置的HARQ进程信息还可以为所述配置授权配置的HARQ进程数量信息,因此在上述各实施例的基础上,在本申请实施例中,根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000008
其中M j表示第j个配置授权配置的HARQ进程数量。
仍以如图6中所示的4个配置授权为例,假如针对配置授权0、配置授权1、配置授权2和配置授权3配置的HARQ进程ID分别为A、B、C、D,其中A、B、C、D分别代表针对配置授权0、配置授权1、配置授权2和配置授权3配置的HARQ进程ID的集合。假如配置授权0上配置的HARQ进程数量为2个,即M 0=2;配置授权1上配置的HARQ进程ID个数为3个;配置 2上配置的HARQ进程ID个数为2个;配置授权3上配置的HARQ进程ID个数为2。在通过公式对针对配置授权0配置的多个HARQ进程ID进行选择时,假定配置授权0的索引号即为0,且配置授权0的第一个HARQ进程对应的CURRENT_symbol为0,也就是当前传输时间单元为0,配置授权周期为20个时隙,那么offset 0=0,根据公式配置授权0的HARQ进程ID取值范围是0,1;对于配置授权1,配置索引号为1,offset 1=2,则HARQ进程ID的取值范围是2,3,4;依次类推配置授权3上HARQ进程ID的取值范围是5,6;配置授权3上HARQ进程ID的取值范围是7,8。根据上述公式也可以技术算出其他配置授对应的HARQ进程ID。
由上述可知,根据网络侧针对每个配置授权配置的HARQ进程数量,也能计算出每个配置授权对应的HARQ进程ID,且针对每个配置授权计算获取的HARQ进程ID均为不同数值,因此终端设备可根据计算获取的不同数值任意选取,从而也可以解决现有技术中HARQ进程ID存在冲突的问题。
在上述各实施例的基础上,在本申请实施例中,如果HARQ进程为DL传输时,所述根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000009
其中M j表示第j个配置授权配置的HARQ进程数量。
仍以如图6中所示的4个配置授权为例,假如针对配置授权0、配置授权1、配置授权2和配置授权3配置的HARQ进程ID分别为A、B、C、D,其中A、B、C、D分别代表针对配置授权0、配置授权1、配置授权2和配置授权3配置的HARQ进程ID的集合。假如配置授权0上配置的HARQ进程数量为2个,即M 0=2;配置授权1上配置的HARQ进程ID个数为3个;配置2上配置的HARQ进程ID个数为2个;配置授权3上配置的HARQ进程ID 个数为2。在通过公式对针对配置授权0配置的多个HARQ进程ID进行选择时,假定配置授权0的索引号即为0,且配置授权0的第一个HARQ进程对应的CURRENT_symbol为0,也就是当前传输时间单元为0,配置授权周期为20个时隙,那么offset 0=0,根据公式配置授权0的HARQ进程ID取值范围是0,1;对于配置授权1,配置索引号为1,offset 1=2,则HARQ进程ID的取值范围是2,3,4;依次类推配置授权3上HARQ进程ID的取值范围是5,6;配置授权3上HARQ进程ID的取值范围是7,8。
由上述可知,根据网络侧针对每个配置授权配置的HARQ进程数量,也能计算出每个配置授权对应的HARQ进程ID,且针对每个配置授权计算获取的HARQ进程ID均为不同数值,因此终端设备可根据计算获取的不同数值任意选取,从而也可以解决现有技术中HARQ进程ID存在冲突的问题。
依据本申请实施例的另一个方面,还提供了一种HARQ进程ID的确定装置,如图7所示,所述装置包括:
第一确定模块701,用于确定目标参数,其中所述目标参数为所述配置授权索引号或所述配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或所述配置授权中配置的HARQ进程信息;
第二确定模块702,用于根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,具体用于如果HARQ进程为UL传输 时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息,所述第二确定模块702,具体用于如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,还具体用于如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
可选地,所述第二确定模块702,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000010
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,所述第二确定模块702,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000011
其中M j表示 第j个配置授权配置的HARQ进程数量。
依据本申请实施例的另一个方面,还提供了一种终端800,如图8所示,所述终端800包括:处理器801和存储器802。
所述处理器801,用于读取所述存储器802中的程序,执行下列过程:
确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
根据所述目标参数确定所述配置授权对应的每个HARQ进程的HARQ进程ID。
可选地,所述处理器801,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器801,具体用于如果HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器801,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述处理器801,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息,所述处理 器801,具体用于如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
可选地,所述处理器801,还具体用于如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则从所述配置授权配置的多个HARQ进程ID中确定每个HARQ进程的HARQ进程ID。
可选地,所述处理器801,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000012
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,所述处理器801,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000013
其中M j表示第j个配置授权配置的HARQ进程数量。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
可选的,处理器801可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
依据本申请实施例的另一个方面,还提供了一种计算机可读存储介质,其存储有电子设备可执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行以下方法中的步骤:
确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
可选地,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息。
可选地,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。可选地,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID还包括:
如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
可选地,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000014
其中M j表示第j个配置授权配置的HARQ进程数量。
可选地,如果HARQ进程为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
Figure PCTCN2019104055-appb-000015
其中M j表示第j个配置授权配置的HARQ进程数量。
上述计算机可读存储介质可以是电子设备中的处理器能够存取的任何可 用介质或数据存储设备,包括但不限于磁性存储器如软盘、硬盘、磁带、磁光盘(MO)等、光学存储器如CD、DVD、BD、HVD等、以及半导体存储器如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD)等。
依据本申请实施例的另一个方面,还提供了一种计算机程序产品,当所述计算机程序产品中的指令在电子设备上运行时,使得电子设备能够执行上述任意一种HARQ进程ID的确定方法中的步骤。上述电子设备可以是终端800。
对于系统/装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种混合自动重传请求HARQ进程ID的确定方法,其特征在于,所述方法包括:
    终端设备确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
    根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
  2. 如权利要求1所述的方法,其特征在于,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  3. 如权利要求1所述的方法,其特征在于,如果HARQ为DL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  4. 如权利要求1所述的方法,其特征在于,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  5. 如权利要求1所述的方法,其特征在于,如果HARQ进程为DL传输 时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  6. 如权利要求1所述的方法,其特征在于,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息。
  7. 如权利要求6所述的方法,其特征在于,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
  8. 如权利要求6所述的方法,其特征在于,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID还包括:
    如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则根据所述配置授权配置的多个HARQ进程ID中确定所述HARQ进程的HARQ进程ID。
  9. 如权利要求6所述的方法,其特征在于,如果HARQ进程为UL传输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
    Figure PCTCN2019104055-appb-100001
    其中M j表示第j个配置授权配置的HARQ进程数量。
  10. 如权利要求6所述的方法,其特征在于,如果HARQ进程为DL传 输时,所述根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID包括:
    根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
    Figure PCTCN2019104055-appb-100002
    其中M j表示第j个配置授权配置的HARQ进程数量。
  11. 一种混合自动重传请求HARQ进程ID的确定装置,其特征在于,所述装置包括:
    第一确定模块,用于确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权中配置的HARQ进程信息;
    第二确定模块,用于根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
  12. 一种终端,其特征在于,所述终端包括:处理器和存储器;
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    确定目标参数,其中所述目标参数为配置授权索引号或配置授权中配置的时域上与系统帧号为0的偏移量time Domain Offset或配置授权配置的混合自动重传请求HARQ进程信息;
    根据所述目标参数确定所述配置授权对应的HARQ进程的HARQ进程ID。
  13. 如权利要求12所述的终端,其特征在于,所述处理器,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+配置授权索引号)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  14. 如权利要求12所述的终端,其特征在于,所述处理器,具体用于HARQ为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+配置授权索引号)]%配置授权 的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  15. 如权利要求12所述的终端,其特征在于,所述处理器,具体用于HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  16. 如权利要求12所述的终端,其特征在于,所述处理器,具体用于HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元×10/(一个无线帧中的时隙个数×配置授权周期)+time Domain Offset)]%配置授权的HARQ进程数量,计算确定所述HARQ进程的HARQ进程ID。
  17. 如权利要求12所述的终端,其特征在于,所述配置授权中配置的HARQ进程信息为所述配置授权配置的HARQ进程ID信息或所述配置授权配置的HARQ进程数量信息。
  18. 如权利要求17所述的终端,其特征在于,所述处理器,具体用于如果所述配置授权中配置的HARQ进程信息包括1个HARQ进程ID,则将所述配置授权配置的HARQ进程ID确定为所述HARQ进程的HARQ进程ID。
  19. 如权利要求17所述的终端,其特征在于,所述处理器,还具体用于如果所述配置授权中配置的HARQ进程信息包括多个HARQ进程ID,则从所述配置授权配置的多个HARQ进程ID中确定每个HARQ进程的HARQ进程ID。
  20. 如权利要求17所述的终端,其特征在于,所述处理器,具体用于如果HARQ进程为UL传输时,根据公式HARQ进程ID=[floor(当前传输时间单元/配置授权周期)]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
    Figure PCTCN2019104055-appb-100003
    其中M j表示第j个配置授权配置的HARQ进程数量。
  21. 如权利要求17所述的终端,其特征在于,所述处理器,具体用于如果HARQ进程为DL传输时,根据公式HARQ进程ID=[floor(当前传输时间 单元×10/(一个无线帧中的时隙个数×配置授权周期))]%M i+offset i,计算确定所述HARQ进程的HARQ进程ID,其中i为所述配置授权索引号,M i为第i个配置授权中配置的HARQ进程数量,当i=0,offset 0=0,当i>0时,
    Figure PCTCN2019104055-appb-100004
    Figure PCTCN2019104055-appb-100005
    其中M j表示第j个配置授权配置的HARQ进程数量。
  22. 一种计算机可读存储介质,其特征在于,其存储有电子设备可执行的计算机程序,当所述程序在所述电子设备上运行时,使得所述电子设备执行权利要求1~10中任一项所述方法的步骤。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品中的指令在电子设备上运行时,使得电子设备执行权利要求1~10中任一项所述方法的步骤。
PCT/CN2019/104055 2018-09-28 2019-09-02 一种harq进程id的确定方法、装置、终端及介质 WO2020063266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865399.0A EP3860259B1 (en) 2018-09-28 2019-09-02 Harq process id determination method, apparatus, and medium
US17/279,598 US20210336727A1 (en) 2018-09-28 2019-09-02 Harq process id determination method and apparatus, terminal, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811143471.2 2018-09-28
CN201811143471.2A CN110972287B (zh) 2018-09-28 2018-09-28 一种harq进程id的确定方法、装置、终端及介质

Publications (1)

Publication Number Publication Date
WO2020063266A1 true WO2020063266A1 (zh) 2020-04-02

Family

ID=69951021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104055 WO2020063266A1 (zh) 2018-09-28 2019-09-02 一种harq进程id的确定方法、装置、终端及介质

Country Status (4)

Country Link
US (1) US20210336727A1 (zh)
EP (1) EP3860259B1 (zh)
CN (1) CN110972287B (zh)
WO (1) WO2020063266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498043A (zh) * 2020-04-03 2021-10-12 大唐移动通信设备有限公司 一种确定harq进程编号的方法及设备
WO2021212311A1 (en) * 2020-04-21 2021-10-28 Qualcomm Incorporated Enhanced cg-ul transmission over pusch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301711A (zh) * 2007-10-23 2017-01-04 诺基亚技术有限公司 在半持续性传输中改善的重传能力
US20180014284A1 (en) * 2016-07-07 2018-01-11 Lg Electronics Inc. Method and user equipment for receiving downlink signal
US20180049217A1 (en) * 2016-08-12 2018-02-15 Ofinno Technologies, Llc Traffic type based scheduling in a wireless network and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395109B1 (en) * 2016-08-12 2020-05-13 Ofinno, LLC Periodic resource allocation in a wireless network and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301711A (zh) * 2007-10-23 2017-01-04 诺基亚技术有限公司 在半持续性传输中改善的重传能力
US20180014284A1 (en) * 2016-07-07 2018-01-11 Lg Electronics Inc. Method and user equipment for receiving downlink signal
US20180049217A1 (en) * 2016-08-12 2018-02-15 Ofinno Technologies, Llc Traffic type based scheduling in a wireless network and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"DL SPS HARQ Process ID Issue When SFN Wraps around", 3GPP TSG RAN WG2 MEETING #77BIS R2-121705, 30 March 2012 (2012-03-30), pages 1 - 7, XP050606048 *
See also references of EP3860259A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498043A (zh) * 2020-04-03 2021-10-12 大唐移动通信设备有限公司 一种确定harq进程编号的方法及设备
WO2021212311A1 (en) * 2020-04-21 2021-10-28 Qualcomm Incorporated Enhanced cg-ul transmission over pusch

Also Published As

Publication number Publication date
EP3860259B1 (en) 2023-12-06
EP3860259A1 (en) 2021-08-04
CN110972287B (zh) 2022-05-17
US20210336727A1 (en) 2021-10-28
CN110972287A (zh) 2020-04-07
EP3860259A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US20190335496A1 (en) Channel listening method and apparatus
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
WO2020052380A1 (zh) 一种信息发送、接收方法、设备及装置
WO2019191985A1 (zh) 一种信息发送、接收方法及装置
WO2018059583A1 (zh) 信息的传输方法、终端设备和网络设备
WO2016119687A1 (zh) 一种信号发送方法、接收方法及装置
CN109152029A (zh) 一种通信方法、网络设备及用户设备
WO2018171586A1 (zh) 一种通信方法、终端及网络设备
WO2018233552A1 (zh) 用于传输数据的方法和设备
WO2020063266A1 (zh) 一种harq进程id的确定方法、装置、终端及介质
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2019137483A1 (zh) 数据包的传输方法及通信装置
WO2017024565A1 (zh) 数据传输方法、装置及系统
TWI616111B (zh) 在未授權頻譜中的無線電資源排程方法及使用其之基地台
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
US11528714B2 (en) Data transmission method and apparatus
CN111294940A (zh) 发射功率的分配方法及装置、存储介质、终端
WO2019076226A1 (zh) 一种多载波中数据传输的方法及装置
WO2019062834A1 (zh) 信息的传输方法和装置
WO2018090317A1 (zh) 一种资源调度方法及相关设备、系统
US20200374063A1 (en) Resource allocation method and related device
WO2019023912A1 (zh) 一种应答反馈方法、终端及网络设备
JP2022542412A (ja) アクセスネットワークデバイスを認証するための方法および関連デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865399

Country of ref document: EP

Effective date: 20210428