WO2020029896A1 - 一种参考信号发送、接收方法及装置 - Google Patents

一种参考信号发送、接收方法及装置 Download PDF

Info

Publication number
WO2020029896A1
WO2020029896A1 PCT/CN2019/099127 CN2019099127W WO2020029896A1 WO 2020029896 A1 WO2020029896 A1 WO 2020029896A1 CN 2019099127 W CN2019099127 W CN 2019099127W WO 2020029896 A1 WO2020029896 A1 WO 2020029896A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
parts
network device
time
Prior art date
Application number
PCT/CN2019/099127
Other languages
English (en)
French (fr)
Inventor
费永强
郭志恒
谢信乾
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2019317676A priority Critical patent/AU2019317676B2/en
Priority to JP2021507064A priority patent/JP7196281B2/ja
Priority to EP19846964.5A priority patent/EP3836463A4/en
Publication of WO2020029896A1 publication Critical patent/WO2020029896A1/zh
Priority to US17/172,981 priority patent/US11582081B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a device for sending and receiving a reference signal.
  • NR new wireless
  • LTE long term evolution
  • LTE-A evolved LTE
  • a base station BS
  • a base station may generate cross-link interference (CLI).
  • CLI cross-link interference
  • the so-called heterogeneous interference between base stations mainly refers to the downlink (DL) signals sent by one base station will interfere with the uplink (UL) signals of another base station.
  • the uplink signals are, for example, user equipment (UE) Signal sent to the base station.
  • UE user equipment
  • the downlink signal sent by the first base station is generally relatively large in power and may be received by the second base station, which may interfere with the second base station receiving the uplink signal.
  • the CLI between base stations usually occurs when two TDD cells working on the same frequency have different transmission directions. Therefore, if the TDD cells maintain the same transmission direction, the CLI is usually not generated.
  • a CLI will also be generated between the two base stations.
  • measurement between base stations can be considered, so that interfering base stations can be identified, but there is currently no standardized measurement mechanism between base stations.
  • the atmospheric waveguide is closely related to the weather and geographical environment, and it has randomness and uncertainty, which results in large uncertainty in the distance and delay between two base stations that interfere with each other.
  • a method for measuring between a base station and a terminal device is designed for a certain sending or receiving time, so it is difficult to meet the requirement of detecting a reference signal of unknown arrival time with low complexity and high accuracy.
  • the embodiments of the present application provide a reference signal sending and receiving method and device, which are used to enable network devices to transmit reference signals.
  • a reference signal transmission method includes: determining a first resource; and generating a reference signal corresponding to the first resource, where the reference signal includes M sections, and each of the M sections The parts are the same; wherein the cyclic prefix or cyclic suffix of the reference signal is not carried in the first resource; or the cyclic prefix of the reference signal is carried in the first resource, and the reference signal corresponds to The cyclic prefix is only located at the head of the first of the M sections, and / or, the cyclic suffix of the reference signal is carried in the first resource, and the cyclic suffix corresponding to the reference signal is only located at the The end of the last of the M parts, where M is a positive integer; and sending the reference signal on the first resource.
  • the method may be executed by a first communication device.
  • the first communication device may be a first network device or a communication device capable of supporting the functions required by the first network device to implement the method, and of course, it may also be another communication device, such as a chip system.
  • a reference signal receiving method includes: determining a second resource for receiving a reference signal, where the second resource includes time domain symbols that are uplink time domain symbols and / or guard interval time domain symbols. Receiving part or all of a reference signal on the second resource, the reference signal including M parts, each of the M parts being the same; wherein the reference signal is sent through the first resource
  • the cyclic prefix or cyclic suffix of the reference signal is not carried in the first resource; or the cyclic prefix of the reference signal is carried in the first resource, and the cyclic prefix corresponding to the reference signal is only located in the The first end of the M parts, and / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is only in the M parts
  • M is a positive integer.
  • the method may be executed by a second communication device.
  • the second communication device may be a second network device or a communication device capable of supporting the functions required by the second network device to implement the method, and of course, it may also be another communication device, such as a chip system.
  • the reference signal carried in the first resource includes M parts, because frequency-domain correlation detection needs to ensure that at least one complete sample to be detected can be observed in the time-domain detection window.
  • the detection sample can be a cyclically shifted sample to be tested, and each of the M sections can be used as a complete sample to be tested. This requires that the M sections are the same, so the contents of the M sections of the reference signal are all The same, and the cyclic prefix and cyclic suffix corresponding to the reference signal may not be included between the M parts.
  • the cyclic prefix may only be added at the head of the first part of the M parts, or the cyclic prefix may not be added.
  • the reference signal may have a cyclic characteristic in the first resource. It is precisely because the reference signal has a cyclic characteristic in the first resource that enables the second network device to use frequency-domain correlation detection when performing blind detection on the reference signal sent by the first network device, and to correctly obtain the reference signal, thereby reducing detection
  • the complexity of the method improves the accuracy of blind detection, or in other words, it satisfies the requirement of detecting low-complexity and high-accuracy reference signals with unknown arrival times.
  • the initial phases corresponding to the M parts are the same, or the base sequence group numbers, base sequence numbers, and cyclic shifts corresponding to the M parts are the same.
  • the M parts can be made by making each of the M parts have the same initial phase Each part in is the same. Of course, this way is only a way to make each of the M parts the same. If a pseudo-random sequence + constellation modulation generation method is multiplexed, the embodiment of the present application is not limited to other ways to make M Each of these sections is the same. However, if a low PAPR sequence generation method is used, each part of the M parts can be made to have the same cyclic shift, base sequence group number, and base sequence number for each part of the M parts. the same.
  • this method is only a method for making each of the M sections the same. If a low PAPR sequence generation method is used, the embodiment of the present application is not limited to other methods. Every part is the same.
  • the reference signal can also be generated in other ways, so naturally there will be a way to make each of the M parts the same in other ways of generating, which are all within the protection scope of the embodiments of this application.
  • an initial phase corresponding to the M parts or a base sequence group number, a base sequence, and a cyclic shift corresponding to the M parts are determined according to time domain information of the first resource.
  • the time domain information of the first resource is, for example, the time domain position of the first resource, or may also be other information, such as the length of the time domain, which is not limited in the embodiment of the present application.
  • the time domain information of the first resource includes at least one of the following information: a time slot in which the first resource is located or a time slot included in the first resource, and the time domain included in the first resource Symbols, a subframe in which the first resource is located or a subframe included in the first resource, an uplink-downlink switching period in which the first resource is located, and a system frame in which the first resource is located.
  • the initial phase corresponding to the M parts may be determined or the base sequence group number, base sequence, and cyclic shift corresponding to the M parts may be determined according to one or more kinds of information as described above, or a combination of the above one Or multiple types of information and other time-domain information of the first resource to determine the initial phase corresponding to the M parts or the base sequence group number, base sequence, and cyclic shift corresponding to the M parts, or it may not be used as above Information, but determine the initial phase corresponding to the M parts or the base sequence group number, base sequence, and cyclic shift corresponding to the M parts according to other time-domain information of the first resource, which is not limited in this embodiment of the present application.
  • the time domain information of the first resource includes time domain symbols included in the first resource, including: the first resource includes N time domain symbols, and the N time domain symbols are Consecutive time-domain symbols, N is a positive integer, the initial phase corresponding to the M parts or the base sequence group number, base sequence, and cyclic shift corresponding to the M parts are based on the first A time domain symbol or the last time domain symbol is determined.
  • the embodiment of the present application does not limit the initial phase corresponding to the M parts or the base sequence group number, base sequence, and cyclic shift corresponding to the M parts according to which time domain symbol.
  • the N time-domain symbols are the last N time-domain symbols in the downlink transmission time in an uplink-downlink switching period.
  • the maximum range of interference can be determined first. Because the N time-domain symbols occupied by the reference signal are already the last N time-domain symbols of the downlink transmission time, after detecting the reference signal, the second network device can determine that the range after detecting the reference signal will not be affected by the CLI Interference, so that interference cancellation methods can be further applied, such as using lower-order modulation or a lower code rate for areas affected by the CLI to reduce or eliminate interference. Secondly, this can also ensure the success rate of detection to the greatest extent.
  • the method further includes: sending configuration information, where the configuration information is used to indicate the first resource, and / or, the configuration information is used to indicate the reference signal. Accordingly, the method further includes: receiving configuration information, where the configuration information is used to indicate the first resource, and / or, the configuration information is used to indicate the reference signal.
  • the second network device may obtain configuration information in advance.
  • the configuration information is used to determine the first resource, and / or is used to determine the reference signal, that is, the configuration
  • the information may determine the first resource, or the configuration information may determine the reference signal, or the configuration information may determine the first resource and the reference signal.
  • the second network device can determine the configuration of the first network device sending the reference signal, so that the position of the time-frequency resource to be detected and / or the reference signal to be detected can be determined.
  • the reference signal is a reference signal sent by the first network device and received by the second network device.
  • the reference signal may be a reference signal used for measurement between network devices.
  • the reference signal may be transmitted between the network devices, so that the measurement can be achieved through the reference signal.
  • a first communication device is provided.
  • the communication device is, for example, the first communication device described in the foregoing, such as a network device.
  • the communication device has the function of implementing the network equipment in the above method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the first aspect or the method provided by any possible implementation manner of the first aspect.
  • a second communication device is provided.
  • the communication device is, for example, the second communication device described in the foregoing, such as a terminal device.
  • the communication device has the function of realizing the terminal equipment in the above method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the method provided in the second aspect or any one of the possible implementation manners of the second aspect.
  • a third communication device is provided.
  • the communication device is, for example, the first communication device described above, such as a network device.
  • the communication device has the function of implementing the network equipment in the above method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processor and a transceiver.
  • the processor and the transceiver may perform corresponding functions in the first aspect or the method provided by any possible implementation manner of the first aspect.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface herein can be understood as a radio frequency transceiver component in a network device.
  • a fourth communication device is provided.
  • the communication device is, for example, the second communication device described in the foregoing, such as a terminal device.
  • the communication device has the function of realizing the terminal equipment in the above method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processor and a transceiver.
  • the processor and the transceiver may perform corresponding functions in the method provided by the second aspect or any one of the possible implementation manners of the second aspect.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface here can be understood as a radio frequency transceiver component in a terminal device.
  • a fifth communication device is provided.
  • the communication device may be the first communication device in the method design, such as a network device, or a chip provided in the network device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions.
  • the processor executes the instructions, the fifth communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the fifth communication device may further include a communication interface.
  • the communication interface may be a transceiver in the network device, for example, a radio frequency transceiver component in the network device.
  • This type of communication device is a chip provided in a network device, and the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a sixth communication device may be a second communication device in the above method design, such as a terminal device, or a chip provided in the terminal device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions. When the processor executes the instructions, the sixth communication device is caused to execute the method in the second aspect or any one of the possible implementation manners of the second aspect.
  • the sixth communication device may further include a communication interface. If the sixth communication device is a terminal device, the communication interface may be a transceiver in the terminal device, such as a radio frequency transceiver component in the terminal device. This type of communication device is a chip provided in a terminal device, and the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a first communication system is provided, and the communication system may include the first communication device according to the third aspect and the second communication device according to the fourth aspect.
  • a second communication system may include a third communication device according to the fifth aspect and a fourth communication device according to the sixth aspect.
  • a third communication system is provided, and the communication system may include the fifth communication device according to the seventh aspect and the sixth communication device according to the eighth aspect.
  • a computer storage medium has instructions stored therein, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. As described in the method.
  • a computer storage medium has instructions stored therein, which when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. As described in the method.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on a computer, causes the computer to execute the foregoing first aspect or any one of the first aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on a computer, causes the computer to execute the second aspect or any one of the second aspect. The method described in the design.
  • the contents of the M parts of the reference signal carried in the first resource are all the same, and the reference signal may have a cyclic characteristic in the first resource.
  • the frequency domain correlation detection is used for the blind detection of the reference signal, which reduces the detection complexity and improves the detection accuracy.
  • FIG. 1 is a schematic diagram of a CLI between two base stations
  • FIG. 2 is a schematic diagram of a CLI between base stations with a long distance
  • FIG. 3 is a schematic diagram of generating a CSI-RS
  • 4 is a schematic diagram of different CSI-RSs carried by two adjacent symbols
  • FIG. 5 is a schematic diagram of performing frequency-domain correlation detection on a reference signal sent by the base station 1 by the base station 2;
  • FIG. 6 is a schematic diagram of a network architecture applied to an embodiment of this application.
  • FIG. 7 is a flowchart of a reference signal sending and receiving method according to an embodiment of the present application.
  • FIG. 8A is an explanatory diagram of a radio frame, an uplink / downlink switching period, a subframe, a time slot, and a symbol according to an embodiment of the present application;
  • 8B is a schematic diagram of a conventional manner for adding a CP
  • FIG. 9 is a schematic diagram of a first manner of adding a CP according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second manner for adding a CP according to an embodiment of the present application.
  • FIG. 11A is a first schematic diagram of a third manner of adding a CP according to an embodiment of the present application.
  • FIG. 11B is a second schematic diagram of a third manner of adding a CP according to an embodiment of the present application.
  • FIG. 12A is a third schematic diagram of a third manner of adding a CP according to an embodiment of the present application.
  • FIG. 12B is a fourth schematic diagram of a third manner of adding a CP according to an embodiment of the present application.
  • FIG. 13A is a first schematic diagram of a method without adding a CP according to an embodiment of the present application.
  • FIG. 13B is a second schematic diagram of a method without adding a CP according to an embodiment of the present application.
  • 14A is a schematic diagram of a network device that participates in measurement and adopts the same sending and receiving time configuration according to an embodiment of the present application;
  • FIG. 14B is another schematic diagram of a network device participating in measurement using the same sending and receiving time configuration according to an embodiment of the present application.
  • FIG. 15A is a schematic diagram of sending a reference signal in the last N time-domain symbols of a downlink transmission time not in an uplink-downlink switching period according to an embodiment of the present application;
  • 15B is a schematic diagram of sending a reference signal in the last N time domain symbols of downlink transmission time in an uplink-downlink switching period according to an embodiment of the present application;
  • FIG. 16 is a schematic diagram of detecting a reference signal by using a generated reference signal by a second network device according to an embodiment of the present application.
  • FIG. 17A is a schematic diagram of a first network device sending a reference signal in a GP and a second network device receiving a reference signal in a GP according to an embodiment of the present application;
  • 17B is a schematic diagram of a first network device sending a reference signal within a downlink transmission time and a second network device receiving a reference signal within a GP according to an embodiment of the present application;
  • FIG. 18 is a schematic diagram of a scenario where measurements between ultra-long-distance network devices and measurements between closer-distance network devices are multiplexed with a same reference signal according to an embodiment of the present application;
  • FIG. 19 is a schematic diagram of a measurement process in which measurement between ultra-long-distance network devices and measurement between relatively-distant network devices multiplex the same reference signal according to an embodiment of the present application;
  • 20 is a schematic diagram of a communication apparatus capable of implementing a function of a first network device according to an embodiment of the present application
  • 21 is a schematic diagram of a communication apparatus capable of implementing a function of a second network device according to an embodiment of the present application
  • 22A to 22B are two schematic diagrams of a communication device according to an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, may include, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart helmets, smart jewelry, etc. for physical signs monitoring.
  • a network device including, for example, a base station (for example, an access point), may refer to a device in an access network that communicates with a wireless terminal device through one or more cells over an air interface.
  • the network device can be used to convert the received air frame and the Internet Protocol (IP) packet to each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network device may include an LTE system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE-A, or may also include a fifth generation mobile communication technology (fifth generation) (5G) NR system.
  • the embodiments of the present application are not limited.
  • “Multiple” means two or more. In view of this, in the embodiments of the present application, “multiple” can also be understood as “at least two". "At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two, or more, and without limiting which ones are included, for example, including at least one of A, B, and C, then including A, B, C, A and B, A and C, B and C, or A and B and C. In the same way, the understanding of the description of "at least one" is similar.
  • ordinal numbers such as “first” and “second” are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • a CLI may be generated between the base station and the base station.
  • the first base station sends a downlink signal
  • the second base station is receiving an uplink signal.
  • the downlink signal sent by the first base station is generally relatively large in power and may be received by the second base station, which may interfere with the second base station receiving the uplink signal.
  • the first cell and the second cell (which can be considered as the first base station in the first cell and the second base station in the second cell) in FIG. 1 work in the same frequency band.
  • the first cell A base station is sending a downlink signal to terminal device 1, and in the second cell, the second base station is receiving an uplink (UL) signal sent by terminal device 2.
  • the downlink signal sent by the first base station is generally large in power and may also be Received by the second base station, which will interfere with the second base station receiving the uplink signal sent by the terminal device 2, so the downlink signal of the first cell interferes with the reception of the uplink signal of the second cell.
  • the CLI between base stations usually occurs when two TDD cells working on the same frequency have different transmission directions. Therefore, if the TDD cells maintain the same transmission direction, the CLI is usually not generated.
  • the two base stations that are far apart in geographical location, even if their transmission directions are the same, that is, the two base stations simultaneously receive uplink signals and send downlink signals at the same time.
  • the geographical distance between them As a result, a significant delay occurs when a downlink signal sent by one base station reaches another base station, and the other base station may have switched to the uplink receiving direction.
  • a CLI is also generated between the two base stations. For example, referring to FIG.
  • the transmission directions of the base station 1 and the base station 2 are originally the same, but due to the long distance, there will be a delay when the downlink signal sent by the base station 1 reaches the base station 2, at this time, the base station 2 has started the receiving process of the uplink signal. At this time, the downlink signal sent by the base station 1 still interferes with the reception of the uplink signal of the base station 2.
  • the cause of such ultra-long-distance interference from distant base stations is usually caused by the tropospheric bending phenomenon. Whether or not interference between base stations, interference distance and delay are affected by geographical location and weather, so there is great uncertainty. Sex.
  • the terminal device can obtain the channel state information reference signal (CSI-RS) sent by the gNB to the terminal device to obtain the information between the gNB and the terminal device.
  • CSI-RS channel state information reference signal
  • the terminal device can obtain the channel state information reference signal (CSI-RS) sent by the gNB to the terminal device to obtain the information between the gNB and the terminal device.
  • CSI-RS generation logic sent by the gNB to the terminal device is briefly introduced. Please refer to FIG. 3.
  • CSI-RS is a frequency-defined sequence, for example, the frequency-domain sequence is ⁇ a, b, c, d , e, f, g, h ⁇ , the sequence is transformed into the time domain by inverse Fourier transform, for example, the time domain sequence is ⁇ 1,2,3,4,5,6,7,8 ⁇ , After the time domain, the sampling points at the end of the time domain sequence are added to the header as a cyclic prefix (CP).
  • the time domain sequence with CP added is, for example, ⁇ 7,8,1,2,3,4 , 5,6,7,8 ⁇ , where the head 7 and 8 are CPs, and finally, the base station sends a CSI-RS with CP added.
  • the CSI-RS frequency domain sequence is obtained by Gold sequence through quadrature phase shift keying (QPSK) modulation, and what determines a CSI-RS is the initial phase of the Gold sequence corresponding to the CSI-RS.
  • QPSK quadrature phase shift keying
  • l lowercase L
  • N ID is the scrambling code ID determined by the high-level parameter.
  • the l of two adjacent OFDM symbols must be different, so the CSI-RS carried by two adjacent OFDM symbols will have different initial phases, that is, the two adjacent OFDM symbols will have different initial phases.
  • the CSI-RSs are not the same. For this, refer to FIG. 4. In FIG. 4, the dashed lines divide different OFDM symbols.
  • the CSI-RS is a reference signal for measurement between a base station and a terminal device served by the base station in an existing standard.
  • the embodiment of the present application designs a reference signal sent by the base station to the base station.
  • the time-domain sliding correlation window detection needs to be performed on each sampling point, and the convolution calculation is required for each sampling point position, and the calculation overhead is very large.
  • Correlation detection in the frequency domain can obtain correlation calculation results corresponding to multiple sampling points at one time through "Fourier transform-frequency domain point multiplication-inverse Fourier transform", so the complexity of frequency domain correlation detection is low. Therefore, it is more advantageous to use frequency-domain correlation detection for measurements between base stations.
  • the frequency-domain correlation detection needs to ensure that at least one complete sample to be detected can be observed in the time domain in a detection window, and the observed sample to be detected can be a sample to be detected after cyclic shift; therefore, if you want to use
  • the frequency domain correlation detection method detects the reference signal.
  • the reference signal has a cyclic shift feature, that is, the reference signal can include several repeated parts, each part is the same, and each part is equivalent to a complete sample to be tested. .
  • x (n) x (n + K)
  • n 0,1,2, ..., NK-
  • K is a constant related to the cycle characteristics, such as the length of each part.
  • the base station 2 performs frequency-domain correlation detection on the RS sent by the base station 1. For example, for a detection window with a length of 1 OFDM symbol, according to the characteristics of the frequency-domain correlation detection, it is necessary to ensure the bearer sent by the base station 1
  • the RSs in consecutive OFDM symbols are the same, and the cyclic characteristics are guaranteed.
  • the receiving base station needs to set the uplink symbols and guard intervals. Blindly check the reference signal on the symbol.
  • One possible method is that the receiving base station performs frequency-domain correlation detection on a reference signal (such as CSI-RS), but currently there are problems with frequency-domain correlation detection using CSI-RS by the base station. For example, there are two problems as follows:
  • the CSI-RS CP addition method causes the two OFDM symbols before and after the OFDM symbol to have no cyclic characteristics. That is, even if the problem in (1) can be solved, the same CSI-RS can be transmitted in adjacent OFDM symbols, but referring to FIG. 4, the sent CSI-RS is "78-12345678-78-12345678" Form, it is cyclic only within one OFDM symbol (that is, the form of 78-12345678), but the two OFDM symbols are not cyclic, and the cyclic characteristic between the two OFDM symbols needs to be guaranteed to be "12345678-12345678 ".
  • the reference signal carried in the first resource includes M parts, because frequency-domain correlation detection needs to ensure that at least one complete sample to be detected can be observed in the time-domain detection window.
  • the observation The obtained sample to be detected can be the sample to be detected after the cyclic shift, and each of the M parts can be used as a complete sample to be tested.
  • the contents are the same, and the cyclic prefix and cyclic suffix corresponding to the reference signal may not be included between the M parts.
  • the cyclic prefix may only be added at the head of the first part of the M parts, or the cyclic prefix may not be added.
  • the cyclic suffix can only be added at the end of the last of the M parts, or the cyclic suffix can be added, so that the reference signal can have cyclic characteristics in the first resource, precisely because the reference signal has cyclic characteristics in the first resource , So that the network device can use frequency-domain correlation detection when performing blind detection on the reference signal, and correctly obtain the reference signal. Therefore, The detection complexity is reduced, and the accuracy of blind detection is improved.
  • the embodiments of the present application can be applied to a 5G NR system, or to other communication systems, such as the LTE system. As long as one entity in the communication system needs to send signals and another entity needs to receive or measure signals, the present invention can be applied.
  • the reference signals provided in the embodiments of the present application may also be applied to the base station to send to the terminal equipment, or the terminal equipment sends to the base station, which is not limited in the embodiments of the present application, and the embodiments of the present application are merely exemplary A scenario in which a first network device sends a reference signal to a second network device is described.
  • FIG. 6 includes a network device 1 and a network device 2.
  • the network device 1 serves the terminal device 1, and the network device 2 serves the terminal device 2.
  • the network device 1 and the network device 2 may be two network devices that are far apart from each other in a geographical position, and measurement needs to be performed between the network device 1 and the network device 2.
  • there may be other network devices and other terminal devices which are not limited in the embodiments of the present application.
  • the embodiments of the present application can also be applied to measurements between neighboring network devices, so the network device 1 and the network device 2 may also be two network devices that are located close to each other.
  • the network device in FIG. 6 is, for example, an access network (AN) device, such as a base station.
  • AN access network
  • An embodiment of the present application provides a reference signal sending method and a receiving method. Please refer to FIG. 7 for a flowchart of the method.
  • the method is applied to the network architecture shown in FIG. 6 as an example.
  • the method may be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device may be a network device or capable of supporting the functions required by the network device to implement the method
  • the communication device may of course be another communication device, such as a chip system.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, and of course, it may be another communication device, such as a chip system.
  • the first communication device and the second communication device are network devices, or the first communication device is a network device, and the second communication device is capable of supporting A communication device for a network device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is performed by the first network device and the second network device as an example, that is, the first communication device is the first network device and the second communication device is the second network device as an example.
  • the first network device is network device 1 in the network architecture shown in FIG. 6, and the second network device is network device 2 in the network architecture shown in FIG. 6, or the first network device is shown in FIG. 6.
  • the network device 2 in the network architecture, and the second network device is the network device 1 in the network architecture shown in FIG. 6.
  • the first network device determines a first resource.
  • a resource for transmitting the reference signal For example, the resource for transmitting a reference signal is predefined by a protocol or is pre-configured. Then, the first network device may directly determine the resource for transmitting the reference signal.
  • the resource of the reference signal for example, the resource determined by the first network device for transmitting the reference signal is the first resource.
  • the first resource may include N time-domain symbols, where the N time-domain symbols are consecutive time-domain symbols, and N is a positive integer.
  • the time domain symbol refers to a unit in the time domain.
  • a time domain symbol is an OFDM symbol.
  • the N time-domain symbols are consecutive symbols. For “continuous”, it can be understood that the N time-domain symbols are adjacent to each other.
  • the first network device generates a reference signal corresponding to the first resource, where the reference signal includes M parts, and each of the M parts is the same; wherein the first resource does not carry The cyclic prefix or cyclic suffix of the reference signal; or, the cyclic prefix of the reference signal is carried in the first resource, and the cyclic prefix corresponding to the reference signal is located only in the first part of the M parts And / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is located only at the end of the last of the M parts, and M is positive Integer.
  • the M parts are M parts in the time domain.
  • the reference signals carried on the N time domain symbols may be understood differently.
  • the first understanding is that a complete reference signal is carried on the N time-domain symbols, that is, M parts (and the cyclic prefix and / or suffix that may be included) constitute a complete reference signal.
  • the domain symbol carries a complete reference signal. According to this understanding, it can be considered that the first network device directly generates a complete reference signal carried on N time-domain symbols.
  • each of the M parts is an independent reference signal, and the N time domain symbols carry M reference signals.
  • S72 can also be changed to: generate M reference signals corresponding to the first resource, each of the M reference signals is the same; wherein, the first resource does not carry A cyclic prefix or a cyclic suffix corresponding to the reference signal; or the cyclic prefix is carried in the first resource, and the cyclic prefix is only located at the head of the first reference signal among the M reference signals, and / or, the The first resource carries a cyclic suffix, and the cyclic suffix is only located at the end of the last reference signal among the M reference signals, and M is a positive integer.
  • the first network device may be considered to have generated M reference signals, or the first network device may be considered to have generated a reference signal and repeated the reference signal M times to obtain the bearer in N time domains. M reference signals on the symbol.
  • the reference signal In order to enable the second network device to perform blind detection of the reference signal through low-complexity frequency-domain correlation detection, the reference signal provided in the embodiment of the present application needs to meet certain conditions.
  • the previous paragraphs have briefly introduced that the reference signal meets these conditions.
  • the following characteristics are introduced below, starting from the conditions that need to be met, how to make the reference signal meet these conditions.
  • the conditions that need to be met include the following two:
  • the transmitted reference signal includes M parts. If the first part is understood as above, each of the M parts is the same. If the second part is understood as above, these M parts are actually M Reference signals, the M reference signals are all the same;
  • the transmitted reference signal includes M parts, and each of the M parts is the same.
  • the reference signal may use any known signal.
  • a reference signal for measuring between network devices may be designed according to a pseudo-random sequence-based signal that can be sent by an existing network device. That is, the reference signal in the embodiment of the present application is designed.
  • the reference signal in the embodiment of the present application may be generated by using a Gold sequence + QPSK modulation.
  • QPSK is a type of constellation modulation, which maps binary 0 and 1 sequences to complex-valued symbols. What determines a specific element in a sequence is its initial phase C init . In the existing NR standard, the calculation formula of C init is the formula 1 introduced earlier.
  • each of the M parts can have The same initial phase is used to make each of the M parts the same.
  • this method is only a method for making each of the M sections the same, and the embodiment of the present application is not limited.
  • the other sections can be used to make each of the M sections the same. This embodiment mainly Take, for example, a way of making each of the M parts the same by making each of the M parts have the same initial phase.
  • the initial phase C init of each of the M parts may be determined according to the time domain information of the first resource, that is, That is, the initial phase of each of the M sections is determined according to the time domain information of the first resource, so that the initial phase of each of the M sections is the same.
  • the time domain information of the first resource is, for example, the time domain position of the first resource, or may be other information, such as the time domain length.
  • the time domain information of the first resource is mainly the time of the first resource.
  • the domain location is described as an example.
  • FIG. 8A illustrates the relationship between time domain concepts such as radio frames, subframes, time slots, uplink and downlink switching periods, time domain symbols, etc., where the subcarrier interval is assumed to be 30 kHz and the uplink and downlink switching period is 2.5. ms, the reference signal is sent on the last N symbols of each uplink-downlink switching period in the radio frame.
  • a diagonally-lined box indicates a time-domain symbol used for downlink transmission
  • a vertical-lined box indicates a time-domain symbol used for transmitting a reference signal
  • a horizontal-lined box indicates a time used for uplink transmission.
  • Field symbol, blank box indicates guard interval.
  • the M parts may be determined according to a time slot in which the first resource is located or a time slot included in the first resource.
  • the time domain size relationship between the first resource and the time slot may be that the first resource is larger than one time slot.
  • the first resource may include multiple time slots, but may be based on the first of these multiple time slots.
  • the time slot (or the last time slot) determines the initial phase C init of each of the M parts; or the first resource may be smaller than a time slot, and the first resource is completely included in a time slot.
  • the initial phase C init of each of the M parts can be determined according to the time slot.
  • the initial phase C init can be determined according to the following formula:
  • the initial phase corresponding to the reference signal may be determined according to a time slot where the first resource is located or a time slot included in the first resource.
  • the initial phase may be determined according to one of the multiple time slots overlapping with the first resource, such as according to the first resource An initial phase is determined in a first time slot of the overlapping multiple time slots, or an initial phase is determined according to a last time slot in the multiple time slots overlapping with the first resource.
  • the time slot used to determine the initial phase of each part may also be a time slot related to the first resource but not overlapping with the first resource, for example, It may be the first time slot in the radio frame where the first resource is located, or the last time slot in the radio frame where the first resource is located. It should be noted that the above formula 2 is only an implementation manner of determining the initial phase according to the time slot where the first resource is located, and the embodiment of this application does not limit the specific form of the formula.
  • the M parts may be determined according to a subframe in which the first resource is located or a subframe included in the first resource.
  • the time domain size relationship between the first resource and the subframe may be that the first resource is larger than one subframe.
  • the first resource may include multiple subframes, but may be based on the first subframe of the multiple subframes ( Or the last sub-frame) to determine the initial phase C init of each of the M parts; or the first resource may be smaller than a sub-frame, and at this time, the first resource is completely included in a certain sub-frame, and the The subframe determines the initial phase C init of each of the M sections.
  • the “subframe in which the first resource is located” and the “subframe included in the first resource” both include the above relationship.
  • the initial phase C init can be determined according to the following formula:
  • the initial phase corresponding to the reference signal may be determined according to a subframe in which the first resource is located or a subframe included in the first resource. Furthermore, if the first resource overlaps with multiple subframes, optionally, the initial phase may be determined according to one of the multiple subframes overlapping with the first resource, such as according to the overlap with the first resource.
  • An initial phase is determined in a first subframe of the plurality of subframes of, or an initial phase is determined according to a last subframe in the plurality of subframes overlapping with the first resource.
  • the subframe used to determine the initial phase of each part may also be a subframe related to the first resource but not overlapping with the first resource, for example, It may be the first subframe in the radio frame where the first resource is located, or the last subframe in the radio frame where the first resource is located. It should be noted that the foregoing formula 3 is only an implementation manner of determining an initial phase according to a subframe in which the first resource is located, and the embodiment of the present application does not limit the specific form of the formula.
  • the determination of the value of each of the M parts can be determined according to the uplink-downlink switching period where the first resource is located.
  • Initial phase C init .
  • the initial phase C init can be determined according to the following formula:
  • the initial phase corresponding to the reference signal may be determined according to the uplink-downlink switching period where the first resource is located.
  • the uplink and downlink switching period used to determine the initial phase of each part may also be related to the first resource, but does not include the uplink and downlink switching period of the first resource, for example Can be the first uplink-downlink switching period in the radio frame where the first resource is located, or the last uplink-downlink switching period in the radio frame where the first resource is located.
  • the foregoing formula 4 is only an implementation manner of determining the initial phase according to the uplink-downlink switching period where the first resource is located, and the embodiment of the present application does not limit the specific form of the formula.
  • the initial phase of each of the M parts can be determined according to the radio frame where the first resource is located C init .
  • the initial phase C init can be determined according to the following formula:
  • the SFN indicates the radio frame number of the radio frame in which the first resource is located in one radio frame period
  • n ID is a scrambling code ID determined by a high-level parameter. Therefore, according to the foregoing formula 5, the initial phase corresponding to the reference signal may be determined according to the radio frame where the first resource is located. It should be noted that the above formula 5 is only an implementation manner of determining the initial phase according to the uplink-downlink switching period where the first resource is located, and the embodiment of this application does not limit the specific form of the formula.
  • the initial of each of the M parts may be determined according to the time domain symbols included in the first resource.
  • Phase C init it can be determined by the above formula 1, and for the convenience of reading, the repetition is as follows:
  • l (l, lowercase L) represents the symbol number of the first time-domain symbol in a time slot
  • n ID is a scrambling code ID determined by a high-level parameter.
  • the first time domain symbol is, for example, a predefined time domain symbol, and its selection includes but is not limited to the following ways:
  • the first time domain symbol is the first time domain symbol among the N time domain symbols. It should be noted here that the first time-domain symbol of the N time-domain symbols can also be referred to as the first time-domain symbol of the N time-domain symbols, and the "first time-domain symbol” and " The "first time domain symbol” is a different concept.
  • the "first time domain symbol” is a time concept. It is the first of the N time domain symbols, and the "first time domain symbol” refers to a specific one. Time domain symbol.
  • the time domain symbol can be the "first time domain symbol” among the N time domain symbols, or it can be other time domain symbols.
  • the first time domain symbol is the last time domain symbol among the N time domain symbols. It should be noted here that the last time domain symbol of the N time domain symbols can also be referred to as the last time domain symbol of the N time domain symbols.
  • the first time-domain symbol is other time-domain symbols than the first time-domain symbol and the last time-domain symbol among the N time-domain symbols.
  • the first time-domain symbol may be the first of the N time-domain symbols. Symbols, where Represents rounding down x.
  • the first time-domain symbol is other time-domain symbols than N time-domain symbols.
  • the first time-domain symbol may be the first time-domain symbol of a radio frame in which the first resource is located.
  • the initial phase corresponding to the reference signal can be determined according to the first time domain symbol. It should be noted that the above several methods are also examples, and the embodiment of the present application does not limit how to select the first time domain symbol.
  • the above manners 1 to 4 may be applied independently or in combination.
  • one of the foregoing radio frame number, subframe number, slot number, symbol number, and sequence number of the uplink-downlink switching period may be used.
  • multiple together determine the initial phase C init .
  • Formula 1 can be considered to determine the initial phase according to the symbol number of the first time domain symbol and the slot number of the time slot where the first time domain symbol is located; for another example, the initial phase can be determined according to the following formula 6:
  • l represents the symbol number of the first time-domain symbol in a time slot
  • SFN indicates the radio frame number of a radio frame in which the first time domain symbol is located in a radio frame period
  • n ID is the interference determined by high-level parameters.
  • each of the M parts can be made the same in other ways.
  • a possible way is to make each of the M parts the same through a predefined or pre-configured way.
  • the value of the initial phase C init corresponding to each of the M sections is directly predefined, so that each of the M sections is the same; for example, according to The formula related to one or more parameters in SFN, n ID determines the initial phase C init , but the parameters l, SFN, and n ID are pre-defined or pre-configured values, so that each of the M parts is the same.
  • the reference signal may use any known signal.
  • it in order to reduce the workload of standardization and the complexity of the implementation of the network equipment, it can be designed for the network according to the low peak-to-average ratio (PAPR) sequence that can be sent by the existing network equipment.
  • PAPR peak-to-average ratio
  • the reference signal measured between the devices is the reference signal in the embodiment of the present application.
  • the ZC sequence-based low PAPR sequence can be expressed by the following formula:
  • u ⁇ ⁇ 0,1, ..., 29 ⁇ is the group number of the base sequence
  • v is the base sequence number.
  • N ZC is a prime number not greater than M ZC .
  • M pieces may be determined according to the time domain information of the first resource.
  • the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v of each of the sections that is, the cyclic shift ⁇ , the base sequence group number u, and the base of each of the M sections
  • the sequence number v is determined according to the time domain information of the first resource, so that the initial phase of each of the M parts is the same.
  • the time domain information of the first resource is, for example, the time domain position of the first resource, or may be other information, such as the time domain length of the first resource.
  • the time domain information of the first resource is mainly The time domain position of the first resource is taken as an example for introduction.
  • the time domain location of the first resource includes, for example, at least one of the following: a time slot in which the first resource is located or a time slot included in the first resource, a time domain symbol included in the first resource, a subframe in which the first resource is located, or a A resource includes a subframe, an uplink / downlink switching period where the first resource is located, and a system frame where the first resource is located.
  • the M parts of the reference signal may be determined according to the following formula Cyclic shift ⁇ , base sequence group number u, and base sequence number v of each part in:
  • l (l, lowercase L) represents the symbol number of the first time-domain symbol in a time slot.
  • n ID is a scrambling code ID determined by a high-level parameter
  • the first time domain symbol is, for example, a predefined time domain symbol, and its selection includes but is not limited to the following ways:
  • the first time domain symbol is the first time domain symbol among the N time domain symbols. It should be noted here that the first time-domain symbol of the N time-domain symbols can also be referred to as the first time-domain symbol of the N time-domain symbols, and the "first time-domain symbol” and " The "first time domain symbol” is a different concept.
  • the "first time domain symbol” is a time concept. It is the first of the N time domain symbols, and the "first time domain symbol” refers to a specific one. Time domain symbol.
  • the time domain symbol can be the "first time domain symbol” among the N time domain symbols, or it can be other time domain symbols.
  • the first time domain symbol is the last time domain symbol among the N time domain symbols. It should be noted here that the last time domain symbol of the N time domain symbols can also be referred to as the last time domain symbol of the N time domain symbols.
  • the first time-domain symbol is other time-domain symbols than the first time-domain symbol and the last time-domain symbol among the N time-domain symbols.
  • the first time-domain symbol may be the first of the N time-domain symbols. Symbols, where Represents rounding down x.
  • the first time-domain symbol is other time-domain symbols than N time-domain symbols.
  • the first time-domain symbol may be the first time-domain symbol of a radio frame in which the first resource is located.
  • the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v corresponding to the reference signal can be determined according to the first time domain symbol.
  • One or more of the parameters such as SFN and n ID determine the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v, which are not specifically limited in this embodiment of the present application. It should be noted that the final value range of u is ⁇ 0,1, ..., 29 ⁇ . And similarly, it can also be based on l, SFN and n ID make each part have the same cyclic shift ⁇ and sequence number parameter q so that each of the M parts is the same.
  • the way to determine the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v of each of the M parts according to the time-domain downlink of the first resource is only to make each of the M parts
  • the two parts are all in the same manner, and the embodiment of the present application is not limited to other ways to make each of the M parts the same.
  • one possible way is to make each of the M parts the same through a predefined or pre-configured way.
  • the values of the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v corresponding to each of the M parts are directly predefined, so that each of the M parts is the same; or With l, The formula related to one or more parameters in SFN, n ID determines the cyclic shift ⁇ , the base sequence group number u, and the base sequence number v, but the parameters l, SFN and n ID are pre-defined or pre-configured values, so that each of the M parts is the same.
  • the values of the cyclic shift ⁇ and the sequence number parameter q corresponding to each of the M parts can also be directly predefined, so that each of the M parts is the same, or according to The formula related to one or more parameters in SFN, n ID determines the cyclic shift ⁇ and the sequence number parameter q, but the parameters l, SFN and n ID are pre-defined or pre-configured values, so that each of the M parts is the same.
  • Equation 9 It can be known from Equations 1 to 6 and Equation 9 that the initial phase of the reference signal is also related to n ID .
  • the n ID may be used to bear the identity identification number of the cell, such as the related information of the physical cell ID (PCID).
  • PCID physical cell ID
  • n ID may be equal to PCID, or n ID and PCID have a certain mapping relationship, for example, n ID is a value of (PCID modulo M), and M is a predefined value, for example, M is less than or equal to the maximum value of PCID.
  • the reference signal can carry part of the cell identification information, which is convenient for the second network device to determine that the network device sending the reference signal is the first network device when the reference signal is detected.
  • n ID can also be used to carry other information related to the identity of the cell, such as the E-UTRAN cell identifier (ECI), or the E-UTRAN cell global identity (E) -UTRAN cell global identifier (ECGI).
  • ECI E-UTRAN cell identifier
  • E E-UTRAN cell global identity
  • EGI E-UTRAN cell global identifier
  • the n ID may be a predefined value.
  • the value of the n ID may be equal to 0, or may be another predefined value.
  • the value range of n ID can also be limited, for example, n ID ⁇ ⁇ 0,1,2, ..., 7 ⁇ .
  • n ID is not limited to the above-mentioned value method, and is not specifically limited.
  • each of the M parts can be made the same.
  • the existing CP adding method is to add a CP separately in each time domain symbol. Adding CP is equivalent to adding the last several sampling points in a time domain symbol to the front of the time domain symbol.
  • FIG. 8B there are two time-domain symbols, each of which represents a number of sampling points, or for the sake of simplicity, each of the squares can be considered to represent a sampling point.
  • the sampling point corresponding to 8 is added as the CP to the head of the time domain symbol, and CP is added to each of the two time domain symbols.
  • the embodiment of the present application designs a new method for adding a CP.
  • CPs are not included between the M parts, and CPs and / or can be added at the heads of the M parts.
  • Add CP at the end of the M sections or you can choose not to add any CP.
  • the head of the M sections can also be understood as the head of the first section of the M sections.
  • the CP added to the head of the M sections can also be referred to as the cyclic prefix. It can be understood as the end of the last of the M parts, and the CP added at the end of the M parts can also be referred to as a cyclic postfix (CP).
  • CP cyclic postfix
  • CP processing methods include but are not limited to the following:
  • Method 1 Add a cyclic prefix only to the head of the first part of the M parts.
  • adding a cyclic prefix only to the head of the first part of the M parts can be understood as adding the cyclic prefix only to the head of the first part of the M parts, and for the M parts The rest of the sections are not prefixed with a cyclic prefix. It can also be understood that a cyclic prefix is added only to the head of the first part of the M parts, and no CP is added in other positions. That is, the first resource only carries the cyclic prefix added to the head of the first part of the M parts, and does not carry other CPs.
  • FIG. 9 Please refer to FIG. 9 for an example of adding a CP only at the head of M sections.
  • cells 1 to 8 in the first part are the same as cells 1 to 8 in the second part, it can be considered that cells 5 to 8 included in the second part are used as CPs. Added to the head of the first section.
  • the first method can also be understood as starting from the end of the N time-domain symbols and pressing the The order of carrying the L sampling points included in the reference signal is carried one by one, and after carrying to the first sampling point included in the reference signal, it is carried from the last sampling point of the reference signal, and so on until N times The beginning of the domain symbol.
  • each time-domain symbol includes L sampling points and each reference signal includes K sampling points
  • the maximum number of N time-domain symbols includes Complete reference signal
  • a maximum of NL% K sampling points of the reference signal are included, and x% y represents a remainder obtained by dividing x by y.
  • Manner 2 Add a cyclic suffix only to the end of the last of the M parts.
  • the end of the last of the M parts can also be understood as the end of the M parts. That is, the first resource only carries the cyclic suffix added at the end of the last of the M parts, and does not carry other CPs.
  • adding a cyclic suffix only to the end of the last part of the M parts can be understood as adding the cyclic suffix only to the end of the last part of the M parts, and for the other parts of the M parts , Do not add a suffix at the end of these sections.
  • a cyclic suffix is added only at the end of the last of the M parts, and CP is not added at other positions. That is, the first resource only carries the cyclic suffix added at the end of the last of the M parts, and does not carry other CPs.
  • FIG. 10 Please refer to FIG. 10 for an example of adding a CP only at the end of M sections.
  • cells 1 to 8 in the first part are the same as cells 1 to 8 in the second part, it can also be considered that cells 1 to 4 included in the first part are CP Added to the end of the second section.
  • the second method can also be understood as starting from the head of the N time-domain symbols and pressing
  • the order of carrying the L sampling points included in the reference signal is carried one by one, and after carrying to the last sampling point included in the reference signal, it is carried from the first sampling point of the reference signal, and this cycle is repeated until N The end of the domain symbol.
  • each time-domain symbol includes L sampling points and each reference signal includes K sampling points
  • the maximum number of N time-domain symbols includes Complete reference signal
  • the first NL% K sampling points of the reference signal are included at most.
  • Manner 3 Add a cyclic prefix only to the head of the first part of the M parts, and add a cyclic suffix only to the end of the last part of the M parts. That is, the first resource only carries the cyclic prefix added at the head of the first part of the M parts, and the cyclic suffix added at the end of the last part of the M parts, and does not carry other CPs. .
  • adding a cyclic prefix only to the head of the first part of the M parts can be understood as adding the cyclic prefix only to the head of the first part of the M parts, and for the M parts For the other parts, no cyclic prefix is added at the beginning of these parts.
  • adding a cyclic suffix only to the end of the last part of the M parts can be understood as adding the cyclic suffix only to the end of the last part of the M parts, and for the other parts of the M parts , Do not add a suffix at the end of these sections.
  • FIG. 11A an example of adding a cyclic prefix to only the head of the first part of the M parts, and adding a cyclic suffix only to the end of the last part of the M parts.
  • the head of the part that is, the head of the first part of the M parts, and the cells 1 to 2 included in the second part of the M parts are added to the end of the second part as CPs , Which is the end of the last of the M sections, and no CP is added elsewhere.
  • cells 1 to 8 in the first part are the same as cells 1 to 8 in the second part, it can also be considered as cells 1 to 2 included in the first part as CP It is added to the end of the second part, and it can be considered that the cells 7 to 8 included in the second part are added as the CP to the head of the first part.
  • FIG. 11B an example of adding a cyclic prefix to only the first end of the first of the M sections and adding a cyclic suffix only to the end of the last of the M sections.
  • FIG. 12A another example of adding a cyclic prefix only to the head of the first part of the M parts, and adding a cyclic suffix only to the end of the last part of the M parts.
  • the head of a part that is, the head of the first part of the M parts, and cells 1 to 4 included in the third part of the M parts are added to the third part as CPs At the end, which is the end of the last of the M sections, and no CP is added elsewhere.
  • first part, the second part, and the third part are the same as cells 1 to 8, it can also be considered that the cells 1 to 4 included in the first part are added as CP to the first part. At the end of the three sections, it can be considered that cells 7 to 8 included in the third section are added to the head of the first section as CPs.
  • each of the cells 1 to 8 is a part. It can be seen that the squares 7 to 8 included in the first of the M sections are added as CPs to the head of the first of the M sections, which is the first of the M sections. The first end of each part, and cells 1 to 4 included in the third part of the M parts are added as CP to the end of the third part, that is, the end of the last part of the M parts. No CP was added elsewhere.
  • first part, the second part, and the third part are the same as cells 1 to 8, it can also be considered that the cells 1 to 4 included in the first part are added as CP to the first part. At the end of the three sections, it can be considered that cells 7 to 8 included in the third section are added to the head of the first section as CPs.
  • FIG. 13A is an example in which CP is not added in M sections.
  • 13A can be understood as the first part of the two parts is the cyclic prefix of the second part, or the second part of the two parts is the cyclic suffix of the first part.
  • FIG. 13B Please refer to FIG. 13B again, for another example in which CP is not added in M sections.
  • FIG. 9, FIG. 10, FIG. 11A, FIG. 11B, FIG. 12A, FIG. 12B, FIG. 13A, and FIG. 13B different time domain symbols are divided by vertical dashed lines.
  • FIG. 9, FIG. 10, FIG. 11A, FIG. 12A, and FIG. 13A all use one time domain symbol to carry one of the M parts as an example
  • the part will be carried on two time-domain symbols as an example, that is, one of the M parts may be carried in one time-domain symbol, or it may be carried in multiple time-domain symbols, or one symbol. Multiple parts, no specific restrictions. It can be understood that the length of each of the M parts corresponds to the length of the detection window.
  • the M parts are made the same, so that the reference signal has a cyclic characteristic.
  • this embodiment of the present application does not limit it.
  • which of the above methods is used to process the CP in the first resource may be predefined by the protocol, or may be negotiated in advance between network devices, and the like is not specifically limited.
  • the CP added to the head of the first part includes the sampling points corresponding to cells 7 and 8 and the CP added to the end of the second part includes the sampling points corresponding to cells 1 and 2.
  • Etc. it is only necessary to ensure the sum of the length of the cyclic prefix added to the first end of the M parts and the length of the cyclic suffix added to the end of the last part added to the M parts.
  • N * P there is no limitation on the length of the added cyclic prefix and cyclic suffix, where P is the maximum length of the CP that can be added in each time domain symbol specified.
  • P 2
  • it is only necessary to ensure that the sum of the length of the CP added to the head of the first part and the length of the CP added to the end of the second part is less than or equal to 2 * 2 4 That is, there is no limitation on the length of the CP specifically added to the head of the first part and the end of the second part.
  • the CP added to the head of the first part includes the sampling points corresponding to cells 7 and 8 and the CP added to the end of the third part includes the cells corresponding to cells 1 to 4 Sampling points, but this is not necessarily the same ratio.
  • the M parts have cyclic characteristics in N symbols.
  • the reference signal meets the two conditions described above, so that the second network device can perform blind detection on the reference signal through low-complexity frequency-domain correlation detection and correctly obtain the reference signal. Therefore, the complexity of the detection is reduced, and the accuracy of the blind detection is improved, or in other words, the requirement of detecting a reference signal of unknown arrival time with low complexity and high accuracy is satisfied.
  • the same sending and receiving time configuration can be used between the network devices participating in the measurement, that is, the same uplink and downlink switching period is used.
  • the first network device and the second network device can use the same uplink and downlink switching. cycle.
  • the network devices participating in the measurement use the same downlink transmission time, the same uplink transmission time, and the same uplink and downlink time interval in each uplink-downlink switching cycle.
  • three network devices participate in the measurement. They are network device 1, network device 2, and network device 3. These three network devices use the same uplink and downlink switching cycle, and use the same downlink transmission time and the same uplink transmission in each uplink and downlink switching cycle. Time, and the same uplink and downlink time interval.
  • the uplink transmission time and uplink-downlink time interval used in one uplink-downlink switching period may also be different, but the uplink transmission time and The sum of the uplink and downlink time intervals needs to be the same.
  • Figure 14B There are three network devices participating in the measurement, namely network device 1, network device 2, and network device 3. These three network devices use the same uplink and downlink switching cycle. In each uplink-downlink switching period, network device 2 and the other two network devices only use the same downlink transmission time, and the uplink transmission time and uplink-downlink time interval are different.
  • the network The sum of the uplink transmission time and the uplink and downlink time interval used by the device 2 is the same as the sum of the uplink transmission time and the uplink and downlink time interval adopted by the other two network devices.
  • the network device when different network devices send reference signals for measurement between network devices, they can all be sent at the same location, that is, the network device can be specified to send a reference for measurement between network devices in advance.
  • the position of the signal can be predefined by the protocol, for example, which can simplify the process of detecting the reference signal.
  • a network device When a network device receives and blindly detects a reference signal, it should be possible to determine which network device sent it based on the received reference signal. How to determine the network device that sends the reference signal based on the received reference signal will be described later. Introduction. However, it is also possible that it is impossible to identify which network device is transmitting according to the received reference signal. In this case, if the receiving network device and the sending network device use the same sending and receiving time configuration and the same reference signal sending position , The network device receiving the reference signal can roughly determine the position of the network device sending the reference signal according to the received reference signal, which is helpful for positioning the interference source.
  • the network device can transmit the reference signals within the downlink transmission time during an uplink-downlink switching cycle.
  • Reference signals are sent on the last N time-domain symbols, that is, the network device may send reference signals on the last one or more time-domain symbols in the downlink transmission time in an uplink-downlink switching cycle, specifically in the last few Sending a reference signal in the time domain symbol depends on the number of time domain symbols occupied by the reference signal.
  • the maximum range of interference can be determined first. Because the N time-domain symbols occupied by the reference signal are already the last N time-domain symbols of the downlink transmission time, after detecting the reference signal, the second network device can determine that the range after detecting the reference signal will not be affected by the CLI Interference, so that interference cancellation methods can be further applied, such as using lower-order modulation or a lower code rate for areas affected by the CLI to reduce or eliminate interference.
  • the reference signal is not transmitted in the last N time-domain symbols of the downlink transmission time in an uplink-downlink switching cycle, but instead of the other N time-domain symbols of the downlink transmission time in an uplink-downlink switching cycle It is possible that after the reference signal reaches the second network device after the delay, the second network device is still in the downlink transmission time. As shown in FIG. 15A, the starting position of the reference signal is within the downlink transmission time of the second network device.
  • the second network device is in the sending process, and generally does not receive or detect signals, resulting in that the second network device cannot detect the reference signal, but the downlink signal of the first network device may still receive the uplink reception of the second network device.
  • the process generates CLI interference.
  • the embodiment of the present application proposes to use the last symbol of the downlink transmission time in an uplink-downlink switching period to send a reference signal. Referring to FIG. 15B, the reference signal has the last N times of downlink transmission time in an uplink-downlink switching period.
  • the second network device is in the uplink transmission time after the reference signal reaches the second network device after a delay, so that the second network device can correctly detect the reference signal and complete the measurement.
  • the diagonally drawn boxes represent reference signals.
  • the second network device determines a second resource for receiving the reference signal, and the time domain symbol included in the second resource is an uplink time domain symbol and / or a guard interval time domain symbol.
  • the second network device may receive the reference signal within the uplink transmission time, as shown in FIG. 15B, or the second network device may also receive the reference signal within a guard interval (GP). Alternatively, the second network device may also receive the reference signal during both the GP and the uplink transmission time, which is not specifically limited. Therefore, the time domain symbols included in the second resource may be uplink time domain symbols and / or GP time domain symbols.
  • GP guard interval
  • the second resource determined by the second network device may include all uplink time-domain symbols of the uplink-downlink switching period, or all GP time-domain symbols of the uplink-downlink switching period, or all uplink time-domain symbols of the uplink-downlink switching period. And GP time domain symbols, which can make the detection more comprehensive and avoid missing reference signals. Or, for example, a reference signal used for measurement between network devices is transmitted in a specific uplink-downlink switching period through a protocol or other way.
  • the second resource determined by the second network device may also include a specific uplink and downlink.
  • the uplink time domain symbol of a switching period or the GP time domain symbol of a specific uplink and downlink switching period, or the uplink time domain symbol and GP time domain symbol of a specific uplink and downlink switching period. This can reduce the number of receptions of the second network device. Helps the second network device achieve power saving.
  • S71 to S72 may occur before S73, or S71 to S72 may occur after S73, or S71 to S72 and S73 may occur simultaneously, for example, S73 and S71 If it occurs at the same time, or if both S73 and S72 occur at the same time, or if S73 occurs after S71 and before S72, S73 is considered to occur simultaneously with S71 to S72.
  • the first network device sends a reference signal on the first resource, and the second network device receives all or part of the reference signal on the second resource.
  • the first resource includes N time domain symbols, and the first network device can send the reference signal through the first resource after generating the reference signal.
  • the first network device can send the reference signal through the first resource after generating the reference signal.
  • the second resource determined by the second network device can be understood as a resource that the second network device performs blind detection, and the resource that the second network device actually receives the reference signal should be a subset of the second resource.
  • the resource that the network device actually receives the reference signal is called a third resource.
  • the second resource can be understood as the resource corresponding to the GP and uplink transmission of the second network device in FIG. 15B
  • the third resource can be understood as corresponding to the second network device in FIG. 15B
  • the resource at the position where the reference signal of the first network device is received that is, the resource at the position where the diagonally drawn box in FIG. 15B is located.
  • the second network device may determine in advance at least one network device that may cause CLI interference to the second network device.
  • the information of the at least one network device may be pre-configured in the second network device, or may be the second network device. Network equipment obtained by other means.
  • the second network device may generate at least one reference signal corresponding to the at least one network device. It is understood herein that the reference signals sent by different network devices are different.
  • the second network device may use the generated at least one reference signal to perform cross-correlation operations with the received reference signal, for example, the second network device uses a generated reference signal to perform cross-correlation with the received reference signal.
  • the second network device may determine that the received reference signal is the reference signal. In addition, because the second network device knows the network device corresponding to the generated reference signal when generating the reference signal, the second network device can determine that the received reference signal was sent by the first network device. As mentioned in the text, it is possible to determine which network device is transmitting based on the received reference signal. For example, please refer to FIG. 16, the first network device sends RS1 as a reference signal, and the second network device has previously generated multiple reference signals locally, and the multiple reference signals include RS1. After the second network device detects RS1, , You can use the generated reference signal to perform cross-correlation operations with the received signal respectively. If the correlation peak value exceeds a certain threshold when the cross-correlation operation is performed between the generated RS1 and the received RS1, the second network device can It is determined that the received signal is RS1 from the first network device.
  • the second network device cannot determine which network device sent it based on the received reference signal, and continues to take detection through cross-correlation operation as an example.
  • the second network device uses the generated at least one reference signal to perform cross-correlation operations with the received reference signal, but the cross-correlation operations are unsuccessful. That is, when at least one reference signal is used to perform cross-correlation operations with the received reference signal, If the correlation peaks do not exceed a certain threshold, the second network device may determine that the received reference signal is different from at least one reference signal. At this time, the second network device may not be able to directly determine which network device sent the reference signal. Then, in the embodiment of the present application, the second network device may roughly locate the network device that sends the reference signal according to the reference signal, so as to finally determine the interference source.
  • the sequence of steps S71 to S74 in the embodiment shown in FIG. 7 is not limited. Taking S72 and S74 as examples, if “receive” is understood as “detection”, the execution time of S74 may also be earlier than the execution time of S72, because if the first network device is far away from the second network device, and the troposphere The bending effect affects the propagation of the signal. The second network device is not sure when the measurement signal from the first network device will arrive. Therefore, the second network device can detect whether there is a reference signal on all symbols that can receive the signal. S74 may be executed earlier than S72.
  • the second network device can start detection early, the reference signal from the first network device will only be detected after the reference signal sent by the first network device reaches the second network device. Therefore, if you "receive” Understood as “received successfully” or "detected successfully", the execution time of S72 may be earlier than the execution time of S74.
  • the second network device may perform various processes. For example, the second network device may determine that the first network device that sends the reference signal is an interference source, and thus may perform corresponding interference cancellation and other processing. For example, the terminal device can be scheduled not to send data on the interfered symbols, or to reduce interference by using interference rejection combining (IRC) algorithms.
  • IRC interference rejection combining
  • network equipment can be enabled to perform effective ultra-long-distance interference measurement, and further ultra-long-distance interference cancellation can be performed, thereby improving transmission performance of a communication system.
  • the method provided in the embodiments of the present application can be used for ultra-long-distance measurement, but in fact, it can also be used for measurement between adjacent network devices (which can be understood as network devices that are closer).
  • adjacent network devices which can be understood as network devices that are closer.
  • the difference is that in the measurement scenarios of adjacent network devices, the delay due to geographical distance is almost negligible, so the arrival time of the reference signal is basically determined between the network devices that are measuring.
  • terminal devices usually do not send and receive in the GP. Therefore, for example, if the first network device and the second network device participating in the measurement are adjacent network devices, the first network device can transmit and / or Or sending a reference signal within the GP, that is, the first network device may send the reference signal within the downlink transmission time, or send the reference signal within the GP, or send the reference signal within the downlink transmission time and the GP time, and the second network The device can receive the reference signal in the GP. At this time, the reference signal does not interfere with the data sent by the terminal device and the data that needs to be received, which improves the transmission success rate of the terminal device for the reference signal and data.
  • the first network device and the second network device are adjacent network devices, for example, the first network device and the second network device use the same uplink-downlink switching cycle, and in one uplink-downlink switching cycle, uplink transmission Time, GP, and downlink transmission time are all aligned.
  • the first network device sends a reference signal to the second network device, it can be sent within the GP.
  • the two network devices are close to each other, the delay caused by geographical distance is almost negligible, so the second network device also The reference signal will be received in the GP, so that the reception of the reference signal will not affect the data sent and received by the second network device.
  • the N time-domain symbols occupied by the reference signal may be N time-domain symbols in the GP.
  • the diagonally shaded box in FIG. 17A represents the reference signal.
  • the first network device and the second network device are, for example, adjacent network devices.
  • the first network device and the second network device use the same uplink and downlink switching cycle, but in one uplink and downlink switching cycle, ,
  • the uplink transmission time, GP, and downlink transmission time of the first network device and the second network device are not aligned. Since the first network device has a downlink transmission time in an uplink-downlink switching period, a period of downlink transmission time is aligned with the GP of the second network device, so the first network device can communicate with the second network device during the downlink transmission time.
  • the second network device can receive the reference signal in the GP, so that the reception of the reference signal will not affect the data sent and received by the second network device.
  • the N time-domain symbols occupied by the reference signal can still be the last N time-domain symbols in the downlink transmission time in an uplink-downlink switching period, or can be downlink transmissions in an uplink-downlink switching period.
  • the diagonally-lined box in FIG. 17B represents the reference signal.
  • the measurement between the first network device and the second network device and the ultra-long-distance network device may obtain configuration information in advance.
  • the configuration information is used to determine the first resource, and / or is used to determine the reference signal, that is, the configuration
  • the information may determine the first resource, or the configuration information may determine the reference signal, or the configuration information may determine the first resource and the reference signal.
  • the configuration information may include time-domain and / or frequency-domain configuration information of the first resource, that is, information including the first resource in the time domain, or including the first resource Information in the frequency domain, or information including the first resource in the time and frequency domains; for example, if the configuration information is used to determine a reference signal, the configuration information may include a sequence used to generate the reference signal, or include Reference signal additional information, including for example At least one of information such as l and n ID , for example, including And l, or include l, or include l and n ID, etc.
  • the content included in the configuration information is not limited in the embodiment of the present application, as long as the second network device can determine the first resource and / or the reference signal through the configuration information.
  • the second network device can determine the configuration of the first network device sending the reference signal, so that the position of the time-frequency resource to be detected and / or the reference signal to be detected can be determined.
  • the configuration information may be sent by the first network device to the second network device, or may be configured by a high-level control node to the second network device, or manually configured by an engineer during network deployment.
  • the method for obtaining configuration information by the network device is not limited.
  • the configuration information is used to determine the first resource and / or used to determine the reference signal.
  • the configuration information is used to indicate the first resource and / or used to indicate the reference signal.
  • a network device and a second network device may use the same uplink and downlink configuration, or may use different uplink and downlink configurations, which are not specifically limited.
  • FIG. 18 includes three network devices, which are a first network device, a second network device, and a third network device.
  • the distance between the first network device and the second network device is relatively long, and the first network device and the third network device are relatively long.
  • the distance between the three network devices is relatively short. Measurements need to be performed between the first network device and the second network device. Measurements must also be made between the first network device and the third network device.
  • the measurement between network devices is the measurement between ultra-long-distance network devices
  • the measurement between the first network device and the third network device is the measurement between closer network devices.
  • the same reference signal sent by the first network device is used for measurement between ultra-long-distance network devices and for closer distances. Measurements between network devices.
  • the third network device since the distance between the third network device and the first network device is relatively short, the third network device can determine the time when the reference signal should be received according to the time when the first network device sends the reference signal, and there is no need to Blind detection is performed in all GP and / or uplink transmission times.
  • the third network device can obtain configuration information, etc.
  • the diagonally-lined box in FIG. 19 indicates the reference signal.
  • the method provided in the embodiment of the present application can be used for measurement between network devices at a very long distance and measurement between network devices at a short distance, and provides a method for performing measurement between network devices.
  • This mechanism helps network equipment to determine the source of interference, so that it can take corresponding interference cancellation measures and improve communication quality.
  • FIG. 20 shows a schematic structural diagram of a communication device 2000.
  • the communication apparatus 2000 may implement the functions of the first network device involved in the foregoing.
  • the communication device 2000 may be the first network device described above, or may be a chip provided in the first network device described above.
  • the communication device 2000 may include a processor 2001 and a transceiver 2002.
  • the processor 2001 may be used to execute S71 and S72 in the embodiment shown in FIG. 7, and / or other processes for supporting the technology described herein.
  • the transceiver 2002 may be used to perform 74 in the embodiment shown in FIG. 7 and / or other processes to support the techniques described herein.
  • the processor 2001 is configured to determine a first resource, and generate a reference signal corresponding to the first resource, where the reference signal includes M parts, and each of the M parts is the same; where The first resource does not carry a cyclic prefix or a cyclic suffix of the reference signal; or the first resource carries a cyclic prefix of the reference signal, and the cyclic prefix corresponding to the reference signal is located only in the The head of the first part of the M parts, and / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is only located in the M parts
  • M is a positive integer
  • the transceiver 2002 is configured to send the reference signal on the first resource.
  • FIG. 21 is a schematic structural diagram of a communication device 2100.
  • the communication device 2100 can implement the functions of the second network device involved in the foregoing.
  • the communication device 2100 may be the second network device described above, or may be a chip provided in the second network device described above.
  • the communication device 2100 may include a processor 2101 and a transceiver 2102.
  • the processor 2101 may be configured to execute S73 in the embodiment shown in FIG. 7 and / or other processes for supporting the technology described herein.
  • the transceiver 2102 may be used to perform S74 in the embodiment shown in FIG. 7 and / or other processes to support the techniques described herein.
  • the processor 2101 is configured to determine a second resource for receiving a reference signal, and the time domain symbols included in the second resource are uplink time domain symbols and / or guard interval time domain symbols;
  • a transceiver 2102 configured to receive a part or all of a reference signal on the second resource, where the reference signal includes M parts, and each of the M parts is the same; wherein the first resource Does not carry the cyclic prefix or cyclic suffix of the reference signal; or, the cyclic prefix of the reference signal is carried in the first resource, and the cyclic prefix corresponding to the reference signal is only located in the first of the M parts.
  • a head end of a part, and / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is located only at an end of a last part of the M parts, M is a positive integer.
  • the communication device 2000 or the communication device 2100 can also be implemented by the structure of the communication device 2200 as shown in FIG. 22A.
  • the communication device 2200 can implement the functions of the terminal equipment or the network equipment mentioned above.
  • the communication device 2200 may include a processor 2201.
  • the processor 2201 may be used to execute S71 and S72 in the embodiment shown in FIG. 7, and / or used to support what is described herein. Other processes of the described technology; or, when the communication device 2200 is used to implement the function of the second network device involved above, the processor 2201 may be configured to execute S73 in the embodiment shown in FIG. 7 and / or Other procedures to support the techniques described herein.
  • the communication device 2200 can pass through a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), a system chip (SoC), and a central processor (central processor). unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or programmable controller (programmable logic device, PLD) or other integrated chips, the communication device 2200 may be set in the first network device or the second network device in the embodiment of the present application, so that the first network device or the second network device implements the provided in the embodiment of the present application. method.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • central processor central processor
  • unit CPU
  • NP network processor
  • DSP digital signal processor
  • microcontroller microcontroller unit, MCU
  • PLD programmable controller
  • the communication device 2200 may include a transceiver component, which is configured to communicate with other devices.
  • the transceiver component may be used to execute S74 in the embodiment shown in FIG. 7 and / or used to support Other processes for the techniques described herein.
  • a transceiver component is a communication interface. If the communication device 2200 is a first network device or a second network device, the communication interface may be a transceiver in the first network device or the second network device, such as the transceiver 2002 or the transceiver.
  • the transceiver 2102 is, for example, a radio frequency transceiver component in the first network device or the second network device, or, if the communication device 2200 is a chip set in the first network device or the second network device, the communication interface may be Input / output interface of the chip, such as input / output pins.
  • the communication device 2200 may further include a memory 2202, as shown in FIG. 22B.
  • the memory 2202 is configured to store computer programs or instructions
  • the processor 2201 is configured to decode and execute these computer programs or instructions.
  • these computer programs or instructions may include the functional programs of the first network device or the second network device.
  • the first network device may be caused to implement the functions of the first network device in the method provided in the embodiment shown in FIG. 5 of the embodiment of the present application.
  • the functional program of the second network device is decoded and executed by the processor 2201
  • the second network device may be caused to implement the function of the second network device in the method provided in the embodiment shown in FIG. 5 of the embodiment of the present application.
  • the function programs of the first network device or the second network device are stored in a memory external to the communication device 2200.
  • the function program of the first network device is decoded and executed by the processor 2201, a part or all of the content of the function program of the first network device is temporarily stored in the memory 2202.
  • the function program of the second network device is decoded and executed by the processor 2201, a part or all of the content of the function program of the second network device is temporarily stored in the memory 2202.
  • the function programs of the first network device or the second network device are set in a memory 2202 stored in the communication device 2200.
  • the communication device 2200 may be set in the first network device in the embodiment of the present application.
  • the function program of the second network device is stored in the memory 2202 inside the communication device 2200, the communication device 2200 may be set in the second network device in the embodiment of the present application.
  • part of the content of the function program of the first network device is stored in a memory external to the communication device 2200, and content of the other part of the function program of the first network device is stored in the communication device 2200.
  • part of the content of the function program of the second network device is stored in a memory external to the communication device 2200, and other content of the function program of the second network device is stored in a memory 2202 inside the communication device 2200.
  • the communication device 2000, the communication device 2100, and the communication device 2200 are presented in the form of dividing each function module into corresponding functions, or may be presented in the form of dividing each function module in an integrated manner.
  • the "module” herein may refer to an ASIC, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices capable of providing the above functions.
  • the communication device 2000 provided in the embodiment shown in FIG. 20 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 2001, and the transceiver module may be implemented by the transceiver 2002.
  • the processing module may be used to execute S71 and S72 in the embodiment shown in FIG. 7 and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to perform S74 in the embodiment shown in FIG. 7 and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine a first resource, and generate a reference signal corresponding to the first resource, where the reference signal includes M parts, and each of the M parts is the same; wherein, The first resource does not carry a cyclic prefix or a cyclic suffix of the reference signal; or, the first resource carries a cyclic prefix of the reference signal, and the cyclic prefix corresponding to the reference signal is only located at the M And / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is only located at the last of the M sections
  • M is a positive integer
  • the transceiver module is configured to send the reference signal on the first resource.
  • the communication device 2100 provided in the embodiment shown in FIG. 21 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 2101, and the transceiver module may be implemented by the transceiver 2102.
  • the processing module may be configured to execute S73 in the embodiment shown in FIG. 7 and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to perform S74 in the embodiment shown in FIG. 7 and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine a second resource for receiving a reference signal, where the time domain symbols included in the second resource are uplink time domain symbols and / or guard interval time domain symbols;
  • a transceiver module configured to receive a part or all of a reference signal on the second resource, where the reference signal includes M parts, and each of the M parts is the same; wherein, in the first resource, Does not carry the cyclic prefix or cyclic suffix of the reference signal; or, the cyclic prefix of the reference signal is carried in the first resource, and the cyclic prefix corresponding to the reference signal is only located in the first of the M parts
  • the first end of each part, and / or, the first resource carries a cyclic suffix of the reference signal, and the cyclic suffix corresponding to the reference signal is located only at the end of the last of the M parts, M Is a positive integer.
  • the communication device 2000, the communication device 2100, and the communication device 2200 provided in the embodiments of the present application can be used to execute the method provided in the embodiment shown in FIG. 7, the technical effects that can be obtained can refer to the foregoing method embodiments. Here, No longer.
  • Embodiments of the present application are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine, so that the instructions generated by the processor of the computer or other programmable data processing device are used to generate instructions Means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another readable storage medium. For example, the computer instructions may be transmitted from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD) ))Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种参考信号发送、接收方法及装置。第一网络设备确定第一资源。该第一网络设备生成与第一资源对应的参考信号,参考信号包括M个部分,M个部分中的每个部分均相同第一资源中不承载参考信号的循环前缀或者循环后缀;或者,第一资源中承载所述参考信号的循环前缀,且参考信号对应的循环前缀仅位于M个部分中的第一个部分的首端,和/或,第一资源中承载参考信号的循环后缀,且参考信号对应的循环后缀仅位于M个部分中的最后一个部分的末端,M为正整数。该第一网络设备在第一资源上向第二网络设备发送参考信号。

Description

一种参考信号发送、接收方法及装置
本申请要求在2018年8月10日提交国家知识产权局、申请号为201810911934.9、申请名称为“一种参考信号发送、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号发送、接收方法及装置。
背景技术
在无线通信系统,如新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、或演进的LTE(LTE-Advanced,LTE-A)系统等通信系统中,若系统使用时分双工(time division duplex,TDD)的双工模式,基站(base station,BS)与基站之间可能产生异向干扰(cross-link interference,CLI)。所谓基站之间的异向干扰,主要指的是一个基站发送的下行(downlink,DL)信号会干扰另一个基站的上行(uplink,UL)信号,上行信号例如是用户设备(user equipment,UE)发送给基站的信号。例如,第一基站在发送下行信号时,第二基站正在接收上行信号,第一基站发送的下行信号一般功率比较大,可能会被第二基站接收,这样就会干扰第二基站接收上行信号。
基站之间的CLI通常发生在工作在相同频率的两个TDD小区的传输方向不同的情况中,因此,若TDD小区保持传输方向相同,通常不会产生CLI。但也有例外的情况,例如大气中的对流层弯曲形成大气波导时,即使两个基站的地理位置相隔很远,它们的下行传输信号到达对方时依然具有较大的强度,因此,即使它们的传输方向相同,也就是这两个基站同时接收上行信号以及同时发送下行信号,但由于它们之间较远的地理位置,导致一个基站发送的下行信号到达另一个基站时产生了明显的时延,可能另一个基站已经切换到上行接收方向,此时这两个基站之间也会产生CLI。为了解决这个问题,可以考虑进行基站之间的测量,从而能够识别干扰基站,但是目前还没有标准化的基站之间测量机制。而且,大气波导与天气和地理环境密切相关,具有随机性和不确定性,导致互相干扰的两个基站之间的距离和时延也存在较大的不确定性。现有技术中基站与终端设备之间进行测量的方法是针对确定的发送或接收时间设计的,因此难以满足低复杂度、高准确度地检测到未知到达时间的参考信号的需求。
发明内容
本申请实施例提供一种参考信号发送、接收方法及装置,用于使得网络设备之间能够传输参考信号。
第一方面,提供一种参考信号发送方法,该方法包括:确定第一资源;生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所 述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数;在所述第一资源上发送所述参考信号。
该方法可由第一通信装置执行,第一通信装置可以是第一网络设备或能够支持第一网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。
第二方面,提供一种参考信号接收方法,该方法包括:确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号;在所述第二资源上接收参考信号的部分或全部,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述参考信号是通过第一资源发送的,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。
该方法可由第二通信装置执行,第二通信装置可以是第二网络设备或能够支持第二网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。
在本申请实施例中,承载在第一资源中的参考信号包括M个部分,因为频域相关检测需要保证在时域检测窗中可以观察到至少一个完整的待检测样本,该观察到的待检测样本可以是循环移位后的待检测样本,而M个部分中的每个部分可以作为一个完整的待检测样本,这样就要求M个部分均相同,因此参考信号的M个部分的内容都相同,而且M个部分之间可以不包括参考信号对应的循环前缀和循环后缀,循环前缀仅可以在M个部分中的第一个部分的首端添加,也可以不添加循环前缀,循环后缀仅可以在M个部分中的最后一个部分的末端添加,也可以不添加循环后缀,从而参考信号在第一资源中可以具备循环特性。正是由于参考信号在第一资源中具备循环特性,使得第二网络设备能够对第一网络设备发送的参考信号进行盲检测时使用频域相关检测,并正确获取参考信号,因此,降低了检测的复杂度,提高了盲检测的准确度,或者说,也就满足了低复杂度、高准确度地检测到未知到达时间的参考信号的需求。
在一个可能的设计中,所述M个部分对应的初始相位相同,或者,所述M个部分对应的基序列组号、基序列号和循环移位相同。
要使得M个部分中的每个部分都相同,若复用伪随机序列+星座调制的生成方式,则可以通过使得M个部分中的每个部分具有相同的初始相位的方式来使得M个部分中的每个部分相同。当然,这种方式只是使得M个部分中的每个部分都相同的一种方式,如果复用伪随机序列+星座调制的生成方式,本申请实施例并不限制还可以通过其他方式来使得M个部分中的每个部分相同。而,若使用低PAPR序列的生成方式,则可以通过使得M个部分中的每个部分具有相同的循环移位、基序列组号、基序列号的方式来使得M个部分中的每个部分相同。当然,这种方式只是使得M个部分中的每个部分都相同的一种方式,如果使用低PAPR序列的生成方式,本申请实施例并不限制还可以通过其他方式来使得M个部分中的每个部分相同。当然,参考信号还可以采用其他的生成方式,那么自然会有在其他生成方式下使得M个部分中的每个部分都相同的方式,这些均在本申请实施例的保护范围之内。
在一个可能的设计中,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据第一资源的时域信息确定。
第一资源的时域信息,例如为第一资源的时域位置,或者也可以是其他信息,如时域长度等,本申请实施例不做限制。
在一个可能的设计中,所述第一资源的时域信息包括如下至少一种信息:所述第一资源所在的时隙或第一资源包括的时隙,所述第一资源包括的时域符号,所述第一资源所在的子帧或第一资源包括的子帧,所述第一资源所在的上下行切换周期,以及,所述第一资源所在的系统帧。
也就是,可以根据如上的一种或多种信息来确定M个部分对应的初始相位或确定M个部分对应的基序列组号、基序列和循环移位,或者,还可以结合如上的一种或多种信息以及第一资源的其他的时域信息来确定M个部分对应的初始相位或确定M个部分对应的基序列组号、基序列和循环移位,或者,也可以不采用如上的信息,而是根据第一资源的其他的时域信息来确定M个部分对应的初始相位或确定M个部分对应的基序列组号、基序列和循环移位,本申请实施例不做限制。
在一个可能的设计中,所述第一资源的时域信息包括所述第一资源包括的时域符号,包括:所述第一资源包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据所述N个时域符号中的第一个时域符号或者最后一个时域符号确定。
如上只是示例,本申请实施例不限制根据哪个时域符号确定M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位。
在一个可能的设计中,所述N个时域符号为一个上下行切换周期中的下行传输时间内的最后N个时域符号。
采用一个上下行切换周期中下行传输时间的最后的时域符号来发送参考信号,首先可以确定干扰的最大范围。因为参考信号所占用的N个时域符号已经是下行传输时间的最后N个时域符号,因此第二网络设备在检测到参考信号后,可以确定在检测到参考信号之后的范围不会受到CLI干扰,从而可以进一步应用干扰消除手段,例如对受CLI干扰的区域采用更低阶的调制或更低的码率等方式来减小或消除干扰。其次,这样做也可以最大程度地保证检测的成功率。
在一个可能的设计中,所述方法还包括:发送配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。相应的,所述方法还包括:接收配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。
在本申请实施例中,如果第一网络设备与第二网络设备为较近距离的网络设备,那么第一网络设备与第二网络设备之间的测量,与超远距离的网络设备之间的测量的不同之处在于,第二网络设备可以事先获取配置信息,对于第二网络设备来说,所述配置信息用于确定第一资源,和/或,用于确定参考信号,也就是,配置信息可以确定第一资源,或者配置信息可以确定参考信号,或者配置信息可以确定第一资源和参考信号。通过配置信息,第二网络设备可以确定第一网络设备发送参考信号的配置,从而可以确定待检测的时频资源的位置和/或确定待检测的参考信号。
在一个可能的设计中,所述参考信号是第二网络设备接收的第一网络设备发送的参考信号。
该参考信号可以是用于网络设备之间测量的参考信号,通过本申请实施例提供的方案, 网络设备之间可以传输参考信号,从而能够通过参考信号实现测量。
第三方面,提供第一种通信装置,该通信装置例如为前文中所述的第一通信装置,例如为网络设备。该通信装置具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的实施方式所提供的方法中的相应功能。
第四方面,提供第二种通信装置,该通信装置例如为前文中所述的第二通信装置,例如终端设备。该通信装置具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的实施方式所提供的方法中的相应功能。
第五方面,提供第三种通信装置,该通信装置例如为前文中所述的第一通信装置,例如网络设备。该通信装置具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的实施方式所提供的方法中的相应功能。其中,收发器例如实现为通信接口,这里的通信接口可以理解为是网络设备中的射频收发组件。
第六方面,提供第四种通信装置,该通信装置例如为前文中所述的第二通信装置,例如终端设备。该通信装置具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理器和收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的实施方式所提供的方法中的相应功能。其中,收发器例如实现为通信接口,这里的通信接口可以理解为是终端设备中的射频收发组件。
第七方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一通信装置,例如网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第五种通信装置还可以包括通信接口,如果第五种通信装置为网络设备,则通信接口可以是网络设备中的收发器,例如为网络设备中的射频收发组件,或者,如果第五种通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二通信装置,例如终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第六种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,如果第六种通信装置为终端设备,则通信接口可以是终端设备中的收发器,例如为终端设备中的射频收发组件,或者,如果第六种通信装置为设置在终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供第一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置和第四方面所述的第二种通信装置。
第十方面,提供第二种通信系统,该通信系统可以包括第五方面所述的第三种通信装置和第六方面所述的第四种通信装置。
第十一方面,提供第三种通信系统,该通信系统可以包括第七方面所述的第五种通信装置和第八方面所述的第六种通信装置。
第十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,承载在第一资源中的参考信号的M个部分的内容都相同,而且而参考信号在第一资源中可以具备循环特性,使用这样的参考信号,使得网络设备能够对参考信号进行盲检测时使用频域相关检测,降低了检测的复杂度,提高了检测准确度。
附图说明
图1为两个基站间的CLI的一种示意图;
图2为距离较远的基站间的CLI的一种示意图;
图3为生成CSI-RS的一种示意图;
图4为相邻的两个符号承载的CSI-RS不同的示意图;
图5为基站2对基站1发送的参考信号进行频域相关检测的示意图;
图6为本申请实施例所应用的一种网络架构的示意图;
图7为本申请实施例提供的一种参考信号发送、接收方法的流程图;
图8A为本申请实施例对无线帧、上下行切换周期、子帧、时隙及符号的解释示意图;
图8B为现有的添加CP的方式的示意图;
图9为本申请实施例提供的第一种添加CP的方式的示意图;
图10为本申请实施例提供的第二种添加CP的方式的示意图;
图11A为本申请实施例提供的第三种添加CP的方式的第一种示意图;
图11B为本申请实施例提供的第三种添加CP的方式的第二种示意图;
图12A为本申请实施例提供的第三种添加CP的方式的第三种示意图;
图12B为本申请实施例提供的第三种添加CP的方式的第四种示意图;
图13A为本申请实施例提供的不添加CP的方式的第一种示意图;
图13B为本申请实施例提供的不添加CP的方式的第二种示意图;
图14A为本申请实施例提供的参与测量的网络设备采用相同的收发时间配置的一种示意图;
图14B为本申请实施例提供的参与测量的网络设备采用相同的收发时间配置的另一种示意图;
图15A为本申请实施例提供的不在一个上下行切换周期中的下行传输时间的最后N个时域符号中发送参考信号的示意图;
图15B为本申请实施例提供的在一个上下行切换周期中的下行传输时间的最后N个时域符号中发送参考信号的示意图;
图16为本申请实施例提供的第二网络设备通过生成的参考信号检测参考信号的示意图;
图17A为本申请实施例提供的第一网络设备在GP内发送参考信号、第二网络设备在GP内接收参考信号的示意图;
图17B为本申请实施例提供的第一网络设备在下行传输时间内发送参考信号、第二网络设备在GP内接收参考信号的示意图;
图18为本申请实施例提供的在超远距离的网络设备之间的测量和在较近的距离的网络设备之间的测量复用同一个参考信号的场景示意图;
图19为本申请实施例提供的在超远距离的网络设备之间的测量和在较近的距离的网络设备之间的测量复用同一个参考信号的测量过程示意图;
图20为本申请实施例提供的能够实现第一网络设备的功能的通信装置的一种示意图;
图21为本申请实施例提供的能够实现第二网络设备的功能的通信装置的一种示意图;
图22A~图22B为本申请实施例提供的一种通信装置的两种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终 端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或LTE-A中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A,B,C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例涉及的技术特征。
在无线通信系统,如NR系统、LTE系统、或LTE-A系统等通信系统中,若系统使用TDD的双工模式,基站与基站之间可能产生CLI。例如,第一基站在发送下行信号时,第二基站正在接收上行信号,第一基站发送的下行信号一般功率比较大,可能会被第二基站接收,这样就会干扰第二基站接收上行信号。例如参考图1,图1中的第一小区和第二小区(可以认为就是第一小区中的第一基站和第二小区中的第二基站)工作在相同的频段,第一小区中,第一基站正在给终端设备1发送下行信号,同时第二小区中,第二基站正在接收终端设备2发送的上行(uplink,UL)信号,第一基站发送的下行信号一般功率比较大,可能也会被第二基站接收,这样就会干扰到第二基站接收终端设备2发送的上行信号,因此第一小区的下行信号干扰了第二小区的上行信号的接收。
基站之间的CLI通常发生在工作在相同频率的两个TDD小区的传输方向不同的情况中,因此,若TDD小区保持传输方向相同,通常不会产生CLI。但也有例外的情况,例如地理位置相隔很远的两个基站,即使它们的传输方向相同,也就是这两个基站同时接收上行信号以及同时发送下行信号,但由于它们之间较远的地理位置,导致一个基站发送的下行信号到达另一个基站时产生了明显的时延,可能另一个基站已经切换到上行接收方向,此时这两个基站之间也会产生CLI。例如参考图2,基站1和基站2的传输方向本来是相同的,但由于距离较远,基站1发送的下行信号到达基站2时会有时延,此时基站2已经开始了上行信号的接收过程,此时,基站1发送的下行信号还是会干扰基站2的上行信号的接收。这种来自远处基站的超远距离干扰的成因,通常是因为对流层弯曲现象造成,是否造成基站间干扰、干扰距离以及时延等,都受地理位置和天气影响,因此具有很大的不确定性。
为了对抗超远距离干扰,可以考虑进行基站之间的测量,从而能够识别干扰基站,但是在NR系统中,目前没有标准化用于NR基站(例如gNB)之间(例如,gNB与gNB之间)信道状况测量的参考信号,也没有标准化相关的测量流程。
而gNB与终端设备之间的信道状况方面,在下行方向,终端设备可以通过gNB给终端设备发送的信道状态信息参考信号(channel-state information reference signal,CSI-RS),获得gNB与终端设备之间的下行信道状况。首先简单介绍gNB给终端设备发送的CSI-RS的生成逻辑。请参考图3,在一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)中,CSI-RS为频域定义的序列,例如频域序列为{a,b,c,d,e,f,g,h},将该序列通过逆傅里叶变换转化到时域,例如时域序列为{1,2,3,4,5,6,7,8},在变换到时域之后,把时域序列一部分尾部的采样点添加到首部,作为循环前缀(cyclic prefix,CP),得到的添加了CP的时域序列例如为{7,8,1,2,3,4,5,6,7,8},其中头部的7和8就是CP,最后,基站发送添加了CP的CSI-RS。
CSI-RS频域序列由Gold序列经过四相移键控(quadrature phase shift keying,QPSK)调制获得,而决定一个CSI-RS的是该CSI-RS对应的Gold序列的初始相位,该初始相位的公式为:
Figure PCTCN2019099127-appb-000001
其中,l(小写的L)表示的是承载该CSI-RS的OFDM符号在一个时隙中的符号号(number),
Figure PCTCN2019099127-appb-000002
表示承载该CSI-RS的、以Δf=2 μ·15[kHz]为子载波间隔的时隙(slot)在 一个无线帧中的时隙号,n ID为高层参数决定的扰码ID,对该所有符号上的CSI-RS都通用。
可以看出,相邻的两个OFDM符号的l肯定是不同的,因此相邻的两个OFDM符号所承载的CSI-RS会具有不同的初始相位,也就是说相邻的两个OFDM符号上的CSI-RS并不相同,对此可参考图4,图4中,虚线划分了不同的OFDM符号。
应注意的是,CSI-RS是现有标准中用于基站与该基站服务的终端设备之间测量的参考信号。
本申请实施例设计了一种基站向基站发送的参考信号。
假设想要利用类似基站与终端设备之间的CSI-RS的测量方式来进行基站与基站之间的信道测量或信号检测,则现有技术中的基站与终端设备之间的CSI-RS也难以应用到基站与基站之间的测量中,尤其是难以应用到以超远距离干扰为目标的基站之间的测量中。这是因为,由于第一基站发送的信号到达第二基站的时延具有不确定性,第二基站只能通过盲检的方法检测第一基站发送的参考信号(reference signal,RS)。如果在时域上进行相关检测,则需要逐个采样点进行时域滑动相关窗检测,每个采样点位置都需要进行卷积计算,计算开销非常大。而频域上进行相关检测可以通过“傅里叶变换——频域点乘——逆傅里叶变换”一次获得多个采样点对应的相关计算结果,因此频域相关检测复杂度较低,因此,基站之间的测量使用频域相关检测更有优势。而频域相关检测需要保证在一个检测窗中在时域上可以观察到至少一个完整的待检测样本,该观察到的待检测样本可以是循环移位后的待检测样本;因此,若要使用频域相关检测的方法检测参考信号,应保证参考信号具备循环移位特征,也即,参考信号可以包括若干重复的部分,每个部分均相同,每个部分等价于一个完整的待检测样本。从数学角度描述,对于一个总长为N的循环的序列x(n)而言,应满足x(n)=x(n+K),在n=0,1,2,...,N-K-1时均成立,K为与循环特征相关的常数,如每个部分的长度。当检测窗中检测到至少这些重复的部分中的至少一个部分时,便可确定检测到了该参考信号。例如检测窗为一个OFDM符号,参考信号包括的重复的部分的长度也为一个OFDM符号,那么就要求承载在连续的OFDM符号中的参考信号是相同的。例如请参考图5,基站2对基站1发送的RS进行频域相关检测,例如对于该1个OFDM符号长的检测窗来说,根据频域相关检测的特性,就需要保证基站1发送的承载在连续的OFDM符号中的RS是相同的,且保证循环特性。
如果要直接使用现有的参考信号(如CSI-RS)进行基站之间的测量,尤其是引大气波导效应导致的超远距离基站之间的测量,则接收基站需要在各上行符号和保护间隔符号上盲检参考信号。一种可能的方法是,接收基站对参考信号(如CSI-RS)进行频域相关检测,但目前对于基站用CSI-RS进行频域相关检测会存在问题,例如有两个问题如下:
(1)如前文所分析的,相邻的OFDM符号上的两个CSI-RS对应的Gold序列的初始相位是不同的,导致相邻的两个OFDM符号上的CSI-RS必然不同,无法实现图5中的等效循环卷积效果;
(2)CSI-RS的CP添加方式导致前后两个OFDM符号不具备循环特性。也就是说,即使(1)中的问题能够得到解决,相邻的OFDM符号中可以发送相同的CSI-RS,但参考图4,发送的CSI-RS为“78-12345678-78-12345678”的形式,它仅在一个OFDM符号内是循环的(也即78-12345678的形式),但两个OFDM符号之间并不是循环的,两个OFDM符号之间的循环特性需要保证有“12345678-12345678”这样的形式。
可见,采用现有技术中的参考信号无法完成基站之间的测量。
鉴于此,在本申请实施例中,承载在第一资源中的参考信号包括M个部分,因为频域相关检测需要保证在时域检测窗中可以观察到至少一个完整的待检测样本,该观察到的待检测样本可以是循环移位后的待检测样本,而M个部分中的每个部分可以作为一个完整的待检测样本,这样就要求M个部分均相同,因此参考信号的M个部分的内容都相同,而且M个部分之间可以不包括参考信号对应的循环前缀和循环后缀,循环前缀仅可以在M个部分中的第一个部分的首端添加,也可以不添加循环前缀,循环后缀仅可以在M个部分中的最后一个部分的末端添加,也可以不添加循环后缀,从而参考信号在第一资源中可以具备循环特性,正是由于参考信号在第一资源中具备循环特性,使得网络设备能够对参考信号进行盲检测时使用频域相关检测,并正确获取参考信号,因此,降低了检测的复杂度,提高了盲检测的准确度。
本申请实施例可以应用于5G NR系统,或者也可以应用于其它的通信系统,如LTE系统,只要该通信系统中存在一个实体需要发送信号,另一个实体需要接收或测量信号,就能够适用本申请实施例提供的技术方案。当然,本申请实施例提供的参考信号也可以应用于基站给终端设备发送,或者,应用于终端设备给基站发送,本申请实施例对此并不限定,本申请实施例中仅仅是示例性的描述了第一网络设备给第二网络设备发送参考信号的场景。
前文介绍了目前存在的问题,以及介绍了本申请实施例可能应用的通信系统,下面介绍本申请实施例的一种应用场景,或者说是本申请实施例所应用的一种网络架构,请参考图6。
图6中包括网络设备1和网络设备2,网络设备1服务于终端设备1,网络设备2服务于终端设备2。网络设备1与网络设备2可以是地理位置相隔很远的两个网络设备,网络设备1和网络设备2之间需要进行测量。此外,还可能存在其他的网络设备,以及其他的终端设备,本申请实施例不做限制。另外,本申请实施例也可以应用于邻近的网络设备之间的测量,因此网络设备1与网络设备2也可以是地理位置邻近的两个网络设备。
图6中的网络设备例如为接入网(access network,AN)设备,例如基站。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种参考信号发送方法和接收方法,请参见图7,为该方法的流程图。在下文的介绍过程中,以该方法应用于图6所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置和第二通信装置都是网络设备,或者第一通信装置是网络设备,第二通信装置是能够支持网络设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由第一网络设备和第二网络设备执行为例,也就是,以第一通信装置是第一网络设备、第二通信装置是第二网络设备为例。例如,第一网络设备是图6所示的网络架构中的网络设备1,第二网络设备是图6所示的网络架构中的网络设备2,或者,第一网络设备是图6所示的网络架构中的网络设备2,第二网络设备 是图6所示的网络架构中的网络设备1。
S71、第一网络设备确定第一资源。
第一网络设备要生成参考信号,首先要确定传输参考信号的资源,例如用于传输参考信号的资源是通过协议预定义的,或者是预先配置的,则第一网络设备可以直接确定用于传输参考信号的资源,例如第一网络设备所确定的用于传输参考信号的资源为第一资源。
例如第一资源可以包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数。其中,时域符号是指时域上的单位,例如一种时域符号为OFDM符号。在本申请实施例中,N个时域符号为连续的符号,对于“连续”,可理解为,N个时域符号首尾相邻。
S72、第一网络设备生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。该M个部分是时域上的M个部分。
在本申请实施例中,对于N个时域符号上承载的参考信号可以有不同的理解。
第一种理解为,N个时域符号上承载的是一个完整的参考信号,也就是,M个部分(以及可能包括的循环前缀和/或循环后缀)构成一个完整的参考信号,N个时域符号所承载的就是一个完整的参考信号。如果按照这种理解,可以认为第一网络设备是直接生成了承载在N个时域符号上的完整的参考信号。
第二种理解为,M个部分中的每个部分都是一个独立的参考信号,则N个时域符号承载的就是M个参考信号。按照这种理解,S72也可以改为:生成与所述第一资源对应的M个参考信号,所述M个参考信号中的每个参考信号均相同;其中,所述第一资源中不承载参考信号对应的循环前缀或者循环后缀;或者,所述第一资源中承载循环前缀,且循环前缀仅位于所述M个参考信号中的第一个参考信号的首端,和/或,所述第一资源中承载循环后缀,且循环后缀仅位于所述M个参考信号中的最后一个参考信号的末端,M为正整数。如果按照这种理解,可以认为第一网络设备是生成了M个参考信号,或者认为第一网络设备生成了一个参考信号,并将该参考信号重复了M次,以得到承载在N个时域符号上的M个参考信号。
为了使得第二网络设备可以通过低复杂度的频域相关检测进行参考信号的盲检,本申请实施例提供的参考信号需要满足一些条件,前面的几个段落已经简单介绍了参考信号满足这些条件后所具有的特性,下面从需要满足的条件开始,介绍如何使得参考信号满足这些条件。首先,需要满足的条件包括以下两个:
(1)发送的参考信号包括M个部分,如果按如上的第一种理解,这M个部分中的每个部分均相同,如果按如上的第二种理解,这M个部分实际上是M个参考信号,这M个参考信号均相同;
(2)为这N个时域符号承载的参考信号添加CP,使用特殊的添加方式,如果按如上的第一种理解,则要使得N个时域符号承载的一个参考信号内部满足循环特性,如果按如上的第二种理解,则要使得M个参考信号满足循环特性。
下面分别介绍如何满足如上两个条件,在下文的介绍过程中,均以按照如上的第一种理解来介绍为例,如果按照如上的第二种理解,则实现方式是可以类推的。
1、对于第一个条件:发送的参考信号包括M个部分,这M个部分中的每个部分均相同。
本申请实施例中,参考信号可以使用任意的确知信号。而可选地,为了降低标准化工作量,以及降低网络设备的实现复杂度,可以根据现有的网络设备能够发送的基于伪随机序列的信号,来设计用于网络设备之间测量的参考信号,也就是设计本申请实施例中的参考信号。
一种可能的方法为,通过伪随机序列+星座调制的方法确定参考信号。例如,可以利用Gold序列+QPSK调制的方式生成本申请实施例中的参考信号。QPSK属于星座调制的一种,它把二进制的0、1序列映射成复值的符号。而决定一个序列中具体元素的是其初始相位C init。在现有的NR标准中,C init的计算公式为前文所介绍的公式1。
可见,当用于网络设备之间测量时,为了保证M个部分中的每个部分相同,若复用伪随机序列+星座调制的生成方式,则可以通过使得M个部分中的每个部分具有相同的初始相位的方式来使得M个部分中的每个部分相同。当然,这种方式只是使得M个部分中的每个部分都相同的一种方式,本申请实施例并不限制还可以通过其他方式来使得M个部分中的每个部分相同,本实施例主要以通过使得M个部分中的每个部分具有相同的初始相位的方式来使得M个部分中的每个部分相同的这种方式为例。
为了使得M个部分中的每个部分具有相同的初始相位,在本申请实施例中,可以根据第一资源的时域信息来确定M个部分中的每个部分的初始相位C init,也就是说,M个部分中的每个部分的初始相位都根据第一资源的时域信息来确定,从而使得M个部分中的每个部分的初始相位都相同。第一资源的时域信息,例如为第一资源的时域位置,或者也可以是其他信息,如时域长度,本实施例中,主要以第一资源的时域信息是第一资源的时域位置为例进行介绍。
为了便于理解,图8A对无线帧、子帧、时隙、上下行切换周期、时域符号等时域概念之间的关系进行示意,其中,假设子载波间隔为30kHz,上下行切换周期为2.5ms,参考信号在该无线帧中的每个上下行切换周期的最后N个符号上发送。图8A中,画斜线的方框表示用于下行传输的时域符号,画竖线的方框表示用于传输参考信号的时域符号,画横线的方框表示用于上行传输的时域符号,空白的方框表示保护间隔。
作为第一种根据第一资源的时域信息确定M个部分中的每个部分的初始相位C init的方式,可以根据第一资源所在的时隙或第一资源包括的时隙确定M个部分中的每个部分的初始相位C init。其中,第一资源和时隙的时域大小关系,可以是第一资源比一个时隙大,此时第一资源可以包括多个时隙,但可以根据这些多个时隙中的第一个时隙(或者最后一个时隙)确定M个部分中的每个部分的初始相位C init;或者也可以是第一资源比一个时隙小,此时第一资源完全包括在某个时隙中,可以根据该时隙确定M个部分中的每个部分的初始相位C init。本文中所述的,“第一资源所在的时隙”,和“第一资源包括的时隙”,都包括如上的关系。例如,初始相位C init可以根据如下公式确定:
Figure PCTCN2019099127-appb-000003
其中,
Figure PCTCN2019099127-appb-000004
表示第一资源所在的时隙在一个无线帧中的时隙号,或者在一个无线帧周期中的时隙号,n ID为高层参数决定的扰码ID,其中,一个无线帧周期一般包括1024个无线帧,无线帧也可简称为帧(frame)。因此,根据上述公式2,可以根据第一资源所在的时隙或第一资源包括的时隙确定参考信号对应的初始相位。更进一步地,若第一资源与多个 时隙有交叠,则可选地,可以根据与第一资源交叠的多个时隙中的一个时隙确定初始相位,如根据与第一资源交叠的多个时隙中的第一个时隙确定初始相位,或者根据与第一资源交叠的多个时隙中的最后一个时隙确定初始相位。作为第一资源时域信息的其他可选的方式,用于确定每个部分的初始相位的时隙也可以是与第一资源有关、但不与第一资源有交叠的时隙,例如,可以是第一资源所在的无线帧中的第一个时隙,或第一资源所在的无线帧中的最后一个时隙。应当说明的是,上述公式2只是根据第一资源所在的时隙确定初始相位的一种实现方式,本申请实施例不对公式的具体形式做限定。
作为第二种根据第一资源的时域信息确定M个部分中的每个部分的初始相位C init的方式,可以根据第一资源所在的子帧或第一资源包括的子帧确定M个部分中的每个部分的初始相位C init。其中,第一资源和子帧的时域大小关系,可以是第一资源比一个子帧大,此时第一资源可以包括多个子帧,但可以根据这些多个子帧中的第一个子帧(或者最后一个子帧)确定M个部分中的每个部分的初始相位C init;或者也可以是第一资源比一个子帧小,此时第一资源完全包括在某个子帧中,可以根据该子帧确定M个部分中的每个部分的初始相位C init。本文中所述的,“第一资源所在的子帧”,和“第一资源包括的子帧”,都包括如上的关系。例如,初始相位C init可以根据如下公式确定:
Figure PCTCN2019099127-appb-000005
其中,
Figure PCTCN2019099127-appb-000006
表示第一资源所在的子帧在一个无线帧中的子帧号,或者在一个无线帧周期中的子帧号,n ID为高层参数决定的扰码ID。因此,根据上述公式3,可以根据第一资源所在的子帧或第一资源包括的子帧确定参考信号对应的初始相位。更进一步地,若第一资源与多个子帧有交叠,则可选地,可以根据与第一资源交叠的多个子帧中的一个子帧确定初始相位,如根据与第一资源交叠的多个子帧中的第一个子帧确定初始相位,或者根据与第一资源交叠的多个子帧中的最后一个子帧确定初始相位。作为第一资源时域信息的其他可选的方式,用于确定每个部分的初始相位的子帧也可以是与第一资源有关、但不与第一资源有交叠的子帧,例如,可以是第一资源所在的无线帧中的第一个子帧,或第一资源所在的无线帧中的最后一个子帧。应当说明的是,上述公式3只是根据第一资源所在的子帧确定初始相位的一种实现方式,本申请实施例不对公式的具体形式做限定。
作为第三种根据第一资源的时域信息确定M个部分中的每个部分的初始相位C init的方式,可以根据第一资源所在的上下行切换周期确定M个部分中的每个部分的初始相位C init。例如,初始相位C init可以根据如下公式确定:
Figure PCTCN2019099127-appb-000007
其中,
Figure PCTCN2019099127-appb-000008
表示第一资源所在的上下行切换周期在一个无线帧中的序号,或者在一个无线帧周期中的序号,n ID为高层参数决定的扰码ID。因此,根据上述公式4,可以根据第一资源所在的上下行切换周期确定参考信号对应的初始相位。作为第一资源时域信息的其他可选的方式,用于确定每个部分的初始相位的上下行切换周期也可以是与第一资源有关、但不包括第一资源的上下行切换周期,例如,可以是第一资源所在的无线帧中的第一个上下行切换周期,或第一资源所在的无线帧中的最后一个上下行切换周期。应当说明的是,上述公式4只是根据第一资源所在的上下行切换周期确定初始相位的一种实现方式,本申请实施例不对公式的具体形式做限定。
作为第四种根据第一资源的时域信息确定M个部分中的每个部分的初始相位C init的方式,可以根据第一资源所在的无线帧确定M个部分中的每个部分的初始相位C init。例如,初始相位C init可以根据如下公式确定:
C init=(2 10·(SFN+1)·(2n ID+1)+n ID)mod 2 31     (公式5)
其中,SFN表示第一资源所在的无线帧在一个无线帧周期中的无线帧号,n ID为高层参数决定的扰码ID。因此,根据上述公式5,可以根据第一资源所在的无线帧确定参考信号对应的初始相位。应当说明的是,上述公式5只是根据第一资源所在的上下行切换周期确定初始相位的一种实现方式,本申请实施例不对公式的具体形式做限定。
作为第五种根据第一资源的时域信息确定M个部分中的每个部分的初始相位C init的方式,可以根据第一资源包括的时域符号确定M个部分中的每个部分的初始相位C init。例如,可以通过上述公式1确定,为方便阅读复述如下:
Figure PCTCN2019099127-appb-000009
其中,l(l,小写的L)表示的是第一时域符号在一个时隙中的符号号,
Figure PCTCN2019099127-appb-000010
表示第一时域符号所在的时隙在一个无线帧中的时隙号,n ID为高层参数决定的扰码ID。其中,第一时域符号例如为预定义的时域符号,它的选取包括但不限于以下几种方式:
方式一、第一时域符号为N个时域符号中的第一个时域符号。这里需要注意的是,N个时域符号中的第一个时域符号,也可以被称为是N个时域符号中的首个时域符号,而且,“第一时域符号”和“第一个时域符号”是不同的概念,“第一个时域符号”是时间上的概念,是N个时域符号里的第一个,而“第一时域符号”只是特指一个时域符号,该时域符号可以是N个时域符号中的“第一个时域符号”,也可以是其他时域符号。
方式二、第一时域符号为N个时域符号中的最后一个时域符号。这里需要注意的是,N个时域符号中的最后一个时域符号,也可以被称为是N个时域符号中的末尾时域符号。
方式三、第一时域符号为N个时域符号中除了第一个时域符号和最后一个时域符号之外的其他时域符号。例如,第一时域符号可以是N个时域符号中的第
Figure PCTCN2019099127-appb-000011
个符号,其中
Figure PCTCN2019099127-appb-000012
表示对x进行下取整。
方式四、第一时域符号为N个时域符号之外的其他时域符号。例如,第一时域符号可以是第一资源所在的无线帧的第一个时域符号。
因此,根据上述公式1,可以根据第一时域符号确定参考信号对应的初始相位。应当注意的是,如上的几种方式也只是示例,本申请实施例不限制如何选取第一时域符号。
如上的方式一~方式四,可以分别独立应用,或者也可以结合应用,例如,可以根据上述的无线帧号,子帧号,时隙号,符号号,以及上下行切换周期的序号中的一个或多个共同确定初始相位C init。例如,公式1可以认为是根据第一时域符号的符号号和第一时域符号所在的时隙的时隙号共同确定了初始相位;又例如,可以根据如下公式6确定初始相位:
Figure PCTCN2019099127-appb-000013
其中,l表示的是第一时域符号在一个时隙中的符号号,
Figure PCTCN2019099127-appb-000014
表示第一时域符号所在的时隙在一个无线帧中的时隙号,SFN表示第一时域符号所在的无线帧在一个无线帧周期中的无线帧号,n ID为高层参数决定的扰码ID。
应当注意的是,根据第一资源的时域位置来确定M个部分中的每个部分的初始相位的方式只是使得M个部分中的每个部分都相同的一种方式,本申请实施例并不限制还可以通 过其他方式来使得M个部分中的每个部分相同。例如一种可能的方式为,通过预定义或预先配置的方式,使得M个部分中的每个部分相同。例如,直接预定义M个部分中的每个部分对应的初始相位C init的值,从而使得M个部分中的每个部分相同;又例如,根据与l、
Figure PCTCN2019099127-appb-000015
SFN、n ID中一个或多个参数相关的公式确定初始相位C init,但公式中的参数l、
Figure PCTCN2019099127-appb-000016
SFN、及n ID都是预定义或预先配置的值,从而使得M个部分中的每个部分相同。
本申请实施例中,参考信号可以使用任意的确知信号。而可选地,为了降低标准化工作量,以及降低网络设备的实现复杂度,可以根据现有的网络设备能够发送的低峰均比(peak to average power ratio,PAPR)序列,来设计用于网络设备之间测量的参考信号,也就是设计本申请实施例中的参考信号。
一种可能的方法为,使用基于ZC序列的低PAPR序列作为参考信号。该基于ZC序列的低PAPR序列可以由下式表示:
Figure PCTCN2019099127-appb-000017
其中,α是基序列(base sequence)
Figure PCTCN2019099127-appb-000018
的循环移位,
Figure PCTCN2019099127-appb-000019
是序列长度。对于序列长度大于等于36的情况(典型情况),基序列
Figure PCTCN2019099127-appb-000020
定义为:
Figure PCTCN2019099127-appb-000021
Figure PCTCN2019099127-appb-000022
Figure PCTCN2019099127-appb-000023
Figure PCTCN2019099127-appb-000024
其中,u∈{0,1,...,29}为基序列的组号,而v为基序列号。1/2≤m/2 δ≤5时,v=0;6≤m/2 δ时,v={0,1}。N ZC为不大于M ZC的质数。
由公式7和8可知,当序列长度确定时,α,u和v共同决定了该低PAPR序列的具体每一个元素值,从而也决定了基于该PAPR序列的参考信号。
可见,当用于网络设备之间测量时,为了保证M个部分中的每个部分相同,若使用低PAPR序列的生成方式,则可以通过使得M个部分中的每个部分具有相同的循环移位α、基序列组号u、基序列号v的方式来使得M个部分中的每个部分相同。当然,这种方式只是使得M个部分中的每个部分都相同的一种方式,本申请实施例并不限制还可以通过其他方式来使得M个部分中的每个部分相同,例如,基序列组号u和基序列号v共同决定了公式8中的序列号参数q,因此也可以直接通过使得每个部分具有相同的循环移位α和序列号参数q来使得M个部分中的每个部分相同。本实施例仍主要以通过使得M个部分中的每个部分具有相同的循环移位α、基序列组号u、以及基序列号v的方式来使得M个部分中的每个部分相同的这种方式为例。
为了使得M个部分中的每个部分具有相同的循环移位α、基序列组号u、以及基序列号v,在本申请实施例中,可以根据第一资源的时域信息来确定M个部分中的每个部分的循环移位α、基序列组号u、以及基序列号v,也就是说,M个部分中的每个部分的循环 移位α、基序列组号u、以及基序列号v都根据第一资源的时域信息来确定,从而使得M个部分中的每个部分的初始相位都相同。第一资源的时域信息,例如为第一资源的时域位置,或者也可以是其他信息,例如第一资源的时域长度等,本实施例中,主要以第一资源的时域信息是第一资源的时域位置为例进行介绍。第一资源的时域位置,例如包括如下的至少一种:第一资源所在的时隙或第一资源包括的时隙、第一资源包括的时域符号、第一资源所在的子帧或第一资源包括的子帧、第一资源所在的上下行切换周期、以及第一资源所在的系统帧。
作为一种根据第一资源的时域信息确定M个部分中的每个部分的循环移位α、基序列组号u、以及基序列号v的方式,可以根据下式确定参考信号M个部分中的每个部分的循环移位α、基序列组号u、及基序列号v:
u=(l+14·(n ID mod 2))mod 30
v=0
Figure PCTCN2019099127-appb-000025
上式中,l(l,小写的L)表示的是第一时域符号在一个时隙中的符号号,
Figure PCTCN2019099127-appb-000026
表示第一时域符号所在的时隙在一个无线帧中的时隙号,n ID为高层参数决定的扰码ID,K为预定义或预配置的值,例如K=1。其中,第一时域符号例如为预定义的时域符号,它的选取包括但不限于以下几种方式:
方式一、第一时域符号为N个时域符号中的第一个时域符号。这里需要注意的是,N个时域符号中的第一个时域符号,也可以被称为是N个时域符号中的首个时域符号,而且,“第一时域符号”和“第一个时域符号”是不同的概念,“第一个时域符号”是时间上的概念,是N个时域符号里的第一个,而“第一时域符号”只是特指一个时域符号,该时域符号可以是N个时域符号中的“第一个时域符号”,也可以是其他时域符号。
方式二、第一时域符号为N个时域符号中的最后一个时域符号。这里需要注意的是,N个时域符号中的最后一个时域符号,也可以被称为是N个时域符号中的末尾时域符号。
方式三、第一时域符号为N个时域符号中除了第一个时域符号和最后一个时域符号之外的其他时域符号。例如,第一时域符号可以是N个时域符号中的第
Figure PCTCN2019099127-appb-000027
个符号,其中
Figure PCTCN2019099127-appb-000028
表示对x进行下取整。
方式四、第一时域符号为N个时域符号之外的其他时域符号。例如,第一时域符号可以是第一资源所在的无线帧的第一个时域符号。
因此,根据上述公式9,可以根据第一时域符号确定参考信号对应的循环移位α、基序列组号u、及基序列号v。
类似地,还可以根据与第一资源相关的l、
Figure PCTCN2019099127-appb-000029
SFN、及n ID等参数中的一个或多个,确定循环移位α、基序列组号u、及基序列号v,本申请实施例对此不做具体限定。但应当注意的是,u的最终取值范围为{0,1,...,29}。并且类似地,也可以根据与第一资源相关的l、
Figure PCTCN2019099127-appb-000030
SFN、及n ID使得每个部分具有相同的循环移位α和序列号参数q来使得M个部分中的每个部分相同。
应当注意的是,根据第一资源的时域下行来确定M个部分中的每个部分的循环移位α、 基序列组号u、及基序列号v的方式只是使得M个部分中的每个部分都相同的一种方式,本申请实施例并不限制还可以通过其他方式来使得M个部分中的每个部分相同。例如,一种可能的方式为,通过预定义或预先配置的方式,使得M个部分中的每个部分相同。例如,直接预定义M个部分中的每个部分对应的循环移位α、基序列组号u、及基序列号v的值,从而使得M个部分中的每个部分相同;又或者,根据与l、
Figure PCTCN2019099127-appb-000031
SFN、n ID中一个或多个参数相关的公式确定循环移位α、基序列组号u、及基序列号v,但公式中的参数l、
Figure PCTCN2019099127-appb-000032
SFN、及n ID都是预定义或预配置的值,从而使得M个部分中的每个部分相同。类似地,也可以直接预定义M个部分中的每个部分对应的循环移位α和序列号参数q的值,从而使得M个部分中的每个部分相同,又或者,根据与l、
Figure PCTCN2019099127-appb-000033
Figure PCTCN2019099127-appb-000034
SFN、n ID中一个或多个参数相关的公式确定循环移位α和序列号参数q,但公式中的参数l、
Figure PCTCN2019099127-appb-000035
SFN、及n ID都是预定义或预配置的值,从而使得M个部分中的每个部分相同。
根据公式1至6和公式9可知,参考信号的初始相位还跟n ID相关。
那么作为一种可选的方式,n ID可用于承载小区的身份标识号,如物理小区身份标识号(physical cell ID,PCID)的相关信息。例如,n ID可以等于PCID,或者,n ID与PCID具有一定的映射关系,例如n ID为(PCID模M)的值,M为预定义值,例如M小于或等于PCID的最大值。通过这种方法可以使得参考信号承载一部分小区标识信息,方便第二网络设备在检测到参考信号时可以确定发送参考信号的网络设备是第一网络设备。n ID也可用于承载小区的其他的身份标识号的相关信息,如演进通用陆地无线接入网络小区标识(E-UTRAN cell identifier,ECI),或演进通用陆地无线接入网络小区全球标识(E-UTRAN cell global identifier,ECGI)。
作为另一种可选的方式,n ID可以为预定义的值,例如,n ID的值可以等于0,或者也可以是预定义的其他取值。并且,还可以限定n ID的取值范围,例如限定n ID∈{0,1,2,...,7}。这种方法的好处是,第二网络设备在一次检测过程中无需假设多种可能的n ID的取值,无需使用多种参考信号在本地进行互相关检测,有助于降低盲检参考信号的复杂度。
当然n ID也不限制于如上的取值方式,具体的不做限制。
通过如上的技术手段,能够使得M个部分中的每个部分都相同。
2、对于第二种条件:为这N个时域符号承载的参考信号添加循环前缀和/或循环后缀,使用特殊的添加方式,使得N个时域符号承载的参考信号满足循环特性。
现有的CP添加方式,是在每个时域符号中单独添加CP。添加CP等效于把一个时域符号中的最后若干个采样点添加到该时域符号的前端。对此可参考图8B,图8B中包括2个时域符号,其中的每个方格代表若干采样点,或者为了简单起见,也可以认为其中的每个方格代表一个采样点,方格7和8对应的采样点作为CP加到了时域符号的头部,且在这两个时域符号中都分别添加了CP。在这种CP添加方式下,即使前后两个时域符号承载 的是相同的参考信号,在添加CP后得到的序列78-12345678-78-12345678也不具备循环特性,作为参考,类似于12345678-12345678的这种序列才是循环的。
考虑到这个问题,本申请实施例设计一种新的添加CP的方式,本申请实施例在添加CP时,M个部分之间不包括CP,可以在M个部分的首端添加CP和/或在M个部分的末端添加CP,或者,也可以选择不添加任何CP。其中,M个部分的首端,也可以理解为是M个部分中的第一个部分的首端,添加在M个部分的首端的CP也可称为循环前缀,M个部分的末端,也可以理解为是M个部分中的最后一个部分的末端,添加在M个部分的末端的CP也可称为循环后缀(cyclic postfix,CP)。
也就是说,对于CP的处理方式,包括但不限于如下几种:
方式一、仅在M个部分中的第一个部分的首端添加循环前缀。
这里的“仅在M个部分中的第一个部分的首端添加循环前缀”,可以理解为,仅将循环前缀添加在M个部分中的第一个部分的首端,而对于M个部分中的其他部分,均不在这些部分的首端添加循环前缀。另外还可以理解为,仅在M个部分中的第一个部分的首端添加了循环前缀,而在其他位置均未添加CP。也就是说,第一资源中仅承载了添加在M个部分中的第一个部分的首端的循环前缀,未承载其他的CP。
请参考图9,为仅在M个部分的首端添加CP的一种示例。在图9中,以N=2、M=2为例,可以看到,是将M个部分中的第一个部分包括的方格5~方格8作为CP添加到了第一个部分的头部,也就是M个部分的第一个部分的首端,而在其他位置没有添加CP。另外,由于第一个部分的方格1~方格8与第二个部分的方格1~方格8相同,也可以认为是把第二个部分包括的方格5~方格8作为CP添加到了第一个部分的头部。
另外,若把第一资源的N个时域符号中包括的参考信号理解为M个相同的参考信号,方式一也可以理解为,从该N个时域符号中的末尾开始按从后往前的顺序一一承载该参考信号包括的L个采样点,当承载到该参考信号包括的第一个采样点后,再从该参考信号的最后一个采样点开始承载,如此循环,直到N个时域符号的首端。在这种情况下,若每个时域符号包括L个采样点,每个参考信号包括K个采样点,则在N个时域符号中最多包括
Figure PCTCN2019099127-appb-000036
个完整的参考信号
Figure PCTCN2019099127-appb-000037
以及在N个时域符号的首端最多包括该参考信号的后NL%K个采样点,x%y表示x除以y后所得的余数。
方式二、仅在M个部分中的最后一个部分的末端添加循环后缀。M个部分中的最后一个部分的末端,也可以理解为是M个部分的末端。也就是说,第一资源中仅承载了添加在M个部分中的最后一个部分的末端的循环后缀,未承载其他的CP。
这里的“仅在M个部分中的最后一个部分的末端添加循环后缀”,可以理解为,仅将循环后缀添加在M个部分中的最后一个部分的末端,而对于M个部分中的其他部分,均不在这些部分的末端添加循环后缀。另外还可以理解为,仅在M个部分中的最后一个部分的末端添加了循环后缀,而在其他位置均未添加CP。也就是说,第一资源中仅承载了添加在M个部分中的最后一个部分的末端的循环后缀,未承载其他的CP。
请参考图10,为仅在M个部分的末端添加CP的一种示例。在图10中,以N=2、M=2 为例,可以看到,是将M个部分中的第二个部分包括的方格1~方格4作为CP添加到了第二个部分的末尾,也就是M个部分的最后一个部分的末端,而在其他位置没有添加CP。另外,由于第一个部分的方格1~方格8与第二个部分的方格1~方格8相同,也可以认为是把第一个部分包括的方格1~方格4作为CP添加到了第二个部分的末端。
另外,若把第一资源的N个时域符号中包括的参考信号理解为M个相同的参考信号,方式二也可以理解为,从该N个时域符号中的首端开始按从前往后的顺序一一承载该参考信号包括的L个采样点,当承载到该参考信号包括的最后一个采样点后,再从该参考信号的第一个采样点开始承载,如此循环,直到N个时域符号的末端。在这种情况下,若每个时域符号包括L个采样点,每个参考信号包括K个采样点,则在N个时域符号中最多包括
Figure PCTCN2019099127-appb-000038
个完整的参考信号
Figure PCTCN2019099127-appb-000039
以及在N个时域符号的末端最多包括该参考信号的前NL%K个采样点。
方式三、仅在M个部分中的第一个部分的首端添加循环前缀,和仅在M个部分中的最后一个部分的末端添加循环后缀。也就是说,第一资源中仅承载了添加在M个部分中的第一个部分的首端的循环前缀,以及添加在M个部分中的最后一个部分的末端的循环后缀,未承载其他的CP。
这里的“仅在M个部分中的第一个部分的首端添加循环前缀”可以理解为,仅将循环前缀添加在M个部分中的第一个部分的首端,而对于M个部分中的其他部分,均不在这些部分首端添加循环前缀。同理,“仅在M个部分中的最后一个部分的末端添加循环后缀”可以理解为,仅将循环后缀添加在M个部分中的最后一个部分的末端,而对于M个部分中的其他部分,均不在这些部分的末端添加循环后缀。
请参考图11A,为仅在M个部分中的第一个部分的首端添加循环前缀,和仅在M个部分中的最后一个部分的末端添加循环后缀的一种示例。在图11A中,以N=2、M=2为例,可以看到,是将M个部分中的第一个部分包括的方格7~方格8作为CP添加到了M个部分第一个部分的头部,也就是M个部分中的第一个部分的首端,以及将M个部分中的第二个部分包括的方格1~方格2作为CP添加到了第二个部分的末尾,也就是M个部分中的最后一个部分的末端,而其他位置没有添加CP。另外,由于第一个部分的方格1~方格8与第二个部分的方格1~方格8相同,也可以认为是把第一个部分包括的方格1~方格2作为CP添加到了第二个部分的末端,以及可以认为是把第二个部分包括的方格7~方格8作为CP添加到了第一个部分的头部。
请参考图11B,为仅在M个部分中的第一个部分的首端添加循环前缀,和仅在M个部分中的最后一个部分的末端添加循环后缀的一种示例。在图11B中,以N=2、M=1为例,可以看到,参考信号仅包括一个部分,且该部分包括的方格15~方格16作为CP添加到了该部分的头部,以及将该部分包括的方格1~方格2作为CP添加到了该部分的末尾。
请再参考图12A,为仅在M个部分中的第一个部分的首端添加循环前缀,和仅在M个部分中的最后一个部分的末端添加循环后缀的另一种示例。在图12A中,以N=3、M=3为例,可以看到,是将M个部分中的第一个部分包括的方格7~方格8作为CP添加到了M个部分中的第一个部分的头部,也就是M个部分中的第一个部分的首端,以及将M个部 分中的第三个部分包括的方格1~方格4作为CP添加到了第三个部分的末尾,也就是M个部分中的最后一个部分的末端,而其他位置没有添加CP。另外,由于第一个部分、第二个部分和第三个部分的方格1~方格8相同,也可以认为是把第一个部分包括的方格1~方格4作为CP添加到了第三个部分的末端,以及可以认为是把第三个部分包括的方格7~方格8作为CP添加到了第一个部分的头部。
请再参考图12B,为仅在M个部分中的第一个部分的首端添加循环前缀,和仅在M个部分中的最后一个部分的末端添加循环后缀的另一种示例。在图12B中,以N=2、M=3为例,其中的每一方格1~方格8是一个部分。可以看到,是将M个部分中的第一个部分包括的方格7~方格8作为CP添加到了M个部分中的第一个部分的头部,也就是M个部分中的第一个部分的首端,以及将M个部分中的第三个部分包括的方格1~方格4作为CP添加到了第三个部分的末尾,也就是M个部分中的最后一个部分的末端,而其他位置没有添加CP。另外,由于第一个部分、第二个部分和第三个部分的方格1~方格8相同,也可以认为是把第一个部分包括的方格1~方格4作为CP添加到了第三个部分的末端,以及可以认为是把第三个部分包括的方格7~方格8作为CP添加到了第一个部分的头部。
方式四、不添加CP,也就是第一资源中不承载参考信号的循环前缀或循环后缀。
在这种方式下,在M个部分中的每个部分的首端和末端均不添加CP,以及在M个部分之间也不添加CP。这种方式也可以理解为,M个部分中的前一个部分是后一个部分的循环前缀,或者理解为,M个部分中的后一个部分是前一个部分的循环后缀。
请参考图13A,为在M个部分中不添加CP的一种示例。在图13A中,以N=2、M=2为例,可以看到,图13A中的两个部分中,无论是哪个部分的首端、末端还是中间,都未添加CP。可以将图13A理解为,这2个部分中的第一个部分是第二个部分的循环前缀,或者理解为,这2个部分中的第二个部分是第一个部分的循环后缀。
请再参考图13B,为在M个部分中不添加CP的另一种示例。在图13B中,以N=2、M=1为例,其中的方格1~方格16表示一个部分。可以看到,图13B中的这一个部分是未添加CP的。
其中,图9、图10、图11A、图11B、图12A、图12B、图13A以及图13B中,均用竖直的虚线划分了不同的时域符号。可以看到,图9、图10、图11A、图12A以及图13A,都是以一个时域符号承载M个部分中的一个部分为例,而图11B、图12B和图13B都是以一个部分会承载在两个时域符号上为例,也就是说,M个部分中的一个部分可能承载在一个时域符号中,或者也可能承载在多个时域符号中,还可能一个符号承载多个部分,具体的不做限制。可以理解为,M个部分中的每个部分的长度与检测窗的长度对应,由于频域相关检测的特性,需要保检测窗中观测到的连续的部分具有循环特性,因此本申请实施例中就令M个部分均相同,由此使得参考信号具备循环特性,至于M个部分在N个时域符号中究竟如何承载,本申请实施例不做限制。
在实际应用中究竟选择如上哪种方式来处理第一资源中的CP,可以由协议预定义,或者可以由网络设备之间事先协商等,具体的不做限制。
在图11A中,添加到第一个部分的首端的CP包括方格7和方格8对应的采样点,添加到第二个部分的末端的CP包括方格1和方格2对应的采样点,但实际上也不一定是这样的比例,例如也可以将方格8对应的采样点添加到第一个部分的首端,以及将方格1~方格3添加到第二个部分的末端等,在本申请实施例中,只需要保证添加到M个部分中的 第一个部分的首端的循环前缀的长度与添加到M个部分中的最后一个部分的末端的循环后缀的长度之和小于或等于N*P即可,对于添加的循环前缀和循环后缀的长度不做限制,其中,P为规定的每个时域符号中能够添加的CP的最大长度。例如对于图11A来说,P=2,那么只需要保证添加到第一个部分的首端的CP的长度与添加到第二个部分的末端的CP的长度之和小于或等于2*2=4即可,对于第一个部分的首端和第二个部分的末端具体添加的CP的长度不做限制。可以看到,如果不添加CP,则也是满足添加到M个部分中的第一个部分的首端的循环前缀的长度与添加到M个部分中的最后一个部分的末端的循环后缀的长度之和小于或等于N*P这个条件的。
同理,对于图12A,添加到第一个部分的首端的CP包括方格7和方格8对应的采样点,添加到第三个部分的末端的CP包括方格1~方格4对应的采样点,但实际上也不一定是这样的比例,例如也可以将方格6~方格8对应的采样点添加到第一个部分的首端,以及将方格1~方格3添加到第三个部分的末端等,只需要保证添加到M个部分中的第一个部分的首端的循环前缀的长度与添加到M个部分中的最后一个部分的末端的循环后缀的长度之和小于或等于N*P即可,例如对于图12A来说,P=2,那么只需要保证添加到M个部分中的第一个部分的首端的循环前缀的长度与添加到M个部分中的最后一个部分的末端的循环后缀的长度之和小于或等于3*2=6即可。
通过如上的处理,使得M个部分在N个符号中具有循环特性。
可以看到,通过如上的处理,使得参考信号满足了前文所介绍的两个条件,从而第二网络设备可以通过低复杂度的频域相关检测对参考信号进行盲检,并正确获取参考信号,因此,降低了检测的复杂度,提高了盲检测的准确度,或者说,也就满足了低复杂度、高准确度地检测到未知到达时间的参考信号的需求。
在本申请实施例中,参与测量的网络设备之间可以采用相同的收发时间配置,也就是采用相同的上下行切换周期,例如第一网络设备和第二网络设备就可以采用相同的上下行切换周期。其中,参与测量的网络设备在每个上下行切换周期中采用相同的下行传输时间、相同的上行传输时间、以及相同的上下行时间间隔,例如请参考图14A,有3个网络设备参与测量,分别为网络设备1、网络设备2和网络设备3,这3个网络设备就采用了相同的上下行切换周期,且在每个上下行切换周期中采用了相同的下行传输时间、相同的上行传输时间、以及相同的上下行时间间隔。或者,不同的网络设备虽然采用相同的上下行切换周期,但是在一个上下行切换周期中采用的上行传输时间和上下行时间间隔也可以不同,但在一个上下行切换周期中的上行传输时间和上下行时间间隔之和需要相同,例如请参考图14B,有3个网络设备参与测量,分别为网络设备1、网络设备2和网络设备3,这3个网络设备采用了相同的上下行切换周期,在每个上下行切换周期中,网络设备2与其他两个网络设备只是采用了相同的下行传输时间,上行传输时间和上下行时间间隔都不同,但是在每个上下行切换周期中,网络设备2采用的上行传输时间和上下行时间间隔之和,与其他两个网络设备采用的上行传输时间和上下行时间间隔之和,是相同的。
在本申请实施例中,不同的网络设备在发送用于网络设备之间测量的参考信号时,可以都在相同的位置发送,也就是可以预先规定网络设备发送用于网络设备之间测量的参考信号的位置,例如可以通过协议预定义,这样可以简化检测参考信号的过程。
当网络设备接收并盲检出一个参考信号时,本来根据接收的参考信号就应该可以确定是哪个网络设备发送的,关于如何根据接收的参考信号确定发送该参考信号的网络设备, 将在后文介绍。但也有可能,根据接收的参考信号无法识别是哪个网络设备发送的,那么在这种情况下,如果接收的网络设备和发送的网络设备采用了相同的收发时间配置和相同的参考信号的发送位置,则接收参考信号的网络设备可以根据接收的参考信号大概确定发送该参考信号的网络设备的位置,有助于实现对干扰源的定位。
不同的网络设备在发送用于网络设备之间测量的参考信号时,可以都在相同的位置发送,作为一种可选的方式,网络设备可以在一个上下行切换周期中的下行传输时间内的最后N个时域符号上发送参考信号,也就是,网络设备可以在一个上下行切换周期中的下行传输时间内的最后的一个或多个时域符号上发送参考信号,具体在最后的多少个时域符号上发参考信号,取决于参考信号占用的时域符号的数量。
采用一个上下行切换周期中下行传输时间的最后的时域符号来发送参考信号,首先可以确定干扰的最大范围。因为参考信号所占用的N个时域符号已经是下行传输时间的最后N个时域符号,因此第二网络设备在检测到参考信号后,可以确定在检测到参考信号之后的范围不会受到CLI干扰,从而可以进一步应用干扰消除手段,例如对受CLI干扰的区域采用更低阶的调制或更低的码率等方式来减小或消除干扰。
其次,这样做也可以最大程度地保证检测的成功率。可参考图15A,如果参考信号不在一个上下行切换周期中的下行传输时间的最后N个时域符号中发送,而是在一个上下行切换周期中的下行传输时间的其他的N个时域符号中发送,则有可能参考信号在经历时延到达第二网络设备后,第二网络设备依然处于下行传输时间,如图15A中,参考信号的起始位置位于第二网络设备的下行传输时间内,此时第二网络设备是处于发送过程中,一般不会进行信号接收或检测,导致第二网络设备无法检测参考信号,但是第一网络设备的下行信号依然可能对第二网络设备的上行接收过程产生CLI干扰。鉴于此,本申请实施例提出采用一个上下行切换周期中下行传输时间的最后的符号来发送参考信号,可参考图15B,参考信号在一个上下行切换周期中的下行传输时间的最后N个时域符号中发送,则参考信号在经历时延到达第二网络设备后,第二网络设备就处于上行传输时间,从而第二网络设备就能够正确检测到参考信号,从而完成测量。其中,图15A和图15B中,画斜线的方框代表参考信号。
S73、第二网络设备确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号。
在本申请实施例中,第二网络设备可以在上行传输时间内接收参考信号,图15B已经有所示例,或者,第二网络设备也可以在保护间隔(guard period,GP)内接收参考信号,或者,第二网络设备也可以在GP和上行传输时间内都接收参考信号,具体的不做限制。因此,第二资源所包括的时域符号就可以是上行时域符号和/或GP时域符号。
例如,第二网络设备确定的第二资源可以包括所有的上下行切换周期的上行时域符号、或所有的上下行切换周期的GP时域符号、或所有的上下行切换周期的上行时域符号和GP时域符号,这样可以使得检测更为全面,避免遗漏参考信号。或者,例如通过协议或其他方式预定义了会在特定的上下行切换周期中传输用于网络设备之间测量的参考信号,则第二网络设备所确定的第二资源也可以包括特定的上下行切换周期的上行时域符号、或特定的上下行切换周期的GP时域符号、或特定的上下行切换周期的上行时域符号和GP时域符号,这样可以减少第二网络设备的接收次数,有助于第二网络设备实现节电。
其中,对S73和S71~S72的发生顺序不做限制,例如S71~S72可以发生在S73之前, 或者S71~S72发生在S73之后,或者S71~S72和S73也可能同时发生,例如,S73与S71同时发生,或者S73与S72同时发生,或者S73发生在S71之后以及S72之前等,都认为S73是与S71~S72同时发生。
S74、第一网络设备在第一资源上发送参考信号,第二网络设备在第二资源上接收参考信号的全部或部分。
第一资源就包括N个时域符号,第一网络设备在生成参考信号后就可以通过第一资源发送。其中,可能都多个网络设备都可以接收参考信号,这些网络设备接收参考信号的方式可能都是相同的,因此本文以第二网络设备接收参考信号为例。
第二网络设备所确定的第二资源,可以理解为是第二网络设备进行盲检的资源,而第二网络设备实际接收参考信号的资源,应该是第二资源的子集,例如将第二网络设备实际接收参考信号的资源称为第三资源。以图15B为例,第二资源可理解为图15B中对应于第二网络设备的GP和上行传输这两个部分的资源,而第三资源可理解为图15B中,对应于第二网络设备接收到第一网络设备的参考信号所在的位置的资源,也就是图15B中的画斜线的方框所在的位置的资源。
例如,第二网络设备可以预先确定可能会对第二网络设备造成CLI干扰的至少一个网络设备,这至少一个网络设备的信息可能是预先配置在第二网络设备中的,或者也可以是第二网络设备通过其他方式获得的。第二网络设备可以生成对应于至少一个网络设备的至少一个参考信号,在这里是理解为,不同的网络设备所发送的参考信号是不同的。那么第二网络设备在接收参考信号后,可以采用生成的至少一个参考信号分别与接收的参考信号进行互相关操作,例如,第二网络设备用生成的某个参考信号与接收的参考信号进行互相关操作时,相关峰值超过了一定的门限值,则第二网络设备就可以确定接收的参考信号就是该参考信号。另外,又因为在生成参考信号时第二网络设备就知道所生成的参考信号对应的网络设备,因此第二网络设备就可以确定,接收的参考信号是第一网络设备发送的,这也就是前文中提及的,根据接收的参考信号就可以确定是哪个网络设备发送的。例如请参考图16,第一网络设备发送了RS1作为参考信号,第二网络设备事先在本地已生成了多个参考信号,这多个参考信号中包括RS1,则第二网络设备检测到RS1后,可以使用生成的参考信号分别与接收的信号进行互相关操作,如果在使用生成的RS1与接收的RS1进行互相关操作时,相关峰值超过了一定的门限值,则第二网络设备就可以确定接收的信号就是来自第一网络设备的RS1。
另外前文中还提到了,有可能第二网络设备根据接收的参考信号无法确定是哪个网络设备发送的,继续以通过互相关操作来实现检测为例。例如第二网络设备采用生成的至少一个参考信号分别与接收参考信号进行互相关操作,但是互相关操作都未成功,也就是,采用至少一个参考信号分别与接收的参考信号进行互相关操作时,相关峰值都未超过一定的门限值,则第二网络设备可以确定接收的参考信号与至少一个参考信号都不同,此时第二网络设备可能无法直接确定是哪个网络设备发送了该参考信号。那么在本申请实施例中,第二网络设备可以根据该参考信号对发送该参考信号的网络设备进行大概的定位,以便最终确定干扰源。
另外,本申请实施例对于图7所示的实施例中的S71~S74等步骤的顺序不做限定。以S72和S74为例,如果将“接收”理解为“检测”,那么S74的执行时间也可能早于S72的执行时间,因为,假如第一网络设备与第二网络设备距离遥远,并且对流层对弯曲效果影响 了信号的传播,第二网络设备不确定来自第一网络设备的测量信号何时会到达,因此第二网络设备可以在所有能够接收信号的符号上都检测是否存在参考信号,此时,S74就可能早于S72执行。但是,尽管第二网络设备能够早早开始检测,也仅会在第一网络设备发送的参考信号到达第二网络设备后才会检测到来自第一网络设备的参考信号,因此,如果将“接收”理解为“接收成功”或“检测成功”,则S72的执行时间可以早于S74的执行时间。
在本申请实施例中,第二网络设备接收参考信号后,可以进行多种处理,例如第二网络设备可以确定发送参考信号的第一网络设备是干扰源,从而可以进行相应的干扰消除等处理,例如,可以调度终端设备不在受干扰的符号上发送数据,或者,使用干扰抑制合并(interference rejection combing,IRC)算法降低干扰等。
通过本申请实施例提供的方法,可以使能网络设备进行有效的超远距离干扰测量,进一步可以进行超远距离的干扰消除,提升了通信系统的传输性能。
本申请实施例提供的方法可用于进行超远距离的测量,但实际上也能用于相邻的网络设备(可理解为,距离较近的网络设备)之间的测量。区别在于,在相邻的网络设备的测量场景中,由于地理距离造成的时延几乎可以忽略不计,因此进行测量的网络设备之间,参考信号的到达时间是基本确定的。
一般来说,终端设备通常不会在GP中进行收发,因此,例如参与测量的第一网络设备和第二网络设备是相邻的网络设备,则第一网络设备可以在下行传输时间内和/或GP内发送参考信号,也就是,第一网络设备可以在下行传输时间内发送参考信号,或者在GP内发送参考信号,或者在下行传输时间内和GP时间内发送参考信号,而第二网络设备可以在GP内接收参考信号,此时,参考信号对终端设备所发送的数据以及需要接收的数据等均不会产生干扰,提高了终端设备对于参考信号和数据的传输成功率。
例如参考图17A,第一网络设备和第二网络设备例如为相邻的网络设备,第一网络设备和第二网络设备采用相同的上下行切换周期,且在一个上下行切换周期中,上行传输时间、GP及下行传输时间均对齐。第一网络设备在向第二网络设备发送参考信号时,可以在GP内发送,而因为这两个网络设备距离较近,由于地理距离造成的时延几乎可以忽略不计,所以第二网络设备也会在GP内接收参考信号,从而使得对参考信号的接收不会对第二网络设备收发数据造成影响。则,参考信号所占用的N个时域符号可以是GP中的N个时域符号。图17A中画斜线的方框代表参考信号。
再例如,请参考图17B,第一网络设备和第二网络设备例如为相邻的网络设备,第一网络设备和第二网络设备采用相同的上下行切换周期,但在一个上下行切换周期中,第一网络设备和第二网络设备的上行传输时间、GP及下行传输时间均未对齐。由于第一网络设备在一个上下行切换周期中的下行传输时间内,有一段下行传输时间是与第二网络设备的GP对齐的,因此第一网络设备可以在下行传输时间内与第二网络设备的GP对齐的时间里向第二网络设备发送参考信号,则第二网络设备可以在GP内接收参考信号,从而使得对参考信号的接收不会对第二网络设备收发数据造成影响。可以看到,参考信号所占用的N个时域符号,依然可以是一个上下行切换周期中的下行传输时间内的最后N个时域符号,或者可以是在一个上下行切换周期内的下行传输时间内和/或GP内,从第一网络设备的下行传输时间与第二网络设备的GP对齐的起始位置开始的N个时域符号。图17B中画斜线的方框代表参考信号。
总之,尽量保证第一网络设备所发送的参考信号不会干扰第二网络设备接收上行信号。
在本申请实施例中,如果第一网络设备与第二网络设备为较近距离的网络设备,那么第一网络设备与第二网络设备之间的测量,与超远距离的网络设备之间的测量的不同之处在于,第二网络设备可以事先获取配置信息,对于第二网络设备来说,所述配置信息用于确定第一资源,和/或,用于确定参考信号,也就是,配置信息可以确定第一资源,或者配置信息可以确定参考信号,或者配置信息可以确定第一资源和参考信号。例如,如果配置信息用于确定第一资源,那么配置信息可以包括第一资源的时域和/或频域的配置信息,也就是,包括第一资源在时域的信息,或包括第一资源在频域的信息,或包括第一资源在时域和频域的信息;再例如,如果配置信息用于确定参考信号,那么配置信息可以包括用于生成参考信号的序列,或者包括用于生成参考信号的其他的信息,例如包括
Figure PCTCN2019099127-appb-000040
l和n ID等信息中的至少一种,例如,包括
Figure PCTCN2019099127-appb-000041
和l,或者包括l,或者包括
Figure PCTCN2019099127-appb-000042
l和n ID等。对于配置信息所包括的内容,本申请实施例不做限制,只要通过配置信息能够使得第二网络设备确定第一资源和/或参考信号即可。通过配置信息,第二网络设备可以确定第一网络设备发送参考信号的配置,从而可以确定待检测的时频资源的位置和/或确定待检测的参考信号。
其中,该配置信息可以是第一网络设备发送给第二网络设备的,也可以是高层控制节点配置给第二网络设备的,或者是由工程师进行网络部署时通过人工方式配置好的,对于第二网络设备获取配置信息的方法不做限制。对于第二网络设备来说,配置信息用于确定第一资源和/或用于确定参考信号,那么对于发送配置信息的网络设备(例如第一网络设备)或者配置该配置信息的来说,配置信息就用于指示第一资源和/或用于指示参考信号。
另外,如果第一网络设备和第二网络设备是较近距离的网络设备,那么因为第一网络设备可以事先发送配置信息,因此要实现第一网络设备和第二网络设备之间的测量,第一网络设备与第二网络设备可以采用相同的上下行配置,或者也可以采用不同的上下行配置,具体的不做限制。
本申请实施例所提供的技术方案,既可以应用于超远距离的网络设备之间的测量,也可以应用于较近的距离的网络设备之间的测量,那么作为一种实施方式,可以让超远距离的网络设备之间的测量和较近的距离的网络设备之间的测量复用同一个参考信号,这种场景可参考图18。图18中包括3个网络设备,分别为第一网络设备、第二网络设备和第三网络设备,其中,第一网络设备和第二网络设备之间的距离较远,第一网络设备和第三网络设备之间的距离较近,第一网络设备和第二网络设备之间要进行测量,第一网络设备和第三网络设备之间也要进行测量,那么,第一网络设备和第二网络设备之间的测量就是超远距离的网络设备之间的测量,第一网络设备和第三网络设备之间的测量就是较近距离的网络设备之间的测量,则,这两个测量过程就可以复用同一个参考信号,例如为参考信号。
对于图18中所示的场景的测量过程,可参考图19,由第一网络设备发送的同一个参考信号,既用于超远距离的网络设备之间的测量,也用于较近距离的网络设备之间的测量。对于第三网络设备,由于第三网络设备与第一网络设备之间的距离较近,因此第三网络设备可以根据第一网络设备发送参考信号的时间确定应接收参考信号的时间,不需要在所有 GP和/或上行传输时间内进行盲检,对于第一网络设备和第二网络设备之间的测量,以及第一网络设备和第三网络设备进行测量时第三网络设备可以获取配置信息等内容,均可参考前文的介绍。图19中画斜线的方框表示参考信号。
本申请实施例所提供的方法,既能用于超远距离的网络设备之间的测量,也能用于距离较近的网络设备之间的测量,提供了一种进行网络设备之间的测量的机制,有助于网络设备确定干扰源,从而能够进一步采取相应的干扰消除等措施,提高通信质量。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图20示出了一种通信装置2000的结构示意图。该通信装置2000可以实现上文中涉及的第一网络设备的功能。该通信装置2000可以是上文中所述的第一网络设备,或者可以是设置在上文中所述的第一网络设备中的芯片。该通信装置2000可以包括处理器2001和收发器2002。其中,处理器2001可以用于执行图7所示的实施例中的S71和S72,和/或用于支持本文所描述的技术的其它过程。收发器2002可以用于执行图7所示的实施例中的74,和/或用于支持本文所描述的技术的其它过程。
例如,处理器2001,用于确定第一资源,以及,生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数;
收发器2002,用于在所述第一资源上发送所述参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图21示出了一种通信装置2100的结构示意图。该通信装置2100可以实现上文中涉及的第二网络设备的功能。该通信装置2100可以是上文中所述的第二网络设备,或者可以是设置在上文中所述的第二网络设备中的芯片。该通信装置2100可以包括处理器2101和收发器2102。其中,处理器2101可以用于执行图7所示的实施例中的S73,和/或用于支持本文所描述的技术的其它过程。收发器2102可以用于执行图7所示的实施例中的S74,和/或用于支持本文所描述的技术的其它过程。
例如,处理器2101,用于确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号;
收发器2102,用于在所述第二资源上接收参考信号的部分或全部,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置2000或通 信装置2100通过如图22A所示的通信装置2200的结构实现。该通信装置2200可以实现上文中涉及的终端设备或网络设备的功能。该通信装置2200可以包括处理器2201。
其中,在该通信装置2200用于实现上文中涉及的第一网络设备的功能时,处理器2201可以用于执行图7所示的实施例中的S71和S72,和/或用于支持本文所描述的技术的其它过程;或者,在该通信装置2200用于实现上文中涉及的第二网络设备的功能时,处理器2201可以用于执行图7所示的实施例中的S73,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置2200可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置2200可被设置于本申请实施例的第一网络设备或第二网络设备中,以使得第一网络设备或第二网络设备实现本申请实施例提供的方法。
在一种可选实现方式中,该通信装置2200可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置2200用于实现上文中涉及的第一网络设备或第二网络设备的功能时,收发组件可以用于执行图7所示的实施例中的S74,和/或用于支持本文所描述的技术的其它过程。例如,一种收发组件为通信接口,如果通信装置2200为第一网络设备或第二网络设备,则通信接口可以是第一网络设备或第二网络设备中的收发器,例如收发器2002或收发器2102,收发器例如为第一网络设备或第二网络设备中的射频收发组件,或者,如果通信装置2200为设置在第一网络设备或第二网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可选实现方式中,该通信装置2200还可以包括存储器2202,可参考图22B,其中,存储器2202用于存储计算机程序或指令,处理器2201用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述第一网络设备或第二网络设备的功能程序。当第一网络设备的功能程序被处理器2201译码并执行时,可使得第一网络设备实现本申请实施例图5所示的实施例所提供的方法中第一网络设备的功能。当第二网络设备的功能程序被处理器2201译码并执行时,可使得第二网络设备实现本申请实施例图5所示的实施例所提供的方法中第二网络设备的功能。
在另一种可选实现方式中,这些第一网络设备或第二网络设备的功能程序存储在通信装置2200外部的存储器中。当第一网络设备的功能程序被处理器2201译码并执行时,存储器2202中临时存放上述第一网络设备的功能程序的部分或全部内容。当第二网络设备的功能程序被处理器2201译码并执行时,存储器2202中临时存放上述第二网络设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些第一网络设备或第二网络设备的功能程序被设置于存储在通信装置2200内部的存储器2202中。当通信装置2200内部的存储器2202中存储有第一网络设备的功能程序时,通信装置2200可被设置在本申请实施例的第一网络设备中。当通信装置2200内部的存储器2202中存储有第二网络设备的功能程序时,通信装置2200可被设置在本申请实施例的第二网络设备中。
在又一种可选实现方式中,这些第一网络设备的功能程序的部分内容存储在通信装置 2200外部的存储器中,这些第一网络设备的功能程序的其他部分内容存储在通信装置2200内部的存储器2202中。或,这些第二网络设备的功能程序的部分内容存储在通信装置2200外部的存储器中,这些第二网络设备的功能程序的其他部分内容存储在通信装置2200内部的存储器2202中。
在本申请实施例中,通信装置2000、通信装置2100及通信装置2200对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图20所示的实施例提供的通信装置2000还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器2001实现,收发模块可通过收发器2002实现。其中,处理模块可以用于执行图7所示的实施例中的S71和S72,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图7所示的实施例中的S74,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定第一资源,以及,生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数;
收发模块,用于在所述第一资源上发送所述参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
同理,图21所示的实施例提供的通信装置2100还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器2101实现,收发模块可通过收发器2102实现。其中,处理模块可以用于执行图7所示的实施例中的S73,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图7所示的实施例中的S74,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号;
收发模块,用于在所述第二资源上接收参考信号的部分或全部,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信装置2000、通信装置2100及通信装置2200可用于执行图7所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种参考信号发送方法,其特征在于,包括:
    确定第一资源;
    生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数;
    在所述第一资源上发送所述参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述M个部分对应的初始相位相同,或者,所述M个部分对应的基序列组号、基序列号和循环移位相同。
  3. 根据权利要求1或2所述的方法,其特征在于,包括:
    所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据第一资源的时域信息确定。
  4. 根据权利要求3所述的方法,其特征在于,所述第一资源的时域信息包括如下至少一种信息:
    所述第一资源所在的时隙或第一资源包括的时隙;
    所述第一资源包括的时域符号;
    所述第一资源所在的子帧或第一资源包括的子帧;
    所述第一资源所在的上下行切换周期;
    所述第一资源所在的系统帧。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一资源的时域信息包括所述第一资源包括的时域符号,包括:
    所述第一资源包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据所述N个时域符号中的第一个时域符号或者最后一个时域符号确定。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述N个时域符号为一个上下行切换周期中的下行传输时间内的最后N个时域符号。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述参考信号是第一网络设备发送给第二网络设备的参考信号。
  9. 一种参考信号接收方法,其特征在于,包括:
    确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号;
    在所述第二资源上接收参考信号的部分或全部,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述参考信号是通过第一资源发送的,所述第一资源 中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述M个部分对应的初始相位相同,或者,所述M个部分对应的基序列组号、基序列号和循环移位相同。
  11. 根据权利要求9或10所述的方法,其特征在于,包括:
    所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据第一资源的时域信息确定。
  12. 根据权利要求11所述的方法,其特征在于,所述第一资源的时域信息包括如下至少一种信息:
    所述第一资源所在的时隙或第一资源包括的时隙;
    所述第一资源包括的时域符号;
    所述第一资源所在的子帧或第一资源包括的子帧;
    所述第一资源所在的上下行切换周期;
    所述第一资源所在的系统帧。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一资源的时域信息包括所述第一资源包括的时域符号,包括:
    所述第一资源包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据所述N个时域符号中的第一个时域符号或者最后一个时域符号确定。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述N个时域符号为一个上下行切换周期中的下行传输时间内的最后N个时域符号。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述参考信号是第二网络设备接收的第一网络设备发送的参考信号。
  17. 一种网络设备,其特征在于,包括:
    处理器,用于确定第一资源,以及,生成与所述第一资源对应的参考信号,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数;
    收发器,用于在所述第一资源上发送所述参考信号。
  18. 根据权利要求17所述的网络设备,其特征在于,所述M个部分对应的初始相位相同,或者,所述M个部分对应的基序列组号、基序列号和循环移位相同。
  19. 根据权利要求17或18所述的网络设备,其特征在于,包括:
    所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移 位根据第一资源的时域信息确定。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第一资源的时域信息包括如下至少一种信息:
    所述第一资源所在的时隙或第一资源包括的时隙;
    所述第一资源包括的时域符号;
    所述第一资源所在的子帧或第一资源包括的子帧;
    所述第一资源所在的上下行切换周期;
    所述第一资源所在的系统帧。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述第一资源的时域信息包括所述第一资源包括的时域符号,包括:
    所述第一资源包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据所述N个时域符号中的第一个时域符号或者最后一个时域符号确定。
  22. 根据权利要求17至21中任一项所述的网络设备,其特征在于,所述N个时域符号为一个上下行切换周期中的下行传输时间内的最后N个时域符号。
  23. 根据权利要求17至22中任一项所述的网络设备,其特征在于,所述收发器还用于:
    发送配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。
  24. 根据权利要求17至23中任一项所述的网络设备,其特征在于,所述参考信号是所述网络设备发送给第二网络设备的参考信号。
  25. 一种网络设备,其特征在于,包括:
    处理器,用于确定用于接收参考信号的第二资源,所述第二资源包括的时域符号为上行时域符号和/或保护间隔时域符号;
    收发器,用于在所述第二资源上接收参考信号的部分或全部,所述参考信号包括M个部分,所述M个部分中的每个部分均相同;其中,所述参考信号是通过第一资源发送的,所述第一资源中不承载所述参考信号的循环前缀或者循环后缀;或者,所述第一资源中承载所述参考信号的循环前缀,且所述参考信号对应的循环前缀仅位于所述M个部分中的第一个部分的首端,和/或,所述第一资源中承载所述参考信号的循环后缀,且所述参考信号对应的循环后缀仅位于所述M个部分中的最后一个部分的末端,M为正整数。
  26. 根据权利要求25所述的网络设备,其特征在于,所述M个部分对应的初始相位相同,或者,所述M个部分对应的基序列组号、基序列号和循环移位相同。
  27. 根据权利要求25或26所述的网络设备,其特征在于,包括:
    所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据第一资源的时域信息确定。
  28. 根据权利要求27所述的网络设备,其特征在于,所述第一资源的时域信息包括如下至少一种信息:
    所述第一资源所在的时隙或第一资源包括的时隙;
    所述第一资源包括的时域符号;
    所述第一资源所在的子帧或第一资源包括的子帧;
    所述第一资源所在的上下行切换周期;
    所述第一资源所在的系统帧。
  29. 根据权利要求27或28所述的网络设备,其特征在于,所述第一资源的时域信息包括所述第一资源包括的时域符号,包括:
    所述第一资源包括N个时域符号,所述N个时域符号为连续的时域符号,N为正整数,所述M个部分对应的初始相位或所述M个部分对应的基序列组号、基序列和循环移位根据所述N个时域符号中的第一个时域符号或者最后一个时域符号确定。
  30. 根据权利要求25至29中任一项所述的网络设备,其特征在于,所述N个时域符号为一个上下行切换周期中的下行传输时间内的最后N个时域符号。
  31. 根据权利要求25至30中任一项所述的网络设备,其特征在于,所述收发器还用于:
    接收配置信息,所述配置信息用于指示所述第一资源,和/或,所述配置信息用于指示所述参考信号。
  32. 根据权利要求25至31中任一项所述的网络设备,其特征在于,所述参考信号是第二网络设备接收的第一网络设备发送的参考信号。
  33. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1~8中任一项所述的方法。
  34. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求9~16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1~8中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求9~16中任一项所述的方法。
PCT/CN2019/099127 2018-08-10 2019-08-02 一种参考信号发送、接收方法及装置 WO2020029896A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019317676A AU2019317676B2 (en) 2018-08-10 2019-08-02 Reference signal sending method, reference signal receiving method, and apparatus
JP2021507064A JP7196281B2 (ja) 2018-08-10 2019-08-02 参照信号送信方法、参照信号受信方法、および装置
EP19846964.5A EP3836463A4 (en) 2018-08-10 2019-08-02 METHOD AND APPARATUS FOR SENDING AND RECEIVING REFERENCE SIGNALS
US17/172,981 US11582081B2 (en) 2018-08-10 2021-02-10 Reference signal sending method, reference signal receiving method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911934.9A CN110830212B (zh) 2018-08-10 2018-08-10 一种参考信号发送、接收方法及装置
CN201810911934.9 2018-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,981 Continuation US11582081B2 (en) 2018-08-10 2021-02-10 Reference signal sending method, reference signal receiving method, and apparatus

Publications (1)

Publication Number Publication Date
WO2020029896A1 true WO2020029896A1 (zh) 2020-02-13

Family

ID=69413395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099127 WO2020029896A1 (zh) 2018-08-10 2019-08-02 一种参考信号发送、接收方法及装置

Country Status (6)

Country Link
US (1) US11582081B2 (zh)
EP (1) EP3836463A4 (zh)
JP (1) JP7196281B2 (zh)
CN (1) CN110830212B (zh)
AU (1) AU2019317676B2 (zh)
WO (1) WO2020029896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205981A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Interference measurement reference signal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411665B2 (en) * 2019-01-11 2022-08-09 Centre Of Excellence In Wireless Technology Method and system for enabling of cross-link interference measurement using CLI-RS resource in wireless network
WO2021208109A1 (zh) * 2020-04-18 2021-10-21 华为技术有限公司 通信的方法和装置
CN116264499A (zh) * 2021-12-13 2023-06-16 维沃移动通信有限公司 干扰测量方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442520A (zh) * 2007-11-20 2009-05-27 中兴通讯股份有限公司 无线通信系统上行链路中的定时同步方法
CN101938777A (zh) * 2009-06-30 2011-01-05 中兴通讯股份有限公司 长期演进系统中下行终端专用参考信号映射方法及装置
CN105744639A (zh) * 2014-12-10 2016-07-06 中兴通讯股份有限公司 随机接入配置信息发送、接收方法及装置
US20160365958A1 (en) * 2009-03-17 2016-12-15 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330316B (zh) * 2007-06-22 2012-10-03 中兴通讯股份有限公司 一种应用在无线通信系统上行链路中的时间同步方法及装置
WO2013008406A1 (ja) 2011-07-13 2013-01-17 パナソニック株式会社 端末装置、基地局装置、送信方法及び受信方法
CN103391621B (zh) * 2012-05-11 2019-01-01 中兴通讯股份有限公司 上行解调参考信号处理方法及装置
US10142075B2 (en) * 2014-11-03 2018-11-27 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system based on multiple antennas
CN107852710B (zh) 2015-11-06 2020-07-21 华为技术有限公司 数据传输方法、网络设备及终端设备
EP3528560B1 (en) 2016-11-04 2020-09-16 Huawei Technologies Co., Ltd. Sfn indication method and system
CN108282302B (zh) 2017-01-06 2021-01-01 华为技术有限公司 一种参考信号发送方法、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442520A (zh) * 2007-11-20 2009-05-27 中兴通讯股份有限公司 无线通信系统上行链路中的定时同步方法
US20160365958A1 (en) * 2009-03-17 2016-12-15 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
CN101938777A (zh) * 2009-06-30 2011-01-05 中兴通讯股份有限公司 长期演进系统中下行终端专用参考信号映射方法及装置
CN105744639A (zh) * 2014-12-10 2016-07-06 中兴通讯股份有限公司 随机接入配置信息发送、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836463A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205981A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Interference measurement reference signal

Also Published As

Publication number Publication date
US20210176105A1 (en) 2021-06-10
JP7196281B2 (ja) 2022-12-26
AU2019317676B2 (en) 2022-05-19
US11582081B2 (en) 2023-02-14
CN110830212B (zh) 2021-08-20
EP3836463A4 (en) 2021-10-06
AU2019317676A1 (en) 2021-03-25
CN110830212A (zh) 2020-02-21
EP3836463A1 (en) 2021-06-16
JP2021533697A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020029896A1 (zh) 一种参考信号发送、接收方法及装置
RU2644559C2 (ru) Устройство и способ передачи
JP7222076B2 (ja) 情報送信および受信方法、デバイス、および装置
WO2017128883A1 (zh) 一种导频信号发送、信道估计方法及设备
WO2021244374A1 (zh) 干扰抑制合并方法、资源指示方法及通信装置
CN111465022B (zh) 一种信号发送、接收方法及设备
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2016119687A1 (zh) 一种信号发送方法、接收方法及装置
WO2020147728A1 (zh) 一种通信方法及设备
US10849102B2 (en) Signal transmission method, network device, and terminal device
WO2021051364A1 (zh) 一种通信方法、装置及设备
EP3937564A1 (en) Communication method and apparatus
TW201824801A (zh) 傳輸信息的方法、網絡設備和終端設備
CN114365537A (zh) 一种上行传输的方法及装置
WO2019101206A1 (zh) 数据接收方法、数据发送方法、装置和系统
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
CN114731701B (zh) 一种序列检测方法及设备
TWI710235B (zh) 傳輸數據的方法、信道估計的方法和裝置
WO2021087877A1 (zh) 一种通信方法及装置
WO2020043103A1 (zh) 一种信号发送、接收方法及装置
CN113383509B (zh) 通信方法、装置及系统
WO2020199897A1 (zh) 一种通信方法及设备
WO2016161592A1 (zh) 基于nb m2m的dci长度的指示方法、装置和设备
WO2020063930A9 (zh) 一种参考信号的发送、接收方法及装置
WO2019100365A1 (zh) 一种无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846964

Country of ref document: EP

Effective date: 20210310

ENP Entry into the national phase

Ref document number: 2019317676

Country of ref document: AU

Date of ref document: 20190802

Kind code of ref document: A