WO2021087877A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021087877A1
WO2021087877A1 PCT/CN2019/116313 CN2019116313W WO2021087877A1 WO 2021087877 A1 WO2021087877 A1 WO 2021087877A1 CN 2019116313 W CN2019116313 W CN 2019116313W WO 2021087877 A1 WO2021087877 A1 WO 2021087877A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
cell
time unit
offset
unit
Prior art date
Application number
PCT/CN2019/116313
Other languages
English (en)
French (fr)
Inventor
李新县
肖洁华
王轶
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116313 priority Critical patent/WO2021087877A1/zh
Priority to CN201980102077.0A priority patent/CN114667782A/zh
Publication of WO2021087877A1 publication Critical patent/WO2021087877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • the 5th generation (5G) communication system can support the coexistence of multiple types of services, such as URLLC (Ultra-Reliable and Low-Latency Communication) services, eMBB (Enhanced Mobile Broadband), and enhanced mobile broadband ) Business, mMTC (Massive Machine Type Communication) business, etc., which will lead to flexible business volume and high coverage requirements.
  • URLLC Ultra-Reliable and Low-Latency Communication
  • eMBB Enhanced Mobile Broadband
  • enhanced mobile broadband Enhanced Mobile broadband
  • mMTC Massive Machine Type Communication
  • the length of the time unit for service transmission based on the above-mentioned multiple sub-carrier intervals may be the same or different, that is, the above-mentioned time unit
  • the present application provides a communication method and device for improving the performance of uplink transmission to meet flexible and changeable traffic and/or communication requirements with high coverage requirements.
  • the embodiments of the present application provide a communication method, which may be applied to a communication device, and the communication device may be a terminal device or may also be applied to a chip inside the terminal device.
  • the method can be applied to a communication device, which can be a network device or can also be applied to a chip inside the network device.
  • the above-mentioned communication device obtains the offsets of time units in different cells.
  • the above-mentioned communication device obtains at least one sub-carrier interval and at least one time unit, and determines the offset of the time unit in different cells according to the above-mentioned sub-carrier interval and time unit.
  • the terminal device (the internal chip of the terminal device) receives the above offset from the network device (the internal chip of the network device); or the network device sends the above offset to the terminal device.
  • the communication device determines the offset of the time unit in cell 1 and cell 2 according to the time unit corresponding to the reference subcarrier interval and the subcarrier interval of cell 1 and cell 2.
  • the communication device determines the offset of the time unit in the cell 1 and the cell 2 according to the subcarrier spacing of the cell 1 and the cell 2 and the minimum value of the time unit in the cell 1 and the cell 2.
  • terminal equipment or network equipment can effectively ensure the alignment of time units of different cells and the transmission performance under multiple cells through the offset of time units in different cells. For example, it can effectively increase uplink and downlink transmission opportunities or effectively avoid channel quality.
  • the uplink and downlink transmission errors caused by the difference are convenient to meet the flexible and changeable business volume and/or communication requirements with high coverage requirements.
  • the communication device obtains the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, the first time unit of the first cell, and the second time unit of the second cell; The first time unit and the second time unit, the first subcarrier interval and the second subcarrier interval, determine the offset between the first time unit and the second time unit.
  • the deviation between the first time unit and the second time unit is determined according to the minimum time unit among the first time unit and the second time unit, and the first subcarrier interval and the second subcarrier interval. shift.
  • the offset between the first time unit and the second time unit is determined according to the larger value of the foregoing first subcarrier interval and the second subcarrier interval, and the time unit corresponding to the larger subcarrier interval.
  • the offset between the first and second time units may be an offset value and an offset direction between the first time unit and the second time unit.
  • the communication device obtains the first cyclic shift of the first cell and the second cyclic shift of the second cell, and according to the first time unit and the second time unit, the first The subcarrier interval, the second subcarrier interval, the first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • first cyclic shift of the first cell and the second cyclic shift of the second cell are acquired, and according to the smaller value of the first time unit and the second time unit, the first subcarrier The interval, the second subcarrier interval, the first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • the communication device obtains the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, and the reference subcarrier interval. According to the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, and the reference time unit corresponding to the subcarrier interval, determine the first time unit of the first cell and the second time unit of the second cell Offset between.
  • the method further includes: acquiring the first cyclic shift of the first cell and the second cyclic shift of the second cell, and according to the reference time unit, the first subcarrier interval and the second subcarrier interval , The first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • first cyclic shift of the first cell and the second cyclic shift of the second cell are acquired, and the first cyclic shift and the second cyclic shift are determined according to the reference time unit The offset between the first time unit and the second time unit.
  • an embodiment of the present application provides a device that has the function of implementing the communication device related to the first aspect.
  • the device includes a terminal device or a network device to perform the steps corresponding to the steps related to the first aspect.
  • Modules or units or means, the functions or units or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the device includes a processing unit and a communication unit, and the functions performed by the processing unit and the communication unit may correspond to the steps performed by the terminal device or the network device involved in the above-mentioned first aspect.
  • the device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation in the first aspect. The method executed by the terminal device or network device in the mode.
  • the device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory stores necessary computer program instructions and/or data to realize the functions of the terminal device or the network device involved in the first aspect.
  • the processor can execute the computer program instructions stored in the memory to complete the method executed by the terminal device or the network device in any possible design or implementation of the first aspect described above.
  • the embodiments of the present application provide a computer-readable storage medium that stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer is caused to execute the first Any one of the possible design methods.
  • embodiments of the present application provide a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute any of the possible design methods in the first aspect.
  • an embodiment of the present application provides a chip, which is connected to a memory, and is used to read and execute a software program stored in the memory, so as to implement any of the possible designs in the first aspect. method.
  • an embodiment of the present application provides a communication system, including a terminal device in any possible design of the foregoing first aspect and a network device in any possible design of the foregoing first aspect.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable;
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • FIG. 4 is a schematic diagram of time slot lengths of NCP and ECP provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of a process corresponding to a communication method provided by an embodiment of this application.
  • FIG. 6 is an example of a time slot structure provided by an embodiment of the application.
  • FIG. 7 is an example of the time domain alignment of symbols using NCP corresponding to different SCS provided in an embodiment of the application.
  • FIG. 8 is a schematic diagram of the time domain structure of SCS combined with CP provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the time domain structure of SCS combined with CP provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the time domain structure of SCS combined with CP provided by an embodiment of the application;
  • FIG. 11 is a schematic flowchart of a corresponding communication method provided by an embodiment of this application.
  • FIG. 12 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal device It can be a wireless terminal device that can receive network device scheduling and instruction information.
  • a wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (e.g., radio access network, RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone). (mobile phone)), computers and data cards, for example, may be portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • a network device may be a radio access network (radio access network, RAN) node (or device) that connects a terminal to the wireless network, and may also be called a base station.
  • RAN equipment are: new generation Node B (gNodeB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network in 5G communication system Controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB), Or home Node B, HNB, baseband unit (BBU), or wireless fidelity (Wi-Fi) access point (AP), etc.
  • gNodeB new generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB evolved Node B
  • wireless network in 5G communication system Controller radio network controller
  • RNC radio network controller
  • Node B Node B,
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • Frame structure parameter refers to the parameter (numerology) adopted by the communication system. For example, it can refer to a series of physical layer parameters in the air interface.
  • a BWP can correspond to a numerology. Among them, the NR system can support multiple numerologies, and multiple numerologies can be used at the same time.
  • the numerology may include one or more of the following parameter information: subcarrier spacing, cyclic prefix (CP) information, time unit information, bandwidth, and so on.
  • the CP information may include CP length and/or CP type.
  • the CP may be a normal CP (NCP) or an extended CP (ECP).
  • the time unit is used to represent the time unit in the time domain, for example, it can be a sampling point, a symbol, a mini-slot, a slot, a subframe, or a radio frame, and so on.
  • the time unit information may include the type, length, or structure of the time unit.
  • numerology can include sub-carrier spacing and CP. As shown in Table 1, Table 1 shows the numerology defined by sub-carrier spacing and CP that can currently be supported in the NR system:
  • Sub-carrier spacing 2 ⁇ ⁇ 15 (kHz) CP type 0 15 Normal 1 30 conventional 2 60 Regular or extended (extended) 3 120 conventional 4 240 conventional
  • the network equipment can allocate a BWP with a subcarrier spacing of 15KHz and a BWP with a subcarrier spacing of 30KHz to the terminal.
  • the terminal can be based on different scenarios and services. On demand, you can switch to a different BWP to transmit signals.
  • the numerology corresponding to different BWPs may be the same or different.
  • the subcarrier spacing can be an integer greater than or equal to zero.
  • it can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, etc.
  • the subcarrier interval is the interval value between the center positions or peak positions of two adjacent subcarriers in the frequency domain in an orthogonal frequency division multiplexing (OFDM) system.
  • OFDM orthogonal frequency division multiplexing
  • the subcarrier spacing in the LTE system is 15KHz
  • the subcarrier spacing in the NR system may be 15kHz, or 30kHz, or 60kHz, or 120kHz, etc.
  • the corresponding sub-carrier spacing of the frequency bands of 6GHz and below includes 15KHz, 30KHz, and 60KHz, and the synchronization signal block sub-carrier spacing is 15KHz or 30KHz.
  • the corresponding sub-carrier spacing of the frequency band above 6GHz includes 120KHz and 60KHz, and the sub-carrier spacing of the synchronization signal block is 120KHz or 240KHz.
  • the above 6GHz and below frequency bands can be called low frequency or frequency 1 (FR1)
  • the specific frequency range can be 450MHz-6000MHz
  • the frequency bands above 6GHz can be called high frequency or frequency 2 (FR2), specifically
  • the frequency range can be 24250MHz-52600MHz.
  • a cell in LTE (Long Term Evolution) and NR (new radio), the cell is a high-level concept, and the carrier is a physical layer concept.
  • a cell can be configured to include a pair of uplink and downlink carriers, or only include one downlink carrier.
  • a cell in NR, a cell can be configured to include a pair of uplink and downlink carriers, or only one downlink carrier, or one downlink carrier, one uplink carrier, and one supplementary uplink (SUL). Because of the correspondence between carriers and cells, a carrier belongs to a cell, and the corresponding carrier can be found after the cell is configured; vice versa. Therefore, the concept of cell and carrier is not strictly distinguished in the present invention, and the two can be mixed without causing confusion.
  • a multi-cell scenario such as a carrier aggregation scenario or a dual-connection scenario.
  • the so-called multi-cell scenario is to aggregate two or more component carriers (CC) together.
  • the above-mentioned carrier can be provided by one or more base stations.
  • the component carrier may also be called a carrier.
  • a multi-cell may include a primary cell (Primary Cell, PCell), a secondary cell (Secondary Cell, SCell), or a primary secondary cell (PSCell).
  • the Pcell can be the cell where the terminal communicates with the base station when the initial connection is established, or the cell during the RRC connection or reconfiguration, or is determined by the base station or terminal during the handover process, and is mainly used to implement RRC between the base station and the terminal.
  • Communication The Scell may be a cell newly added by the base station to provide services for the terminal during RRC reconfiguration.
  • the Scell and the terminal may be mainly used for service-related communication, and RRC communication is not involved.
  • MCG Primary cell group
  • SCG Secondary cell group
  • DC Dual connectivity
  • MCG Master cell group
  • SCG Secondary cell group
  • DC Dual connectivity
  • Primary component carrier is the CC corresponding to PCell
  • secondary component carrier is the CC corresponding to Scell.
  • PSCell Primary component carrier
  • SCC secondary component carrier
  • the PSCell under the SCG and the SCell under the SCG are also united through CA technology.
  • the present application can also be used in a communication scenario of side link communication.
  • the communication scenario may include a network device and one or more terminal devices (such as terminal device 1, terminal device 2).
  • the network device and the terminal device 1 and the terminal device 2 can perform data transmission through air interface resources, and the terminal device 1 and the terminal device 2 can perform data transmission through side link resources.
  • the data channel for uplink data transmission between the network device and the terminal device 1 or the terminal device 2 may be carried in an uplink (UL) carrier (such as the first UL carrier).
  • the data channel through which the terminal device 1 and the terminal device 2 perform data transmission may be carried in the SL carrier.
  • the SL carrier may be a UL carrier (such as a second UL carrier), and the first UL carrier and the second UL carrier may be the same carrier.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: the existence of A alone, both A and B, and B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a). For example, "at least one of A, B, and C” includes A, B, C, AB, AC, BC, or ABC.
  • ordinal numbers such as "first" and "second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • the first information and the second information are only for distinguishing different information, but do not indicate the difference in priority or importance of the two types of information.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable.
  • the terminal device 130 can access a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, for example, it can communicate with other terminal devices.
  • the wireless network includes radio access network (RAN) equipment (or network equipment) 110 and core network (CN) equipment 120, where RAN equipment 110 is used to connect terminal equipment 130 to the wireless network
  • the CN device 120 is used to manage the terminal device and provide a gateway for communication with the external network.
  • RAN radio access network
  • CN core network
  • the number of devices in the communication system shown in FIG. 1 is only for illustration, and the embodiment of the present application is not limited to this. In actual applications, the communication system may also include more terminal devices 130 and more RAN devices. 110, it may also include other devices.
  • the CN may include multiple CN devices 120.
  • the CN device 120 may be an access and mobility management function (AMF) entity, session management A function (session management function, SMF) entity or a user plane function (UPF) entity, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the CN device 120 may be a mobility management entity (mobility management entity). entity, MME) and serving gateway (serving gateway, S-GW), etc.
  • MME mobility management entity
  • serving gateway serving gateway
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the network architecture includes CN equipment, RAN equipment and terminal equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated in the baseband device, or partially pulled.
  • the remote part is integrated in the baseband device.
  • the RAN equipment (eNB) includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, such as a remote radio unit (RRU) arranged remotely relative to the BBU .
  • RRU remote radio unit
  • control plane protocol layer structure can include the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC Radio link control
  • MAC media access control
  • user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer
  • SDAP service data adaptation protocol
  • the RAN equipment can be implemented by one node to implement the functions of the RRC, PDCP, RLC, and MAC protocol layers, or multiple nodes can implement the functions of these protocol layers.
  • RAN equipment may include CUs and DUs, and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the delay requirement for processing time are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and implemented by dividing them into different entities.
  • CU-CP entity ie CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or the CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal device, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • the RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal device, or converted from the received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency loading.
  • the network architecture shown in Fig. 1, Fig. 2 or Fig. 3 can be applied to various radio access technology (RAT) communication systems, such as LTE communication system or 5G (or called The new radio (NR) communication system can also be a transitional system between an LTE communication system and a 5G communication system.
  • the transitional system can also be called a 4.5G communication system, and of course it can also be a future communication system.
  • RAT radio access technology
  • NR new radio
  • the network architecture and business scenarios described in the embodiments are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • Those of ordinary skill in the art will know that with the communication network architecture With the evolution of and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are equally applicable to similar technical problems.
  • the devices in the following embodiments of the present application may be located in terminal equipment or network equipment according to their realized functions.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • an embodiment of the present application provides a communication method to improve transmission performance to meet flexible and changeable traffic and/or communications with high coverage requirements. demand.
  • a cyclic prefix ( English: Cyclic Prefix, abbreviation: CP) design.
  • CP Cyclic Prefix
  • NCP Normal Cyclic Prefix
  • ECP Extended Cyclic Prefix
  • NCP and ECP are two types of CPs with different lengths. The ECP length is longer than the NCP length, and the CP overhead is higher.
  • the requirements for CP types may be different, so flexible configuration between different CP types is required.
  • the sub-carrier intervals corresponding to different cells are 30kHz and 60kHz respectively.
  • the granularity of the time unit is based on time slots. As the time lengths occupied by different CP types of time slots are different, the time slots in the frame will not be available. Alignment, so that normal communication in different cells cannot be realized.
  • the concept of time slot alignment of two cells includes the following: the start position of time slot 0 corresponding to the low subcarrier interval in the multi-cell is aligned with the time slot boundary corresponding to the high subcarrier interval , Or the start position of the time slot 0 of the subcarrier interval corresponding to the primary cell/primary and secondary cell in the multi-cell is aligned with the time slot boundary of the corresponding subcarrier interval of the secondary cell. Or, the start position of each time slot corresponding to the low subcarrier interval in the multi-cell is aligned with the time slot boundary corresponding to the high subcarrier interval.
  • the start position of each time slot of the subcarrier interval corresponding to the primary cell/primary and secondary cell in the multi-cell is aligned with the time slot boundary of the corresponding subcarrier interval of the secondary cell.
  • the concept of time slot alignment can be considered as: the primary cell/primary-secondary cell corresponds to the sub-carrier spacing of the primary cell/primary secondary cell in the multiple cells and the starting position of the CP time slot 0 and the secondary
  • the sub-carrier interval corresponding to the cell is aligned with the time slot boundary of the CP; or, the starting position of the sub-carrier interval corresponding to the secondary cell and the time slot 0 of the CP in the multi-cell is the same as the corresponding sub-carrier interval and the CP of the primary cell/primary and secondary cell.
  • the slot boundaries are aligned.
  • time slot 0 is the first time slot in each system frame, the starting position of the time slot is aligned with the starting position of the system frame, and the duration of the time slot corresponds to the subcarrier interval corresponding to the time slot It is related to the CP type.
  • time slot 0 is the first time slot in each subframe, and the starting position of the time slot is aligned with the starting position of the subframe, and the duration of the time slot corresponds to the subcarrier interval and CP corresponding to the time slot. Type related.
  • the method provided by the embodiment of the present application may include: obtaining the offsets of time units in different cells. Or, obtain at least one subcarrier interval and at least one time unit, and determine the offset of the time unit in different cells according to the above subcarrier interval and time unit.
  • the terminal device receives the above-mentioned offset from the network device; or, the network device sends the above-mentioned offset to the terminal device.
  • the technical solution for determining the offset by the network device can be referred to the following description.
  • Another way is to determine the offset of the time unit of cell 1 and cell 2 according to the time unit corresponding to the reference subcarrier interval and the subcarrier interval of cell 1 and cell 2.
  • the aforementioned offset may be a time unit offset between carriers in cell 1 and cell 2.
  • terminal equipment or network equipment can effectively ensure the alignment of time units between cells and the transmission performance under multiple cells through the offset of time units in different cells. For example, it can effectively increase uplink and downlink transmission opportunities or effectively avoid channel quality.
  • the uplink and downlink transmission errors caused by the difference are convenient to meet the flexible and changeable business volume and/or communication requirements with high coverage requirements.
  • the embodiment of the present application provides a communication method.
  • FIG. 5 is a schematic diagram of the process corresponding to the method.
  • the application of this method to the network architecture shown in FIG. 1 is taken as an example.
  • the method can be executed by a first communication device, where the first communication device can be a network device or a communication device capable of supporting the network device to implement the functions required by the method, and of course, it can also be other communication devices, such as a chip or a chip system. .
  • the method may be executed by a second communication device, where the second communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, of course, it may also be another communication device, such as a chip or a chip system .
  • the method is executed by a network device or a terminal device, that is, it is taken as an example that the first communication device is a network device and the second communication device is a terminal device.
  • the network device used to implement the embodiment shown in FIG. 5 described below may be the network device (or RAN device) in the system architecture shown in FIG. )
  • the terminal device used to execute the embodiment shown in FIG. 5 described below may be the terminal device in the network architecture shown in FIG. 1.
  • FIG. 5 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 1 of this application, as shown in FIG. 5, including:
  • 501 Acquire a first subcarrier interval of a first cell, a second subcarrier interval of a second cell, a first time unit of the first cell, and a second time unit of the second cell.
  • first time unit may be used for communication of the terminal device or network device in the first cell
  • second time unit may be used for communication of the terminal device or network device in the second cell.
  • the aforementioned communication includes the sending or receiving of signaling, messages, services, or data.
  • the execution subject of the foregoing acquisition action may be a terminal device or a network device.
  • the foregoing acquisition manner may be predefined, or the network device and the terminal device may interact with each other through messages or signaling.
  • the network device indicates the aforementioned at least one subcarrier interval or at least one time unit to the terminal device in one or more messages; or, the terminal device receives one or more messages from the network device, and the aforementioned message indicates at least one subcarrier interval Or at least one unit of time.
  • the terminal device can learn the above-mentioned at least one subcarrier interval or at least one time unit according to a predefined definition without receiving an instruction from the network device.
  • the message or signaling sent by the network device to the terminal device may be high-level information, such as broadcast messages, system messages, downlink messages in the access process, and radio resource control (English: Radio Resource Control, abbreviation: RRC) signaling , Media Access Control (English: Media Access Control Control Element or Medium Access Control Control Element, MAC CE), or physical layer control signaling, etc.
  • RRC Radio Resource Control
  • the message or signaling may also be physical layer downlink control information (English: Downlink Control Information, abbreviation: DCI), etc., which is not limited in this application.
  • a time unit refers to a unit corresponding to a type of time unit.
  • the time unit refers to a time unit or scheduling unit in the time domain used for information transmission.
  • the time unit contains an integer number of symbols in the time domain.
  • the time unit may refer to a subframe or a time slot. It can also refer to a radio frame, a mini slot (mini slot or sub slot), multiple aggregated time slots, multiple aggregated subframes, symbols, etc., and can also refer to the transmission time interval (English: Transmission Time Interval, abbreviation) : TTI), this application is not limited.
  • one or more time units of one time unit can contain an integer number of time units of another time unit in the time domain, or one or more time units of one time unit have an integer length in the time domain of the other time unit
  • the unit of time unit length and, for example, a mini-slot/slot/subframe/radio frame contains an integer number of symbols
  • a slot/subframe/radio frame contains an integer number of mini-slots
  • the frame includes an integer number of time slots
  • a radio frame includes an integer number of subframes, etc., and there may also be other including examples, which are not limited in this application.
  • time units can be used to distinguish, mark or count different time units through indexing, identification or other means.
  • the first time unit corresponds to the first subcarrier interval
  • the second time unit corresponds to the second subcarrier interval.
  • the number of the first time unit or the second time unit is different.
  • the first time unit and the second time unit are both 1ms
  • the first time unit or the second time unit can correspond to one or more different lengths Time slot.
  • the first subcarrier interval is 60kHz NCP
  • the first time unit may include two time slots of different lengths
  • the second subcarrier interval is 30kHz
  • the second time unit includes one time slot.
  • the execution subject of the above determination action may be a terminal device or a network device.
  • the deviation between the first time unit and the second time unit is determined according to the minimum time unit among the first time unit and the second time unit, and the first subcarrier interval and the second subcarrier interval. shift.
  • the offset between the first time unit and the second time unit is determined according to the larger value of the foregoing first subcarrier interval and the second subcarrier interval, and the time unit corresponding to the larger subcarrier interval.
  • the above-mentioned minimum time unit is the smaller of the length of time occupied by the first time slot and the second time slot. For example, if the first time slot is 0.5 ms, and the second time slot is 0.251 ms and 0.249 ms, then the smallest time slot of the two is 0.249 ms.
  • one possibility is to first determine the subcarrier spacing to be selected according to the size of the first and second subcarrier spacing. Subsequently, the smaller value of the first time slot and the second time slot is determined according to the interval of the to-be-selected sub-carriers, and the offset of the first and second time slots is obtained by combining the interval of the to-be-selected sub-carriers and the smaller value of the above-mentioned time slot. . Another possibility is to determine the smaller of the first time slot and the second time slot, and then determine the candidate subcarrier interval in the first and second subcarrier intervals, and then obtain the first and second time slots. Offset.
  • terminal equipment or network equipment can effectively ensure the alignment of time units between cells and the transmission performance under multiple cells through the offset of time units in different cells. For example, it can effectively increase uplink and downlink transmission opportunities or effectively avoid channel quality.
  • the uplink and downlink transmission errors caused by the difference are convenient to meet the flexible and changeable business volume and/or communication requirements with high coverage requirements.
  • the offset between the first and second time units may be an offset value and an offset direction between the first time unit and the second time unit.
  • shifting forward or right means shifting in the direction in which time increases or time advances forward
  • shifting backward or left means shifting in the direction in which time decreases or time moves backward.
  • a positive shift indicates a shift in the direction of increasing time
  • a negative shift indicates a shift in the direction of decreasing time.
  • the granularity of the offset value may be a subframe, a time slot, or may also refer to a radio frame, a mini-slot, a symbol, a sampling point, and so on.
  • the granularity of the offset value may be a unit used when calculating the offset value between the first time unit and the second time unit.
  • the second time unit is that the first time unit moves forward or backward by 2 time slots in the time domain.
  • the second time slot moves forward or to the right by 2 time slots relative to the first time slot, the second time slot is located in front of or to the right of the first time slot in the time domain, and the first time slot and the first time slot There are 2 time slots between the two time slots.
  • the first time slot is located behind or to the left of the second time slot.
  • the offset value may be an integer multiple or a non-integer multiple of the above-mentioned granularity.
  • the second time slot may also be offset by 2.5 time slots relative to the first time slot, which is not limited in this application.
  • this embodiment further includes: acquiring the first cyclic shift of the first cell and the second cyclic shift of the second cell, and according to the first time unit and the second time unit, the first The subcarrier interval, the second subcarrier interval, the first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • the first time unit is determined according to the first subcarrier interval and the first cyclic shift
  • the second time unit is determined according to the second subcarrier interval and the second cyclic shift.
  • the first subcarrier interval is 60kHz
  • the second time unit is determined according to the second subcarrier interval and the second cyclic shift.
  • One cyclic shift is NCP, then the first time unit is 0.251ms and 0.249ms, the second subcarrier interval is 60kHz, and the second cyclic shift is ECP, then the second time unit is 0.25ms.
  • the first subcarrier interval is 30kHz
  • the first cyclic shift is NCP
  • the first time unit is 0.5ms
  • the second subcarrier interval is 15kHz ECP
  • the second cyclic shift is ECP
  • the second time unit is 0.5ms.
  • first cyclic shift of the first cell and the second cyclic shift of the second cell may be acquired, and according to the smaller value of the first time unit and the second time unit, the first sub The carrier interval, the second subcarrier interval, the first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • cyclic shift includes normal cyclic shift (NCP) and extended cyclic shift (entened cyclic prefix, ECP), and mainly refers to the above two CP types with different overheads.
  • the ECP overhead is greater than the NCP
  • the CP length of the ECP for the same seed carrier interval is greater than the CP length of the NCP.
  • This application takes LTE or 5G NCP or ECP as an example, and when the length of NCP and ECP is different from the example of the present invention, it is also in the protection scope of this application.
  • the NCP symbol means that the CP type of the symbol is NCP
  • the ECP symbol means that the CP type of the symbol is ECP.
  • the NCP time slot or the time slot being NCP means that all the symbols in the time slot are NCP symbols
  • the ECP time slot or the time slot being ECP means that all the symbols in the time slot are ECP symbols.
  • the time slot is composed of an integer number of symbols.
  • the cyclic shift of a cell or carrier is ECP, which means that the cyclic shift corresponding to the minimum or maximum value of the subcarrier interval corresponding to the BWP configured in the cell or carrier is ECP, and the cyclic shift of the cell or carrier is NCP.
  • the cyclic shift corresponding to the minimum or maximum value of the subcarrier interval corresponding to the BWP configured in the cell or carrier is NCP. If the CP type corresponding to the minimum or maximum value of the subcarrier interval corresponding to the configured BWP in a cell or carrier includes ECP and NCP, then a rule can be predefined, for example, the CP corresponding to the cell or carrier is predefined as NCP or The CP corresponding to the cell or carrier is predefined as ECP.
  • the subcarrier spacing (SCS) of the LTE (long term evolution) system is 15kHz, and the maximum bandwidth is 20MHz.
  • a basic time is defined in the communication system, the basic time is Ts, and the basic time can also be referred to as the sampling time.
  • Ts 1/(SCS ⁇ FFT Size), where FFT Size is the size of FFT (fast fourier transform), which can also be understood as each OFDM (orthogonal frequency division multiplexing, orthogonal frequency division multiplexing)
  • the number of samples of useful symbols for the symbol can be simply referred to as a symbol, and each symbol includes a CP and a useful symbol.
  • the frame duration of the LTE system is equal to 10ms
  • the duration of the subframe Tsubframe is equal to 1ms
  • the duration of each slot is equal to 0.5ms
  • each slot includes several OFDM symbols.
  • the LTE system adopts two types of cyclic prefix (CP), one is the normal cyclic prefix (NCP), and the other is the extended cyclic prefix (ECP). As shown in Fig. 6, when NCP is adopted, each time slot of the LTE system includes 7 symbols.
  • the CP duration Tcp of the first symbol is equal to 160 ⁇ Ts
  • the CP duration Tcp of the remaining 6 symbols is equal to 144 ⁇ Ts
  • the useful symbol duration Tu of each symbol is equal to 2048 ⁇ Ts.
  • the CP overhead of the LTE system is about 6.67%.
  • each time slot of the LTE system includes 6 symbols
  • the CP duration of each symbol Tcp-e is equal to 512 ⁇ Ts
  • the useful symbol duration Tu of each symbol is equal to 2048 ⁇ Ts.
  • the CP overhead of the LTE system is 20%. ECP can meet the scenario of large time delay, but its occupied system overhead is larger than that of NCP.
  • the NR (new radio) system as a newest communication system, can support multiple SCSs, that is, in the NR system, there can be one SCS at the same time, or multiple SCSs can coexist, or there can be multiple SCSs at different times. .
  • the NR system supports switching between different SCSs, that is, the NR system can switch the currently used SCS to another SCS.
  • the SCS of the NR system is 2n ⁇ 15kHz, where n is an integer. In the NR system, 15kHz is generally used as the reference SCS.
  • the NR system also uses NCP and ECP.
  • NCP different SCS can be considered to realize alignment in the time domain.
  • the CP overhead is 20% and the overhead is relatively large, resulting in low transmission efficiency.
  • the technical solution proposed in the embodiment of the present application realizes normal communication between different cells and terminal devices by determining the offset values between different time units.
  • the corresponding relations of several time units are listed. Among them, taking a subcarrier interval of 15 kHz as an example, the number of time slots in a subframe is 2, and the sampling point Ts is 15360.
  • the CP type is NCP
  • the number of symbols in a slot is 7
  • the CP type is ECP
  • the number of symbols in a slot is 6.
  • the following is for the primary cell or primary secondary cell for the first cell, the second cell is the secondary cell, the first subcarrier interval is the minimum or maximum subcarrier interval corresponding to the BWP configured in the first cell, the first cycle
  • the shift is the cyclic shift corresponding to the first subcarrier interval, the second subcarrier interval is the minimum or maximum subcarrier interval corresponding to the BWP configured in the second cell, and the second cyclic shift is the second subcarrier interval.
  • Cyclic shift exemplarily describe several possibilities:
  • the first cyclic shift is ECP
  • the second cyclic shift is NCP
  • the offset value is M*(16Ts+NL )+n*(L+8Ts).
  • M is the number of time areas
  • N is the number of second time units of the second cell in the time area
  • L is the first time unit of the first cell and the second time unit of the above-mentioned second cell
  • the number of sampling points corresponding to the smaller value in the smaller value, the cyclic shift corresponding to the smaller value is the second cyclic shift
  • n represents the number of the second unit beyond the time zone
  • Ts is the sample Point
  • the first cyclic shift is NCP
  • the second cyclic shift is ECP
  • the offset value is M*(NL+16Ts)+ (n(L+8Ts)) or M*(NL+16Ts)+(n(L-8Ts)), where M is the number of time regions, and N is the first cell of the first cell in the time region
  • L is the number of sampling points corresponding to the smaller value in the first time unit of the first cell and the second time unit of the second cell
  • the cyclic shift corresponding to the smaller value is said
  • the first cyclic shift, n represents the number of the first time unit beyond the time zone, and Ts is the sampling point. For example, n represents the number of the first time unit that exceeds an integer multiple of the time zone.
  • the offset value is M*NL+nL, where M is the number of time regions, and N is all The number of smaller values in the time unit of the first cell and the time unit of the second cell in the time zone, L is the number of sampling points corresponding to the smaller value, and the cyclic shift corresponding to the smaller value ECP, n represents the number of minimum time units of the first time unit and the second time unit that exceed the time zone. For example, n represents the number of the minimum time unit of the first time unit and the second time unit that exceeds an integer multiple of the time zone.
  • the first subcarrier interval is 60kHz
  • the second subcarrier interval is 15kHz
  • the first cyclic shift is NCP
  • the second cyclic shift is ECP
  • the offset value is M *(NL+16Ts)+(nL+16Ts) or M*(NL+16Ts)+nL
  • M is the number of time areas
  • N is the first time unit of the first cell in the time area
  • L is the number of sampling points corresponding to the smaller value in the first time unit of the first cell and the second time unit of the second cell
  • the cyclic shift corresponding to the smaller value is the first time unit
  • n represents the number of the first time unit beyond the time zone
  • Ts is the sampling point. For example, n represents the number of the first time unit that exceeds an integer multiple of the time zone.
  • N, L, M, and n are all non-negative integers.
  • n is a zero value, in the formula related to the offset value in this application, it can be considered that n does not exist all the time.
  • n represents the number of the first time unit or the second time unit that exceeds an integer multiple of the time zone.
  • the first start position of the first time unit and the first start position of the second time unit in the foregoing time region are aligned with the start position of the time region.
  • the time length of the above-mentioned time zone may be 0.5 ms, or an integer multiple of 0.5 ms.
  • the time slot of the time unit is taken as an example, and the time slots of different cells meet end-to-end alignment in this time area. For example, if there are a time slots of 0.5 ms in the primary cell, and there are b time slots of 0.5 ms in the secondary cell, then the total time length of the a first time slots and the total time length of the b second time slots are the same.
  • the starting position of the first one of the a first time slots in the time domain is aligned with the starting position of the first one of the b first time slots in the time domain, and is aligned with the starting position of the time region Alignment, the end position of the last one of the a first time slots in the time domain is aligned with the end position of the last one of the b second time slots in the time domain, and is aligned with the end position of the time region.
  • the value of n can be the difference between the length of the total time slot and the length of the time zone, divided by the length of a single time slot.
  • the SCS of the primary cell and the secondary cell are both 15 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz
  • the primary cell can be understood as the carrier of LTE
  • the secondary cell can be understood as the carrier of NR.
  • the number of time slots within 1 ms corresponding to the ECP is 2, and the length of each time slot is 0.5 ms.
  • the number of time slots within 1 ms corresponding to the NCP is 1, and the length of each time slot is 1 ms.
  • the time slot offset value of the secondary cell relative to the primary cell can be represented by M*NL+nL.
  • the unit of indicating the offset is the sampling point, and the direction of the offset can be indicated by signaling or message.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms; N is the number of the shortest time slot within 0.5ms, and L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier spacing and CP type corresponding to the shortest time slot are 15kHz and ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 30 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz, so the primary cell can be understood as the carrier of LTE, and the secondary cell can be understood as the carrier of NR.
  • the number of time slots in ECP 1ms is 2, and the length of each time slot is 0.5ms.
  • the number of time slots within 1 ms corresponding to the NCP is 2, and the length of each time slot is 0.5 ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*NL+nL, where the unit of indicating the offset is the sampling point, and the offset direction can be indicated by signaling or message.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms; N is the number of time slots within 0.5ms, and L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier spacing and CP type corresponding to the above time slot are 15kHz and ECP, or 30kHz and NCP.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz, so the primary cell can be understood as the carrier of LTE, and the secondary cell can be understood as the carrier of NR.
  • the number of time slots in ECP 1ms is 2, and the length of each time slot is 0.5ms.
  • the number of time slots within 1 ms is 4, and the length of the first time slot and the third time slot is 16 more sampling points than the length of the second time slot and the fourth time slot.
  • the above-mentioned first to fourth time slots can be understood to be based on the use time or time sequence of the time slots in the time domain.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell, and the indication of the offset to the right can be represented by M*(NL+16Ts)+nL.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell, and the indication of the offset to the left can be represented by M*(NL+16Ts)+(nL+16Ts).
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms; N is the number of time slots within 0.5ms, and L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier interval and CP type corresponding to the above-mentioned time slot are 60 kHz and NCP, and correspond to the length of the second and fourth time slots within 1 ms.
  • n is the number of time slots less than 0.5 ms. For the implementation scheme of offset to the right, when n is greater than 0, 16 Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • LTE supports ECP of 15kHz, so the primary cell can be understood as the carrier of LTE, and the secondary cell can be understood as the carrier of NR.
  • the length of the time slot is 0.5 ms, and there are two time slots within 1 ms.
  • the number of time slots within 1 ms corresponding to the ECP is 4, and the length of each time slot is 0.25 ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*NL+nL, where the unit indicating the offset is the sampling point, and the offset direction can be indicated by signaling or message. For example, use positive and negative M*NL+nL to indicate the offset direction.
  • M*NL+nL means shifting to the right by M*NL+nL sampling points
  • negative M*NL+nL means shifting to the left by M*NL+nL sampling points.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier spacing and CP type corresponding to this time slot are 60kHz and ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 15kHz NCP can be an LTE carrier or an NR carrier. If it is an LTE carrier, the time slot length is 0.5ms, and there are two time slots within 1ms.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*NL+nL, where the unit indicating the offset is the sampling point, and the offset direction can be indicated by signaling or message. For example, use positive and negative M*NL+nL to indicate the offset direction.
  • M is an integer multiple of 0.5ms, indicating that there are M time navigation degrees of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the corresponding subcarrier spacing and CP type are 60kHz and ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the primary cell is an NR carrier
  • the length of the time slot is 1ms, and there is 1 time slot within 1ms.
  • the time slot offset value of the secondary cell relative to the primary cell is the same as that of the primary in this scenario.
  • the cells are the same as the LTE carrier, so I won't repeat them here.
  • the sixth type the SCS of the primary cell is 30kHz, and the SCS of the secondary cell is 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 30kHz NCP is the NR carrier.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the time slot offset value of the secondary cell relative to the primary cell can be represented by M*NL+nL, where the unit of indicating the offset is the sampling point, and the offset direction can be indicated by signaling or message.
  • M*NL+nL means shifting to the right by M*NL+nL sampling points
  • negative M*NL+nL means shifting to the left by M*NL+nL sampling points.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 60 and kHz ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 30kHz
  • the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 30kHz NCP can be an NR carrier, and there are two time slots within 1ms, and each time slot is 0.5ms.
  • the secondary cell corresponding to the 15kHz ECP is an LTE carrier, the number of time slots in 1ms is 2, and the length of each time slot is 0.5ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates a right offset, which can be represented by positive M*NL+nL; or, if it is offset to the left, it can be represented by negative M*NL+nL.
  • the unit indicating the offset value is the sampling point.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots in 0.5ms
  • L is the shortest time slot in 0.5ms.
  • the number of sampling points, the sub-carrier spacing and CP type corresponding to this time slot are 30kHz and NCP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 60 kHz
  • the SCS of the secondary cell is 15 kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 60kHz NCP can be an NR carrier.
  • the first time slot and the third time slot are longer than the second and fourth time slots.
  • the length of time is 16Ts longer.
  • the secondary cell corresponding to the 15kHz ECP is an LTE carrier, the number of time slots in 1ms is 2, and the length of each time slot is 0.5ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell and indicates the offset to the right, which can be represented by M*(NL+16Ts)+(nL+16Ts); or, if it is offset to the left, you can use M *(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the ninth type the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the tenth type, the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is 30kHz
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is also 60kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be expressed by M*NL+nL.
  • the unit of indicating the offset is the sampling point, and the direction of the offset can be indicated by signaling or message.
  • positive M*NL+nL means shifting to the right by M*NL+nL sampling points
  • negative M*NL+nL means shifting to the left by M*NL+nL sampling points.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms, N is the number of time slots within 0.5ms, L is the number of sampling points corresponding to the shortest time slot within 0.5ms, and the time slot corresponds to
  • the SCS and CP types are 60kHz and ECP.
  • the SCS of the primary cell is 60 kHz
  • the SCS of the secondary cell is also 60 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the primary cell corresponding to the 60kHz ECP is the NR carrier, and there are 4 time slots within 1ms, and the length of each time slot is 0.25ms.
  • the secondary cell corresponding to the 60kHz NCP is the NR carrier.
  • the number of time slots in 1ms is 4, and the length of the first and third time slots is 16Ts longer than the length of the second and fourth time slots.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by negative M*(NL+16Ts)+(n(L+8Ts)); if it is offset to the right , Can be expressed as positive M*(NL+16Ts)+(n(L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+(nL+16Ts); if it is offset to the right, you can use M *(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be expressed by M*NL+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 60kHz and ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+(n(L+8Ts)); if it is offset to the right, It can be expressed as negative M*(NL+16Ts)+(n(L-8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms, N is the number of time slots within 0.5ms, and L is the number of sampling points corresponding to the shortest time slot within 0.5ms. This time slot corresponds to
  • the subcarrier spacing and CP type are 60kHz and ECP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is also 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 60kHz NCP can be an NR carrier. There are 4 time slots within 1ms, of which the length of the first and third time slots is 16Ts longer than the length of the second and fourth time slots.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+(n(L+8Ts)); if it is offset to the right, It can be represented by M*(NL+16Ts)+(n(L-8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms
  • the sub The carrier spacing and CP type are 60kHz and ECP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the left, which can be represented by M*NL+nL; if it is offset to the right, it can be represented by M*NL+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms
  • the sub The carrier spacing and CP type are 60kHz and ECP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+(nL+16Ts); if it is offset to the right, M *(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms
  • the sub The carrier spacing and CP type are 60kHz and NCP.
  • n is the number of time slots less than 0.5ms. When shifting to the left, 16Ts is added only when n is greater than zero.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by negative M*(NL+16Ts) + (n(L+8Ts)); if it is offset to the right , Can be expressed as positive M*(NL+16Ts)+(n(L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms
  • the sub The carrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the fifteenth type, the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 120kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by (NL+16Ts)+(nL+16Ts).
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier interval and CP type corresponding to the above-mentioned time slot are 120 kHz and NCP.
  • n is the number of time slots less than 0.5 ms. For the implementation scheme of offset to the right, when n is greater than 0, 16 Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 120kHz
  • the SCS of the secondary cell is 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+nL; or, if it is offset to the right, it can be represented by M*(NL+ 16Ts)+(nL+16Ts).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 120kHz and NCP, and n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 120kHz
  • the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the right, which can be represented by (NL+16Ts)+(nL+16Ts).
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • the subcarrier interval and CP type corresponding to the above-mentioned time slot are 120 kHz and NCP.
  • n is the number of time slots less than 0.5 ms. For the implementation scheme of offset to the right, when n is greater than 0, 16 Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the eighteenth type, the SCS of the primary cell is 15kHz, and the SCS of the secondary cell is 120kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL; or, if it is offset to the left, it can be represented by M*(NL+ 16Ts)+(nL+16Ts).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the shortest time slot within 0.5ms.
  • This time slot corresponds to
  • the subcarrier spacing and CP type are 120kHz and NCP, and n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the aforementioned primary cell may also be a primary and secondary cell (PScell).
  • PScell primary and secondary cell
  • FIG. 11 exemplarily shows a schematic flowchart of another communication method provided by the present application, including:
  • the reference time unit corresponding to the reference subcarrier interval can be obtained.
  • the reference subcarrier interval or reference time unit can be obtained through inter-network interaction or predefined.
  • the terminal device can receive the reference subcarrier interval or reference time unit indicated by the network device; or, receive the reference subcarrier interval indicated by the network device, and then determine the corresponding reference time unit according to the reference subcarrier interval, and vice versa
  • the reference time unit may be the shortest time slot length corresponding to the reference subcarrier interval in the time region described above. The first start position of the first time unit and the first start position of the second time unit in the time area are aligned with the start position of the time area.
  • the time zone is 0.5 ms.
  • the terminal device or the network device may determine the reference subcarrier interval according to the high frequency (FR2) or the low frequency (FR1). For example, at high frequency, the reference subcarrier interval is 120KHz; at low frequency, the reference subcarrier interval is 60KHz.
  • the reference subcarrier interval has a default cyclic prefix type. For example, for a normal CP type or an extended CP type, the length of the reference time unit is determined according to the reference subcarrier interval and the CP type corresponding to the reference subcarrier interval.
  • the cyclic prefix corresponding to the reference subcarrier interval is NCP as an example.
  • the reference subcarrier interval is 60kHz
  • the default CP type is NCP
  • the reference time unit is the shortest time slot 0.251ms and 0.249ms.
  • the time slot length is 0.249ms.
  • the execution subject of the above determination action may be a terminal device or a network device.
  • terminal equipment or network equipment can effectively ensure the alignment of time units of different cells and the transmission performance under multiple cells through the offset of time units in different cells. For example, it can effectively increase uplink and downlink transmission opportunities or effectively avoid channel quality.
  • the uplink and downlink transmission errors caused by the difference are convenient to meet the flexible and changeable business volume and/or communication requirements with high coverage requirements.
  • this embodiment further includes: acquiring the first cyclic shift of the first cell and the second cyclic shift of the second cell, and according to the reference time unit, the first subcarrier interval, the second The subcarrier interval, the first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • first cyclic shift of the first cell and the second cyclic shift of the second cell may be acquired, and the first cyclic shift and the second cyclic shift may be determined according to the reference time unit.
  • the reference SCS when at least one carrier in the primary and secondary cell is located in FR2, the reference SCS is 120kHz; when the primary and secondary cell carriers are all FR1, the reference SCS is 60kHz, and the CP type corresponding to the reference subcarrier interval is NCP or ECP.
  • NCP gives an example.
  • the SCS of the primary cell and the secondary cell are both 15 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz
  • the primary cell can be understood as the carrier of LTE
  • the secondary cell can be understood as the carrier of NR.
  • the number of time slots within 1 ms corresponding to the ECP is 2, and the length of each time slot is 0.5 ms.
  • the number of time slots within 1 ms corresponding to the NCP is 1, and the length of each time slot is 1 ms.
  • the time slot offset value of the secondary cell relative to the primary cell can be represented by M*NL+nL.
  • the unit of indicating the offset is the sampling point, and the direction of the offset can be indicated by signaling or message.
  • M*NL+nL means that the time slot offset value of the secondary cell relative to the primary cell is offset by M*NL+nL sampling points to the right
  • negative M*NL+nL means the secondary cell relative to the primary cell.
  • the time slot offset value is shifted to the left by (M*NL+nL) sampling points.
  • M is a positive integer multiple of 0.5ms, indicating that there are M time lengths of 0.5ms; N is the number of shortest time slots within 0.5ms, and L is the number of sampling points corresponding to the reference time unit.
  • the sub-carrier interval and CP type corresponding to the reference time unit are 60 kHz and NCP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 30 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz, so the primary cell can be understood as the carrier of LTE, and the secondary cell can be understood as the carrier of NR.
  • the number of time slots in ECP 1ms is 2, and the length of each time slot is 0.5ms.
  • the number of time slots within 1 ms corresponding to the NCP is 2, and the length of each time slot is 0.5 ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*NL+nL, where the unit of indicating the offset is the sampling point, and the offset direction can be indicated by signaling or message.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms; N is the number of time slots within 0.5ms, and L is the number of sampling points corresponding to the reference time unit.
  • the subcarrier interval and CP type corresponding to the reference time unit are 60kHz and NCP.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • LTE supports ECP of 15kHz, so the primary cell can be understood as the carrier of LTE, and the secondary cell can be understood as the carrier of NR.
  • the number of time slots in ECP 1ms is 2, and the length of each time slot is 0.5ms.
  • the number of time slots within 1 ms is 4, and the length of the first time slot and the third time slot is 16 more sampling points than the length of the second time slot and the fourth time slot.
  • the above-mentioned first to fourth time slots can be understood to be based on the use time or time sequence of the time slots in the time domain.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell, and the indication of the offset to the right can be represented by M*(NL+16Ts)+nL.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell, and the indication of the offset to the left can be represented by M*(NL+16Ts)+(nL+16Ts).
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms; N is the number of time slots within 0.5ms, and L is the number of sampling points corresponding to the reference time unit.
  • the subcarrier interval and CP type corresponding to the reference time slot are 60 kHz and NCP.
  • n is the number of time slots less than 0.5 ms. For the implementation scheme of offset to the right, when n is greater than 0, 16 Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • LTE supports ECP of 15kHz
  • the primary cell can be understood as the carrier of LTE
  • the secondary cell can be understood as the carrier of NR.
  • the length of the time slot is 0.5 ms, and there are two time slots within 1 ms.
  • the number of time slots within 1 ms corresponding to the ECP is 4, and the length of each time slot is 0.25 ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*(NL+16Ts)+(n(L+8Ts)), where the unit indicating the offset is the sampling point, and the offset direction can be used Signaling or message indication.
  • positive and negative M*(NL+16Ts)+(n(L+8Ts)) to indicate the offset direction.
  • positive M*(NL+16Ts)+(n(L+8Ts)) means offset M*(NL+16Ts)+(n(L+8Ts)) sampling points to the right
  • negative M*( NL+16Ts)+(n(L+8Ts)) means to shift M*(NL+16Ts)+(n(L+8Ts)) sampling points to the left.
  • M is an integer multiple of 0.5 ms, which means that there are M time lengths of 0.5 ms
  • N is the number of time slots within 0.5 ms
  • L is the number of sampling points corresponding to the reference time unit.
  • the sub-carrier interval and CP type corresponding to the reference time unit are 60 kHz and NCP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 15 kHz
  • the SCS of the secondary cell is 60 kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 15kHz NCP can be an LTE carrier or an NR carrier. If it is an LTE carrier, the time slot length is 0.5ms, and there are two time slots within 1ms.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*(NL+16Ts)+(n(L+8Ts)), where the unit indicating the offset is the sampling point, and the offset direction can be used Signaling or message indication. For example, use positive and negative M*(NL+16Ts)+(n(L+8Ts)) to indicate the offset direction.
  • M is an integer multiple of 0.5ms, indicating that there are M time navigation degrees of 0.5ms, N is the number of time slots within 0.5ms, L is the number of sampling points corresponding to the reference time unit, and the reference time unit corresponds to
  • the subcarrier spacing and CP type are 60kHz and NCP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the primary cell is an NR carrier
  • the length of the time slot is 1ms, and there is 1 time slot within 1ms.
  • the time slot offset value of the secondary cell relative to the primary cell is the same as that of the primary in this scenario.
  • the cells are the same as the LTE carrier, so I won't repeat them here.
  • the sixth type the SCS of the primary cell is 30kHz, and the SCS of the secondary cell is 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 30kHz NCP is the NR carrier.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the time slot offset value of the secondary cell relative to the primary cell can be represented by M*(NL+16Ts)+(n(L+8Ts)), where the unit indicating the offset is the sampling point, and the offset
  • the direction can be indicated by signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 60 and kHz NCP.
  • the SCS of the primary cell is 30kHz
  • the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 30kHz NCP can be an NR carrier, and there are two time slots within 1ms, and each time slot is 0.5ms.
  • the secondary cell corresponding to the 15kHz ECP is an LTE carrier, the number of time slots in 1ms is 2, and the length of each time slot is 0.5ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates a right offset, which can be represented by positive M*NL+nL; or, if it is offset to the left, it can be represented by negative M*NL+nL.
  • the unit indicating the offset value is the sampling point, where M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms, N is the number of time slots within 0.5ms, and L is the sample corresponding to the reference time unit The number of points, the subcarrier interval and CP type corresponding to the reference time unit are 60kHz and NCP.
  • M can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 60 kHz
  • the SCS of the secondary cell is 15 kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 60kHz NCP can be an NR carrier.
  • the first time slot and the third time slot are longer than the second and fourth time slots.
  • the length of time is 16Ts longer.
  • the secondary cell corresponding to the 15kHz ECP is an LTE carrier, the number of time slots in 1ms is 2, and the length of each time slot is 0.5ms.
  • the time slot offset value of the secondary cell carrier relative to the primary cell and indicates the offset to the right, which can be represented by M*(NL+16Ts)+(nL+16Ts); or, if it is offset to the left, you can use M *(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the ninth type the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the tenth type, the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is 30kHz
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is also 60kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is also ECP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell can be represented by M*(NL+16Ts)+(n(L+8Ts)).
  • the unit of indicating the offset is the sampling point, and the direction of the offset can be indicated by signaling or message. For example, use positive and negative M*(NL+16Ts)+(n(L+8Ts)) to indicate the offset direction.
  • positive M*(NL+16Ts)+(n(L+8Ts)) means offset M*(NL+16Ts)+(n(L+8Ts)) sampling points to the right
  • negative M*( NL+16Ts)+(n(L+8Ts)) means to shift M*(NL+16Ts)+(n(L+8Ts)) sampling points to the left.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the CP types are 60kHz and NCP.
  • the thirteenth type, the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is also 60kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the primary cell corresponding to the 60kHz ECP is the NR carrier, and there are 4 time slots within 1ms, and the length of each time slot is 0.25ms.
  • the secondary cell corresponding to the 60kHz NCP is the NR carrier.
  • the number of time slots in 1ms is 4, and the length of the first and third time slots is 16Ts longer than the length of the second and fourth time slots.
  • the carrier of the primary cell and the secondary cell are both in FR1, and the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, you can use negative M*(NL+16Ts)+(n(L+8Ts) )); if it is shifted to the right, it can be represented by positive M*(NL+16Ts)+(n(L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the carrier of the primary cell and the secondary cell are both in FR1, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, which can be represented by M*(NL+16Ts)+(nL+16Ts) ; If it is shifted to the right, it can be represented by M*(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • At least one of the carrier of the primary cell and the secondary cell is in FR2, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, you can use negative M*(2NL+16Ts)+(n(2L+ 8Ts)); if it is shifted to the right, it can be represented by positive M*(NL+16Ts)+(n(L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • At least one of the carrier of the primary cell and the secondary cell is in FR2, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, you can use M*(2NL+16Ts)+(2nL+16Ts) to Represents; if it is offset to the right, it can be represented by M*(2NL+16Ts)+2nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predetermined rule.
  • the SCS of the primary cell is 60kHz
  • the SCS of the secondary cell is also 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the primary cell corresponding to the 60kHz NCP can be an NR carrier. There are 4 time slots within 1ms, of which the length of the first and third time slots is 16Ts longer than the length of the second and fourth time slots.
  • the secondary cell corresponding to the 60kHz ECP is the NR carrier, the number of time slots in 1ms is 4, and the length of each time slot is 0.25ms.
  • the carrier of the primary cell and the secondary cell are both in FR1, and the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the right, which can be represented by M*(NL+16Ts)+(nL+16Ts) ; If it is offset to the left, it can be expressed by M*(NL+16Ts)+nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, indicating that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the CP type is 60kHz and NCP
  • n is the number of time slots less than 0.5ms, when shifting to the left, 16Ts is added only when n is greater than zero.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the carrier of the primary cell and the secondary cell are both in FR1, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, you can use negative M*(NL+16Ts)+(n(L+8Ts) )); if it is shifted to the right, it can be represented by positive M*(NL+16Ts)+(n(L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, indicating that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the CP type is 60kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • At least one of the carrier of the primary cell and the secondary cell is in FR2, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the right, you can use M*(2NL+16Ts)+(2nL+16Ts) to Represents; if it is offset to the left, it can be represented by M*(2NL+16Ts)+2nL.
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • At least one of the carrier of the primary cell and the secondary cell is in FR2, the time slot offset value of the secondary cell carrier relative to the primary cell, and indicates the offset to the left, you can use negative M*(2NL+16Ts)+(n(2L+ 8Ts)); if it is shifted to the right, it can be represented by positive M*(2NL+16Ts)+(n(2L+8Ts)).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling or message.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the fifteenth type, the SCS of the primary cell is 60kHz, and the SCS of the secondary cell is 120kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the left, which can be represented by (NL+16Ts)+(nL+16Ts).
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit, and the reference time unit corresponds to
  • the subcarrier spacing and CP type are 120kHz and NCP.
  • n is the number of time slots less than 0.5 ms.
  • 16 Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 120kHz
  • the SCS of the secondary cell is 60kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the left, which can be represented by M*(NL+16Ts)+nL; or, if it is offset to the right, it can be represented by M*(NL+ 16Ts)+(nL+16Ts).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the SCS of the primary cell is 120kHz
  • the SCS of the secondary cell is 15kHz.
  • the CP type in the primary cell is NCP
  • the CP type in the secondary cell is ECP.
  • the time slot offset value of the secondary cell carrier relative to the primary cell indicates the offset to the right, which can be represented by (NL+16Ts)+(nL+16Ts). Or, the time slot offset value of the carrier of the secondary cell relative to the primary cell, and indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL.
  • M is a positive integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to
  • the subcarrier spacing and CP type are 120kHz and NCP.
  • n is the number of time slots less than 0.5ms.
  • 16Ts is generally required.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the eighteenth type, the SCS of the primary cell is 15kHz, and the SCS of the secondary cell is 120kHz.
  • the CP type in the primary cell is ECP
  • the CP type in the secondary cell is NCP.
  • the time slot offset value of the carrier of the secondary cell relative to the primary cell indicates the offset to the right, which can be represented by M*(NL+16Ts)+nL; or, if it is offset to the left, it can be represented by M*(NL+ 16Ts)+(nL+16Ts).
  • the unit for indicating the offset is the sampling point, and the offset direction can be indicated by additional signaling.
  • M is an integer multiple of 0.5ms, which means that there are M time lengths of 0.5ms
  • N is the number of time slots within 0.5ms
  • L is the number of sampling points corresponding to the reference time unit
  • the reference time unit corresponds to the sub
  • the carrier spacing and CP type are 120kHz and NCP
  • n is the number of time slots less than 0.5ms. For the case of shifting to the left, generally when n is greater than 0, 16Ts will be added to the offset calculation formula.
  • M and n can be sent to the terminal device through a network device, and L can be obtained through a predefined rule.
  • the aforementioned primary cell may also be a primary and secondary cell (PScell).
  • PScell primary and secondary cell
  • the network device or the terminal device may include a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 12 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1200 may include: a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is used to control and manage the actions of the device 1200.
  • the communication unit 1203 is used to support communication between the apparatus 1200 and other devices.
  • the communication unit 1203 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1200 may further include a storage unit 1201 for storing program codes and/or data of the apparatus 1200.
  • the apparatus 1200 may be the terminal device or the network device in the foregoing embodiment, or may also be a chip set in the terminal device or the network device.
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the terminal device or the network device in the foregoing method examples.
  • the processing unit 1202 mainly executes the internal actions of the terminal device or the network device in the method example, and the communication unit 1203 may support communication between the apparatus 1200 and other devices.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the offsets of time units in different cells.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain at least one sub-carrier interval and at least one time unit; the processing unit 1202 is configured to: determine the offset according to the foregoing sub-carrier interval and time unit.
  • the communication unit 1203 or the processing unit 1202 when the apparatus 1200 is a terminal device or a chip in the terminal device, the communication unit 1203 or the processing unit 1202 is configured to receive offsets of time units in different cells from the network device. Or, when the apparatus 1200 is a network device or a chip in the network device, the communication unit 1203 or the processing unit 1202 is configured to send the offsets of time units in different cells to the terminal device.
  • the processing unit 1202 is configured to determine the offset of the time unit in cell 1 and cell 2 according to the time unit corresponding to the reference subcarrier interval and the subcarrier interval of cell 1 and cell 2.
  • the processing unit 1202 is configured to determine the offset of the time unit in cell 1 and cell 2 according to the subcarrier interval of cell 1 and cell 2, and the minimum value of the time unit in cell 1 and cell 2. .
  • the processing unit 1202 or the communication unit 1203 is used to obtain the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, the first time unit of the first cell and the second cell The second time unit.
  • the processing unit 1202 is configured to determine the distance between the first time unit and the second time unit according to the first time unit and the second time unit, the first subcarrier interval and the second subcarrier interval ⁇ Offset.
  • the processing unit 1202 is configured to determine the first time unit and the second time unit according to the minimum time unit among the first time unit and the second time unit, and the first subcarrier interval and the second subcarrier interval. Offset between units.
  • the processing unit 1202 is configured to determine the difference between the first time unit and the second time unit according to the larger value of the first subcarrier interval and the second subcarrier interval, and the time unit corresponding to the larger subcarrier interval. Offset between.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the first cyclic shift of the first cell and the second cyclic shift of the second cell; the processing unit 1202 is configured to A time unit and the second time unit, the first subcarrier interval, the second subcarrier interval, the first cyclic shift, and the second cyclic shift, determine the first time unit Offset between and the second time unit.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the first cyclic shift of the first cell and the second cyclic shift of the second cell; the processing unit 1202 is configured to: according to the first cyclic shift The smaller value of the time unit and the second time unit, the first subcarrier interval, the second subcarrier interval, the first cyclic shift, and the second cyclic shift, determine the The offset between the first time unit and the second time unit.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, and refer to the subcarrier interval.
  • the processing unit 1202 is configured to determine the first time unit and the second cell of the first cell according to the first subcarrier interval of the first cell, the second subcarrier interval of the second cell, and the reference time unit corresponding to the subcarrier interval The offset between the second time unit.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the first cyclic shift of the first cell and the second cyclic shift of the second cell; the processing unit 1202 is configured to: according to the reference time unit, the The first subcarrier interval, the second subcarrier interval, the first cyclic shift and the second cyclic shift, determine the offset between the first time unit and the second time unit.
  • the processing unit 1202 or the communication unit 1203 is configured to: obtain the first cyclic shift of the first cell and the second cyclic shift of the second cell; the processing unit 1202 is configured to: according to the reference time unit, the The first cyclic shift and the second cyclic shift determine the offset between the first time unit and the second time unit.
  • terminal equipment or network equipment can effectively ensure the alignment of time units of different cells and the transmission performance under multiple cells through the offset of time units in different cells. For example, it can effectively increase uplink and downlink transmission opportunities or effectively avoid channel quality.
  • the uplink and downlink transmission errors caused by the difference are convenient to meet the flexible and changeable business volume and/or communication requirements with high coverage requirements.
  • modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may be various mediums capable of storing program codes, such as a memory.
  • FIG. 13 shows a schematic structural diagram of an apparatus.
  • the apparatus 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • the apparatus 1300 can implement the functions of the apparatus 1200 illustrated in FIG. 12.
  • the functions of the communication unit 1203 illustrated in FIG. 12 may be implemented by a transceiver, and the functions of the processing unit 1202 may be implemented by a processor.
  • the function of the storage unit 1201 can be implemented by a memory.
  • the apparatus 1300 may be a terminal device or a network device in the foregoing method embodiment, and the apparatus 1300 may be used to implement the method corresponding to the terminal device or network device described in the foregoing method embodiment.
  • the foregoing Description in the method embodiment please refer to the foregoing Description in the method embodiment.
  • FIG. 14 is a schematic structural diagram of a terminal device 1400 according to an embodiment of the application.
  • the terminal device 1400 includes a processor 1401, a memory 1402, a control circuit 1403, an antenna 1404, and an input and output device 1405.
  • the terminal device 1400 can be applied to the system architecture shown in FIG. 1, FIG. 2 or FIG. 3 to perform the functions of the terminal device in the foregoing method embodiment.
  • the processor 1401 is mainly used to process communication protocols and communication data, and to control the entire terminal device, execute software programs, and process data of the software programs, for example, to control the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory 1402 is mainly used to store software programs and data.
  • the control circuit 1403 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit 1403 and the antenna 1404 together can also be called a transceiver, which is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices 1405, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 1401 can read the software program in the memory 1402, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1401 performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna 1404.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1401, and the processor 1401 converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 14 only shows a memory 1402 and a processor 1401.
  • the memory 1402 may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor 1401 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. Execute the software program and process the data of the software program.
  • the processor 1401 in FIG. 14 integrates the functions of a baseband processor and a central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor 1401, or stored in the memory 1402 in the form of a software program, and the processor 1401 executes the software program to realize the baseband processing function.
  • the terminal device 1400 shown in FIG. 14 can implement various processes related to the terminal device in the method embodiment shown in FIG. 5 or FIG. 11.
  • the operations and/or functions of each module in the terminal device 1400 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • FIG. 15 is a schematic structural diagram of a network device 1500 provided by an embodiment of this application.
  • the network device 1500 includes one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more baseband units (BBU) 1520.
  • the RRU 1510 may be called a communication unit, which corresponds to the communication unit 1203 in FIG. 12.
  • the communication unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 ⁇ RF unit 1512.
  • the RRU 1510 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending information to terminal equipment.
  • the BBU1510 part is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1202 in FIG. 12, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 1500 shown in FIG. 15 can implement various processes involving the network device in the method embodiment shown in FIG. 5 or FIG. 11.
  • the operations and/or functions of each module in the network device 1500 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置, 其中方法包括 : 获取第一小区的第一子载波间隔, 第二小区的第二子载波间隔, 第一小区的第一时间单元和第二小区的第二时间单元, 所述第一时间单元用于在所述第一小区内的通信, 所述第二时间单元用于在所述第二小区内的通信; 根据所述第一时间单元和所述第二时间单元中的最小时间单元, 所述第一子载波间隔和第二子载波间隔, 确定所述第一时间单元和所述第二时间单元之间的偏移. 采用上述方法, 能够有效保证上行传输性能, 比如可以有效增加上行传输机会或者有效避免信道质量较差而导致的上行传输错误, 便于满足灵活多变的业务量和/或的通信需求.

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
第五代(5th generation,5G)通信系统可以支持多种业务类型并存,例如URLLC(Ultra-Reliable and Low-Latency Communication,超高可靠低时延通信)业务、eMBB(Enhanced Mobile Broadband,增强移动宽带)业务、mMTC(Massive Machine Type Communication超大连接的机器通信)业务等,从而会导致业务量灵活多变,覆盖要求较高。
举例而言,5G技术中为了支持业务多样性和场景多样性提出了支持多种子载波间隔的设计,基于上述多种子载波间隔进行业务传输的时间单元的长度可能相同或不相同,即上述时间单位的边界可能存在不完全对齐的可能性。因此,如何满足灵活多变的业务量和覆盖要求较高的通信需求,仍需进一步研究。
发明内容
有鉴于此,本申请提供了一种通信方法及装置,用于提高上行传输的性能,以满足灵活多变的业务量和/或覆盖要求较高的通信需求。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于通信装置,该通信装置可以为终端设备或者也可以应用于终端设备内部的芯片。或者,该方法可以应用于通信装置,该通信装置可以为网络设备或者也可以应用于网络设备内部的芯片。在该方法中,上述通信装置获取不同小区内时间单元的偏移。或者,上述通信装置获取至少一个子载波间隔和至少一个时间单元,根据上述子载波间隔和时间单元确定不同小区内时间单元的偏移。
在一种可能的设计中,终端设备(终端设备的内部芯片)接收来自网络设备(网络设备的内部芯片)的上述偏移;或者,网络设备向终端设备发送上述偏移。
在一种可能的设计中,通信装置根据参考子载波间隔对应的时间单元、小区1和小区2的子载波间隔,确定小区1和小区2中的时间单元的偏移。
在一种可能的设计中,通信装置根据小区1和小区2的子载波间隔、小区1和小区2中的时间单元的最小值,确定小区1和小区2中的时间单元的偏移。
采用上述方法,终端设备或网络设备通过不同小区内时间单元的偏移,有效保证不同小区的时间单元对齐和多小区下的传输性能,比如,可以有效增加上下行传输机会或者有效避免信道质量较差而导致的上下行传输错误,便于满足灵活多变的业务量和/或覆盖要求较高的通信需求。
在一种可能的设计中,通信装置获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,第一小区的第一时间单元和第二小区的第二时间单元;根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔和第二子载波间隔,确定所述第一时间单元和所述第二时间单元之间的偏移。
示例性的,根据上述第一时间单元和第二时间单元中的最小时间单元,以及所述第一子载波间隔和第二子载波间隔,确定第一时间单元和第二时间单元之间的偏移。
示例性的,根据上述第一子载波间隔和第二子载波间隔的较大值,以及该较大子载波间隔对应的时间单元,确定第一时间单元和第二时间单元之间的偏移。
可选地,该第一与第二时间单元之间的偏移可以是该第一时间单元与第二单元的偏移值和偏移方向。
在一种可能的设计中,通信装置获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
进一步的,获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述第一时间单元和所述第二时间单元中的较小值,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
在一种可能的设计中,通信装置获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,和参考子载波间隔。根据第一小区的第一子载波间隔,第二小区的第二子载波间隔,参考子载波间隔对应的参考时间单元,确定第一小区的第一时间单元和第二小区的第二时间单元之间的偏移。
可选的,还包括:获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述参考时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
进一步的,获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述参考时间单元,所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
第二方面,本申请实施例提供一种装置,所述装置具备实现上述第一方面涉及的通信装置的功能,比如,所述装置包括终端设备或网络设备执行上述第一方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述装置包括处理单元、通信单元,处理单元、通信单元执行的功能可以和上述第一方面涉及的终端设备或网络设备执行的步骤相对应。
在一种可能的设计中,所述装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面中任意可能的设计或实现方式中终端设备或网络设备执行的方法。
其中,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。
在一种可能的设计中,存储器保存实现上述第一方面涉及的终端设备或网络设备的功能的必要计算机程序指令和/或数据。所述处理器可执行所述存储器存储的计算机程序指令,完成上述第一方面任意可能的设计或实现方式中终端设备或网络设备执行的方法。
第三方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第 一方面的任一种可能的设计中的方法。
第四方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面的任一种可能的设计中的方法。
第五方面,本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种通信系统,包括上述第一方面的任一种可能设计中的终端设备和上述第一方面的任一种可能设计中的网络设备。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例适用的又一种网络架构示意图;
图3为本申请实施例适用的又一种网络架构示意图;
图4为本申请实施例提供的NCP和ECP的时隙长度示意图;
图5为本申请实施例提供的通信方法所对应的流程示意图;
图6为本申请实施例提供的时隙结构的一个示例;
图7为本申请实施例提供的不同SCS对应的采用NCP的符号在时域上对齐的一个示例;
图8为本申请实施例提供的SCS结合CP的时域结构示意图;
图9为本申请实施例提供的SCS结合CP的时域结构示意图;
图10为本申请实施例提供的SCS结合CP的时域结构示意图;
图11为本申请实施例提供的通信方法所对应的流程示意图;
图12为本申请实施例中所涉及的装置的可能的示例性框图;
图13为本申请实施例提供的一种装置的结构示意图;
图14为本申请实施例提供的一种终端设备的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station), 移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G通信系统中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:是无线网络中的设备,例如网络设备可以为将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信系统中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
(3)帧结构参数:是指通信系统所采用的参数(numerology)。例如可以是指空口中的一系列物理层参数。一个BWP可以对应一个numerology。其中,NR系统可支持多种numerology,多个numerology可以同时使用。numerology可以包括以下参数信息中的一个或多个:子载波间隔,循环前缀(cyclic prefix,CP)的信息,时间单位的信息,带宽等。CP的信息可以包括CP长度和/或者CP类型。例如,CP可以为常规CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。时间单位用于表示时域内的时间单元,例如可以为采样点、符号、微时隙(mini-slot)、时隙(slot)、子帧(subframe)或者无线帧等等。时间单位的信息可以包括时间单位的类型、长度或者结构等。例如,numerology可以包括子载波间隔和CP,如表1所示,表1给出了NR系统中目前可以支持的、由子载波间隔和CP定义的numerology:
表1
μ 子载波间隔=2 μ·15(kHz) CP类型
0 15 常规(normal)
1 30 常规
2 60 常规或扩展(extended)
3 120 常规
4 240 常规
其中,μ用于确定子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。以子载波间隔为例,若终端支持子载波间隔15kHz和30kHz,则网络设备可以为终端分配一个子载波间隔为15KHz的BWP,和一个子载波间隔为30KHz的BWP, 终端根据不同的场景和业务需求,可以切换到不同的BWP上传输信号。当终端支持多个BWP时,其中不同的BWP对应的numerology可以相同也可以不同。
其中,子载波间隔可以为大于等于0的整数。例如可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。子载波间隔,是正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15KHz,NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
需要说明的是,对于独立组网的NR,6GHz及以下频段对应子载波间隔包括15KHz、30KHz、60KHz,同步信号块子载波间隔为15KHz或30KHz。6GHz以上频段对应子载波间隔包括120KHz和60KHz,同步信号块子载波间隔为120KHz或240KHz。可以理解,上述6GHz及以下频段可以称为低频或频率1(frequency 1,FR1),具体的频率范围可以为450MHz–6000MHz,6GHz以上频段可以称高频或频率2(frequency 2,FR2),具体的频率范围可以为24250MHz–52600MHz。
需要指出的是,在LTE(Long Term Evolution,长期演进)和NR(new radio,新无线)中,小区是高层的概念,载波是物理层的概念。小区和载波有对应关系,如在LTE中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波。在NR中,一个小区可以被配置为包含一对上下行载波,或只包含一个下行载波,或包含一个下行载波,一个上行载波和一个补充上行载波(supplementary uplink,SUL)。因为载波和小区的对应关系,一个载波属于一个小区,配置了小区就能找到相应的载波;反之亦然。因此在本发明中并不严格区分小区和载波的概念,二者在不引起混淆的情况下可以混用。
示例性的,本申请所提供的实施例适用于多小区场景,比如载波聚合场景或者双连接场景,所谓多小区场景是将两个或更多的成员载波(Component Carrier,CC)聚合在一起以支持更大的传输带宽,上述载波可以由一个或多个基站提供。该成员载波也可以称为载波。例如,多小区,可以包含主小区(Primary Cell,PCell)、辅小区(Secondary Cell,SCell)、或主辅小区(primary secondary cell,PSCell)。具体地,Pcell可以是初始连接建立时,终端与基站进行通信的小区,或RRC连接或重配置时的小区,或在切换过程中由基站或终端确定,主要用于实现基站与终端间的RRC通信。Scell可以是RRC重配置时基站新增为终端提供服务的小区,例如Scell与终端间可以主要用于业务相关通信,不涉及RRC通信。
主小区组(MCG,Master cell group)和辅小区组(SCG,Secondary cell group)是双链接(DC,Dual connectivity)下的概念,可以简单理解为UE首先发起随机接入的Cell所在的Group就是MCG。如果没有进行双链接,也就没有MCG和SCG的概念。或者也可以理解为,如果没有进行双链接,那么该小区组就对应MCG。在MCG下,可能会有很多个Cell,其中有一个用于发起初始接入的小区,这个小区称为PCell。顾名思义,PCell是MCG里面最“主要”的小区。MCG下的PCell和MCG下的SCell通过载波聚合(CA,Carrier aggregation)技术联合在一起。主成员载波(Primary component carrier,PCC)是PCell对应的CC,辅成员载波(Secondary component carrier,SCC)是Scell对应的CC。同样地,在SCG下也会有一个最主要的小区,也就是PSCell,也可以简单理解为在SCG下发起初始接入的小区。SCG下的PSCell和SCG下的SCell也是通过CA技术联合在一起。
可以理解,本申请还可用于旁链路通信的通信场景。该通信场景中可以包括网络设备 以及一个或多个终端设备(比如终端设备1、终端设备2)。网络设备与终端设备1、终端设备2可以通过空口资源进行数据传输,终端设备1和终端设备2之间可以通过旁链路资源进行数据传输。以上行传输为例,网络设备与终端设备1或终端设备2进行上行数据传输的数据信道可以承载在上行(uplink,UL)载波(比如第一UL载波)中。终端设备1和终端设备2进行数据传输的数据信道可以承载在SL载波中。在一个示例中,SL载波可以为UL载波(比如第二UL载波),第一UL载波和第二UL载波可以为同一载波。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的优先级或者重要程度等的不同。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备130可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括无线接入网(radio access network,RAN)设备(或者说网络设备)110和核心网(core network,CN)设备120,其中RAN设备110用于将终端设备130接入到无线网络,CN设备120用于对终端设备进行管理并提供与外网通信的网关。应理解,图1所示的通信系统中各个设备的数量仅作为示意,本申请实施例并不限于此,实际应用中在通信系统中还可以包括更多的终端设备130、更多的RAN设备110,还可以包括其它设备。
CN中可以包括多个CN设备120,当图1所示的网络架构适用于5G通信系统时,CN设备120可以为接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体或用户面功能(user plane function,UPF)实体等,当图1所示的网络架构适用于LTE通信系统时,CN设备120可以为移动性管理实体(mobility management entity,MME)和服务网关(serving gateway,S-GW)等。
图2为本申请实施例适用的又一种网络架构示意图。如图2所示,该网络架构包括CN设备、RAN设备和终端设备。其中,RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data  convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,在一种演进结构中,RAN设备可以包括CU和DU,多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
图3为本申请实施例适用的又一种网络架构示意图。相对于图2所示的网络架构,图3中还可以将CU的控制面(control plane,CP)和用户面(user plane,UP)分离,分成不同实体来实现,分别为CP CU实体(即CU-CP实体)和UP CU实体(即CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
上述图1、图2或图3所示意的网络架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如可以是LTE通信系统,也可以是5G(或者称为新无线(new radio,NR)通信系统,也可以是LTE通信系统与5G通信系统之间的过渡系统,该过渡系统也可以称为4.5G通信系统,当然也可以是未来的通信系统。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
基于上述图1、图2或图3所示意的网络架构中,本申请实施例提供一种通信方法,用于提高传输性能,以满足灵活多变的业务量和/或覆盖要求较高的通信需求。
在基于OFDM(英文:Orthogonal Frequency Division Multiplexing,缩写:OFDM,中文:正交频分复用)的无线通信系统中,为了抵抗信道多径引起的符号间干扰,采用了在符号中增加循环前缀(英文:Cyclic Prefix,缩写:CP)的设计。其中,多径的时延扩展越大,对CP的需求越长。针对一种子载波间隔,为了满足不同场景的时延扩展需求,可以采用普通CP(英文:Normal Cyclic Prefix,缩写:NCP)或扩展CP(英文:Extended Cyclic Prefix,缩写:ECP)两种CP类型。其中,NCP和ECP为两种长度不同的CP类型,ECP长度比NCP长度更长,CP开销更高。
在数据传输中,随着用户信道时延扩展的变化,对于CP类型的需求可能不同,因此需要进行不同CP类型之间的灵活配置。如图4所示,不同小区对应的子载波间隔分别为30kHz和60kHz,时间单元的粒度以时隙为例,由于不同CP类型的时隙所占用的时间长度不同,会造成帧内时隙无法对齐,从而无法实现在不同小区内的正常通信。
本申请文件的各个实施例中,两个小区时隙对齐的概念包括以下几种:多小区中低子载波间隔对应的时隙0的起始位置与高子载波间隔对应的时隙边界是对齐的,或者多小区中主小区/主辅小区对应子载波间隔的时隙0的起始位置与辅小区对应子载波间隔的时隙边界是对齐的。或者,多小区中低子载波间隔对应的每个时隙的起始位置与高子载波间隔对应的时隙边界是对齐的。又或者,多小区中主小区/主辅小区对应子载波间隔的每个时隙的起始位置与辅小区对应子载波间隔的时隙边界是对齐的。如果多小区的子载波间隔相同,CP类型相同或不同,那么时隙对齐的概念可以认为是:多小区中主小区/主辅小区对应子载波间隔和CP的时隙0的起始位置与辅小区对应子载波间隔和CP的时隙边界是对齐的;或者,多小区中辅小区对应子载波间隔和CP的时隙0的起始位置与主小区/主辅小区对应子载波间隔和CP的时隙边界是对齐的。
示例性的,时隙0为每个系统帧中的第一个时隙,该时隙的起始位置与系统帧的起始位置对齐,该时隙的持续时间与时隙对应的子载波间隔和CP类型有关。或者,时隙0为每个子帧中的第一个时隙,该时隙的起始位置与该子帧的起始位置对齐,该时隙的持续时间与时隙对应的子载波间隔和CP类型有关。
示例性地,本申请的实施例提供的方法可以包括:获取不同小区内时间单元的偏移。或者,获取至少一个子载波间隔和至少一个时间单元,根据上述子载波间隔和时间单元确定不同小区内时间单元的偏移。一种方式为,终端设备接收来自网络设备的上述偏移;或者,网络设备向终端设备发送上述偏移。其中,网络设备确定偏移的技术方案可以参考下文描述。又一种方式为,根据参考子载波间隔对应的时间单元、小区1和小区2的子载波间隔,确定小区1和小区2的时间单元的偏移。再一种方式为,根据小区1和小区2的子载波间隔、小区1和小区2中的时间单元的最小值,确定小区1和小区2的时间单元的偏移。可选的,上述偏移可以为小区1和小区2中载波间的时间单元偏移。采用上述方法,终端设备或网络设备通过不同小区内时间单元的偏移,有效保证小区间的时间单元对齐和多小区下的传输性能,比如,可以有效增加上下行传输机会或者有效避免信道质量较差而导致的上下行传输错误,便于满足灵活多变的业务量和/或覆盖要求较高的通信需求。
下面结合说明书附图对本申请的技术方案作进一步地详细描述。
实施例一
本申请实施例提供一种通信方法,参见图5,为该方法所对应的流程示意图。在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。另外,该方法可由第一通信装置执行,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。或者,该方法可由第二通信装置执行,其中,第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由网络设备或终端设备执行为例,也就是,以第一通信装置是网络设备、第二通信装置是终端设备为例。如果将本实施例应用在图1所示的网络架构,下文中所述的用于执行图5所示的实施例的网络设备可以是图1所示的系统架构中的网络设备(或者RAN设备),下文中所述的用于执行图5所示的实施例的终端设备可以是图1所示的网络架构中的终端设备。
图5为本申请实施例一提供的通信方法所对应的流程示意图,如图5所示,包括:
501,获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,第一小区的第一时间单元和第二小区的第二时间单元。
可以理解,上述第一时间单元可以用于终端设备或网络设备在第一小区内的通信,第二时间单元可以用于终端设备或网络设备在第二小区内的通信。上述通信包括信令、消息、业务或数据的发送或接收。
相应地,上述获取动作的执行主体可以为终端设备或网络设备。可选的,上述获取方式可以是预定义的,或者通过消息或信令由网络设备和终端设备之间进行交互。例如,网络设备在一条或多条消息中向终端设备指示上述至少一个子载波间隔或至少一个时间单元;或者,终端设备接收来自网络设备的一条或多条消息,上述消息指示至少一个子载波间隔或至少一个时间单元。又如,终端设备无需接收网络设备的指示,即可自行根据预先定义得知上述至少一个子载波间隔或至少一个时间单元。
进一步,上述网络设备向终端设备发送的消息或信令可以为高层信息,比如广播消息,系统消息,接入过程中的下行消息,无线资源控制(英文:Radio Resource Control,缩写:RRC)信令,媒体访问控制(英文:Media Access Control Control Element或者Medium Access Control Control Element,MAC CE),或者物理层控制信令等。或者,该消息或信令还可以为物理层下行控制信息(英文:Downlink Control Information,缩写:DCI),等等,本申请不做限定。
示例性地,时间单元是指一种时间单位对应的一个单元。该时间单位是指用于进行信息传输的时域内的时间单位或者调度单位,该时间单位时域内包含整数个符号,例如该时间单位可以是指子帧,也可以是指时隙(slot),还可是指无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是指传输时间间隔(英文:Transmission Time Interval,缩写:TTI),本申请不做限定。其中,一种时间单位的一个或多个时间单元时域内可以包含整数个另一种时间单位的时间单元,或者一种时间单位的一个或多个时间单元时域内长度等于整数个另一种时间单位的时间单元长度和,例如,一个微时隙/时隙/子帧/无线帧内包含整数个符号,一个时隙/子帧/无线帧内包含整数个微时隙,一个子帧/无线帧内包含整数个时隙,一个无线帧包含整数个子帧等,也可以存在其余包含 举例,本申请不做限定。
在本申请中,时间单元可以通过索引、标识或其他途径,对不同时间单元进行区分、标记或计数。
示例性的,第一时间单元对应第一子载波间隔,第二时间单元对应第二子载波间隔。时间单元的类型不同时,第一时间单元或第二时间单元包含的个数不同。比如时间单元为子帧的时候,第一时间单元和第二时间单元都为1ms,再比如时间单元为时隙的时候,第一时间单元或第二时间单元可以对应一个或多个不同长度的时隙。举例而言,第一子载波间隔为60kHz NCP,第一时间单元可能包含两个不同的长度的时隙;第二子载波间隔为30kHz,第二时间单元包含一个长度的时隙。
502,根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔和第二子载波间隔,确定所述第一时间单元和所述第二时间单元之间的偏移。
相应地,上述确定动作的执行主体可以为终端设备或网络设备。
示例性的,根据上述第一时间单元和第二时间单元中的最小时间单元,以及所述第一子载波间隔和第二子载波间隔,确定第一时间单元和第二时间单元之间的偏移。
或者,根据上述第一子载波间隔和第二子载波间隔的较大值,以及该较大子载波间隔对应的时间单元,确定第一时间单元和第二时间单元之间的偏移。
可以理解,以时间单元为时隙举例,上述最小时间单元取第一时隙和第二时隙所占用时间长度的较小者。例如,第一时隙为0.5ms,第二时隙为0.251ms和0.249ms,那么两者中最小时隙为0.249ms。
本实施例中,一种可能性是先根据第一和第二子载波间隔的大小,确定待选子载波间隔。随后,根据待选子载波间隔确定上述第一时隙和第二时隙中的较小值,结合待选子载波间隔和上述时隙较小值,获取第一和第二时隙的偏移。另一种可能性是先确定第一时隙和第二时隙的较小者,再确定第一和第二子载波间隔中的待选子载波间隔,随后获取第一和第二时隙的偏移。采用上述方法,终端设备或网络设备通过不同小区内时间单元的偏移,有效保证小区间的时间单元对齐和多小区下的传输性能,比如,可以有效增加上下行传输机会或者有效避免信道质量较差而导致的上下行传输错误,便于满足灵活多变的业务量和/或覆盖要求较高的通信需求。
可选地,该第一与第二时间单元之间的偏移可以是该第一时间单元与第二单元的偏移值和偏移方向。例如,向前或向右偏移表示向时间增加或时间向前推进的方向偏移,向后或向左偏移表示向时间减小或时间向后回退的方向偏移。类似的,正向偏移表示向时间增加的方向偏移,负向偏移表示向时间减小的方向偏移。
可选地,偏移值的粒度可以为子帧,时隙,还可以是指无线帧、微时隙、符号、采样点等。
具体地,该偏移值的粒度可以是计算第一时间单元和第二时间单元之间的偏移值时使用的单位。以时隙为偏移值的粒度举例,第二时间单元为第一时间单元在时域上向前或向后移动2个时隙。具体的,当第二时隙相对于第一时隙向前或向右移动2个时隙,则在时域上第二时隙位于第一时隙前面或右面,且第一时隙和第二时隙中间间隔2个时隙。相应的,第一时隙位于第二时隙的后面或左面。可以理解,偏移值可以为上述粒度的整数倍或非整数倍。例如,第二时隙也可以相对于第一时隙偏移2.5个时隙,本申请对此不做限定。
可选的,本实施例还包括:获取第一小区的第一循环移位和第二小区的第二循环移位, 根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。示例性的,第一时间单元根据第一子载波间隔和第一循环移位确定,第二时间单元根据第二子载波间隔和第二循环移位确定,比如第一子载波间隔为60kHz,第一循环移位为NCP,那么第一时间单元为0.251ms和0.249ms,第二子载波间隔为60kHz,第二循环移位为ECP,那么第二时间单元为0.25ms。再比如,第一子载波间隔30kHz,第一循环移位为NCP,那么第一时间单元为0.5ms,第二子载波间隔为15kHz ECP,第二循环移位为ECP,那么第二时间单元为0.5ms。
进一步的,可以获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述第一时间单元和所述第二时间单元中的较小值,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
在本申请中,循环移位包括正常循环移位(normal cyclic prefix,NCP)和扩展循环移位(entened cyclic prefix,ECP),主要是指上述两种CP具有不同开销的CP类型。例如,ECP开销大于NCP,对于同一种子载波间隔ECP的CP长度大于NCP的CP长度。本申请以LTE或5G的NCP或ECP举例,当NCP和ECP的长度和本发明举例不同时也在本申请的保护范围。
本申请中,如无特殊说明,NCP符号是指该符号的CP类型为NCP,ECP符号是指该符号的CP类型为ECP。NCP时隙或者时隙为NCP是指该时隙中的符号全部为NCP符号,ECP时隙或者时隙为ECP是指该时隙中的符号全部为ECP符号。其中,时隙由整数个符号组成。又如,小区或载波的循环移位为ECP指该小区或载波中配置的BWP对应子载波间隔中最小值或最大值对应的循环移位为ECP,小区或载波的循环移位为NCP指该小区或载波中配置的BWP对应子载波间隔中最小值或最大值对应的循环移位为NCP。如果一个小区或载波中的配置的BWP对应的子载波间隔中最小值或最大值对应的CP类型包括ECP和NCP,那么可以预定义一个规则,比如预定义该小区或载波对应的CP为NCP或预定义该小区或载波对应的CP为ECP。
LTE(long term evolution,长期演进)系统的子载波间隔(subcarrier spacing,SCS)为15kHz,最大支持20MHz带宽。在通信系统中定义了一个基本时间,该基本时间为Ts,该基本时间也可以称为采样时间。Ts=1/(SCS×FFT Size),其中FFT Size为FFT(fast fourier transform,快速傅里叶变换)的大小,也可以理解为每个OFDM(orthogonal frequency division multiplexing,正交频分复用)符号的有用符号的采样数。OFDM符号可简称为符号,每个符号包括CP和有用符号。20MHz带宽的LTE系统对应的FFT Size为2048,LTE系统对应的Ts等于1/(15000×2048)=1/30720000秒。
如图6所示,LTE系统的帧的时长等于10ms,子帧的时长Tsubframe等于1ms,每个时隙的时长等于0.5ms,每个时隙包括若干个OFDM符号。LTE系统采用了2种循环前缀(cyclic prefix,CP)类型,一种为常规循环前缀(normal cyclic prefix,NCP),另一种为扩展循环前缀(extended cyclic prefix,ECP)。如图6所示,在采用NCP时,LTE系统的每个时隙包括7个符号。在这7个符号中,第一个符号的CP的时长Tcp等于160×Ts,其余6个符号的CP的时长Tcp等于144×Ts,每个符号的有用符号的时长Tu等于2048×Ts。在采用NCP时,LTE系统的CP开销约为6.67%。如图6所示,在采用ECP时,LTE系统 的每个时隙包括6个符号,每个符号的CP的时长Tcp-e等于512×Ts,每个符号的有用符号的时长Tu等于2048×Ts。在采用ECP时,LTE系统的CP开销为20%。ECP能够满足时延较大的场景,但是其占用的系统开销较NCP要大。
NR(new radio,新无线)系统作为一种最新的通信系统,可以支持多种SCS,即在NR系统中同一时刻可以存在一种SCS或者并存多种SCS,或者在不同时刻可以存在多种SCS。NR系统支持不同SCS之间的切换,即NR系统可以将当前使用的SCS切换成另一种SCS。NR系统的SCS为2n×15kHz,其中n为整数。在NR系统中,一般将15kHz作为参考SCS。
NR系统也采用了NCP和ECP。NR系统在采用NCP时,可以考虑不同SCS实现在时域上对齐。如图7所示,SCS=30KHz对应的2个采用NCP的符号与SCS=15KHz对应的1个采用NCP的符号在时域上对齐;SCS=60KHz对应的2个采用NCP的符号与SCS=30KHz对应的1个采用NCP的符号在时域上对齐;SCS=120KHz对应的2个采用NCP的符号与SCS=60KHz对应的1个采用NCP的符号在时域上对齐。即对于SCS不小于15kHz时,在采用NCP时,SCS=2n×15kHz对应的2n个符号的时长等于1个SCS=15kHz对应的符号的时长,即该2n个采用NCP的符号的时长相对于参考SCS对应的1个采用NCP的符号的时长是按比例的压缩的(scalable),该2n个采用NCP的符号的CP的时长也是相对于参考SCS对应的1个采用NCP的符号的CP的时长按比例压缩的。在采用ECP的场景下,可以考虑通过按比例压缩SCS=15KHz对应的采用ECP的符号来获得其他SCS对应的采用ECP的符号,其CP开销为20%,开销较大,导致传输效率偏低。
故,本申请实施例提出的技术方案,通过确定不同时间单元之间的偏移值,实现不同小区与终端设备的正常通信。
如表1所示,针对LTE系统,列举若干时间单元的对应关系。其中,以子载波间隔为15kHz为例,一个子帧内的时隙个数为2,采样点Ts为15360。当CP类型为NCP时,一个时隙内符号个数为7;当CP类型为ECP时,一个时隙内符号个数为6。
Figure PCTCN2019116313-appb-000001
如表2所示,针对NR系统,同样列举若干时间单元的对应关系,NR系统中还引入了T C的概念,来表示时域的时间单元,T C=1/(f max·N f),其中f max=480·10 3Hz,N f=4096。常量κ=T S/T C,其中T S=1/(f ref·N f,ref),f ref=15·10 3Hz,N f,ref=2048。因此表2中15KHz NCP的一个子帧内时隙长度可以为(144+2048)*14+16*2=30720Ts,也可以为((144+2048)*14+16*2)*κ*T C=30720T S,本发明中使用κ表示偏移长度时,默认最后会乘以T C
Figure PCTCN2019116313-appb-000002
Figure PCTCN2019116313-appb-000003
可选的,以下针对第一小区为主小区或主辅小区,第二小区为辅小区,第一子载波间隔为第一小区中配置的BWP中对应的最小或最大子载波间隔,第一循环移位为第一子载波间隔对应的循环移位,第二子载波间隔为第二小区中配置的BWP中对应的最小或最大子载波间隔,第二循环移位为第二子载波间隔对应的循环移位,示例性描述几种可能性:
1、当第一子载波间隔和第二子载波间隔均为60kHz,所述第一循环移位为ECP,所述第二循环移位为NCP时,上述偏移值为M*(16Ts+NL)+n*(L+8Ts)。其中,M是时间区域的个数,N是所述时间区域内的第二小区的第二时间单元的个数,L是第一小区的第一时间单元和上述第二小区的第二时间单元中的较小值对应的采样点个数,该较小值对应的循环移位为所述第二循环移位,n表示超出所述时间区域的所述第二单元的个数,Ts为采样点;或,
当第一子载波间隔和第二子载波间隔均为60kHz,所述第一循环移位为NCP,所述第二循环移位ECP时,所述偏移值为M*(NL+16Ts)+(n(L+8Ts))或M*(NL+16Ts)+(n(L-8Ts)),其中,M是时间区域的个数,N是所述时间区域内的第一小区的第一时间单元的个数,L是第一小区的第一时间单元和第二小区的第二时间单元中的较小值对应的采样点个数,所述较小值对应的循环移位为所述第一循环移位,n表示超出所述时间区域的所述第一时间单元的个数,Ts为采样点。例如,n表示超出所述时间区域整数倍的所述第一时间单元的个数。
2、当所述第一循环移位和所述第二循环移位中至少一个为ECP时,所述偏移值为M*NL+nL,其中,M是时间区域的个数,N是所述时间区域内第一小区的时间单元和第二小区的时间单元中的较小值的个数,L是所述较小值对应的采样点个数,所述较小值对 应的循环移位为ECP,n表示超出所述时间区域的所述第一时间单元和第二时间单元的最小时间单元的个数。例如,n表示超出所述时间区域整数倍的所述第一时间单元和第二时间单元的最小时间单元的个数。
3、当所述第一子载波间隔为60kHz,所述第二子载波间隔为15kHz,所述第一循环移位为NCP,所述第二循环移位ECP时,所述偏移值为M*(NL+16Ts)+(nL+16Ts)或M*(NL+16Ts)+nL,其中,M是时间区域的个数,N是所述时间区域内的第一小区的第一时间单元的个数,L是该第一小区的第一时间单元和该第二小区的第二时间单元中的较小值对应的采样点个数,所述较小值对应的循环移位为所述第一循环移位,n表示超出所述时间区域的所述第一时间单元的个数,Ts为采样点。例如,n表示超出所述时间区域整数倍的所述第一时间单元的个数。
可以理解,上述N,L,M,n均为非负整数。其中,当n为零值时,本申请中涉及偏移值的公式,可以认为n自始至终不存在。例如,n表示超出时间区域整数倍的第一时间单元或第二时间单元的个数。
示例性的,上述时间区域内的第一个所述第一时间单元的起始位置和第一个所述第二时间单元的起始位置,与所述时间区域的起始位置对齐。
进一步的,上述时间区域的时间长度可以为0.5ms,或0.5ms的整数倍。本实施例中,时间单元时隙为例,不同小区的时隙在该时间区域内满足首尾对齐。例如,主小区内0.5ms的时隙为a个,辅小区内0.5ms的时隙为b个,那么上述a个第一时隙的时间总长和b个第二时隙的时间总长相同。或者,a个第一时隙中在时域上的第一个的起始位置与b个第一时隙在时域上的第一个的起始位置对齐,且与时间区域的起始位置对齐,a个第一时隙中在时域上的最后一个的结束位置与b个第二时隙在时域上的最后一个的结束位置对齐,且与时间区域的结束位置对齐。n的取值可以为总时隙长度与时间区域的长度之差,再除以单个时隙长度的结果。
以下示例性的,结合具体场景,列举几种实现方案。
第一种、如图8所示,主小区和辅小区的SCS均为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP对应的1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,NCP对应的1ms内的时隙个数为1,每个时隙的长度为1ms。辅小区相对于主小区的时隙偏移值,可以用M*NL+nL来表示。其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。或者,使用正负M*NL+nL来表示偏移方向和偏移值。具体而言,正M*NL+nL表示辅小区相对于主小区的时隙偏移值向右偏移M*NL+nL个采样点,负M*NL+nL表示辅小区相对于主小区的时隙偏移值向左偏移(M*NL+nL)个采样点。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的最短时隙的个数,L是0.5ms内最短时隙所对应的采样点个数。例如,该最短时隙对应的子载波间隔和CP类型为15kHz和ECP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第二种、主小区的SCS为15kHz,辅小区的SCS为30kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP 1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,NCP对应的1ms内时隙的个数为2,每个时隙的长度为0.5ms。辅小区载波相对于主小区的时隙偏移值,可以用M*NL+nL来表示,其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用正负M*NL+nL来表示,比如正M*NL+nL表示向右偏移(M*NL+nL)个采样点,负M*NL+nL表示向左偏移(M*NL+nL)个采样点。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是0.5ms内最短时隙所对应的采样点个数。本实现方案中,上述时隙对应的子载波间隔和CP类型为15kHz和ECP,或30kHz和NCP。
第三种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP 1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,1ms内时隙的个数为4,其中第一个时隙和第三个时隙长度比第二个时隙和第四个时隙的长度多16个采样点。上述第一至第四时隙可以理解为基于时域上时隙的使用时间或时间顺序排列。以下就不同偏移方向定义两种情况:辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是0.5ms内最短时隙所对应的采样点个数。本实施例中,上述时隙对应的子载波间隔和CP类型为60kHz和NCP,且对应1ms内的第二和第四个时隙的长度。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第四种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,时隙长度为0.5ms,1ms内有两个时隙。就辅小区而言,ECP对应的1ms内时隙的个数为4,每个时隙的长度为0.25ms。辅小区载波相对于主小区的时隙偏移值,可以用M*NL+nL来表示,其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用使用正负M*NL+nL来表示偏移方向。具体而言,正M*NL+nL表示向右偏移M*NL+nL个采样点,负M*NL+nL表示向左偏移M*NL+nL个采样点。其中M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数。例如,该时隙对应的子载波间隔和CP类型为60kHz和ECP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第五种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
15kHz的NCP对应的主小区可以为LTE载波,也可以为NR载波。如果为LTE载波,则时隙长度为0.5ms,1ms内有两个时隙。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。辅小区载波相对于主小区的时隙偏移值, 可以用M*NL+nL来表示,其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用正负M*NL+nL来表示偏移方向。具体而言,正M*NL+nL表示向右偏移M*NL+nL个采样点,负M*NL+nL表示向左偏移M*NL+nL个采样点。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间导航度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和ECP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
另一种可能性为,当主小区为NR载波,则时隙长度为1ms,1ms内有1个时隙,此时,辅小区相对于主小区的时隙偏移值,与主该场景中主小区为LTE载波相同,本文不再赘述。
第六种、主小区的SCS为30kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,30kHz的NCP对应的主小区为NR载波,1ms内有两个时隙,第一个时隙比第二个时隙长16Ts。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。
此时,辅小区相对于主小区的时隙偏移值,可以用M*NL+nL来表示,其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。或者,使用正负M*NL+nL来表示偏移量和偏移方向。比如,正M*NL+nL表示向右偏移M*NL+nL个采样点,负M*NL+nL表示向左偏移M*NL+nL个采样点。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60和kHz ECP。其中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第七种、主小区的SCS为30kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,30kHz的NCP对应的主小区可以为NR载波,1ms内有两个时隙,每个时隙0.5ms。15kHz的ECP对应的辅小区为LTE载波,1ms内时隙的个数为2,每个时隙的长度为0.5ms。
辅小区载波相对于主小区的时隙偏移值,指示向右偏移,可以用正M*NL+nL来表示;或者,如果向左偏移,可以用负M*NL+nL来表示。其中指示偏移值的单位为采样点其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为30kHz和NCP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第八种、如图9所示,主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,60kHz的NCP对应的主小区可以为NR载波,1ms内有四个时隙,其中第一个时隙和第三个时隙的时间长度比第二个和第四个时隙的时间长度多了16Ts。15kHz的ECP对应的辅小区为LTE载波,1ms内时隙的个数为2,每个时隙的长度为0.5ms。辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;或者,如果向左偏移,可以用M*(NL+16Ts)+nL来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有 M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第九种、主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
第十种、主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
第十一种、主小区的SCS为60kHz,辅小区的SCS为30kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
第十二种、主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
以下描述第九至第十二种场景中任意一种的实现方案:
辅小区载波相对于主小区的时隙偏移值,可以用M*NL+nL表示。其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用使用正负M*NL+nL来表示偏移方向。具体而言,正M*NL+nL表示向右偏移M*NL+nL个采样点,负M*NL+nL表示向左偏移M*NL+nL个采样点。其中M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙所对应的SCS和CP类型为60kHz和ECP。
第十三种、如图10所示,主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
60kHz的ECP对应的主小区为NR载波,1ms内有4个时隙,其中每个时隙的长度为0.25ms。60kHz的NCP对应的辅小区为NR载波,1ms内时隙的个数为4,第一个和三个时隙长度比第二个和第四个时隙长度多了16Ts。以下描述四种可能方案:
1、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(NL+16Ts)+(n(L+8Ts))来表示;如果向右偏移,可以用正M*(NL+16Ts)+(n(L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
1a、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;如果向右偏移,可以用M*(NL+16Ts)+nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2、辅小区载波相对于主小区的时隙偏移值,可以M*NL+nL表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和ECP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2a、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(n(L+8Ts))来表示;如果向右偏移,可以用负M*(NL+16Ts)+(n(L-8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和ECP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十四种、主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
60kHz的NCP对应的主小区可以为NR载波,1ms内有4个时隙,其中第一个和三个时隙长度比第二个和第四个时隙长度多了16Ts。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。以下描述四种可能方案:
1、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(n(L+8Ts))来表示;如果向右偏移,可以用M*(NL+16Ts)+(n(L-8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和ECP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
1a、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*NL+nL来表示;如果向右偏移,可以用M*NL+nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和ECP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;如果向右偏移,可以用M*(NL+16Ts)+nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数,向左偏移的时候,只有n大于零的时候才加16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2a、辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(NL+16Ts) +(n(L+8Ts))来表示;如果向右偏移,可以用正M*(NL+16Ts)+(n(L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十五种、主小区的SCS为60kHz,辅小区的SCS为120kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用(NL+16Ts)+(nL+16Ts)来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是0.5ms内最短时隙所对应的采样点个数。本实施例中,上述时隙对应的子载波间隔和CP类型为120kHz和NCP。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十六种、主小区的SCS为120kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+nL来表示;或者,如果向右偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙对应的采样点个数,该时隙对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十七种、主小区的SCS为120kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用(NL+16Ts)+(nL+16Ts)来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是0.5ms内最短时隙所对应的采样点个数。本实施例中,上述时隙对应的子载波间隔和CP类型为120kHz和NCP。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十八种、主小区的SCS为15kHz,辅小区的SCS为120kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示;或者,如果向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是0.5ms内最短时隙 对应的采样点个数,该时隙对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
可选的,上述的主小区也可以主辅小区PScell(Primary Secondary Cell)。
图11示例性的示出了本申请提供的另一种通信方法对应的流程示意图,包括:
1101,获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,和参考子载波间隔。
进一步的,可以获取参考子载波间隔对应的参考时间单元。第一子载波和第二子载波的获取可以参考前文描述,不再赘述。参考子载波间隔或参考时间单元可以通过网络间交互或预定义获取。就终端设备而言,可以接收网络设备指示的参考子载波间隔或参考时间单元;或者,接收网络设备指示的参考子载波间隔,再根据该参考子载波间隔确定其对应的参考时间单元,反之亦然,其中参考时间单元可以为前文中描述的时间区域内参考子载波间隔对应的最短时隙长度。所述时间区域内的第一个所述第一时间单元的起始位置和第一个所述第二时间单元的起始位置,与所述时间区域的起始位置对齐。
可选的,该时间区域为0.5ms。再者,终端设备或网络设备可以根据高频(FR2)或低频(FR1)确定参考子载波间隔。例如,当高频时,参考子载波间隔为120KHz;低频时,参考子载波间隔为60KHz。示例性的,参考子载波间隔有默认的循环前缀类型。比如,正常CP类型或扩展CP类型,参考时间单元的长度根据参考子载波间隔和参考子载波间隔对应的CP类型来确定。本申请实施例中以参考子载波间隔对应的循环前缀为NCP来示例说明,比如参考子载波间隔为60kHz,默认的CP类型为NCP,那么参考时间单元为时隙0.251ms和0.249ms中的最短时隙长度0.249ms。
1102,根据第一子载波间隔,第二子载波间隔,和参考子载波间隔对应的参考时间单元,确定第一时间单元和第二时间单元之间的偏移。
同前描述,上述确定动作的执行主体可以为终端设备或网络设备。
可以理解,本实施例的术语,如子载波间隔、偏移、时间单元等,其定义、功能、应用场景、使用方式等可以参考前文描述,不再赘述。
采用上述方法,终端设备或网络设备通过不同小区内时间单元的偏移,有效保证不同小区的时间单元对齐和多小区下的传输性能,比如,可以有效增加上下行传输机会或者有效避免信道质量较差而导致的上下行传输错误,便于满足灵活多变的业务量和/或覆盖要求较高的通信需求。
可选的,本实施例还包括:获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述参考时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
进一步的,可以获取第一小区的第一循环移位和第二小区的第二循环移位,根据所述参考时间单元,所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
以下示例性的,结合具体场景,列举几种实现方案。
可以理解,当主辅小区中载波至少一个位于FR2,参考SCS为120kHz;当主辅小区 载波都是FR1的时候,参考SCS为60kHz,参考子载波间隔对应的CP类型为NCP或ECP,以下以NCP举例说明。
第一种、主小区和辅小区的SCS均为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP对应的1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,NCP对应的1ms内的时隙个数为1,每个时隙的长度为1ms。辅小区相对于主小区的时隙偏移值,可以用M*NL+nL来表示。其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。或者,使用正负M*NL+nL来表示偏移方向和偏移值。具体而言,正M*NL+nL表示辅小区相对于主小区的时隙偏移值向右偏移M*NL+nL个采样点,负M*NL+nL表示辅小区相对于主小区的时隙偏移值向左偏移(M*NL+nL)个采样点。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的最短时隙的个数,L是参考时间单元所对应的采样点个数。例如,该参考时间单元对应的子载波间隔和CP类型为60kHz和NCP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第二种、主小区的SCS为15kHz,辅小区的SCS为30kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP 1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,NCP对应的1ms内时隙的个数为2,每个时隙的长度为0.5ms。辅小区载波相对于主小区的时隙偏移值,可以用M*NL+nL来表示,其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用正负M*NL+nL来表示,比如正M*NL+nL表示向右偏移(M*NL+nL)个采样点,负M*NL+nL表示向左偏移(M*NL+nL)个采样点。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数。本实现方案中,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP。
第三种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,ECP 1ms内的时隙个数为2,每个时隙的长度为0.5ms。就辅小区而言,1ms内时隙的个数为4,其中第一个时隙和第三个时隙长度比第二个时隙和第四个时隙的长度多16个采样点。上述第一至第四时隙可以理解为基于时域上时隙的使用时间或时间顺序排列。以下就不同偏移方向定义两种情况:辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数。本实施例中,参考时隙对应的子载波间隔和CP类型为60kHz和NCP。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第四种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
LTE支持15kHz的ECP,因此主小区可以理解为LTE的载波,辅小区可以理解为NR的载波。在该场景中,就主小区而言,时隙长度为0.5ms,1ms内有两个时隙。就辅小区而言,ECP对应的1ms内时隙的个数为4,每个时隙的长度为0.25ms。辅小区载波相对于主小区的时隙偏移值,可以用M*(NL+16Ts)+(n(L+8Ts))来表示,其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用使用正负M*(NL+16Ts)+(n(L+8Ts))来表示偏移方向。具体而言,正M*(NL+16Ts)+(n(L+8Ts))表示向右偏移M*(NL+16Ts)+(n(L+8Ts))个采样点,负M*(NL+16Ts)+(n(L+8Ts))表示向左偏移M*(NL+16Ts)+(n(L+8Ts))个采样点。其中M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数。例如,该参考时间单元对应的子载波间隔和CP类型为60kHz和NCP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第五种、主小区的SCS为15kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
15kHz的NCP对应的主小区可以为LTE载波,也可以为NR载波。如果为LTE载波,则时隙长度为0.5ms,1ms内有两个时隙。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。辅小区载波相对于主小区的时隙偏移值,可以用M*(NL+16Ts)+(n(L+8Ts))来表示,其中指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用正负M*(NL+16Ts)+(n(L+8Ts))来表示偏移方向。具体而言,正M*(NL+16Ts)+(n(L+8Ts))表示向右偏移M*(NL+16Ts)+(n(L+8Ts))个采样点,负M*(NL+16Ts)+(n(L+8Ts))表示向左偏移M*(NL+16Ts)+(n(L+8Ts))个采样点。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间导航度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
另一种可能性为,当主小区为NR载波,则时隙长度为1ms,1ms内有1个时隙,此时,辅小区相对于主小区的时隙偏移值,与主该场景中主小区为LTE载波相同,本文不再赘述。
第六种、主小区的SCS为30kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,30kHz的NCP对应的主小区为NR载波,1ms内有两个时隙,第一个时隙比第二个时隙长16Ts。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。
此时,辅小区相对于主小区的时隙偏移值,可以用M*(NL+16Ts)+(n(L+8Ts))来表示,其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。或者,使用正负M*(NL+16Ts)+(n(L+8Ts))来表示偏移量和偏移方向。比如,正M*(NL+16Ts)+(n(L+8Ts))表示向右偏移M*(NL+16Ts)+(n(L+8Ts))个采样点,负M*(NL+16Ts)+(n(L+8Ts))表示向左偏移M*(NL+16Ts)+(n(L+8Ts))个采样点。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单 元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60和kHz NCP。其中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第七种、主小区的SCS为30kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,30kHz的NCP对应的主小区可以为NR载波,1ms内有两个时隙,每个时隙0.5ms。15kHz的ECP对应的辅小区为LTE载波,1ms内时隙的个数为2,每个时隙的长度为0.5ms。
辅小区载波相对于主小区的时隙偏移值,指示向右偏移,可以用正M*NL+nL来表示;或者,如果向左偏移,可以用负M*NL+nL来表示。其中指示偏移值的单位为采样点其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP。本申请实施例中,M可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第八种、主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
本场景中,60kHz的NCP对应的主小区可以为NR载波,1ms内有四个时隙,其中第一个时隙和第三个时隙的时间长度比第二个和第四个时隙的时间长度多了16Ts。15kHz的ECP对应的辅小区为LTE载波,1ms内时隙的个数为2,每个时隙的长度为0.5ms。辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;或者,如果向左偏移,可以用M*(NL+16Ts)+nL来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第九种、主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
第十种、主小区的SCS为60kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
第十一种、主小区的SCS为60kHz,辅小区的SCS为30kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
第十二种、主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型同样为ECP。
以下描述第九至第十二种场景中任意一种的实现方案:
辅小区载波相对于主小区的时隙偏移值,可以用M*(NL+16Ts)+(n(L+8Ts))表示。其中,指示偏移的单位为采样点,偏移方向可以使用信令或消息指示。例如,使用使用正负M*(NL+16Ts)+(n(L+8Ts))来表示偏移方向。具体而言,正M*(NL+16Ts)+(n(L+8Ts))表示向右偏移M*(NL+16Ts)+(n(L+8Ts))个采样点,负M*(NL+16Ts)+(n(L+8Ts))表示向左偏移M*(NL+16Ts)+(n(L+8Ts))个采样点。其中M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单 元所对应的采样点个数,参考时间单元对应的SCS和CP类型为60kHz和NCP。
第十三种、主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
60kHz的ECP对应的主小区为NR载波,1ms内有4个时隙,其中每个时隙的长度为0.25ms。60kHz的NCP对应的辅小区为NR载波,1ms内时隙的个数为4,第一个和三个时隙长度比第二个和第四个时隙长度多了16Ts。以下描述四种可能方案:
1、主小区和辅小区载波都在FR1,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(NL+16Ts)+(n(L+8Ts))来表示;如果向右偏移,可以用正M*(NL+16Ts)+(n(L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
1a、主小区和辅小区载波都在FR1,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;如果向右偏移,可以用M*(NL+16Ts)+nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2、主小区和辅小区载波至少一个在FR2,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(2NL+16Ts)+(n(2L+8Ts))来表示;如果向右偏移,可以用正M*(NL+16Ts)+(n(L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2a、主小区和辅小区载波至少一个在FR2,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(2NL+16Ts)+(2nL+16Ts)来表示;如果向右偏移,可以用M*(2NL+16Ts)+2nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定 义规则获取。
第十四种、主小区的SCS为60kHz,辅小区的SCS同样为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
60kHz的NCP对应的主小区可以为NR载波,1ms内有4个时隙,其中第一个和三个时隙长度比第二个和第四个时隙长度多了16Ts。60kHz的ECP对应的辅小区为NR载波,1ms内时隙的个数为4,每个时隙的长度为0.25ms。以下描述四种可能方案:
1、主小区和辅小区载波都在FR1,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示;如果向左偏移,可以用M*(NL+16Ts)+nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数,向左偏移的时候,只有n大于零的时候才加16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
1a、主小区和辅小区载波都在FR1,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(NL+16Ts)+(n(L+8Ts))来表示;如果向右偏移,可以用正M*(NL+16Ts)+(n(L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为60kHz和NCP,n为不足0.5ms的时隙个数。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2、主小区和辅小区载波至少一个在FR2,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(2NL+16Ts)+(2nL+16Ts)来表示;如果向左偏移,可以用M*(2NL+16Ts)+2nL来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
2a、主小区和辅小区载波至少一个在FR2,辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用负M*(2NL+16Ts)+(n(2L+8Ts))来表示;如果向右偏移,可以用正M*(2NL+16Ts)+(n(2L+8Ts))来表示。
其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令或消息指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数,对于向左偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十五种、主小区的SCS为60kHz,辅小区的SCS为120kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用(NL+16Ts)+(nL+16Ts)来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十六种、主小区的SCS为120kHz,辅小区的SCS为60kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
辅小区载波相对于主小区的时隙偏移值,且指示向左偏移,可以用M*(NL+16Ts)+nL来表示;或者,如果向右偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十七种、主小区的SCS为120kHz,辅小区的SCS为15kHz。其中,主小区中CP类型为NCP,辅小区中CP类型为ECP。
辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用(NL+16Ts)+(nL+16Ts)来表示。或者,辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示。其中,M是0.5ms的正整数倍,表示具有M个0.5ms的时间长度;N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP。n为不足0.5ms的时隙个数,对于向右偏移的实现方案,n大于0时,一般需要加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
第十八种、主小区的SCS为15kHz,辅小区的SCS为120kHz。其中,主小区中CP类型为ECP,辅小区中CP类型为NCP。
辅小区载波相对于主小区的时隙偏移值,且指示向右偏移,可以用M*(NL+16Ts)+nL来表示;或者,如果向左偏移,可以用M*(NL+16Ts)+(nL+16Ts)来表示。其中,指示偏移的单位为采样点,偏移方向可以使用额外的信令指示。其中,M是0.5ms的整数倍,表示具有M个0.5ms的时间长度,N是0.5ms内的时隙个数,L是参考时间单元所对应的采样点个数,参考时间单元对应的子载波间隔和CP类型为120kHz和NCP,n为不足0.5ms的时隙个数。对于向左偏移的情况,一般n大于0时,偏移值计算公式中会加上16Ts。本申请实施例中,M,n可以通过网络设备发送给终端设备,L可以通过预定义规则获取。
可选的,上述的主小区也可以主辅小区PScell(Primary Secondary Cell)。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图12示出了本申请实施例中所涉及的装置的可能的示例性框图。如图12所示,装置1200可以包括:处理单元1202和通信单元1203。处理单元1202用于对装置1200的动作进行控制管理。通信单元1203用于支持装置1200与其他设备的通信。可选地,通信单元1203也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
该装置1200可以为上述实施例中的终端设备或网络设备、或者还可以为设置在终端设备或网络设备中的芯片。处理单元1202可以支持装置1200执行上文中各方法示例中终端设备或网络设备的动作。或者,处理单元1202主要执行方法示例中的终端设备或网络设备的内部动作,通信单元1203可以支持装置1200与其他设备之间的通信。
具体地,在一个实施例中,处理单元1202或者通信单元1203用于:获取不同小区内时间单元的偏移。或者,处理单元1202或者通信单元1203用于:获取至少一个子载波间隔和至少一个时间单元;处理单元1202用于:根据上述子载波间隔和时间单元确定偏移。
在一种可能的设计中,当装置1200为终端设备或终端设备内的芯片时,通信单元1203或处理单元1202用于:接收来自网络设备的不同小区内的时间单元的偏移。或者,当装置1200为网络设备或网络设备内的芯片时,通信单元1203或处理单元1202用于:向终端设备发送不同小区内的时间单元的偏移。
在一种可能的设计中,处理单元1202用于根据参考子载波间隔对应的时间单元、小区1和小区2的子载波间隔,确定小区1和小区2中的时间单元的偏移。
在一种可能的设计中,处理单元1202用于根据小区1和小区2的子载波间隔、小区1和小区2中的时间单元的最小值,确定小区1和小区2中的时间单元的偏移。
在一种可能的设计中,处理单元1202或者通信单元1203用于获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,第一小区的第一时间单元和第二小区的第二时间单元。处理单元1202用于根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔和第二子载波间隔,确定所述第一时间单元和所述第二时间单元之间的偏移。
示例性的,处理单元1202用于根据上述第一时间单元和第二时间单元中的最小时间单元,以及所述第一子载波间隔和第二子载波间隔,确定第一时间单元和第二时间单元之间的偏移。
示例性的,处理单元1202用于根据上述第一子载波间隔和第二子载波间隔的较大值,以及该较大子载波间隔对应的时间单元,确定第一时间单元和第二时间单元之间的偏移。
具体地,在另一个实施例中,处理单元1202或者通信单元1203用于:获取第一小区的第一循环移位和第二小区的第二循环移位;处理单元1202用于根据所述第一时间单元和所述第二时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
在一种可能的设计中,处理单元1202或者通信单元1203用于:获取第一小区的第一循环移位和第二小区的第二循环移位;处理单元1202用于:根据所述第一时间单元和所述第二时间单元中的较小值,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
在一种可能的设计中,处理单元1202或者通信单元1203用于:获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,参考子载波间隔。处理单元1202用于:根据第一小区的第一子载波间隔,第二小区的第二子载波间隔,参考子载波间隔对应的参考时间单元,确定第一小区的第一时间单元和第二小区的第二时间单元之间的偏移。
示例性的,处理单元1202或者通信单元1203用于:获取第一小区的第一循环移位和第二小区的第二循环移位;处理单元1202用于:根据所述参考时间单元,所述第一子载波间隔、所述第二子载波间隔所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
示例性的,处理单元1202或者通信单元1203用于:获取第一小区的第一循环移位和第二小区的第二循环移位;处理单元1202用于:根据所述参考时间单元,所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
可以理解,本实施例的术语,如子载波间隔、偏移、时间单元等,其定义、功能、应用场景、使用方式等可以参考前文描述,不再赘述。
采用上述方法,终端设备或网络设备通过不同小区内时间单元的偏移,有效保证不同小区的时间单元对齐和多小区下的传输性能,比如,可以有效增加上下行传输机会或者有效避免信道质量较差而导致的上下行传输错误,便于满足灵活多变的业务量和/或覆盖要求较高的通信需求。
需要说明的是,本申请实施例中对单元(模块)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质可以为存储器等各种可以存储程序代码的介质。
图13给出了一种装置的结构示意图,该装置1300包括处理器1310、存储器1320和收发器1330。在一个示例中,该装置1300可以实现图12所示意出的装置1200的功能,具体来说,图12中所示意的通信单元1203的功能可以由收发器实现,处理单元1202的功能可由处理器实现,存储单元1201的功能可以由存储器实现。在又一个示例中,该装置1300可以是上述方法实施例中的终端设备或网络设备,该装置1300可用于实现上述方法实施例中描述的对应于终端设备或网络设备的方法,具体可以参见上述方法实施例中的说明。
图14为本申请实施例提供的一种终端设备1400的结构示意图。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备1400包括处理器1401、存储器1402、控制电路1403、天线1404以及输入输出装置1405。该终端设备1400可应用于如图1、图2或图3所示的系统架构中,执行上述方法实施例中终端设备的功能。
处理器1401主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器1402主要用于存储软件程序和数据。控制电路1403主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路1403和天线1404一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置1405,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器1401可以读取存储器1402中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1401对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线1404以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1401,处理器1401将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器1402和处理器1401。在实际的终端设备中,可以存在多个处理器1401和存储器1402。存储器1402也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器1401可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器1401集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器1401中,也可以以软件程序的形式存储在存储器1402中,由处理器1401执行软件程序以实现基带处理功能。
图14所示的终端设备1400能够实现图5或图11所示意的方法实施例中涉及终端设备的各个过程。终端设备1400中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图15为本申请实施例提供的一种网络设备1500的结构示意图。如图15所示,网络设备1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)1520。所述RRU 1510可以称为通信单元,与图12中的通信单元1203对应,可选地,该通信单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送信息。所述BBU1510部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图12中的处理单元1202对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图15所示的网络设备1500能够实现图5或图11所示意的方法实施例中涉及网络设备的各个过程。网络设备1500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory, RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (12)

  1. 一种通信方法,其特征在于,包括:
    获取第一小区的第一子载波间隔,第二小区的第二子载波间隔,第一小区的第一时间单元和第二小区的第二时间单元,所述第一时间单元用于在所述第一小区内的通信,所述第二时间单元用于在所述第二小区内的通信;
    根据所述第一时间单元和所述第二时间单元中的最小时间单元,所述第一子载波间隔和第二子载波间隔,确定所述第一时间单元和所述第二时间单元之间的偏移。
  2. 如权利要求1所述的通信方法,其特征在于,还包括;
    获取第一小区的第一循环移位和第二小区的第二循环移位;
    所述确定所述偏移,具体包括:
    根据所述第一时间单元和所述第二时间单元中的最小时间单元,所述第一子载波间隔、所述第二子载波间隔、所述第一循环移位和所述第二循环移位,确定所述第一时间单元和所述第二时间单元之间的偏移。
  3. 如权利要求2所述的通信方法,其特征在于,所述第一小区为主小区,所述第二小区为辅小区,所述第一子载波间隔和所述第二子载波间隔均为60kHz,所述确定偏移,具体包括:
    当所述第一循环移位为ECP,所述第二循环移位为NCP时,所述偏移的取值为M*(16Ts+NL)+n*(L+8Ts),其中,M是时间区域的个数,N是所述时间区域内的所述第二时间单元的个数,L是所述所述第一时间单元和所述第二时间单元中的最小时间单元对应的采样点个数,该所述最小时间单元对应的循环移位为所述第二循环移位,n表示超出所述时间区域的所述第二单元的个数,Ts为采样点;或,
    当所述第一循环移位为NCP,所述第二循环移位ECP时,所述偏移的取值为M*(NL+16Ts)+(n(L+8Ts))或M*(NL+16Ts)+(n(L-8Ts)),其中,M是时间区域的个数,N是所述时间区域内的所述第一时间单元的个数,L是所述第一时间单元和所述第二时间单元中的最小时间单元对应的采样点个数,所述最小时间单元对应的循环移位为所述第一循环移位,n表示超出所述时间区域的所述第一时间单元的个数,Ts为采样点。
  4. 如权利要求2所述的通信方法,其特征在于,所述第一小区为主小区,所述第二小区为辅小区,所述确定偏移,具体包括:
    所述第一循环移位和所述第二循环移位中至少一个为ECP,所述偏移的取值为M*NL+nL,其中,M是时间区域的个数,N是所述时间区域内所述第一时间单元和所述第二时间单元中的最小时间单元的个数,L是所述最小时间单元对应的采样点个数,所述最小时间单元对应的循环移位为ECP,n表示超出所述时间区域的所述第一时间单元和所述第二时间单元的最小时间单元的个数。
  5. 如权利要求2所述的通信方法,其特征在于,所述第一小区为主小区,所述第二小区为辅小区,所述第一子载波间隔为60kHz,和所述第二子载波间隔为15kHz,所述确定偏移,具体包括:
    当所述第一循环移位为NCP,所述第二循环移位ECP时,所述偏移值为M*(NL+16Ts)+(nL+16Ts)或M*(NL+16Ts)+nL,其中,M是时间区域的个数,N是所述时间区域内的所述第一时间单元的个数,L是所述第一时间单元和所述第 二时间单元中的最小时间单元对应的采样点个数,所述最小时间单元对应的循环移位为所述第一循环移位,n表示超出所述时间区域的所述第一时间单元的个数,Ts为采样点。
  6. 如权利要求3-5任一项所述的方法,其特征在于:
    所述时间区域内的第一个所述第一时间单元的起始位置和第一个所述第二时间单元的起始位置,与所述时间区域的起始位置对齐。
  7. 如权利要求3-5任一项所述的方法,其特征在于:
    所述时间区域的时间长度为0.5毫秒或者0.5毫秒的整数倍。
  8. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至7中任一项所述的方法。
  9. 一种终端设备,其特征在于,包括如权利要求8所述的装置。
  10. 一种网络设备,其特征在于,包括如权利要求8所述的装置。
  11. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至7任一项所述的方法。
  12. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至7任一项所述的方法。
PCT/CN2019/116313 2019-11-07 2019-11-07 一种通信方法及装置 WO2021087877A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116313 WO2021087877A1 (zh) 2019-11-07 2019-11-07 一种通信方法及装置
CN201980102077.0A CN114667782A (zh) 2019-11-07 2019-11-07 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116313 WO2021087877A1 (zh) 2019-11-07 2019-11-07 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021087877A1 true WO2021087877A1 (zh) 2021-05-14

Family

ID=75849113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116313 WO2021087877A1 (zh) 2019-11-07 2019-11-07 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114667782A (zh)
WO (1) WO2021087877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523386B2 (en) * 2019-09-19 2022-12-06 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system, and apparatus supporting same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309961A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种配置随机接入的方法、网络设备及终端设备
CN110035444A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源确定的方法和装置
CN110167133A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 一种上行同步方法及装置
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309961A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种配置随机接入的方法、网络设备及终端设备
CN110035444A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源确定的方法和装置
CN110167133A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 一种上行同步方法及装置
US20190306832A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for ss/pbch block

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on timing advance and RACH procedures for NTN", 3GPP DRAFT; R1-1904000, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699411 *
INTEL CORPORATION: "On BWP switching", 3GPP DRAFT; R4-1806318 ON BWP SWITCHING_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Busan, South Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051446011 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11523386B2 (en) * 2019-09-19 2022-12-06 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system, and apparatus supporting same
US11706742B2 (en) 2019-09-19 2023-07-18 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system, and apparatus supporting same

Also Published As

Publication number Publication date
CN114667782A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US10652882B2 (en) Data transmission method, wireless network device, and communications system
WO2018137577A1 (zh) 通信方法及装置
US11272547B2 (en) Communication method, network device, and user equipment
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
TW201724792A (zh) 增強的資源映射方案
TW202008829A (zh) 資源配置的方法和終端設備
WO2020093947A1 (zh) 同步信号的传输方法、网络设备与终端设备
WO2018082678A1 (zh) 通信方法和通信装置
TW202008828A (zh) 資源配置的方法和終端設備
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
CN111465022B (zh) 一种信号发送、接收方法及设备
KR20220050157A (ko) 리소스 다중화 방법 및 장치
CN114365537A (zh) 一种上行传输的方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2019047553A1 (zh) 一种时隙格式指示方法、设备及系统
WO2021159503A1 (zh) 资源配置方法和装置
WO2021087877A1 (zh) 一种通信方法及装置
US11108531B2 (en) Method and apparatus for setting symbol
WO2021031018A1 (zh) 一种通信方法及装置
WO2018202162A1 (zh) 传输信号的方法和装置
WO2021184140A1 (zh) 一种信息处理方法及装置
WO2020087982A1 (zh) 通信方法、装置及存储介质
WO2020155181A1 (zh) 信道传输的方法和设备
WO2018006741A1 (zh) 传输信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951421

Country of ref document: EP

Kind code of ref document: A1