WO2020001533A1 - 定位参考信号配置、接收方法和设备 - Google Patents

定位参考信号配置、接收方法和设备 Download PDF

Info

Publication number
WO2020001533A1
WO2020001533A1 PCT/CN2019/093256 CN2019093256W WO2020001533A1 WO 2020001533 A1 WO2020001533 A1 WO 2020001533A1 CN 2019093256 W CN2019093256 W CN 2019093256W WO 2020001533 A1 WO2020001533 A1 WO 2020001533A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs sequence
sequence
terminal device
prs
slot
Prior art date
Application number
PCT/CN2019/093256
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020001533A1 publication Critical patent/WO2020001533A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of communication technologies, and more particularly, to a positioning reference signal configuration and receiving method and device.
  • NR New Radio
  • the user equipment (UE) in the NR system cannot obtain information related to the PRS, and the UE cannot locate according to the PRS.
  • the present disclosure takes the NR system as an example to explain the configuration of these contents, but is not limited to the NR system.
  • Embodiments of the present disclosure provide a positioning reference signal configuration and receiving method and device, so as to solve a problem that a UE cannot obtain PRS-related information in an NR system, and the UE cannot perform positioning according to the PRS.
  • a positioning reference signal configuration method is provided and is applied to a network device.
  • the method includes:
  • the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence
  • the generation parameter is related to any one of the following parameters: a cell identifier ID of the PRS sequence, an ID of a terminal device receiving the PRS sequence, and a user group of a user group to which the terminal device receiving the PRS sequence belongs. ID and the ID of the network device configuration.
  • a positioning reference signal receiving method which is applied to a terminal device.
  • the method includes:
  • the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence
  • the generating parameter is related to any one of the following parameters: a cell identifier ID of the PRS sequence, an ID of a terminal device receiving the PRS sequence, and a ID and the ID of the network device configuration.
  • a network device includes:
  • a first sending module configured to send first configuration information, where the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence;
  • the generation parameter is related to any one of the following parameters: a cell identifier ID of the PRS sequence, an ID of a terminal device receiving the PRS sequence, and a user group of a user group to which the terminal device receiving the PRS sequence belongs. ID and the ID of the network device configuration.
  • a terminal device includes:
  • a first receiving module configured to receive first configuration information, where the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence;
  • the generation parameter is related to any one of the following parameters: a cell identifier ID of the PRS sequence, an ID of a terminal device receiving the PRS sequence, and a user group of a user group to which the terminal device receiving the PRS sequence belongs. ID and the ID of the network device configuration.
  • a network device includes a memory, a processor, and a wireless communication program stored on the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, the steps of the method as described in the first aspect are carried out.
  • a terminal device includes a memory, a processor, and a wireless communication program stored in the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, the steps of the method as described in the second aspect are carried out.
  • a computer-readable medium stores a wireless communication program, and when the wireless communication program is executed by a processor, the method according to the first aspect or the second aspect is implemented. step.
  • the terminal device can be caused to generate a local PRS sequence, and then after receiving the PRS sequence from the network device, based on the local The PRS sequence determines the arrival time TOA of the PRS sequence from the network device, which can realize the positioning of the terminal device and improve the communication effectiveness.
  • FIG. 1 is one of the schematic flowcharts of a positioning reference signal configuration method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an SSB ID configuration according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a PRS resource mapping structure according to an embodiment of the present disclosure.
  • FIG. 4 is a second schematic flowchart of a positioning reference signal configuration method according to an embodiment of the present disclosure.
  • FIG. 5 is one of the schematic flowcharts of a positioning reference signal receiving method according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic flowchart of a positioning reference signal receiving method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic diagram of another structure of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • Terminal equipment can communicate with at least one core network via a wireless access network (for example, Radio Access Network, RAN).
  • the device can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device that connects wirelessly Network access to exchange language and / or data.
  • a network device is a device that is deployed in a radio access network to provide positioning reference signal configuration functions for an NR system for a terminal device.
  • the network device may be a base station, and the base station may be a base station in GSM or CDMA ( Base Transceiver Station (BTS), can also be a base station (NodeB) in WCDMA, or an evolutionary base station (eNB, e-NodeB) and 5G base station (gNB) in LTE, or LTE Location server (such as Evolved Serving Mobile Location Center (E-SMLC), 5G's location server or Location Management Function (LMF)), and network-side equipment in subsequent evolved communication systems
  • E-SMLC Evolved Serving Mobile Location Center
  • LMF Location Management Function
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiments of the present disclosure
  • the process constitutes any qualification.
  • the following uses the NR system as an example to describe the positioning reference signal configuration, receiving method, and device provided by the embodiments of the present disclosure. It should be understood that the positioning reference signal configuration, receiving method, and device provided by the embodiments of the present disclosure may also be applied. For other communication systems, it is not limited to NR systems.
  • FIG. 1 illustrates a positioning reference signal configuration method applied to a network device according to some embodiments of the present disclosure. As shown in FIG. 1, the method may include the following steps:
  • Step 101 Send first configuration information, where the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence.
  • the generation parameter may be related to any one of the following parameters: a cell identification code (Identity, ID) that sends the PRS sequence, an ID of a terminal device that receives the PRS sequence, and a terminal that receives the PRS sequence The ID of the user group to which the device belongs, the ID of the network device configuration, and so on.
  • a cell identification code Identity, ID
  • ID an ID of a terminal device that receives the PRS sequence
  • a terminal that receives the PRS sequence
  • the ID of the user group to which the device belongs the ID of the network device configuration, and so on.
  • the cell ID transmitting the PRS sequence may be a physical cell ID or a virtual cell ID.
  • the ID configured by the network device may be an ID allocated by the network device to uniquely identify the PRS sequence according to a certain rule.
  • the positioning reference signal configuration method provided by the embodiment shown in FIG. 1 sends a generating parameter for generating a positioning reference signal PRS sequence, so that a terminal device can generate a local PRS sequence, and then receive a PRS sequence from a network device. Later, the arrival time TOA of the PRS sequence from the network device is determined based on the local PRS sequence, which can realize the positioning of the terminal device and improve the communication efficiency.
  • the generation parameter may be further related to at least one of the following parameters: a slot number in a radio frame in which the PRS sequence is located, and an orthogonal frequency division in a slot in which the PRS sequence is located.
  • a slot number in a radio frame in which the PRS sequence is located and an orthogonal frequency division in a slot in which the PRS sequence is located.
  • CP Normal Cyclic Prefix
  • ECP Extended Cyclic Prefix
  • the positioning reference signal configuration method provided in the embodiment of the present disclosure may further include: generating a target PRS sequence based on the generation parameter, and sending the target PRS sequence.
  • the generation parameter is further used to generate a local PRS sequence of the terminal device, and the local PRS sequence is used to determine an arrival time (Time of Arrival, TOA) of the target PRS sequence to the terminal device,
  • the TOA is used to determine the location of the terminal device, and the process of positioning the terminal device based on the PRS sequence will be separately described below, which will not be repeated here.
  • the pseudo-random sequence may be orthogonal phase shift keyed (Quadrature Phase Shift Keying (QPSK) is generated after modulation.
  • QPSK Quadrature Phase Shift Keying
  • the pseudo-random sequence c (n) may be a gold sequence. Accordingly, the above-mentioned generation parameters may also be referred to as generation parameters of a gold sequence.
  • the expression of c (n) is:
  • x initialization state 2 can be in binary form a decimal number C init representation, C init can be understood as a pseudo-random sequence c (n) to generate an initial sequence of values, and in this example, the initial value C init bit The number does not exceed 31 digits.
  • the symbol "mod” is a remainder symbol and can be called “modulo” or “modulo operation”.
  • N c 1600, of course N c can also take other values.
  • the meaning of N c can be understood as: after generating two very long sequences according to the expressions of x 1 and x 2 , starting from the 1600th bit of the two very long sequences, reading M bits backwards to obtain M bits Two m-sequences, and add these two m-sequences to modulo 2 to get c (n).
  • the PRS sequence obtained by performing QPSK modulation on the gold sequence is:
  • the initial value C init of x 2 becomes a key parameter for generating the PRS sequence, and it can be considered that the above generation parameter includes the initial value C init for generating the PRS sequence.
  • the initial value C init is related to at least one of the following parameters: a cell ID that sends the PRS sequence, an ID of a terminal device that receives the PRS sequence, The ID of the user group to which the terminal device belongs, the ID configured by the network device, the slot number in the radio frame where the PRS sequence is located, the sequence number of the orthogonal frequency division multiplexing OFDM symbol in the slot where the PRS sequence is located, and the PRS The type of the cyclic prefix CP of the sequence.
  • N CP is related to the type of the CP, if the type of the CP is a normal cyclic prefix NCP, then N CP is equal to 1, if the type of the CP is an extended cyclic prefix ECP, then N CP is equal to 0; the value of y equal The maximum number of bits occupied; "mod" means modulo operation.
  • the value of can be an integer between 0 and 1007, and accordingly, The maximum number of bits occupied is 11 bits, that is, y is equal to 11, and then specifically:
  • the generating parameters include generating an initial value C init of the PRS sequence, and the initial value C init is related to a synchronization signal block (Synchronization Signal Block) in addition to the parameters listed in the previous example.
  • SSB synchronization signal block
  • SSB ID can be understood as an identifier that uniquely identifies SSB
  • SSB ID can be the SSID number (also called SSB index)
  • the value of the SSB number can be an integer from 0 to 63
  • the maximum number of bits occupied is 6 bits.
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the value of can be an integer between 0 and 1007, and accordingly, The maximum number of bits occupied is 11 bits, that is, y is equal to 11 at this time, and then specifically:
  • the positioning reference signal configuration method may further include: generating a corresponding number of multiple target PRS sequences based on the multiple initial values C init ; and sending the multiple target PRSs on the corresponding number of OFDM symbols in a slot sequence.
  • one initial value C init corresponds to one PRS sequence. Therefore, the corresponding number may refer to the same number as the number of the multiple initial values C init .
  • the initial value C init of a target PRS sequence is It is determined based on a part of the bits of the SSB ID distributed in the target PRS sequence, and the bits occupied by the SSB ID are distributed on the multiple target PRS sequences.
  • the target PRS sequence on an OFDM symbol is correspondingly distributed with an x-bit SSB ID, that is, the target on the OFDM symbol.
  • the above initial value C init can be calculated by the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • an initial value C init calculation formula for generating the PRS sequence 22 and the PRS sequence 23 can be obtained.
  • FIG. 3 is a schematic diagram of a resource mapping structure in which the PRS sequence 21, the PRS sequence 22, and the PRS sequence 23 are mapped on different OFDM symbols in the same time slot. Specifically, in FIG. 3, the PRS sequence 21, the PRS sequence 22, and the PRS sequence 23 are respectively mapped on: an OFDM symbol 31, an OFDM symbol 32, and an OFDM symbol 33.
  • the number of bits of the initial value C init in order to prevent the number of bits of the initial value C init from exceeding 31 bits, in addition to the part of the bits occupied by the SSB ID in the PRS sequence corresponding to an OFDM symbol as described in the previous embodiment, the number of digits in the middle of the initial value C init can also be reduced.
  • the formulas for calculating the initial value C init listed in the above embodiments can be removed.
  • the corresponding initial value C init can be determined based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the positioning reference signal configuration method provided in the embodiment of the present disclosure further includes: generating a target PRS sequence based on the generation parameter, and sending the target PRS sequence. Then, as shown in FIG. 4, before sending the target PRS sequence, the method may further include:
  • Step 102 Send second configuration information, where the second configuration information includes time domain position information and frequency domain position information of the resource particle RE occupied by the target PRS sequence, and the frequency domain position and the designation of the network device. numerology is associated.
  • sending the target PRS sequence may specifically include: sending the target PRS sequence at the time domain position and the frequency domain position associated with the designated numerology.
  • the frequency domain position information includes starting point information of the frequency domain position, and the starting point information is a first subcarrier on a first common resource block of the network device.
  • a network device may map a PRS sequence to a resource particle (Resource Element (RE)) at a time-frequency position (k, l), where k represents a frequency under the numerology.
  • Resource Element RE
  • the reference point A may be that during the OFDM baseband signal generation process, it is necessary to ensure that the subcarriers 0 in all Common RBs transmitted at different subcarrier spacing (SCS) on the same carrier are aligned, that is, under the same carrier. The boundaries of all Common RBs need to be aligned.
  • SCS subcarrier spacing
  • the terminal device can be made to receive the target PRS sequence from the network device at the corresponding time-frequency position, and then the local PRS sequence is used for positioning.
  • the following describes the numerology in the NR system in combination with the list.
  • the NR system supports multiple sets of basic parameter design, such as the subcarrier spacing ( ⁇ f) of 15, 30, 60, 120, and 240kHz to support the spectrum from 100MHz to tens of GHz.
  • ⁇ f subcarrier spacing
  • NR can support multiple numerology related to subcarrier spacing. Specifically, it is represented by Table 1:
  • ⁇ ⁇ f 2 ⁇ ⁇ 15 [kHz] CP 0 15 normal 1 30 normal 2 60 Normal, extended 3 120 normal 4 240 normal
  • the time slot configuration based on different numerology in the NR system is shown in Tables 2 and 3, where Table 2 corresponds to the normal cyclic prefix and Table 3 corresponds to the extended cyclic prefix.
  • the generation parameters included in the first configuration information for generating the PRS sequence may include other parameters such as a modulation mode in addition to the foregoing initial value C init , and not only the foregoing initial value C init .
  • the network device may send the first configuration information and the second configuration information in the same message, or send the first configuration information and the second configuration information in different messages. .
  • the network device may send the first configuration information and / or the second configuration information in at least one of the following ways: sending the first configuration information and / or the second configuration information based on high-level signaling, such as radio resource control (Radio Resource Control, RRC); sending the first configuration information and / or the second configuration information based on the MAC layer signaling; or sending the first configuration information and / or the second configuration information based on the Downlink Control Information (DCI) Or sending the first configuration information and / or the second configuration information based on a positioning protocol (Location Positioning Protocol, LPP) between the terminal and the location server.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • LPP Location Positioning Protocol
  • generating parameters in a positioning reference signal configuration method applied to a network device includes generating an initial value C init of the PRS sequence:
  • a cell ID transmitting the PRS sequence an ID of the terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and an ID configured by the network device ;
  • the value of y is equal to The maximum number of bits occupied; "mod" means modulo operation.
  • FIG. 5 shows a positioning reference signal receiving method provided by some embodiments of the present disclosure. The method is applied to a terminal device and may include the following steps:
  • Step 501 Receive first configuration information, where the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence.
  • the generation parameter may be related to any one of the following parameters: a cell ID transmitting the PRS sequence, an ID of a terminal device receiving the PRS sequence, and an ID of a user group to which the terminal device receiving the PRS sequence belongs. And network device configuration ID, and so on.
  • the cell ID transmitting the PRS sequence may be a physical cell ID or a virtual cell ID.
  • the ID configured by the network device may be an ID allocated by the network device to uniquely identify the PRS sequence according to a certain rule.
  • the terminal device since the terminal device receives the generating parameter for generating the positioning reference signal PRS sequence, it can generate a local PRS sequence, and then after receiving the PRS sequence from the network device By determining the arrival time TOA of the PRS sequence from the network device based on the local PRS sequence, the positioning of the terminal device can be realized, and the communication efficiency is improved.
  • the generation parameter is further related to at least one of the following parameters: a slot number in a radio frame where the PRS sequence is located, and an orthogonal frequency division multiplexed OFDM symbol in the slot where the PRS sequence is located And the type of the cyclic prefix CP of the PRS sequence.
  • the generation parameter may be used to generate a local PRS sequence of the terminal device, and the local PRS sequence is used to determine an arrival time TOA of the target PRS sequence to the terminal device, and the TOA is used For determining the location of the terminal device.
  • the terminal device can specifically perform quadrature phase shift keying (QPSK) modulation on the pseudo-random sequence to generate a local PRS sequence, where the pseudo-random sequence c (n) can be a gold sequence, and accordingly, the above-mentioned generation parameters are also It can be called the generation parameter of gold sequence.
  • QPSK quadrature phase shift keying
  • the generating parameter includes generating an initial value C init of the PRS sequence, and:
  • N CP is related to the type of the CP, if the type of the CP is a normal cyclic prefix NCP, then N CP is equal to 1, if the type of the CP is an extended cyclic prefix ECP, then N CP is equal to 0; the value of y equal The maximum number of bits occupied; "mod" means modulo operation.
  • the generating parameter includes generating an initial value C init of the PRS sequence, and the initial value C init is further related to a synchronization signal block SSB ID.
  • the initial value C init can be calculated based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the positioning reference signal receiving method may further include: receiving a corresponding number of multiple target PRS sequences sent by a network device on multiple OFDM symbols in a time slot, where the multiple target PRS sequences are based on the multiple The initial values C init are generated.
  • one initial value C init corresponds to one PRS sequence. Therefore, the corresponding number may refer to the same number as the number of the multiple initial values C init .
  • the initial value C init of a target PRS sequence is It is determined based on a part of the bits of the SSB ID distributed in the target PRS sequence, and the bits occupied by the SSB ID are distributed on the multiple target PRS sequences.
  • x-bit SSB ID information is added to the initial value C init formula of the target PRS sequence on the OFDM symbol.
  • the above initial value C init can be calculated by the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the number of bits of the initial value C init in order to prevent the number of bits of the initial value C init from exceeding 31 bits, in addition to the part of the bits occupied by the SSB ID in the PRS sequence corresponding to an OFDM symbol as described in the previous embodiment, the number of digits in the middle of the initial value C init can also be reduced.
  • the formulas for calculating the initial value C init listed in the above embodiments can be removed.
  • the corresponding initial value C init can be determined based on the following formula:
  • the initial value C init is determined based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • generating parameters includes generating an initial value C init of the PRS sequence:
  • a cell ID transmitting the PRS sequence an ID of the terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and an ID configured by the network device ;
  • the value of y is equal to The maximum number of bits occupied; "mod" means modulo operation.
  • the positioning reference signal receiving method further includes: receiving a target PRS sequence, the target PRS sequence is generated by a network device based on the generation parameter . Then, as shown in FIG. 6, before the receiving the target PRS sequence, the method may further include step 502. In step 502, second configuration information is received, where the second configuration information includes time domain position information and frequency domain position information of a resource particle RE occupied by the target PRS sequence, and the frequency domain position is related to the network device. Associated with the specified numerology.
  • the “receiving the target PRS sequence” may specifically include: receiving the target PRS sequence at the time domain location and the frequency domain location associated with the designated numerology.
  • the frequency domain position information includes starting point information of the frequency domain position, and the starting point information is a first subcarrier on a first common resource block of the network device.
  • resource particle Resource, Element, RE
  • the terminal device can be made to receive the target PRS sequence from the network device at the corresponding time-frequency position, and then the local PRS sequence is used for positioning.
  • the terminal device may receive the first configuration information and the second configuration information in the same message, or may receive the first configuration information and the second configuration information in different messages. .
  • the terminal device may receive the first configuration information and / or the second configuration information in at least one of the following ways: receiving the first configuration information and / or the second configuration information based on high-level signaling, such as radio resource control (Radio Resource Control, RRC); receiving first configuration information and / or second configuration information based on MAC layer signaling; or receiving first configuration information and / or second configuration information based on downlink control information (DCI) ,and many more.
  • RRC Radio Resource Control
  • DCI downlink control information
  • the terminal device may further perform positioning based on the target PRS sequence.
  • the following uses the PRS in Observed Time Difference of Arrival (OTDOA) positioning as an example to briefly explain the process of positioning a terminal device based on PRS.
  • OTDOA Observed Time Difference of Arrival
  • the PTD positioning method based on the OTDOA positioning method may include:
  • the network device generates a target PRS sequence based on the method described above, and sends the target PRS sequence to a terminal device, where the network device includes a serving cell of the terminal device and a multi-node selected from a vicinity of the terminal device. Neighboring cells.
  • the terminal device performs time-domain correlation between the target PRS sequence from the neighboring cell and the local PRS sequence to obtain the delay power spectrum corresponding to each neighboring cell.
  • the local PRS sequence is a PRS sequence generated by the terminal device based on the received first configuration information.
  • the terminal device searches for the first reach of the neighboring cell according to the delay power spectrum corresponding to the neighboring cell, and obtains the TOA of the target PRS sequence sent by each neighboring cell to the terminal device.
  • the network device determines a reference signal time difference (RSTD) between the serving cell and each neighboring cell based on the TOAs corresponding to at least three neighboring cells, and determines the location of the terminal device. Specifically, the coordinates of the terminal device can be calculated.
  • RSTD reference signal time difference
  • the network device does not obtain an accurate PRS arrival time (TOA), and the location of the terminal device is determined by the arrival time difference (TDOA) of at least three neighboring cells, that is, the relative time instead of the absolute time.
  • TOA PRS arrival time
  • TDOA arrival time difference
  • the positioning reference signal receiving method provided by the embodiment of the present disclosure corresponds to the positioning reference signal configuration method provided by the embodiment of the present disclosure. Therefore, the description of the positioning reference signal receiving method in this specification is relatively simple. For related points, please refer to the above. The description of the positioning reference signal configuration method.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 7, the network device 700 includes a first sending module 701.
  • a first sending module 701 configured to send first configuration information, where the first configuration information includes a generation parameter used to generate a positioning reference signal PRS sequence;
  • the generation parameter is related to any one of the following parameters: a cell ID transmitting the PRS sequence, an ID of a terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and The ID of the network device configuration.
  • the network device 700 provided in the embodiment shown in FIG. 7 sends a generation parameter for generating a positioning reference signal PRS sequence, so that the terminal device can generate a local PRS sequence. After receiving the PRS sequence from the network device, Determining the arrival time TOA of the PRS sequence from the network device based on the local PRS sequence can realize the positioning of the terminal device and improve the communication effectiveness.
  • the generation parameter is further related to at least one of the following parameters:
  • the type of the cyclic prefix CP of the PRS sequence is the type of the cyclic prefix CP of the PRS sequence.
  • the generating parameter includes generating an initial value C init of the PRS sequence:
  • N CP is related to the type of the CP, if the type of the CP is a normal cyclic prefix NCP, then N CP is equal to 1, if the type of the CP is an extended cyclic prefix ECP, then N CP is equal to 0; the value of y equal The maximum number of bits occupied; "mod" means modulo operation.
  • generating parameters includes generating an initial value C init of the PRS sequence:
  • a cell ID transmitting the PRS sequence an ID of the terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and an ID configured by the network device ;
  • the value of y is equal to The maximum number of bits occupied; "mod" means modulo operation.
  • the generating parameter includes generating an initial value C init of the PRS sequence, and the initial value C init is further related to a synchronization signal block SSB ID.
  • the initial value C init can be calculated based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the network device 700 may further include a first generating module and a third sending module.
  • the first generating module is configured to generate a corresponding number of target PRS sequences based on the multiple initial values C init .
  • a third sending module is configured to send the multiple target PRS sequences on the corresponding number of OFDM symbols in a time slot.
  • the initial value C init of a target PRS sequence is It is determined based on a part of the bits of the SSB ID distributed in the target PRS sequence, and the bits occupied by the SSB ID are distributed on the multiple target PRS sequences.
  • x-bit SSB ID information is added to the initial value C init formula of the target PRS sequence on the OFDM symbol.
  • the above initial value C init can be calculated by the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the number of digits in the middle of the initial value C init can also be reduced.
  • the formulas for calculating the initial value C init listed in the above embodiments can be removed.
  • Was added 6-bit SSB ID, corresponding to the following formula may be determined based on the initial value C init: determining the initial value C init based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the network device 700 may further include:
  • a fourth sending module is configured to generate a target PRS sequence based on the generation parameters, and send the target PRS sequence.
  • the network device 700 may further include: a second sending module 702, configured to send second configuration information before the sending of the target PRS sequence, where the second configuration information includes : Time domain location information and frequency domain location information of the resource particle RE occupied by the target PRS sequence, and the frequency domain location is associated with a designated numerology of the network device.
  • a second sending module 702 configured to send second configuration information before the sending of the target PRS sequence, where the second configuration information includes : Time domain location information and frequency domain location information of the resource particle RE occupied by the target PRS sequence, and the frequency domain location is associated with a designated numerology of the network device.
  • the target PRS sequence is transmitted on the time domain position and the frequency domain position associated with the designated numerology.
  • the terminal device can be made to receive the target PRS sequence from the network device at the corresponding time-frequency position, and then the local PRS sequence is used for positioning.
  • the network device 700 may send the first configuration information and the second configuration information in the same message or different messages.
  • the generation parameter may also be used to generate a local PRS sequence of the terminal device, where the local PRS sequence is used to determine an arrival time TOA of the target PRS sequence to the terminal device, and the TOA is used to determine the The location of the end device.
  • the network devices shown in FIG. 7 to FIG. 8 may be used to implement the embodiments of the positioning reference signal configuration method shown in FIG. 1 to FIG. 4.
  • an embodiment of the present disclosure further provides a terminal device 900.
  • the terminal device 900 may include a first receiving module 901.
  • a first receiving module is configured to receive first configuration information, where the first configuration information includes a generation parameter for generating a positioning reference signal PRS sequence.
  • the generation parameter is related to any one of the following parameters: a cell ID transmitting the PRS sequence, an ID of a terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and The ID of the network device configuration.
  • the terminal device 900 provided in the embodiment shown in FIG. 9 receives a generating parameter for generating a positioning reference signal PRS sequence, so it can generate a local PRS sequence. Based on the local PRS after receiving the PRS sequence from the network device, The sequence determines the arrival time TOA of the PRS sequence from the network device, which can realize the positioning of the terminal device and improve the communication effectiveness.
  • the generation parameter may also be related to at least one of the following parameters:
  • the type of the cyclic prefix CP of the PRS sequence is the type of the cyclic prefix CP of the PRS sequence.
  • the generating parameter includes generating an initial value C init of the PRS sequence:
  • N CP is related to the type of the CP, if the type of the CP is a normal cyclic prefix NCP, then N CP is equal to 1, if the type of the CP is an extended cyclic prefix ECP, then N CP is equal to 0; the value of y equal The maximum number of bits occupied; "mod" means modulo operation.
  • generating parameters includes generating an initial value C init of the PRS sequence:
  • a cell ID transmitting the PRS sequence an ID of the terminal device receiving the PRS sequence, an ID of a user group to which the terminal device receiving the PRS sequence belongs, and an ID configured by the network device ;
  • the value of y is equal to The maximum number of bits occupied; "mod" means modulo operation.
  • the generating parameter includes generating an initial value C init of the PRS sequence, and the initial value C init is further related to a synchronization signal block SSB ID.
  • the initial value C init can be calculated based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the terminal device 900 may further include: a third receiving module, configured to receive a corresponding number of multiple target PRS sequences sent by the network device on multiple OFDM symbols in a time slot, the multiple target PRS sequences Generated by the network device based on a plurality of the initial values C init .
  • a third receiving module configured to receive a corresponding number of multiple target PRS sequences sent by the network device on multiple OFDM symbols in a time slot, the multiple target PRS sequences Generated by the network device based on a plurality of the initial values C init .
  • the initial value C init of a target PRS sequence is It is determined based on a part of the bits of the SSB ID distributed in the target PRS sequence, and the bits occupied by the SSB ID are distributed on the multiple target PRS sequences.
  • the initial value C init can be calculated based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the initial value C init may be determined based on the following formula:
  • N CP is related to the type of the CP.
  • NCP is a normal cyclic prefix 1
  • ECP extended cyclic prefix 0
  • N CP is equal to 0
  • the terminal device 900 may further include a fourth receiving module, configured to receive a target PRS sequence, where the target PRS sequence is generated by the network device based on the generation parameter.
  • a fourth receiving module configured to receive a target PRS sequence, where the target PRS sequence is generated by the network device based on the generation parameter.
  • the terminal device 900 may further include: a second receiving module 902, configured to receive second configuration information before the receiving target PRS sequence, where the second configuration information includes: The time domain position information and the frequency domain position information of the resource particle RE occupied by the target PRS sequence are associated with the designated numerology of the network device.
  • the target PRS sequence is received at the time domain position and the frequency domain position associated with the designated numerology.
  • the terminal device 900 may receive the first configuration information and the second configuration information in the same message or different messages.
  • the generation parameter is further used to generate a local PRS sequence of the terminal device, where the local PRS sequence is used to determine an arrival time TOA of the target PRS sequence to the terminal device, and the TOA is used to determine The location of the terminal device.
  • the terminal device shown in FIG. 9 to FIG. 10 may be used to implement the embodiments of the positioning reference signal receiving method shown in FIG. 5 to FIG. 6.
  • FIG. 11 is a structural diagram of a network device applied in an embodiment of the present disclosure, which can implement the details of the positioning reference signal configuration method described above and achieve the same effect.
  • the network device 1100 includes: a processor 1101, a transceiver 1102, a memory 1103, a user interface 1104, and a bus interface, where:
  • the network device 1100 further includes: a computer program stored in the memory 1103 and executable on the processor 1101.
  • the computer program is executed by the processor 1101 to implement each process of the positioning reference signal configuration method described above. And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the bus architecture may include any number of interconnected buses and bridges, and at least one processor specifically represented by the processor 1101 and various circuits of the memory represented by the memory 1103 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 1102 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 1104 may also be an interface capable of externally connecting internally required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1103 may store data used by the processor 1101 when performing operations.
  • FIG. 12 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 1200 shown in FIG. 12 includes: at least one processor 1201, a memory 1202, at least one network interface 1204, and a user interface 1203.
  • the various components in the terminal device 1200 are coupled together through a bus system 1205.
  • the bus system 1205 is configured to implement connection and communication between these components.
  • the bus system 1205 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 1205 in FIG. 12.
  • the user interface 1203 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 1202 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • DRRAM direct memory bus random access memory
  • the memory 1202 stores the following elements, executable modules or data structures, or a subset of them, or their extended set: an operating system 12021 and an application program 12022.
  • the operating system 12021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 12022 includes various application programs, such as a media player (Player), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 12022.
  • the terminal device 1200 further includes: a computer program stored on the memory 1202 and executable on the processor 1201, and the computer program is executed by the processor 1201 to implement each process of the positioning reference signal receiving method described above, and Can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the method disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 1201 or implemented by the processor 1201.
  • the processor 1201 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1201 or an instruction in the form of software.
  • the above-mentioned processor 1201 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as completion of execution by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like in the art.
  • the computer-readable storage medium is located in the memory 1202, and the processor 1201 reads the information in the memory 1202 and completes the steps of the above method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium. When the computer program is executed by the processor 1201, the steps of the positioning reference signal receiving method embodiment described above are implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), and Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, and other electronic units for performing the functions described in this disclosure Or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • An embodiment of the present disclosure further provides a computer storage medium that stores a wireless communication program, and when the wireless communication program is executed by a processor, implements the steps of the method according to any one of the foregoing.
  • the computer storage medium may be a computer-readable storage medium.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that, when executed by a processor, implements the foregoing positioning reference signal configuration method or the foregoing positioning reference signal receiving method embodiment Each process can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • An embodiment of the present disclosure further provides a computer program product including instructions.
  • a computer runs the instructions of the computer program product, the computer executes the positioning reference signal configuration method or the positioning reference signal receiving method.
  • the computer program product can run on the network device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种定位参考信号配置、接收方法和设备,该配置方法包括:发送第一配置信息,第一配置信息包括用于生成定位参考信号PRS序列的生成参数。

Description

定位参考信号配置、接收方法和设备
相关申请的交叉引用
本申请主张在2018年6月28日在中国提交的中国专利申请号No.201810689550.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及一种定位参考信号配置、接收方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,定位参考信号(Positioning Reference Signal,PRS)序列的配置,以及发送PRS序列的资源配置已经比较清晰。
但是,在新无线(New Radio,NR)系统中,如何配置这些内容还是未知的,导致NR系统中的用户设备(User Equipment,UE)无法获得与PRS有关的信息,导致UE无法依据PRS进行定位。本公开以NR系统为例说明这些内容的配置,但并不局限于NR系统。
发明内容
本公开实施例提供一种定位参考信号配置、接收方法和设备,以解决NR系统中UE无法获得与PRS有关的信息,导致UE无法依据PRS进行定位的问题。
第一方面,提供了一种定位参考信号配置方法,应用于网络设备,所述方法包括:
发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的 终端设备所属用户组的ID和网络设备配置的ID。
第二方面,提供了一种定位参考信号接收方法,应用于终端设备,所述方法包括:
接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
第三方面,提供了一种网络设备,该网络设备包括:
第一发送模块,用于发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
第四方面,提供了一种终端设备,该终端设备包括:
第一接收模块,用于接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
第五方面,提供了一种网络设备,该网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端设备,该终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
在本公开实施例中,由于所述配置方法发送了用于生成定位参考信号PRS序列的生成参数,因此可以使终端设备生成本地PRS序列,进而在接收到来自网络设备的PRS序列后,基于本地PRS序列确定来自网络设备的PRS序列的到达时间TOA,可以实现终端设备的定位,提高了通信有效性。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例提供的定位参考信号配置方法的示意性流程图之一。
图2是根据本公开实施例提供的SSB ID配置示意图。
图3是根据本公开实施例提供的PRS资源映射结构示意图。
图4是根据本公开实施例提供的定位参考信号配置方法的示意性流程图之二。
图5是根据本公开实施例提供的定位参考信号接收方法的示意性流程图之一。
图6是根据本公开实施例提供的定位参考信号接收方法的示意性流程图之二。
图7是根据本公开实施例提供的网络设备的结构示意图。
图8是根据本公开实施例提供的网络设备的另一结构示意图之二。
图9是根据本公开实施例提供的终端设备的结构示意图。
图10是根据本公开实施例提供的终端设备的另一结构示意图。
图11是根据本公开实施例提供的网络设备的又一结构示意图。
图12是根据本公开实施例提供的终端设备的又一结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统。
终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动终端设备等,可以经无线接入网(例如,Radio Access Network,RAN)与至少一个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备是一种部署在无线接入网设中用于为终端设备提供NR系统的定位参考信号配置功能的装置,所述网络设备可以为基站,所述基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),还可以是LTE中的位置服务器(如,演进的服务移动位置中心(Evolved Serving Mobile Location Center,E-SMLC)、5G的位置服务器即位置管理功能(Location Management Function,LMF))以及后续演进通信系统中的网络侧设备,然而用词并不构成对本公开保护范 围的限制。
需要说明的是,在描述具体实施例时,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
需要说明的是,下文仅以NR系统为例说明本公开实施例提供的定位参考信号配置、接收方法及装置,应理解,本公开实施例提供的定位参考信号配置、接收方法及装置还可以应用于其他通信系统,并不局限于NR系统。
下面先结合附图1至4,对应用于网络设备的定位参考信号配置方法进行说明。
图1示出了根据本公开一些实施例的定位参考信号配置方法,应用于网络设备。如图1所示,该方法可以包括如下步骤:
步骤101、发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数。
其中,所述生成参数可以与下列参数中的任一项相关:发送所述PRS序列的小区识别码(Identity,ID)、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID,等等。
发送PRS序列的小区ID可以是物理小区ID或虚拟小区ID。网络设备配置的ID可以是网络设备按照一定的规则分配的用于唯一标识PRS序列的ID。
图1所示的实施例提供的定位参考信号配置方法,由于发送了用于生成定位参考信号PRS序列的生成参数,因此可以使终端设备生成本地PRS序列,进而在接收到来自网络设备的PRS序列后,基于本地PRS序列确定来自网络设备的PRS序列的到达时间TOA,可以实现终端设备的定位,提高了通信有效性。
下面结合具体的实施例对上述生成参数包含的内容,以及发送第一配置信息的方式进行说明。
在一些实施例中,所述生成参数还可以与下列参数中的至少一项相关:所述PRS序列所在无线帧内的时隙(slot)号、所述PRS序列所在时隙内正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的序号,以及所述PRS序列的循环前缀(Cyclic Prefix,CP)的类型,等等。
其中,CP的类型包括正常循环前缀(Normal Cyclic Prefix,NCP)和扩展循环前缀(Extended Cyclic Prefix,ECP)。
在另一些实施例中,本公开实施例提供的定位参考信号配置方法,还可以包括:基于所述生成参数生成目标PRS序列,并发送所述目标PRS序列。
以及,可选地,所述生成参数还用于生成终端设备的本地PRS序列,所述本地PRS序列用于确定所述目标PRS序列到达所述终端设备的到达时间(Time of Arrival,TOA),TOA用于确定所述终端设备的位置,下文中会对终端设备基于PRS序列进行定位的过程进行单独说明,此处暂不赘述。
在本发实施例中,无论是网络设备基于上述生成参数生成目标PRS序列,还是终端设备基于上述生成参数生成本地PRS序列,都可以是对伪随机序列进行正交相移键控(Quadrature Phase Shift Keying,QPSK)调制后生成的,其中,伪随机序列c(n)可以是gold序列,相应的,上述生成参数也可以称为是gold序列的生成参数。
在一个例子中,如果伪随机序列c(n)为gold序列,则c(n)具体可以是2个m序列的异或结果(或者说2个m序列的模2加结果),且c(n)的长度为可以M,其中,n=0,1,…,M-1。c(n)的表达式为:
c(n)=(x 1(n+N c)+x 2(n+N c))mod2
其中,x 1(n+31)=(x 1(n+3)+x 1(n))mod2,用于生成第一个m序列,x 1的初始化状态为x 1(0)=1,x 1(n)=0,n=1,2,…,30。
其中,x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2,用于生成第二个m序列,x 2的初始化状态可以通过一个十进制数C init的二进制形式表示,C init也可以理解为是伪随机序列c(n)生成序列的初始值,且该例子中,初始值C init的位数不超过31位。
符号“mod”为取余数符号,可以称为“模”或“模运算”。
N c=1600,当然N c还可以取其他值。N c的含义可以理解为:在根据x 1和x 2的表达式生成两个很长的序列后,从这两个很长的序列的第1600位开始分别向后读取M位得到M位的两个m序列,再对这两个m序列进行模2加,即可得到c(n)。
在此基础上,对gold序列进行QPSK调制后得到的PRS序列为:
Figure PCTCN2019093256-appb-000001
在上述例子中,由于x 1的初始值是固定的,因此,x 2的初始值C init成了生成PRS序列的关键参数,进而可以认为上述生成参数包括生成PRS序列的初始值C init
因此,在一些实施例中,可以说初始值C init与下列参数中的至少一项相关:发送所述PRS序列的小区ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID、网络设备配置的ID、所述PRS序列所在无线帧内的时隙号、所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及所述PRS序列的循环前缀CP的类型等。
在此基础上,在一个具体的例子中,上述初始值C init可以通过如下公式计算得到:
Figure PCTCN2019093256-appb-000002
其中,
Figure PCTCN2019093256-appb-000003
为1个时隙slot内包含的符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定(numerology)的值(下文会通过列表对numerology进行说明,此处暂不说明详见下文);l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000004
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
Figure PCTCN2019093256-appb-000005
占用的最大比特数;“mod”表示模运算。
在该例子中,如果
Figure PCTCN2019093256-appb-000006
表示发送所述PRS序列的物理小区ID,则在NR系统中,
Figure PCTCN2019093256-appb-000007
的取值可以为0到1007之间的整数,相应的,
Figure PCTCN2019093256-appb-000008
占用的最大比特数为11比特(bit),也即y等于11,进而具体地:
Figure PCTCN2019093256-appb-000009
在另一些实施例中,上述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init除了与上一例子中所列的参数相关,还与同步信号块(Synchronization Signal Block,SSB)ID相关,SSB ID可以理解为是唯一标识SSB的标识,SSB ID可以为SSID编号(也称SSB index),可以用
Figure PCTCN2019093256-appb-000010
来 表示一个SSB Burst Set中的SSB编号(也即SSB ID),SSB编号的取值可以为0至63的整数,占用的最大比特数为6bit。
这样,作为一个例子,上述初始值C init可以通过如下公式计算得到:
Figure PCTCN2019093256-appb-000011
其中,
Figure PCTCN2019093256-appb-000012
为1个slot内包含的符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000013
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000014
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000015
占用的最大比特数;“mod”表示模运算。
同样的,在该例子中,如果
Figure PCTCN2019093256-appb-000016
表示发送所述PRS序列的物理小区ID,则在NR系统中,
Figure PCTCN2019093256-appb-000017
的取值可以为0到1007之间的整数,相应的,
Figure PCTCN2019093256-appb-000018
占用的最大比特数为11bit,也即此时y等于11,进而具体地:
Figure PCTCN2019093256-appb-000019
可选地,在另一些实施例中,在NR系统中,由于可以用相同的端口或相同的波束发送同一个时隙中不同OFDM符号上的PRS序列,因此,图1所示的实施例提供的定位参考信号配置方法,还可以包括:基于多个所述初始值C init生成相应数目的多个目标PRS序列;在一个时隙内所述相应数目的OFDM符号上发送所述多个目标PRS序列。通常情况下,一个初始值C init对应生成一个PRS序列,因此,所述相应数目可以是指与所述多个初始值C init的数量相同的数目。
其中,一个目标PRS序列的初始值C init中的
Figure PCTCN2019093256-appb-000020
基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
这样可以减少初始值C init中SSB ID占用的比特数,从而防止初始值C init占用的比特数大于31位。
具体来说,假设一个时隙内可以有多个被目标PRS序列占用的OFDM符号,其中某个OFDM符号上的目标PRS序列中对应分布有x比特的SSB ID,即在该OFDM符号上的目标PRS序列的初始值C init公式中加x比特的SSB ID信息。相应的,上述初始值C init可以通过如下公式计算得到:
Figure PCTCN2019093256-appb-000021
其中,
Figure PCTCN2019093256-appb-000022
为1个slot内包含的符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000023
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000024
由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部分比特数;y的值等于
Figure PCTCN2019093256-appb-000025
占用的最大比特数;“mod”表示模运算。
具体如图2所示,假设一个时隙内有3个OFDM符号被3个目标PRS序列占用,且这3个目标PRS序列为:PRS序列21、PRS序列22和PRS序列23,其中,PRS序列21中分布有2比特的SSB ID,也即x=2,则用于生成PRS序列21的初始值C init的计算公式具体可以为:
Figure PCTCN2019093256-appb-000026
其中,
Figure PCTCN2019093256-appb-000027
为分布在PRS序列21中的2比特的SSB ID。
同理,可以得出用于生成PRS序列22和PRS序列23的初始值C init计算公式。
图3给出了将PRS序列21、PRS序列22和PRS序列23映射在同一个时隙内的不同OFDM符号上的资源映射结构示意图。具体的,在图3中,PRS序列21、PRS序列22和PRS序列23分别被映射在:OFDM符号31、OFDM符号32和OFDM符号33上。
可选地,在另一些实施例中,为了防止初始值C init的位数超过31位,除了上一实施例中所说的在一个OFDM符号对应的PRS序列中分布SSB ID占用的部分比特位外,还可以减少初始值C init的中间位的位数,例如,可以去 掉上述几个实施例中列出的计算初始值C init的公式中的
Figure PCTCN2019093256-appb-000028
加入6比特的SSB ID,对应的可以基于以下公式确定所述初始值C init
Figure PCTCN2019093256-appb-000029
或者,
Figure PCTCN2019093256-appb-000030
其中,
Figure PCTCN2019093256-appb-000031
为1个slot内包含的符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000032
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000033
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000034
占用的最大比特数;“mod”表示模运算。
上文通过几个实施例说明了生成PRS序列的生成参数——初始值C init的计算方式,但应理解,在实际应用中,还可以根据与生产参数有关的参数变幻出其他计算方式,并不局限于上述几种。
可选地,在图1所示的实施例的基础上,如果本公开实施例提供的定位参考信号配置方法还包括:基于所述生成参数生成目标PRS序列,并发送所述目标PRS序列。则,如图4所示,在发送所述目标PRS序列之前,该方法还可以包括:
步骤102、发送第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域位置信息,所述频域位置与所述网络设备的指定numerology相关联。
相应的,上述“发送所述目标PRS序列”具体可以包括:在所述时域位置和与所述指定numerology相关联的所述频域位置上发送所述目标PRS序列。
其中,所述频域位置信息包括所述频域位置的起始点信息,所述起始点信息为所述网络设备的第一个公共资源块上的第一个子载波。
具体来说,在某个指定的numerology下,网络设备可以将PRS序列映射 在时频位置为(k,l)的资源粒子(Resource Element,RE)上发送,其中,k表示该numerology下的频域位置,l表示一个时隙内的OFDM符号序号,PRS序列的频域位置的起始点为发送该PRS序列的小区的公共资源块0上的子载波0,即该小区的point A(参考点A),并且,对应的k=0。
其中参考点A,可以是OFDM基带信号生成过程中,需要保证在同一载波上以不同子载波间隔((subcarrier spacing,SCS)所传输的所有Common RB中的子载波0对齐,即同一载波下的所有Common RB的边界需要对齐。
不难理解,通过该实施例,可以使终端设备在相应的时频位置上接收来自网络设备的目标PRS序列,进而结合本地PRS序列进行定位。
下面结合列表对NR系统中的numerology进行说明。
与LTE系统仅支持15kHz的子载波间隔不同,NR系统支持多套基础参数设计,如15、30、60、120、240kHz的子载波间隔(Δf),以支持百MHz到几十GHz的频谱。NR可支持多种与子载波间隔相关的numerology,具体地,由表1表示:
表1 NR支持的传输numerologies
μ Δf=2 μ·15[kHz] CP
0 15 正常
1 30 正常
2 60 正常,扩展
3 120 正常
4 240 正常
相应的,NR系统中基于不同的numerology的时隙配置如表2和表3所示,其中表2对应于正常循环前缀,表3对应于扩展循环前缀。
表2正常循环前缀对应的每个时隙的OFDM符号数量
Figure PCTCN2019093256-appb-000035
每个无线帧的时隙数量
Figure PCTCN2019093256-appb-000036
以及每个子帧的时隙数量
Figure PCTCN2019093256-appb-000037
Figure PCTCN2019093256-appb-000038
扩展循环前缀对应的每个时隙的OFDM符号数量
Figure PCTCN2019093256-appb-000039
每个无线帧的时 隙数量
Figure PCTCN2019093256-appb-000040
以及每个子帧的时隙数量
Figure PCTCN2019093256-appb-000041
Figure PCTCN2019093256-appb-000042
需要说明的是,第一配置信息中包括的用于生成PRS序列的生成参数除了上述初始值C init,还可以包括调制方式等其它参数,而并不仅仅是上述初始值C init
还需要说明的是,在本公开实施例中,网络设备既可以在同一消息中发送上述第一配置信息和第二配置信息,也可以在不同消息中发送上述第一配置信息和第二配置信息。
可选地,网络设备可以通过下列方式中的至少一种发送上述第一配置信息和/或第二配置信息:基于高层信令发送第一配置信息和/或第二配置信息,例如无线资源控制(Radio Resource Control,RRC);基于MAC层信令发送第一配置信息和/或第二配置信息;或基于下行控制信息(Downlink Control Information,DCI)发送第一配置信息和/或第二配置信息;或基于终端与位置服务器之间的定位协议(Location Positioning Protocol,LPP)发送第一配置信息和/或第二配置信息。
本公开一些实施例中,应用于网络设备的定位参考信号配置方法中生成参数,包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000043
其中,
Figure PCTCN2019093256-appb-000044
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000045
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
Figure PCTCN2019093256-appb-000046
占用的最大比特数;“mod”表示模运算。
以上对应用于网络设备的定位参考信号配置方法进行了说明,下面结合图5和图6对本公开实施例提供的应用于终端设备中的定位参考信号接收方法进行说明。
图5所示的是本公开一些实施例提供的定位参考信号接收方法,该方法 应用于终端设备,可以包括如下步骤:
步骤501、接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数。
其中,所述生成参数可以与下列参数中的任一项相关:发送所述PRS序列的小区ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID,等等。
发送PRS序列的小区ID可以是物理小区ID或虚拟小区ID。网络设备配置的ID可以是网络设备按照一定的规则分配的用于唯一标识PRS序列的ID。
图5所示的实施例提供的定位参考信号接收方法,由于终端设备接收了用于生成定位参考信号PRS序列的生成参数,因此可以生成本地PRS序列,进而在接收到来自网络设备的PRS序列后,基于本地PRS序列确定来自网络设备的PRS序列的到达时间TOA,可以实现终端设备的定位,提高了通信有效性。
下面结合具体的实施例对上述生成参数包含的内容,以及接收第一配置信息的方式进行说明。
在一些实施例中,所述生成参数还与下列参数中的至少一项相关:所述PRS序列所在无线帧内的时隙号、所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及所述PRS序列的循环前缀CP的类型。
在另一些实施例中,所述生成参数可用于生成所述终端设备的本地PRS序列,所述本地PRS序列用于确定所述目标PRS序列到达所述终端设备的到达时间TOA,所述TOA用于确定所述终端设备的位置。终端设备具体可以对伪随机序列进行正交相移键控(Quadrature Phase Shift Keying,QPSK)调制生成本地PRS序列,其中,伪随机序列c(n)可以是gold序列,相应的,上述生成参数也可以称为是gold序列的生成参数。
作为一个例子,所述生成参数包括生成所述PRS序列的初始值C init,且:
Figure PCTCN2019093256-appb-000047
其中,
Figure PCTCN2019093256-appb-000048
为1个slot内包含的符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000049
与发送所述 PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
Figure PCTCN2019093256-appb-000050
占用的最大比特数;“mod”表示模运算。
在另一些实施例中,所述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init还与同步信号块SSB ID相关。以及,作为一个例子,可以基于下列公式计算初始值C init
Figure PCTCN2019093256-appb-000051
其中,
Figure PCTCN2019093256-appb-000052
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000053
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000054
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000055
占用的最大比特数;“mod”表示模运算。
可选地,在另一些实施例中,在NR系统中,由于可以用相同的端口或相同的波束发送同一个时隙中不同OFDM符号上的PRS序列,因此,图5所示的实施例提供的定位参考信号接收方法,还可以包括:接收网络设备在一个时隙内的多个OFDM符号上发送的相应数目的多个目标PRS序列,所述多个目标PRS序列由所述网络设备基于多个所述初始值C init生成。通常情况下,一个初始值C init对应生成一个PRS序列,因此,所述相应数目可以是指与所述多个初始值C init的数量相同的数目。
其中,一个目标PRS序列的初始值C init中的
Figure PCTCN2019093256-appb-000056
基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
这样可以减少初始值C init中SSB ID占用的比特数,从而防止初始值C init 占用的比特数大于31位。
具体来说,假设一个时隙内可以有多个被目标PRS序列占用的OFDM符号,其中某个OFDM符号上的目标PRS序列中对应分布有x比特的SSB ID(也可以称为SSB index),即在该OFDM符号上的目标PRS序列的初始值C init公式中加x比特的SSB ID信息。相应的,上述初始值C init可以通过如下公式计算得到:
Figure PCTCN2019093256-appb-000057
其中,
Figure PCTCN2019093256-appb-000058
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000059
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000060
由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部分比特数;y的值等于
Figure PCTCN2019093256-appb-000061
占用的最大比特数;“mod”表示模运算。
可选地,在另一些实施例中,为了防止初始值C init的位数超过31位,除了上一实施例中所说的在一个OFDM符号对应的PRS序列中分布SSB ID占用的部分比特位外,还可以减少初始值C init的中间位的位数,例如,可以去掉上述几个实施例中列出的计算初始值C init的公式中的
Figure PCTCN2019093256-appb-000062
加入6比特的SSB ID,对应的可以基于以下公式确定所述初始值C init
基于以下公式确定所述初始值C init
Figure PCTCN2019093256-appb-000063
或者,
Figure PCTCN2019093256-appb-000064
其中,
Figure PCTCN2019093256-appb-000065
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000066
Figure PCTCN2019093256-appb-000067
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的 ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000068
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000069
占用的最大比特数;“mod”表示模运算。
本公开一些实施例中,生成参数包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000070
其中,
Figure PCTCN2019093256-appb-000071
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000072
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
Figure PCTCN2019093256-appb-000073
占用的最大比特数;“mod”表示模运算。
上文通过几个实施例说明了计算PRS序列生成参数——初始值C init的方式,但应理解,在实际应用中,还可以根据与生产参数有关的参数变幻出其他计算方式,并不局限于上述几种。
可选地,在图5所示的实施例的基础上,如果本公开实施例提供的定位参考信号接收方法还包括:接收目标PRS序列,所述目标PRS序列由网络设备基于所述生成参数生成。则,如图6所示,在所述接收目标PRS序列之前,该方法还可以包括步骤502。在步骤502中,接收第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域位置信息,所述频域位置与所述网络设备的指定numerology相关联。
相应的,上述“接收所述目标PRS序列”具体可以包括:在所述时域位置和与所述指定numerology相关联的所述频域位置上接收所述目标PRS序列。
其中,所述频域位置信息包括所述频域位置的起始点信息,其中,所述起始点信息为所述网络设备的第一个公共资源块上的第一个子载波。
具体来说,在某个指定的numerology下,终端设备可以在时频位置为(k,l)的资源粒子(Resource Element,RE)上接收目标PRS序列,其中,k表示该 numerology下的频域位置,l表示一个时隙内的OFDM符号序号,PRS序列的频域位置的起始点为发送该PRS序列的小区的公共资源块0上的子载波0,即该小区的point A(参考点A),并且,对应的k=0。
不难理解,通过该实施例,可以使终端设备在相应的时频位置上接收来自网络设备的目标PRS序列,进而结合本地PRS序列进行定位。
还需要说明的是,在本公开实施例中,终端设备既可以在同一消息中接收上述第一配置信息和第二配置信息,也可以在不同消息中接收上述第一配置信息和第二配置信息。
可选地,终端设备可以通过下列方式中的至少一种接收上述第一配置信息和/或第二配置信息:基于高层信令接收第一配置信息和/或第二配置信息,例如无线资源控制(Radio Resource Control,RRC);基于MAC层信令接收第一配置信息和/或第二配置信息;或基于下行控制信息(Downlink Control Information,DCI)接收第一配置信息和/或第二配置信息,等等。
可选地,在另一些实施例中,终端设备在接收到网络设备配置的目标PRS序列之后,可以进一步基于该目标PRS序列进行定位。下面以将PRS应用在观测到达时间(Observed Time Difference of Arrival,OTDOA)定位中为例,对终端设备基于PRS进行定位的过程进行简要的说明。
作为一个例子,OTDOA定位方法基于PRS定位的过程可以包括:
首先,网络设备基于上文中述及的方法生成目标PRS序列,并向终端设备发送所述目标PRS序列,其中,所述网络设备包括所述终端设备的服务小区和从终端设备附近选出的多个邻小区。
其次,终端设备对来自邻小区的目标PRS序列与本地PRS序列做时域相关,得到每一邻小区对应的时延功率谱。其中,本地PRS序列是终端设备基于接收到的第一配置信息生成的PRS序列。
再次,终端设备根据邻小区对应的时延功率谱寻找该邻小区的首达径,获得每个邻小区发送的目标PRS序列到达终端设备的TOA。
最后,网络设备基于至少三个邻小区对应的TOA,确定服务小区与每个邻小区的参考信号时差(Reference Signal Time Difference,RSTD),确定终端设备的位置。具体可以是计算终端设备的坐标。
在上述过程中,网络设备并不获取精确的PRS到达时间(TOA),终端设备的位置由至少三个邻小区的到达时间差(TDOA)来确定,即由相对时间而不是绝对时间确定。
由于本公开实施例提供的定位参考信号接收方法,与本公开实施例提供的定位参考信号配置方法相对应,因此,本说明书对定位参考信号接收方法的描述较为简单,相关之处,请参考上文中对定位参考信号配置方法的描述。
下面将结合图7至图10详细描述根据本公开实施例提供的网络设备和终端设备。
图7示出了本公开实施例提供的网络设备的结构示意图,如图7所示,网络设备700包括:第一发送模块701。
第一发送模块701,用于发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
图7所示的实施例提供的网络设备700,由于发送了用于生成定位参考信号PRS序列的生成参数,因此可以使终端设备生成本地PRS序列,进而在接收到来自网络设备的PRS序列后,基于本地PRS序列确定来自网络设备的PRS序列的到达时间TOA,可以实现终端设备的定位,提高了通信有效性。
可选地,在一些实施例中,所述生成参数还与下列参数中的至少一项相关:
所述PRS序列所在无线帧内的时隙号,
所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及
所述PRS序列的循环前缀CP的类型。
可选地,在另一些实施例中,所述生成参数包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000074
其中,
Figure PCTCN2019093256-appb-000075
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的 numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000076
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
Figure PCTCN2019093256-appb-000077
占用的最大比特数;“mod”表示模运算。
本公开一些实施例中,生成参数包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000078
其中,
Figure PCTCN2019093256-appb-000079
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000080
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
Figure PCTCN2019093256-appb-000081
占用的最大比特数;“mod”表示模运算。
可选地,在另一些实施例中,所述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init还与同步信号块SSB ID相关。具体而言,可以基于下述公式计算的得到初始值C init
Figure PCTCN2019093256-appb-000082
其中,
Figure PCTCN2019093256-appb-000083
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000084
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000085
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000086
占用的最大比特数;“mod”表示模运算。
可选地,在另一些实施例中,所述网络设备700还可以包括:第一生成 模块和第三发送模块。
第一生成模块,用于基于多个所述初始值C init生成相应数目的多个目标PRS序列。
第三发送模块,用于在一个时隙内所述相应数目的OFDM符号上发送所述多个目标PRS序列。
其中,一个目标PRS序列的初始值C init中的
Figure PCTCN2019093256-appb-000087
基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
这样可以减少初始值C init中SSB ID占用的比特数,从而防止初始值C init占用的比特数大于31位。
具体来说,假设一个时隙内可以有R个被目标PRS序列占用的OFDM符号,其中某个OFDM符号上的目标PRS序列中对应分布有x比特的SSB ID(也可以称为SSB index),即在该OFDM符号上的目标PRS序列的初始值C init公式中加x比特的SSB ID信息。相应的,上述初始值C init可以通过如下公式计算得到:
Figure PCTCN2019093256-appb-000088
其中,
Figure PCTCN2019093256-appb-000089
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000090
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000091
由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部分比特数;y的值等于
Figure PCTCN2019093256-appb-000092
占用的最大比特数;“mod”表示模运算。
可选地,在又一些实施例中,为了防止初始值C init的位数超过31位,除了上一实施例中所说的在一个OFDM符号对应的PRS序列中分布SSB ID占用的部分比特位外,还可以减少初始值C init的中间位的位数,例如,可以去掉上述几个实施例中列出的计算初始值C init的公式中的
Figure PCTCN2019093256-appb-000093
加入6比 特的SSB ID,对应的可以基于以下公式确定所述初始值C init:基于以下公式确定所述初始值C init
Figure PCTCN2019093256-appb-000094
或者,
Figure PCTCN2019093256-appb-000095
其中,
Figure PCTCN2019093256-appb-000096
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000097
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000098
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000099
占用的最大比特数;“mod”表示模运算。
上述通过几个实施例说明了生成PRS序列的生成参数——初始值C init的方式,但应理解,在实际应用中,还可以根据与生产参数有关的参数变幻出其他计算方式,并不局限于上述几种。
可选地,在图7所示的实施例的基础上,网络设备700还可以包括:
第四发送模块,用于基于所述生成参数生成目标PRS序列,并发送所述目标PRS序列。
在此基础上,如图8所示,网络设备700还可以包括:第二发送模块702,用于在所述发送所述目标PRS序列之前,发送第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域位置信息,所述频域位置与所述网络设备的指定numerology相关联。
其中,在所述时域位置和与所述指定numerology相关联的所述频域位置上发送所述目标PRS序列。
不难理解,通过该实施例,可以使终端设备在相应的时频位置上接收来自网络设备的目标PRS序列,进而结合本地PRS序列进行定位。
可选地,网络设备700可在同一消息或不同消息中发送所述第一配置信 息和所述第二配置信息。
可选地,所述生成参数还可用于生成终端设备的本地PRS序列,所述本地PRS序列用于确定所述目标PRS序列到达所述终端设备的到达时间TOA,所述TOA用于确定所述终端设备的位置。
上述图7至图8所示的网络设备,可以用于实现上述图1-图4所示的定位参考信号配置方法的各个实施例,相关之处请参考上述方法实施例。
如图9所示,本公开实施例还提供了终端设备900,该终端设备900可以包括:第一接收模块901。
第一接收模块,用于接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数。
其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
图9所示的实施例提供的终端设备900,由于接收了用于生成定位参考信号PRS序列的生成参数,因此可以生成本地PRS序列,进而在接收到来自网络设备的PRS序列后,基于本地PRS序列确定来自网络设备的PRS序列的到达时间TOA,可以实现终端设备的定位,提高了通信有效性。
可选地,所述生成参数还可以与下列参数中的至少一项相关:
所述PRS序列所在无线帧内的时隙号,
所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及
所述PRS序列的循环前缀CP的类型。
可选地,所述生成参数包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000100
其中,
Figure PCTCN2019093256-appb-000101
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000102
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环 前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
Figure PCTCN2019093256-appb-000103
占用的最大比特数;“mod”表示模运算。
本公开一些实施例中,生成参数包括生成所述PRS序列的初始值C init
Figure PCTCN2019093256-appb-000104
其中,
Figure PCTCN2019093256-appb-000105
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000106
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
Figure PCTCN2019093256-appb-000107
占用的最大比特数;“mod”表示模运算。
可选地,所述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init还与同步信号块SSB ID相关。具体可以基于下式计算初始值C init
Figure PCTCN2019093256-appb-000108
其中,
Figure PCTCN2019093256-appb-000109
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000110
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000111
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000112
占用的最大比特数;“mod”表示模运算。
可选地,终端设备900还可以包括:第三接收模块,用于接收网络设备在一个时隙内的多个OFDM符号上发送的相应数目的多个目标PRS序列,所述多个目标PRS序列由所述网络设备基于多个所述初始值C init生成。
其中,一个目标PRS序列的初始值C init中的
Figure PCTCN2019093256-appb-000113
基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
并且,具体可以基于下式计算初始值C init
Figure PCTCN2019093256-appb-000114
其中,
Figure PCTCN2019093256-appb-000115
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000116
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000117
由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部分比特数;y的值等于
Figure PCTCN2019093256-appb-000118
占用的最大比特数;“mod”表示模运算。
可选地,在另一实施例中,可以基于以下公式确定所述初始值C init
Figure PCTCN2019093256-appb-000119
或者,
Figure PCTCN2019093256-appb-000120
其中,
Figure PCTCN2019093256-appb-000121
为1个slot内包含的OFDM符号数,一般情况下该值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
Figure PCTCN2019093256-appb-000122
与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
Figure PCTCN2019093256-appb-000123
由所述SSB ID占用的比特数确定;y的值等于
Figure PCTCN2019093256-appb-000124
占用的最大比特数;“mod”表示模运算。
可选地,终端设备900还可以包括:第四接收模块,用于接收目标PRS序列,所述目标PRS序列由网络设备基于所述生成参数生成。
可选地,如图10所示,所述终端设备900还可以包括:第二接收模块902,用于在所述接收目标PRS序列之前,接收第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域 位置信息,所述频域位置与所述网络设备的指定numerology相关联。
其中,在所述时域位置和与所述指定numerology相关联的所述频域位置上接收所述目标PRS序列。
可选地,终端设备900可以在同一消息或不同消息中接收所述第一配置信息和所述第二配置信息。
可选地,所述生成参数还用于生成所述终端设备的本地PRS序列,所述本地PRS序列用于确定所述目标PRS序列到达所述终端设备的到达时间TOA,所述TOA用于确定所述终端设备的位置。
上述图9至图10所示的终端设备,可以用于实现上述图5-图6所示的定位参考信号接收方法的各个实施例,相关之处请参考上述方法实施例。
请参阅图11,图11是本公开实施例应用的网络设备的结构图,能够实现上述定位参考信号配置方法的细节,并达到相同的效果。如图11所示,网络设备1100包括:处理器1101、收发机1102、存储器1103、用户接口1104和总线接口,其中:
在本公开实施例中,网络设备1100还包括:存储在存储器1103上并可在处理器1101上运行的计算机程序,计算机程序被处理器1101、执行时实现上述定位参考信号配置方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的至少一个处理器和存储器1103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1102可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端设备,用户接口1104还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1101负责管理总线架构和通常的处理,存储器1103可以存储处理器1101在执行操作时所使用的数据。
图12是本公开实施例提供的终端设备的另一结构示意图。图12所示的 终端设备1200包括:至少一个处理器1201、存储器1202、至少一个网络接口1204和用户接口1203。终端设备1200中的各个组件通过总线系统1205耦合在一起。可理解,总线系统1205用于实现这些组件之间的连接通信。总线系统1205除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图12中将各种总线都标为总线系统1205。
其中,用户接口1203可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器1202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器1202旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1202存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统12021和应用程序12022。
其中,操作系统12021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序12022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序 12022中。
在本公开实施例中,终端设备1200还包括:存储在存储器1202上并可在处理器1201上运行的计算机程序,计算机程序被处理器1201执行时实现上述定位参考信号接收方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器1201中,或者由处理器1201实现。处理器1201可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1201中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1201可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1202,处理器1201读取存储器1202中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器1201执行时实现如上述定位参考信号接收方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在至少一个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例还提供一种计算机存储介质,存储有无线通信程序,所述无线通信程序被处理器执行时实现上述任一项所述的方法的步骤。所述计算机存储介质可以是计算机可读存储介质。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述定位参考信号配置方法或上述定位参考信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述定位参考信号配置方法或者上述定位参考信号接收方法。具体地,该计算机程序产品可以运行于上述网络设备上。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种定位参考信号配置方法,应用于网络设备,包括:
    发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
    其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
  2. 根据权利要求1所述的方法,其中,
    所述生成参数还与下列参数中的至少一项相关:
    所述PRS序列所在无线帧内的时隙号,
    所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及
    所述PRS序列的循环前缀CP的类型。
  3. 根据权利要求2所述的方法,其中,
    所述生成参数包括生成所述PRS序列的初始值C init
    Figure PCTCN2019093256-appb-100001
    其中,
    Figure PCTCN2019093256-appb-100002
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100003
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100004
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
    Figure PCTCN2019093256-appb-100005
    占用的最大比特数;“mod”表示模运算。
  4. 根据权利要求2所述的方法,其中,
    所述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init还与同步信号块SSB ID相关。
  5. 根据权利要求4所述的方法,其中,
    Figure PCTCN2019093256-appb-100006
    其中,
    Figure PCTCN2019093256-appb-100007
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100008
    值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100009
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100010
    由所述SSB ID占用的比特数确定;y的值等于
    Figure PCTCN2019093256-appb-100011
    占用的最大比特数;“mod”表示模运算。
  6. 根据权利要求4所述的方法,还包括:
    基于多个所述初始值C init生成的多个目标PRS序列;
    在一个时隙内的多个OFDM符号上发送所述多个目标PRS序列;
    其中,一个目标PRS序列的初始值C init中的
    Figure PCTCN2019093256-appb-100012
    基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
  7. 根据权利要求6所述的方法,其中,
    Figure PCTCN2019093256-appb-100013
    其中,
    Figure PCTCN2019093256-appb-100014
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100015
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100016
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100017
    由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部分比特数;y的值等于
    Figure PCTCN2019093256-appb-100018
    占用的最大比特数;“mod”表示模运算。
  8. 根据权利要求4所述的方法,其中,
    基于以下公式确定所述初始值C init
    Figure PCTCN2019093256-appb-100019
    或者,
    Figure PCTCN2019093256-appb-100020
    其中,
    Figure PCTCN2019093256-appb-100021
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100022
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100023
    Figure PCTCN2019093256-appb-100024
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100025
    由所述SSB ID占用的比特数确定;y的值等于
    Figure PCTCN2019093256-appb-100026
    占用的最大比特数;“mod”表示模运算。
  9. 根据权利要求1所述的方法,还包括:
    基于所述生成参数生成目标PRS序列,并发送所述目标PRS序列。
  10. 根据权利要求9所述的方法,在所述发送所述目标PRS序列之前,还包括:
    发送第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域位置信息,所述频域位置与所述网络设备的指定参数设定numerology相关联;
    其中,在所述时域位置和与所述指定numerology相关联的所述频域位置上发送所述目标PRS序列。
  11. 根据权利要求10所述的方法,其中,
    在同一消息或不同消息中发送所述第一配置信息和所述第二配置信息。
  12. 根据权利要求9所述的方法,其中,
    所述生成参数还用于生成终端设备的本地PRS序列,所述本地PRS序列用于确定所述目标PRS序列到达所述终端设备的到达时间TOA,所述TOA用于确定所述终端设备的位置。
  13. 根据权利要求2所述的方法,其中,所述生成参数包括生成所述PRS序列的初始值C init
    Figure PCTCN2019093256-appb-100027
    其中,
    Figure PCTCN2019093256-appb-100028
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100029
    值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100030
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
    Figure PCTCN2019093256-appb-100031
    占用的最大比特数;“mod”表示模运算。
  14. 一种定位参考信号接收方法,应用于终端设备,包括:
    接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
    其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
  15. 根据权利要求14所述的方法,其中,
    所述生成参数还与下列参数中的至少一项相关:
    所述PRS序列所在无线帧内的时隙号,
    所述PRS序列所在时隙内正交频分复用OFDM符号的序号,以及
    所述PRS序列的循环前缀CP的类型。
  16. 根据权利要求15所述的方法,其中,
    所述生成参数包括生成所述PRS序列的初始值C init
    Figure PCTCN2019093256-appb-100032
    其中,
    Figure PCTCN2019093256-appb-100033
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100034
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100035
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;y的值等于
    Figure PCTCN2019093256-appb-100036
    占用的最大比特数;“mod”表示模运算。
  17. 根据权利要求15所述的方法,其中,
    所述生成参数包括生成所述PRS序列的初始值C init,且所述初始值C init还与同步信号块SSB ID相关。
  18. 根据权利要求17所述的方法,其中,
    Figure PCTCN2019093256-appb-100037
    其中,
    Figure PCTCN2019093256-appb-100038
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100039
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100040
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100041
    由所述SSB ID占用的比特数确定;y的值等于
    Figure PCTCN2019093256-appb-100042
    占用的最大比特数;“mod”表示模运算。
  19. 根据权利要求17所述的方法,还包括:
    接收网络设备在一个时隙内的多个OFDM符号上发送的多个目标PRS序列,所述多个目标PRS序列由所述网络设备基于多个所述初始值C init生成;
    其中,一个目标PRS序列的初始值C init中的
    Figure PCTCN2019093256-appb-100043
    基于所述SSB ID分布在所述目标PRS序列中的部分比特确定,所述SSB ID占用的比特分布在所述多个目标PRS序列上。
  20. 根据权利要求19所述的方法,其中,
    Figure PCTCN2019093256-appb-100044
    其中,
    Figure PCTCN2019093256-appb-100045
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100046
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100047
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100048
    由所述SSB ID占用的比特数中的部分比特数确定,x等于所述部 分比特数;y的值等于
    Figure PCTCN2019093256-appb-100049
    占用的最大比特数;“mod”表示模运算。
  21. 根据权利要求17所述的方法,其中,
    基于以下公式确定所述初始值C init
    Figure PCTCN2019093256-appb-100050
    或者,
    Figure PCTCN2019093256-appb-100051
    其中,
    Figure PCTCN2019093256-appb-100052
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100053
    值为14,n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100054
    Figure PCTCN2019093256-appb-100055
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;N CP与所述CP的类型有关,如果所述CP的类型为正常循环前缀NCP,则N CP等于1,如果所述CP的类型为扩展循环前缀ECP,则N CP等于0;
    Figure PCTCN2019093256-appb-100056
    由所述SSB ID占用的比特数确定;y的值等于
    Figure PCTCN2019093256-appb-100057
    占用的最大比特数;“mod”表示模运算。
  22. 根据权利要求14所述的方法,还包括:
    接收目标PRS序列,所述目标PRS序列由网络设备基于所述生成参数生成。
  23. 根据权利要求22所述的方法,在所述接收目标PRS序列之前,还包括:
    接收第二配置信息,所述第二配置信息包括:所述目标PRS序列占用的资源粒子RE的时域位置信息和频域位置信息,所述频域位置与所述网络设备的指定参数设定numerology相关联;
    其中,在所述时域位置和与所述指定numerology相关联的所述频域位置上接收所述目标PRS序列。
  24. 根据权利要求23所述的方法,其中,
    在同一消息或不同消息中接收所述第一配置信息和所述第二配置信息。
  25. 根据权利要求22所述的方法,其中,
    所述生成参数还用于生成所述终端设备的本地PRS序列,所述本地PRS 序列用于确定所述目标PRS序列到达所述终端设备的到达时间TOA,所述TOA用于确定所述终端设备的位置。
  26. 根据权利要求15所述的方法,其中,所述生成参数包括生成所述PRS序列的初始值C init
    Figure PCTCN2019093256-appb-100058
    其中,
    Figure PCTCN2019093256-appb-100059
    为1个时隙slot内包含的OFDM符号数,
    Figure PCTCN2019093256-appb-100060
    值为14;n sf表示所述PRS序列所在无线帧内的时隙号,μ表示所述无线帧对应的参数设定numerology的值;l表示所述PRS序列所在时隙内OFDM符号的序号;
    Figure PCTCN2019093256-appb-100061
    与发送所述PRS序列的小区ID、接收所述PRS序列的所述终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和所述网络设备配置的ID中的任一项相关;y的值等于
    Figure PCTCN2019093256-appb-100062
    占用的最大比特数;“mod”表示模运算。
  27. 一种网络设备,包括:
    第一发送模块,用于发送第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
    其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
  28. 一种终端设备,包括:
    第一接收模块,用于接收第一配置信息,所述第一配置信息包括用于生成定位参考信号PRS序列的生成参数;
    其中,所述生成参数与下列参数中的任一项相关:发送所述PRS序列的小区识别码ID、接收所述PRS序列的终端设备的ID、接收所述PRS序列的终端设备所属用户组的ID和网络设备配置的ID。
  29. 一种网络设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求1-13任一项所述的方法的步骤。
  30. 一种终端设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求14-26任一项所述的方法的步骤。
  31. 一种计算机可读介质,存储有无线通信程序,所述无线通信程序被处理器执行时实现如权利要求1-26任一项所述的方法的步骤。
PCT/CN2019/093256 2018-06-28 2019-06-27 定位参考信号配置、接收方法和设备 WO2020001533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810689550.7 2018-06-28
CN201810689550.7A CN110662227B (zh) 2018-06-28 2018-06-28 定位参考信号配置、接收方法和设备

Publications (1)

Publication Number Publication Date
WO2020001533A1 true WO2020001533A1 (zh) 2020-01-02

Family

ID=68984746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093256 WO2020001533A1 (zh) 2018-06-28 2019-06-27 定位参考信号配置、接收方法和设备

Country Status (2)

Country Link
CN (1) CN110662227B (zh)
WO (1) WO2020001533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217167A1 (en) * 2021-04-07 2022-10-13 Qualcomm Incorporated Positioning reference signal (prs) securitization in user equipment (ue) positioning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594241A (zh) * 2013-10-04 2016-05-18 高通股份有限公司 用于共享频谱的序列生成
CN106461748A (zh) * 2014-06-25 2017-02-22 英特尔公司 长期演进协作多点通信系统中的用户设备定位
CN107690787A (zh) * 2015-04-07 2018-02-13 瑞典爱立信有限公司 传送定位参考信号
US20180054699A1 (en) * 2016-08-21 2018-02-22 Qualcomm Incorporated System and methods to support a cluster of positioning beacons
CN107852582A (zh) * 2015-07-08 2018-03-27 瑞典爱立信有限公司 通信网络中的位置信息

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616360B (zh) * 2009-07-24 2012-05-09 中兴通讯股份有限公司 一种定位参考信号的发送方法及系统
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10660109B2 (en) * 2016-11-16 2020-05-19 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105594241A (zh) * 2013-10-04 2016-05-18 高通股份有限公司 用于共享频谱的序列生成
CN106461748A (zh) * 2014-06-25 2017-02-22 英特尔公司 长期演进协作多点通信系统中的用户设备定位
CN107690787A (zh) * 2015-04-07 2018-02-13 瑞典爱立信有限公司 传送定位参考信号
CN107852582A (zh) * 2015-07-08 2018-03-27 瑞典爱立信有限公司 通信网络中的位置信息
US20180054699A1 (en) * 2016-08-21 2018-02-22 Qualcomm Incorporated System and methods to support a cluster of positioning beacons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217167A1 (en) * 2021-04-07 2022-10-13 Qualcomm Incorporated Positioning reference signal (prs) securitization in user equipment (ue) positioning

Also Published As

Publication number Publication date
CN110662227B (zh) 2021-01-08
CN110662227A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
US20210091905A1 (en) Method for configuring positioning reference signal in nr system, method for receiving positioning reference signal in nr system, and device
US11665656B2 (en) Information transmission method and information transmission apparatus
JP7160501B2 (ja) 測位基準信号設定方法、受信方法及び機器
WO2019196666A1 (zh) 一种定位参考信号传输方法及装置
US11757603B2 (en) Method and device for transmitting uplink demodulation reference signal
US20200119882A1 (en) Reference signal transmission method and transmission apparatus
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
CN110719630A (zh) 定位参考信号波束配置方法、终端设备和网络设备
CN109391577B (zh) 一种信号处理方法及装置
TWI733936B (zh) 上行訊號的傳輸方法和裝置
WO2019080120A1 (zh) 无线通信方法和设备
WO2019184614A1 (zh) 用于传输解调参考信号的方法、终端设备和网络侧设备
US20230155759A9 (en) Data transmission method and device
TW201844038A (zh) 傳輸信號的方法、網絡設備和終端設備
WO2018058590A1 (zh) 传输定位参考信号的方法和设备
WO2020001533A1 (zh) 定位参考信号配置、接收方法和设备
EP3509259B1 (en) Method and device for transmitting parameter set of cell
WO2020088080A1 (zh) 传输参考信号的方法与设备
WO2020029837A1 (zh) 一种同步广播信息的发送、检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825732

Country of ref document: EP

Kind code of ref document: A1