WO2019184614A1 - 用于传输解调参考信号的方法、终端设备和网络侧设备 - Google Patents

用于传输解调参考信号的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2019184614A1
WO2019184614A1 PCT/CN2019/075190 CN2019075190W WO2019184614A1 WO 2019184614 A1 WO2019184614 A1 WO 2019184614A1 CN 2019075190 W CN2019075190 W CN 2019075190W WO 2019184614 A1 WO2019184614 A1 WO 2019184614A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
dmrs port
related information
port
dci
Prior art date
Application number
PCT/CN2019/075190
Other languages
English (en)
French (fr)
Inventor
孙晓东
孙鹏
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019184614A1 publication Critical patent/WO2019184614A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, a terminal device, and a network side device for transmitting a demodulation reference signal.
  • 5G mobile communication system supports Enhanced Mobile Broadband (enhance Mobile Broadband, eMBB), high reliability and low latency communication (Ultra-Reliable and Low-Latency Communications, URLLC) and large-scale machine-type communication (massive Machine Type of Communication, mMTC) business.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low-Latency Communications
  • mMTC massive Machine Type of Communication
  • DMRS Demodulation Reference Signal
  • the downlink control information includes multiple formats, where the DCI format 0_1 for scheduling physical uplink shared channel (PUSCH) transmission and the physical downlink shared channel are scheduled.
  • the DCI format 1_1 transmitted by the Physical Downlink Share Channel (PDSCH) includes DMRS port configuration information, which can ensure normal transmission or reception of the DMRS.
  • the DCI format 0_0 for scheduling PUSCH transmission and the DCI format 1_0 for scheduling PDSCH transmission do not include DMRS configuration information, which cannot guarantee the reliability of communication.
  • An object of the present disclosure is to provide a method for transmitting a demodulation reference signal, a terminal device, and a network side device, to solve the problem that the reliability of the communication cannot be guaranteed when the format of the DCI in the related art is the fallback mode.
  • a method for transmitting a demodulation reference signal for use in a terminal device, including:
  • the target demodulation reference signal DMRS corresponding to the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH is determined based on a preset rule between the network side device and the terminal device. Port related information.
  • a method for transmitting a demodulation reference signal for use in a terminal device, including:
  • the DMRS port indication information is used to indicate the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH.
  • Target DMRS port related information is used to indicate the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH.
  • a third aspect provides a method for transmitting a demodulation reference signal, which is applied to a network side device, and includes:
  • the DCI includes demodulation reference signal DMRS port indication information, where the DMRS port indication information is used by the terminal device to determine a physical downlink shared channel PDSCH or physical uplink The target DMRS port related information corresponding to the shared channel PUSCH.
  • a fourth aspect provides a terminal device, where the terminal device includes:
  • a determining unit configured to determine, according to a preset rule between the network side device and the terminal device, a target corresponding to the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH, if the received downlink control information DCI is a fallback mode Demodulation reference signal DMRS port related information.
  • a fifth aspect provides a terminal device, where the terminal device includes:
  • a receiving unit configured to: if the received downlink control information DCI is a fallback mode, and the DCI includes a demodulation reference signal DMRS port indication information, where the DMRS port indication information is used to indicate a physical downlink shared channel PDSCH or a physical uplink The target DMRS port related information corresponding to the shared channel PUSCH.
  • a network side device where the network side device includes:
  • a sending unit configured to send downlink control information DCI, where the DCI indication is a fallback mode, where the DCI includes a demodulation reference signal DMRS port indication information, where the DMRS port indication information is used by the terminal device to determine physical downlink sharing.
  • Target DMRS port related information corresponding to the channel PDSCH or the physical uplink shared channel PUSCH.
  • a terminal device comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor, such as The steps of the method of wireless communication described in the first aspect.
  • a computer readable medium comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor The steps of the method of wireless communication as described in the first aspect.
  • a terminal device includes: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor, such as The method of the method of wireless communication of the second aspect.
  • a computer readable medium comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor.
  • a terminal device comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor The method of the method of wireless communication of the third aspect.
  • a twelfth aspect a computer readable medium comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor.
  • the embodiment of the present disclosure can determine the target DMRS port related information corresponding to the PDSCH or the PUSCH based on the preset rule between the network side device and the terminal device when the received DCI is in the fallback mode, and avoid the PUSCH of the terminal device. Or when the PDSCH is scheduled by the DCI of the fallback mode, the problem that the DMRS is transmitted or received fails, and the reliability of the communication can be improved.
  • FIG. 1 is a flow chart showing an implementation of a method for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart showing an implementation of another method for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart showing an implementation of a method for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • New New Radio, NR
  • a user equipment which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a Radio Access Network (RAN).
  • the device may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that is connected to the wireless device.
  • Network exchange language and / or data.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB) in LTE and
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB 5G base station
  • the two scheduling modes are mainly distinguished by the mapping type mapping type A/B of the data scheduling, and the specific difference may correspond to the difference of the positions of the pilots of the mapped PDSCH.
  • the configuration information of the DMRS includes:
  • a pre-demodulation reference signal position for indicating the positions of the uplink and downlink pre-DMRS, indicated by a broadcast channel
  • DMRS configuration type which is used to indicate that the DMRS adopts configuration type 1 or configuration type 2, and different configuration types correspond to different patterns.
  • the DMRS configuration type can be controlled by Radio Resource Control (RRC).
  • the number of additional DMRSs used to indicate that the number of additional DMRSs is 0, 1, 2, or 3.
  • the number of additional DMRSs may be indicated by RRC;
  • DMRS port related information through DCI, mainly includes the following information: DMRS occupies Code Division Multiplexing (CDM) group number, DMRS port number, and pre-DMRS symbol number, wherein the number of CDM groups is used to indicate DMRS occupies 1, 2, or 3 CDM groups, DMRS configuration type 1 maximum available CDM group is 2, DMRS configuration type 1 maximum available CDM group is 3, DMRS port number can be used to indicate DMRS transmission occupied port number, and the DMRS port The number is related to the DMRS configuration type and the pre-DMRS. The number of pre-DMRS symbols can be used to indicate the actual number of pre-transmitted DMRS symbols when the RRC configuration pre-DMRS is 2.
  • CDM groups Code Division Multiplexing (CDM) group number
  • DMRS port number DMRS port number
  • pre-DMRS symbol number wherein the number of CDM groups is used to indicate DMRS occupies 1, 2, or 3 CDM groups, DMRS configuration type 1 maximum available CDM group is 2, DM
  • the other DMRS parameters are configured by the uplink and the downlink, respectively, except for the pre-DMRS position.
  • the DCI format includes DCI formats 0_0 and 0_1, DCI formats 1_0 and 1_1, and DCI format 2_0/2_1/2_2/2_3, where DCI formats 0_0 and 0_1 are used for scheduling PUSCH transmission; DCI formats 1_0 and 1_1 For scheduling PDSCH transmission; DCI format2_0/2_1/2_2/2_3 is used to schedule a group of UE transmissions.
  • DCI format 0_0 and DCI format 1_0 are Fall Back.
  • the DMRS port related information is not included in the DCI of the fallback mode, which may cause the DMRS to be sent or received.
  • the problem causes the mobile communication system to be unable to work normally, that is, the reliability of the communication cannot be guaranteed. Therefore, on the basis of the related technology, it is necessary to propose a method for transmitting the demodulation reference signal for the PUSCH of the terminal device. Or the PDSCH is scheduled by the DCI of the fallback mode to ensure the reliability of the communication.
  • FIG. 1 is a flow chart showing an implementation of a method for transmitting a demodulation reference signal according to an embodiment of the present disclosure.
  • the method of Figure 1 is performed by a terminal device.
  • the method includes:
  • step 101 if the received DCI is in the fallback mode, the target DMRS port related information corresponding to the PDSCH or the PUSCH is determined based on a preset rule between the network side device and the terminal device.
  • cyclic prefix orthogonal frequency division multiplexing can also be used ( Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) and Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveforms, therefore,
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • the embodiments of the present disclosure may pre-set some rules for the three cases (ie, Case 1, Case 2-1, and Case 2-2 described below), that is, some rules are assumed by default between the network side device and the terminal device. And based on these rules (that is, preset rules), determine the corresponding DMRS port related information.
  • the target DMRS port related information corresponding to the PDSCH or the PUSCH is determined based on a preset rule between the network side device and the terminal device. Specifically, if the DCI indication is a PDSCH transmission, determining the target DMRS port related information includes the DMRS port.
  • the information about the target DMRS port is also The number of Front-loaded DMRS symbols may be included, and the number of symbols of the Front-loaded DMRS may be 1;
  • the DMRS configuration type corresponding to the high-level signaling configuration is 1, and the port number of the port occupied by the DMRS is 0.
  • the information about the target DMRS port may also include the number of Front-loaded DMRS symbols.
  • the value of the Front-loaded DMRS symbol may be 1;
  • the DMRS configuration type 2 is configured for the upper layer signaling, and the port number of the port occupied by the DMRS is 0.
  • the information about the target DMRS port may also include the number of Front-loaded DMRS symbols.
  • the value of the Front-loaded DMRS symbol may be 1.
  • the value of the number of the Front-loaded DMRS symbols is also indicated by the high layer signaling, and the specific value may be 1 or 2.
  • Case 2 determining, according to a preset rule between the network side device and the terminal device, related information of the target DMRS port corresponding to the PDSCH or the PUSCH. Specifically, if the DCI indication is PUSCH transmission, the target DMRS may be determined based on the transmission waveform type. Port related information; then send DMRS according to the information about the target DMRS port.
  • determining the target DMRS port related information based on the transmission waveform type. Specifically, if the transmission waveform type is CP-OFDM, determining the target DMRS port related information includes the rank information, and the code division multiplexing CDM occupied by the DMRS port. The number of groups and the port number of the port occupied by the DMRS; the terminal device assumes that the rank information indicates that the rank is 1, and the number of code division multiplexing CDM groups occupied by the DMRS port is one of the following numbers: 1, 2, and 3, and the DMRS is occupied. The port number of the port is 0.
  • the case where the rank information indicates the rank 1 is the case where the rank of the selected port number is 1, that is, the determined target DMRS port related information enables the DMRS to implement single port transmission, thereby ensuring the stability of the transmission. And the reliability of communication.
  • the information about the target DMRS port is also The number of Front-loaded DMRS symbols may be included, and the number of symbols of the Front-loaded DMRS may be 1;
  • the related information of the target DMRS port may also include the Front-loaded DMRS symbol.
  • the number of the Front-loaded DMRS symbols can be 1.
  • the information about the target DMRS port may also include the Front-loaded DMRS.
  • the number of symbols, the value of the Front-loaded DMRS symbol can be 1.
  • the PUSCH and the DMRS can perform frequency division multiplexing (FDM) transmission without interference between the two, and
  • the DMRS port occupies two CDM groups (for example, CDM group 1 is subcarriers 1, 3, 5, 7, 9, 11 and CDM group 2 are subcarriers 2, 4, 6, 8, 10, 12), but the actual use When only one set of CDMs is used for DMRS transmission (for example, occupying CDM group 1), the CDM group 2 that has not performed data transmission can allocate its power to the CDM group 1 for DMRS transmission, thereby achieving power boost.
  • CDM groups such as CDM.
  • Group 1 is subcarriers 1, 2, 7, and 8
  • CDM group 2 is subcarriers 3, 4, 9, and 10, and CDM group 3 is subcarriers 5, 6, 11, 12), but only one is used in actual use. If the group CDM performs DMRS transmission (for example, occupying the CDM group 1), the CDM group 2 and the CDM group 3 that have not performed data transmission can allocate their power to the CDM group 1 for DMRS transmission, thereby achieving power boost.
  • the target DMRS port related information may be determined to include the number of CDM groups occupied by the DMRS port.
  • the port number of the port occupied by the DMRS is 2, and the port number of the port occupied by the DMRS is 0.
  • the number of the pre-demodulation reference signal Front-loaded DMRS symbols may be indicated by the high layer signaling, and the value of the Front-loaded DMRS symbol number may specifically be 1 or 2.
  • the DMRS parameter configuration information such as the pre-DMRS location, the DMRS configuration type, the additional DMRS number, and the pre-DMRS symbol number, may be included in the DMRS port information, and the parameter configuration information may be indicated by the high layer signaling, that is, Receiving a high-level signaling configuration, and determining a specific pre-DMRS position, a DMRS configuration type, an additional DMRS number, and a pre-DMRS symbol number based on the high-layer signaling configuration; on the other hand, the network-side device and the terminal device may also be pre-configured
  • the DMRS parameter configuration is configured, where the preset DMRS parameter configuration includes at least one of the following information: the DMRS configuration type is configuration type 1, the Additional DMRS number configuration is 2, and the Front-loaded DMRS symbol number is 1.
  • the preset described herein may be a default assumption between the network side device and the terminal device.
  • the embodiment of the present disclosure can determine the target DMRS port related information corresponding to the PDSCH or the PUSCH based on the preset rule between the network side device and the terminal device when the received DCI is in the fallback mode, and avoid the PUSCH of the terminal device. Or when the PDSCH is scheduled by the DCI of the fallback mode, the problem that the DMRS is transmitted or received fails, and the reliability of the communication can be improved.
  • FIG. 2 is a flow chart showing an implementation of a method for transmitting a demodulation reference signal according to another embodiment of the present disclosure.
  • the method of Figure 2 is performed by a terminal device.
  • the method includes:
  • Step 201 If the received DCI is a fallback mode, and the DMRS port indication information is included in the DCI, the DMRS port indication information is used to indicate the target DMRS port related information corresponding to the PDSCH or the PUSCH.
  • the embodiment of the present disclosure can pre-set the DMRS port indication information and the target DMRS port related information for the three cases (ie, case a, case b-1, and case b-2 described below). Corresponding relationships between the two, and based on these correspondences, determine corresponding DMRS port related information.
  • the DMRS port indication information is used to indicate the target DMRS port related information when the number of ports of the DMRS is 1, and then receives the DMRS according to the target DMRS port related information.
  • Table 1 to Table 4 in this case, the value of the DMRS port indication information and the number of DMRS occupied CDM groups and the DMRS port (or the value of the DMRS port indication information and the number of DMRS occupied CDM groups, DMRS ports, and preambles)
  • Tables 1 to 4 A schematic table of a correspondence relationship between the number of DMRS symbols can be seen from Tables 1 to 4. In this case, only the target DMRS port related information with the number of DMRS ports is supported.
  • Table 1 is a schematic table showing the correspondence between the value of the DMRS port indication information and the DMRS occupying the number of CDM groups and the DMRS port when the DMRS configuration type is the configuration type 1 and the maximum length of the DMRS is 1, and Table 2 is the DMRS configuration.
  • Table 2 is the DMRS configuration.
  • Table 3 is the DMRS configuration type.
  • a schematic table of the correspondence between the value of the DMRS port indication information and the number of CDM groups and the DMRS port of the DMRS Table 4 shows that the DMRS configuration type is the configuration type 2 and the DMRS
  • the maximum length is 2
  • the value of the DMRS port indication information such as "1" can be determined from Table 1 and the value is "1".
  • the corresponding DMRS occupies the number of CDM groups, and the port number of the port occupied by the DMRS is 0.
  • Table 1 DCI indicates DMRS port related information when transmitting PDSCH
  • Table 2 DCI indicates DMRS port related information when transmitting PDSCH
  • Table 3 DCI indicates DMRS port related information when transmitting PDSCH
  • Table 4 DCI indicates DMRS port related information when transmitting PDSCH
  • Case b If the DCI indication is PUSCH transmission, the DMRS port indication information is used to indicate the target DMRS port related information when the number of ports of the DMRS is 1, and then the DMRS is sent according to the target DMRS port related information.
  • the DMRS port related information further includes DMRS port related information when the DMRS port rank is 1.
  • Table 5 to Table 8 in this case, the value of the DMRS port indication information and the number of DMRS occupied CDM groups and the DMRS port (or the value of the DMRS port indication information and the number of DMRS occupied CDM groups, DMRS ports, and preambles) A schematic table of a correspondence of DMRS symbol numbers.
  • Table 5 is a schematic table showing a correspondence between the value of the DMRS port indication information and the number of DMRS occupied CDM groups and the DMRS port when the DMRS configuration type is the configuration type 1, the maximum length of the DMRS is 1, and the rank information is 1.
  • Table 6 shows a correspondence between the value of the DMRS port indication information and the number of DMRS occupied CDM groups, DMRS ports, and pre-DMRS symbols when the DMRS configuration type is configuration type 1, the maximum length of the DMRS is 2, and the rank information is 1.
  • the schematic table of the DMRS configuration type is the configuration type 2, the maximum length of the DMRS is 1 and the rank information is 1, the relationship between the value of the DMRS port indication information and the DMRS occupying the number of CDM groups and the DMRS port Table 8 is a type of DMRS configuration type 2, DMRS maximum length 2 and rank information 1; DMRS port indication information and DMRS occupy CDM group number, DMRS port and pre-DMRS symbol number A schematic form of the correspondence.
  • Table 5 DMRS port related information when DCI indicates PUSCH transmission and waveform type is CP-OFDM
  • DMRS occupies the number of CDM groups DMRS port 0 1 0 1 1 1 1 2 2 0 3 2 1 4 2 2 5 2 3 6-7 Reserved Reserved
  • Table 6 DMRS port related information when DCI indicates PUSCH transmission and waveform type is CP-OFDM
  • DMRS occupies the number of CDM groups DMRS port Number of pre-DMRS symbols 0 1 0 1 1 1 1 1 1 2 2 0 1 3 2 1 1 4 2 2 1 5 2 3 1 6 2 0 2 7 2 1 2 8 2 2 2 9 2 3 2 10 2 4 2 11 2 5 2 12 2 6 2 13 2 7 2 14-15 Reserved Reserved Reserved
  • Table 7 DMRS port related information when DCI indicates PUSCH transmission and waveform type is CP-OFDM
  • DMRS occupies the number of CDM groups DMRS port 0 1 0 1 1 1 1 2 2 0 3 2 1 4 2 2 5 2 3 6 3 0 7 3 1 8 3 2 9 3 3 10 3 4 11 3 5 12-15 Reserved Reserved
  • Table 8 DMRS port related information when DCI indicates PUSCH transmission and waveform type is CP-OFDM
  • DMRS occupies the number of CDM groups DMRS port Number of pre-DMRS symbols 0 1 0 1 1 1 1 1 1 2 2 0 1 3 2 1 1 4 2 2 1 5 2 3 1 6 3 0 1 7 3 1 1 8 3 2 1 9 3 3 1 10 3 4 1 11 3 5 1 12 3 0 2 13 3 1 2 14 3 2 2 15 3 3 2 16 3 4 2 17 3 5 2 18 3 6 2 19 3 7 2 20 3 8 2 twenty one 3 9 2 twenty two 3 10 2 twenty three 3 11 2 twenty four 1 0 2 25 1 1 2 26 1 6 2 27 1 7 2 28-31 Reserved Reserved Reserved
  • the DMRS port related information also includes the number of DMRS ports being one.
  • DMRS port related information As shown in Table 9 to Table 10, in this case, the value of the DMRS port indication information and the DMRS occupying the CDM group number and the DMRS port, and the DMRS port indication information and the DMRS occupying the CDM group number, A schematic table of the DMRS port and the number of pre-DMRS symbols.
  • Table 9 is a schematic table of the correspondence between the value of the DMRS port indication information and the number of DMRS occupied CDM groups and the DMRS port when the DMRS configuration type is the configuration type 1 and the maximum length of the DMRS is 1, and the table 10 is the DMRS configuration.
  • the type is the configuration type 1 and the maximum length of the DMRS is 2
  • Table 9 DMRS port related information when DCI indicates PUSCH transmission and waveform type is DFT-OFDM
  • Table 10 DMRS port related information when DCI indicates PUSCH transmission and waveform type is DFT-OFDM
  • DMRS occupies the number of CDM groups DMRS port Number of pre-DMRS symbols 0 2 0 1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 0 2 5 2 1 2 6 2 2 2 7 2 3 2 8 2 4 2 9 2 5 2 10 2 6 2 11 2 7 2 12-15 Reserved Reserved Reserved
  • the embodiment of the present disclosure further provides an optional implementation manner. If the DCI indication is a PDSCH transmission, the DMRS port indication information is used to indicate that the terminal device determines the target DMRS port correlation based on a mapping table corresponding to the DMRS port related information indicated by the DCI format 1_1. If the DCI indication is a PUSCH transmission, the DMRS port indication information may also be used to indicate that the terminal device determines the target DMRS port related information based on a mapping table corresponding to the DMRS port related information indicated by the DCI format 0_1.
  • the DMRS parameter configuration information such as the pre-DMRS location, the DMRS configuration type, the additional DMRS number, and the pre-DMRS symbol number, may be included in the DMRS port information, and the parameter configuration information may be indicated by the high layer signaling, that is, Receiving a high-level signaling configuration, and determining a specific pre-DMRS position, a DMRS configuration type, an additional DMRS number, and a pre-DMRS symbol number based on the high-layer signaling configuration; on the other hand, the network-side device and the terminal device may also be pre-configured
  • the DMRS parameter configuration is configured, where the preset DMRS parameter configuration includes at least one of the following information: the DMRS configuration type is configuration type 1, the Additional DMRS number configuration is 2, and the Front-loaded DMRS symbol number is 1.
  • the preset described herein may be a default assumption between the network side device and the terminal device.
  • the received DCI is a fallback mode
  • the DCI includes DMRS indication information, where the DMRS indication information can be used to indicate target DMRS port related information corresponding to the PDSCH or the PUSCH, and the PUSCH of the terminal device is avoided.
  • the PDSCH is scheduled by the DCI in the fallback mode, the problem of DMRS transmission or reception failure can improve the reliability of communication.
  • FIG. 3 is a flow chart showing an implementation of a method for transmitting a demodulation reference signal according to another embodiment of the present disclosure.
  • the method of Figure 3 is performed by a network side device.
  • the method can include:
  • Step 301 Send a DCI. If the transmission mode indicated by the DCI is a fallback mode, the DCI includes DMRS port indication information, and the DMRS port indication information is used by the terminal device to determine the target DMRS port related information corresponding to the PDSCH or the PUSCH.
  • the embodiment of the present disclosure can pre-set the DMRS port indication information and the target DMRS port related information for the three cases (ie, Case A, Case B-1, and Case B-2 described below). Corresponding relationships between the two, and based on these correspondences, determine corresponding DMRS port related information.
  • the DMRS port indication information is used to indicate the target DMRS port related information when the number of ports of the DMRS is 1.
  • Case B If the DCI indicates PUSCH transmission, the DMRS port indication information is used to indicate the target DMRS port related information when the number of ports of the DMRS is 1.
  • the DMRS port related information further includes DMRS port related information when the DMRS port rank is 1.
  • the DMRS port related information further includes DMRS port related information when the number of DMRS ports is 1.
  • the DMRS parameter configuration information such as the pre-DMRS location, the DMRS configuration type, the additional DMRS number, and the pre-DMRS symbol number, may be included in the DMRS port information, and the parameter configuration information may be indicated by the high layer signaling, that is, Receiving a high-level signaling configuration, and determining a specific pre-DMRS position, a DMRS configuration type, an additional DMRS number, and a pre-DMRS symbol number based on the high-layer signaling configuration; on the other hand, the network-side device and the terminal device may also be pre-configured
  • the DMRS parameter configuration is configured, where the preset DMRS parameter configuration includes at least one of the following information: the DMRS configuration type is configuration type 1, the Additional DMRS number configuration is 2, and the Front-loaded DMRS symbol number is 1.
  • the preset described herein may be a default assumption between the network side device and the terminal device.
  • the DCI when the transmission mode indicated by the transmitted DCI is the fallback mode, the DCI includes DMRS port indication information, and the DMRS port indication information can be used by the terminal device to determine a target DMRS port corresponding to the PDSCH or the PUSCH.
  • the information avoids the problem that the DMRS transmission or reception fails when the PUSCH or the PDSCH of the terminal device is scheduled by the DCI in the fallback mode, and the reliability of the communication can be improved.
  • FIG. 4 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present disclosure.
  • the terminal device 400 may include: a determining unit 401, where
  • the determining unit 401 is configured to determine, according to a preset rule between the network side device and the terminal device, a physical downlink shared channel PDSCH or a physical uplink shared channel PUSCH, if the received downlink control information DCI is a fallback mode.
  • Target demodulation reference signal DMRS port related information is configured to determine, according to a preset rule between the network side device and the terminal device, a physical downlink shared channel PDSCH or a physical uplink shared channel PUSCH, if the received downlink control information DCI is a fallback mode.
  • Target demodulation reference signal DMRS port related information is configured to determine, according to a preset rule between the network side device and the terminal device, a physical downlink shared channel PDSCH or a physical uplink shared channel PUSCH, if the received downlink control information DCI is a fallback mode.
  • Target demodulation reference signal DMRS port related information is configured to determine, according to a preset rule between the network side device and the terminal device,
  • the embodiment of the present disclosure can determine the target DMRS port related information corresponding to the PDSCH or the PUSCH based on the preset rule between the network side device and the terminal device when the received DCI is in the fallback mode, and avoid the PUSCH of the terminal device. Or when the PDSCH is scheduled by the DCI of the fallback mode, the problem that the DMRS is transmitted or received fails, and the reliability of the communication can be improved.
  • the determining unit 401 is configured to:
  • the target DMRS port related information includes a number of code division multiplexing CDM groups occupied by the DMRS port and a port number of a port occupied by the DMRS;
  • the number of the CDM groups occupied by the DMRS port is one of the following numbers: 1, 2, and 3.
  • the port number of the port occupied by the DMRS is 0.
  • the determining unit 401 is configured to:
  • the DCI indication is a PUSCH transmission, determining the target DMRS port related information based on a transmission waveform type;
  • the determining unit 401 is configured to:
  • the transmission waveform type is cyclic prefix orthogonal frequency division multiplexing (CP-OFDM)
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • the rank information indicates that the rank is 1, and the number of code division multiplexing CDM groups occupied by the DMRS port is one of the following numbers: 1, 2, and 3.
  • the port number of the port occupied by the DMRS is 0.
  • the determining unit 401 is configured to:
  • the transmission waveform type is discrete Fourier transform spread spectrum orthogonal frequency division multiplexing DFT-s-OFDM
  • determining that the target DMRS port related information includes the number of code division multiplexing CDM groups occupied by the DMRS port and the DMRS The port number of the occupied port;
  • the number of code division multiplexing CDM groups occupied by the DMRS port is 2, and the port number of the port occupied by the DMRS is 0.
  • the target DMRS port related information further includes a pre-demodulation reference signal Front-loaded DMRS symbol number, and the Front-loaded DMRS symbol number has a value of 1 or 2, which is indicated by high layer signaling.
  • the device further includes:
  • the configuration unit 402 is configured to preset a DMRS parameter configuration between the network side device and the terminal device.
  • the preset DMRS parameter configuration includes at least one of the following information:
  • the DMRS configuration type is configuration type 1;
  • Additional DMRS number configuration is 2;
  • the number of Front-loaded DMRS symbols is 1.
  • the terminal device 400 can also perform the method of FIG. 1. For specific implementation, reference may be made to the embodiment shown in FIG. 1.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 according to another embodiment of the present disclosure.
  • the terminal device 500 may include: a receiving unit 501, where
  • the receiving unit 501 is configured to: if the received downlink control information DCI is a fallback mode, and the DCI includes a demodulation reference signal DMRS port indication information, where the DMRS port indication information is used to indicate a physical downlink shared channel PDSCH or a physical Target DMRS port related information corresponding to the uplink shared channel PUSCH.
  • the received DCI is a fallback mode
  • the DCI includes DMRS indication information, where the DMRS indication information can be used to indicate target DMRS port related information corresponding to the PDSCH or the PUSCH, and the PUSCH of the terminal device is avoided.
  • the PDSCH is scheduled by the DCI in the fallback mode, the problem of DMRS transmission or reception failure can improve the reliability of communication.
  • the DMRS port indication information is used to indicate target DMRS port related information when the number of ports of the DMRS is 1.
  • the DMRS port indication information is used to indicate target DMRS port related information when the number of ports of the DMRS is 1.
  • the DMRS port related information further includes DMRS port related information when the DMRS port rank is 1.
  • the terminal device 500 can also perform the method of FIG. 2, and the specific implementation can refer to the embodiment shown in FIG. 2.
  • FIG. 6 is a schematic structural diagram of a network device 600 according to still another embodiment of the present disclosure.
  • the network side device 600 may include: a sending unit 601, where
  • the sending unit 601 is configured to send the downlink control information DCI. If the DCI is in the fallback mode, the DCI includes a demodulation reference signal DMRS port indication information, where the DMRS port indication information is used by the terminal device to determine the physical downlink.
  • the DCI when the transmission mode indicated by the transmitted DCI is the fallback mode, the DCI includes DMRS port indication information, and the DMRS port indication information can be used by the terminal device to determine a target DMRS port corresponding to the PDSCH or the PUSCH.
  • the information avoids the problem that the DMRS transmission or reception fails when the PUSCH or the PDSCH of the terminal device is scheduled by the DCI in the fallback mode, and the reliability of the communication can be improved.
  • the DMRS port indication information is used to indicate target DMRS port related information when the number of ports of the DMRS is 1.
  • the DMRS port indication information is used to indicate target DMRS port related information when the number of ports of the DMRS is 1.
  • the DMRS port related information further includes DMRS port related information when the DMRS port rank is 1.
  • the terminal device 600 can also perform the method of FIG. 3, and the specific implementation can refer to the embodiment shown in FIG. 3.
  • FIG. 7 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 700 includes at least one processor 710, a memory 720, at least one network interface 730, and a user interface 740.
  • the various components in terminal device 700 are coupled together by a bus system 750.
  • the bus system 750 is used to implement connection communication between these components.
  • the bus system 750 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 750 in FIG.
  • the user interface 740 can include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, and the like).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, and the like.
  • the memory 720 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory 3.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 720 of the systems and methods described in the embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 720 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 721 and application 722.
  • the operating system 721 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 722 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 722.
  • the terminal device 700 further includes: a computer program stored on the memory 720 and operable on the processor 710, the computer program being implemented by the processor 710 to implement the above method for transmitting a demodulation reference signal
  • a computer program stored on the memory 720 and operable on the processor 710, the computer program being implemented by the processor 710 to implement the above method for transmitting a demodulation reference signal
  • Processor 710 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the processor 710 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method for transmitting a demodulation reference signal disclosed in connection with the embodiments of the present disclosure may be directly embodied by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 720, and the processor 710 reads the information in the memory 720, in conjunction with its hardware, to perform the steps of the method described above for transmitting a demodulation reference signal.
  • the computer readable storage medium stores a computer program that, when executed by the processor 710, implements the steps of the method embodiment in the method for transmitting a demodulation reference signal as described above.
  • the embodiments described in the embodiments of the present disclosure may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASICs), digital signal processing (DSP), digital signal processing devices (DSP devices, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, for performing the functions described in the present disclosure Other electronic units or combinations thereof.
  • ASICs application specific integrated circuits
  • DSP digital signal processing
  • DSP devices digital signal processing devices
  • DSPD digital signal processing devices
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor for performing the functions described in the present disclosure
  • Other electronic units or combinations thereof Other electronic units or combinations thereof.
  • the techniques described in the embodiments of the present disclosure may be implemented by modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • FIG. 8 shows a schematic structural diagram of a network side device according to another embodiment of the present disclosure.
  • the network side device 800 includes a processor 810, a transceiver 820, a memory 830, and a bus interface. among them:
  • the network side device 800 further includes: a computer program stored on the memory 830 and operable on the processor 810, the computer program being implemented by the processor 810 to implement the above-described transmission
  • a computer program stored on the memory 830 and operable on the processor 810, the computer program being implemented by the processor 810 to implement the above-described transmission
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 810 and various circuits of memory represented by memory 830.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 820 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 830 can store data used by the processor 810 in performing operations.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the method for transmitting a demodulation reference signal, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the system, device, module or unit illustrated in the above embodiments may be implemented by a computer chip or an entity, or by a product having a certain function.
  • a typical implementation device is a computer.
  • the computer can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal number one assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device. Or a combination of any of these devices.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other memory technology
  • CD-ROM compact disc
  • DVD digital versatile disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种用于传输解调参考信号的方法、终端设备和网络侧设备,方法包括:若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。

Description

用于传输解调参考信号的方法、终端设备和网络侧设备
相关申请的交叉引用
本申请主张在2018年3月27日在中国提交的中国专利申请No.201810259975.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种用于传输解调参考信号的方法、终端设备和网络侧设备。
背景技术
第五代(5 th-Generation,5G)移动通信系统支持移动增强宽带(enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low-Latency Communications,URLLC)和大规模机器类通信(massive Machine Type of Communication,mMTC)业务。未来5G移动通信系统为适应这些不同业务的需求,需要不同的解调参考信号(Demodulation Reference Signal,DMRS)配置。
相关技术中,下行控制信息(Downlink Control Information,DCI)包含有多种格式,其中,用于调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输的DCI format 0_1和用于调度物理下行共享信道(Physical Downlink Share Channel,PDSCH)传输的DCI format 1_1中,包含DMRS端口配置信息,能够保证DMRS的正常发送或接收。
然而,当DCI的格式为回退模式时,比如用于调度PUSCH传输的DCI format 0_0和用于调度PDSCH传输的DCI format 1_0中则不包含DMRS配置信息,这将无法保证通信的可靠性。
发明内容
本公开实施例的目的是提供一种用于传输解调参考信号的方法、终端设备和网络侧设备,以解决相关技术中DCI的格式为回退模式时无法保证通信 的可靠性的问题。
为解决上述技术问题,本公开实施例是这样实现的:
第一方面,提供了一种用于传输解调参考信号的方法,应用于终端设备,包括:
若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。
第二方面,提供了一种用于传输解调参考信号的方法,应用于终端设备,包括:
若接收到的下行控制信息DCI为回退模式,且所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于指示物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
第三方面,提供了一种用于传输解调参考信号的方法,应用于网络侧设备,包括:
发送下行控制信息DCI,若所述DCI指示为回退模式,则所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于终端设备确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
第四方面,提供了一种终端设备,该终端设备包括:
确定单元,用于若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。
第五方面,提供了一种终端设备,该终端设备包括:
接收单元,用于若接收到的下行控制信息DCI为回退模式,且所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于指示物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
第六方面,提供了一种网络侧设备,该网络侧设备包括:
发送单元,用于发送下行控制信息DCI,若所述DCI指示为回退模式, 则所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于终端设备确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
第七方面,提供了一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的无线通信的方法的步骤。
第八方面,提供了一种计算机可读介质,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的无线通信的方法的步骤。
第九方面,提供了一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的无线通信的方法的步骤。
第十方面,提供了一种计算机可读介质,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的无线通信的方法的步骤。
第十一方面,提供一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第三方面所述的无线通信的方法的步骤。
第十二方面,提供了一种计算机可读介质,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第三方面所述的无线通信的方法的步骤。
由以上本公开实施例提供的技术方案可见,本公开实施例方案至少具备如下一种技术效果:
本公开的实施例,能够在接收到的DCI为回退模式时,基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例,一种用于传输解调参考信号的方法的实施流程示意图;
图2是根据本公开实施例,另一种用于传输解调参考信号的方法的实施流程示意图;
图3是根据本公开实施例,再一种用于传输解调参考信号的方法的实施流程示意图;
图4是根据本公开实施例,一种终端设备的结构示意图;
图5是根据本公开实施例,另一种终端设备的结构示意图;
图6是根据本公开实施例,一种网络侧设备的结构示意图;
图7是根据本公开实施例,一种终端设备的结构示意图;
图8是根据本公开实施例,一种网络侧设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution Advanced,LTE-A),新空口(New Radio,NR)等。
用户端(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本申请并不限定,但为描述方便,下述实施例以gNB为例进行说明。
NR系统中存在时隙(slot-based)调度和微时隙(minislot-based)调度两种调度方式,这两种调度方式的主要区别在于,slot-based调度在一个时隙内只能调度一次,而minislot-based调度则可以基于1~14个符号在一个时隙内进行多次调度。在NR协议中,这两种调度方式主要是通过数据调度的映射类型mapping type A/B来区分,其具体区别则可以对应到映射的PDSCH的导频的位置的差异。
DMRS的配置信息包括:
(1)前置解调参考信号位置,用于指示上行和下行前置DMRS的位置,通过广播信道指示;
(2)DMRS配置类型(configuration type),用于指示DMRS采用配置类型1或配置类型2,不同的配置类型对应不同的图样,该DMRS配置类型可以通过无线资源控制(Radio Resource Control,RRC)来指示;
(3)前置DMRS符号数,用于指示前置DMRS占用1个或2个符号,其中,前置DMRS符号数可以通过RRC指示;
(4)额外(Additional)DMRS数,用于指示额外DMRS数采用0,1,2或3,该额外DMRS数可以通过RRC指示;
(5)DMRS端口相关信息,通过DCI,主要包括以下信息:DMRS占用码分复用(Code Division Multiplexing,CDM)组数、DMRS端口号以及前置DMRS符号数,其中,CDM组数用于指示DMRS占用1、2或3个CDM 组,DMRS配置类型1最大可用CDM组为2,DMRS配置类型1最大可用CDM组为3,DMRS端口号可以用于指示DMRS传输占用端口号,且该DMRS端口号与DMRS配置类型和前置DMRS相关,前置DMRS符号数则可以用于指示当RRC配置前置DMRS为2时,实际传输前置DMRS符号数。
其中,上述前置DMRS位置以外,其他DMRS参数分别由上行链路和下行链路配置。
5G移动通信系统中,DCI格式包含DCI format 0_0和0_1、DCI format 1_0和1_1以及DCI format 2_0/2_1/2_2/2_3,其中,DCI format 0_0和0_1,用于调度PUSCH传输;DCI format 1_0和1_1,用于调度PDSCH传输;DCI format2_0/2_1/2_2/2_3用于调度一组UE传输。在这几种DCI格式中,DCI format 0_0和DCI format 1_0为回退模式(Fall Back)。
如背景技术中所述,相关技术中的终端设备的PUSCH或PDSCH由回退模式的DCI调度时,由于回退模式的DCI中并不包含DMRS端口相关信息,这将会导致DMRS发送或接收失败问题,进而导致移动通信系统不能正常工作,也就是无法保证通信的可靠性,因此,在相关技术的基础上,有必要提出一种用于传输解调参考信号的方法,针对当终端设备的PUSCH或PDSCH由回退模式的DCI调度的情况,保证通信的可靠性。
图1是本公开的一个实施例用于传输解调参考信号的方法的实施流程示意图。图1的方法由终端设备执行。该方法包括:
步骤101,若接收到的DCI为回退模式,则基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端口相关信息。
由于DCI的回退模式中存在用于调度PUSCH和PDSCH传输的两种格式,即DCI format 0_0和DCI format 1_0,且当DCI指示为PUSCH传输时,还可以采用循环前缀正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM)和离散傅立叶变换扩频的正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)这两种波形,因此,本公开实施例可以针对这三种情况(即下文所述的情况1、情况2-1和情况2-2),预先设定一些规则,也就是网络侧设备和终端设备之间默认假设一些规则,并基于这些规则(也就是预设规则), 确定对应的DMRS端口相关信息。
情况1,基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端口相关信息,具体来说,若DCI指示为PDSCH传输,则确定目标DMRS端口相关信息包括DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;终端设备将假设DMRS端口占用的CDM组的数量为以下数量中的一个:1、2和3,DMRS占用的端口的端口号为0;再根据目标DMRS端口相关信息,接收DMRS。
在这种情况下,若DMRS端口占用的CDM组的数量为1,对应高层信令配置DMRS配置类型为1或2,DMRS占用的端口的端口号为0,此时,目标DMRS端口相关信息还可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1;
而若DMRS端口占用的CDM组的数量为2,对应高层信令配置DMRS配置类型为1,DMRS占用的端口的端口号为0,此时目标DMRS端口相关信息也可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1;
而若DMRS端口占用的CDM组的数量为3时,对应高层信令配置DMRS配置类型2,DMRS占用的端口的端口号为0,此时目标DMRS端口相关信息也可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1。
上述Front-loaded DMRS符号数的取值还由高层信令指示,其具体数值可以为1或2。
情况2,基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端口相关信息,具体来说,若DCI指示为PUSCH传输,则可以基于传输波形类型,确定目标DMRS端口相关信息;再根据目标DMRS端口相关信息,发送DMRS。
情况2-1,基于传输波形类型,确定目标DMRS端口相关信息,具体来说,若传输波形类型为CP-OFDM,则确定目标DMRS端口相关信息包括秩信息、DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;终端设备将假设秩信息指示秩为1,DMRS端口占用的码分复用CDM 组的数量为以下数量中的一个:1、2和3,DMRS占用的端口的端口号为0。
这里的秩信息指示秩为1的情况,则是指选择端口号的秩为1的情况,也就是说,确定的目标DMRS端口相关信息能够使得DMRS实现单端口传输,进而保证传输的稳定性,以及通信的可靠性。
在这种情况下,若DMRS端口占用的CDM组的数量为1,对应高层信令配置DMRS配置类型为1或2,DMRS占用的端口的端口号为0,此时,目标DMRS端口相关信息还可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1;
而若DMRS端口占用的CDM组的数量为2,对应高层信令配置DMRS配置类型为1,DMRS占用的端口的端口号为0,此时,目标DMRS端口相关信息也可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1。
而若DMRS端口占用的CDM组的数量为3时,对应高层信令配置DMRS配置类型为2,DMRS占用的端口的端口号为0,此时,目标DMRS端口相关信息也可以包括Front-loaded DMRS符号数,该Front-loaded DMRS符号数的取值可以为1。
对于DMRS配置类型1,由于DMRS端口占用的CDM组的数量为2,因此,PUSCH与DMRS可以进行频分多路(Frequency-division multiplexing,FDM)传输,两者之间便不会产生干扰,且DMRS端口由于占用两个CDM组(比如CDM组1为子载波1、3、5、7、9、11和CDM组2为子载波2、4、6、8、10、12),但实际使用时则只使用一组CDM进行DMRS传输(比如占用CDM组1),那么未进行数据传输的CDM组2便可以将其功率分配给用于DMRS传输的CDM组1,从而能够实现功率提升。
对于DMRS配置类型2,由于DMRS端口占用的CDM组的数量为3,因此,PUSCH与DMRS可以进行FDM传输,两者之间便不会产生干扰,且DMRS端口由于占用3个CDM组(比如CDM组1为子载波1、2、7、8,CDM组2为子载波3、4、9、10,CDM组3为子载波5、6、11、12),但实际使用时则只使用一组CDM进行DMRS传输(比如占用CDM组1),那么未进行数据传输的CDM组2和CDM组3便可以将其功率分配给用于DMRS 传输的CDM组1,从而能够实现功率提升。
情况2-2,基于传输波形类型,确定目标DMRS端口相关信息,具体来说,若确定传输波形类型为DFT-s-OFDM,则可以确定目标DMRS端口相关信息包括DMRS端口占用的CDM组的数量和DMRS占用的端口的端口号;其中,DMRS端口占用的码分复用CDM组的数量为2,DMRS占用的端口的端口号为0。
在这种情况下,也能够防止干扰并实现功率提升,具体实现过程与情况2-1类似,这里将不再赘述。
可选地,上述前置解调参考信号Front-loaded DMRS符号数可以由高层信令指示,Front-loaded DMRS符号数的取值具体可以为1或2。
由于除DMRS端口相关信息以外还包括前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数等DMRS参数配置信息,这些参数配置信息,一方面,可以通过高层信令指示,即通过接收高层信令配置,并基于该高层信令配置确定具体的前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数;另一方面,网络侧设备和终端设备之间还可以预设DMRS参数配置,其中,上述预设DMRS参数配置包含以下信息中的至少一种:DMRS配置类型为配置类型1、Additional DMRS数配置为2、Front-loaded DMRS符号数为1。这里所述的预设可以是网络侧设备和终端设备之间默认假设的。
本公开的实施例,能够在接收到的DCI为回退模式时,基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
图2是本公开的另一个实施例用于传输解调参考信号的方法的实施流程示意图。图2的方法由终端设备执行。该方法包括:
步骤201,若接收到的DCI为回退模式,且DCI中包括DMRS端口指示信息,DMRS端口指示信息用于指示PDSCH或PUSCH对应的目标DMRS端口相关信息。
由于DCI的回退模式中存在用于调度PUSCH和PDSCH传输的两种格式, 即DCI format 0_0和DCI format 1_0,且当DCI指示为PUSCH传输时,还可以采用CP-OFDM和DFT-s-OFDM这两种波形,因此,本公开实施例可以针对这三种情况(即下文所述的情况a、情况b-1和情况b-2),预先设置DMRS端口指示信息与目标DMRS端口相关信息之间的对应关系,并基于这些对应关系,确定对应的DMRS端口相关信息。
情况a,若DCI指示为PDSCH传输,则DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;再根据目标DMRS端口相关信息,接收DMRS。如表1~表4所示,为这种情况下,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口(或者DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数)的一种对应关系的示意表格,从表1~表4中可以看出,这种情况下只支持DMRS端口数为1的目标DMRS端口相关信息。
其中,表1为DMRS配置类型为配置类型1且DMRS的最大长度为1时,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口的一种对应关系的示意表格;表2为DMRS配置类型为配置类型1且DMRS的最大长度为2时,DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的一种对应关系的示意表格;表3为DMRS配置类型为配置类型2且DMRS的最大长度为1时,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口的一种对应关系的示意表格;表4为DMRS配置类型为配置类型2且DMRS的最大长度为2时,DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的一种对应关系的示意表格。
以表1为例,若接收到的DCI为回退模式,且DCI指示为PDSCH传输,则可以根据DMRS端口指示信息的数值,比如“1”来从表1中确定出与该数值“1”对应的DMRS占用CDM组数为1,且DMRS占用的端口的端口号为0。
表1 DCI指示为PDSCH传输时的DMRS端口相关信息
Figure PCTCN2019075190-appb-000001
表2 DCI指示为PDSCH传输时的DMRS端口相关信息
Figure PCTCN2019075190-appb-000002
表3 DCI指示为PDSCH传输时的DMRS端口相关信息
Figure PCTCN2019075190-appb-000003
表4 DCI指示为PDSCH传输时的DMRS端口相关信息
Figure PCTCN2019075190-appb-000004
情况b,若DCI指示为PUSCH传输,则DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;再根据目标DMRS端口相关信息,发送DMRS。
情况b-1,若传输波形类型为CP-OFDM,则DMRS端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。如表5~表8所示,为这种情况下,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口(或者DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数)的一种对应关系的示意表格。
其中,表5为DMRS配置类型为配置类型1、DMRS的最大长度为1且秩信息为1时,DMRS端口指示信息的数值与DMRS占用CDM组数以及 DMRS端口的一种对应关系的示意表格;表6为DMRS配置类型为配置类型1、DMRS的最大长度为2且秩信息为1时,DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的一种对应关系的示意表格;表7为DMRS配置类型为配置类型2、DMRS的最大长度为1且秩信息为1时,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口的一种对应关系的示意表格;表8为DMRS配置类型为配置类型2、DMRS的最大长度为2且秩信息为1时,DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的一种对应关系的示意表格。
表5 DCI指示为PUSCH传输且波形类型为CP-OFDM时的DMRS端口相关信息
数值 DMRS占用CDM组数 DMRS端口
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6-7 保留 保留
表6 DCI指示为PUSCH传输且波形类型为CP-OFDM时的DMRS端口相关信息
数值 DMRS占用CDM组数 DMRS端口 前置DMRS符号数
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 2 0 2
7 2 1 2
8 2 2 2
9 2 3 2
10 2 4 2
11 2 5 2
12 2 6 2
13 2 7 2
14-15 保留 保留 保留
表7 DCI指示为PUSCH传输且波形类型为CP-OFDM时的DMRS端口相关信息
数值 DMRS占用CDM组数 DMRS端口
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6 3 0
7 3 1
8 3 2
9 3 3
10 3 4
11 3 5
12-15 保留 保留
表8 DCI指示为PUSCH传输且波形类型为CP-OFDM时的DMRS端口相关信息
数值 DMRS占用CDM组数 DMRS端口 前置DMRS符号数
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 3 0 1
7 3 1 1
8 3 2 1
9 3 3 1
10 3 4 1
11 3 5 1
12 3 0 2
13 3 1 2
14 3 2 2
15 3 3 2
16 3 4 2
17 3 5 2
18 3 6 2
19 3 7 2
20 3 8 2
21 3 9 2
22 3 10 2
23 3 11 2
24 1 0 2
25 1 1 2
26 1 6 2
27 1 7 2
28-31 保留 保留 保留
情况b-2,若传输波形类型为离散傅里叶变换的正交频分复用(Discrete Fourier Transform-Orthogonal Frequency Division Multiplexing,DFT-OFDM),则DMRS端口相关信息还包括DMRS端口数为1时的DMRS端口相关信息。如表9~表10所示,为这种情况下,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口的一种对应关系,以及DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的示意表格。
其中,表9为DMRS配置类型为配置类型1且DMRS的最大长度为1时,DMRS端口指示信息的数值与DMRS占用CDM组数以及DMRS端口的一种对应关系的示意表格;表10为DMRS配置类型为配置类型1且DMRS的最大长度为2时,DMRS端口指示信息的数值与DMRS占用CDM组数、DMRS端口以及前置DMRS符号数的一种对应关系的示意表格。
表9 DCI指示为PUSCH传输且波形类型为DFT-OFDM时的DMRS端口相关信息
Figure PCTCN2019075190-appb-000005
表10 DCI指示为PUSCH传输且波形类型为DFT-OFDM时的DMRS端口相关信息
数值 DMRS占用CDM组数 DMRS端口 前置DMRS符号数
0 2 0 1
1 2 1 1
2 2 2 1
3 2 3 1
4 2 0 2
5 2 1 2
6 2 2 2
7 2 3 2
8 2 4 2
9 2 5 2
10 2 6 2
11 2 7 2
12-15 保留 保留 保留
本公开实施例还提供一种可选的实施方式,若DCI指示为PDSCH传输, 则DMRS端口指示信息用于指示终端设备基于DCI格式1_1指示的DMRS端口相关信息对应的映射表格确定目标DMRS端口相关信息;若DCI指示为PUSCH传输,则DMRS端口指示信息还可以用于指示终端设备基于DCI格式0_1指示的DMRS端口相关信息对应的映射表格确定目标DMRS端口相关信息。
由于除DMRS端口相关信息以外还包括前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数等DMRS参数配置信息,这些参数配置信息,一方面,可以通过高层信令指示,即通过接收高层信令配置,并基于该高层信令配置确定具体的前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数;另一方面,网络侧设备和终端设备之间还可以预设DMRS参数配置,其中,上述预设DMRS参数配置包含以下信息中的至少一种:DMRS配置类型为配置类型1、Additional DMRS数配置为2、Front-loaded DMRS符号数为1。这里所述的预设可以是网络侧设备和终端设备之间默认假设的。
本公开的实施例,在接收到的DCI为回退模式,且DCI中包括DMRS指示信息,该DMRS指示信息能够用于指示PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
图3是本公开的另一个实施例用于传输解调参考信号的方法实施流程示意图。图3的方法由网络侧设备执行。该方法可包括:
步骤301,发送DCI,若DCI指示的传输模式为回退模式,则DCI中包括DMRS端口指示信息,DMRS端口指示信息用于终端设备确定PDSCH或PUSCH对应的目标DMRS端口相关信息。
由于DCI的回退模式中存在用于调度PUSCH和PDSCH传输的两种格式,即DCI format 0_0和DCI format 1_0,且当DCI指示为PUSCH传输时,还可以采用CP-OFDM和DFT-s-OFDM这两种波形,因此,本公开实施例可以针对这三种情况(即下文所述的情况A、情况B-1和情况B-2),预先设置DMRS端口指示信息与目标DMRS端口相关信息之间的对应关系,并基于这些对应关系,确定对应的DMRS端口相关信息。
情况A,若DCI指示PDSCH传输,则DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
情况B,若DCI指示PUSCH传输,则DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
情况B-1,若PUSCH传输波形类型为CP-OFDM,则DMRS端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。
情况B-2,若PUSCH传输波形类型为DFT-OFDM,则DMRS端口相关信息还包括DMRS端口数为1时的DMRS端口相关信息。
由于除DMRS端口相关信息以外还包括前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数等DMRS参数配置信息,这些参数配置信息,一方面,可以通过高层信令指示,即通过接收高层信令配置,并基于该高层信令配置确定具体的前置DMRS位置、DMRS配置类型、额外DMRS数和前置DMRS符号数;另一方面,网络侧设备和终端设备之间还可以预设DMRS参数配置,其中,上述预设DMRS参数配置包含以下信息中的至少一种:DMRS配置类型为配置类型1、Additional DMRS数配置为2、Front-loaded DMRS符号数为1。这里所述的预设可以是网络侧设备和终端设备之间默认假设的。
本公开的实施例,在发送的DCI所指示的传输模式为回退模式时,该DCI中包括DMRS端口指示信息,该DMRS端口指示信息能够用于终端设备确定PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
图4是本公开的一个实施例终端设备400的结构示意图。如图4所示,该终端设备400可包括:确定单元401,其中,
确定单元401,用于若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。
本公开的实施例,能够在接收到的DCI为回退模式时,基于网络侧设备和终端设备之间的预设规则,确定PDSCH或PUSCH对应的目标DMRS端 口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
可选地,所述确定单元401,用于:
若所述DCI指示为PDSCH传输,则确定所述目标DMRS端口相关信息包括DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
其中,所述DMRS端口占用的CDM组的数量为以下数量中的一个:1、2和3,所述DMRS占用的端口的端口号为0;
根据所述目标DMRS端口相关信息,接收DMRS。
可选地,所述确定单元401,用于:
若所述DCI指示为PUSCH传输,则基于传输波形类型,确定所述目标DMRS端口相关信息;
根据所述目标DMRS端口相关信息,发送DMRS。
可选地,所述确定单元401,用于:
若所述传输波形类型为循环前缀正交频分复用CP-OFDM,则确定所述目标DMRS端口相关信息包括秩信息、DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
其中,所述秩信息指示秩为1,DMRS端口占用的码分复用CDM组的数量为以下数量中的一个:1、2和3,所述DMRS占用的端口的端口号为0。
可选地,所述确定单元401,用于:
若确定所述传输波形类型为离散傅立叶变换扩频的正交频分复用DFT-s-OFDM,则确定所述目标DMRS端口相关信息包括DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
其中,DMRS端口占用的码分复用CDM组的数量为2,DMRS占用的端口的端口号为0。
可选地,所述目标DMRS端口相关信息还包括前置解调参考信号Front-loaded DMRS符号数,所述Front-loaded DMRS符号数的取值为1或2,由高层信令指示。
可选地,所述装置还包括:
配置单元402,用于所述网络侧设备和所述终端设备之间预设DMRS参数配置;
其中,所述预设DMRS参数配置包含以下信息中的至少一种:
DMRS配置类型为配置类型1;
Additional DMRS数配置为2;
Front-loaded DMRS符号数为1。
终端设备400还可执行图1的方法,具体实现可参考图1所示实施例。
图5是本公开的另一个实施例终端设备500的结构示意图。如图5所示,该终端设备500可包括:接收单元501,其中,
接收单元501,用于若接收到的下行控制信息DCI为回退模式,且所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于指示物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
本公开的实施例,在接收到的DCI为回退模式,且DCI中包括DMRS指示信息,该DMRS指示信息能够用于指示PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
可选地,若所述DCI指示为PDSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;
根据所述目标DMRS端口相关信息,接收DMRS。
可选地,若所述DCI指示为PUSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;
根据所述目标DMRS端口相关信息,发送DMRS。
可选地,若所述传输波形类型为循环前缀正交频分复用CP-OFDM,则所DMRS端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。
终端设备500还可执行图2的方法,具体实现可参考图2所示实施例。
图6是本公开的又一个实施例网络设备600的结构示意图。如图6所示,该网络侧设备600可包括:发送单元601,其中,
发送单元601,用于发送下行控制信息DCI,若所述DCI指示为回退模 式,则所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于终端设备确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
本公开的实施例,在发送的DCI所指示的传输模式为回退模式时,该DCI中包括DMRS端口指示信息,该DMRS端口指示信息能够用于终端设备确定PDSCH或PUSCH对应的目标DMRS端口相关信息,避免了终端设备的PUSCH或PDSCH由回退模式的DCI调度时,DMRS发送或接收失败的问题,可以提高通信的可靠性。
可选地,若所述DCI指示PDSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
可选地,若所述DCI指示PUSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
可选地,若所述PUSCH传输波形类型为循环前缀正交频分复用CP-OFDM,则所述DMRS端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。
终端设备600还可执行图3的方法,具体实现可参考图3所示实施例。
图7示出了根据本公开另一实施例的终端设备的结构示意图,如图7所示,终端设备700包括:至少一个处理器710、存储器720、至少一个网络接口730和用户接口740。终端设备700中的各个组件通过总线系统750耦合在一起。可理解,总线系统750用于实现这些组件之间的连接通信。总线系统750除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统750。
其中,用户接口740可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器720可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器3两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或 闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synclink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器720旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器720存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统721和应用程序722。
其中,操作系统721,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序722,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序722中。
在本公开实施例中,终端设备700还包括:存储在存储器上720并可在处理器710上运行的计算机程序,计算机程序被处理器710执行时实现上述用于传输解调参考信号的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器710中,或者由处理器710实现。处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器710可以是通用处理器、数一信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的用于传输解调参考信号的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器720,处理器710读取存储器720中的信息,结合其硬件完成上述用于传输解调参考信号的方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器710执行时实现如上述用于传输解调参考信号的方法中的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数一信号处理器(Digital Signal Processing,DSP)、数一信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
图8示出了根据本公开另一实施例的网络侧设备的结构示意图。如图8所示,网络侧设备800包括处理器810、收发机820、存储器830和总线接口。其中:
在本公开实施例中,网络侧设备800还包括:存储在存储器830上并可在所述处理器810上运行的计算机程序,所述计算机程序被所述处理器810执行时实现上述用于传输解调参考信号的方法中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器和存储器830代表的存储器的各种电路链接 在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机820可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器810负责管理总线架构和通常的处理,存储器830可以存储处理器810在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述用于传输解调参考信号的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
总之,以上所述仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数一助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数一多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (24)

  1. 一种用于传输解调参考信号的方法,应用于终端设备,所述方法包括:
    若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。
  2. 如权利要求1所述的方法,其中,所述基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息,包括:
    若所述DCI指示为PDSCH传输,则确定所述目标DMRS端口相关信息包括DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
    其中,所述DMRS端口占用的CDM组的数量为以下数量中的一个:1、2和3,所述DMRS占用的端口的端口号为0;
    根据所述目标DMRS端口相关信息,接收DMRS。
  3. 如权利要求1所述的方法,其中,所述基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息,包括:
    若所述DCI指示为PUSCH传输,则基于传输波形类型,确定所述目标DMRS端口相关信息;
    根据所述目标DMRS端口相关信息,发送DMRS。
  4. 如权利要求3所述的方法,其中,所述基于传输波形类型,确定所述目标DMRS端口相关信息,包括:
    若所述传输波形类型为循环前缀正交频分复用CP-OFDM,则确定所述目标DMRS端口相关信息包括秩信息、DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
    其中,所述秩信息指示秩为1,DMRS端口占用的码分复用CDM组的数量为以下数量中的一个:1、2和3,所述DMRS占用的端口的端口号为0。
  5. 如权利要求3所述的方法,其中,所述基于传输波形类型,确定所述 目标DMRS端口相关信息,包括:
    若确定所述传输波形类型为离散傅立叶变换扩频的正交频分复用DFT-s-OFDM,则确定所述目标DMRS端口相关信息包括DMRS端口占用的码分复用CDM组的数量和DMRS占用的端口的端口号;
    其中,DMRS端口占用的码分复用CDM组的数量为2,DMRS占用的端口的端口号为0。
  6. 如权利要求2或4或5中任一所述的方法,其中,所述目标DMRS端口相关信息还包括前置解调参考信号Front-loaded DMRS符号数,所述Front-loaded DMRS符号数的取值为1或2,由高层信令指示。
  7. 如权利要求1~6中任一所述的方法,还包括:
    所述网络侧设备和所述终端设备之间预设DMRS参数配置;
    其中,所述预设DMRS参数配置包含以下信息中的至少一种:
    DMRS配置类型为配置类型1;
    Additional DMRS数配置为2;
    Front-loaded DMRS符号数为1。
  8. 一种用于传输解调参考信号的方法,应用于终端设备,所述方法包括:
    若接收到的下行控制信息DCI为回退模式,且所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于指示物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
  9. 如权利要求8所述的方法,其中,
    若所述DCI指示为PDSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;
    根据所述目标DMRS端口相关信息,接收DMRS。
  10. 如权利要求8所述的方法,其中,
    若所述DCI指示为PUSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息;
    根据所述目标DMRS端口相关信息,发送DMRS。
  11. 如权利要求10所述的方法,其中,
    若所述传输波形类型为循环前缀正交频分复用CP-OFDM,则所述DMRS 端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。
  12. 一种用于传输解调参考信号的方法,应用于网络侧设备,所述方法包括:
    发送下行控制信息DCI,若所述DCI指示为回退模式,则所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于终端设备确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
  13. 如权利要求12所述的方法,其中,若所述DCI指示PDSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
  14. 如权利要求12所述的方法,其中,若所述DCI指示PUSCH传输,则所述DMRS端口指示信息用于指示DMRS的端口数为1时的目标DMRS端口相关信息。
  15. 如权利要求14所述的方法,其中,若所述PUSCH传输波形类型为循环前缀正交频分复用CP-OFDM,则所述DMRS端口相关信息还包括DMRS端口秩为1时的DMRS端口相关信息。
  16. 一种终端设备,包括:
    确定单元,用于若接收到的下行控制信息DCI为回退模式,则基于网络侧设备和所述终端设备之间的预设规则,确定物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标解调参考信号DMRS端口相关信息。
  17. 一种终端设备,包括:
    接收单元,用于若接收到的下行控制信息DCI为回退模式,且所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于指示物理下行共享信道PDSCH或物理上行共享信道PUSCH对应的目标DMRS端口相关信息。
  18. 一种网络侧设备,包括:
    发送单元,用于发送下行控制信息DCI,若所述DCI指示为回退模式,则所述DCI中包括解调参考信号DMRS端口指示信息,所述DMRS端口指示信息用于终端设备确定物理下行共享信道PDSCH或物理上行共享信道 PUSCH对应的目标DMRS端口相关信息。
  19. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的无线通信的方法的步骤。
  20. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的无线通信的方法的步骤。
  21. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至11中任一项所述的无线通信的方法的步骤。
  22. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求8至11中任一项所述的无线通信的方法的步骤。
  23. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求12至15中任一项所述的无线通信的方法的步骤。
  24. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求12至15中任一项所述的无线通信的方法的步骤。
PCT/CN2019/075190 2018-03-27 2019-02-15 用于传输解调参考信号的方法、终端设备和网络侧设备 WO2019184614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810259975.4A CN110311764B (zh) 2018-03-27 2018-03-27 用于传输解调参考信号的方法、终端设备和网络侧设备
CN201810259975.4 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019184614A1 true WO2019184614A1 (zh) 2019-10-03

Family

ID=68062202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075190 WO2019184614A1 (zh) 2018-03-27 2019-02-15 用于传输解调参考信号的方法、终端设备和网络侧设备

Country Status (2)

Country Link
CN (1) CN110311764B (zh)
WO (1) WO2019184614A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126026A (zh) * 2021-11-18 2022-03-01 中信科移动通信技术股份有限公司 资源块分配方法及装置
CN115037424A (zh) * 2021-03-08 2022-09-09 华为技术有限公司 Dmrs正交化的方法、终端设备和网络设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110855410B (zh) * 2019-11-07 2022-05-13 展讯半导体(南京)有限公司 解调参考信号dmrs端口的确定方法及相关产品
CN114257354B (zh) * 2020-09-22 2023-10-17 中国移动通信有限公司研究院 一种传输方法、终端设备及网络侧设备
WO2023197147A1 (en) * 2022-04-12 2023-10-19 Apple Inc. Dmrs port configuration for cp-ofdm
WO2024020891A1 (en) * 2022-07-27 2024-02-01 Lenovo (Beijing) Limited Methods and apparatuses for determining dmrs port mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448105A (zh) * 2010-10-09 2012-05-09 电信科学技术研究院 下行数据的传输方法和设备
CN102811495A (zh) * 2011-06-02 2012-12-05 华为技术有限公司 接收、发送调度信息的方法、装置及系统
WO2014017867A1 (ko) * 2012-07-27 2014-01-30 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
US20150003352A1 (en) * 2011-12-27 2015-01-01 Lg Electronics Inc. Method and device for receiving data in wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349491A (zh) * 2013-08-08 2015-02-11 中兴通讯股份有限公司 一种物理下行共享信道传输的方法、系统和网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448105A (zh) * 2010-10-09 2012-05-09 电信科学技术研究院 下行数据的传输方法和设备
CN102811495A (zh) * 2011-06-02 2012-12-05 华为技术有限公司 接收、发送调度信息的方法、装置及系统
US20150003352A1 (en) * 2011-12-27 2015-01-01 Lg Electronics Inc. Method and device for receiving data in wireless communication system
WO2014017867A1 (ko) * 2012-07-27 2014-01-30 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037424A (zh) * 2021-03-08 2022-09-09 华为技术有限公司 Dmrs正交化的方法、终端设备和网络设备
CN114126026A (zh) * 2021-11-18 2022-03-01 中信科移动通信技术股份有限公司 资源块分配方法及装置
CN114126026B (zh) * 2021-11-18 2024-02-23 中信科移动通信技术股份有限公司 资源块分配方法及装置

Also Published As

Publication number Publication date
CN110311764B (zh) 2023-04-07
CN110311764A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2019184614A1 (zh) 用于传输解调参考信号的方法、终端设备和网络侧设备
CN110324127B (zh) Pdcch监听候选的分配方法和网络侧设备
US20200374097A1 (en) Pilot signal generation method and apparatus
WO2019154185A1 (zh) 下行控制信息dci的传输方法、装置及网络设备
US11632207B2 (en) Method and apparatus for transmitting uplink signal
WO2020001532A1 (zh) 定位参考信号配置方法、网络侧设备和终端设备
CN109327884B (zh) 通信方法、网络设备和中继设备
WO2018127157A1 (zh) 一种上行信号发送方法、接收方法、终端及基站
US11026191B2 (en) Service transmission method, device, and system
CN109661846B (zh) 通信方法、终端设备和网络设备
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
CN110034865B (zh) Pucch资源的确定方法及其接收方法、终端设备和网络侧设备
CN109802789B (zh) 传输公共控制信息的时频域资源的配置方法和设备
JP7092187B2 (ja) リソース構成方法、決定方法及びその装置、並びに通信システム
WO2019137274A1 (zh) 解调参考信号的传输方法及网络设备
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
US11252747B2 (en) Communication method and device
EP3567956B1 (en) Method for sending control information, method for receiving control information, access network device, and terminal device
US20210068113A1 (en) Wireless communication method and device
TWI801667B (zh) 資料傳輸方法和設備
EP4192156A1 (en) Information transmission method and communication apparatus
WO2019095946A1 (zh) 多时隙传输的方法和设备
WO2022105544A1 (zh) 传输方法及传输装置
WO2023011255A1 (zh) Rs传输方法及通信装置
EP4255066A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777080

Country of ref document: EP

Kind code of ref document: A1