WO2019137274A1 - 解调参考信号的传输方法及网络设备 - Google Patents

解调参考信号的传输方法及网络设备 Download PDF

Info

Publication number
WO2019137274A1
WO2019137274A1 PCT/CN2019/070077 CN2019070077W WO2019137274A1 WO 2019137274 A1 WO2019137274 A1 WO 2019137274A1 CN 2019070077 W CN2019070077 W CN 2019070077W WO 2019137274 A1 WO2019137274 A1 WO 2019137274A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
pdsch
traffic channel
symbol
symbols
Prior art date
Application number
PCT/CN2019/070077
Other languages
English (en)
French (fr)
Inventor
孙晓东
孙鹏
马景智
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19738435.7A priority Critical patent/EP3739796A4/en
Priority to US16/960,537 priority patent/US11476993B2/en
Priority to KR1020207021588A priority patent/KR102459102B1/ko
Priority to JP2020537776A priority patent/JP7041274B2/ja
Publication of WO2019137274A1 publication Critical patent/WO2019137274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/156Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and a network device for transmitting a demodulation reference signal.
  • 5G Fifth Generation (5 th Generation, 5G) mobile communication system supporting a mobile enhanced bandwidth, low latency, high reliability and large-scale machine communication connection service.
  • the network supports slot-based scheduling and non-slot-based scheduling.
  • the Demodulation Reference Signal (DMRS) mapping of the uplink and downlink traffic channels supports Type A and Type B.
  • the uplink and downlink traffic channel demodulation reference signals can be configured with 1 or 2 symbols.
  • mapping type A For the DMRS of the Physical Uplink Shared Channel (PUSCH), if the mapping type A is used, the reference point is the 0th symbol of the slot, and the starting position l 0 of the DMRS of the first PUSCH can be configured in the 2nd or 3 symbols on.
  • mapping type B the possible locations are as shown in FIG. 1.
  • mapping type B the reference point is the 0th symbol of the slot, and the revelation position l 0 of the DMRS of the first PUSCH is the 0th symbol of the PUSCH.
  • mapping type B the possible locations are as shown in FIG. 2.
  • the remaining DMRSs outside the DMRS of the first PUSCH may be configured according to different scenarios, as shown in Table 1 below.
  • the remaining DMRSs outside the DMRS of the first PUSCH may be configured according to different scenarios, as shown in Table 2 below.
  • mapping type A For the DMRS of the Physical Downlink Shared Channel (PDSCH), if the mapping type A is used, the reference point is the first symbol of the slot, and the starting position of the DMRS of the first PDSCH can be configured in the second or the third. On the symbol. If mapping type B is used, the reference point is the first symbol of the PDSCH, and the starting position of the DMRS of the first PDSCH is the first symbol of the PDSCH.
  • the remaining DMRSs outside the DMRS of the first PDSCH may be configured according to different scenarios, as shown in Table 3 below.
  • the remaining DMRSs outside the DMRS of the first PDSCH may be configured according to different scenarios, as shown in Table 4 below.
  • mapping type B when the number of PDSCH transmission symbols is 2 or 4 or 7, when part of the PDSCH collides with the reserved control domain resources, the DMRS of the first PDSCH is located at the first symbol after the control domain.
  • the number of PUSCH transmission symbols is less than 7, for example, when the number of PUSCH transmission symbols is 1, if the mapping type A is used, the DMRS of the PUSCH is mapped to the second or third symbol, PUSCH. After the transmission is completed, the DMRS of the PUSCH is transmitted, which degrades the demodulation performance of the delay service, and may even result in failure to receive correctly.
  • the number of PDSCH transmission symbols is less than 7 in the DMRS position of the PDSCH in the related art, the problem is similar to the DMRS of the PUSCH.
  • an embodiment of the present disclosure provides a method for transmitting a demodulation reference signal, which is applied to a network device side, and includes:
  • an embodiment of the present disclosure further provides a network device, including:
  • a determining module configured to determine, according to a mapping type of the traffic channel, a number of symbols to be transmitted, and a symbol number of the demodulation reference signal DMRS, whether to configure a corresponding DMRS for the traffic channel;
  • a configuration module configured to configure a target number of DMRSs for the traffic channel when determining that the corresponding DMRS is configured for the traffic channel;
  • a transmission module configured to map the target number of DMRSs to the target transmission resource for transmission.
  • an embodiment of the present disclosure provides a network device, including a processor, a memory, and a program stored on the memory and operable on the processor, and the method for transmitting the demodulation reference signal is implemented when the processor executes the program. A step of.
  • an embodiment of the present disclosure provides a computer readable storage medium, wherein a program is stored on a computer readable storage medium, and the step of implementing the above method for transmitting a demodulation reference signal when the program is executed by the processor.
  • FIG. 1 is a schematic diagram showing resource mapping of a DMRS when a PUSCH adopts a first mapping type in the related art
  • FIG. 2 is a schematic diagram of resource mapping of a DMRS when a PUSCH adopts a second mapping type in the related art
  • FIG. 3 is a schematic flow chart showing a method for transmitting a demodulation reference signal according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram showing the structure of a network device according to an embodiment of the present disclosure.
  • Figure 5 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a method for transmitting a demodulation reference signal and a network device to solve the problem of poor demodulation performance of a low-latency service caused by the DMRS transmission method in the related art.
  • An embodiment of the present disclosure provides a method for transmitting a demodulation reference signal, which is applied to a network device side. As shown in FIG. 3, the method may include the following steps 31 to 33.
  • Step 31 Determine whether to configure a corresponding DMRS for the traffic channel according to the mapping type of the traffic channel, the number of transmitted symbols, and the number of symbols of the demodulation reference signal DMRS.
  • the mapping type of the traffic channel includes a first mapping type and a second mapping type.
  • the first mapping type is the mapping type A based on the slot scheduling, that is, the time domain transmission unit in the first mapping type is one time slot, and one time slot includes 14 symbols (or called time domain symbols, OFDM symbols), and second.
  • the mapping type is the mapping type B based on the non-slot scheduling, that is, the time domain transmission unit in the second mapping type is not a time slot, and the number of symbols included in one time domain transmission unit is not 14. Further, the time domain transmission unit under the second mapping type occupies less than 14 symbols.
  • the traffic channel includes a physical uplink shared channel PUSCH or a physical downlink shared channel PDSCH.
  • the number of symbols transmitted by the traffic channel is the size of the time domain transmission resource occupied by the traffic channel, and the number of symbols of the demodulation reference signal refers to the size of the time domain transmission resource occupied by a demodulation reference signal.
  • Step 32 When it is determined that the corresponding DMRS is configured for the traffic channel, configure a target number of DMRSs for the traffic channel.
  • the number of targets is related to the type of mapping of the traffic channel and the number of symbols transmitted.
  • Step 33 Map the target number of DMRSs to the target transmission resource for transmission.
  • the transmission mentioned here includes both uplink transmission and downlink transmission.
  • the transmission method of the DMRS of the embodiment of the present disclosure will be further described below in combination with different application scenarios.
  • step 31 may include at least one of the following:
  • the scenario can be understood as the configuration in which the traffic channel transmission symbol number is 1 or 2 does not exist.
  • the number of symbols transmitted by the traffic channel is the second value
  • the number of symbols of the total resources of at least one of the control channel, the guard interval, and the reserved resource is greater than or equal to the second value
  • the corresponding DMRS is not configured for the traffic channel. Otherwise, it is determined that one DMRS with a symbol number of 1 is configured for the traffic channel; wherein the second value is 3 or 4. It is assumed that when the total number of symbols occupied by at least one of the control channel, the resource, the guard interval (the guard interval is applicable only to the uplink), and the reserved resource is equal to 3, the terminal does not expect the number of symbols transmitted by the network side to configure the traffic channel to be 3 Therefore, the scenario can be understood as a configuration in which the traffic channel transmission symbol number 3 does not exist.
  • the network device may configure the DMRS of the traffic channel when the service channel is located. On the second symbol of the gap. Or, it is assumed that when the total number of symbols occupied by at least one of the control channel, the guard interval, and the reserved resource is equal to 4, the terminal does not expect the network side to configure the traffic channel transmission symbol to be 4, so the scenario can be understood as a traffic channel transmission symbol. A configuration with a number of 4 does not exist.
  • the network device may configure the DMRS of the traffic channel at the service channel.
  • the second or third symbol of the time slot is transmitted.
  • the network device may configure the DMRS of the traffic channel to be the third of the time slot in which the traffic channel is located. On the symbol.
  • the third value it is determined that one DMRS with a symbol number of 1 is configured for the traffic channel; wherein the third value is 5, 6, or 7.
  • step 31 may include at least one of the following:
  • the fourth value is any one of 1 to 5.
  • the number of symbols transmitted by the traffic channel is the fifth value, it is determined that one DMRS with a symbol number of 2 is configured for the traffic channel; wherein the fifth value is 6 or 7.
  • step 33 may be: mapping one DMRS configured for the traffic channel to the second or third symbols of the time slot in which the traffic channel is located for transmission.
  • step 31 may further include at least one of the following:
  • the number of symbols transmitted by the traffic channel is the sixth value
  • the network device configures the traffic channel transmission symbol number to be 1 and 2
  • the first traffic channel DMRS is located at the start symbol of the traffic channel, and the DMRS and the traffic channel are transmitted by frequency division multiplexing.
  • the seventh value it is determined that 1 or 2 DMRSs having a symbol number of 1 are configured for the traffic channel; wherein the seventh value is 6 or 7.
  • the step 31 further includes at least one of the following:
  • the eighth value it is determined that the corresponding DMRS is not configured for the traffic channel; wherein the eighth value is any one of 1 to 5.
  • the ninth value it is determined that one DMRS with a symbol number of 2 is configured for the traffic channel; wherein the ninth value is 6 or 7.
  • step 33 may include: when the target number is 1, mapping one DMRS configured for the traffic channel to the 0th symbol of the time domain transmission unit where the traffic channel is located; wherein, the time domain transmission unit occupies The number of symbols is less than the number of symbols occupied by one time slot.
  • the number of targets is 2, the first DMRS of the two DMRSs configured for the traffic channel is mapped to the 0th symbol of the time domain transmission unit where the traffic channel is located, and the second DMRS of the 2 DMRSs is mapped to The traffic channel is transmitted on the fourth symbol of the time domain transmission unit.
  • the step 33 may further include: when the target number is 1, if the control channel or the reserved resource occupies at least partially overlaps with the resource occupied by the traffic channel, mapping the target number of DMRSs to the control channel or On the first symbol after the resource is reserved. It is assumed that when the network device configures the traffic channel transmission symbol number to be 3 or 5, the network device configures the DMRS of the traffic channel by default on the start symbol of the traffic channel. When the control channel resource or the reserved resource overlaps with the DMRS frequency domain of the traffic channel, the DMRS of the traffic channel is all moved to the next symbol of the control channel resource or the reserved resource.
  • the step 33 may further include: when the target number is 2, if the resource occupied by the control channel or the reserved resource overlaps with at least part of the resource occupied by the traffic channel, the DMRS configured for the traffic channel is The first DMRS is mapped to the first target transmission resource for transmission; wherein, the first target transmission resource is a first symbol located after the control channel or the reserved resource; and the second DMRS of the two DMRSs is mapped to be located at the first And transmitting, by the second target transmission resource, the second DMRS, where the second target resource is located after the second target resource The transmission resource is the 4th symbol after the first target transmission resource.
  • the control channel resource or the reserved resource overlaps with a part of the DMRS frequency domain of the traffic channel, all the DMRSs of the traffic channel are moved to the next symbol of the control channel resource or the reserved resource, and the second DMRS is occupied.
  • the distance between the symbol and the first DMRS remains at 4. In this scenario, if the second DMRS occupation symbol exceeds the number of traffic channel transmission symbols, the second DMRS is discarded.
  • step 32 further includes: according to the mapping type of the traffic channel, the number of symbols transmitted, the number of symbols of the demodulation reference signal DMRS, and the symbol number of the total resources of at least one of the control channel, the guard interval, and the reserved resource. Determining a target number of DMRSs configured for the traffic channel and configuring a corresponding DMRS for the traffic channel.
  • the terminal does not expect the network device to configure at least one of the control channel, the guard interval, and the reserved resource to have a total number of symbols greater than 1;
  • the terminal does not expect the network device to configure the control channel, the guard interval, and the reserved resources to occupy more than 2 total symbols.
  • the step 31 may include at least one of the following:
  • the number of symbols transmitted by the PDSCH is the tenth value
  • the DMRS position configuration of the PDSCH is the same as the configuration when the number of PDSCH transmission symbols is 9 to 13 using the first mapping type.
  • step 33 may include: when the number of targets is 1, mapping one DMRS configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located; wherein, the number of symbols occupied by the time domain transmission unit The number of symbols occupied by less than one time slot; when the number of targets is 2, the first DMRS of the two DMRSs configured for the PDSCH is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and 2 DMRSs are transmitted. The second DMRS is mapped to the fourth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the step 31 may further include:
  • the PDSCH When the number of symbols transmitted by the PDSCH is the twelfth value, it is determined that the PDSCH is configured with 1, 2, or 3 DMRSs having a symbol number of 1; wherein the twelfth value is any one of 8 to 11.
  • the PDSCH When the number of symbols transmitted by the PDSCH is the thirteenth value, it is determined that the PDSCH is configured with 1, 2, 3 or 4 DMRSs having a symbol number of 1; wherein the thirteenth value is 12 or 13.
  • step 33 may include:
  • one DMRS configured for the PDSCH is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located; wherein the number of symbols occupied by the time domain transmission unit is smaller than the number of symbols occupied by one time slot.
  • the first DMRS of the two DMRSs configured for the PDSCH is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the first number of the DMRSs of the target number is ret.
  • the DMRSs are mapped to the second or third symbols of the time domain transmission unit in which the PDSCH is located, and the other DMRSs in the target number of DMRSs are mapped to the equally spaced symbols between the first DMRS and the last DMRS. Transfer on.
  • the first DMRS of the target number of DMRSs is mapped to the second symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission; when the PDSCH is transmitted When the number of symbols is 9, 11 or 13, the first DMRS of the target number of DMRSs is mapped to the third symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission.
  • the second DMRS position is a symbol with a symbol identifier of 6; when the network device configures the number of PDSCH transmission symbols to be 10 or 11, the second DMRS The position is a symbol whose symbol is identified as 8.
  • the second DMRS position is a symbol with a symbol identifier of 10.
  • the second and third DMRS positions are symbols whose symbol identifiers are 3 or 6.
  • the second and third DMRS positions are symbols whose symbol identifiers are 4 and 8.
  • the second and third DMRS positions are symbols of the symbol identifiers 5 and 10.
  • the number of targets is 4, when the network device configures the number of PDSCH transmission symbols to be 12 or 13, the second, third, and fourth DMRS positions are symbols of the symbol identifiers 4, 7, and 10.
  • the step 31 may further include: determining that the PDSCH configuration is 1 when the number of symbols transmitted by the PDSCH is the fourteenth value. Or 2 DMRSs with a symbol number of 2; wherein the fourteenth value is any one of 8 to 13.
  • step 33 may include: when the number of targets is 1, mapping one DMRS configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located; wherein, the number of symbols occupied by the time domain transmission unit The number of symbols occupied by less than one time slot.
  • the first DMRS of the two DMRSs configured for the PDSCH is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS of the 2 DMRSs is mapped to the PDSCH.
  • the time domain transmission unit transmits on the third or fourth symbol of the last.
  • the first DMRS of the target number of DMRSs is mapped to the third symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission; when the PDSCH is transmitted When the number of symbols is 9, 11 or 13, the first DMRS in the target number of DMRSs is mapped to the fourth symbol of the last time of the time domain transmission unit in which the PDSCH is located for transmission. It is assumed that when the network device configures the number of PDSCH transmission symbols to be 8 or 9, the second DMRS position is a symbol with a symbol identifier of 5.
  • the second DMRS position is a symbol with a symbol identifier of 7.
  • the second DMRS position is a symbol with a symbol identifier of 9.
  • the first mapping type refers to slot scheduling
  • the second or third symbol of the DMRS mapped to the time slot of the traffic channel refers to when the DMRS is mapped to the service channel.
  • the slot symbol is identified by a symbol of 2 or 3.
  • the start symbol of the time slot is a reference symbol, which is identified as the 0th symbol of the time slot.
  • the second mapping type refers to the non-slot scheduling, and the 0th symbol of the DMRS mapping to the time domain transmission unit where the traffic channel is located refers to the DMRS mapping to the symbol of the time domain transmission unit symbol identifier of 0 when the traffic channel is located. It can also be understood as the starting symbol of the traffic channel transmission.
  • the start symbol of the traffic channel transmission is a reference symbol, which is identified as the 0th symbol of the time domain transmission unit.
  • the step 33 may further include: mapping the target number of DMRSs to the target number of target transmission sub-resources respectively; and mapping the at least part of the resources to the target transmission sub-resources after the resources occupied by the traffic channel.
  • the DMRS is discarded.
  • the DMRS referred to herein may include one symbol which may include two symbols. Taking a two-symbol DMRS as an example, if some or all of the resources of a certain DMRS configured by the network device for the traffic channel are located after the resources occupied by the traffic channel, the entire DMRS is discarded.
  • the following embodiment further introduces the transmission method of the demodulation reference signal in combination with a specific application scenario.
  • the number of symbols transmitted by the traffic channel is less than or equal to 7.
  • the network device configures different numbers of DMRSs for the traffic channel, and the target transmission resources for the DMRS scheduling are different.
  • Example 1 Taking the DMRS of one symbol as an example, the resource mapping of the DMRS of the traffic channel is as shown in Table 5 below:
  • the DMRS of the traffic channel in Table 5 is further introduced below.
  • the DMRS configured by the corresponding network device for the traffic channel when the traffic channel adopts the first mapping type, the DMRS configured by the corresponding network device for the traffic channel also adopts a first mapping type, and the network device configures at most one DMRS for the traffic channel.
  • the network device When the number of symbols transmitted by the traffic channel is 1, the network device does not configure the DMRS for the traffic channel with the number of transmission symbols 1 because the terminal does not expect the network device to configure the traffic channel transmission symbol number to be 1.
  • the network device does not configure the DMRS for the traffic channel with the transmission symbol number 2.
  • the network device When the number of symbols transmitted by the traffic channel is 3, it is necessary to further consider the total number of symbols occupied by at least one of the control channel, the guard interval (the guard interval is applicable only to the uplink), and the reserved resource, if the control channel and the guard interval When the total number of symbols occupied by at least one of the reserved resources is greater than or equal to 3, since the terminal does not expect the network device to configure the traffic channel to transmit the number of symbols to 3, the network device does not transmit the traffic channel with the number of symbols 3.
  • Configure DMRS When the number of symbols transmitted by the traffic channel is 3, it is necessary to further consider the total number of symbols occupied by at least one of the control channel, the guard interval (the guard interval is applicable only to the uplink), and the reserved resource, if the control channel and the guard interval When the total number of symbols occupied by at least one of the reserved resources is greater than or equal to 3, since the terminal does not expect the network device to configure the traffic channel to transmit the number of symbols to 3, the network device does not transmit the traffic channel with the number of
  • the network device configures one DMRS with a symbol number of 1 for the traffic channel with the transmission symbol number 3, and the DMRS is mapped to the service.
  • the second symbol of the time slot in which the channel is located is transmitted.
  • the network device When the number of symbols transmitted by the traffic channel is 4, further consideration is required to consider the total number of symbols occupied by at least one of the control channel, the guard interval, and the reserved resource, if at least one of the control channel, the guard interval, and the reserved resource is occupied.
  • the total number of symbols is greater than or equal to 4
  • the network device since the terminal does not expect the network device to configure the traffic channel transmission symbol number to be 4, then the network device does not configure the DMRS for the traffic channel with the transmission symbol number 4. If the total number of symbols occupied by at least one of the control channel, the guard interval, and the reserved resource is equal to 3, the network device configures one DMRS with a symbol number of 1 for the traffic channel with the transmission symbol number 4, and the DMRS is mapped to the service.
  • the third symbol of the time slot in which the channel is located is transmitted. If the total number of symbols occupied by at least one of the control channel, the guard interval, and the reserved resource is less than 3, the network device configures one DMRS with a symbol number of 1 for the traffic channel with the transmission symbol number 4, and the DMRS is mapped to the service. The second or third symbol of the time slot in which the channel is located is transmitted.
  • the network device configures one DMRS with a symbol number of 1 for the traffic channel, and the DMRS is mapped to the second or third symbol of the time slot in which the traffic channel is located for transmission. .
  • the DMRS configured by the corresponding network device for the traffic channel when the traffic channel adopts the second mapping type, the DMRS configured by the corresponding network device for the traffic channel also adopts the second mapping type.
  • the network device configures at most one DMRS with a symbol number of 1 for the traffic channel, and the DMRS is mapped to the 0th symbol of the time domain transmission unit where the traffic channel is located.
  • the DMRS of the traffic channel is located at the start symbol of the traffic channel, and the DMRS and the traffic channel are frequency division multiplexed.
  • the network device configures the traffic channel transmission symbol number to be 3 or 5
  • the DMRS of the traffic channel is located at the start symbol of the traffic channel by default.
  • the overlap refers to when the time-frequency domain overlaps, and then the DMRS of the traffic channel is all moved to the control channel resource or pre- On the first symbol after the resource is reserved, the DMRS of the traffic channel is mapped to the next symbol of the control channel resource or the reserved resource.
  • the network device may configure 1 or 2 DMRSs with a symbol number of 1 for the traffic channel.
  • the DMRS is mapped to the 0th symbol of the time domain transmission unit where the traffic channel is located, and can also be understood as the start symbol of the traffic channel of the DMRS of the traffic channel, DMRS.
  • Frequency division multiplexing is used with the traffic channel.
  • the network device configures two DMRSs for the traffic channel, the first DMRS of the two DMRSs configured for the traffic channel is mapped to the 0th symbol of the time domain transmission unit where the traffic channel is located, and the two DMRSs are transmitted.
  • the second DMRS is mapped to the fourth symbol of the time domain transmission unit where the traffic channel is located for transmission.
  • mapping the first DMRS of the two DMRSs configured for the traffic channel to the first target transmission resource Transmitting; wherein the first target transmission resource is on a first symbol after the control channel or the reserved resource; mapping the second DMRS of the two DMRSs to the second target transmission after the first target transmission resource
  • the second target transmission resource is the fourth symbol after the first target transmission resource, that is, the first DMRS occupation symbol and the second DMRS occupation symbol are separated by 4 symbols, for example: ⁇ 0, 4 ⁇ , ⁇ 1, 5 ⁇ , ⁇ 2, 6 ⁇ .
  • the location of the second DMRS occupied symbol may exceed the symbol occupied by the traffic channel, and the second DMRS may be discarded.
  • the terminal when the number of symbols transmitted by the traffic channel is 6, and the number of DMRSs of the traffic channel is 2, the terminal does not expect the network device to configure the control channel, the guard interval, and the reserved resource to occupy at least one total number of symbols greater than 1, when When the number of symbols transmitted by the service channel is 7, and the number of DMRSs of the traffic channel is 2, the terminal does not expect the network device to configure the control channel, the guard interval, and the reserved resources to occupy more than 2 symbols.
  • Example 2 Taking the DMRS of 2 symbols as an example, the resource mapping of the DMRS of the traffic channel is as shown in Table 6 below:
  • the DMRS of the traffic channel of Table 6 is further introduced below.
  • the network device does not configure the DMRS with the symbol number 2 for the traffic channel.
  • the network device configures one DMRS with 2 symbols for the traffic channel.
  • the traffic channel adopts the first mapping type
  • the DMRS configured by the corresponding network device for the traffic channel also adopts a first mapping type
  • the network device configures one DMRS with a symbol number of 2 for the traffic channel, and the starting position of the DMRS The second or third symbol mapped to the time slot in which the traffic channel is located is transmitted.
  • the DMRS configured by the corresponding network device for the traffic channel also adopts the second mapping type, and the network device configures one DMRS with the symbol number 2 for the traffic channel, and the starting position of the DMRS is mapped to The traffic channel is transmitted on the 0th symbol of the time domain transmission unit. It can also be understood that the DMRS of the traffic channel is located at the start symbol of the traffic channel.
  • the number of symbols transmitted by the traffic channel is less than or equal to 14.
  • the network device configures different numbers of DMRSs for the traffic channel, and the target transmission resources for the DMRS scheduling are different.
  • the above scenario 1 introduces that the number of symbols transmitted by the traffic channel is less than or equal to 7.
  • This scenario focuses on the scenario where the number of symbols transmitted by the PDSCH is 8 to 14, wherein the PDSCH mapping is performed when the number of symbols transmitted by the PDSCH is 8 to 14.
  • the type is the first mapping type, and the configuration of the DMRS of the PDSCH in the related art may be adopted.
  • Example 3 This example corresponds to the first example. Taking the DMRS of 1 symbol as an example, the resource mapping of the DMRS of the PDSCH is as shown in Table 7 below:
  • Example 1 of scenario 1 describes the configuration and transmission mode of the DMRS when the number of symbols transmitted by the traffic channel is 1 to 7.
  • the following describes the configuration and transmission of the DMRS when the number of PDSCH transmission symbols in Table 7 is 8 to 14.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the first mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts the first mapping type, and the manner in which the network device configures the DMRS for the PDSCH may be implemented by using an existing standard.
  • the network device configures one DMRS with a symbol number of 1 for the PDSCH, and the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures 1 or 2 DMRSs with a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the seventh symbol of the time slot of the PDSCH. Transfer on.
  • the network device configures 1, 2, or 3 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the ninth symbol of the time slot of the PDSCH. Transfer on.
  • the first DMRS of the three DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the sixth symbol of the time slot in which the PDSCH is located.
  • the transmission is performed, and the third DMRS is mapped to the ninth symbol of the time slot in which the PDSCH is located for transmission.
  • the network device configures 1, 2, 3, or 4 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the ninth symbol of the time slot of the PDSCH. Transfer on.
  • the first DMRS of the three DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the sixth symbol of the time slot in which the PDSCH is located.
  • the transmission is performed, and the third DMRS is mapped to the ninth symbol of the time slot in which the PDSCH is located for transmission.
  • the network device configures four DMRSs for the PDSCH
  • the first DMRS of the four DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the fifth symbol of the time slot in which the PDSCH is located.
  • the third DMRS is mapped to the eighth symbol of the time slot in which the PDSCH is located for transmission
  • the fourth DMRS is mapped to the eleventh symbol of the time slot in which the PDSCH is located for transmission.
  • the network device configures 1, 2, 3 or 4 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the eleventh symbol of the time slot in which the PDSCH is located. Transfer on.
  • the first DMRS of the three DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the seventh symbol of the time slot in which the PDSCH is located.
  • the transmission is performed, and the third DMRS is mapped to the eleventh symbol of the time slot in which the PDSCH is located for transmission.
  • the network device configures four DMRSs for the PDSCH
  • the first DMRS of the four DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the fifth symbol of the time slot in which the PDSCH is located.
  • the third DMRS is mapped to the eighth symbol of the time slot in which the PDSCH is located for transmission
  • the fourth DMRS is mapped to the eleventh symbol of the time slot in which the PDSCH is located for transmission.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the second mapping type, also adopts the second mapping type.
  • the second mapping type is a non-slot scheduling type, and the PDSCH maximum transmission symbol is 13.
  • the manner in which the network device configures the DMRS for the PDSCH may adopt a configuration manner of the first mapping type.
  • the network device configures 1 or 2 DMRSs with a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th of the time domain transmission unit where the PDSCH is located.
  • the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are frequency division multiplexed.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 4th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures 1 or 2 DMRSs with a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 7th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures 1, 2, or 3 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the ninth time of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 6th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the ninth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures 1, 2, 3, or 4 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the ninth time of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 6th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the ninth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the first DMRS of the four DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 5th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, the third DMRS is mapped to the eighth symbol of the time domain transmission unit where the PDSCH is located, and the fourth DMRS is mapped to the eleventh symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures 1, 2, 3 or 4 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 11th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 7th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the eleventh symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the first DMRS of the four DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 5th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, the third DMRS is mapped to the eighth symbol of the time domain transmission unit where the PDSCH is located, and the fourth DMRS is mapped to the eleventh symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • Example 4 This example corresponds to the second example. Taking the DMRS of 2 symbols as an example, the resource mapping of the DMRS of the PDSCH is as shown in Table 8 below:
  • Example 2 of scenario 1 describes the configuration and transmission mode of the DMRS when the number of symbols transmitted on the traffic channel is 1 to 7.
  • the following describes the configuration and transmission of the DMRS when the number of PDSCH transmission symbols in Table 8 is 8 to 14.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the first mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts the first mapping type, and the manner in which the network device configures the DMRS for the PDSCH may be implemented by using an existing standard.
  • the network device configures one DMRS with a symbol number of 2 for the PDSCH, and the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the eighth symbol of the time slot in which the PDSCH is located. Transfer on.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the second or third symbols of the time slot in which the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the second or third symbols of the time slot in which the PDSCH is located, and the second DMRS is mapped to the tenth symbol of the time slot in which the PDSCH is located. Transfer on.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the second mapping type, also adopts the second mapping type.
  • the second mapping type is a non-slot scheduling type, and the PDSCH maximum transmission symbol is 13.
  • the manner in which the network device configures the DMRS for the PDSCH may partially adopt the configuration manner of the first mapping type.
  • the network device When the number of symbols transmitted by the PDSCH is 8 or 9, the network device does not configure the DMRS having the symbol number 2 for the PDSCH.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are used for frequency division. Reuse.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 8th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are used for frequency division. Reuse.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 10th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the number of symbols transmitted by the traffic channel is less than or equal to 14.
  • the network device configures different numbers of DMRSs for the traffic channel, and the target transmission resources for the DMRS scheduling are different.
  • the above scenario 1 introduces that the number of symbols transmitted by the traffic channel is less than or equal to 7.
  • the scenario and scenario 2 are parallel scenes, and the scenario in which the number of symbols transmitted by the PDSCH is 8 to 14 is mainly introduced.
  • Example 5 This example corresponds to the first example. Taking the DMRS of 1 symbol as an example, the resource mapping of the DMRS of the PDSCH is as shown in Table 9 below:
  • Example 1 of scenario 1 describes the configuration and transmission mode of the DMRS when the number of symbols transmitted by the traffic channel is 1 to 7.
  • the following describes the configuration and transmission of the DMRS when the number of PDSCH transmission symbols in the pair of Table 10 is 8 to 14.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the first mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts a first mapping type, and the manner in which the network device configures the DMRS for the PDSCH may be implemented by using an existing standard, and the specific mapping is performed.
  • the method is as described in example 3 in scenario 2, and therefore is not described here.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the second mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts the second mapping type. Since the second mapping type is a non-slot scheduling type, the PDSCH maximum transmission symbol is 13.
  • the network device configures 1, 2, or 3 DMRSs with a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the time domain transmission of the PDSCH. The transmission is performed on the 0th symbol of the unit. It can also be understood that the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are frequency division multiplexed.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 6th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures three DMRSs for the PDSCH, the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the third of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the sixth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the location of the last DMRS is determined according to the number of symbols transmitted by the PDSCH, and the first DMRS of the target number of DMRSs is mapped to the second or third symbol of the last time transmission unit of the PDSCH for transmission.
  • the intermediate DMRS is distributed as evenly as possible between the first DMRS and the symbol of the first DMRS.
  • the network device configures 1, 2, or 3 DMRSs having a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 8th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 4th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the eighth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures 1, 2, 3 or 4 DMRSs with a symbol number of 1 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 10th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the first DMRS of the three DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 5th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, and the third DMRS is mapped to the 10th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the first DMRS of the four DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 4th of the time domain transmission unit where the PDSCH is located.
  • the symbol is transmitted on the symbol, the third DMRS is mapped to the seventh symbol of the time domain transmission unit where the PDSCH is located, and the fourth DMRS is mapped to the tenth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • Example 6 This example corresponds to the second example. Taking the DMRS of 2 symbols as an example, the resource mapping of the DMRS of the PDSCH is as shown in Table 10 below:
  • Example 2 of scenario 1 describes the configuration and transmission mode of the DMRS when the number of symbols transmitted on the traffic channel is 1 to 7.
  • the following describes the configuration and transmission of the DMRS when the number of PDSCH transmission symbols in the pair of Table 10 is 8 to 14.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the first mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts a first mapping type, and the manner in which the network device configures the DMRS for the PDSCH may be implemented by using an existing standard, and the specific mapping is performed.
  • the method is as described in example 4 in scenario 2, and therefore is not described here.
  • the DMRS configured by the corresponding network device for the PDSCH when the PDSCH adopts the second mapping type, the DMRS configured by the corresponding network device for the PDSCH also adopts the second mapping type. Since the second mapping type is a non-slot scheduling type, the PDSCH maximum transmission symbol is 13.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the network device configures two DMRSs for the PDSCH, the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 5th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are used for frequency division. Reuse.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the 7th of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device configures 1 or 2 DMRSs with a symbol number of 2 for the PDSCH.
  • the network device configures one DMRS for the PDSCH, the DMRS is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the DMRS of the PDSCH is located at the start symbol of the PDSCH, and the DMRS and the PDSCH are used for frequency division. Reuse.
  • the first DMRS of the two DMRSs is mapped to the 0th symbol of the time domain transmission unit where the PDSCH is located, and the second DMRS is mapped to the ninth time of the time domain transmission unit where the PDSCH is located. Transfer on the symbols.
  • the network device determines, according to the mapping type of the traffic channel and the number of symbols transmitted by the traffic channel, whether to configure a corresponding DMRS for the traffic channel, and when determining to configure the DMRS for the traffic channel, according to The mapping type of the traffic channel and the number of symbols transmitted by the traffic channel further configure a target number of DMRSs for the traffic channel to ensure the demodulation performance of the traffic channel in various scenarios, thereby ensuring the correct transmission of the traffic channel and realizing the correct transmission of the service data.
  • the network device 400 of the embodiment of the present disclosure can determine whether the traffic channel is configured according to the mapping type of the traffic channel, the number of transmitted symbols, and the number of symbols of the demodulation reference signal DMRS.
  • DMRS demodulation reference signal
  • the network device 400 is specific Includes the following functional modules:
  • the determining module 410 is configured to determine, according to the mapping type of the traffic channel, the number of symbols to be transmitted, and the number of symbols of the demodulation reference signal DMRS, whether to configure a corresponding DMRS for the traffic channel;
  • the configuration module 420 is configured to configure a target number of DMRSs for the traffic channel when determining that the corresponding DMRS is configured for the traffic channel;
  • the transmission module 430 is configured to map the target number of DMRSs to the target transmission resource for transmission.
  • mapping type of the traffic channel is the first mapping type
  • number of symbols of the DMRS is one
  • the determining module 410 includes at least one of the following:
  • a first determining submodule configured to: when the number of symbols transmitted by the traffic channel is the first value, determine that the corresponding DMRS is not configured for the traffic channel; wherein the first value is 1 or 2;
  • a second determining submodule configured to: when the number of symbols transmitted by the traffic channel is the second value, if at least one of the control channel, the guard interval, and the reserved resource occupies a total number of symbols greater than or equal to the second value, The corresponding DMRS is not configured for the traffic channel; otherwise, it is determined that one DMRS with a symbol number of 1 is configured for the traffic channel; wherein the second value is 3 or 4;
  • a third determining submodule configured to configure, when the number of symbols transmitted by the traffic channel is the third value, a DMRS with a symbol number of 1 for the traffic channel; wherein the third value is 5, 6, or 7.
  • mapping type of the traffic channel is the first mapping type
  • number of symbols of the DMRS is two
  • the determining module 410 also includes at least one of the following:
  • a fourth determining submodule configured to: when the number of symbols transmitted by the traffic channel is the fourth value, determine that the corresponding DMRS is not configured for the traffic channel; wherein the fourth value is any one of 1 to 5;
  • a fifth determining submodule configured to configure, when the number of symbols transmitted by the traffic channel is the fifth value, a DMRS with a symbol number of 2 for the traffic channel; wherein the fifth value is 6 or 7.
  • the transmission module 430 includes:
  • the first transmission submodule is configured to map one DMRS configured for the traffic channel to the second or third symbols of the time slot in which the traffic channel is located for transmission.
  • mapping type of the traffic channel is the second mapping type
  • number of symbols of the DMRS is one
  • the determining module 410 also includes at least one of the following:
  • a sixth determining submodule configured to: when the number of symbols transmitted by the traffic channel is the sixth value, determine to configure one DMRS with a symbol number of 1 for the traffic channel; wherein the sixth value is any one of 1 to 5;
  • a seventh determining submodule configured to: when the number of symbols transmitted by the traffic channel is the seventh value, determine to configure 1 or 2 DMRSs with a symbol number of 1 for the traffic channel; wherein the seventh value is 6 or 7.
  • mapping type of the traffic channel is the second mapping type
  • number of symbols of the DMRS is two
  • the determining module 410 also includes at least one of the following:
  • An eighth determining submodule configured to: when the number of symbols transmitted by the traffic channel is an eighth value, determine not to configure a corresponding DMRS for the traffic channel; wherein the eighth value is any one of 1 to 5;
  • a ninth determining submodule configured to configure, when the number of symbols transmitted by the traffic channel is the ninth value, a DMRS with a symbol number of 2 for the traffic channel; wherein the ninth value is 6 or 7.
  • the transmission module 430 further includes:
  • a second transmission submodule configured to: when the target number is 1, map one DMRS configured for the traffic channel to the 0th symbol of the time domain transmission unit where the traffic channel is located; wherein the time domain transmission unit occupies The number of symbols is less than the number of symbols occupied by one time slot;
  • a third transmission submodule configured to: when the target number is 2, map the first DMRS of the two DMRSs configured for the traffic channel to the 0th symbol of the time domain transmission unit where the traffic channel is located, and then transmit The second DMRS in the DMRS is mapped to the fourth symbol of the time domain transmission unit where the traffic channel is located for transmission.
  • the transmission module 430 further includes:
  • a fourth transmission submodule configured to: when the target number is 1, if the resource occupied by the control channel or the reserved resource overlaps with at least part of the resource occupied by the traffic channel, mapping the target number of DMRSs to the control channel or reserved On the first symbol after the resource.
  • the transmission module 430 further includes:
  • a fifth transmission submodule configured to: when the target number is 2, if the resource occupied by the control channel or the reserved resource overlaps at least partially with the resource occupied by the traffic channel, the first of the two DMRSs configured for the traffic channel The DMRS is mapped to the first target transmission resource for transmission; where the first target transmission resource is the first symbol after the control channel or the reserved resource;
  • a sixth transmission submodule configured to map the second DMRS of the two DMRSs to the second target transmission resource that is located after the first target transmission resource, and discard the second target resource after the resource occupied by the traffic channel And the second DMRS, wherein the second target transmission resource is the fourth symbol after the first target transmission resource.
  • the traffic channel includes: a physical uplink shared channel PUSCH or a physical downlink shared channel PDSCH.
  • mapping type of the PDSCH is the second mapping type
  • the determining module 410 also includes at least one of the following:
  • a tenth determining submodule configured to: when the number of symbols transmitted by the PDSCH is the tenth value, determine to configure one or two DMRSs with a symbol number of 1 for the PDSCH, or configure one DMRS with a symbol number of 2 for the PDSCH; , the tenth value is 8;
  • An eleventh determining submodule configured to: when the number of symbols transmitted by the PDSCH is the eleventh value, determine to configure the DMRS according to the DMRS configuration of the first mapping type as the PDSCH; wherein the eleventh value is any one of 9 to 13 value.
  • the transmission module 430 further includes at least one of the following:
  • a seventh transmission submodule configured to: when the target number is 1, map one DMRS configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located; wherein, the number of symbols occupied by the time domain transmission unit Less than one time slot occupied by the number of symbols;
  • an eighth transmission submodule configured to: when the target number is 2, map the first DMRS of the two DMRSs configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located, and transmit the two DMRSs.
  • the second DMRS is mapped to the fourth symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • mapping type of the PDSCH is the second mapping type
  • the determining module 410 also includes at least one of the following:
  • a twelfth determining submodule configured to: when the number of symbols transmitted by the PDSCH is the twelfth value, determine that the PDSCH is configured with 1, 2, or 3 DMRSs having a symbol number of 1; wherein the twelfth value is 8 to 11 Any value of
  • a thirteenth determining submodule configured to: when the number of symbols transmitted by the PDSCH is the thirteenth value, determine that the PDSCH is configured with 1, 2, 3, or 4 DMRSs having a symbol number of 1; wherein the thirteenth value is 12 or 13.
  • the transmission module 430 further includes at least one of the following:
  • a ninth transmission submodule configured to: when the target number is 1, map one DMRS configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located; wherein, the number of symbols occupied by the time domain transmission unit Less than one time slot occupied by the number of symbols;
  • a tenth transmission submodule configured to: when the target number is greater than or equal to 2, map the first DMRS of the two DMRSs configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located, and transmit the target.
  • the first DMRS of the number of DMRSs is mapped to the second or third symbol of the time domain transmission unit where the PDSCH is located, and the other DMRSs of the target number of DMRSs are mapped to the first DMRS and the first to the last Transmission is performed on equally spaced symbols between DMRSs.
  • the tenth transmission submodule includes at least one of the following:
  • a first transmission unit configured to: when the number of symbols transmitted by the PDSCH is 8, 10, or 12, map the last DMRS of the target number of DMRSs to the second symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission. ;
  • a second transmission unit configured to: when the number of symbols transmitted by the PDSCH is 9, 11 or 13, map the last DMRS of the target number of DMRSs to the second symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission .
  • mapping type of the PDSCH is the second mapping type
  • the determining module 410 further includes:
  • a fourteenth determining submodule configured to: when the number of symbols transmitted by the PDSCH is the fourteenth value, determine that the PDSCH is configured with one or two DMRSs with a number of symbols of 2; wherein the fourteenth value is any of 8 to 13 A value.
  • the transmission module 430 further includes:
  • the eleventh transmission submodule is configured to: when the target number is 1, map one DMRS configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located; where the time domain transmission unit occupies the symbol The number is less than the number of symbols occupied by one time slot;
  • the twelfth transmission submodule is configured to: when the target number is 2, map the first DMRS of the two DMRSs configured for the PDSCH to the 0th symbol of the time domain transmission unit where the PDSCH is located, and send the two DMRSs.
  • the second DMRS is mapped to the last 3rd or 4th symbol of the time domain transmission unit where the PDSCH is located for transmission.
  • the twelfth transmission submodule further includes:
  • a third transmission unit configured to: when the number of symbols transmitted by the PDSCH is 8, 10, or 12, map the second DMRS of the two DMRSs to the third symbol of the last time of the time domain transmission unit where the PDSCH is located;
  • a fourth transmission unit configured to: when the number of symbols transmitted by the PDSCH is 9, 11 or 13, map the second DMRS of the two DMRSs to the fourth symbol of the last time of the time domain transmission unit where the PDSCH is located for transmission.
  • the transmission module 430 further includes:
  • mapping submodule configured to map the target number of DMRSs to the target number of target transmission sub-resources respectively
  • the discarding sub-module is configured to discard the DMRS corresponding to the target transmission sub-resource that at least part of the resources are located after the resource occupied by the traffic channel.
  • the configuration module 420 includes:
  • a configuration submodule configured to determine, according to the mapping type of the traffic channel, the number of symbols to be transmitted, the number of symbols of the demodulation reference signal DMRS, and the number of symbols of the total resources of at least one of the control channel, the guard interval, and the reserved resource, The target number of DMRSs configured for the traffic channel and the corresponding DMRS for the traffic channel.
  • the network device in the embodiment of the present disclosure determines whether to configure a corresponding DMRS for the traffic channel according to the mapping type of the traffic channel and the number of symbols transmitted by the traffic channel, and according to the mapping of the traffic channel when determining the DMRS for the traffic channel.
  • the type and the number of symbols transmitted by the traffic channel further configure a target number of DMRSs for the traffic channel to ensure the demodulation performance of the traffic channel in various scenarios, thereby ensuring the correct transmission of the traffic channel and realizing the correct transmission of the service data.
  • each module above is only a division of logical functions, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a System-On-a-Chip (SOC).
  • SOC System-On-a-Chip
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the transmission method of the demodulation reference signal as described above are implemented.
  • Embodiments of the invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of a method of transmitting a demodulation reference signal as described above.
  • the network device 500 includes an antenna 51, a radio frequency device 52, and a baseband device 53.
  • the antenna 51 is connected to the radio frequency device 52.
  • the radio frequency device 52 receives information through the antenna 51 and transmits the received information to the baseband device 53 for processing.
  • the baseband device 53 processes the information to be transmitted and transmits it to the radio frequency device 52.
  • the radio frequency device 52 processes the received information and transmits it via the antenna 51.
  • the above-described band processing device may be located in the baseband device 53, and the method performed by the network device in the above embodiment may be implemented in the baseband device 53, which includes the processor 54 and the memory 55.
  • the baseband device 53 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 5, one of which is, for example, a processor 54, connected to the memory 55 to call a program in the memory 55 to execute The network device operation shown in the above method embodiment.
  • the baseband device 53 may further include a network interface 56 for interacting with the radio frequency device 52, such as a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 55 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 55 and operable on the processor 54, and the processor 54 calls a computer program in the memory 55 to execute the method executed by each module shown in FIG. .
  • the computer program when the computer program is called by the processor 54, the computer program can be used to perform: determining whether to configure a corresponding DMRS for the traffic channel according to the mapping type of the traffic channel, the number of symbols to be transmitted, and the number of symbols of the demodulation reference signal DMRS; When the channel is configured with the corresponding DMRS, a target number of DMRSs are configured for the traffic channel; and the target number of DMRSs are mapped to the target transmission resource for transmission.
  • the network device may be a Global System of Mobile communication (GSM) or a Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short) or a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB Evolved Node B
  • eNB Evolved Node B
  • a base station or the like in a future 5G network is not limited herein.
  • the network device in the embodiment of the present disclosure determines whether to configure a corresponding DMRS for the traffic channel according to the mapping type of the traffic channel and the number of symbols transmitted by the traffic channel, and according to the mapping type and service of the traffic channel when determining the DMRS for the traffic channel.
  • the number of symbols transmitted by the channel further configures the target number of DMRSs for the traffic channel to ensure the demodulation performance of the traffic channel in various scenarios, thereby ensuring the correct transmission of the traffic channel and realizing the correct transmission of the service data.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Abstract

本公开公开了一种解调参考信号的传输方法及网络设备,其方法包括:根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为业务信道配置相应的DMRS;当确定为业务信道配置相应的DMRS时,为业务信道配置目标数目个DMRS;将目标数目个DMRS映射至目标传输资源上进行传输。

Description

解调参考信号的传输方法及网络设备
相关申请的交叉引用
本申请主张在2018年1月9日在中国提交的中国专利申请No.201810019946.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种解调参考信号的传输方法及网络设备。
背景技术
第五代(5 th Generation,5G)移动通信系统支持移动增强带宽、低时延高可靠和大规模机器通信连接业务。为适应不同业务对时延和可靠性等性能指标的需求,网络支持基于时隙的调度和基于非时隙的调度。相应地,上行和下行业务信道的解调参考信号(Demodulation Reference Signal,DMRS)映射支持类型A和类型B。此外,为适应低频和高频、低速和高速等不同场景,上行和下行业务信道解调参考信号可配置1或2个符号。
对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的DMRS,若采用映射类型A,参考点为时隙的第0个符号,第一PUSCH的DMRS的起始位置l 0可配置在第2或3个符号上。第一PUSCH的DMRS采用映射类型A时,可能位置如图1所示。若采用映射类型B,参考点为时隙的第0个符号,第一PUSCH的DMRS的启示位置l 0为PUSCH的第0个符号。第一PUSCH的DMRS采用映射类型B时,可能位置如图2所示。
当PUSCH的DMRS为1个符号时,第一PUSCH的DMRS外的其余DMRS数可根据不同场景配置,如下表1所示。
表1
Figure PCTCN2019070077-appb-000001
Figure PCTCN2019070077-appb-000002
当PUSCH的DMRS为2个符号时,第一PUSCH的DMRS外的其余DMRS数可根据不同场景配置,如下表2所示。
表2
Figure PCTCN2019070077-appb-000003
对于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的DMRS,若采用映射类型A,参考点为时隙的第1个符号,第一PDSCH的DMRS的起始位置可配置在第2个或3个符号上。若采用映射类型B,参考点为PDSCH的第1个符号,第一PDSCH的DMRS的起始位置为PDSCH的第一个符号。
当PDSCH的DMRS为1个符号时,第一PDSCH的DMRS外的其余DMRS数可根据不同场景配置,如下表3所示。
表3
Figure PCTCN2019070077-appb-000004
当PDSCH的DMRS为2个符号时,第一PDSCH的DMRS外的其余DMRS数可根据不同场景配置,如下表4所示。
表4
Figure PCTCN2019070077-appb-000005
对于映射类型B,当PDSCH传输符号数为2或4或7时,当部分PDSCH与预留控制域资源冲突时,第一PDSCH的DMRS位于控制域之后的第一个 符号。
相关技术中的PUSCH的DMRS位置在PUSCH传输符号数小于7时,例如PUSCH传输符号数为1时,若采用映射类型A,则将该PUSCH的DMRS映射至第2或第3个符号上,PUSCH传输完毕后,才传输PUSCH的DMRS,会降低时延业务的解调性能,甚至可能导致不能正确接收。同理,相关技术中的PDSCH的DMRS位置在PDSCH传输符号数小于7时,问题与PUSCH的DMRS类似。
发明内容
第一方面,本公开实施例提供了一种解调参考信号的传输方法,应用于网络设备侧,包括:
根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS;
当确定为所述业务信道配置相应的DMRS时,为所述业务信道配置目标数目个DMRS;
将所述目标数目个DMRS映射至目标传输资源上进行传输。
第二方面,本公开实施例还提供了一种网络设备,包括:
确定模块,用于根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS;
配置模块,用于当确定为所述业务信道配置相应的DMRS时,为所述业务信道配置目标数目个DMRS;
传输模块,用于将所述目标数目个DMRS映射至目标传输资源上进行传输。
第三方面,本公开实施例提供了一种网络设备,包括处理器、存储器以及存储于存储器上并可在处理器上运行的程序,处理器执行程序时实现上述的解调参考信号的传输方法的步骤。
第四方面,本公开实施例提供了一种计算机可读存储介质,其中,计算机可读存储介质上存储有程序,程序被处理器执行时实现上述的解调参考信号的传输方法的步骤。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示相关技术中PUSCH采用第一映射类型时DMRS的资源映射示意图;
图2表示相关技术中PUSCH采用第二映射类型时DMRS的资源映射示意图;
图3表示本公开实施例的解调参考信号的传输方法的流程示意图;
图4表示本公开实施例的网络设备的模块结构示意图;
图5表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C 都存在的7种情况。另一方面,本公开实施例中所涉及的顺序均从第0个开始计算。
本公开实施例提供了一种解调参考信号的传输方法及网络设备,以解决相关技术中的DMRS传输方法导致的低时延业务的解调性能差的问题。
本公开实施例提供了一种解调参考信号的传输方法,应用于网络设备侧,如图3所示,该方法可以包括以下步骤31至33。
步骤31:根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为业务信道配置相应的DMRS。
其中,业务信道的映射类型包括第一映射类型和第二映射类型。第一映射类型为基于时隙调度的映射类型A,即第一映射类型下时域传输单元为一个时隙,一个时隙包括14个符号(或称为时域符号、OFDM符号),第二映射类型为基于非时隙调度的映射类型B,即第二映射类型下时域传输单元不为一个时隙,一个时域传输单元包括的符号数不为14。进一步地,第二映射类型下时域传输单元所占符号小于14个符号。业务信道包括物理上行共享信道PUSCH或物理下行共享信道PDSCH。业务信道传输的符号数为业务信道所占的时域传输资源大小,解调参考信号的符号数指的是一个解调参考信号所占时域传输资源的大小。
步骤32:当确定为业务信道配置相应的DMRS时,为业务信道配置目标数目个DMRS。
可选地,目标数目与业务信道的映射类型以及传输的符号数相关。
步骤33:将目标数目个DMRS映射至目标传输资源上进行传输。
值得指出的是,这里所说的传输既包括上行传输,亦包括下行传输。
下面将结合不同应用场景对本公开实施例的DMRS的传输方法做进一步说明。
当业务信道的映射类型为第一映射类型(即映射类型A)、DMRS的符号数为1个时,步骤31可以包括以下至少一项:
当业务信道传输的符号数为第一值时,确定不为业务信道配置相应的DMRS;其中,第一值为1或2。由于终端不期望网络侧配置业务信道传输符号数为1或2,因此该场景可理解为业务信道传输符号数为1或2的配置不 存在。
当业务信道传输的符号数为第二值时,若控制信道、保护间隔和预留资源中至少一项所占总资源的符号数大于或等于第二值,则不为业务信道配置相应的DMRS;否则,确定为业务信道配置1个符号数为1的DMRS;其中,第二值为3或4。假设,当控制信道、资源、保护间隔(保护间隔仅适用于上行链路)和预留资源中至少一项所占用总符号数等于3时,终端不期望网络侧配置业务信道传输符号数为3,因此该场景可理解为业务信道传输符号数为3的配置不存在。当控制信道、保护间隔和预留资源中至少一项所占总符号数小于3,且网络设备配置业务信道传输符号数为3时,网络设备可将该业务信道的DMRS配置在业务信道所在时隙的第2个符号上。或者,假设,当控制信道、保护间隔和预留资源中至少一项所占总符号数等于4时,终端不期望网络侧配置业务信道传输符号为4,因此该场景可理解为业务信道传输符号数为4的配置不存在。当控制信道、保护间隔和预留资源中至少一项所占总符号数小于3,且网络设备配置业务信道传输符号数为4时,网络设备可以将该业务信道的DMRS配置在该业务信道所在时隙的第2或第3个符号上进行传输。当控制信道、保护间隔和预留资源所占中符号数等于3,且网络设备配置业务信道传输符号为4时,网络设备可以将该业务信道的DMRS配置在该业务信道所在时隙的第3个符号上。
当业务信道传输的符号数为第三值时,确定为业务信道配置1个符号数为1的DMRS;其中,第三值为5、6或7。
在一种实施例中,当业务信道的映射类型为第一映射类型、DMRS的符号数为2个时,步骤31可以包括以下至少一项:
当业务信道传输的符号数为第四值时,确定不为业务信道配置相应的DMRS;其中,第四值为1至5中的任一值。
当业务信道传输的符号数为第五值时,确定为业务信道配置1个符号数为2的DMRS;其中,第五值为6或7。
相应的,步骤33可以为:将为业务信道配置的1个DMRS映射至业务信道所在时隙的第2或3个符号上进行传输。
在另一种实施例中,当业务信道的映射类型为第二映射类型、DMRS的 符号数为1个时,步骤31还可以包括以下至少一项:
当业务信道传输的符号数为第六值时,确定为业务信道配置1个符号数为1的DMRS;其中,第六值为1至5中任一值。也就是说,当业务信道的DMRS采用第二映射类型时,最大支持的DMRS数为1。当网络设备配置业务信道传输符号数为1和2时,第一业务信道DMRS位于业务信道的起始符号,DMRS与业务信道采用频分复用传输。
当业务信道传输的符号数为第七值时,确定为业务信道配置1或2个符号数为1的DMRS;其中,第七值为6或7。
可选地,当业务信道的映射类型为第二映射类型、DMRS的符号数为2个时,步骤31还包括以下至少一项:
当业务信道传输的符号数为第八值时,确定不为业务信道配置相应的DMRS;其中,第八值为1至5中的任一值。
当业务信道传输的符号数为第九值时,确定为业务信道配置1个符号数为2的DMRS;其中,第九值为6或7。
相应的,步骤33可以包括:当目标数目为1时,将为业务信道配置的1个DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数。当目标数目为2时,将为业务信道配置的2个DMRS中的第一DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至业务信道所在时域传输单元的第4个符号上进行传输。
可选地,步骤33还可以包括:当目标数目为1时,若控制信道或预留资源所占资源与业务信道所占资源的至少部分重叠,则将目标数目个DMRS映射至位于控制信道或预留资源之后的第一个符号上。假设,当网络设备配置业务信道传输符号数为3或5时,网络设备将该业务信道的DMRS默认配置在业务信道的起始符号上。当控制信道资源或预留资源与业务信道的DMRS频域重叠时,业务信道的DMRS全部移至控制信道资源或预留资源的下一个符号上。
可选地,步骤33还可以包括:当目标数目为2时,若控制信道或预留资源所占资源与业务信道所占资源的至少部分重叠,则将为业务信道配置的 2个DMRS中的第一DMRS映射至第一目标传输资源上进行传输;其中,第一目标传输资源为位于控制信道或预留资源之后的第一个符号;将2个DMRS中的第二DMRS映射至位于第一目标传输资源之后的第二目标传输资源上,若第二目标资源位于业务信道所占资源之后,则丢弃第二DMRS,否则通过第二目标传输资源进行第二DMRS的传输;其中,第二目标传输资源为第一目标传输资源之后的第4个符号。也就是说,当控制信道资源或预留资源与业务信道的部分DMRS频域重叠时,将该业务信道的DMRS全部移至控制信道资源或预留资源的下一个符号上,且第二DMRS占用符号与第一DMRS间的距离保持为4。在该场景下,若第二DMRS占用符号超出业务信道传输符号数时,将第二DMRS丢弃。
可选地,步骤32还包括:根据业务信道的映射类型、传输的符号数、解调参考信号DMRS的符号数以及控制信道、保护间隔和预留资源中至少一项所占总资源的符号数,确定为业务信道配置的DMRS的目标数目并为所述业务信道配置相应的DMRS。假设,当业务信道传输符号数为6,且业务信道DMRS数为2时,终端不期望网络设备配置控制信道、保护间隔和预留资源中的至少一项所占总符号数大于1;当业务信道传输符号数为7,且业务信道DMRS数为2时,终端不期望网络设备配置控制信道、保护间隔和预留资源中至少一项所占总符号数大于2。
在另一种实施例中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,步骤31可以包括以下至少一项:
当PDSCH传输的符号数为第十值时,确定为PDSCH配置1或2个符号数为1的DMRS,或者,为PDSCH配置1个符号数为2的DMRS;其中,第十值为8。也就是说,当网络设备配置PDSCH传输符号数为8时,PDSCH的DMRS位置配置同PDSCH传输符号数为7时采用第二映射类型时的配置一致。
当PDSCH传输的符号数为第十一值时,确定按照第一映射类型的DMRS配置为PDSCH配置DMRS;其中,第十一值为9至13中的任一值。也就是说,当网络侧配置PDSCH传输符号数为9至13时,PDSCH的DMRS位置配置同PDSCH传输符号数为9至13采用第一映射类型时的配置一致。
相应的,步骤33可以包括:当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数;当目标数目为2时,将为PDSCH配置的2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的第4个符号上进行传输。
在再一种实施例中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,步骤31还可以包括:
当PDSCH传输的符号数为第十二值时,确定为PDSCH配置1、2或3个符号数为1的DMRS;其中,第十二值为8至11中的任一值。
当PDSCH传输的符号数为第十三值时,确定为PDSCH配置1、2、3或4个符号数为1的DMRS;其中,第十三值为12或13。
在该场景下,步骤33可以包括:
当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数。
当目标数目大于或等于2时,将为PDSCH配置的2个DMRS中的第1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2或3个符号上进行传输,将目标数目个DMRS中的其他DMRS映射至第1个DMRS和倒数第1个DMRS之间的等间隔的符号上进行传输。具体地,当PDSCH传输的符号数为8、10或12时,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2个符号上进行传输;当PDSCH传输的符号数为9、11或13时,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第3个符号上进行传输。假设,当目标数目为2时,网络设备配置PDSCH传输符号数为8或9时,第二DMRS位置为符号标识为6的符号;网络设备配置PDSCH传输符号数为10或11时,第二DMRS位置为符号标识为8的符号。网络设备配置PDSCH传输符号数为12或13时,第二DMRS位置为符号标识为10的 符号。当目标数目为3时,网络设备配置PDSCH传输符号数为8或9时,第二、三DMRS位置为符号标识为3、6的符号。网络设备配置PDSCH传输符号数为10或11时,第二、三DMRS位置为符号标识为4、8的符号。网络设备配置PDSCH传输符号数为12或13时,第二、三DMRS位置为符号标识5、10的符号。当目标数目为4时,网络设备配置PDSCH传输符号数为12或13时,第二、三、四DMRS位置为符号标识4、7、10的符号。
在另一种实施例中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,步骤31还可以包括:当PDSCH传输的符号数为第十四值时,确定为PDSCH配置1或2个符号数为2的DMRS;其中,第十四值为8至13中的任一值。
相应的,步骤33可以包括:当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数。
当目标数目为2时,将为PDSCH配置的2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的倒数第3或4个符号上进行传输。具体地,当PDSCH传输的符号数为8、10或12时,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第3个符号上进行传输;当PDSCH传输的符号数为9、11或13时,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第4个符号上进行传输。假设,网络设备配置PDSCH传输符号数为8或9时,第二DMRS位置为符号标识为5的符号。网络设备配置PDSCH传输符号数为10或11时,第二DMRS位置为符号标识为7的符号。网络设备配置PDSCH传输符号数为12或13时,第二DMRS位置为符号标识为9的符号。
其中值得指出的是,本公开实施例中第一映射类型指的是基于时隙调度,DMRS映射至业务信道所在时隙的第2或3个符号上指的是,DMRS映射至业务信道所在时隙符号标识为2或3的符号上。其中,时隙的起始符号为参考符号,其标识为时隙的第0个符号。第二映射类型指的是基于非时隙调度,DMRS映射至业务信道所在时域传输单元的第0个符号上指的是,DMRS映 射至业务信道所在时域传输单元符号标识为0的符号上,亦可理解为业务信道传输的起始符号。其中,业务信道传输的起始符号为参考符号,其标识为时域传输单元的第0个符号。
可选地,在上述不同场景下,步骤33还可以包括:将目标数目个DMRS分别映射至目标数目个目标传输子资源上;将至少部分资源位于业务信道所占资源之后的目标传输子资源对应的DMRS丢弃。这里所说的DMRS可以包括一个符号可以包括两个符号。以2个符号的DMRS为例,若网络设备为业务信道配置的某个DMRS的部分或全部资源位于业务信道所占资源之后,则将整个DMRS丢弃。
下面本实施例将结合具体应用场景对解调参考信号的传输方法做进一步介绍。
场景一、
业务信道传输的符号数小于或等于7。在该场景下,业务信道采用不同映射类型时,网络设备为业务信道配置不同数目的DMRS,且为DMRS调度的目标传输资源不同。
示例一、以1个符号的DMRS为例,业务信道的DMRS的资源映射如下表5所示:
表5
Figure PCTCN2019070077-appb-000006
下面结合表5对的业务信道的DMRS做进一步介绍。
可选地,第一方面,当业务信道采用第一映射类型时,相应的网络设备为业务信道配置的DMRS亦采用第一映射类型,网络设备最多为业务信道配置1个DMRS。
当业务信道传输的符号数为1时,由于终端不期望网络设备配置业务信道传输符号数为1,网络设备不为传输符号数为1的业务信道配置DMRS。
相似地,当业务信道传输的符号数为2时,由于终端不期望网络设备配置业务信道传输符号数为2,网络设备不为传输符号数为2的业务信道配置DMRS。
当业务信道传输的符号数为3时,需要进一步考虑控制信道、保护间隔(保护间隔仅适用于上行链路)和预留资源中的至少一项占用的总符号数,若控制信道、保护间隔和预留资源中的至少一项占用的总符号数大于或等于3时,由于终端不期望网络设备配置业务信道传输符号数为3,这时,网络设备不为传输符号数为3的业务信道配置DMRS。若控制信道、保护间隔和预留资源中的至少一项占用的总符号数小于3时,网络设备为传输符号数为3的业务信道配置1个符号数为1的DMRS,该DMRS映射至业务信道所在时隙的第2个符号上进行传输。
当业务信道传输的符号数为4时,需要进一步考虑控制信道、保护间隔和预留资源中的至少一项占用的总符号数,若控制信道、保护间隔和预留资源中的至少一项占用的总符号数大于或等于4时,由于终端不期望网络设备配置业务信道传输符号数为4,这时,网络设备不为传输符号数为4的业务信道配置DMRS。若控制信道、保护间隔和预留资源中的至少一项占用的总符号数等于3时,网络设备为传输符号数为4的业务信道配置1个符号数为1的DMRS,该DMRS映射至业务信道所在时隙的第3个符号上进行传输。若控制信道、保护间隔和预留资源中的至少一项占用的总符号数小于3时,网络设备为传输符号数为4的业务信道配置1个符号数为1的DMRS,该DMRS映射至业务信道所在时隙的第2或第3个符号上进行传输。
当业务信道传输的符号数为5、6或7时,网络设备为业务信道配置1个符号数为1的DMRS,该DMRS映射至业务信道所在时隙的第2或第3个符号上进行传输。
可选地,第二方面,当业务信道采用第二映射类型时,相应的网络设备为业务信道配置的DMRS亦采用第二映射类型。
当业务信道传输1、2、3、4或5个符号时,网络设备最多为业务信道配置1个符号数为1的DMRS,该DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输,亦可理解为业务信道的DMRS位于业务信道的起始符号,DMRS与业务信道采用频分复用。可选地,当网络设备配置业务信道传输符号数为3或5时,业务信道的DMRS默认位于业务信道的起始符号。当控制信道资源或预留资源与业务信道的DMRS所占资源的至少部分重叠时,这里的重叠指的是时频域均重叠时,这时将业务信道的DMRS全部移至控制信道资源或预留资源之后的第一个符号上,即将业务信道的DMRS映射至控制信道资源或预留资源的下一个符号上。
当业务信道传输6或7个符号时,网络设备可以为业务信道配置1或2个符号数为1的DMRS。当网络设备为业务信道配置1个DMRS时,将该DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输,亦可理解为业务信道的DMRS位于业务信道的起始符号,DMRS与业务信道采用频分复用。当网络设备为业务信道配置2个DMRS时,将为业务信道配置的2个DMRS中的第一DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至业务信道所在时域传输单元的第4个符号上进行传输。可选地,当控制信道或预留资源所占资源与业务信道的DMRS所占资源的至少部分重叠时,则将为业务信道配置的2个DMRS中的第一DMRS映射至第一目标传输资源上进行传输;其中,第一目标传输资源为位于控制信道或预留资源之后的第一个符号上;将2个DMRS中的第二DMRS映射至位于第一目标传输资源之后的第二目标传输资源上进行传输;其中,第二目标传输资源为第一目标传输资源之后的第4个符号,即第一DMRS占用符号与第二DMRS占用符号之间间隔4个符号,如:{0,4},{1,5},{2,6}。
可选地,当网络设备为业务信道配置2个DMRS时,第二DMRS占用符号的位置可能超出业务信道所占符号之后,这时可将第二DMRS丢弃。
可选地,当业务信道传输的符号数为6,且业务信道DMRS数为2时, 终端不期望网络设备配置控制信道、保护间隔和预留资源中至少一项占用总符号数大于1,当业务信道传输的符号数为7,且业务信道DMRS数为2时,终端不期望网络设备配置控制信道、保护间隔和预留资源中至少一项占用总符号数大于2。
示例二、以2个符号的DMRS为例,业务信道的DMRS的资源映射如下表6所示:
表6
Figure PCTCN2019070077-appb-000007
下面结合表6对的业务信道的DMRS做进一步介绍。
无论业务信道的映射类型为第一映射类型还是第二映射类型。当业务信道传输1、2、3、4或5个符号时,网络设备不为业务信道配置符号数为2的DMRS。
当业务信道传输6或7个符号时,网络设备为业务信道配置1个符号数为2的DMRS。其中,当业务信道采用第一映射类型时,相应的网络设备为业务信道配置的DMRS亦采用第一映射类型,网络设备为业务信道配置1个符号数为2的DMRS,该DMRS的起始位置映射至业务信道所在时隙的第2或第3个符号上进行传输。当业务信道采用第二映射类型时,相应的网络设备为业务信道配置的DMRS亦采用第二映射类型,网络设备为业务信道配置1个符号数为2的DMRS,该DMRS的起始位置映射至业务信道所在时域传输单元的第0个符号上进行传输,亦可理解为业务信道的DMRS位于业务信 道的起始符号。
场景二、
业务信道传输的符号数小于或等于14。在该场景下,业务信道采用不同映射类型时,网络设备为业务信道配置不同数目的DMRS,且为DMRS调度的目标传输资源不同。以上场景一介绍了业务信道传输的符号数小于或等于7,该场景重点介绍PDSCH传输的符号数为8至14的场景,其中,当PDSCH传输的符号数为8至14时,若PDSCH的映射类型为第一映射类型,可采用相关技术中PDSCH的DMRS的配置方式。
示例三、该示例对应于示例一,以1个符号的DMRS为例,PDSCH的DMRS的资源映射如下表7所示:
表7
Figure PCTCN2019070077-appb-000008
其中,场景一的示例一介绍了业务信道传输符号数为1至7时,DMRS 的配置及传输方式。下面结合表7对的PDSCH传输符号数为8至14时,DMRS的配置及传输做进一步介绍。
可选地,第一方面,当PDSCH采用第一映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第一映射类型,网络设备为PDSCH配置DMRS的方式可采用现有标准实现。
当PDSCH传输的符号数为8时,网络设备为PDSCH配置1个符号数为1的DMRS,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。
当PDSCH传输的符号数为9时,网络设备为PDSCH配置1或2个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第7个符号上进行传输。
当PDSCH传输的符号数为10或11时,网络设备为PDSCH配置1、2或3个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第9个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第6个符号上进行传输,第三DMRS映射至PDSCH所在时隙的第9个符号上进行传输。
当PDSCH传输的符号数为12时,网络设备为PDSCH配置1、2、3或4个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第9个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中 的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第6个符号上进行传输,第三DMRS映射至PDSCH所在时隙的第9个符号上进行传输。当网络设备为PDSCH配置4个DMRS时,4个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第5个符号上进行传输,第三DMRS映射至PDSCH所在时隙的第8个符号上进行传输,第四DMRS映射至PDSCH所在时隙的第11个符号上进行传输。
当PDSCH传输的符号数为13或14时,网络设备为PDSCH配置1、2、3或4个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第11个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第7个符号上进行传输,第三DMRS映射至PDSCH所在时隙的第11个符号上进行传输。当网络设备为PDSCH配置4个DMRS时,4个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第5个符号上进行传输,第三DMRS映射至PDSCH所在时隙的第8个符号上进行传输,第四DMRS映射至PDSCH所在时隙的第11个符号上进行传输。
可选地,第二方面,当PDSCH采用第二映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第二映射类型。由于第二映射类型为非时隙调度的映射类型,PDSCH最大传输符号为13,网络设备为PDSCH配置DMRS的方式可采用第一映射类型的配置方式。
当PDSCH传输的符号数为8时,网络设备为PDSCH配置1或2个符号数为1的DMRS,当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网 络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第4个符号上进行传输。
当PDSCH传输的符号数为9时,网络设备为PDSCH配置1或2个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第7个符号上进行传输。
当PDSCH传输的符号数为10或11时,网络设备为PDSCH配置1、2或3个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第9个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第6个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第9个符号上进行传输。
当PDSCH传输的符号数为12时,网络设备为PDSCH配置1、2、3或4个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第9个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第6个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第9个符号上进行传输。当网络设备为PDSCH配置4个DMRS时,4个DMRS 中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第5个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第8个符号上进行传输,第四DMRS映射至PDSCH所在时域传输单元的第11个符号上进行传输。
当PDSCH传输的符号数为13或14时,网络设备为PDSCH配置1、2、3或4个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第11个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第7个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第11个符号上进行传输。当网络设备为PDSCH配置4个DMRS时,4个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第5个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第8个符号上进行传输,第四DMRS映射至PDSCH所在时域传输单元的第11个符号上进行传输。
示例四、该示例对应于示例二,以2个符号的DMRS为例,PDSCH的DMRS的资源映射如下表8所示:
表8
Figure PCTCN2019070077-appb-000009
Figure PCTCN2019070077-appb-000010
其中,场景一的示例二介绍了业务信道传输符号数为1至7时,DMRS的配置及传输方式。下面结合表8对的PDSCH传输符号数为8至14时,DMRS的配置及传输做进一步介绍。
可选地,第一方面,当PDSCH采用第一映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第一映射类型,网络设备为PDSCH配置DMRS的方式可采用现有标准实现。
当PDSCH传输的符号数为8或9时,网络设备为PDSCH配置1个符号数为2的DMRS,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。
当PDSCH传输的符号数为10、11或12时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第8个符号上进行传输。
当PDSCH传输的符号数为13或14时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时隙的第2或3个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时隙的 第2或3个符号上进行传输,第二DMRS映射至PDSCH所在时隙的第10个符号上进行传输。
可选地,第二方面,当PDSCH采用第二映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第二映射类型。由于第二映射类型为非时隙调度的映射类型,PDSCH最大传输符号为13,网络设备为PDSCH配置DMRS的方式可部分采用第一映射类型的配置方式。
当PDSCH传输的符号数为8或9时,网络设备不为PDSCH配置符号数为2的DMRS。
当PDSCH传输的符号数为10、11或12时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第8个符号上进行传输。
当PDSCH传输的符号数为13时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第10个符号上进行传输。
场景三、
业务信道传输的符号数小于或等于14。该场景下业务信道采用不同映射类型时,网络设备为业务信道配置不同数目的DMRS,且为DMRS调度的目标传输资源不同。以上场景一介绍了业务信道传输的符号数小于或等于7,该场景与场景二为并列场景,重点介绍PDSCH传输的符号数为8至14的场景。
示例五、该示例对应于示例一,以1个符号的DMRS为例,PDSCH的 DMRS的资源映射如下表9所示:
表9
Figure PCTCN2019070077-appb-000011
其中,场景一的示例一介绍了业务信道传输符号数为1至7时,DMRS的配置及传输方式。下面结合表10对的PDSCH传输符号数为8至14时,DMRS的配置及传输做进一步介绍。
可选地,第一方面,当PDSCH采用第一映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第一映射类型,网络设备为PDSCH配置DMRS的方式可采用现有标准实现,具体映射方式如场景二中示例三所述,故在此不再赘述。
可选地,第二方面,当PDSCH采用第二映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第二映射类型。由于第二映射类型为非时隙调度的映射类型,PDSCH最大传输符号为13。
当PDSCH传输的符号数为8或9时,网络设备为PDSCH配置1、2或3个符号数为1的DMRS,当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第6个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第3个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第6个符号上进行传输。其中,最后一个DMRS所在位置根据PDSCH传输的符号数确定,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2或3个符号上进行传输。中间的DMRS尽可能均匀的分布在第一DMRS和倒数第1个DMRS所占符号之间。
当PDSCH传输的符号数为10或11时,网络设备为PDSCH配置1、2或3个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第8个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第4个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第8个符号上进行传输。
当PDSCH传输的符号数为12或13时,网络设备为PDSCH配置1、2、3或4个符号数为1的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至 PDSCH所在时域传输单元的第10个符号上进行传输。当网络设备为PDSCH配置3个DMRS时,3个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第5个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第10个符号上进行传输。当网络设备为PDSCH配置4个DMRS时,4个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第4个符号上进行传输,第三DMRS映射至PDSCH所在时域传输单元的第7个符号上进行传输,第四DMRS映射至PDSCH所在时域传输单元的第10个符号上进行传输。
示例六、该示例对应于示例二,以2个符号的DMRS为例,PDSCH的DMRS的资源映射如下表10所示:
表10
Figure PCTCN2019070077-appb-000012
Figure PCTCN2019070077-appb-000013
其中,场景一的示例二介绍了业务信道传输符号数为1至7时,DMRS的配置及传输方式。下面结合表10对的PDSCH传输符号数为8至14时,DMRS的配置及传输做进一步介绍。
可选地,第一方面,当PDSCH采用第一映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第一映射类型,网络设备为PDSCH配置DMRS的方式可采用现有标准实现,具体映射方式如场景二中示例四所述,故在此不再赘述。
可选地,第二方面,当PDSCH采用第二映射类型时,相应的网络设备为PDSCH配置的DMRS亦采用第二映射类型。由于第二映射类型为非时隙调度的映射类型,PDSCH最大传输符号为13。
当PDSCH传输的符号数为8或9时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第5个符号上进行传输。
当PDSCH传输的符号数为10或11时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第7个符号上进行传输。
当PDSCH传输的符号数为12或13时,网络设备为PDSCH配置1或2个符号数为2的DMRS。当网络设备为PDSCH配置1个DMRS时,该DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,亦可理解为PDSCH的DMRS位于PDSCH的起始符号,DMRS与PDSCH采用频分复用。当网络设备为PDSCH配置2个DMRS时,2个DMRS中的第一DMRS映射 至PDSCH所在时域传输单元的第0个符号上进行传输,第二DMRS映射至PDSCH所在时域传输单元的第9个符号上进行传输。
本公开实施例的解调参考信号的传输方法中,网络设备根据业务信道的映射类型以及业务信道传输的符号数,确定是否为业务信道配置相应的DMRS,在确定为业务信道配置DMRS时,根据业务信道的映射类型以及业务信道传输的符号数进一步为业务信道配置目标数目的DMRS,以保证各种场景下业务信道的解调性能,从而保证业务信道的正确传输,实现业务数据的正确传输。
以上实施例分别详细介绍了不同场景下的解调参考信号的传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图4所示,本公开实施例的网络设备400,能实现上述实施例中根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为业务信道配置相应的DMRS;当确定为业务信道配置相应的DMRS时,为业务信道配置目标数目个DMRS;将目标数目个DMRS映射至目标传输资源上进行传输方法的细节,并达到相同的效果,该网络设备400具体包括以下功能模块:
确定模块410,用于根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为业务信道配置相应的DMRS;
配置模块420,用于当确定为业务信道配置相应的DMRS时,为业务信道配置目标数目个DMRS;
传输模块430,用于将目标数目个DMRS映射至目标传输资源上进行传输。
其中,当业务信道的映射类型为第一映射类型、DMRS的符号数为1个时,
确定模块410包括以下至少一项:
第一确定子模块,用于当业务信道传输的符号数为第一值时,确定不为业务信道配置相应的DMRS;其中,第一值为1或2;
第二确定子模块,用于当业务信道传输的符号数为第二值时,若控制信道、保护间隔和预留资源中至少一项所占总资源的符号数大于或等于第二值, 则不为业务信道配置相应的DMRS;否则,确定为业务信道配置1个符号数为1的DMRS;其中,第二值为3或4;
第三确定子模块,用于当业务信道传输的符号数为第三值时,确定为业务信道配置1个符号数为1的DMRS;其中,第三值为5、6或7。
其中,当业务信道的映射类型为第一映射类型、DMRS的符号数为2个时,
确定模块410还包括以下至少一项:
第四确定子模块,用于当业务信道传输的符号数为第四值时,确定不为业务信道配置相应的DMRS;其中,第四值为1至5中的任一值;
第五确定子模块,用于当业务信道传输的符号数为第五值时,确定为业务信道配置1个符号数为2的DMRS;其中,第五值为6或7。
其中,传输模块430包括:
第一传输子模块,用于将为业务信道配置的1个DMRS映射至业务信道所在时隙的第2或3个符号上进行传输。
其中,当业务信道的映射类型为第二映射类型、DMRS的符号数为1个时,
确定模块410还包括以下至少一项:
第六确定子模块,用于当业务信道传输的符号数为第六值时,确定为业务信道配置1个符号数为1的DMRS;其中,第六值为1至5中任一值;
第七确定子模块,用于当业务信道传输的符号数为第七值时,确定为业务信道配置1或2个符号数为1的DMRS;其中,第七值为6或7。
其中,当业务信道的映射类型为第二映射类型、DMRS的符号数为2个时,
确定模块410还包括以下至少一项:
第八确定子模块,用于当业务信道传输的符号数为第八值时,确定不为业务信道配置相应的DMRS;其中,第八值为1至5中的任一值;
第九确定子模块,用于当业务信道传输的符号数为第九值时,确定为业务信道配置1个符号数为2的DMRS;其中,第九值为6或7。
其中,传输模块430还包括:
第二传输子模块,用于当目标数目为1时,将为业务信道配置的1个DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数;
第三传输子模块,用于当目标数目为2时,将为业务信道配置的2个DMRS中的第一DMRS映射至业务信道所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至业务信道所在时域传输单元的第4个符号上进行传输。
其中,传输模块430还包括:
第四传输子模块,用于当目标数目为1时,若控制信道或预留资源所占资源与业务信道所占资源的至少部分重叠,则将目标数目个DMRS映射至位于控制信道或预留资源之后的第一个符号上。
其中,传输模块430还包括:
第五传输子模块,用于当目标数目为2时,若控制信道或预留资源所占资源与业务信道所占资源的至少部分重叠,则将为业务信道配置的2个DMRS中的第一DMRS映射至第一目标传输资源上进行传输;其中,第一目标传输资源为位于控制信道或预留资源之后的第一个符号;
第六传输子模块,用于将2个DMRS中的第二DMRS映射至位于第一目标传输资源之后的第二目标传输资源上,若第二目标资源位于业务信道所占资源之后,则丢弃第二DMRS,否则通过第二目标传输资源进行第二DMRS的传输;其中,第二目标传输资源为第一目标传输资源之后的第4个符号。
其中,业务信道包括:物理上行共享信道PUSCH或物理下行共享信道PDSCH。
其中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,
确定模块410还包括以下至少一项:
第十确定子模块,用于当PDSCH传输的符号数为第十值时,确定为PDSCH配置1或2个符号数为1的DMRS,或者,为PDSCH配置1个符号数为2的DMRS;其中,第十值为8;
第十一确定子模块,用于当PDSCH传输的符号数为第十一值时,确定按照第一映射类型的DMRS配置为PDSCH配置DMRS;其中,第十一值为 9至13中的任一值。
其中,传输模块430还包括以下至少一项:
第七传输子模块,用于当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数;
第八传输子模块,用于当目标数目为2时,将为PDSCH配置的2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的第4个符号上进行传输。
其中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,
确定模块410还包括以下至少一项:
第十二确定子模块,用于当PDSCH传输的符号数为第十二值时,确定为PDSCH配置1、2或3个符号数为1的DMRS;其中,第十二值为8至11中的任一值;
第十三确定子模块,用于当PDSCH传输的符号数为第十三值时,确定为PDSCH配置1、2、3或4个符号数为1的DMRS;其中,第十三值为12或13。
其中,传输模块430还包括以下至少一项:
第九传输子模块,用于当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数;
第十传输子模块,用于当目标数目大于或等于2时,将为PDSCH配置的2个DMRS中的第1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2或3个符号上进行传输,将目标数目个DMRS中的其他DMRS映射至第1个DMRS和倒数第1个DMRS之间的等间隔的符号上进行传输。
其中,第十传输子模块包括以下至少一项:
第一传输单元,用于当PDSCH传输的符号数为8、10或12时,将目标 数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2个符号上进行传输;
第二传输单元,用于当PDSCH传输的符号数为9、11或13时,将目标数目个DMRS中的倒数第1个DMRS映射至PDSCH所在时域传输单元的倒数第2个符号上进行传输。
其中,当业务信道为PDSCH,且PDSCH的映射类型为第二映射类型时,
确定模块410还包括:
第十四确定子模块,用于当PDSCH传输的符号数为第十四值时,确定为PDSCH配置1或2个符号数为2的DMRS;其中,第十四值为8至13中的任一值。
其中,传输模块430还包括:
第十一传输子模块,用于当目标数目为1时,将为PDSCH配置的1个DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输;其中,时域传输单元所占符号数小于一个时隙所占符号数;
第十二传输子模块,用于当目标数目为2时,将为PDSCH配置的2个DMRS中的第一DMRS映射至PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的倒数第3或4个符号上进行传输。
第十二传输子模块还包括:
第三传输单元,用于当PDSCH传输的符号数为8、10或12时,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的倒数第3个符号上进行传输;
第四传输单元,用于当PDSCH传输的符号数为9、11或13时,将2个DMRS中的第二DMRS映射至PDSCH所在时域传输单元的倒数第4个符号上进行传输。
其中,传输模块430还包括:
映射子模块,用于将目标数目个DMRS分别映射至目标数目个目标传输子资源上;
丢弃子模块,用于将至少部分资源位于业务信道所占资源之后的目标传 输子资源对应的DMRS丢弃。
其中,配置模块420包括:
配置子模块,用于根据业务信道的映射类型、传输的符号数、解调参考信号DMRS的符号数以及控制信道、保护间隔和预留资源中至少一项所占总资源的符号数,确定为业务信道配置的DMRS的目标数目并为业务信道配置相应的DMRS。
值得指出的是,本公开实施例的网络设备根据业务信道的映射类型以及业务信道传输的符号数,确定是否为业务信道配置相应的DMRS,在确定为业务信道配置DMRS时,根据业务信道的映射类型以及业务信道传输的符号数进一步为业务信道配置目标数目的DMRS,以保证各种场景下业务信道的解调性能,从而保证业务信道的正确传输,实现业务数据的正确传输。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一 起,以片上系统(System-On-a-Chip,简称SOC)的形式实现。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的解调参考信号的传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的解调参考信号的传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图5所示,该网络设备500包括:天线51、射频装置52、基带装置53。天线51与射频装置52连接。在上行方向上,射频装置52通过天线51接收信息,将接收的信息发送给基带装置53进行处理。在下行方向上,基带装置53对要发送的信息进行处理,并发送给射频装置52,射频装置52对收到的信息进行处理后经过天线51发送出去。
上述频带处理装置可以位于基带装置53中,以上实施例中网络设备执行的方法可以在基带装置53中实现,该基带装置53包括处理器54和存储器55。
基带装置53例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图5所示,其中一个芯片例如为处理器54,与存储器55连接,以调用存储器55中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置53还可以包括网络接口56,用于与射频装置52交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器55可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、 可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器55旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器55上并可在处理器54上运行的计算机程序,处理器54调用存储器55中的计算机程序执行图4所示各模块执行的方法。
具体地,计算机程序被处理器54调用时可用于执行:根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为业务信道配置相应的DMRS;当确定为业务信道配置相应的DMRS时,为业务信道配置目标数目个DMRS;将目标数目个DMRS映射至目标传输资源上进行传输。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolved Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备,根据业务信道的映射类型以及业务信道传输的符号数,确定是否为业务信道配置相应的DMRS,在确定为业务信道配置DMRS时,根据业务信道的映射类型以及业务信道传输的符号数进一步为 业务信道配置目标数目的DMRS,以保证各种场景下业务信道的解调性能,从而保证业务信道的正确传输,实现业务数据的正确传输。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网 络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (23)

  1. 一种解调参考信号的传输方法,应用于网络设备侧,包括:
    根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS;
    当确定为所述业务信道配置相应的DMRS时,为所述业务信道配置目标数目个DMRS;
    将所述目标数目个DMRS映射至目标传输资源上进行传输。
  2. 根据权利要求1所述的解调参考信号的传输方法,其中,当所述业务信道的映射类型为第一映射类型、DMRS的符号数为1个时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述业务信道传输的符号数为第一值时,确定不为所述业务信道配置相应的DMRS;其中,所述第一值为1或2;
    当所述业务信道传输的符号数为第二值时,若控制信道、保护间隔和预留资源中至少一项所占总资源的符号数大于或等于第二值,则不为所述业务信道配置相应的DMRS;否则,确定为所述业务信道配置1个符号数为1的DMRS;其中,所述第二值为3或4;
    当所述业务信道传输的符号数为第三值时,确定为所述业务信道配置1个符号数为1的DMRS;其中,所述第三值为5、6或7。
  3. 根据权利要求1所述的解调参考信号的传输方法,其中,当所述业务信道的映射类型为第一映射类型、DMRS的符号数为2个时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述业务信道传输的符号数为第四值时,确定不为所述业务信道配置相应的DMRS;其中,所述第四值为1至5中的任一值;
    当所述业务信道传输的符号数为第五值时,确定为所述业务信道配置1个符号数为2的DMRS;其中,所述第五值为6或7。
  4. 根据权利要求2或3所述的解调参考信号的传输方法,其中,将所述 目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括:
    将为所述业务信道配置的1个DMRS映射至所述业务信道所在时隙的第2或3个符号上进行传输。
  5. 根据权利要求1所述的解调参考信号的传输方法,其中,当所述业务信道的映射类型为第二映射类型、DMRS的符号数为1个时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述业务信道传输的符号数为第六值时,确定为所述业务信道配置1个符号数为1的DMRS;其中,所述第六值为1至5中任一值;
    当所述业务信道传输的符号数为第七值时,确定为所述业务信道配置1或2个符号数为1的DMRS;其中,所述第七值为6或7。
  6. 根据权利要求1所述的解调参考信号的传输方法,其中,当所述业务信道的映射类型为第二映射类型、DMRS的符号数为2个时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述业务信道传输的符号数为第八值时,确定不为所述业务信道配置相应的DMRS;其中,所述第八值为1至5中的任一值;
    当所述业务信道传输的符号数为第九值时,确定为所述业务信道配置1个符号数为2的DMRS;其中,所述第九值为6或7。
  7. 根据权利要求5或6所述的解调参考信号的传输方法,其中,将所述目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括:
    当目标数目为1时,将为所述业务信道配置的1个DMRS映射至所述业务信道所在时域传输单元的第0个符号上进行传输;其中,所述时域传输单元所占符号数小于一个时隙所占符号数;
    当目标数目为2时,将为所述业务信道配置的2个DMRS中的第一DMRS映射至所述业务信道所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至所述业务信道所在时域传输单元的第4个符号上进行传输。
  8. 根据权利要求5所述的解调参考信号的传输方法,其中,将所述目标 数目个DMRS映射至目标传输资源上进行传输的步骤,包括:
    当目标数目为1时,若控制信道或预留资源所占资源与所述业务信道所占资源的至少部分重叠,则将所述目标数目个DMRS映射至位于所述控制信道或预留资源之后的第一个符号上。
  9. 根据权利要求5所述的解调参考信号的传输方法,其中,将所述目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括:
    当目标数目为2时,若控制信道或预留资源所占资源与所述业务信道所占资源的至少部分重叠,则将为所述业务信道配置的2个DMRS中的第一DMRS映射至第一目标传输资源上进行传输;其中,所述第一目标传输资源为位于所述控制信道或预留资源之后的第一个符号;
    将2个DMRS中的第二DMRS映射至位于所述第一目标传输资源之后的第二目标传输资源上,若所述第二目标资源位于所述业务信道所占资源之后,则丢弃所述第二DMRS,否则通过所述第二目标传输资源进行第二DMRS的传输;其中,第二目标传输资源为所述第一目标传输资源之后的第4个符号。
  10. 根据权利要求1所述的解调参考信号的传输方法,其中,所述业务信道包括:物理上行共享信道PUSCH或物理下行共享信道PDSCH。
  11. 根据权利要求10所述的解调参考信号的传输方法,其中,当所述业务信道为PDSCH,且所述PDSCH的映射类型为第二映射类型时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述PDSCH传输的符号数为第十值时,确定为所述PDSCH配置1或2个符号数为1的DMRS,或者,为所述PDSCH配置1个符号数为2的DMRS;其中,所述第十值为8;
    当所述PDSCH传输的符号数为第十一值时,确定按照第一映射类型的DMRS配置为所述PDSCH配置DMRS;其中,第十一值为9至13中的任一值。
  12. 根据权利要求11所述的解调参考信号的传输方法,其中,当所述PDSCH传输的符号数为第十值时,将所述目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括以下至少一项:
    当目标数目为1时,将为所述PDSCH配置的1个DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输;其中,所述时域传输单元所占符号数小于一个时隙所占符号数;
    当目标数目为2时,将为所述PDSCH配置的2个DMRS中的第一DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至所述PDSCH所在时域传输单元的第4个符号上进行传输。
  13. 根据权利要求10所述的解调参考信号的传输方法,其中,当所述业务信道为PDSCH,且所述PDSCH的映射类型为第二映射类型时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括以下至少一项:
    当所述PDSCH传输的符号数为第十二值时,确定为所述PDSCH配置1、2或3个符号数为1的DMRS;其中,第十二值为8至11中的任一值;
    当所述PDSCH传输的符号数为第十三值时,确定为所述PDSCH配置1、2、3或4个符号数为1的DMRS;其中,第十三值为12或13。
  14. 根据权利要求13所述的解调参考信号的传输方法,其中,将所述目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括以下至少一项:
    当目标数目为1时,将为所述PDSCH配置的1个DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输;其中,所述时域传输单元所占符号数小于一个时隙所占符号数;
    当目标数目大于或等于2时,将为所述PDSCH配置的2个DMRS中的第1个DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输,将目标数目个DMRS中的倒数第1个DMRS映射至所述PDSCH所在时域传输单元的倒数第2或3个符号上进行传输,将目标数目个DMRS中的其他DMRS映射至第1个DMRS和倒数第1个DMRS之间的等间隔的符号上进行传输。
  15. 根据权利要求14所述的解调参考信号的传输方法,其中,所述将目标数目个DMRS中的倒数第1个DMRS映射至所述PDSCH所在时域传输单元的倒数第2或3个符号上进行传输的步骤,包括以下至少一项:
    当所述PDSCH传输的符号数为8、10或12时,将目标数目个DMRS中的倒数第1个DMRS映射至所述PDSCH所在时域传输单元的倒数第2个符号上进行传输;
    当所述PDSCH传输的符号数为9、11或13时,将目标数目个DMRS中的倒数第1个DMRS映射至所述PDSCH所在时域传输单元的倒数第3个符号上进行传输。
  16. 根据权利要求10所述的解调参考信号的传输方法,其中,当所述业务信道为PDSCH,且所述PDSCH的映射类型为第二映射类型时,根据所述业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS的步骤,包括:
    当所述PDSCH传输的符号数为第十四值时,确定为所述PDSCH配置1或2个符号数为2的DMRS;其中,第十四值为8至13中的任一值。
  17. 根据权利要求16所述的解调参考信号的传输方法,其中,将所述目标数目个DMRS映射至目标传输资源上进行传输的步骤,包括以下至少一项:
    当目标数目为1时,将为所述PDSCH配置的1个DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输;其中,所述时域传输单元所占符号数小于一个时隙所占符号数;
    当目标数目为2时,将为所述PDSCH配置的2个DMRS中的第一DMRS映射至所述PDSCH所在时域传输单元的第0个符号上进行传输,将2个DMRS中的第二DMRS映射至所述PDSCH所在时域传输单元的倒数第3或4个符号上进行传输。
  18. 根据权利要求17所述的解调参考信号的传输方法,其中,所述将2个DMRS中的第二DMRS映射至所述PDSCH所在时域传输单元的倒数第3或4个符号上进行传输的步骤,包括以下至少一项:
    当所述PDSCH传输的符号数为8、10或12时,将2个DMRS中的第二DMRS映射至所述PDSCH所在时域传输单元的倒数第3个符号上进行传输;
    当所述PDSCH传输的符号数为9、11或13时,将2个DMRS中的第二DMRS映射至所述PDSCH所在时域传输单元的倒数第4个符号上进行传输。
  19. 根据权利要求1所述的解调参考信号的传输方法,其中,将所述目 标数目个DMRS映射至目标传输资源上进行传输的步骤,包括:
    将所述目标数目个DMRS分别映射至目标数目个目标传输子资源上;
    将至少部分资源位于所述业务信道所占资源之后的目标传输子资源对应的DMRS丢弃。
  20. 根据权利要求1所述的解调参考信号的传输方法,其中,为所述业务信道配置目标数目个DMRS的步骤,包括:
    根据所述业务信道的映射类型、传输的符号数、解调参考信号DMRS的符号数以及控制信道、保护间隔和预留资源中至少一项所占总资源的符号数,确定为所述业务信道配置的DMRS的目标数目并为所述业务信道配置相应的DMRS。
  21. 一种网络设备,包括:
    确定模块,用于根据业务信道的映射类型、传输的符号数以及解调参考信号DMRS的符号数,确定是否为所述业务信道配置相应的DMRS;
    配置模块,用于当确定为所述业务信道配置相应的DMRS时,为所述业务信道配置目标数目个DMRS;
    传输模块,用于将所述目标数目个DMRS映射至目标传输资源上进行传输。
  22. 一种网络设备,包括:处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的程序,其中所述处理器执行所述程序时实现如权利要求1至20中任一项所述的解调参考信号的传输方法的步骤。
  23. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至20中任一项所述的解调参考信号的传输方法的步骤。
PCT/CN2019/070077 2018-01-09 2019-01-02 解调参考信号的传输方法及网络设备 WO2019137274A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19738435.7A EP3739796A4 (en) 2018-01-09 2019-01-02 DEMODULATION REFERENCE SIGNAL TRANSMISSION PROCESS, AND NETWORK DEVICE
US16/960,537 US11476993B2 (en) 2018-01-09 2019-01-02 Method for transmitting demodulation reference signal and network device
KR1020207021588A KR102459102B1 (ko) 2018-01-09 2019-01-02 복조 참조 신호의 전송 방법 및 네트워크 기기
JP2020537776A JP7041274B2 (ja) 2018-01-09 2019-01-02 復調基準信号の伝送方法及びネットワーク装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810019946.0A CN110022193B (zh) 2018-01-09 2018-01-09 解调参考信号的传输方法及网络设备
CN201810019946.0 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019137274A1 true WO2019137274A1 (zh) 2019-07-18

Family

ID=67187801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070077 WO2019137274A1 (zh) 2018-01-09 2019-01-02 解调参考信号的传输方法及网络设备

Country Status (6)

Country Link
US (1) US11476993B2 (zh)
EP (1) EP3739796A4 (zh)
JP (1) JP7041274B2 (zh)
KR (1) KR102459102B1 (zh)
CN (1) CN110022193B (zh)
WO (1) WO2019137274A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029585A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 Nr v2x에서 pssch를 위한 dmrs를 전송하는 방법 및 장치
US20210153228A1 (en) * 2019-08-15 2021-05-20 Zte Corporation Information determination method and device, and storage medium
EP4016907A4 (en) * 2019-08-16 2022-09-07 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117979446A (zh) * 2018-01-12 2024-05-03 华为技术有限公司 通信方法、通信装置、计算机可读存储介质和计算机程序产品
US11509383B2 (en) * 2019-12-23 2022-11-22 Qualcomm Incorporated Default physical downlink shared channel downlink beam determination with self-interference
US11910483B2 (en) * 2020-03-13 2024-02-20 Qualcomm Incorporated Classifying nodes based on mobility state
CN113497695B (zh) * 2020-04-07 2023-10-27 维沃移动通信有限公司 一种dmrs的传输方法及终端
CN113765634A (zh) * 2020-06-03 2021-12-07 中兴通讯股份有限公司 Dmrs分配方法、nr基站和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
WO2017135988A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Uplink dm-rs transmission for pusch transmissions with shortened tti
WO2017138794A2 (en) * 2016-02-11 2017-08-17 Lg Electronics Inc. Method and apparatus for sharing demodulation reference signal for short tti in wireless communication system
CN107370579A (zh) * 2016-05-11 2017-11-21 北京华为数字技术有限公司 一种信息的发送方法、接收方法、用户设备及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024533B2 (ja) * 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置
JP5735541B2 (ja) * 2010-01-18 2015-06-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル品質情報を提供する方法及び装置
EP2847916A1 (en) * 2012-05-11 2015-03-18 Optis Wireless Technology, LLC Reference signal design for special subframe configurations
WO2014051322A1 (ko) * 2012-09-25 2014-04-03 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
KR101766706B1 (ko) * 2013-10-25 2017-08-23 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 스케줄링 방법 및 장치, 기지국, 그리고 단말기
US10064165B2 (en) * 2014-10-03 2018-08-28 Qualcomm Incorporated Downlink and uplink channel with low latency
CN105812105B (zh) 2014-12-30 2020-05-08 杭州华为数字技术有限公司 解调参考信号的传输装置、系统及方法
US9648634B2 (en) * 2015-01-29 2017-05-09 Qualcomm Incorporated System and methods for providing a transmission skipping policy to improve performance in a multi-subscriber identity module (SIM) wireless communication device
EP3335352A1 (en) * 2015-08-12 2018-06-20 Intel Corporation Demodulation in wireless communications
US10158464B2 (en) 2015-09-25 2018-12-18 Intel IP Corporation Mobile terminal devices, mobile processing circuits, and methods of processing signals
US11102763B2 (en) * 2017-12-08 2021-08-24 Qualcomm Incorporated Techniques for multiplexing of uplink channels in a shared radio frequency spectrum band

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统
WO2017135988A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Uplink dm-rs transmission for pusch transmissions with shortened tti
WO2017138794A2 (en) * 2016-02-11 2017-08-17 Lg Electronics Inc. Method and apparatus for sharing demodulation reference signal for short tti in wireless communication system
CN107370579A (zh) * 2016-05-11 2017-11-21 北京华为数字技术有限公司 一种信息的发送方法、接收方法、用户设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Uplink Reference Signal Design for Short TTI", 3GPP TSG RAN WGI MEETING #84, R1-160864, 14 February 2016 (2016-02-14), XP051054189 *
See also references of EP3739796A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029585A1 (ko) * 2019-08-15 2021-02-18 엘지전자 주식회사 Nr v2x에서 pssch를 위한 dmrs를 전송하는 방법 및 장치
US20210153228A1 (en) * 2019-08-15 2021-05-20 Zte Corporation Information determination method and device, and storage medium
US11637677B2 (en) 2019-08-15 2023-04-25 Lg Electronics Inc. Method and device for transmitting DMRS for PSSCH in NR V2X
US11792790B2 (en) * 2019-08-15 2023-10-17 Zte Corporation Information determination method and device, and storage medium
EP4016907A4 (en) * 2019-08-16 2022-09-07 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Also Published As

Publication number Publication date
KR102459102B1 (ko) 2022-10-25
EP3739796A1 (en) 2020-11-18
KR20200101443A (ko) 2020-08-27
JP2021510263A (ja) 2021-04-15
CN110022193B (zh) 2020-08-11
JP7041274B2 (ja) 2022-03-23
EP3739796A4 (en) 2021-03-03
CN110022193A (zh) 2019-07-16
US20210067295A1 (en) 2021-03-04
US11476993B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2019137274A1 (zh) 解调参考信号的传输方法及网络设备
US11476991B2 (en) Demodulation reference signal transmission method, network device and computer-readable storage medium
US20200374097A1 (en) Pilot signal generation method and apparatus
US11438918B2 (en) Scheduling request with different numerologies
JP7160501B2 (ja) 測位基準信号設定方法、受信方法及び機器
US11632207B2 (en) Method and apparatus for transmitting uplink signal
JP7005738B2 (ja) データ伝送方法及び端末装置
US11601958B2 (en) Data transmission method and apparatus
WO2017000307A1 (en) Method, apparatus and system
AU2017405700A1 (en) Data transmission method, terminal device and network device
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
CN109661846A (zh) 通信方法、终端设备和网络设备
WO2019184614A1 (zh) 用于传输解调参考信号的方法、终端设备和网络侧设备
WO2020155182A1 (zh) 信道传输的方法和设备
CN109219968A (zh) 一种csi-rs传输方法及网络设备
EP3857775A1 (en) Burst detection in wireless communications
US11337213B2 (en) Signal receiving method, apparatus, and device
WO2019047680A1 (zh) 控制资源集的配置方法、网络设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021588

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019738435

Country of ref document: EP

Effective date: 20200810