WO2018202041A1 - 信息发送的方法及其装置和信息接收的方法及其装置 - Google Patents

信息发送的方法及其装置和信息接收的方法及其装置 Download PDF

Info

Publication number
WO2018202041A1
WO2018202041A1 PCT/CN2018/085339 CN2018085339W WO2018202041A1 WO 2018202041 A1 WO2018202041 A1 WO 2018202041A1 CN 2018085339 W CN2018085339 W CN 2018085339W WO 2018202041 A1 WO2018202041 A1 WO 2018202041A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
modulation
coding scheme
terminal device
Prior art date
Application number
PCT/CN2018/085339
Other languages
English (en)
French (fr)
Inventor
吕永霞
马瑞泽大卫•简-玛丽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018202041A1 publication Critical patent/WO2018202041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for channel state information transmission, and a method and apparatus for channel state information reception.
  • 5G mobile communication systems need to support enhanced mobile broadband (eMBB) services, ultra reliable and low latency communications (URLLC) services, and mass machine type communications (mMTC) services. .
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable and low latency communications
  • mMTC mass machine type communications
  • Typical URLLC services include wireless control in industrial manufacturing or production processes, motion control for driverless and drones, and tactile interaction applications such as remote surgery.
  • the main features of these services are ultra-high reliability and low latency.
  • the URLLC service data packet is usually small, and the time-frequency resources are also small.
  • the method for determining the channel state information is often determined according to the full bandwidth time-frequency resource where the service data is located, and the channel state information in the prior art is determined to be periodic, and the period is much longer than the transmission delay requirement of the URLLC service. Therefore, the existing method for determining channel state information cannot accurately reflect the channel state corresponding to when the service data packet is small.
  • the present application provides a method for transmitting information, a device thereof, and a method for receiving information and an apparatus thereof, which can improve the accuracy of reflecting channel state information corresponding to service data.
  • the first aspect provides a method for transmitting channel state information, including: receiving, by a terminal device, control information, where the control information is used to indicate a first time-frequency resource, where the terminal device is in the first time-frequency resource Receiving the first information block; the terminal device determining the second time-frequency resource according to the control information, where the second time-frequency resource is the same as the first time-frequency resource, or the second The time-frequency resource is determined according to the first time-frequency resource, or the second time-frequency resource is determined according to the time-domain resource corresponding to the first time-frequency resource, or the second time-frequency resource And determining, according to the frequency domain resource corresponding to the first time-frequency resource, the terminal device acquiring channel state information of the second time-frequency resource; and the terminal device sending the channel state information.
  • the method provided by the embodiment of the present application can obtain more accurate channel state information by performing channel estimation on the time-frequency resource occupied by the URLLC service, thereby facilitating channel information.
  • the channel state information corresponding to the URLLC service transmission is reported to the network device, thereby facilitating the low latency and high reliability transmission requirements of the URLLC service.
  • the acquiring, by the terminal device, the channel state information of the second time-frequency resource includes: the terminal device according to the transmission mode of the first information block Determining channel state information of the second time-frequency resource; and/or determining, by the terminal device, a channel of the second time-frequency resource according to a resource ratio of the first time-frequency resource for carrying control information and a reference signal Status information; and/or the terminal device determines channel state information of the second time-frequency resource according to a coded redundancy version used by the first information block.
  • the terminal device acquires channel state information of the second time-frequency resource, it is assumed that the transmission mode of the assumed transmission information block carried on the second time-frequency resource is the same as the transmission mode of the first information block; or, when the terminal When the device obtains the channel state information of the second time-frequency resource, it is assumed that the ratio of the overhead of the control information and the reference resource carried on the second time-frequency resource is the same as the ratio of the control information and the reference resource carried on the first time-frequency resource; Or, optionally, when the terminal device acquires channel state information of the second time-frequency resource, it is assumed that the second time-frequency resource carries a transmission mode, a redundancy version, and a corresponding second time when the information block is transmitted when the information block is assumed to be transmitted.
  • the proportion of resources on the frequency resource for carrying control information and reference signals, etc. is predefined by the communication standard specification.
  • the terminal device before the acquiring, by the terminal device, channel state information of the second time-frequency resource, the terminal device further includes: Determining, by the first time-frequency resource, a frequency domain start location or a frequency domain end location of the second time-frequency resource; and determining, by the terminal device, the second time-frequency resource according to a reference information block size.
  • the method before the acquiring, by the terminal device, the channel state information of the second time-frequency resource, the method further includes: the terminal device Determining a time domain start location or a time domain end location of the second time-frequency resource according to the first time-frequency resource; and determining, by the terminal device, the second time-frequency resource according to a reference information block size.
  • the reference resources in the channel state information measurement process in the prior art do not correspond to any transmission when the channel state information is determined, that is, the terminal device does not determine what the corresponding channel will carry in the process of implementing the channel state measurement.
  • the second time-frequency resource is related to the first time-frequency resource
  • the first time-frequency resource includes a time-frequency resource that carries the first information block
  • the terminal device can perform channel measurement according to the application.
  • the size of the first information block is determined, and the terminal device may have received a certain transmission of the first information block.
  • the method provided by the embodiment of the present invention can obtain more accurate channel state information by performing channel estimation on the time-frequency resource occupied by the URLLC service, thereby facilitating reporting to the network device the channel state information corresponding to the URLLC service transmission.
  • the method further includes: determining, by the terminal device, a target modulation and coding scheme based on the reference information block, the target modulation
  • the coding scheme is a modulation coding scheme with the highest sequence number or the most efficient modulation coding scheme among the at least one modulation coding scheme, and the at least one modulation coding scheme satisfies the condition that each of the at least one modulation coding scheme The corresponding reception error probability is not greater than the target error probability.
  • the method further includes: the second time-frequency resource corresponds to a target modulation and coding scheme, and the target modulation and coding scheme Is one of at least one modulation coding scheme.
  • the terminal device acquires channel state information of the second time-frequency resource, including: the terminal device measures the second time-frequency resource Channel and/or interference, channel state information is obtained based on the channel measurements and/or interference measurements.
  • the second aspect provides a method for receiving channel state information, including: the network device sends control information to the terminal device, where the control information is used to indicate the first time-frequency resource, where the terminal device is in the first time Receiving, by the frequency resource, the first information block, where the control information is used by the terminal device to determine the second time-frequency resource, where the second time-frequency resource is the same as the first time-frequency resource, or The second time-frequency resource is determined according to the first time-frequency resource, or the second time-frequency resource is determined according to the time domain resource corresponding to the first time-frequency resource, or the second The time-frequency resource is determined according to the frequency domain resource corresponding to the first time-frequency resource; the network device receives channel state information of the second time-frequency resource; and the network device receives the channel state sent by the terminal device information.
  • the channel state information of the second time-frequency resource is determined by the terminal device according to a transmission mode of the first information block; and/or The channel state information of the second time-frequency resource is determined by the terminal device according to a proportion of resources used to carry control information and reference resources in the first time-frequency resource; and/or a channel of the second time-frequency resource
  • the status information is determined by the terminal device based on a coded redundancy version used by the first information block.
  • the second time-frequency resource is determined by the terminal device, according to the first time-frequency resource, to determine the second time a frequency domain start position or a frequency domain end position of the frequency resource; and determined by the terminal device according to a reference information block size.
  • the second time-frequency resource is determined by the terminal device to determine the second time according to the first time-frequency resource a time domain start position or a time domain end position of the frequency resource; and determined by the terminal device according to a reference information block size.
  • the target modulation and coding scheme is determined by the reference information block, where the target modulation and coding scheme is the at least one modulation a modulation scheme with the highest sequence number or the most efficient modulation and coding scheme in the coding scheme, the at least one modulation and coding scheme satisfying a condition that a probability of reception error corresponding to each of the at least one modulation and coding scheme is not greater than a target The probability of error.
  • the second time-frequency resource corresponds to a target modulation and coding scheme
  • the target modulation and coding scheme is at least one modulation and coding scheme. one of the.
  • a third aspect provides a terminal device, a method for the foregoing terminal device, and specifically, the terminal device may include a module for performing corresponding steps of the terminal device.
  • the terminal device may include a module for performing corresponding steps of the terminal device.
  • a processing module for example, a transmitting module, a receiving module, and the like.
  • a fourth aspect provides a network device, a method for executing the foregoing network device, and specifically, the network device may include a module for performing corresponding steps of the network device.
  • the network device may include a module for performing corresponding steps of the network device.
  • a processing module for example, a transmitting module, a receiving module, and the like.
  • a terminal device comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory such that the terminal device executes the method of the terminal device described above.
  • a network device comprising a memory and a processor for storing a computer program for calling and running the computer program from a memory, such that the network device performs the method of the network device described above.
  • a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a wireless communication system applied to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a network device in the wireless communication system shown in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a terminal device in the wireless communication system shown in FIG. 1.
  • Figure 4 illustrates an interaction diagram of a method of one embodiment of the present application.
  • Figure 5 shows a schematic diagram of a method of one embodiment of the present application.
  • Figure 6 shows a schematic diagram of a method of another embodiment of the present application.
  • Figure 7 shows a schematic diagram of a method of one embodiment of the present application.
  • Figure 8 shows a schematic diagram of one embodiment of the present application.
  • Figure 9 shows a schematic diagram of a method of an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the method of an embodiment of the present application.
  • Figure 11 shows a schematic diagram of a method of one embodiment of the present application.
  • Figure 12 shows a schematic diagram of a method of one embodiment of the present application.
  • Figure 13 shows a schematic diagram of a method of one embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device of an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • UMTS universal mobile telecommunication system
  • 5G next-generation communication system
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the embodiments of the present application describe various embodiments in combination with a sending device and a receiving device, where the sending device may be one of a network device and a terminal device, and the receiving device may be the other one of the network device and the terminal device, for example, in the present application.
  • the sending device may be a network device, and the receiving device may be a terminal device; or the sending device may be a terminal device, and the receiving device may be a network device.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device.
  • UE user equipment
  • the terminal device may be a station (STA) in a wireless local area network (WLAN), and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, or a wireless local loop (wireless local Loop, WLL) station, personal digital assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, For example, a terminal device in a fifth-generation (5G) communication network or a terminal device in a public land mobile network (PLMN) network that is evolving in the future.
  • 5G fifth-generation
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (AP) in the WLAN, a Base Transceiver Station (BTS) in GSM or CDMA, or may be in WCDMA.
  • AP access point
  • BTS Base Transceiver Station
  • a base station (NodeB, NB) which may also be an evolved Node B (eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or a future Network devices and the like in an evolved PLMN network.
  • eNB evolved Node B
  • eNodeB evolved Node B
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell ( Micro cell), Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the method and apparatus provided by the embodiments of the present application may be applied to a terminal device or a network device, where the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method for transmitting a signal is not particularly limited as long as the program of the code for recording the method of transmitting the signal of the embodiment of the present application is executed.
  • the method for transmitting a signal according to the embodiment of the present application may be performed.
  • the execution body of the method for wireless communication in the embodiment of the present application may be a terminal device or a network device, or may be a terminal device or a network device capable of calling a program and The functional module that executes the program.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • mini-slot can be applied in scenarios with large bandwidth scheduling in high-frequency systems, ie scheduling strategies tend to be smaller in time granularity.
  • the embodiment of the present application provides a data sending method, a data receiving method, and a corresponding network device and terminal device.
  • FIG. 1 is a schematic diagram of a wireless communication system applied to an embodiment of the present application.
  • the wireless communication system 100 includes a network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward chain.
  • the path 124 and the reverse link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • FIG. 2 is a schematic structural diagram of a network device in the above wireless communication system.
  • the network device can perform the data sending method provided by the embodiment of the present application.
  • the network device includes a processor 201, a receiver 202, a transmitter 203, and a memory 204.
  • the processor 201 can be communicatively coupled to the receiver 202 and the transmitter 203.
  • the memory 204 can be used to store program code and data for the network device. Therefore, the memory 204 may be a storage unit inside the processor 201, or may be an external storage unit independent of the processor 201, or may be a storage unit including the processor 201 and an external storage unit independent of the processor 201. component.
  • the network device may further include a bus 205.
  • the receiver 202, the transmitter 203, and the memory 204 may be connected to the processor 201 via a bus 205;
  • the bus 205 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (Extended Industry Standard) Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 205 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 201 can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate. Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiver 202 and the transmitter 203 may be circuits including the above-described antenna and transmitter chain and receiver chain, which may be independent circuits or the same circuit.
  • FIG. 3 is a schematic structural diagram of a terminal device in the above wireless communication system.
  • the terminal device is capable of performing the data receiving method provided by the embodiment of the present application.
  • the terminal device may include a processor 301, a receiver 302, a transmitter 303, and a memory 304.
  • the processor 301 can be communicatively coupled to the receiver 302 and the transmitter 303.
  • the terminal device may further include a bus 305, and the receiver 302, the transmitter 303, and the memory 304 may be connected to the processor 301 via the bus 305.
  • the bus 305 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 305 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one
  • the memory 304 can be used to store program code and data for the terminal device. Therefore, the memory 304 may be a storage unit inside the processor 301, or may be an external storage unit independent of the processor 301, or may be a storage unit including the processor 301 and an external storage unit independent of the processor 301. component. Receiver 302 and transmitter 303 can be separate circuits or the same circuit.
  • the burst data packet of the URLLC service has a certain randomness.
  • the network device cannot accurately predict when the URLLC packet needs to be transmitted.
  • the URLLC service has very high requirements for delay and transmission reliability.
  • the normal channel information is reported in a period of about 5 ms or 10 ms, which cannot meet the high reliability requirement of the URLLC.
  • the URLLC service is scheduled to report a non-periodic channel state information and then scheduled, it is difficult to meet the requirement of ultra-low latency.
  • the URLLC service if the URLLC service is scheduled to report a non-periodic channel state information and then scheduled, it will preempt the time that can be used to transmit data, and increase the difficulty of meeting the target reliability within the 1 ms transmission delay. Further, due to the bursty nature of the URLLC service, significant power consumption of the terminal device is wasted only by reducing the period. Therefore, the existing channel information reporting mechanism cannot meet the low latency and high reliability transmission requirements of the URLLC service.
  • the method provided by the embodiment of the present invention can obtain more accurate channel state information by performing channel estimation on the time-frequency resource occupied by the URLLC service, thereby facilitating reporting to the network device the channel state information corresponding to the URLLC service transmission, and further Conducive to meeting URLLC business low latency and highly reliable transmission requirements.
  • the time-frequency resource includes one or more frequency domain units in the frequency domain, and the frequency domain unit may include one or more resource blocks, and may further include one or more resource block groups.
  • the time-frequency resource includes one or more time domain units in the time domain, and the time domain unit may include one or more time domain symbols, may also include one or more slots, and may also include one or more mini A mini-slot, or one or more subframes.
  • the frequency domain unit includes a plurality of frequency domain units
  • the multiple frequency domain units may be continuous or discontinuous, which is not limited in this application.
  • the time domain unit includes multiple time domain units, the multiple time domain units may be continuous or discontinuous, which is not limited in this application.
  • the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a single-carrier frequency-division multiplexing (SC-FDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency-division multiplexing
  • the information block may be a transport block (TB), a code block (CB), and a code block group (CBG), where the CB includes a set of information bits, where The group information bits are used together for primary channel coding, or the group of information bits are channel-coded together by the transmitting device, corresponding to one channel-coded bit block;
  • the CBG includes at least one coding block, which may include multiple coding blocks;
  • At least one CB may also include at least one CBG, which is not limited in this application.
  • FIG. 4 is an interaction diagram of a method in accordance with an embodiment of the present application. As shown in FIG. 4, the method includes the following steps. It should be noted that the broken line in FIG. 4 indicates that the corresponding step is an optional step. It should be understood that these steps or operations are merely examples, and that the embodiments of the present application may perform other operations or variations of the various operations in FIG. Moreover, the various steps in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it is possible that not all operations in FIG. 4 are to be performed.
  • Step 401 The terminal device receives control information sent by the network device, where the control information is used to indicate the first time-frequency resource, where the terminal device receives the first information block in the first time-frequency resource.
  • control information in step 401 may be physical layer control information.
  • the control information may be carried in the first downlink control channel, where the control channel may be a physical downlink control channel (PDCCH) or other downlink channel for carrying physical layer control information, and the present application does not. limited.
  • PDCCH physical downlink control channel
  • the first time-frequency resource includes a time-frequency resource occupied by the first information block, that is, the first time-frequency resource is the same as the time-frequency resource occupied by the first information block, or The frequency resource is larger than the time-frequency resource occupied by the first information block.
  • the first time-frequency resource includes at least:
  • time-frequency resource for carrying the first information block and a time-frequency resource for carrying the demodulation reference signal; or a time-frequency resource for carrying the first information block and a time-frequency resource for carrying control information; or a time-frequency resource for carrying the first information block, a time-frequency resource for carrying the demodulation reference signal, and a time-frequency resource for carrying control information;
  • the demodulation reference signal includes at least a demodulation reference signal of the first information block
  • the first time-frequency resource may further include a time-frequency resource for carrying other signals, for example, a time-frequency resource for measuring the reference signal, and may include, for example, a channel state information-reference signal.
  • CSI-RS Zero Power Channel State Information-Reference Signal
  • ZP-CSI-RS Zero Power Channel State Information-Reference Signal
  • the time domain location of the first time-frequency resource is a time domain unit (which may be one or more) in which the first information block is located.
  • the frequency domain location is a frequency domain resource block (one or more) in which the first information block is located.
  • control information may indicate the location of the first time-frequency resource in the time-frequency domain in an explicit manner. For example, at least one bit in the control information is used to indicate the location of the first time-frequency resource in the time-frequency domain;
  • the control information may also indicate the location of the first time-frequency resource in the time domain and/or the frequency domain in an implicit manner, for example, the network device performs high-level signaling (such as Radio Resource Control (RRC) or media access control. (Media Access Control, MAC) signaling) Pre-configure multiple time domain locations of the first time-frequency resource.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the terminal device may further determine the location of the first time-frequency resource according to a predefined rule of the communication standard specification. It should be understood that the control information may not only indicate the location of the first time-frequency resource, but also indicate the size of the first time-frequency resource.
  • the control information may further indicate that the terminal device receives the first information block on the first time-frequency resource, where the first time-frequency resource includes a third time-frequency resource for carrying the first information block, and the terminal device may use other related information.
  • the pre-defined rule of the communication protocol specification determines the third time-frequency resource in the first time-frequency resource, wherein the other related information may be location-related information of the reference signal carried in the first time-frequency resource, and the like.
  • the present application is not limited.
  • the other time-frequency resources may be time-frequency resources for transmitting a control channel.
  • the terminal device determines the third time-frequency resource in the first time-frequency resource according to the rule defined by the other related information and/or the communication protocol specification, the other related information may further include the first time-frequency resource. Location information of the control channel carried in the medium, and the like.
  • Figure 5 shows a schematic diagram of a method of one embodiment of the present application.
  • the first time-frequency resource includes a time-frequency resource carrying control information, a time-frequency resource carrying a demodulation reference signal, and a time-frequency resource including a first information block. It should be understood that the first time-frequency resource is further The time-frequency resource occupied by other information may be included, which is not limited in this application.
  • Figure 6 shows a schematic diagram of a method of another embodiment of the present application.
  • the first time-frequency resource includes a time-frequency resource that only carries the first information block and a time-frequency resource that carries the demodulation reference signal. It should be understood that the first time-frequency resource may also include other information. Frequency resources, this application is not limited.
  • control information may also indicate to the terminal device a Modulation and Coding Scheme (MCS) used for the current transmission of the first information block, a transmission mode, and the like.
  • the transmission mode may include the number of layers used for transmission, which precoding matrix to use for transmission, which lobe to use for transmission, and the like.
  • the control information may indicate the MCS, the transmission mode, and the like in an explicit manner, for example, including corresponding fields in the control information to indicate corresponding information.
  • the control information may also indicate the transmission parameters in an implicit manner.
  • the format of the control information is not limited in this application.
  • the control information indicates to the terminal device an index of the MCS candidate scheme used by the network device to schedule the terminal device to transmit, which is hereinafter referred to as the MCS index used for scheduling.
  • the terminal device may determine the first information block size according to the network device indication, for example, determining the first information block according to the MCS serial number in the control information and the size of the third time-frequency resource and a predefined table of the communication standard specification. size.
  • the terminal device may determine the size of the first information block according to the high layer signaling sent by the network device, which is not limited in this application.
  • Step 402 The terminal device determines the second time-frequency resource according to the control information.
  • the second time-frequency resource is an assumed allocation resource for obtaining channel state information.
  • the assumed allocation resource is a resource corresponding to channel state information when determining a target modulation and coding scheme.
  • the network device may allocate at least a portion of the assumed allocated resources to the terminal device for data transmission, or may not allocate the assumed allocated resources to the terminal device for data transmission.
  • a concept of a hypothetical transmission information block which is assumed to be transmitted on the second time-frequency resource using the target modulation and coding scheme, is determined when determining the channel state information.
  • An information block is determined when determining the channel state information.
  • the target modulation coding scheme can be determined from at least one modulation coding scheme that satisfies the target error probability, further step by step 403.
  • the second time-frequency resource is fixed, and the size of the second time-frequency resource is fixed, and/or the location of the second time-frequency resource is fixed. In other words, the size and/or position of the second time-frequency resource does not change during the process of determining the target modulation and coding scheme.
  • the candidate modulation and coding scheme may be a modulation and coding scheme for data transmission defined in a communication standard specification, or may be a modulation and coding scheme for determining channel state information or channel quality indication in a communication standard specification.
  • the error probability may be a block error rate or a bit error rate.
  • the target error probability may be indicated by the network device to the terminal device, for example by higher layer signaling, or may be predefined by a communication standard specification.
  • the terminal device can determine a target modulation and coding scheme based on the second time-frequency resource size and the channel quality of the second time-frequency resource, where the target modulation and coding scheme is the at least one target error probability modulation coding scheme The highest modulation coding scheme or the most efficient modulation coding scheme, the at least one modulation coding scheme satisfies the condition that each of the at least one modulation coding scheme has a reception error probability corresponding to the target error probability.
  • the receiving error probability corresponding to the modulation and coding scheme refers to a receiving error of the one information block determined according to the channel quality of the second time-frequency resource by using the modulation and coding scheme to transmit an information block on the second time-frequency resource. Probability.
  • the efficiency of the above modulation and coding scheme refers to the product of the modulation order of the modulation and coding scheme and the coding rate.
  • the channel quality of the second time-frequency resource may be represented by a channel measurement result and a noise measurement result corresponding to the second time-frequency resource.
  • the target error probability may be a target block error rate (BLER) of the service corresponding to the first information block.
  • BLER target block error rate
  • the target block error rate may be indicated by the network device to the terminal device, for example, through high layer signaling, or through physical layer control information, or predefined by the communication standard specification, which is not limited in this application.
  • the terminal device can determine a target modulation and coding scheme based on the size of the second time-frequency resource and the channel quality, wherein the target modulation and coding scheme is a modulation code with the largest sequence number among at least one (for example, M) modulation and coding schemes.
  • the M modulation and coding schemes satisfy the condition that the error probability of receiving the jth information block corresponding to the second time-frequency resource by the j-th modulation coding scheme is not greater than the target error probability
  • 1 ⁇ j ⁇ M, j and M are positive integers; wherein the jth modulation coding scheme corresponds to the jth information block, and at least two information blocks of the M information blocks have different sizes.
  • the jth information block corresponding to the jth modulation and coding scheme is a reference information block corresponding to the modulation and coding scheme.
  • the reference information block corresponding to the target modulation and coding scheme is the above assumed transmission information block.
  • the second time-frequency resource is a reference resource corresponding to the M modulation schemes.
  • at least two corresponding reference resources of the M modulation and coding schemes are the same, and all are second time-frequency resources.
  • the terminal device may be based on the size of the first information block. Determining the size of the assumed transmission information block, by traversing the candidate modulation and coding scheme, the terminal device can determine the target modulation and coding scheme from the modulation and coding scheme that satisfies the target error probability, at which time it is determined that both the transmission information block size and the target modulation and coding scheme are determined. Therefore, the second time-frequency resource size is also determined. Further, in step 403, channel state information of the second time-frequency resource is obtained according to the target modulation and coding scheme.
  • the second time-frequency resource is a hypothetical allocated time-frequency resource of the target modulation and coding scheme.
  • the transmission information block size is fixed, by traversing the candidate modulation and coding scheme, a plurality of candidate time-frequency resources are obtained, each of the modulation and coding schemes corresponding to one reference time-frequency resource, and at least one modulation that satisfies the target error probability.
  • the target modulation coding scheme is determined in the coding scheme, and the reference resource corresponding to the target modulation and coding scheme is the second time-frequency resource.
  • the transport information block may be determined according to the following manner: the transmission information block size is assumed to be equal to the size of the first information block; or the network device indicates the assumed transmission information block size, for example, through higher layer signaling or physical layer control information. Or, the communication standard specification predefines the assumed information block size.
  • the terminal device is capable of determining a target modulation and coding scheme based on a size of the assumed transmission information block and a channel quality of the second time-frequency resource, the target modulation and coding scheme being a modulation coding scheme having the largest sequence number among the at least one modulation and coding scheme Or the most efficient modulation and coding scheme, the at least one modulation and coding scheme satisfies the condition that each of the at least one modulation and coding scheme corresponds to a reception error probability that is not greater than a target error probability.
  • the target error probability is a target error probability (BLER) of the service corresponding to the first information block. It should be understood that the above-mentioned target error probability may be indicated by the network device to the terminal device, for example, through high-level signaling, or predefined by the communication standard specification, which is not limited in this application.
  • BLER target error probability
  • the terminal device is capable of determining a target modulation coding scheme based on a hypothetical transmission information block, wherein the target modulation coding scheme is a modulation coding scheme with the highest sequence number among the plurality (eg, M) of modulation coding schemes or the most efficient modulation scheme.
  • the target modulation coding scheme is a modulation coding scheme with the highest sequence number among the plurality (eg, M) of modulation coding schemes or the most efficient modulation scheme.
  • the M modulation and coding schemes satisfy the condition that the error probability of the corresponding assumed transmission information block corresponding to the jth time-frequency resource in the j-th modulation coding scheme is not greater than the target error probability, where 1 ⁇ j ⁇ M, j and M are positive integers; wherein the jth modulation and coding scheme corresponds to the jth time-frequency resource, and at least two of the M time-frequency resources have different sizes.
  • the jth time-frequency resource corresponding to the jth modulation and coding scheme is a reference time-frequency resource corresponding to the modulation and coding scheme.
  • the reference time-frequency resource corresponding to the target modulation and coding scheme allocates a time-frequency resource, that is, a second time-frequency resource, to the above assumption.
  • the transport information block is a reference information block corresponding to M modulation schemes.
  • the transport information block is a reference information block corresponding to M modulation schemes.
  • at least two corresponding reference information blocks of the M modulation and coding schemes are the same, and all are assumed to transmit information blocks.
  • the terminal device may determine the size of the assumed transmission information block by using the first information block size indicated by the control information, and determine the target modulation and coding scheme according to the size of the assumed transmission information block, and further determine the first according to the target modulation and coding scheme. Two time-frequency resources.
  • the terminal device can determine the second time-frequency resource according to the control information.
  • the relationship between the second time-frequency resource and the first time-frequency resource is as follows.
  • the second time-frequency resource is the same as the first time-frequency resource, that is, the first time-frequency resource is identical to the time-domain resource of the second time-frequency resource, and the frequency-domain resource is also identical.
  • the first time-frequency resource may be indicated by the control information to the terminal device, and further, the terminal device determines the second time-frequency resource according to the first control information.
  • the terminal device may determine the first time-frequency resource according to other methods, where the control information indicates that the terminal device determines the second time-frequency resource according to the first time-frequency resource. Or the terminal device determines the second time-frequency resource according to the first control information.
  • Figure 7 shows a schematic diagram of a method of one embodiment of the present application. As shown in FIG. 7, the first time-frequency resource and the second time-frequency resource are the same.
  • the channel state information obtained according to the second time-frequency resource can more accurately reflect the service corresponding to the first information block.
  • Channel status information when the time-frequency resource occupied by the first information block is in the first time-frequency resource, the channel state information obtained according to the second time-frequency resource can more accurately reflect the service corresponding to the first information block.
  • the time domain resource occupied by the first time-frequency resource includes the time domain resource occupied by the second time-frequency resource, and the frequency-domain resource occupied by the second time-frequency resource and the first time-frequency resource
  • the frequency domain resources are the same.
  • the terminal device before the acquiring, by the terminal device, the channel state information of the second time-frequency resource, the terminal device further includes: determining, by the terminal device, the location according to the first time-frequency resource. Determining a time domain start location or a time domain end location of the second time-frequency resource; and the terminal device determining the second time-frequency resource according to the assumed transmission information block size.
  • the first time-frequency resource may be indicated by the control information to the terminal device, and further, the terminal device determines the second time-frequency resource according to the first control information.
  • Figure 8 shows a schematic diagram of one embodiment of the present application.
  • the frequency domain occupied by the first time-frequency resource and the frequency domain occupied by the second time-frequency resource are the same, and the first time-frequency resource includes the second time-frequency resource, and more specifically, the second The start position of the time domain resource occupied by the time-frequency resource coincides with the start time of the time domain occupied by the first time-frequency resource.
  • the terminal device can determine the channel state information of the second time-frequency resource, and report the channel state information of the second time-frequency resource to the network device, and therefore, compare and measure the channel state of the first time-frequency resource. After the information, the channel state information of the first time-frequency resource is reported to the network device.
  • the method in the embodiment of the present application enables the network device to obtain accurate channel information as soon as possible, and even adjust the transmission strategy of the service data to ensure reliable service transmission.
  • the transmission policy includes determining a modulation and coding scheme used by the service data transmission, a transmission mode, or a location and a size of the transmission resource, which is not limited in this application.
  • the frequency domain start position or the frequency domain end position of the second time-frequency resource is determined according to the first time-frequency resource, and the second time-frequency can be further determined according to the size of the assumed transmission information block and the corresponding target modulation and coding scheme. The location and size of the resource.
  • first time-frequency resource and the time domain start location or the time domain end location of the second time-frequency resource may be a protocol agreement or a network pre-configuration.
  • the time domain resources occupied by the first time-frequency resource and the second time-frequency resource are the same, and the frequency domain resource occupied by the first time-frequency resource has a corresponding frequency domain resource occupied by the second time-frequency resource. relationship.
  • the method further includes: determining, by the terminal device, the channel state information of the second time-frequency resource, the method further includes: determining, by the terminal device, the first time-frequency resource according to the first time-frequency resource. a frequency domain start position or a frequency domain end position of the second time-frequency resource; and the terminal device determines the second time-frequency resource according to the assumed transmission information block size.
  • the size of the transport information block may be the same as the size of the first information block, and therefore, when the time domain resources occupied by the first time-frequency resource and the second time-frequency resource are the same, When determining the frequency domain start position or the frequency domain end position of the second time-frequency resource according to the first time-frequency resource, the location and size of the second time-frequency resource may be determined according to the size of the assumed transmission information block.
  • Figure 9 shows a schematic diagram of a method of an embodiment of the present application.
  • the time domain resource occupied by the second time-frequency resource is the same as the time domain resource of the first time-frequency resource, and the assumed transmission information block size and the first information block size carried on the second time-frequency resource are assumed. If the sequence number of the modulation and coding scheme corresponding to the first information block is smaller than the number of the modulation and coding scheme corresponding to the first information block, then the frequency domain resource occupied by the second time-frequency resource is smaller than the frequency of the first time-frequency resource. The domain resources are large.
  • the modulation and coding scheme corresponding to the first information block indicates that the control information indicates a modulation and coding scheme for transmitting the first information block.
  • Figure 10 shows a schematic diagram of the method of an embodiment of the present application.
  • the time domain resource occupied by the second time-frequency resource is the same as the time domain resource of the first time-frequency resource, and the assumed transmission information block size and the first information block size carried on the second time-frequency resource are assumed. If the sequence number of the modulation and coding scheme corresponding to the first information block is larger than the number of the modulation and coding scheme corresponding to the first information block, then the frequency domain resource occupied by the second time-frequency resource is smaller than the frequency of the first time-frequency resource. The domain resources are large.
  • the correspondence between the first time-frequency resource and the frequency domain start location or the frequency domain end location of the second time-frequency resource may be a protocol agreement or a network pre-configuration.
  • the reference resources in the channel state information measurement process in the prior art do not correspond to any transmission when the channel state information is determined, that is, the terminal device does not determine what the corresponding channel will carry in the process of implementing the channel state measurement.
  • the second time-frequency resource is related to the first time-frequency resource
  • the first time-frequency resource includes a time-frequency resource that carries the first information block
  • the terminal device can perform channel measurement according to the application.
  • the size of the first information block is determined, and the terminal device may have received a certain transmission of the first information block.
  • the second time-frequency resource is determined according to the first time-frequency resource.
  • the first time-frequency resource may be a true subset of the second time-frequency resource, and the time-frequency resource occupied by the second time-frequency resource includes a time-frequency resource occupied by the second time-frequency resource, and/ Or the frequency domain resource occupied by the second time-frequency resource includes a frequency domain resource occupied by the second time-frequency resource.
  • Figure 11 shows a schematic diagram of a method of one embodiment of the present application.
  • the time domain resource occupied by the first time-frequency resource is the same as the time domain resource occupied by the second time-frequency resource
  • the full bandwidth resource of the first time-frequency resource includes the sub-band 1, the sub-band 2, and the sub-band.
  • the terminal device measures the channel state of the full-bandwidth frequency domain resource by traversing all the sub-bands of the first time-frequency resource.
  • the frequency domain start position of the second time-frequency resource is the same as the frequency domain start position of the sub-band 2, and the position and size of the second time-frequency resource can be determined according to the assumed transmission block size.
  • Figure 12 shows a schematic diagram of a method of one embodiment of the present application.
  • the time-frequency resource occupied by the first time-frequency resource occupied by the first time-frequency resource is the same as the time-domain resource occupied by the second time-frequency resource, and the full-bandwidth resource of the first time-frequency resource includes the child.
  • Band 1, subband 2, subband 3, and subband 4 the frequency domain start position of the second time-frequency resource may traverse the frequency domain start position of subband 1, subband 2, subband 3, and subband 4, according to the assumption By transmitting the information block size, the location and size of the second time-frequency resource can be determined.
  • the terminal device may measure channel state information corresponding to different frequency domain resources on the full bandwidth by traversing the subbands on the bandwidth. Furthermore, the network device can select a frequency domain resource with better channel quality for the subsequent transmission in the full bandwidth, for example, a subsequent transmission of the first information block or a subsequent transmission of other information blocks.
  • Figure 13 shows a schematic diagram of one embodiment of the present application.
  • the first time-frequency resource is a full-bandwidth resource
  • the time-frequency resource occupied by the first time-frequency resource includes a time-domain resource occupied by the second time-frequency resource, and four of the time-frequency resources correspond to the first time-frequency resource.
  • the frequency domain start position, the frequency domain start position of the second time-frequency resource may traverse the sub-band starting from the start position of each frequency domain, and according to the assumed transmission information block size, the location of the second time-frequency resource may be determined. size.
  • the starting position of the second time-frequency resource may be a frequency with a larger frequency in the sub-band frequency domain position, or may be a frequency in the sub-band frequency domain position. Smaller edges.
  • the location of the second time-frequency resource may be determined by determining a starting location of the second time-frequency resource, where The end position of the second time-frequency resource is determined to determine the location of the second time-frequency resource.
  • Step 403 The terminal device acquires channel state information of the second time-frequency resource.
  • the foregoing channel state information may be an energy of an interference signal, a channel quality indicator, an index of a network device scheduling data transmission using an MCS, a CQI index, a difference of a CQI index, a difference of an index of a network device scheduling data transmission using an MCS, At least one of a size or bandwidth of a frequency domain resource, a precoding matrix indication, a rank indication, or a transmission repetition number.
  • step 402 when determining the second time-frequency resource, since the target modulation and coding scheme has been determined, further, any one of the following can be obtained by the target modulation and coding scheme: channel quality indication, network device scheduling data transmission using MCS Index, CQI index, CQI index difference, network device scheduling data transmission using MCS index difference, a frequency domain resource size or bandwidth.
  • the target modulation and coding scheme specifically, for example, the channel state information may be a Channel Quality Indicator (CQI).
  • the terminal device may determine, according to the interference measurement result and the channel measurement result corresponding to the second time-frequency resource, the target modulation coding scheme, the target modulation and coding scheme, the target modulation and coding scheme, the target modulation and coding scheme, the target modulation and coding scheme, and the target modulation and coding scheme.
  • the index is determined as the CQI corresponding to the second time-frequency resource, that is, the channel state information.
  • the above one modulation coding scheme is a scheme including a modulation scheme and an encoding scheme.
  • the foregoing coding scheme may be a modulation code pre-defined by a communication protocol specification and a coding rate, and the foregoing The modulation coding scheme corresponds to an efficiency value equal to the order of its corresponding modulation mode multiplied by its corresponding coding rate. Therefore, the index of the MCS may be an index of the network device scheduling data transmission using the MCS, or an index of the MCS candidate scheme (hereinafter referred to as the MCS used for CQI reporting) included in the terminal device reporting the channel state information, that is, the CQI index.
  • the channel state information may be a difference of a CQI index, which may be simply referred to as a Delta CQI.
  • the terminal device determines, according to the CQI index determined by the current channel state, a difference between the CQI index determined by the terminal device according to the channel state of the previous data transmission, and the channel state information corresponding to the second time-frequency resource.
  • the previous channel state information report may be reported in the previous period that is closest to the current channel state information reporting time, or the previous aperiodic report in which the time is closest.
  • the aperiodic report may be triggered by the network device, or may be reported by the terminal device.
  • the channel state information may be a difference of an MCS index, which may be simply referred to as a Delta MCS.
  • the terminal device may determine, according to the interference measurement result and the channel measurement result corresponding to the second time-frequency resource, the target modulation and coding scheme target modulation and coding scheme by using the method of step 402, and then index the target modulation and coding scheme index and the MCS indicated by the control information.
  • the difference of the index is determined as the channel state information corresponding to the second time-frequency resource.
  • the channel state information may be the size or bandwidth of a frequency domain resource.
  • the terminal device may determine the target modulation and coding scheme according to the method in step 402 according to the interference measurement result and the channel measurement result corresponding to the second time-frequency resource, and then use the second time-frequency resource.
  • the bandwidth information is used as the channel state information corresponding to the second time-frequency resource, where the bandwidth is the size of the frequency domain range occupied by the time-frequency resource (for example, the number of resource blocks or the number of resource block groups).
  • the terminal device determines the bandwidth of the time-frequency resource, it is assumed that the time-domain size occupied by the time-frequency resource is the same as the time-domain size occupied by the first time-frequency resource, or the time occupied by the time-frequency resource
  • the domain size is pre-agreed by the communication standard specification.
  • the channel state information can be the energy of the interfering signal.
  • the terminal device may determine an absolute value (for example, a power value) of the interference energy according to the interference measurement result corresponding to the second time-frequency resource, and determine the absolute value of the interference energy as the channel state information corresponding to the second time-frequency resource; the terminal device may also The interference energy is determined according to the interference measurement result, and the received signal energy is determined according to the channel measurement result, and the relative value of the interference energy relative to the received signal energy (for example, the dB value) is used as the channel state information.
  • an absolute value for example, a power value
  • the second time-frequency resource corresponds to a target modulation and coding scheme
  • the target modulation and coding scheme is one of at least one modulation and coding scheme
  • a modulation and coding scheme used by a hypothetical transmission information block carried on a second time-frequency resource is a target modulation and coding scheme
  • a transmission information block size is assumed to be fixed, a second modification occurs with a modulation coding scheme.
  • the time-frequency resource size will also change accordingly.
  • the terminal device measures the channel state information of the second time-frequency resource according to the DMRS in the second time-frequency resource, and when the second time-frequency resource further includes the CSIRS and/or the ZP-CSIRS, Or two or more measurement reference information numbers determine channel state information of the second time-frequency resource.
  • the terminal device acquires channel state information of the second time-frequency resource, including: the terminal device measures a channel and interference of the second time-frequency resource, based on the channel measurement result and the interference measurement As a result, channel state information is obtained.
  • the terminal device measures a channel corresponding to the second time-frequency resource, and acquires channel state information based on the channel measurement result; or, the terminal device measures interference corresponding to the second time-frequency resource, and acquires channel state information based on the interference measurement result; or The terminal device measures channel and interference corresponding to the second time-frequency resource, and acquires channel state information based on the channel measurement result and the interference measurement result.
  • the terminal device may implement channel measurement or interference measurement corresponding to the second time-frequency resource according to the DMRS, or the terminal device may implement channel measurement or interference measurement corresponding to the second time-frequency resource according to the CSIRS, or the terminal device may The ZP-CSIRS implements interference measurements corresponding to the second time-frequency resource.
  • the terminal device determines a signal to interference and noise ratio SINR of the second time-frequency resource according to the channel measurement result and the interference measurement result, and acquires channel state information based on the SINR.
  • the manner of acquiring the channel state information of the second time-frequency resource may be the manner described in the foregoing embodiment, that is, the size of the determined assumed transmission information block, Determining, by the method in step 402, the modulation coding scheme that satisfies the target error probability according to the obtained SINR of the second time-frequency resource, determining the target modulation and coding scheme from the modulation and coding scheme that satisfies the target error probability, and determining by the target modulation and coding scheme.
  • Channel state information of the second time-frequency resource may be the manner described in the foregoing embodiment, that is, the size of the determined assumed transmission information block.
  • the channel state information may be obtained according to the lookup table.
  • the terminal device may prestore a relationship table between the SINR and the efficiency.
  • the corresponding efficiency is queried according to the SINR, and then the corresponding coded modulation scheme is queried according to the efficiency value of the coded modulation scheme, and the CQI index or the MCS index corresponding to the SINR is further queried.
  • the CQI index or the MCS index is used as channel state information.
  • the above table lookup may be to query a table.
  • the above table lookup may be to query at least two tables, each table corresponding to a transmission information block size.
  • Table 1 shows the relationship between the SINR and channel state information of the present application. It should be understood that Table 1 is merely exemplary and is not limited herein.
  • the terminal device acquires channel state information of the second time-frequency resource, where the terminal device determines the channel of the second time-frequency resource according to the transmission mode of the first information block. State information; and/or the terminal device determines channel state information of the second time-frequency resource according to a proportion of resources in the first time-frequency resource for carrying control information and a reference resource; and/or the terminal device Determining channel state information of the second time-frequency resource according to a coded redundancy version used by the first information block.
  • the transmission mode of the first information block sent by the network device to the terminal device refers to a transmission mode of the first information block, including: the number of transmission layers, the number of antennas, the number of reference resource ports, and the multiple input multiple (Multiple Input Multiple) Output, MIMO), etc.
  • the terminal device acquires channel state information of the second time-frequency resource, it is assumed that the transmission mode of the assumed transmission information block carried on the second time-frequency resource is the same as the transmission mode of the first information block.
  • the proportion of the resources used to carry the control information and the reference resource in the first time-frequency resource determines channel state information of the second time-frequency resource.
  • the terminal device acquires the channel state information of the second time-frequency resource
  • the ratio of the overhead of the control information and the reference resource carried on the second time-frequency resource and the control information and reference carried on the first time-frequency resource are assumed.
  • the overhead ratio of resources is the same.
  • the terminal device when determining, by the terminal device, channel state information of the second time-frequency resource according to the coded redundancy version used by the first information block, it is assumed that the assumed redundancy information block carried on the second time-frequency resource uses the same code redundancy version.
  • the terminal device when the terminal device acquires channel state information of the second time-frequency resource, it is assumed that the second time-frequency resource carries a transmission mode and a redundancy used when transmitting the information block when the information block is assumed to be transmitted.
  • the version and the proportion of resources on the second time-frequency resource for carrying control information and reference signals are predefined by the communication standard specification.
  • Step 404 The terminal device sends channel state information of the second time-frequency resource to the network device.
  • the terminal device may be in a predefined time domain unit or a time domain unit specified by the network device (for example, the nth time domain) Transmitting, by the unit, the measured channel state information to the network device, where the nk time domain unit is the nkth downlink time domain unit when the network device and the terminal device work in the FDD system,
  • the nth time domain unit is the nth uplink time domain unit.
  • the nk time domain unit can be used to carry a downlink signal
  • the nth The time domain unit can be used to carry the uplink signal
  • n is an integer
  • k is a natural number
  • the network device adjusts the MCS used for retransmission of the first information block according to the channel state information fed back by the terminal device, which is beneficial to improving the reliability of the service transmission and satisfying the service. Low latency requirements.
  • FIG. 14 is a schematic block diagram of a terminal device 1400 according to an embodiment of the present application.
  • Each module in the terminal device 1400 is used to perform each action or process performed by the terminal device in the foregoing method.
  • the description can be referred to the description above.
  • the terminal device may include: a communication module and a processing module, where the communication module is configured to receive control information, where the control information is used to indicate a first time-frequency resource, wherein the terminal device is in the first time-frequency Receiving the first information block within the resource;
  • the processing module is configured to determine the second time-frequency resource according to the control information, where the second time-frequency resource is the same as the first time-frequency resource, or the second time-frequency resource is based on Determining, by the first time-frequency resource, the second time-frequency resource is determined according to the time domain resource corresponding to the first time-frequency resource, or the second time-frequency resource is according to the The frequency domain resource corresponding to the one-time frequency resource is determined;
  • the processing module is configured to acquire channel state information of the second time-frequency resource
  • the communication module is configured to send the channel state information.
  • the processing module is configured to: determine channel state information of the second time-frequency resource according to a transmission mode of the first information block; and/or according to the first time Determining, in a frequency resource, a resource ratio for carrying control information and a reference signal, determining channel state information of the second time-frequency resource; and/or determining the second time-frequency according to a coded redundancy version used by the first information block Channel state information for the resource.
  • the processing module is further configured to: determine, according to the first time-frequency resource, a frequency domain start location or a frequency domain end location of the second time-frequency resource;
  • the information block size determines the second time-frequency resource.
  • the processing module is further configured to: determine a time domain start location or a time domain end location of the second time-frequency resource according to the first time-frequency resource;
  • the information block size determines the second time-frequency resource.
  • the processing module is further configured to: determine, by the terminal device, a target modulation and coding scheme based on the reference information block, where the target modulation and coding scheme is in the at least one modulation and coding scheme.
  • the highest modulation coding scheme or the most efficient modulation coding scheme, the at least one modulation coding scheme satisfies the condition that each of the at least one modulation coding scheme has a reception error probability corresponding to the target error probability.
  • the second time-frequency resource corresponds to a target modulation and coding scheme
  • the target modulation and coding scheme is one of at least one modulation and coding scheme
  • the processing unit is specifically configured to: measure channel and/or interference of the second time-frequency resource, and acquire channel state information based on the channel measurement result and/or the interference measurement result.
  • processing module in this embodiment may be implemented by 301 in FIG. 3, and the communication module in this embodiment may be implemented by the receiver 302 and the transmitter 303 in FIG.
  • FIG. 15 is a schematic block diagram of a network device 1500 according to an embodiment of the present application.
  • Each module in the network device 1500 is used to perform each action or process performed by the terminal device in the foregoing method.
  • the description can be referred to the description above.
  • the terminal device may include: a communication module and a processing module, where the communication module is configured to send control information to the terminal device, where the control information is used to indicate a first time-frequency resource, where the terminal device is in the The first information block is received by the first time-frequency resource, where the second time-frequency resource is the same as the first time-frequency resource, or The second time-frequency resource is determined according to the first time-frequency resource, or the second time-frequency resource is determined according to the time domain resource corresponding to the first time-frequency resource, or The second time-frequency resource is determined according to the frequency domain resource corresponding to the first time-frequency resource;
  • the communication module is further configured to receive channel state information of the second time-frequency resource
  • the communication module is further configured to receive the channel state information sent by the terminal device.
  • the channel state information of the second time-frequency resource is determined by the terminal device according to a transmission mode of the first information block; and/or the second time-frequency resource
  • the channel state information is determined by the terminal device according to a proportion of resources in the first time-frequency resource for carrying control information and a reference resource; and/or channel state information of the second time-frequency resource is determined by the terminal device according to the terminal device
  • the coded redundancy version used by the first information block is determined.
  • the second time-frequency resource is used by the terminal device to determine a frequency domain start position or a frequency domain end position of the second time-frequency resource according to the first time-frequency resource. And determined by the terminal device according to the reference information block size.
  • the second time-frequency resource is used by the terminal device to determine a time domain start location or a time domain end location of the second time-frequency resource according to the first time-frequency resource. And determined by the terminal device according to the reference information block size.
  • the target modulation and coding scheme is determined by the reference information block, where the target modulation and coding scheme is the highest-modulation modulation and coding scheme or the most efficient of the at least one modulation and coding scheme.
  • a modulation coding scheme the at least one modulation coding scheme satisfying a condition that a reception error probability corresponding to each of the at least one modulation coding scheme is not greater than a target error probability.
  • the second time-frequency resource corresponds to a target modulation and coding scheme
  • the target modulation and coding scheme is one of at least one modulation and coding scheme
  • processing module in this embodiment may be implemented by 201 in FIG. 2, and the communication module in this embodiment may be implemented by the receiver 202 and the transmitter 203 in FIG. 2.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请提供了一种信道状态信息发送的方法,包括:终端设备接收控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块;终端设备根据所述控制信息确定所述第二时频资源,其中,第二时频资源与所述第一时频资源相同,或,第二时频资源是根据所述第一时频资源确定的,或,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;所终端设备获取第二时频资源的信道状态信息;以及所述终端设备发送所述信道状态信息。因此,本申请实施例发送信道状态信息的方法,能够较准确的反映业务数据对应的信道状态信息。

Description

信息发送的方法及其装置和信息接收的方法及其装置
本申请要求于2017年05月05日提交中国专利局、申请号为201710314055.3、发明名称为“信息发送的方法及其装置和信息接收的方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道状态信息发送的方法及其装置和信道状态信息接收的方法及其装置。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。5G移动通信系统需要支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。
典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程手术等触觉交互类应用,这些业务的主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性、随机性,URLLC业务数据包通常较小,所占的时频资源也较小。
随着随机突发的短时延高可靠URLLC业务的增加,在未来无线通信中小区间干扰变化将更为动态和明显。现有确定信道状态信息的方法往往是根据业务数据所在的全带宽时频资源确定的,并且,现有技术中信道状态信息的确定往往是周期性,周期远大于URLLC业务的传输时延要求,因此现有确定信道状态信息的方法不能够准确反映业务数据包较小时对应的信道状态。
发明内容
本申请提供一种信息发送的方法及其装置和信息接收的方法及其装置,能够提高反映业务数据对应的信道状态信息的准确性。
第一方面,提供了一种信道状态信息发送的方法,包括:终端设备接收控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块;所述终端设备根据所述控制信息确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;所述终端设备获取第二 时频资源的信道状态信息;以及所述终端设备发送所述信道状态信息。
应理解,当第一信息块所承载的业务为URLLC业务时,本申请实施例提供的方法通过对URLLC业务所占的时频资源进行信道估计,能够获得更加准确的信道状态信息,从而有利于向网络设备上报此次URLLC业务传输对应的信道状态信息,进而有利于满足URLLC业务低时延和高可靠的传输要求。
结合第一方面,在第一方面的第一种可能的实现方式中,所述终端设备获取第二时频资源的信道状态信息,包括:所述终端设备根据所述第一信息块的传输模式确定所述第二时频资源的信道状态信息;和/或所述终端设备根据所述第一时频资源中用于承载控制信息和参考信号的资源比例确定所述第二时频资源的信道状态信息;和/或所述终端设备根据所述第一信息块使用的编码冗余版本确定所述第二时频资源的信道状态信息。
也就是说,当终端设备获取第二时频资源的信道状态信息时,假设在第二时频资源上承载的假定传输信息块的传输模式与第一信息块的传输模式相同;或者,当终端设备获取第二时频资源的信道状态信息时,假设在第二时频资源上承载的控制信息和参考资源的开销比例与第一时频资源上承载的控制信息和参考资源的开销比例相同;或者,可选地,终端设备获取第二时频资源的信道状态信息时,假设第二时频资源承载假定传输信息块时传输该信息块时采用的传输模式、冗余版本以及对应第二时频资源上的用于承载控制信息和参考信号的资源比例等由通信标准规范预先定义。
结合第一方面及其上述实现方式,在第一方面的第二种可能的实现方式中,所述终端设备获取第二时频资源的信道状态信息之前,还包括:所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及所述终端设备根据参考信息块大小确定所述第二时频资源。
结合第一方面及其上述实现方式,在第一方面的第三种可能的实现方式中,所述终端设备获取第二时频资源的信道状态信息之前,所述方法还包括:所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及所述终端设备根据参考信息块大小确定所述第二时频资源。
与现有技术不同,现有技术在确定信道状态信息时信道状态信息测量过程中的参考资源并未对应任何传输,即终端设备在实施信道状态测量的过程中不确定对应的信道将承载什么样的信息块,而本申请实施例中,第二时频资源与第一时频资源相关,第一时频资源包括承载第一信息块的时频资源,终端设备根据本申请实施的信道测量可以与第一信息块的传输相关。以及,第一信息块的大小是确定的,终端设备可能已经接收到第一信息块的某次传输。因此,本申请实施例提供的方法通过对URLLC业务所占的时频资源进行信道估计,能够获得更加准确的信道状态信息,从而有利于向网络设备上报此次URLLC业务传输对应的信道状态信息,进而有利于满足URLLC业务低时延和高可靠的传输要求。
结合第一方面及其上述实现方式,在第一方面的第四种可能的实现方式中,所述方法还包括:所述终端设备基于所述参考信息块确定目标调制编码方案,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
结合第一方面及其上述实现方式,在第一方面的第五种可能的实现方式中,所述方 法还包括:所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
结合第一方面及其上述实现方式,在第一方面的第六种可能的实现方式中,所述终端设备获取第二时频资源的信道状态信息,包括:终端设备测量第二时频资源的信道和/或干扰,基于所述信道测量结果和/或干扰测量结果获取信道状态信息。
第二方面,提供一种信道状态信息接收的方法,包括:网络设备向终端设备发送控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块,所述控制信息用于所述终端设备确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;所述网络设备接收第二时频资源的信道状态信息;所述网络设备接收所述终端设备发送的所述信道状态信息。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块的传输模式确定;和/或所述第二时频资源的信道状态信息由所述终端设备根据所述第一时频资源中用于承载控制信息和参考资源的资源比例确定;和/或所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块使用的编码冗余版本确定。
结合第二方面及其上述实现方式,在第二方面的第二种可能的实现方式中,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及由所述终端设备根据参考信息块大小确定。
结合第二方面及其上述实现方式,在第二方面的第三种可能的实现方式中,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及由所述终端设备根据参考信息块大小确定。
结合第二方面及其上述实现方式,在第二方面的第四种可能的实现方式中,所述目标调制编码方案由所述参考信息块确定,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
结合第二方面及其上述实现方式,在第二方面的第五种可能的实现方式中,所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
第三方面,提供了一种终端设备,用于上述终端设备的方法,具体地,该终端设备可以包括用于执行上述终端设备相应步骤的模块。如,处理模块,发送模块以及接收模块等。
第四方面,提供了一种网络设备,用于执行上述网络设备的方法,具体地,该网络设备可以包括用于执行上述网络设备相应步骤的模块。如,处理模块,发送模块以及接收模块等。
第五方面,提供了一种终端设备,包括存储器和处理器,该存储器用于存储计算机 程序,该处理器用于从存储器中调用并运行该计算机程序,使得终端设备执行上述的终端设备的方法。
第六方面,提供了一种网络设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得网络设备执行上述的网络设备的方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是应用于本申请实施例无线通信系统的示意图。
图2所示为图1示出的无线通信系统中,网络设备的结构示意图。
图3所示为图1示出的无线通信系统中,终端设备的结构示意图。
图4示出了本申请一个实施例的方法的交互图。
图5示出了本申请一个实施例的方法的示意图。
图6示出了本申请另一实施例的方法的示意图。
图7示出了本申请一个实施例的方法的示意图。
图8示出了本申请一个实施例的示意图。
图9示出了本申请实施例的方法的示意图。
图10示出了本申请实施例的方法的示意图。
图11示出了本申请一个实施例的方法的示意图。
图12示出了本申请一个实施例的方法的示意图。
图13示出了本申请一个实施例的方法的示意图。
图14示出了本申请实施例的终端设备的示意性框图。
图15示出了本申请实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)或下一代通信系统,如5G系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信。
本申请实施例结合发送设备和接收设备描述了各个实施例,其中,发送设备可以为网络设备和终端设备中的一方,接收设备可以为网络设备和终端设备中的另一方,例如,在本申请实施例中,发送设备可以为网络设备,接收设备可以为终端设备;或者,发送设备可以为终端设备,接收设备可以为网络设备。
终端设备也可以称为用户设备(user Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(wireless local area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代(fifth-generation,5G)通信网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
本申请实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,传输 信号的方法的执行主体的具体结构,本申请实施例并未特别限定,只要能够通过运行记录有本申请实施例的传输信号的方法的代码的程序,以根据本申请实施例的传输信号的方法进行通信即可,例如,本申请实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在当前的讨论中,一个共识是mini-slot的概念可以应用在高频系统中大带宽调度的场景下,即调度策略倾向于较小的时间颗粒度。但是,对于如何基于mini-slot进行数据调度还没有确定的方案。此外,如何基于mini-slot监听下行控制信道也没有确定的方案。
针对上述问题,本申请实施例提出了一种数据发送方法和一种数据接收方法以及相应的网络设备和终端设备。
图1是应用于本申请实施例无线通信系统的示意图。如图1所示,该无线通信系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统、全双工(full duplex)系统和灵活双工系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通 信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2所示为上述无线通信系统中,网络设备的结构示意图。该网络设备能够执行本申请实施例提供的数据发送方法。其中,该网络设备包括:处理器201、接收器202、发送器203、以及存储器204。其中,该处理器201可以与接收器202和发送器203通信连接。该存储器204可以用于存储该网络设备的程序代码和数据。因此,该存储器204可以是处理器201内部的存储单元,也可以是与处理器201独立的外部存储单元,还可以是包括处理器201内部的存储单元和与处理器201独立的外部存储单元的部件。
可选的,网络设备还可以包括总线205。其中,接收器202、发送器203、以及存储器204可以通过总线205与处理器201连接;总线205可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线205可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器201例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
接收器202和发送器203可以是包括上述天线和发射机链和接收机链的电路,二者可以是独立的电路,也可以是同一个电路。
图3为上述无线通信系统中,终端设备的结构示意图。该终端设备该网络设备能够执行本申请实施例提供的数据接收方法。该终端设备可以包括处理器301、接收器302、发送器303、以及存储器304。可选的,该处理器301可以与接收器302和发送器303通信连接。或者,该终端设备还可以包括总线305,该接收器302、发送器303、以及存储器304可以通过总线305与处理器301连接。总线305可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线305可以分为地址总线、数据总线、控制总线等。 为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
相应的,该存储器304可以用于存储该终端设备的程序代码和数据。因此,该存储器304可以是处理器301内部的存储单元,也可以是与处理器301独立的外部存储单元,还可以是包括处理器301内部的存储单元和与处理器301独立的外部存储单元的部件。接收器302和发送器303可以是独立的电路,也可以是同一个电路。
在现有技术中,对于URLLC业务来讲,由于URLLC业务的突发数据包具有一定的随机性。网络设备无法准确预测该类URLLC包需要在什么时间进行传输。同时,URLLC业务对时延和传输可靠性的要求都非常高。在一种情况下,由于信道会随着时间变化,普通的信道信息上报以5ms或者10ms左右为周期,这样无法满足URLLC高可靠性的要求。在另外一种情况下,如果先调度URLLC业务报告一次非周期信道状态信息再对它实施调度,很难满足超低时延的要求。或者说,如果先调度URLLC业务报告一次非周期信道状态信息,再对它实施调度,这样就会抢占可以用来传输数据的时间,增加了满足1ms传输时延内的目标可靠性的难度。进一步地,由于URLLC业务的突发特性,仅通过减小周期会造成明显的终端设备的功耗浪费。因此,现有信道信息报告的机制无法满足URLLC业务低时延和高可靠的传输要求。
本申请实施例提供的方法通过对URLLC业务所占的时频资源进行信道估计,能够获得更加准确的信道状态信息,从而有利于向网络设备上报此次URLLC业务传输对应的信道状态信息,进而有利于满足URLLC业务低时延和高可靠的传输要求。
在本申请实施例中,时频资源在频域上包括一个或多个频域单元,频域单元可以包括一个或多个资源块,还可以包括一个或多个资源块组。时频资源在时域上包括一个或多个时域单元,时域单元可以包括一个或多个时域符号,也可以包括一个或多个时隙(slot),还可以包括一个或多个迷你时隙(mini-slot),或者,包括一个或多个子帧(subframe)。上述频域单元包括多个频域单元时,该多个频域单元可以是连续的,也可是不连续的,本申请不做限定。上述时域单元包括多个时域单元时,该多个时域单元可以是连续的,也可是不连续的,本申请不做限定。其中,上述时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single-carrier frequency-division multiplexing,SC-FDM)符号。
在本申请实施例中,信息块可以为传输块(transport block,TB)、编码块(code block,CB)、编码块组(code block group,CBG),其中,CB包含一组信息比特,该组信息比特一起用于一次信道编码,或者说,该组信息比特被发送设备一起进行信道编码,对应一个信道编码后的比特块;CBG至少包括一个编码块,可以包括多个编码块;TB包括至少一个CB,也可以包括至少一个CBG,本申请不做限定。
图4是本申请一个实施例的方法的交互图。如图4所示,该方法包括如下步骤。需要说明的是,图4中的虚线表示相应的步骤为可选步骤。应理解,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者图4中的各种操作的变形。此外,图4中的各个步骤可以分别按照与图4所呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。还应理解,在本申请实施例中,“第一”、“第二”和“第三”仅为用于区分不同的对象,例如,区分不同的调制编码方案、不同的时频资源、不同的数据等,不应对 本申请构成任何限定。
步骤401,终端设备接收网络设备发送的控制信息,该控制信息用于指示第一时频资源,其中,所述终端设备在第一时频资源内接收第一信息块。
具体地,步骤401中的控制信息可以是物理层控制信息。该控制信息可以承载在第一下行控制信道中,其中,该控制信道可以为物理下行控制信道(physical downlink control channel,PDCCH)或其它用于承载物理层控制信息的下行信道,本申请不做限定。
应理解,所述第一时频资源包括第一信息块所占的时频资源,也就是说,第一时频资源与第一信息块所占的时频资源大小相同,或者,第一时频资源大于第一信息块所占的时频资源。
具体地,第一时频资源至少包括:
用于承载第一信息块的时频资源和用于承载解调参考信号的时频资源;或者,用于承载第一信息块的时频资源和用于承载控制信息的时频资源;或者,用于承载第一信息块的时频资源、用于承载解调参考信号的时频资源和用于承载控制信息的时频资源;
其中,所述解调参考信号(Demodulation Reference Signal,DMRS)至少包括第一信息块的解调参考信号;
除此以外,第一时频资源还可以包括用于承载其它信号的时频资源,例如测量参考信号的时频资源,例如可以包括也可以包括信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、零功率信道状态信息参考信号(Zero Power Channel State Information-Reference Signal,ZP-CSI-RS)。
应理解,第一时频资源的时域位置为第一信息块所在的时域单元(可以为一个或者多个)。频域位置为,第一信息块所在的频域资源块(可以一个或者多个)。
具体地,该控制信息可以通过显式方式指示第一时频资源在时频域的位置,例如,该控制信息中至少存在一个比特用于指示第一时频资源在时频域的位置;该控制信息也可以通过隐式方式指示第一时频资源在时域和/或频域的位置,例如,网络设备通过高层信令(例如无线资源控制(Radio Resource Control,RRC)或者媒体接入控制(Media Access Control,MAC)信令)预先配置第一时频资源的多个时域位置。终端设备可以进一步根据通信标准规范预定义的规则确定第一时频资源的位置,应理解,该控制信息不仅可以指示第一时频资源的位置,也可以指示该第一时频资源的大小。
控制信息还可以指示终端设备在所述第一时频资源上接收第一信息块,该第一时频资源包括用于承载第一信息块的第三时频资源,终端设备可以根据其它相关信息和/或通信协议规范预定义的规则在第一时频资源中确定第三时频资源,其中,该其它相关信息可以是第一时频资源中承载的参考信号的位置相关信息等。
进一步地,当该第一时频资源中还包括除第三时频资源以外的其它时频资源时,本申请不做限定。例如,所述其它时频资源可以是用于传输控制信道的时频资源。这种情况下,上述终端设备根据其它相关信息和/或通信协议规范预定义的规则在第一时频资源中确定第三时频资源时,所述其它相关信息还可以包括第一时频资源中承载的控制信道的位置信息等。
图5示出了本申请一个实施例的方法的示意图。如图5所示,第一时频资源包括承载控制信息的时频资源、承载解调参考信号的时频资源以及包括承载第一信息块的时频资 源,应理解,第一时频资源还可以包括其它信息所占的时频资源,本申请不做限定。
图6示出了本申请另一实施例的方法的示意图。如图6所示,第一时频资源包括仅仅承载第一信息块的时频资源和承载解调参考信号的时频资源,应理解,第一时频资源还可以包括其它信息所占的时频资源,本申请不做限定。
应理解,该控制信息还可以向终端设备指示第一信息块的当前传输所使用的调制编码方案(Modulation and Coding Scheme,MCS),传输模式等。所述传输模式可以包括传输使用的层数、传输使用哪个预编码矩阵、传输使用的哪个波瓣等。该控制信息可以使用显式(explicit)的方式指示MCS、传输模式等,例如,在控制信息中包括相应的字段指示相应的信息。控制信息也可以采用隐式(implicit)的方式指示传输参数,例如,通过控制信息的格式,本申请不做限定。具体地,所述该控制信息向终端设备指示网络设备用于调度终端设备传输的MCS候选方案的索引,以下简称调度使用的MCS索引。
在本申请实施例,终端设备可以根据网络设备指示确定第一信息块大小,例如根据控制信息中的MCS序号和第三时频资源的大小以及通信标准规范预定义的表格确定第一信息块的大小。终端设备还可以根据网络设备发送的高层信令确定第一信息块的大小,本申请不做限定。
步骤402,终端设备根据控制信息确定第二时频资源。
具体地,第二时频资源是用于获得信道状态信息的假定分配资源。所述假定分配资源是确定目标调制编码方案时与信道状态信息对应的资源。网络设备可以将所述假定分配资源的至少一部分分配给终端设备用于数据传输,也可以不分配所述假定分配资源给终端设备用于数据传输。
具体地,在确定第二时频资源的时候,可以引入假定传输信息块的概念,该假定传输信息块指的是确定信道状态信息时假设的采用目标调制编码方案在第二时频资源上发送的一个信息块。
在一种情况下,如果假设第二时频资源是固定的,那么通过遍历候选目标错误概率调制编码方案,能够从至少一个满足目标错误概率的调制编码方案中确定目标调制编码方案,进一步通过步骤403,根据该目标调制编码方案,获取第二时频资源的信道状态信息。其中,所述第二时频资源是固定包括第二时频资源的大小是固定,和/或,第二时频资源的位置是固定的。或者说,在一次确定目标调制编码方案的过程中,第二时频资源的大小和/或位置不发生变化。
应理解,在这种情况下,由于第二时频资源是固定的,因此,随着调制编码方案的变化,假定传输信息块大小也会随之发生变化。其中,所述候选调制编码方案可以是通信标准规范中定义的用于数据传输的调制编码方案,也可以是通信标准规范中用于确定信道状态信息或者信道质量指示的调制编码方案。所述错误概率可以是误块率也可以是误码率。所述目标错误概率可以由网络设备向终端设备指示,例如通过高层信令,也可以由通信标准规范预先定义。
因此,终端设备能够基于所述第二时频资源大小以及所述第二时频资源的信道质量确定目标调制编码方案,所述目标调制编码方案为所述至少一个满足目标错误概率调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概 率不大于目标错误概率。
具体地,所述调制编码方案对应的接收错误概率是指假设在第二时频资源上以该调制编码方案发送一个信息块根据第二时频资源的信道质量确定的该一个信息块的接收错误概率。
其中,上述调制编码方案的效率指的是调制编码方案的调制阶数与编码速率的乘积。
其中,第二时频资源的信道质量可以由第二时频资源对应的信道测量结果和噪声测量结果表征。
可选地,上述目标错误概率可以为第一信息块对应的业务的目标误块率(Block Error Rate,BLER)。应理解,该目标误块率可以由网络设备向终端设备指示,例如通过高层信令,或者,通过物理层控制信息,或者,由通信标准规范预先定义,本申请不做限定。
换种方式说,终端设备能够基于第二时频资源的大小以及信道质量确定目标调制编码方案,其中,所述目标调制编码方案为至少一个(例如M个)调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述M个调制编码方案满足如下条件:以第j个调制编码方案在第二时频资源上对应的接收第j个信息块的错误概率不大于目标错误概率,其中,1≤j≤M,j和M为正整数;其中,第j个调制编码方案与第j个信息块对应,M个信息块中至少两个信息块的大小不同。
具体地,与第j个调制编码方案对应的第j个信息块为该调制编码方案对应的参考信息块。与目标调制编码方案对应的参考信息块为上述假定传输信息块。
具体地,第二时频资源为M个调制方案对应的参考资源。或者说,M个调制编码方案中的至少二个对应的参考资源相同,均为第二时频资源。
在另外一种情况下,如果假设第二时频资源上承载的假定传输信息块大小固定,例如,假定传输信息块大小与第一信息块大小相同,即终端设备可以基于第一信息块的大小确定假定传输信息块的大小,那么通过遍历候选调制编码方案,终端设备能够从满足目标错误概率的调制编码方案中确定目标调制编码方案,此时由于假定传输信息块大小和目标调制编码方案都确定,所以第二时频资源大小也是确定的,进一步通过步骤403,根据该目标调制编码方案,获取第二时频资源的信道状态信息。这种情况下,第二时频资源是目标调制编码方案的假定分配时频资源。具体地,当假定传输信息块大小固定的时候,通过遍历候选调制编码方案,得到多个候选时频资源,每一种调制编码方案对应一个参考时频资源,从满足目标错误概率的至少一个调制编码方案中确定目标调制编码方案,目标调制编码方案对应的参考资源即第二时频资源。
在这种情况下,假定传输信息块可能根据下列方式确定:假定传输信息块大小等于第一信息块的大小;或者,网络设备指示假定传输信息块大小,例如通过高层信令或者物理层控制信息;或者,通信标准规范预定义假定传输信息块大小。
因此,终端设备能够基于所述假定传输信息块的大小和第二时频资源的信道质量确定目标调制编码方案,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
其中,目标错误概率为第一信息块对应的业务的目标错误概率(Block Error Rate, BLER)。应理解,上述目标错误概率可以由网络设备向终端设备指示,例如通过高层信令,或者由通信标准规范预先定义,本申请不做限定。
换种方式说,终端设备能够基于假定传输信息块确定目标调制编码方案,其中,所述目标调制编码方案为多个(例如M个)调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述M个调制编码方案满足如下条件:以第j个调制编码方案在第j个时频资源上对应的接收假定传输信息块的错误概率不大于目标错误概率,其中,1≤j≤M,j和M为正整数;其中,第j个调制编码方案与第j个时频资源对应,M个时频资源中至少两个时频资源大小不同。
具体地,与第j个调制编码方案对应的第j个时频资源为该调制编码方案对应的参考时频资源。与目标调制编码方案对应的参考时频资源为上述假定分配时频资源,即第二时频资源。
具体地,假定传输信息块为M个调制方案对应的参考信息块。或者说,M个调制编码方案中的至少二个对应的参考信息块相同,均为假定传输信息块。
在这种情况下,终端设备可以通过控制信息指示的第一信息块大小确定假定传输信息块的大小,又根据假定传输信息块的大小确定目标调制编码方案,进而至少根据目标调制编码方案确定第二时频资源。
进一步地,如何根据目标调制编码方案,获取第二时频资源的信道状态信息,将在步骤403中详细介绍。
具体地,由于控制信息指示第一时频资源,因此,终端设备能够根据控制信息确定第二时频资源。其中,第二时频资源与第一时频资源的关系如下。
一种情况下,第二时频资源与第一时频资源相同,也就是说,第一时频资源与第二时频资源的时域资源完全相同,频域资源也完全相同。
第一时频资源可以由所述控制信息向终端设备指示,进一步地,终端设备根据所述第一控制信息确定所述第二时频资源。
可选地,终端设备可以根据其它方法确定第一时频资源,所述控制信息指示终端设备根据第一时频资源确定第二时频资源。或者说,终端设备根据所述第一控制信息确定所述第二时频资源。
图7示出了本申请一个实施例的方法的示意图。如图7所示,第一时频资源和第二时频资源相同。
在这种情况下,当第一信息块所占的时频资源在第一时频资源内时,根据第二时频资获得的信道状态信息能够更为准确的反映第一信息块对应的业务的信道状态信息。
另一种情况下,第一时频资源所占的时域资源包括第二时频资源所占的时域资源,第二时频资源所占的频域资源和第一时频资源所占的频域资源相同。
在这种情况下,可选地,作为本申请一个实施例,所述终端设备获取第二时频资源的信道状态信息之前,还包括:所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及所述终端设备根据假定传输信息块大小确定所述第二时频资源。
第一时频资源可以由所述控制信息向终端设备指示,进一步地,终端设备根据所述第一控制信息确定所述第二时频资源。
图8示出了本申请一个实施例的示意图。
如图8所示,第一时频资源所占的频域和第二时频资源所占的频域相同,而第一时频资源包括该第二时频资源,并且更具体地,第二时频资源所占的时域资源的起始位置与第一时频资源所占的时域起始位置重合。
在这种情况下,终端设备能够确定第二时频资源的信道状态信息,并向网络设备上报该第二时频资源的信道状态信息,因此,相比与测量第一时频资源的信道状态信息后,再向网络设备上报该第一时频资源的信道状态信息,本申请实施例的方法能够使得网络设备尽快获得准确的信道信息进而即使调整业务数据的传输策略,以保证业务传输的可靠性,具体地,传输策略包括确定该业务数据传输使用的调制编码方案,传输模式或者传输资源的位置和大小等,本申请不做限定。因此,根据第一时频资源确定第二时频资源的频域起始位置或频域结束位置,还可以进一步根据假定传输信息块的大小和对应的目标调制编码方案,能够确定第二时频资源的位置和大小。
还应理解,所述第一时频资源与所述第二时频资源的时域起始位置或时域结束位置的关系可以是协议约定,也可以是网络预配置。
再一种情况下,第一时频资源和第二时频资源所占的时域资源相同,第一时频资源所占的频域资源与第二时频资源所占的频域资源具有对应关系。
在这种情况下,可选地,作为本申请一个实施例,所述终端设备获取第二时频资源的信道状态信息之前,方法还包括:所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及所述终端设备根据假定传输信息块大小确定所述第二时频资源。
并且进一步地,在这种情况下,假定传输信息块的大小可以与第一信息块的大小相同,因此,当第一时频资源和第二时频资源所占的时域资源相同时,如果根据第一时频资源确定第二时频资源的频域起始位置或频域结束位置时,可以根据该假定传输信息块的大小确定出第二时频资源的位置和大小。
图9示出了本申请实施例的方法的示意图。第二时频资源的频域起始位置与第一时频资源的起始位置之间的关系为:第二时频资源的频域起始位置=第一时频资源的起始位置+一个频率偏移量。
如图9所示,第二时频资源所占的时域资源与第一时频资源的时域资源相同,假设承载在第二时频资源上的假定传输信息块大小与第一信息块大小相同,那么当假定传输信息块对应的调制编码方案的序号比第一信息块对应的调制编码方案序号小,那么第二时频资源所占的频域资源比第一时频资源所占的频域资源大。所述第一信息块对应的调制编码方案为上述控制信息指示用于传输第一信息块的调制编码方案。
图10示出了本申请实施例的方法的示意图。第二时频资源的频域起始位置与第一时频资源的起始位置之间的关系为:第二时频资源的频域起始位置=在第一时频资源的起始位置+一个频率偏移量。
如图10所示,第二时频资源所占的时域资源与第一时频资源的时域资源相同,假设承载在第二时频资源上的假定传输信息块大小与第一信息块大小相同,那么当假定传输信息块对应的调制编码方案的序号比第一信息块对应的调制编码方案序号大,那么第二时频资源所占的频域资源比第一时频资源所占的频域资源大。
还应理解,所述第一时频资源与所述第二时频资源的频域起始位置或频域结束位置的对应关系可以是协议约定,也可以是网络预配置。
与现有技术不同,现有技术在确定信道状态信息时信道状态信息测量过程中的参考资源并未对应任何传输,即终端设备在实施信道状态测量的过程中不确定对应的信道将承载什么样的信息块,而本申请实施例中,第二时频资源与第一时频资源相关,第一时频资源包括承载第一信息块的时频资源,终端设备根据本申请实施的信道测量可以与第一信息块的传输相关。以及,第一信息块的大小是确定的,终端设备可能已经接收到第一信息块的某次传输。
进一步地,现有技术中是对确定的时频资源上假设承载了不同大小的信息块,这可能会影响信道状态信息的测量结果,特别是当信息块的大小较小的时候。这是因为,根据测得的信干噪比(Signal to Interference plus Noise Ratio,SINR)确定信道状态信息时,需要根据该信息块大小相应的信道编码的性能曲线(SINR与采用不同调制方案传输该信息块的时对应的BLER的关系曲线)。当信息块大小较小的时候,不同大小信息块所对应的性能曲线是不同的。固定资源大小改变信息块大小的方法可能导致测量误差。而采用固定信息块大小,改变资源的方法,则可以尽量避免这种误差。
还存在一种情况,所述第二时频资源是根据所述第一时频资源确定的。
在这种情况下,第一时频资源可以为第二时频资源的真子集,第二时频资源所占的时频资源包括所述第二时频资源所占的时频资源,和/或第二时频资源所占的频域资源包括第二时频资源所占的频域资源。
图11示出了本申请一个实施例的方法的示意图。在这种情况下,第一时频资源所占的时域资源与第二时频资源所占的时域资源相同,第一时频资源所在全带宽资源包括子带1、子带2、子带3和子带4。终端设备通过遍历第一时频资源的所有子带对全带宽的频域资源的信道状态进行测量。以子带2为例,第二时频资源的频域起始位置与子带2的频域起始位置相同,根据假定传输信息块大小,则可以确定第二时频资源的位置和大小。
图12示出了本申请一个实施例的方法的示意图。在这种情况下,第一时频资源所占的第一时频资源所占的时频资源与第二时频资源所占的时域资源相同,第一时频资源所在全带宽资源包括子带1、子带2、子带3和子带4,第二时频资源的频域起始位置可以遍历子带1、子带2、子带3和子带4的频域起始位置,根据假定传输信息块大小,则可以确定第二时频资源的位置和大小。
因此,在本申请实施例中实施例中,终端设备可以通过遍历带宽上的子带测量全带宽上不同频域资源对应信道状态信息。进而,网络设备可以在全带宽为后续的传输选择信道质量较好的频域资源,例如第一信息块的后续传输或者其它信息块的后续传输。
图13示出了本申请一个实施例的示意图。在这种情况下,第一时频资源为全带宽资源,第一时频资源所占的时频资源包含第二时频资源所占的时域资源,有4个与第一时频资源对应的频域起始位置,第二时频资源的频域起始位置可以遍历每个频域起始位置开始的子带,根据假定传输信息块大小,则可以确定第二时频资源的位置和大小。
可选地,在图11-图13所示出的例子中,第二时频资源的起始位置可以是子带频域位置中频率较大的边沿,也可以是子带频域位置中频率较小的边沿。
可选地,在图11-图13所示出的例子中,确定第二时频资源的大小之后可以通过确 定第二时频资源的起始位置而确定第二时频资源的位置,可以通过确定第二时频资源的结束位置而确定第二时频资源的位置。
步骤403,终端设备获取第二时频资源的信道状态信息。
下面具体描述,如何通过目标调制编码方案,获得第二时频资源的信道状态信息。
应理解,上述信道状态信息可以是干扰信号的能量、信道质量指示、网络设备调度数据传输使用MCS的索引、CQI索引、CQI索引的差值、网络设备调度数据传输使用MCS的索引的差值、一个频域资源的大小或者带宽、预编码矩阵指示、秩指示或者传输重复次数之中的至少一种。
在步骤402中,确定第二时频资源时,由于已经确定了目标调制编码方案,进一步地,通过目标调制编码方案可以得到下列中的任意一种:信道质量指示、网络设备调度数据传输使用MCS的索引、CQI索引、CQI索引的差值、网络设备调度数据传输使用MCS的索引的差值、一个频域资源的大小或者带宽。
具体地,目标调制编码方案具体地,例如,所述信道状态信息可以为信道质量指示(Channel Quality Indicator,CQI))。终端设备可以根据与第二时频资源相应的干扰测量结果和信道测量结果采用步骤402中的方法确定目标调制编码方案目标调制编码方案目标调制编码方案目标调制编码方案,并将该目标调制编码方案的索引确定为第二时频资源对应的CQI,即信道状态信息。其中,上述一个调制编码方案是一个包括一种调制方式和一种编码方式的方案,具体地,上述一种编码方式可以是通信协议规范预先规定的一种调制编码以及一种编码速率,上述一种调制编码方案对应一个效率数值,所述效率数值等于其对应的调制方式的阶数乘以其对应的编码速率。因此,上述MCS的索引可以指网络设备调度数据传输使用MCS的索引,也可以是终端设备上报信道状态信息时包括的MCS候选方案(以下简称CQI上报使用的MCS)的索引,也就是CQI索引。
在另一个例子中,所述信道状态信息可以是CQI索引的差值,可以简称为Delta CQI。终端设备根据上述方法确定CQI索引后,将根据当前信道状态确定的CQI索引与终端设备根据之前的一次数据传输的信道状态确定的CQI索引的差值确定为第二时频资源对应的信道状态信息。前一次信道状态信息上报可以指与当前信道状态信息上报时间最接近的前一次周期上报,或者,时间最接近的前一次非周期上报。所述非周期上报可以由网络设备触发上报,或者,由终端设备主动上报。
在另外一个例子中,所述信道状态信息可以是一个MCS索引的差值,可以简称为Delta MCS。终端设备可以根据与第二时频资源相应的干扰测量结果和信道测量结果通过步骤402的方法确定目标调制编码方案目标调制编码方案,再将该目标调制编码方案索引与所述控制信息指示的MCS索引的差值确定为第二时频资源对应的信道状态信息。
在另外的一个例子中,所述信道状态信息可以是一个频域资源的大小或者带宽。这种情况下,假定传输信息块大小固定,终端设备可以根据与第二时频资源相应的干扰测量结果和信道测量结果通过步骤402中的方法确定目标调制编码方案,再将第二时频资源的带宽信息作为与第二时频资源对应的信道状态信息,所述带宽是所述时频资源所占的频域范围的大小(例如,表现为资源块的数目或者资源块组的数目)。其中,所述终端设备确定所述时频资源的带宽时,假设该时频资源所占的时域大小与第一时频资源所占的时域大小相同,或者该时频资源所占的时域大小由通信标准规范预先约定。
又例如,所述信道状态信息可以为干扰信号的能量。终端设备可以根据第二时频资源相应的干扰测量结果确定干扰能量的绝对数值(例如功率数值),将该干扰能量的绝对数值确定为第二时频资源对应的信道状态信息;终端设备也可以根据干扰测量结果确定干扰能量,根据信道测量结果确定接收信号能量,再以接收信号能量作为参考将干扰能量相对接收信号能量的相对数值(例如分贝dB数值)作为该信道状态信息。
可选地,作为本申请一个实施例,第二时频资源对应于目标调制编码方案,目标调制编码方案为至少一个调制编码方案中的一个。
在本申请实施例中,假设第二时频资源上承载的假定传输信息块使用的调制编码方案为目标调制编码方案,当假定传输信息块大小固定时,随着调制编码方案的变化,第二时频资源大小也会发生相应的变化。
进一步地,终端设备根据第二时频资源中的DMRS测量第二时频资源的信道状态信息,当第二时频资源上还包括CSIRS和/或ZP-CSIRS时,也可以根据其中的两种或两种以上的测量参考信息号确定第二时频资源的信道状态信息。
可选地,作为本申请一个实施例,所述终端设备获取第二时频资源的信道状态信息,包括:终端设备测量第二时频资源的信道和干扰,基于所述信道测量结果和干扰测量结果获取信道状态信息。
具体地,终端设备测量第二时频资源对应的信道,基于所述信道测量结果获取信道状态信息;或者,终端设备测量第二时频资源对应的干扰,基于干扰测量结果获取信道状态信息;或者,终端设备测量第二时频资源对应的信道和干扰,基于信道测量结果和干扰测量结果获取信道状态信息。
具体地,终端设备可以根据DMRS实施与第二时频资源相应的信道测量或者干扰测量,或者,终端设备可以根据CSIRS实施与第二时频资源相应的信道测量或者干扰测量,或者终端设备可以根据ZP-CSIRS实施与第二时频资源相应的干扰测量。
进一步地,终端设备根据信道测量结果和干扰测量结果确定第二时频资源的信干噪比SINR;基于所述SINR获取信道状态信息。
在一种可能的实施方式中,当确定第二时频资源后,获取第二时频资源的信道状态信息的方式可以为上述实施例描述的方式,即对确定的假定传输信息块的大小,根据第二时频资源的得到的SINR,通过步骤402中的方法遍历满足目标错误概率的调制编码方案,从满足目标错误概率的调制编码方案中确定目标调制编码方案,再由目标调制编码方案确定第二时频资源的信道状态信息。
在另外一种可能的实施方式中,可以根据查表获取信道状态信息,具体地,终端设备可以预存SINR与效率的关系表格。
首先根据SINR查询到对应的效率,再根据编码调制方案的效率数值查询到对应的编码调制方案以及进一步查询到与该SINR对应的CQI索引或者MCS索引。并将该CQI索引或者MCS索引作为信道状态信息。
当采用上述步骤402中第二时频资源固定的方法的时候,上述查表可以是查询一个表格。当采用上述步骤402中假设传输信息块大小固定的方法时,上述查表可以是查询至少两个表格,每个表格与一个传输信息块大小对应。
表1示出了本申请SINR和信道状态信息的关系。应理解,表1仅仅是示例性的, 本申请不做限定。
表1
Figure PCTCN2018085339-appb-000001
可选地,作为本申请一个实施例,终端设备获取第二时频资源的信道状态信息,包括:所述终端设备根据所述第一信息块的传输模式确定所述第二时频资源的信道状态信息;和/或所述终端设备根据所述第一时频资源中用于承载控制信息和参考资源的资源比例确定所述第二时频资源的信道状态信息;和/或所述终端设备根据所述第一信息块使用的编码冗余版本确定所述第二时频资源的信道状态信息。
具体地,网络设备向终端设备发送的第一信息块的传输模式指的是第一信息块的传输方式,包括:传输层数、天线数、参考资源端口数以及多入多出(Multiple Input Multiple Output,MIMO)方式等。
也就是说,当终端设备获取第二时频资源的信道状态信息时,假设在第二时频资源上承载的假定传输信息块的传输模式与第一信息块的传输模式相同。
具体地,第一时频资源中用于承载控制信息和参考资源的资源比例确定第二时频资源的信道状态信息。
也就是说,当终端设备获取第二时频资源的信道状态信息时,假设在第二时频资源上承载的控制信息和参考资源的开销比例与第一时频资源上承载的控制信息和参考资源的开销比例相同。
具体地,终端设备根据第一信息块使用的编码冗余版本确定第二时频资源的信道状态信息时,假设在第二时频资源上承载的假定传输信息块使用的编码冗余版本相同。
可选地,作为本申请又一个实施例,终端设备获取第二时频资源的信道状态信息时,假设第二时频资源承载假定传输信息块时传输该信息块时采用的传输模式、冗余版本以及对应第二时频资源上的用于承载控制信息和参考信号的资源比例等由通信标准规范预先定义。
步骤404,终端设备向网络设备发送第二时频资源的信道状态信息。
具体地,当第一时频资源为第n-k个时域单元上的时频资源时,终端设备会在预定义的时域单元或者由网络设备指定的时域单元(例如,第n个时域单元)上向网络设备发 送测量得到的信道状态信息,其中,当所述网络设备和所述终端设备工作于FDD系统的时候,该第n-k个时域单元为第n-k个下行时域单元,该第n个时域单元为第n个上行时域单元,当所述网络设备和所述终端设备工作于TDD系统的时候,该第n-k个时域单元可以用于承载下行信号,该第n个时域单元可以用于承载上行信号,n为整数,k为自然数。
因此,由于终端设备获得的信道状态信息更加及时可靠,网络设备会根据终端设备反馈的信道状态信息,调整对第一信息块重传时采用的MCS,有利于提高业务传输的可靠性,满足业务的低时延要求。
图14示出了本申请实施例的终端设备1400的示意性框图,该终端设备1400中各模块分别用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,详细说明可以参照上文中的描述。
该终端设备可以包括:通信模块和处理模块,其中,所述通信模块用于接收控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块;
所述处理模块用于根据所述控制信息确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
所述处理模块用于获取第二时频资源的信道状态信息;以及
所述通信模块用于发送所述信道状态信息。
可选地,作为本申请一个实施例,所述处理模块用于:根据所述第一信息块的传输模式确定所述第二时频资源的信道状态信息;和/或根据所述第一时频资源中用于承载控制信息和参考信号的资源比例确定所述第二时频资源的信道状态信息;和/或根据所述第一信息块使用的编码冗余版本确定所述第二时频资源的信道状态信息。
可选地,作为本申请一个实施例,所述处理模块还用于:根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及根据参考信息块大小确定所述第二时频资源。
可选地,作为本申请一个实施例,所述处理模块还用于:根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及根据参考信息块大小确定所述第二时频资源。
可选地,作为本申请一个实施例,所述处理模块还用于:所述终端设备基于所述参考信息块确定目标调制编码方案,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
可选地,作为本申请一个实施例,其特征在于,所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
可选地,作为本申请一个实施例,所述处理单元具体用于:测量第二时频资源的信道和/或干扰,基于所述信道测量结果和/或干扰测量结果获取信道状态信息。
需要说明的是,本实施例中的处理模块可以由图3中的301实现,本实施例中的通信模块可由图3中的接收器302和发送器303实现。
本实施例所能达到的技术效果可以参见上文中的描述,此处不再赘述。
图15示出了本申请实施例的网络设备1500的示意性框图,该网络设备1500中各模块分别用于执行上述方法中终端设备所执行的各动作或处理过程,这里,为了避免赘述,详细说明可以参照上文中的描述。
该终端设备可以包括:通信模块和处理模块,其中,所述通信模块用于向终端设备发送控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块,所述控制信息用于所述终端设备确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
所述通信模块还用于接收第二时频资源的信道状态信息;
所述通信模块还用于接收所述终端设备发送的所述信道状态信息。
可选地,作为本申请一个实施例,所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块的传输模式确定;和/或所述第二时频资源的信道状态信息由所述终端设备根据所述第一时频资源中用于承载控制信息和参考资源的资源比例确定;和/或所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块使用的编码冗余版本确定。
可选地,作为本申请一个实施例,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及由所述终端设备根据参考信息块大小确定。
可选地,作为本申请一个实施例,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及由所述终端设备根据参考信息块大小确定。
可选地,作为本申请一个实施例,所述目标调制编码方案由所述参考信息块确定,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
可选地,作为本申请一个实施例,所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
需要说明的是,本实施例中的处理模块可以由图2中的201实现,本实施例中的通信模块可由图2中的接收器202和发送器203实现。
本实施例所能达到的技术效果可以参见上文中的描述,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (28)

  1. 一种信道状态信息发送的方法,其特征在于,包括:
    接收控制信息,所述控制信息用于指示第一时频资源,其中,用于接收所述控制信息的装置在所述第一时频资源内接收第一信息块;
    根据所述控制信息确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
    获取第二时频资源的信道状态信息;以及
    发送所述信道状态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第二时频资源的信道状态信息,包括:
    根据所述第一信息块的传输模式确定所述第二时频资源的信道状态信息;和/或
    根据所述第一时频资源中用于承载控制信息和参考信号的资源比例确定所述第二时频资源的信道状态信息;和/或
    根据所述第一信息块使用的编码冗余版本确定所述第二时频资源的信道状态信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取第二时频资源的信道状态信息之前,还包括:
    根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及
    根据参考信息块大小确定所述第二时频资源。
  4. 根据权利要求1或2所述的方法,其特征在于,所述获取第二时频资源的信道状态信息之前,所述方法还包括:
    根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及
    根据参考信息块大小确定所述第二时频资源。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    基于所述参考信息块确定目标调制编码方案,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
  7. 根据权利要求6所述的方法,其特征在于,所述获取第二时频资源的信道状态信息,包括:
    测量第二时频资源的信道和/或干扰,基于所述信道测量结果和/或干扰测量结果获取信道状态信息。
  8. 一种信道状态信息接收的方法,其特征在于,包括:
    向终端设备发送控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块,所述控制信息用于所述终端设备确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
    接收第二时频资源的信道状态信息;
    接收所述终端设备发送的所述信道状态信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块的传输模式确定;和/或
    所述第二时频资源的信道状态信息由所述终端设备根据所述第一时频资源中用于承载控制信息和参考资源的资源比例确定;和/或
    所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块使用的编码冗余版本确定。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及由所述终端设备根据参考信息块大小确定。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及由所述终端设备根据参考信息块大小确定。
  12. 根据权利要求10或11所述的方法,其特征在于,所述目标调制编码方案由所述参考信息块确定,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
  14. 一种信道状态信息发送的装置,其特征在于,包括:通信模块和处理模块,其中,
    所述通信模块用于接收控制信息,所述控制信息用于指示第一时频资源,其中,所述终端设备在所述第一时频资源内接收第一信息块;
    所述处理模块用于根据所述控制信息确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
    所述处理模块用于获取第二时频资源的信道状态信息;以及
    所述通信模块用于发送所述信道状态信息。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块用于:
    根据所述第一信息块的传输模式确定所述第二时频资源的信道状态信息;和/或
    根据所述第一时频资源中用于承载控制信息和参考信号的资源比例确定所述第二时 频资源的信道状态信息;和/或
    根据所述第一信息块使用的编码冗余版本确定所述第二时频资源的信道状态信息。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及
    根据参考信息块大小确定所述第二时频资源。
  17. 根据权利要求14或15所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及
    根据参考信息块大小确定所述第二时频资源。
  18. 根据权利要求16或17所述的装置,其特征在于,所述处理模块还用于:
    所述终端设备基于所述参考信息块确定目标调制编码方案,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
  19. 根据权利要求14至18中任一项所述的装置,其特征在于,
    所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元具体用于:测量第二时频资源的信道和/或干扰,基于所述信道测量结果和/或干扰测量结果获取信道状态信息。
  21. 一种信道状态信息接收的装置,其特征在于,包括:通信模块和处理模块,其中,
    所述通信模块用于向终端设备发送控制信息,所述控制信息用于指示第一时频资源,其中,所述装置在所述第一时频资源内接收第一信息块,所述控制信息用于所述终端设备确定所述第二时频资源,其中,所述第二时频资源与所述第一时频资源相同,或者,所述第二时频资源是根据所述第一时频资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的时域资源确定的,或者,所述第二时频资源是根据所述第一时频资源对应的频域资源确定的;
    所述通信模块还用于接收第二时频资源的信道状态信息;
    所述通信模块还用于接收所述终端设备发送的所述信道状态信息。
  22. 根据权利要求21所述的装置,其特征在于,所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块的传输模式确定;和/或
    所述第二时频资源的信道状态信息由所述终端设备根据所述第一时频资源中用于承载控制信息和参考资源的资源比例确定;和/或
    所述第二时频资源的信道状态信息由所述终端设备根据所述第一信息块使用的编码冗余版本确定。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的频域起始位置或频域结束位置;以及由所述终端设备根据参考信息块大小确定。
  24. 根据权利要求21或22所述的装置,其特征在于,所述第二时频资源由所述终端设备根据所述第一时频资源确定所述第二时频资源的时域起始位置或时域结束位置;以及由所述终端设备根据参考信息块大小确定。
  25. 根据权利要求23或24所述的装置,其特征在于,所述目标调制编码方案由所述参考信息块确定,所述目标调制编码方案为所述至少一个调制编码方案中序号最大的调制编码方案或者效率最高的调制编码方案,所述至少一个调制编码方案满足如下条件:所述至少一个调制编码方案中的每个调制编码方案对应的接收错误概率不大于目标错误概率。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,
    所述第二时频资源对应于目标调制编码方案,所述目标调制编码方案为至少一个调制编码方案中的一个。
  27. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行所述权利要求1至13中任一项所述的方法。
  28. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行所述权利要求1至13中任一项所述的方法。
PCT/CN2018/085339 2017-05-05 2018-05-02 信息发送的方法及其装置和信息接收的方法及其装置 WO2018202041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314055.3A CN108811124B (zh) 2017-05-05 2017-05-05 信息发送的方法及其装置和信息接收的方法及其装置
CN201710314055.3 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018202041A1 true WO2018202041A1 (zh) 2018-11-08

Family

ID=64016789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085339 WO2018202041A1 (zh) 2017-05-05 2018-05-02 信息发送的方法及其装置和信息接收的方法及其装置

Country Status (2)

Country Link
CN (1) CN108811124B (zh)
WO (1) WO2018202041A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510266B (zh) * 2019-01-31 2021-10-01 成都华为技术有限公司 一种信号发送方法、信号接收方法以及相关设备
CN115242363A (zh) * 2019-10-23 2022-10-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579585A (zh) * 2013-10-16 2015-04-29 电信科学技术研究院 一种信道状态信息的传输方法及设备
CN104836647A (zh) * 2015-04-14 2015-08-12 北京邮电大学 信道状态信息测量方法和装置
WO2016161736A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信道测量方法、基站及ue
CN106465403A (zh) * 2014-06-24 2017-02-22 瑞典爱立信有限公司 在无线电通信网络中报告信道状态信息(csi)的无线设备、网络节点和其中的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687950B (zh) * 2014-03-31 2021-06-25 上海朗帛通信技术有限公司 非授权频带上的传输方法和装置
WO2016157059A1 (en) * 2015-03-27 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579585A (zh) * 2013-10-16 2015-04-29 电信科学技术研究院 一种信道状态信息的传输方法及设备
CN106465403A (zh) * 2014-06-24 2017-02-22 瑞典爱立信有限公司 在无线电通信网络中报告信道状态信息(csi)的无线设备、网络节点和其中的方法
WO2016161736A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信道测量方法、基站及ue
CN104836647A (zh) * 2015-04-14 2015-08-12 北京邮电大学 信道状态信息测量方法和装置

Also Published As

Publication number Publication date
CN108811124A (zh) 2018-11-13
CN108811124B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2018082544A1 (zh) 无线通信的方法和装置
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018202031A1 (zh) 干扰测量的方法及装置和获得信道状态信息的方法及装置
CN109802792B (zh) 接收参考信号的方法和发送参考信号的方法
US10932251B2 (en) Data receiving method and apparatus thereof, and data sending method and apparatus thereof
CN110891312B (zh) 一种信息发送方法,信息接收的方法和装置
WO2018171603A1 (zh) 发送数据的方法及其装置和接收数据的方法及其装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
WO2018228176A1 (zh) 通信方法、终端设备和网络设备
RU2731549C1 (ru) Сегментация на кодовые блоки для нового стандарта радиосвязи
WO2019157995A1 (zh) 传输数据的方法和装置以及通信设备
WO2019214592A1 (zh) 通信方法、终端设备和网络设备
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
CN112672378B (zh) 资源测量的方法和装置
TW201822485A (zh) 傳輸信號的方法、終端設備和網絡設備
EP3553991A1 (en) Transmission method, network device, and terminal device
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
WO2018188637A1 (zh) 发送信息的方法及其装置和接收信息的方法及其装置
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2019214660A1 (zh) 通信方法和通信装置
WO2019096232A1 (zh) 通信方法和通信装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2018202041A1 (zh) 信息发送的方法及其装置和信息接收的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794643

Country of ref document: EP

Kind code of ref document: A1