WO2019157995A1 - 传输数据的方法和装置以及通信设备 - Google Patents

传输数据的方法和装置以及通信设备 Download PDF

Info

Publication number
WO2019157995A1
WO2019157995A1 PCT/CN2019/074483 CN2019074483W WO2019157995A1 WO 2019157995 A1 WO2019157995 A1 WO 2019157995A1 CN 2019074483 W CN2019074483 W CN 2019074483W WO 2019157995 A1 WO2019157995 A1 WO 2019157995A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
information
time
carriers
frequency resource
Prior art date
Application number
PCT/CN2019/074483
Other languages
English (en)
French (fr)
Inventor
曾勇波
才宇
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19753982.8A priority Critical patent/EP3726767B1/en
Priority to US16/969,697 priority patent/US11516777B2/en
Publication of WO2019157995A1 publication Critical patent/WO2019157995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting data and a communication device.
  • the transmitting device can use a certain carrier to send data to the receiving device, and before sending the data, can send scheduling information to the receiving device, where the scheduling information can indicate that the time-frequency resource used by the sending device is The time-frequency position on the carrier, so that the receiving device can determine the time-frequency resource based on the scheduling information, so that the receiving device does not need to perform blind detection on the carrier, thereby improving communication efficiency and reducing processing of the receiving device. burden.
  • the number of carriers available for wireless communication provided by the communication system is increased. If the transmitting device performs data transmission on a part of the carriers provided by the communication system, the receiving device needs to determine each based on the existing scheduling mechanism. Whether there is scheduling information on the carrier, and thereafter, receiving data based on the scheduling information. Therefore, the receiving device needs to perform blind detection on each carrier to acquire scheduling information, thereby reducing communication efficiency and increasing processing load of the receiving device.
  • the present application provides a method and apparatus for transmitting data, which can improve the efficiency of communication and reduce the processing load of the receiving device.
  • a method for transmitting data includes: a first device sending, by using a first carrier, first information, where the first information is used to indicate that the first device sends, by using N carriers of M carriers Data, where N is an integer greater than or equal to 2, and N is less than or equal to M; the first device transmits data over the N carriers.
  • the first information is used to indicate the multiple carriers used by the transmitting device to transmit data by causing the transmitting device to transmit the first information on one carrier, thereby eliminating the need for the receiving device to perform each carrier.
  • Blind detection can determine whether each carrier is used by the transmitting device based on the first information, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • the M carriers are carriers supported by a communication system in which the first device is located, and M is an integer greater than or equal to 2.
  • the first device may support (or can use) all of the M carriers.
  • the first device may also support a part of the M carriers.
  • the N carriers may be all carriers that the first device can support among the M carriers.
  • the N carriers may also be part of the M carriers that the first device can support.
  • the first information is specifically used to indicate whether each carrier of the M carriers except the first carrier includes the first
  • the first time-frequency resource is a time-frequency resource used when the first device transmits data.
  • the first information includes M-1 bits, and the M-1 bits are in one-to-one correspondence with the M-1 carriers. Each bit is used to indicate whether the corresponding carrier includes the first time-frequency resource, and the M-1 carriers are carriers other than the first carrier of the M carriers.
  • M is 8, and the first information includes 7 bits.
  • the number of carriers that can be used is eight, and the number of reserved bits in the bypass control information SCI in the communication system is 7, for example, the above embodiment can be effectively applied.
  • the compatibility and practicability of the present application can be further improved.
  • the first information is further used to indicate that a carrier carrying the first information belongs to a carrier used when transmitting the transmission data, Alternatively, the first information is further used to indicate that the carrier carrying the first information does not belong to a carrier used when transmitting the transmission data.
  • the first information is specifically used to indicate whether each of the M carriers includes a first time-frequency resource, where the first time-frequency resource is The time-frequency resource used by the first device to transmit data.
  • the first information includes M bits, the M bits are in one-to-one correspondence with M carriers, and each bit is used to indicate Whether the corresponding carrier includes the first time-frequency resource.
  • the first carrier is a carrier specified by the communications system.
  • the first carrier is a pre-configured carrier.
  • the first carrier is a carrier configured by a network device.
  • the first carrier is a primary carrier of the M carriers.
  • the first carrier carries the first identifier sent by the first device, where the first identifier is used to indicate that the carrier carried by the first identifier carries the first information.
  • a plurality of devices including the first device may use the first carrier to transmit cross-carrier scheduling information.
  • the first carrier may carry the first identifier sent by multiple devices.
  • the first carrier may be used by the first device to send the first information.
  • the first carrier may only carry the first identifier sent by the first device.
  • the first device sends the first information by using the first carrier, where the first device sends the first And the first information, where the first identifier is used to indicate that the carrier carried by the first identifier carries the first information.
  • the first identifier is carried in a resource reservation field in the bypass control information SCI, or, optionally, the first The MCS field of the adjustment and coding mode carried in the SCI is identified.
  • the receiving device may determine, as the carrier for carrying the first information, the carrier carrying the first identifier in the M carriers.
  • the first carrier carries a synchronization signal
  • the M carriers are other than the first carrier.
  • the synchronization signal is not carried.
  • the receiving device can determine the carrier carrying the synchronization signal among the M carriers as the carrier for carrying the first information.
  • the synchronization signal carried on the first carrier corresponds to a specified first sequence, where the first sequence is used to indicate
  • the carrier carried by the synchronization signal corresponding to the first sequence carries the first information.
  • the first sequence comprises a bypass primary synchronization signal sequence or a bypass secondary synchronization signal sequence.
  • the receiving device can easily determine the carrier carrying the first information based on the foregoing solution, and further, the receiving device does not need to perform blind detection on each carrier to acquire the first information, so that the communication efficiency can be further improved. And reduce the processing load of the receiving device.
  • the location of the first time-frequency resource on the N carriers is pre-configured, and the first time-frequency resource is The time-frequency resource used by the first device to transmit data.
  • the location of the first time-frequency resource on the N carriers is determined according to information of the first device, where The first time-frequency resource is a time-frequency resource used when the first device sends data.
  • the locations of the first time-frequency resources on the N carriers are the same.
  • the method further includes: the first device sends the second information by using the first carrier, where the second information is used to indicate the a location of the first time-frequency resource on the first carrier, where the first time-frequency resource is a time-frequency resource used by the first device to send data, where the location of the first time-frequency resource on the N carriers The location of the first time-frequency resource on the first carrier is the same.
  • the “location of time-frequency resources” may refer to a time domain location of time-frequency resources.
  • the location of the time-frequency resource may refer to the frequency domain location of the time-frequency resource.
  • the second information is specifically used to indicate an offset of a location of the first time-frequency resource with respect to a reference location.
  • the method further includes: the first device sends the N third information by using the first carrier; or the first device passes the The N carriers transmit N pieces of third indication information, where the N carriers are in one-to-one correspondence with the N pieces of third indication information, and each third information is used to indicate the location of the first time-frequency resource on the corresponding carrier.
  • the first time-frequency resource is a time-frequency resource used by the first device to send data.
  • each third information is specifically used to indicate that the location of the first time-frequency resource on the corresponding carrier is relative to the reference location. The offset.
  • the reference location is a location specified by the communication system.
  • the reference location is a pre-configured location.
  • the reference location is a location of a network device configuration.
  • the reference location is a location of a first time-frequency resource on a second one of the N carriers.
  • the second carrier is a carrier specified by the communication system.
  • the second carrier is a pre-configured carrier.
  • the second carrier is a carrier configured by the network device.
  • the second carrier is a primary carrier of the N carriers.
  • the second carrier carries a synchronization signal, and the carrier of the N carriers other than the second carrier is not The synchronization signal is carried, wherein the location of the first time-frequency resource on the carrier carrying the synchronization signal is a reference location.
  • the synchronization signal carried on the second carrier corresponds to a specified second sequence, where the second sequence is used to indicate The location of the first time-frequency resource on the carrier carried by the synchronization signal corresponding to the second sequence is a reference time domain location.
  • the N third information is carried in the bypass control information SCI.
  • each third information is carried in a media access control MAC control unit of a data packet carried by the corresponding carrier CE.
  • the first information is carried in the bypass control information SCI.
  • the second information is carried in the medium access control MAC control unit CE.
  • the first device is a terminal device.
  • the first device is a network device.
  • the communication system is a vehicle networking system.
  • a second aspect, a method for transmitting data includes: receiving, by a second device, first information from a first device by using a first carrier, where the first information is used to indicate that the first device uses N of the M carriers
  • the carrier transmits data, where N is an integer greater than or equal to 2, and N is less than or equal to M; the second device passes data from the first device through one or more of the N carriers.
  • the first information is used to indicate the multiple carriers used by the transmitting device to transmit data by causing the transmitting device to transmit the first information on one carrier, thereby eliminating the need for the receiving device to perform each carrier.
  • Blind detection can determine whether each carrier is used by the transmitting device based on the first information, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • the M carriers are carriers supported by a communication system in which the first device is located, and M is an integer greater than or equal to 2.
  • the first device may support (or can use) all of the M carriers.
  • the first device may also support a part of the M carriers.
  • the N carriers may be all carriers that the first device can support among the M carriers.
  • the N carriers may also be part of the M carriers that the first device can support.
  • the first information is specifically used to indicate whether each carrier of the M carriers except the first carrier includes the first
  • the first time-frequency resource is a time-frequency resource used when the first device transmits data.
  • the first information includes M-1 bits, and the M-1 bits are in one-to-one correspondence with the M-1 carriers, each The bit is used to indicate whether the corresponding carrier includes the first time-frequency resource, and the M-1 carriers are carriers other than the first carrier of the M carriers.
  • M is 8, and the first information includes 7 bits.
  • the first information is further used to indicate that the carrier carrying the first information belongs to a carrier used when transmitting the transmission data.
  • the first information is further used to indicate that the carrier carrying the first information does not belong to a carrier used when transmitting the transmission data.
  • the first information is specifically used to indicate whether each of the M carriers includes a first time-frequency resource, where the first time-frequency resource is The time-frequency resource used by the first device to transmit data.
  • the first information includes M bits, where the M bits are in one-to-one correspondence with the M carriers, and each bit is used to indicate the corresponding Whether the carrier includes the first time-frequency resource.
  • the first carrier is a carrier specified by the communications system.
  • the first carrier is a pre-configured carrier.
  • the first carrier is a carrier configured by a network device.
  • the first carrier is a primary carrier of the M carriers.
  • the first carrier carries the first identifier sent by the first device, where the first identifier is used to indicate the The carrier carried by the first identifier carries the first information.
  • the method further includes: determining, by the second device, the carrier that carries the first identifier sent by the first device in the M carriers, as the first carrier.
  • the first identifier is pre-configured.
  • the first identifier is configured by the network device.
  • a plurality of devices including the first device may use the first carrier to transmit cross-carrier scheduling information.
  • the first carrier may carry the first identifier sent by multiple devices.
  • the first carrier may be used by the first device to send the first information.
  • the first carrier may only carry the first identifier sent by the first device.
  • the first identifier is carried in a resource reservation field in the bypass control information SCI.
  • the first identifier is carried in an adjustment and coding mode MCS field in the SCI.
  • the receiving device may determine, as the carrier for carrying the first information, the carrier carrying the first identifier in the M carriers.
  • the first carrier carries a synchronization signal
  • the M carriers are other than the first carrier.
  • the synchronization signal is not carried.
  • the method further includes: determining, by the second device, the carrier carrying the synchronization signal in the M carriers as the first Carrier.
  • the first device transmits the synchronization signal only on the first carrier, or does not carry the synchronization signal in the carrier other than the first carrier.
  • the receiving device can determine the carrier carrying the synchronization signal among the M carriers as the carrier for carrying the first information.
  • the synchronization signal carried on the first carrier corresponds to a specified first sequence, where the first sequence is used to indicate
  • the carrier carried by the synchronization signal corresponding to the first sequence carries the first information.
  • the method further includes: determining, by the second device, the carrier that carries the synchronization signal corresponding to the first sequence in the M carriers as the first carrier.
  • the first sequence includes a bypass primary synchronization signal sequence or a bypass secondary synchronization signal sequence.
  • the receiving device can easily determine the carrier carrying the first information based on the foregoing solution, and further, the receiving device does not need to perform blind detection on each carrier to acquire the first information, so that the communication efficiency can be further improved. And reduce the processing load of the receiving device.
  • the location of the first time-frequency resource on the N carriers is specified by the communications system
  • the first time-frequency A resource is a time-frequency resource used by the first device to transmit data.
  • the location of the first time-frequency resource on the N carriers is determined according to information of the first device, where
  • the first time-frequency resource is a time-frequency resource used when the first device sends data.
  • the locations of the first time-frequency resources on the N carriers are the same.
  • the method further includes: receiving, by the second device, the second information from the first device by using the first carrier, where The second information is used to indicate the location of the first time-frequency resource on the first carrier, where the first time-frequency resource is a time-frequency resource used by the first device to send data, where the first of the N carriers
  • the location of the time-frequency resource is the same as the time domain location of the first time-frequency resource on the first carrier.
  • the second information is specifically used to indicate an offset of a location of the first time-frequency resource with respect to a reference location.
  • the method further includes: the second device receiving N thirds from the first device by using the first carrier Information; or the second device receives one or more third indication information of the N from the first device by using one or more carriers of the N carriers; wherein the N carriers and the N third The indication information is in one-to-one correspondence, and each of the third information is used to indicate a location of the first time-frequency resource on the corresponding carrier, where the first time-frequency resource is a time-frequency resource used by the first device to send data.
  • each third information is specifically used to indicate a location of the first time-frequency resource on the corresponding carrier relative to the reference location The offset.
  • the reference location is a time domain location specified by the communication system.
  • the reference location is a location of a first time-frequency resource on a second carrier of the N carriers, where The second carrier is a carrier specified by the communication system.
  • the second carrier is a primary carrier of the N carriers.
  • the second carrier carries a synchronization signal
  • the carrier of the N carriers other than the second carrier is not The synchronization signal is carried, wherein the location of the first time-frequency resource on the carrier carrying the synchronization signal is a reference time domain location.
  • the synchronization signal carried on the second carrier corresponds to a specified second sequence, where the second sequence is used to indicate the The location of the first time-frequency resource on the carrier on which the synchronization signal corresponding to the second sequence is carried is the reference time domain location.
  • the N third information is carried in the bypass control information SCI.
  • each third information is carried in a medium access control MAC control unit CE of a data packet carried by the corresponding carrier .
  • the first information is carried in the bypass control information SCI.
  • the first information is carried in the medium access control MAC control unit CE.
  • the second information is carried in the bypass control information SCI.
  • the second information is carried in the medium access control MAC control unit CE.
  • the first device is a terminal device or a network device
  • the second device is a terminal device or a network device.
  • the communication system is a vehicle networking system.
  • a communication device comprising: a transceiver for receiving or transmitting data or information; and a processor for controlling the transceiver to transmit first information by using a first carrier, the first information being used to indicate the communication
  • the device transmits data using N carriers of the M carriers, where N is an integer greater than or equal to 2, and N is less than or equal to M; and, the transceiver is controlled to transmit data through the N carriers.
  • the first information is used to indicate the plurality of carriers used by the transmitting device to transmit data by causing the transmitting device to transmit the first information on one carrier, thereby eliminating the need for the receiving device to perform blind detection on each carrier. Further, it is possible to determine whether or not each carrier is used by the transmitting device based on the first information, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • the M carriers are carriers supported by a communication system in which the communication device is located, and M is an integer greater than or equal to 2.
  • the communication device can support (or can use) all of the M carriers.
  • the communication device can also support a portion of the M carriers.
  • the N carriers may be all carriers that the communication device can support among the M carriers.
  • the N carriers may also be part of the M carriers that the communication device can support.
  • the first information is specifically used to indicate whether each carrier of the M carriers except the first carrier includes the first
  • the first time-frequency resource is a time-frequency resource used by the communication device to transmit data.
  • the first information includes M-1 bits, and the M-1 bits are in one-to-one correspondence with the M-1 carriers. Each bit is used to indicate whether the corresponding carrier includes the first time-frequency resource, and the M-1 carriers are carriers other than the first carrier of the M carriers.
  • M is 8, and the first information includes 7 bits.
  • the number of carriers that can be used is eight, and the number of reserved bits in the bypass control information SCI in the communication system is 7, for example, the above embodiment can be effectively applied.
  • the compatibility and practicability of the present application can be further improved.
  • the first information is further used to indicate that a carrier carrying the first information belongs to a carrier used when transmitting the transmission data, Alternatively, the first information is further used to indicate that the carrier carrying the first information does not belong to a carrier used when transmitting the transmission data.
  • the first information is specifically used to indicate whether each of the M carriers includes a first time-frequency resource, where the first time-frequency resource is The time-frequency resource used by the communication device to send data.
  • the first information includes M bits, and the M bits are in one-to-one correspondence with M carriers, and each bit is used to indicate Whether the corresponding carrier includes the first time-frequency resource.
  • the first carrier is a carrier specified by the communications system.
  • the first carrier is a pre-configured carrier.
  • the first carrier is a carrier configured by a network device.
  • the first carrier is a primary carrier of the M carriers.
  • the first carrier carries the first identifier sent by the communications device, where the first identifier is used to indicate that the carrier carried by the first identifier carries the first information.
  • a plurality of devices including the communications device may use the first carrier to transmit cross-carrier scheduling information.
  • the first carrier may carry the first identifier sent by multiple devices.
  • the first carrier may be used by the communications device to send the first information.
  • the first carrier may only carry the first identifier sent by the communications device.
  • the sending, by the communications device, the first information by using the first carrier the communications device sending the first identifier by using the first carrier, The first information, where the first identifier is used to indicate that the carrier carried by the first identifier carries the first information.
  • the first identifier is carried in a resource reservation field in the bypass control information SCI, or, optionally, the first The MCS field of the adjustment and coding mode carried in the SCI is identified.
  • the receiving device may determine, as the carrier for carrying the first information, the carrier carrying the first identifier in the M carriers.
  • the first carrier carries a synchronization signal
  • the carrier of the M carriers is other than the first carrier.
  • the synchronization signal is not carried.
  • the sending, by the communications device, the first information by using the first carrier, the communications device sending the first identifier by using the first carrier And a synchronization signal, and the synchronization signal is not transmitted on the M carriers other than the first carrier.
  • the receiving device can determine the carrier carrying the synchronization signal among the M carriers as the carrier for carrying the first information.
  • the synchronization signal carried on the first carrier corresponds to a specified first sequence, where the first sequence is used to indicate
  • the carrier carried by the synchronization signal corresponding to the first sequence carries the first information.
  • the first sequence includes a bypass primary synchronization signal sequence or a bypass secondary synchronization signal sequence.
  • the receiving device can easily determine the carrier carrying the first information based on the foregoing solution, and further, the receiving device does not need to perform blind detection on each carrier to acquire the first information, so that the communication efficiency can be further improved. And reduce the processing load of the receiving device.
  • the location of the first time-frequency resource on the N carriers is pre-configured, and the first time-frequency resource is The time-frequency resource used by the communication device to transmit data.
  • the location of the first time-frequency resource on the N carriers is determined according to information of the communications device, where the The time-frequency resource is a time-frequency resource used by the communication device to transmit data.
  • the locations of the first time-frequency resources on the N carriers are the same.
  • the processor is further configured to control the transceiver to send the second information by using the first carrier, where the second information is used by And indicating a location of the first time-frequency resource on the first carrier, where the first time-frequency resource is a time-frequency resource used by the communications device to send data, where the location of the first time-frequency resource on the N carriers is The locations of the first time-frequency resources on the first carrier are the same.
  • the “location of time-frequency resources” may refer to a time domain location of time-frequency resources.
  • the location of the time-frequency resource may refer to the frequency domain location of the time-frequency resource.
  • the second information is specifically used to indicate an offset of a location of the first time-frequency resource with respect to a reference location.
  • the processor is further configured to control the transceiver to send N third information by using the first carrier; or the communication device passes The N carriers transmit N pieces of third indication information, where the N carriers are in one-to-one correspondence with the N pieces of third indication information, and each third information is used to indicate the first time-frequency resource on the corresponding carrier.
  • the first time-frequency resource is a time-frequency resource used when the communication device sends data.
  • each third information is specifically used to indicate a location of the first time-frequency resource on the corresponding carrier relative to the reference location The offset.
  • the reference location is a location specified by the communication system.
  • the reference location is a pre-configured location.
  • the reference location is a location of a network device configuration.
  • the reference location is a location of a first time-frequency resource on a second one of the N carriers.
  • the second carrier is a carrier specified by the communication system.
  • the second carrier is a pre-configured carrier.
  • the second carrier is a carrier configured by the network device.
  • the second carrier is a primary carrier of the N carriers.
  • the second carrier carries a synchronization signal, and the carriers of the N carriers other than the second carrier are not The synchronization signal is carried, wherein the location of the first time-frequency resource on the carrier carrying the synchronization signal is a reference location.
  • the synchronization signal carried on the second carrier corresponds to a specified second sequence, where the second sequence is used to indicate The location of the first time-frequency resource on the carrier carried by the synchronization signal corresponding to the second sequence is a reference time domain location.
  • the N third information is carried in the bypass control information SCI.
  • each third information is carried in a medium access control MAC control unit of a data packet carried by the corresponding carrier CE.
  • the first information is carried in the bypass control information SCI.
  • the second information is carried in the medium access control MAC control unit CE.
  • the communications device is a terminal device.
  • the communications device is a network device.
  • the communication system is a vehicle networking system.
  • a fourth aspect provides a communication device, including: a transceiver, configured to receive or transmit data or information; and a processor, configured to control the transceiver to receive first information from the first device by using the first carrier, the first The information is used to indicate that the first device sends data by using N carriers of the M carriers, where N is an integer greater than or equal to 2, and N is less than or equal to M; and is used to control the transceiver to pass the N One or more carriers in the carrier receive data from the first device.
  • the first information is used to indicate the plurality of carriers used by the transmitting device to transmit data by causing the transmitting device to transmit the first information on one carrier, thereby eliminating the need for the receiving device to perform blind detection on each carrier. Further, it is possible to determine whether or not each carrier is used by the transmitting device based on the first information, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • the M carriers are carriers supported by a communication system in which the first device is located, and M is an integer greater than or equal to 2.
  • the first device may support (or can use) all of the M carriers.
  • the first device may also support a part of the M carriers.
  • the N carriers may be all carriers that the first device can support among the M carriers.
  • the N carriers may also be part of the M carriers that the first device can support.
  • the first information is specifically used to indicate whether each carrier of the M carriers except the first carrier includes the first
  • the first time-frequency resource is a time-frequency resource used when the first device transmits data.
  • the first information includes M-1 bits, and the M-1 bits are in one-to-one correspondence with the M-1 carriers.
  • the bit is used to indicate whether the corresponding carrier includes the first time-frequency resource, and the M-1 carriers are carriers other than the first carrier of the M carriers.
  • M is 8, and the first information includes 7 bits.
  • the first information is further used to indicate that the carrier carrying the first information belongs to a carrier used when transmitting the transmission data.
  • the first information is further used to indicate that the carrier carrying the first information does not belong to a carrier used when transmitting the transmission data.
  • the first information is specifically used to indicate whether each of the M carriers includes a first time-frequency resource, where the first time-frequency resource is The time-frequency resource used by the first device to transmit data.
  • the first information includes M bits, where the M bits are in one-to-one correspondence with the M carriers, and each bit is used to indicate the corresponding Whether the carrier includes the first time-frequency resource.
  • the first carrier is a carrier specified by the communications system.
  • the first carrier is a pre-configured carrier.
  • the first carrier is a carrier configured by a network device.
  • the first carrier is a primary carrier of the M carriers.
  • the first carrier carries the first identifier sent by the first device, where the first identifier is used to indicate the The carrier carried by the first identifier carries the first information.
  • the processor is further configured to determine, as the first carrier, a carrier that carries the first identifier sent by the first device in the M carriers.
  • the first identifier is pre-configured.
  • the first identifier is configured by the network device.
  • a plurality of devices including the first device may use the first carrier to transmit cross-carrier scheduling information.
  • the first carrier may carry the first identifier sent by multiple devices.
  • the first carrier may be used by the first device to send the first information.
  • the first carrier may only carry the first identifier sent by the first device.
  • the first identifier is carried in a resource reservation field in the bypass control information SCI.
  • the first identifier is carried in an adjustment and coding mode MCS field in the SCI.
  • the receiving device may determine, as the carrier for carrying the first information, the carrier carrying the first identifier in the M carriers.
  • the first carrier carries a synchronization signal
  • the M carriers are other than the first carrier.
  • the synchronization signal is not carried.
  • the method further includes: determining, by the communications device, the carrier carrying the synchronization signal in the M carriers as the first carrier .
  • the first device transmits the synchronization signal only on the first carrier, or does not carry the synchronization signal in the carrier other than the first carrier.
  • the receiving device can determine the carrier carrying the synchronization signal among the M carriers as the carrier for carrying the first information.
  • the synchronization signal carried on the first carrier corresponds to a specified first sequence, where the first sequence is used to indicate
  • the carrier carried by the synchronization signal corresponding to the first sequence carries the first information.
  • the processor is further configured to determine, as the first carrier, a carrier that carries the synchronization signal corresponding to the first sequence among the M carriers.
  • the first sequence includes a bypass primary synchronization signal sequence or a bypass secondary synchronization signal sequence.
  • the receiving device can easily determine the carrier carrying the first information based on the foregoing solution, and further, the receiving device does not need to perform blind detection on each carrier to acquire the first information, so that the communication efficiency can be further improved. And reduce the processing load of the receiving device.
  • the location of the first time-frequency resource on the N carriers is specified by the communications system
  • the first time-frequency A resource is a time-frequency resource used by the first device to transmit data.
  • the location of the first time-frequency resource on the N carriers is determined according to information of the first device, where
  • the first time-frequency resource is a time-frequency resource used when the first device sends data.
  • the locations of the first time-frequency resources on the N carriers are the same.
  • the method further includes: receiving, by the communications device, the second information from the first device by using the first carrier, where The second information is used to indicate the location of the first time-frequency resource on the first carrier, where the first time-frequency resource is a time-frequency resource used by the first device to send data, where the first time on the N carriers
  • the location of the frequency resource is the same as the time domain location of the first time-frequency resource on the first carrier.
  • the second information is specifically used to indicate an offset of a location of the first time-frequency resource with respect to a reference location.
  • the processor is further configured to control, by the transceiver, the N The third information; or the processor is further configured to control the transceiver to receive one or more third indication information of the N from the first device by using one or more carriers of the N carriers; wherein the N The carrier is in one-to-one correspondence with the N pieces of third indication information, where the third information is used to indicate the location of the first time-frequency resource on the corresponding carrier, where the first time-frequency resource is used when the first device sends data. Time-frequency resources.
  • each third information is specifically used to indicate a location of the first time-frequency resource on the corresponding carrier relative to the reference location The offset.
  • the reference location is a time domain location specified by the communication system.
  • the reference location is a location of a first time-frequency resource on a second carrier of the N carriers, where The second carrier is a carrier specified by the communication system.
  • the second carrier is a primary carrier of the N carriers.
  • the second carrier carries a synchronization signal, and the carriers of the N carriers other than the second carrier are not The synchronization signal is carried, wherein the location of the first time-frequency resource on the carrier carrying the synchronization signal is a reference time domain location.
  • the synchronization signal carried on the second carrier corresponds to a specified second sequence, where the second sequence is used to indicate the The location of the first time-frequency resource on the carrier on which the synchronization signal corresponding to the second sequence is carried is the reference time domain location.
  • the N third information is carried in the bypass control information SCI.
  • each third information is carried in a medium access control MAC control unit CE of a data packet carried by the corresponding carrier .
  • the first information is carried in the bypass control information SCI.
  • the first information is carried in the medium access control MAC control unit CE.
  • the second information is carried in the bypass control information SCI.
  • the second information is carried in the medium access control MAC control unit CE.
  • the first device is a terminal device or a network device
  • the communication device is a terminal device or a network device.
  • the communication system is a vehicle networking system.
  • a communication apparatus comprising means for performing the steps of the communication method of the first aspect and its implementations described above.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (eg, a terminal device or a network device, etc.), and the communication device can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device eg, a terminal device or a network device, etc.
  • the communication device can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication apparatus comprising means for performing the steps of the communication method of the second aspect and the implementations of the second aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (eg, a terminal device or a network device, etc.), and the communication device can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device eg, a terminal device or a network device, etc.
  • the communication device can include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first aspect and Communication methods in various possible implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication device comprising: a processor, a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the second aspect and Communication methods in various implementations.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a ninth aspect there is provided a communication system, the communication device according to the seventh aspect and the eighth aspect.
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction) that, when executed, causes the computer to perform the first aspect or A method in any of the possible implementations of the two aspects.
  • a computer program also referred to as a code, or an instruction
  • a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform the first aspect described above or The method of any of the possible implementations of the second aspect.
  • a computer program which may also be referred to as a code, or an instruction
  • a chip system comprising a memory and a processor for storing a computer program for calling and running the computer program from the memory such that the communication device on which the chip system is installed performs The method of any one of the first aspect or the second aspect described above.
  • the chip system may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the first information is used to indicate the multiple carriers used by the sending device to send data, so that the receiving device does not need to perform blind detection on each carrier, but can be based on the first information.
  • the information determines whether each carrier is used by the transmitting device, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • FIG. 1 is a schematic flow chart of an example of a communication system to which the method of transmitting data of the present application is applied.
  • FIG. 2 is a schematic flow chart of another example of a communication system to which the method of transmitting data of the present application is applied.
  • FIG. 3 is a schematic interaction diagram of a method of transmitting data of the present application.
  • FIG. 4 is a schematic diagram showing an example of first information of the present application.
  • FIG. 5 is a schematic diagram of another example of the first information of the present application.
  • FIG. 6 is a schematic diagram of cross-carrier scheduling of the present application.
  • Fig. 7 is a schematic block diagram showing an example of an apparatus for transmitting data of the present application.
  • FIG. 8 is a schematic block diagram of another example of an apparatus for transmitting data of the present application.
  • FIG. 9 is a schematic block diagram of an example of a terminal device of the present application.
  • FIG. 10 is a schematic block diagram of an example of a network device of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • V2N Vehicle to Network
  • the execution body (ie, the first device) of the method for transmitting data of the present application may be a terminal device or a network device.
  • the terminal device may also be called a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication device. , user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem
  • in-vehicle device car networking terminal
  • computer laptop
  • handheld communication device handheld Computing devices
  • satellite wireless devices wireless modem cards
  • STBs set top boxes
  • CPE customer premise equipment
  • next generation communication systems For example, a terminal device in a 5G network or a terminal device in a future evolved Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the network device can include an access network device or a core network device.
  • the access network device may be a device for communicating with the mobile device, such as an access network device, and the access network device may be an access point (AP) in the WLAN, and a base station in the GSM or CDMA (Base Transceiver) Station, BTS), may also be a base station (NodeB, NB) in WCDMA, or a gNB in a new radio system (NR) system, or an evolved base station (LTE) in LTE or eNodeB), or a relay station or access point, or a Roadside Unit (RSU), or an in-vehicle device, a wearable device, and an access network device in a future 5G network or an access network device in a future evolved PLMN network Wait.
  • AP access point
  • BTS Base Transceiver
  • NodeB, NB base station in WCDMA
  • a gNB in a new radio system (NR) system
  • NR new radio system
  • LTE evolved base station
  • RSU Roadside Unit
  • the access network device provides a service for the cell
  • the terminal device communicates with the access network device by using a transmission resource (for example, a time-frequency resource, a frequency resource, or a spectrum resource) used by the cell
  • the cell may be a cell corresponding to an access network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell. Micro cell, Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the carrier concept in the embodiment of the present invention is the same as the carrier concept in carrier aggregation, and can also be understood as a band, a sub-band, and a bandwidth (BWP).
  • a channel, a sub-channel, or a piece of spectrum resource, etc. appears as a set of subcarriers in the frequency domain.
  • Different carriers or frequency bands may have different center frequency points; they may also have the same center frequency point, such as bands with different bandwidths but the same center frequency point.
  • the core network device can be connected to multiple access network devices for controlling the access network device, and can distribute data received from the network side (for example, the Internet) to the access network device.
  • the network side for example, the Internet
  • terminal device the access network device, and the core network device listed above are merely exemplary, and the present invention is not limited thereto.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present invention, as long as it can be provided according to the embodiment of the present invention by running a program for recording the code of the method provided by the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present invention may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the application program of the communication method of the embodiment of the present invention is used to control the receiving device to complete the received data.
  • the corresponding action application can be a different application.
  • the system 100 includes an access network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • access network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception (eg, processor, modulator, complex) Consumer, demodulator, demultiplexer or antenna, etc.).
  • Access network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that the access network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of the access network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the coverage area of the access network device 102.
  • the access network device can transmit signals to all of the terminal devices in its corresponding sector by single antenna or multi-antenna transmit diversity.
  • the transmit antenna of the access network device 102 can also utilize beamforming to improve the forward links 118 and 124. Signal to noise ratio.
  • the access network device 102 utilizes beamforming to selectively distribute the terminal devices 116 and 122 in the associated coverage area as compared to the manner in which the access network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity.
  • beamforming When transmitting a signal, mobile devices in neighboring cells are subject to less interference.
  • the access network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • FIG. 1 is only a simplified schematic diagram of an example, and the network may also include other access network devices, which are not shown in FIG.
  • the network device in the network or the network device in the PLMN network in the future is not limited in this embodiment.
  • the method of transmitting data of the present application can be applied to a vehicle networking system, and the research scope of the vehicle networking (V2X) includes vehicle-to-vehicle (V2V) communication, vehicle-to-person (V2P) communication, and vehicle and infrastructure networks. (V2I) communication. Communication in V2X can be implemented either based on the Sidelink interface or on the Uu interface.
  • the vehicle network system can support up to 8 PC5 carriers, wherein PC5 is a carrier aggregation in the protocol architecture for reference points between devices and UEs for inter-device discovery and inter-device communication.
  • FIG. 2 depicts a schematic diagram of a car-networked communication system in which terminals can communicate directly through a sidelink interface, and when the terminal is within the signal coverage of a network device, such as a base station, the terminal can communicate with the base station.
  • a network device such as a base station
  • the vehicle network system can include the following three multi-carrier usage scenarios:
  • Scenario 1 Multiple Medium Access Control Protocol Data Units (MAC PDUs) are transmitted in parallel.
  • "parallel" transmission includes transmission at different or different times on different carriers.
  • the MAC PDUs transmitted on each carrier are loaded differently;
  • Scenario 2 The same data packet is transmitted in parallel on different carriers. Among them, "parallel" transmission includes transmission at different or different times on different carriers.
  • Scenario 3 Capacity increase from the perspective of the receiving device. From the perspective of the receiving device, it is assumed that it can be received simultaneously on multiple carriers. From the perspective of the transmitting device, it can be sent on a group of carriers. For example, a certain UE is sent on a single carrier (the carrier may be different for each UE), but can be received on all carriers. In this case, the receiving UE can discover more other UEs, which means that the channel capacity increases.
  • the UE transmits the Sidelink Control Information (SCI) and the data on only one carrier, where the bypass control information is transmitted on the Physical Sidelink Control Channel (PSCCH). Data is transmitted on a Physical Sidelink Shared Channel (PSSCH).
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the bypass control information and the data (Data) always appear in pairs, that is, each Data packet transmitted on the PSSCH has corresponding control information transmitted on the PSCCH to indicate the transmission of the data packet.
  • Resources in the future V2X evolution technology, there may be no one-to-one correspondence between the bypass control information and the data. For example, there may be common control information, but it does not indicate the transmission resource of a specific data packet.
  • the data is a generalized concept, which may represent control information transmitted on the control channel, may also represent data transmitted on the shared channel, and may also represent the control channel. Control information transmitted on the shared channel and data transmitted on the shared channel.
  • the UE transmitting the SCI may be expressed as the UE transmitting the PSCCH (transmit the PSCCH), and the UE sending the data may be expressed as the UE transmitting the PSSCH (transmit the PSSCH). Therefore, in the embodiment of the present invention, the UE transmitting data may also be represented.
  • the UE transmits one of a PSCCH, a UE transmission PSSCH, a UE transmission PSCCH, and a UE transmission PSSCH.
  • the bypass control information sent by the UE only indicates the resources reserved by the UE when transmitting SCI and Data on the carrier for a certain period of time, and cannot indicate reserved resources on other carriers. Therefore, according to the current resource reservation indication method, when a certain UE transmits on multiple carriers, the receiving end needs to perform blind detection on multiple carriers to know whether the corresponding UE reserves resources on multiple carriers and Reserved resource location. For a terminal with limited receiving capability, it may be necessary to switch carriers, and blind handover may result in a decrease in receiving capability, because switching to a certain carrier may result in missing the information of the car network on another carrier.
  • the transmitting UE can Indicating its cross-carrier scheduling information can reduce blind detection and blind handover at the receiving end.
  • the UE can perform resource selection on the corresponding carrier according to the indication information, thereby It can reduce the energy consumption caused by listening on other carriers.
  • a large data packet may be transmitted on multiple carriers.
  • the transmitting UE needs to indicate cross-carrier scheduling information. In these scenarios, cross-carrier indication is required.
  • the solution of the present application can be applied to a multi-carrier transmission process of a car network system.
  • time-frequency resources for wireless communication used by the communication system 100 will be described in detail.
  • the time-frequency resource may include multiple dimensions such as a time domain, a frequency domain, a spatial domain, and a code domain.
  • a time-frequency resource can be divided into multiple time units in the time domain.
  • the plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present invention.
  • the time unit may include at least one of uplink (for example, uplink data) transmission, downlink information (for example, downlink data) transmission, and sidelink link information (for example, data on sidelink) transmission.
  • uplink for example, uplink data
  • downlink information for example, downlink data
  • sidelink link information for example, data on sidelink
  • the length of a time unit can be arbitrarily set, which is not specifically limited in the embodiment of the present invention.
  • one time unit may include one or more subframes.
  • one time unit may include one or more time slots.
  • one time unit may include one or more symbols.
  • one time unit may include one or more Transmission Time Intervals (TTIs).
  • TTIs Transmission Time Intervals
  • one time unit may include one or more short transmission time intervals (sTTIs).
  • sTTIs short transmission time intervals
  • the time-frequency resource may be divided into multiple carriers or multiple frequency bands in the frequency domain.
  • each carrier or frequency band can be divided into a plurality of subcarriers.
  • the time-frequency resource uniquely determined by one sub-carrier and one symbol may be referred to as a resource element (Resource Element, RE), and multiple REs in a predetermined time-frequency range and a frequency domain may form a resource block (Resource Block) , RB).
  • RE resource element
  • RE Block resource block
  • the “location of time-frequency resources” may refer to a time domain location and/or a frequency domain location of a time-frequency resource.
  • the method 200 can be applied to a communication system capable of using multiple carriers (ie, an example of M carriers), such as a vehicle networking system.
  • a communication system capable of using multiple carriers (ie, an example of M carriers), such as a vehicle networking system.
  • the method 200 may relate to a time-frequency resource used by the device #A (ie, an example of the first device) for transmitting data (ie, an example of the first time-frequency resource, hereinafter, for convenience of understanding and explanation, the time-frequency is recorded.
  • the indication process for resource #A may relate to a time-frequency resource used by the device #A (ie, an example of the first device) for transmitting data (ie, an example of the first time-frequency resource, hereinafter, for convenience of understanding and explanation, the time-frequency is recorded.
  • the indication process for resource #A may relate to a time-frequency resource used by the device #A (ie, an example of the first device) for transmitting data (ie, an example of the first time-frequency resource, hereinafter, for convenience of understanding and explanation, the time-frequency is recorded.
  • the indication process for resource #A may relate to a time-frequency resource used by the device #A (ie, an example of the first device) for transmitting data (ie, an example of the
  • the device #A may be a network device (for example, an access network device such as a base station), or the device #A may also be a terminal device such as an in-vehicle device or a mobile phone.
  • a network device for example, an access network device such as a base station
  • the device #A may also be a terminal device such as an in-vehicle device or a mobile phone.
  • the device #A may support communication based on all carriers in the M carrier carriers, or the device #A may support communication based on part of the M carrier carriers. This application is not specifically limited.
  • the device #A may determine N carriers from the M carriers in the period #a, where the N carriers may be the device #A transmitting data in the period #b (hereinafter, for ease of understanding and explanation, recorded as data #A)
  • the carrier used at the time that is, the time-frequency resource #A is distributed on the N carriers.
  • the time-frequency resource #A may include the time-frequency resource #Ai on the i-th carrier, i ⁇ [1 , N], that is, the time-frequency resource #A is composed of time-frequency resource #A1, time-frequency resource #A2, ... time-frequency resource #Ai... time-frequency resource #AN.
  • M is an integer greater than or equal to 2
  • N is an integer greater than or equal to 2
  • N is less than or equal to M.
  • the time period #a is no later than the time period #b.
  • the device #A can transmit the information #A (that is, an example of the first information) by the carrier #A (that is, an example of the first carrier) of the M carriers.
  • the information #A is used to indicate that the device #A transmits data (including at least one of control information and Data) through the N carriers. That is, the information #A can be used to indicate which of the M carriers are used as the carrier used when the device #A transmits data.
  • the data #A may be data transmitted by the terminal device to a receiving device.
  • the device #A may send the information #A to the receiving device in a unicast manner.
  • the above-mentioned transmission mode is only an exemplary description, and device #A may transmit the information #A in a unicast mode, a multicast mode, or a broadcast mode, as long as the receiving device capable of ensuring the data can receive the information.
  • #A can be, the application is not particularly limited.
  • the data #A may be data that is sent by the terminal device to the multiple receiving devices.
  • the device #A may send the information #A to the multiple receiving devices in a multicast manner or a broadcast manner.
  • the receiving device of the data may be a network device (for example, an access network device such as a base station), or the receiving device may also be a terminal device such as an in-vehicle device or a mobile phone.
  • a network device for example, an access network device such as a base station
  • the receiving device may also be a terminal device such as an in-vehicle device or a mobile phone.
  • the information #A includes M-1 bits, and the M-1 bits may be in one-to-one correspondence with M-1 carriers other than the carrier #A of the M carriers, where the information
  • the jth bit in the #A is used to indicate whether the carrier corresponding to the jth bit belongs to the N carriers, or the jth bit in the information #A is used to indicate that the jth bit corresponds to Whether the carrier is used by device #A to transmit data, j ⁇ [1, M-1].
  • the value of the jth bit may be 0.
  • the value of the jth bit may be 0.
  • the relationship between the value of the above enumerated bits and whether the carrier corresponding to the bit is used for transmitting data is merely an exemplary description, and the present invention is not limited thereto, for example, when the j-th bit corresponds to When the carrier belongs to the N carriers (or is used by the device #A to transmit data), the value of the jth bit may be 0; correspondingly, when the carrier corresponding to the jth bit does not belong to the N When the carrier (or the carrier corresponding to the jth bit is not used by the device #A for transmitting data), the value of the jth bit may be 1.
  • the number of carriers that the communication system can use can be 8, in which case the information #A can include 7 bits.
  • the carrier #A is the carrier #6, and if the carrier used by the device #A for transmitting data is the carrier #0, the carrier #2, the carrier #7, the information #A
  • the included bit can be 1010001.
  • the carrier #A is the carrier #1
  • the carrier used by the device #A for transmitting data is the carrier #0, the carrier #2, and the carrier #7
  • the information #A The included bit can be 1100001.
  • the carrier #A may belong to the N carriers or may not belong to the N carriers, and the present invention is not particularly limited. In this regard, in the embodiment of the present invention, whether the carrier #A belongs to the N carriers may be determined in the following manner.
  • the communication system or communication protocol may specify that the carrier #A (ie, the carrier carrying the first information) belongs to the N carriers (ie, the carrier used by the device that transmitted the first information to transmit data).
  • the communication system or communication protocol may specify that the carrier #A (ie, the carrier carrying the first information) does not belong to the N carriers (ie, the carrier that the device that transmitted the first information uses to transmit data).
  • Device #B may perform blind detection on carrier #A when receiving data to determine whether the carrier #A (ie, the carrier carrying the first information) belongs to the N carriers (ie, the first one is sent) The device of the information is used to transmit the carrier of the data).
  • the device #A Before using the carrier #A to transmit data, the device #A may send the information #B through the carrier #A, where the information #B is used to indicate that the carrier #A is occupied by the time-frequency resource of the device #A, and thus, the device #B can determine whether the carrier #A (that is, the carrier carrying the first information) belongs to the N carriers according to whether the information #B carries the information #B (that is, the first information is sent).
  • the carrier used by the device to send data may be used by the device to send data).
  • the information #B may be carried in a Media Access Control (MAC) Control Element (CE) in a data packet, where the data packet may be device #A A packet formed by encapsulating the data to be transmitted.
  • the information #B can be carried in the SCI.
  • the information #A can be carried in the SCI.
  • the information #A may use some or all of the bits in the SCI, for example, 7 of the reserved bits in the SCI.
  • the information #A includes M bits, and the M bits may be in one-to-one correspondence with the M carriers, wherein the jth bit in the information #A is used to indicate the jth bit Whether the corresponding carrier belongs to the N carriers, or the j-th bit in the information #A is used to indicate whether the carrier corresponding to the j-th bit is used by the device #A to transmit data, j ⁇ [1, M].
  • the value of the jth bit may be 1; correspondingly, when the carrier corresponding to the jth bit does not belong to the N carriers (or when the carrier corresponding to the jth bit is not used by the device #A to transmit data), The value of the jth bit can be zero.
  • the relationship between the value of the above enumerated bits and whether the carrier corresponding to the bit is used for transmitting data is merely an exemplary description, and the present invention is not limited thereto, for example, when the j-th bit corresponds to When the carrier belongs to the N carriers (or is used by the device #A to transmit data), the value of the jth bit may be 0; correspondingly, when the carrier corresponding to the jth bit does not belong to the N The number of bits of the jth bit may be one when the carrier (or not used by the device #A for transmitting data).
  • the number of carriers that the communication system can use can be 8, in which case the information #A can include 8 bits.
  • the information #A can be carried in the SCI.
  • the information #A may use some or all of the bits reserved in the SCI, for example, 8 bits in the reserved bits in the SCI.
  • each carrier of the M carriers may be assigned a unique identifier.
  • the information #A can include an identification of each of the N carriers. Further, after receiving the information #A, the device #B can determine the N carriers based on the N identifiers included in the information #A, and further, it can be determined that the device #A needs to transmit data through the N carriers.
  • the information #A may include an identifier of the M-N carriers other than the N carriers among the M carriers. Further, after receiving the information #A, the device #B may determine the MN carriers based on the MN identifiers included in the information #A, and further, may determine that the carrier used by the device #A is M carriers. N carriers other than the MN carriers.
  • the information #A can be carried in the SCI.
  • the information #A can occupy some or all of the bits in the SCI.
  • the carrier #A may be determined by at least one of the following manners.
  • the carrier #A may be a carrier specified by a communication system or a communication protocol.
  • the communication system or the communication protocol may configure one of the M carriers as a scheduling carrier, and the scheduling carrier may be used to carry information sent by the sending device to indicate a carrier used when the transmitting device sends data, for example, The above information #A, whereby the device #A can determine the scheduled carrier as the carrier #A, and the device #B can detect the information #A transmitted by the device #A on the scheduled carrier.
  • the carrier #A may be the primary carrier of the M carriers.
  • the primary carrier may be a common carrier configured by the communication system.
  • the network device may group L terminals to determine K (K ⁇ L) device groups, where K carriers of the M carriers may have the K device groups. a first mapping relationship, wherein the kth carrier of the K carriers is used to carry the first information (for example, the information #A) sent by the device in the device group corresponding to the kth carrier, where the A message can be used to indicate information about the carrier used by the device when transmitting data, k ⁇ [1, K].
  • the device #A and the device #B can determine the device group to which the device #A belongs (for convenience of understanding and explanation, denoted as device group #A), and determine the device group #A according to the above mapping relationship.
  • Corresponding carrier, and the carrier corresponding to the device group #A is used as the carrier #A.
  • the device #A may determine any one of the M carriers as the carrier #A.
  • At least one of the following processing methods may be employed.
  • the communication system or communication protocol may specify an identification # ⁇ (ie, an example of the first identification).
  • the identifier # ⁇ may have the following function: when a certain device receives the identifier # ⁇ , the device may determine that the carrier carrying the identifier # ⁇ carries the indication information of the carrier used when the transmitting device transmits data, that is, The carrier carrying the identifier # ⁇ may be determined as a scheduling carrier.
  • the device #A can transmit the identifier # ⁇ through the carrier #A, so that when the device #B detects the identifier # ⁇ in the carrier #A, it can be determined that the carrier #A carries the above information #A. .
  • the identifier # ⁇ may be carried in a resource reservation field (or may also be referred to as a “domain”) in the SCI, in which case the value of the identifier # ⁇ may be This includes but is not limited to one of "1101", “1110” or "1111".
  • the identifier # ⁇ can be carried in a Modulation and Coding Scheme (MCS) field in the SCI.
  • MCS Modulation and Coding Scheme
  • the value of the MCS used when transmitting data may be a default value specified by the communication system or the communication protocol.
  • the identifier # ⁇ may be indicated by the transmitting device transmitting the information #A only on a specific carrier (eg, carrier #A), that is, the transmitting device does not transmit the information #A on a carrier other than the specific carrier. Therefore, when the device #B detects the information #A on the carrier #A, it can be determined that the transmitting device indicates the implicit information identifier # ⁇ by transmitting the information #A on the carrier #A, thereby determining that the carrier is the scheduling of the transmitting device.
  • Carrier ie carrier #A.
  • the transmission manner of the identifier # ⁇ understood above is merely an exemplary description, and the present application is not particularly limited.
  • the identifier # ⁇ may also be separately transmitted as independent information.
  • the communication system or the communication protocol may specify that the transmitting device transmits the synchronization only on the scheduling carrier (ie, the carrier carrying the first information, the first information is used to indicate the carrier used by the transmitting device to transmit data).
  • the signal, ie, the synchronization signal is not transmitted on the non-scheduled carrier (ie, the first information is not carried).
  • the device #A can transmit the synchronization signal on the carrier #A, so that when the device #B detects the synchronization signal in the carrier #A, it can be determined that the device #A is in the partial data transmitted by the carrier #A. Carry the above information #A.
  • the communication system or communication protocol may specify a particular sequence # ⁇ (i.e., an example of the first sequence).
  • the identifier # ⁇ may have the following function: when a certain device receives the synchronization signal (or reference signal) corresponding to the identifier # ⁇ , the device may determine that the carrier carrying the synchronization signal corresponding to the identifier # ⁇ carries the transmission.
  • the indication information of the carrier used when the device transmits data, that is, the carrier carrying the synchronization signal corresponding to the identifier # ⁇ may be determined as the scheduling carrier.
  • the synchronization signal may be a Primary Sidelink Synchronization Signal (PSSS), in which case the sequence # ⁇ may be a sequence for generating the PSSS.
  • PSSS Primary Sidelink Synchronization Signal
  • the synchronization signal may be a Secondary Sidelink Synchronization Signal (SSSS).
  • the sequence # ⁇ may be a sequence for generating the SSSS.
  • the carrier #A may belong to the N carriers, that is, the carrier #A may be a carrier used when the device #A transmits data.
  • the carrier #A may not belong to the N carriers, that is, the device #A does not use the carrier #A when transmitting data.
  • device #A may also send information #C on carrier #A, which may be used to indicate whether the carrier #A is used by device #A to send data.
  • the information #C and the information #A are carried in the same message or information, for example, the information #C and the information #A can be carried in different fields in the SCI.
  • the information #C and the information #A may also be carried in different messages or information.
  • the information #A may be carried in the SCI
  • the information #C may be carried in the MAC CE of the data packet.
  • the communication system or the communication protocol may specify that the carrier carrying the first indication information is used by the transmitting device to transmit data.
  • the carrier may be determined. A is used by device #A to send data.
  • the communication system or the communication protocol may specify that the carrier carrying the first indication information cannot be used by the transmitting device to transmit data.
  • the carrier may be determined. #A will not be used by device #A to send data.
  • the device #A may also send the information #D (ie, the second indication information), where the information #D may be used to indicate the time-frequency of the N carriers used by the device #A to transmit data.
  • the location of the resource ie, the time-frequency resource #A1, the time-frequency resource #A2, ..., the time-frequency resource #Ai, ..., the time-frequency resource #AN).
  • the location of the time-frequency resource may refer to a time domain location of the time-frequency resource, for example, a subframe, a time slot, or a symbol corresponding to the time-frequency resource.
  • the location of the time-frequency resource may refer to a frequency domain location of the time-frequency resource, for example, a sub-carrier corresponding to the time-frequency resource.
  • the location of the time-frequency resource may refer to a frequency domain location and a time domain location of the time-frequency resource, for example, a resource element (Resource Element, RE), a resource block (Resource Block, RB), and a resource corresponding to the time-frequency resource.
  • Resource Element Group REG
  • Resource Block Group RBG
  • the information #D may be sent in any of the following manners.
  • the information #D may be carried in control information (for example, SCI).
  • the information #A and the information #D may be carried in the same message or information.
  • the information #D and the information #A may be carried in different fields in the SCI, that is, the information #D and the information # A can be transmitted by the device #A in S210.
  • the information #D and the information #A may be separately transmitted by the device #A in different steps.
  • the information #D and the information #A may also be carried in different fields, domains, or information, and the present invention is not particularly limited.
  • the location of the time-frequency resource unit used by the device #A to transmit data on each of the N carriers may be the same.
  • the information #D may only indicate the location of the same time-frequency resource.
  • the information #D may include N pieces of sub-information and the N time-frequency resources (ie, the time-frequency resource #A1, the time-frequency resource #A2, ..., the time-frequency resource #Ai, ..., The time-frequency resource #AN) is one-to-one correspondence, and each sub-information is used to indicate the location of the corresponding time-frequency resource.
  • the information #D may be carried in the MAC CE of the data packet.
  • the device #A may transmit the information #D on the MAC CE of the packet transmitted on the carrier #A; or the device #A may carry the information #D in the data packet in the S220 described later.
  • the location of the time-frequency resource unit used by the device #A to transmit data on each of the N carriers may be the same.
  • the information #D may only indicate the location of the same time-frequency resource.
  • the information #D may include N pieces of sub-information and the N time-frequency resources (ie, the time-frequency resource #A1, the time-frequency resource #A2, ..., the time-frequency resource #Ai, ..., The time-frequency resource #AN) is one-to-one correspondence, and each sub-information is used to indicate the location of the corresponding time-frequency resource.
  • the N sub-information may be carried in the same MAC CE, where the same MAC CE may be the MAC CE in the data packet sent by the device A carried on any one of the N carriers, or the same The MAC CE may be the MAC CE in the data packet sent by the device A carried on the carrier #A.
  • the N pieces of sub-information may be carried in different MAC CEs.
  • the nth sub-information may be carried in the MAC CE of the data packet on the carrier to which the time-frequency resource corresponding to the n-th sub-information belongs, and n belongs to [1] , N].
  • the information #D may indicate at least one of the following contents.
  • the time-frequency resource is in the system frame number (SFN) period or the direct frame number (DFN) period, for example, the subframe number of the subframe in which a certain time-frequency resource is carried.
  • SFN system frame number
  • DNN direct frame number
  • the offset of the time-frequency resource relative to the reference location for example, the time domain offset of the time-frequency location of a certain time-frequency resource relative to the reference time domain location.
  • the reference location may be the location of the time-frequency resource used by the device #A on the carrier #B.
  • the carrier #B may be any of the N carriers, or the carrier #B may be the same carrier as the carrier #A, and the present invention is not particularly limited.
  • the present application can provide at least the following processing methods:
  • the communication system or communication protocol may specify an identification # ⁇ (ie, an example of the second identification).
  • the identifier # ⁇ may have the following function: When a certain device receives the identifier # ⁇ , the device may determine the position of the time-frequency resource used by the transmitting device among the carriers carrying the identifier # ⁇ as the reference position.
  • the device #A can transmit the identifier # ⁇ through the carrier #B, so that when the device #B detects the identifier # ⁇ in the carrier #B, it can be determined that the carrier #B is used by the device #A.
  • the location of the time-frequency resource is the reference location.
  • the identifier # ⁇ may be carried in a resource reservation field (or may also be referred to as a “domain”) in the SCI, in which case the value of the identifier # ⁇ may be This includes but is not limited to one of "1101", “1110” or "1111".
  • the identifier # ⁇ can be carried in a Modulation and Coding Scheme (MCS) field in the SCI.
  • MCS Modulation and Coding Scheme
  • the value of the MCS used when transmitting data may be a default value specified by the communication system or the communication protocol.
  • the transmission manner of the identifier # ⁇ understood above is merely an exemplary description, and the present application is not particularly limited.
  • the identifier # ⁇ may also be separately transmitted as independent information.
  • identifier # ⁇ and the identifier # ⁇ may be the same identifier or different identifiers, and the present invention is not particularly limited.
  • the communication system or communication protocol may specify that the transmitting device transmits the synchronization signal only on the carrier to which the time-frequency resource as the reference location belongs.
  • the device #A can transmit the synchronization signal through the carrier #B, so that when the device #B detects the synchronization signal in the carrier #B, the time-frequency resource used by the device #A in the carrier #B can be determined.
  • the location is the reference location.
  • the communication system or communication protocol may specify a particular sequence # ⁇ (i.e., an example of the first sequence).
  • the identifier # ⁇ may have the following function: when a certain device receives the synchronization signal (or reference signal) corresponding to the identifier # ⁇ , the device may determine that the carrier carrying the synchronization signal corresponding to the identifier # ⁇ is occupied by the transmitting device.
  • the location of the time-frequency resource is the reference location.
  • the synchronization signal can be a PSSS, in which case the sequence # ⁇ can be a sequence for generating the PSSS.
  • the synchronization signal can be an SSSS, in which case the sequence # ⁇ can be a sequence for generating the SSSS.
  • identifier # ⁇ and the identifier # ⁇ may be the same identifier or different identifiers, and the present invention is not particularly limited.
  • the device #B can accurately know the carrier used when the device #A transmits data based on the above-described information #A and information #D, and the time-frequency resource occupied by the device #A on the carrier used by the device #A (ie, The location of the reserved resource for the device #A.
  • device #A can transmit data on the reserved resources on the N carriers.
  • the device #B can receive the data on time-frequency resources determined based on the information #A and the information #D.
  • the device #A may further send the information #E, where the information #E may be used to indicate whether the device #A performs cross-carrier scheduling, that is, the information #E may be used to indicate the M Whether or not one of the carriers (for example, carrier #A) carries indication information (for example, information #A) for indicating a plurality of carriers used when the device #A transmits data.
  • the information #E may be used to indicate whether the device #A performs cross-carrier scheduling, that is, the information #E may be used to indicate the M Whether or not one of the carriers (for example, carrier #A) carries indication information (for example, information #A) for indicating a plurality of carriers used when the device #A transmits data.
  • the information #E may occupy, for example, one bit in the SCI.
  • the bit when the bit is 1, it may indicate that the device #A performs cross-carrier scheduling.
  • the process described in the foregoing method 200 may be performed;
  • the bit When the bit is 0, it can be indicated that the device #A is not performing cross-carrier scheduling.
  • the transmission can be performed based on the prior art.
  • the format of the SCI of the present application may be different from the format of the SCI in the related art.
  • the device #A may send the information #F, which may be used to indicate whether the format of the SCI is different from the prior art, or the information #F may be used to indicate whether the above information is carried in the SCI# Part A or all of the information in A to #E.
  • the information #E may occupy, for example, one bit in the SCI.
  • the SCI may be used to use the format of the present application.
  • the SCI may be based on the related description in the method 200 above. Interpretation; when the bit is 0, it can indicate that the SCI has not changed. At this time, the SCI can be interpreted based on the prior art.
  • device #A indicates whether device #A performs cross-carrier scheduling by one bit in the SCI; if device #A performs cross-carrier scheduling, device #A carries information #A and information in MAC CE D, used to indicate the information of the carrier used by the device #A to transmit data and the time-frequency resource information on the corresponding carrier.
  • the transmitting device occupies the time-frequency resource #x in the carrier #X, the time-frequency resource #y on the carrier #Y, and the time-frequency resource #z in the carrier #Z, the data can be transmitted on the carrier.
  • the cross-carrier scheduling information (ie, an example of the first information) is transmitted on the #K, and the cross-carrier scheduling information may be used to instruct the transmitting device to use the carrier #X, the carrier #Y, and the carrier #Z to transmit data.
  • the first information is used to indicate the multiple carriers used by the transmitting device to transmit data by causing the transmitting device to transmit the first information on one carrier, thereby eliminating the need for the receiving device to perform each carrier.
  • Blind detection can determine whether each carrier is used by the transmitting device based on the first information, thereby improving the efficiency of communication and reducing the processing load of the receiving device.
  • the control information SCI may be replaced by Downlink Control Information (DCI) and transmitted on a Physical Downlink Control Channel (PDCCH), on the PSSCH.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the transmitted Data can be transmitted on the Physical Downlink Shared Channel (PDSCH) instead.
  • the device #B may receive data on a part of the N carriers, or may receive on all carriers of the N carriers.
  • the data is not particularly limited in the present invention.
  • FIG. 7 is a schematic diagram of an apparatus 10 for transmitting data according to an embodiment of the present application.
  • the communication apparatus 10 may be a transmitting device (for example, the above device #A), or may be a chip or a circuit.
  • a chip or circuit that can be placed on a transmitting device.
  • the communication device 10 can include a processor 11 (ie, an example of a processing unit) and a memory 12.
  • the memory 12 is for storing instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement the steps performed by the transmitting device (e.g., device #A) in the corresponding method of FIG.
  • the communication device 10 may further include an input port 13 (ie, an example of a communication unit) and an output port 14 (ie, another example of a communication unit).
  • the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 12 is configured to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the terminal device in the above method.
  • the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • the modules or units in the communication device 10 can be used to perform the operations or processes performed by the device #A in the above method. Here, in order to avoid redundancy, detailed descriptions thereof will be omitted.
  • FIG. 8 is a schematic diagram of an apparatus 30 for communication according to an embodiment of the present application.
  • the apparatus 30 may be a receiving device (for example, the above device #B), or may be a chip or a circuit. , such as a chip or circuit that can be placed in a receiving device.
  • the apparatus 30 can include a processor 31 (ie, an example of a processing unit) and a memory 32.
  • the memory 32 is for storing instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to perform the steps performed by the receiving device (e.g., device #B) in the aforementioned method.
  • the device 30 may further include an input port 33 (ie, an example of a communication unit) and an output port 33 (ie, another example of the processing unit).
  • the processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 32 is for storing a computer program that can be used to call and run the computer program from the memory 32.
  • the functions of the input port 33 and the output port 34 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 31 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
  • the modules or units in the communication device 30 can be used to perform the operations or processes performed by the receiving device in the above method. Here, in order to avoid redundancy, detailed descriptions thereof are omitted.
  • FIG. 9 is a schematic structural diagram of a terminal device 20 provided by the present application.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 201 of the terminal device 20, and the processor having the processing function is regarded as the processing unit 202 of the terminal device 20.
  • the terminal device 20 includes a transceiver unit 201 and a processing unit 202.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 201 is regarded as a sending unit, that is, the transceiver unit 201 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the terminal device shown in FIG. 9 can perform the operations performed by the transmitting device or the receiving device in the above method 200. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • FIG. 10 is a schematic structural diagram of a network device 40 according to an embodiment of the present application.
  • the network device 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs). 402.
  • the RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 402 can be used to control the base station 40 to perform the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
  • the BBU 402 also includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook or the like in the above embodiment.
  • the processor 4022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC System-on-chip
  • all or part of the functions of the 402 part and the 401 part may be implemented by the SoC technology, for example, by a base station function chip.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • FIG. 10 It should be understood that the structure of the network device illustrated in FIG. 10 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of base station architecture that may arise in the future.
  • the network device shown in FIG. 10 can perform the operations performed by the transmitting device or the receiving device in the above method 200. Here, in order to avoid redundancy, detailed description thereof will be omitted.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了传输数据的方法和装置以及通信设备,以方法为例,第一设备通过第一载波发送第一信息,该第一信息用于指示该第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;该第一设备通过该N个载波发送数据。从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。

Description

传输数据的方法和装置以及通信设备 技术领域
本申请涉及通信领域,并且,更具体地,涉及传输数据的方法和装置以及通信设备。
背景技术
目前已知一种通信技术,发送设备可以使用某一载波向接收设备发送数据,并且,在发送数据之前,可以向接收设备发送调度信息,该调度信息可以指示该发送设备使用的时频资源在该载波上的时频位置,从而,接收设备能够基于该调度信息确定该时频资源,从而能够使接收设备无需对该载波进行盲检测,进而提高了通信的效率,并减少了接收设备的处理负担。
随着通信技术的发展,通信系统提供的可用于无线通信的载波的数量增多,如果发送设备在通信系统提供的部分载波上进行数据传输,则基于现有的调度机制,接收设备需要确定每个载波上是否有调度信息,其后,基于调度信息接收数据。因此,接收设备需要对每个载波进行盲检测,以获取调度信息,从而,降低了通信的效率,增大了接收设备的处理负担。
发明内容
本申请提供一种传输数据的方法和装置,能够提高通信的效率,降低接收设备的处理负担。
第一方面,提供了一种传输数据的方法,该方法包括:第一设备通过第一载波发送第一信息,该第一信息用于指示该第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;该第一设备通过该N个载波发送数据。
根据本申请的传输数据的方法,通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
结合第一方面,在一种可能的实施方式中,该M个载波是该第一设备所处于的通信系统所支持的载波,M为大于或等于2的整数。
需要说明的是,第一设备可以支持(或者说,能够使用)该M个载波中的全部载波。
或者,该第一设备也可以支持该M个载波中的部分载波。
并且,该N个载波可以是该M个载波中该第一设备能够支持的全部载波。
或者,该N个载波也可以是该M个载波中该第一设备能够支持的部分载波。
结合第一方面及上述任意一种可能的实现方式,在第二种可能的实施方式中,该第一信息具体用于指示该M个载波中除该第一载波以外的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第一方面的第二种可能的实现方式,在第三种可能的实施方式中,该第一信息包括M-1个比特,该M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源,该M-1个载波是该M个载波中除该第一载波以外的载波。
通过预先规定第一载波是否被用于传输数据,无需另外传输用于指示为该第一载波是否用于传输数据的情况,从而,能够节约传输该第一信息的资源开销。
结合第一方面的第三种可能的实现方式,在第四种可能的实施方式中,M为8,该第一信息包括7个比特。
在例如车联网等通信系统中,可使用的载波的数量为8个,并且,该通信系统中的例如旁路控制信 息SCI中的预留比特的数量为7,因此,上述实施方式能够有效应用于车联网系统,能够进一步提高本申请的兼容性和实用性。
结合第一方面及上述任意一种可能的实现方式,在第五种可能的实施方式中,该第一信息还用于指示携带有该第一信息的载波属于发送设发送数据时使用的载波,或者,该第一信息还用于指示携带有该第一信息的载波不属于发送设发送数据时使用的载波。
从而,能够通过该第一信息指示第一载波是否被用于传输数据的情况,从而使得接收端能够正确接收信息。
结合第一方面,在第六种可能的实施方式中,该第一信息具体用于指示该M个载波中的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第一方面的第六种可能的实现方式,在第七种可能的实施方式中,该第一信息包括M个比特,该M个比特与M个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源。
结合第一方面及上述任意一种可能的实现方式,在第八种可能的实施方式中该第一载波是该通信系统规定的载波。
或者,该第一载波是预先配置的载波。
或者,该第一载波是由网络设备配置的载波。
或者,该第一载波是该M个载波中的主载波。
或者,该第一载波承载有该第一设备发送的第一标识,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
需要说明的是,包括该第一设备在内的多个设备可以使用该第一载波发送跨载波调度信息,此情况下,该第一载波上可以携带有多个设备发送的第一标识。
或者,该第一载波可以仅被该第一设备用于发送第一信息,此情况下,该第一载波上可以仅携带有该第一设备发送的第一标识。
结合第一方面及上述任意一种可能的实现方式,在第九种可能的实施方式中,第一设备通过第一载波发送第一信息包括,该第一设备通过该第一载波发送该第一标识和第一信息,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
结合第一方面的第九种可能的实现方式,在第十种可能的实施方式中,该第一标识承载于旁路控制信息SCI中的资源预留字段,或者,可选地,该第一标识承载于SCI中的调整与编码方式MCS字段。
从而,接收设备可以将M个载波中携带有第一标识的载波确定为用于承载第一信息的载波。
结合第一方面及上述任意一种可能的实现方式,在第十一种可能的实施方式中,该第一载波上承载有同步信号,且该M个载波中除该第一载波以外的载波上未承载同步信号。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实施方式中,第一设备通过第一载波发送第一信息包括,该第一设备通过该第一载波发送该第一标识和同步信号,并且不在该M个载波中除该第一载波以外的载波上发送同步信号。
从而,接收设备可以将M个载波中携带有同步信号的载波确定为用于承载第一信息的载波。
结合第一方面及上述任意一种可能的实现方式,在第十三种可能的实施方式中,该第一载波上承载的同步信号对应规定的第一序列,其中,该第一序列用于指示该第一序列对应的同步信号所承载于的载波中携带有第一信息。
结合第一方面的第十三种可能的实现方式,在第十四种可能的实施方式中,该第一序列包括旁路主同步信号序列或旁路辅同步信号序列。
从而,能够使接收设备基于上述方案容易地确定出携带有第一信息的载波,进而,无需接收设备对 每个载波进行盲检测以获取该第一信息,因此,能够进一步能够提高通信的效率,并降低接收设备的处理负担。
结合第一方面及上述任意一种可能的实现方式,在第十五种可能的实施方式中,该N个载波上的第一时频资源的位置是预配置的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第一方面及上述任意一种可能的实现方式,在第十六种可能的实施方式中,该N个载波上的第一时频资源的位置是根据该第一设备的信息确定的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第一方面及上述任意一种可能的实现方式,在第十七种可能的实施方式中,该N个载波上的第一时频资源的位置相同。
结合第一方面及上述任意一种可能的实现方式,在第十八种可能的实施方式中,该方法还包括:第一设备通过第一载波发送第二信息,该第二信息用于指示该第一载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源,其中,该N个载波上的第一时频资源的位置与该第一载波上的第一时频资源的位置相同。
其中,“时频资源的位置”可以是指时频资源的时域位置。
或者,“时频资源的位置”可以是指时频资源的频域位置。
结合第一方面的第十八种实现方式,在第十九种可能的实施方式中,该第二信息具体用于指示该第一时频资源的位置相对于参考位置的偏移量。
结合第一方面及上述任意一种可能的实现方式,在第二十种可能的实施方式中,该方法还包括:第一设备通过第一载波发送N个第三信息;或第一设备通过该N个载波发送N个第三指示信息;其中,该N个载波与该N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第一方面的第二十种实现方式,在第二十一种可能的实施方式中,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
结合第一方面的第二十一种实现方式,在第二十二种可能的实施方式中,该参考位置是通信系统规定的位置。
结合第一方面的第二十一种实现方式,在第二十三种可能的实施方式中,该参考位置是预配置的位置。
结合第一方面的第二十一种实现方式,在第二十四种可能的实施方式中,该参考位置是网络设备配置的位置。
结合第一方面的第二十一种实现方式,在第二十五种可能的实施方式中,该参考位置是该N个载波中的第二载波上的第一时频资源的位置。
结合第一方面的第二十五种实现方式,在第二十六种可能的实施方式中,该第二载波是该通信系统规定的载波。
结合第一方面的第二十五种实现方式,在第二十七种可能的实施方式中,该第二载波是预配置的载波。
结合第一方面的第二十五种实现方式,在第二十八种可能的实施方式中,该第二载波是网络设备配置的载波。
结合第一方面的第二十五种实现方式,在第二十九种可能的实施方式中,该第二载波是该N个载波中的主载波。
结合第一方面的第二十五种实现方式,在第三十种可能的实施方式中,该第二载波上承载有同步信 号,且该N个载波中除该第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置。
结合第一方面的第二十五种实现方式,在第三十一种可能的实施方式中,该第二载波上承载的同步信号对应规定的第二序列,其中,该第二序列用于指示该第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考时域位置。
结合第一方面及上述任意一种可能的实现方式,在第三十二种可能的实施方式中,该N个第三信息承载于旁路控制信息SCI中。
结合第一方面及上述任意一种可能的实现方式,在第三十三种可能的实施方式中,每个第三信息承载于所对应的载波所携带的数据包的媒体接入控制MAC控制单元CE中。
结合第一方面及上述任意一种可能的实现方式,在第三十四种可能的实施方式中,该第一信息承载于旁路控制信息SCI中。
结合第一方面及上述任意一种可能的实现方式,在第三十五种可能的实施方式中,该第二信息承载于媒体接入控制MAC控制单元CE中。
结合第一方面及上述任意一种可能的实现方式,在第三十六种可能的实施方式中,该第一设备为终端设备。
结合第一方面及上述任意一种可能的实现方式,在第三十七种可能的实施方式中,该第一设备为网络设备。
结合第一方面及上述任意一种可能的实现方式,在第三十八种可能的实施方式中,该通信系统为车联网系统。
第二方面,提供了一种传输数据的方法,包括:第二设备通过第一载波从第一设备接收第一信息,该第一信息用于指示该第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;该第二设备通过该N个载波中的一个或多个载波从该第一设备数据。
根据本申请的传输数据的方法,通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
结合第二方面,在一种可能的实施方式中,该M个载波是该第一设备所处于的通信系统所支持的载波,M为大于或等于2的整数。
需要说明的是,第一设备可以支持(或者说,能够使用)该M个载波中的全部载波。
或者,该第一设备也可以支持该M个载波中的部分载波。
并且,该N个载波可以是该M个载波中该第一设备能够支持的全部载波。
或者,该N个载波也可以是该M个载波中该第一设备能够支持的部分载波。
结合第二方面及上述任意一种可能的实现方式,在第二种可能的实施方式中,该第一信息具体用于指示该M个载波中除该第一载波以外的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第二方面的第二种实现方式,在第三种可能的实施方式中,该第一信息包括M-1个比特,该M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源,该M-1个载波是该M个载波中除该第一载波以外的载波。
从而,能够节约传输该第一信息的资源开销。
可选地,M为8,该第一信息包括7个比特。
结合第二方面及上述任意一种可能的实现方式,在第四种可能的实施方式中,该第一信息还用于指 示携带有该第一信息的载波属于发送设发送数据时使用的载波。或者,该第一信息还用于指示携带有该第一信息的载波不属于发送设发送数据时使用的载波。
结合第二方面,在第五种可能的实施方式中,该第一信息具体用于指示该M个载波中的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第二方面的第五种实现方式,在第六种可能的实施方式中,该第一信息包括M个比特,该M个比特与M个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源。
结合第二方面及上述任意一种可能的实现方式,在第七种可能的实施方式中,该第一载波是该通信系统规定的载波。
或者,该第一载波是预先配置的载波。
或者,该第一载波是由网络设备配置的载波。
或者,该第一载波是该M个载波中的主载波。
结合第二方面及上述任意一种可能的实现方式,在第八种可能的实施方式中,该第一载波承载有该第一设备发送的第一标识,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
此情况下,该方法还包括,该第二设备将该M个载波中携带有该第一设备发送的第一标识的载波,确定为该第一载波。
结合第二方面的第八种实现方式,在第九种可能的实施方式中,第一标识是预配置的。
或者,该第一标识是网络设备配置的。
需要说明的是,包括该第一设备在内的多个设备可以使用该第一载波发送跨载波调度信息,此情况下,该第一载波上可以携带有多个设备发送的第一标识。
或者,该第一载波可以仅被该第一设备用于发送第一信息,此情况下,该第一载波上可以仅携带有该第一设备发送的第一标识。
结合第二方面及上述任意一种可能的实现方式,在第十种可能的实施方式中,该第一标识承载于旁路控制信息SCI中的资源预留字段。
结合第二方面及上述任意一种可能的实现方式,在第十一种可能的实施方式中,该第一标识承载于SCI中的调整与编码方式MCS字段。
从而,接收设备可以将M个载波中携带有第一标识的载波确定为用于承载第一信息的载波。
结合第二方面及上述任意一种可能的实现方式,在第十二种可能的实施方式中,该第一载波上承载有同步信号,且该M个载波中除该第一载波以外的载波上未承载同步信号。
结合第二方面及上述任意一种可能的实现方式,在第十三种可能的实施方式中,该方法还包括,该第二设备将该M个载波中携带有同步信号的载波确定为第一载波。
即,第一设备仅在第一载波上发送同步信号,或者说,在除第一载波以外的载波中不携带同步信号。
从而,接收设备可以将M个载波中携带有同步信号的载波确定为用于承载第一信息的载波。
结合第二方面及上述任意一种可能的实现方式,在第十四种可能的实施方式中,该第一载波上承载的同步信号对应规定的第一序列,其中,该第一序列用于指示该第一序列对应的同步信号所承载于的载波中携带有第一信息。
此情况下,该方法还包括,该第二设备将该M个载波中携带有第一序列对应的同步信号的载波确定为第一载波。
结合第二方面及上述任意一种可能的实现方式,在第十五种可能的实施方式中,该第一序列包括旁路主同步信号序列或旁路辅同步信号序列。
从而,能够使接收设备基于上述方案容易地确定出携带有第一信息的载波,进而,无需接收设备对 每个载波进行盲检测以获取该第一信息,因此,能够进一步能够提高通信的效率,并降低接收设备的处理负担。
结合第二方面及上述任意一种可能的实现方式,在第十六种可能的实施方式中,该N个载波上的第一时频资源的位置是该通信系统规定的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第二方面及上述任意一种可能的实现方式,在第十七种可能的实施方式中,该N个载波上的第一时频资源的位置是根据该第一设备的信息确定的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第二方面及上述任意一种可能的实现方式,在第十八种可能的实施方式中,该N个载波上的第一时频资源的位置相同。
结合第二方面及上述任意一种可能的实现方式,在第十九种可能的实施方式中,该方法还包括:该第二设备通过该第一载波从该第一设备接收第二信息,该第二信息用于指示该第一载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源,其中,该N个载波上的第一时频资源的位置与该第一载波上的第一时频资源的时域位置相同。
结合第二方面的第十九实现方式,在第二十种可能的实施方式中,该第二信息具体用于指示该第一时频资源的位置相对于参考位置的偏移量。
结合第二方面及上述任意一种可能的实现方式,在第二十一种可能的实施方式中,该方法还包括:该第二设备通过该第一载波从该第一设备接收N个第三信息;或该第二设备通过该N个载波中的一个或多个载波从该第一设备接收N个中的一个或多个第三指示信息;其中,该N个载波与该N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第二方面的第二十一实现方式,在第二十二种可能的实施方式中,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
结合第二方面的第二十二实现方式,在第二十三种可能的实施方式中,该参考位置是该通信系统规定的时域位置。
结合第二方面的第二十二实现方式,在第二十四种可能的实施方式中,该参考位置是该N个载波中的第二载波上的第一时频资源的位置,其中,该第二载波是该通信系统规定的载波。
结合第二方面的第二十四实现方式,在第二十五种可能的实施方式中,该第二载波是该N个载波中的主载波。
结合第二方面的第二十四实现方式,在第二十六种可能的实施方式中,该第二载波上承载有同步信号,且该N个载波中除该第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考时域位置。
结合第二方面的第二十四实现方式,在第二十七种可能的实施方式中,该第二载波上承载的同步信号对应规定的第二序列,其中,该第二序列用于指示该第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考时域位置。
结合第二方面的第二十一实现方式,在第二十八种可能的实施方式中,该N个第三信息承载于旁路控制信息SCI中。
结合第二方面的第二十一实现方式,在第二十九种可能的实施方式中,每个第三信息承载于所对应的载波所携带的数据包的媒体接入控制MAC控制单元CE中。
结合第二方面及上述任意一种可能的实现方式,在第三十种可能的实施方式中,该第一信息承载于旁路控制信息SCI中。
或者,该第一信息承载于媒体接入控制MAC控制单元CE中
结合第二方面及上述任意一种可能的实现方式,在第三十一种可能的实施方式中,该第二信息承载于旁路控制信息SCI中。
或者,该第二信息承载于媒体接入控制MAC控制单元CE中。
结合第二方面及上述任意一种可能的实现方式,在第三十二种可能的实施方式中,该第一设备为终端设备或网络设备,该第二设备为终端设备或网络设备。
结合第二方面及上述任意一种可能的实现方式,在第三十三种可能的实施方式中,该通信系统为车联网系统。
第三方面,提供了一种通信设备,包括:收发器,用于接收或发送数据或信息;处理器用于控制该收发器通过第一载波发送第一信息,该第一信息用于指示该通信设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;并且,控制该收发器通过该N个载波发送数据。
根据本申请的通信设备,通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
结合第三方面,在一种可能的实施方式中,该M个载波是该通信设备所处于的通信系统所支持的载波,M为大于或等于2的整数。
需要说明的是,通信设备可以支持(或者说,能够使用)该M个载波中的全部载波。
或者,该通信设备也可以支持该M个载波中的部分载波。
并且,该N个载波可以是该M个载波中该通信设备能够支持的全部载波。
或者,该N个载波也可以是该M个载波中该通信设备能够支持的部分载波。
结合第三方面及上述任意一种可能的实现方式,在第二种可能的实施方式中,该第一信息具体用于指示该M个载波中除该第一载波以外的每个载波是否包括第一时频资源的情况,该第一时频资源是该通信设备发送数据时使用的时频资源。
结合第三方面的第二种可能的实现方式,在第三种可能的实施方式中,该第一信息包括M-1个比特,该M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源,该M-1个载波是该M个载波中除该第一载波以外的载波。
通过预先规定第一载波是否被用于传输数据,无需另外传输用于指示为该第一载波是否用于传输数据的情况,从而,能够节约传输该第一信息的资源开销。
结合第三方面的第三种可能的实现方式,在第四种可能的实施方式中,M为8,该第一信息包括7个比特。
在例如车联网等通信系统中,可使用的载波的数量为8个,并且,该通信系统中的例如旁路控制信息SCI中的预留比特的数量为7,因此,上述实施方式能够有效应用于车联网系统,能够进一步提高本申请的兼容性和实用性。
结合第三方面及上述任意一种可能的实现方式,在第五种可能的实施方式中,该第一信息还用于指示携带有该第一信息的载波属于发送设发送数据时使用的载波,或者,该第一信息还用于指示携带有该第一信息的载波不属于发送设发送数据时使用的载波。
从而,能够通过该第一信息指示第一载波是否被用于传输数据的情况,从而,减少接收端盲检测的处理负担。
结合第三方面,在第六种可能的实施方式中,该第一信息具体用于指示该M个载波中的每个载波是 否包括第一时频资源的情况,该第一时频资源是该通信设备发送数据时使用的时频资源。
结合第三方面的第六种可能的实现方式,在第七种可能的实施方式中,该第一信息包括M个比特,该M个比特与M个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源。
结合第三方面及上述任意一种可能的实现方式,在第八种可能的实施方式中该第一载波是该通信系统规定的载波。
或者,该第一载波是预先配置的载波。
或者,该第一载波是由网络设备配置的载波。
或者,该第一载波是该M个载波中的主载波。
或者,该第一载波承载有该通信设备发送的第一标识,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
需要说明的是,包括该通信设备在内的多个设备可以使用该第一载波发送跨载波调度信息,此情况下,该第一载波上可以携带有多个设备发送的第一标识。
或者,该第一载波可以仅被该通信设备用于发送第一信息,此情况下,该第一载波上可以仅携带有该通信设备发送的第一标识。
结合第三方面及上述任意一种可能的实现方式,在第九种可能的实施方式中,通信设备通过第一载波发送第一信息包括,该通信设备通过该第一载波发送该第一标识和第一信息,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
结合第三方面的第九种可能的实现方式,在第十种可能的实施方式中,该第一标识承载于旁路控制信息SCI中的资源预留字段,或者,可选地,该第一标识承载于SCI中的调整与编码方式MCS字段。
从而,接收设备可以将M个载波中携带有第一标识的载波确定为用于承载第一信息的载波。
结合第三方面及上述任意一种可能的实现方式,在第十一种可能的实施方式中,该第一载波上承载有同步信号,且该M个载波中除该第一载波以外的载波上未承载同步信号。
结合第三方面的第十一种可能的实现方式,在第十二种可能的实施方式中,通信设备通过第一载波发送第一信息包括,该通信设备通过该第一载波发送该第一标识和同步信号,并且不在该M个载波中除该第一载波以外的载波上发送同步信号。
从而,接收设备可以将M个载波中携带有同步信号的载波确定为用于承载第一信息的载波。
结合第三方面及上述任意一种可能的实现方式,在第十三种可能的实施方式中,该第一载波上承载的同步信号对应规定的第一序列,其中,该第一序列用于指示该第一序列对应的同步信号所承载于的载波中携带有第一信息。
结合第三方面的第十三种可能的实现方式,在第十四种可能的实施方式中,该第一序列包括旁路主同步信号序列或旁路辅同步信号序列。
从而,能够使接收设备基于上述方案容易地确定出携带有第一信息的载波,进而,无需接收设备对每个载波进行盲检测以获取该第一信息,因此,能够进一步能够提高通信的效率,并降低接收设备的处理负担。
结合第三方面及上述任意一种可能的实现方式,在第十五种可能的实施方式中,该N个载波上的第一时频资源的位置是预配置的,该第一时频资源是该通信设备发送数据时使用的时频资源。
结合第三方面及上述任意一种可能的实现方式,在第十六种可能的实施方式中,该N个载波上的第一时频资源的位置是根据该通信设备的信息确定的,该第一时频资源是该通信设备发送数据时使用的时频资源。
结合第三方面及上述任意一种可能的实现方式,在第十七种可能的实施方式中,该N个载波上的第 一时频资源的位置相同。
结合第三方面及上述任意一种可能的实现方式,在第十八种可能的实施方式中,该处理器还用于控制该收发器通过第一载波发送第二信息,该第二信息用于指示该第一载波上的第一时频资源的位置,该第一时频资源是该通信设备发送数据时使用的时频资源,其中,该N个载波上的第一时频资源的位置与该第一载波上的第一时频资源的位置相同。
其中,“时频资源的位置”可以是指时频资源的时域位置。
或者,“时频资源的位置”可以是指时频资源的频域位置。
结合第三方面的第十八种实现方式,在第十九种可能的实施方式中,该第二信息具体用于指示该第一时频资源的位置相对于参考位置的偏移量。
结合第三方面及上述任意一种可能的实现方式,在第二十种可能的实施方式中,该处理器还用于控制该收发器通过第一载波发送N个第三信息;或通信设备通过该N个载波发送N个第三指示信息;其中,该N个载波与该N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,该第一时频资源是该通信设备发送数据时使用的时频资源。
结合第三方面的第二十种实现方式,在第二十一种可能的实施方式中,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
结合第三方面的第二十一种实现方式,在第二十二种可能的实施方式中,该参考位置是通信系统规定的位置。
结合第三方面的第二十一种实现方式,在第二十三种可能的实施方式中,该参考位置是预配置的位置。
结合第三方面的第二十一种实现方式,在第二十四种可能的实施方式中,该参考位置是网络设备配置的位置。
结合第三方面的第二十一种实现方式,在第二十五种可能的实施方式中,该参考位置是该N个载波中的第二载波上的第一时频资源的位置。
结合第三方面的第二十五种实现方式,在第二十六种可能的实施方式中,该第二载波是该通信系统规定的载波。
结合第三方面的第二十五种实现方式,在第二十七种可能的实施方式中,该第二载波是预配置的载波。
结合第三方面的第二十五种实现方式,在第二十八种可能的实施方式中,该第二载波是网络设备配置的载波。
结合第三方面的第二十五种实现方式,在第二十九种可能的实施方式中,该第二载波是该N个载波中的主载波。
结合第三方面的第二十五种实现方式,在第三十种可能的实施方式中,该第二载波上承载有同步信号,且该N个载波中除该第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置。
结合第三方面的第二十五种实现方式,在第三十一种可能的实施方式中,该第二载波上承载的同步信号对应规定的第二序列,其中,该第二序列用于指示该第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考时域位置。
结合第三方面及上述任意一种可能的实现方式,在第三十二种可能的实施方式中,该N个第三信息承载于旁路控制信息SCI中。
结合第三方面及上述任意一种可能的实现方式,在第三十三种可能的实施方式中,每个第三信息承 载于所对应的载波所携带的数据包的媒体接入控制MAC控制单元CE中。
结合第三方面及上述任意一种可能的实现方式,在第三十四种可能的实施方式中,该第一信息承载于旁路控制信息SCI中。
结合第三方面及上述任意一种可能的实现方式,在第三十五种可能的实施方式中,该第二信息承载于媒体接入控制MAC控制单元CE中。
结合第三方面及上述任意一种可能的实现方式,在第三十六种可能的实施方式中,该通信设备为终端设备。
结合第三方面及上述任意一种可能的实现方式,在第三十七种可能的实施方式中,该通信设备为网络设备。
结合第三方面及上述任意一种可能的实现方式,在第三十八种可能的实施方式中,该通信系统为车联网系统。
第四方面,提供了一种通信设备,包括:收发器,用于接收或发送数据或信息;处理器,用于控制该收发器通过第一载波从第一设备接收第一信息,该第一信息用于指示该第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;并且,用于控制该收发器通过该N个载波中的一个或多个载波从该第一设备接收数据。
根据本申请的通信设备,通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
结合第四方面,在一种可能的实施方式中,该M个载波是该第一设备所处于的通信系统所支持的载波,M为大于或等于2的整数。
需要说明的是,第一设备可以支持(或者说,能够使用)该M个载波中的全部载波。
或者,该第一设备也可以支持该M个载波中的部分载波。
并且,该N个载波可以是该M个载波中该第一设备能够支持的全部载波。
或者,该N个载波也可以是该M个载波中该第一设备能够支持的部分载波。
结合第四方面及上述任意一种可能的实现方式,在第二种可能的实施方式中,该第一信息具体用于指示该M个载波中除该第一载波以外的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第四方面的第二种实现方式,在第三种可能的实施方式中,该第一信息包括M-1个比特,该M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源,该M-1个载波是该M个载波中除该第一载波以外的载波。
从而,能够节约传输该第一信息的资源开销。
可选地,M为8,该第一信息包括7个比特。
结合第四方面及上述任意一种可能的实现方式,在第四种可能的实施方式中,该第一信息还用于指示携带有该第一信息的载波属于发送设发送数据时使用的载波。或者,该第一信息还用于指示携带有该第一信息的载波不属于发送设发送数据时使用的载波。
结合第四方面,在第五种可能的实施方式中,该第一信息具体用于指示该M个载波中的每个载波是否包括第一时频资源的情况,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第四方面的第五种实现方式,在第六种可能的实施方式中,该第一信息包括M个比特,该M个比特与M个载波一一对应,每个比特用于指示所对应的载波是否包括该第一时频资源。
结合第四方面及上述任意一种可能的实现方式,在第七种可能的实施方式中,该第一载波是该通信 系统规定的载波。
或者,该第一载波是预先配置的载波。
或者,该第一载波是由网络设备配置的载波。
或者,该第一载波是该M个载波中的主载波。
结合第四方面及上述任意一种可能的实现方式,在第八种可能的实施方式中,该第一载波承载有该第一设备发送的第一标识,其中,该第一标识用于指示该第一标识所承载于的载波中携带有第一信息。
此情况下,该处理器还用于将该M个载波中携带有该第一设备发送的第一标识的载波,确定为该第一载波。
结合第四方面的第八种实现方式,在第九种可能的实施方式中,第一标识是预配置的。
或者,该第一标识是网络设备配置的。
需要说明的是,包括该第一设备在内的多个设备可以使用该第一载波发送跨载波调度信息,此情况下,该第一载波上可以携带有多个设备发送的第一标识。
或者,该第一载波可以仅被该第一设备用于发送第一信息,此情况下,该第一载波上可以仅携带有该第一设备发送的第一标识。
结合第四方面及上述任意一种可能的实现方式,在第十种可能的实施方式中,该第一标识承载于旁路控制信息SCI中的资源预留字段。
结合第四方面及上述任意一种可能的实现方式,在第十一种可能的实施方式中,该第一标识承载于SCI中的调整与编码方式MCS字段。
从而,接收设备可以将M个载波中携带有第一标识的载波确定为用于承载第一信息的载波。
结合第四方面及上述任意一种可能的实现方式,在第十二种可能的实施方式中,该第一载波上承载有同步信号,且该M个载波中除该第一载波以外的载波上未承载同步信号。
结合第四方面及上述任意一种可能的实现方式,在第十三种可能的实施方式中,该方法还包括,该通信设备将该M个载波中携带有同步信号的载波确定为第一载波。
即,第一设备仅在第一载波上发送同步信号,或者说,在除第一载波以外的载波中不携带同步信号。
从而,接收设备可以将M个载波中携带有同步信号的载波确定为用于承载第一信息的载波。
结合第四方面及上述任意一种可能的实现方式,在第十四种可能的实施方式中,该第一载波上承载的同步信号对应规定的第一序列,其中,该第一序列用于指示该第一序列对应的同步信号所承载于的载波中携带有第一信息。
此情况下,该处理器还用于将该M个载波中携带有第一序列对应的同步信号的载波确定为第一载波。
结合第四方面及上述任意一种可能的实现方式,在第十五种可能的实施方式中,该第一序列包括旁路主同步信号序列或旁路辅同步信号序列。
从而,能够使接收设备基于上述方案容易地确定出携带有第一信息的载波,进而,无需接收设备对每个载波进行盲检测以获取该第一信息,因此,能够进一步能够提高通信的效率,并降低接收设备的处理负担。
结合第四方面及上述任意一种可能的实现方式,在第十六种可能的实施方式中,该N个载波上的第一时频资源的位置是该通信系统规定的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第四方面及上述任意一种可能的实现方式,在第十七种可能的实施方式中,该N个载波上的第一时频资源的位置是根据该第一设备的信息确定的,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第四方面及上述任意一种可能的实现方式,在第十八种可能的实施方式中,该N个载波上的第 一时频资源的位置相同。
结合第四方面及上述任意一种可能的实现方式,在第十九种可能的实施方式中,该方法还包括:该通信设备通过该第一载波从该第一设备接收第二信息,该第二信息用于指示该第一载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源,其中,该N个载波上的第一时频资源的位置与该第一载波上的第一时频资源的时域位置相同。
结合第四方面的第十九实现方式,在第二十种可能的实施方式中,该第二信息具体用于指示该第一时频资源的位置相对于参考位置的偏移量。
结合第四方面及上述任意一种可能的实现方式,在第二十一种可能的实施方式中,该处理器还用于控制该收发器通过该第一载波从该第一设备接收N个第三信息;或该处理器还用于控制该收发器通过该N个载波中的一个或多个载波从该第一设备接收N个中的一个或多个第三指示信息;其中,该N个载波与该N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,该第一时频资源是该第一设备发送数据时使用的时频资源。
结合第四方面的第二十一实现方式,在第二十二种可能的实施方式中,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
结合第四方面的第二十二实现方式,在第二十三种可能的实施方式中,该参考位置是该通信系统规定的时域位置。
结合第四方面的第二十二实现方式,在第二十四种可能的实施方式中,该参考位置是该N个载波中的第二载波上的第一时频资源的位置,其中,该第二载波是该通信系统规定的载波。
结合第四方面的第二十四实现方式,在第二十五种可能的实施方式中,该第二载波是该N个载波中的主载波。
结合第四方面的第二十四实现方式,在第二十六种可能的实施方式中,该第二载波上承载有同步信号,且该N个载波中除该第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考时域位置。
结合第四方面的第二十四实现方式,在第二十七种可能的实施方式中,该第二载波上承载的同步信号对应规定的第二序列,其中,该第二序列用于指示该第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考时域位置。
结合第四方面的第二十一实现方式,在第二十八种可能的实施方式中,该N个第三信息承载于旁路控制信息SCI中。
结合第四方面的第二十一实现方式,在第二十九种可能的实施方式中,每个第三信息承载于所对应的载波所携带的数据包的媒体接入控制MAC控制单元CE中。
结合第四方面及上述任意一种可能的实现方式,在第三十种可能的实施方式中,该第一信息承载于旁路控制信息SCI中。
或者,该第一信息承载于媒体接入控制MAC控制单元CE中
结合第四方面及上述任意一种可能的实现方式,在第三十一种可能的实施方式中,该第二信息承载于旁路控制信息SCI中。
或者,该第二信息承载于媒体接入控制MAC控制单元CE中。
结合第四方面及上述任意一种可能的实现方式,在第三十二种可能的实施方式中,该第一设备为终端设备或网络设备,该通信设备为终端设备或网络设备。
结合第四方面及上述任意一种可能的实现方式,在第三十三种可能的实施方式中,该通信系统为车联网系统。
第五方面,提供了一种通信装置,包括用于执行上述第一方面及其各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,终端设备或网络设备等),通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第六方面,提供了一种通信装置,包括用于执行上述第二方面以及第二方面的各实现方式中的通信方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,终端设备或网络设备等),通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第七方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面及其各种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第八方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第二方面及其各种实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第九方面,提供了一种通信系统,上述第七方面和第八方面所述的通信设备。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面或第二方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
附图说明
图1是适用本申请的传输数据的方法的通信系统的一例的示意性流程图。
图2是适用本申请的传输数据的方法的通信系统的另一例的示意性流程图。
图3是本申请的传输数据的方法的示意性交互图。
图4是本申请的第一信息的一例的示意图。
图5是本申请的第一信息的另一例的示意图。
图6是本申请的跨载波调度的示意图。
图7是本申请的传输数据的装置的一例的示意性框图。
图8是本申请的传输数据的装置的另一例的示意性框图。
图9是本申请的终端设备的一例的示意性框图。
图10是本申请的网络设备的一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车联网(Vehicle To Everything,V2X)通信,例如,车到车(Vehicle to Vehicle,V2V)通信、车到基础设施(Vehicle to Infrastructure,V2I)通信,车到行人(Vehicle to Pedestrian,V2P)通信,车道网络(Vehicle to Network,V2N)通信。
本申请的传输数据的方法的执行主体(即,第一设备)可以是终端设备也可以是网络设备。
其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处 理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车联网终端、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
网络设备可以包括接入网设备或核心网设备。
其中,接入网设备可以是接入网设备等用于与移动设备通信的设备,接入网设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),或者是新型无线系统(New Radio,NR)系统中的gNB,还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者路边单元(Roadside Unit,RSU),或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。
另外,在本发明实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,时频资源,频率资源,或者,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
此外,本发明实施例中的载波(carrier)与载波聚合(carrier aggregation)中的载波概念相同,还可以理解为频段(band)、子频段(sub-band)、部分带宽(Bandwidth part,BWP)、信道(channel)、子信道(sub-channel),或者一段频谱资源等,在频域上表现为一组子载波集合。不同的载波或频段可能有不同的中心频点;也可能有相同的中心频点,例如带宽不同但中心频点相同的频段。
核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
其中,以上列举的终端设备、接入网设备和核心网设备的功能和具体实现方式仅为示例性说明,本发明并未限定于此。
在本发明实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本发明实施例并未对本发明实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本发明实施例的提供的方法的代码的程序,以根据本发明实施例提供的方法进行通信即可,例如,本发明实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本发明实施例中,在应用层可以运行多个应用程序,此情况下,执行本发明实施例的通信方法的应用程序与用于控制接收设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
图1是能够适用本发明实施例通信方法的系统100的示意图。如图1所示,该系统100包括接入网设备102,接入网设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,接入网设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
接入网设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,接入网设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为接入网设备102的扇区。例如,可将天线组设计为与接入网设备102覆盖区域的扇区中的终端设备通信。接入网设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在接入网设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,接入网设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与接入网设备通过单个天线或多天线发射分集向它所有的 终端设备发送信号的方式相比,在接入网设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,接入网设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他接入网设备,图1中未予以画出。
络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
作为实例而非限定,本申请的传输数据的方法可以应用于车联网系统,车联网(V2X)的研究范围包括车与车(V2V)通信、车与行人(V2P)通信以及车与基础设施网络(V2I)通信。V2X中的通信既可以基于旁路(Sidelink)接口实现,也可以基于Uu接口实现。当前,车辆网系统可以支持最多8个PC5载波,其中,PC5是协议架构中用于UE与UE之间进行设备间发现和设备间通信的参考点的载波聚合。
图2描述了车联网通信系统的示意图,其中终端之间可以通过sidelink接口直接通信,当终端处于网络设备如基站的信号覆盖范围内时,终端可与基站通信。
目前,车辆网系统可以包括以下三种多载波使用场景:
场景1:多个媒体接入控制协议数据单元(Medium Access Control Protocol Data Unit,MAC PDU)并行传输。其中,“并行”传输包括在不同的载波上同时或不同时传输。在各个载波上传输的MAC PDU负荷不同;
场景2:相同的数据包在不同载波上并行重复传输。其中,“并行”传输包括在不同的载波上同时或不同时传输。
场景3:从接收设备角度考虑的容量提升。从接收设备来看,假设其可以在多个载波上同时接收。从发送设备来看,可以在一组载波上发送。比如,某个UE在单个载波上发送(对各个UE来说,可能载波不同),但可以在所有载波上接收,此时接收UE可以发现更多的其他UE,也就意味着信道容量增加。
在当前的V2X技术中,UE仅在一个载波上发送旁路控制信息(Sidelink Control Information,SCI)和数据,其中旁路控制信息在物理旁路控制信道(Physical Sidelink Control Channel,PSCCH)上传输,数据(Data)在物理旁路共享信道(Physical Sidelink Shared Channel,PSSCH)上传输。在当前的V2X技术中,旁路控制信息和数据(Data)总是成对出现,即PSSCH上传输的每个Data分组都有对应的控制信息在PSCCH上传输,用以指示该数据包的传输资源;在未来的V2X演进技术中,也可能旁路控制信息和Data没有一一对应的关系,例如,可能有公共的控制信息,但不指示具体某个数据包的传输资源。在本发明的实施例中,在不产生概念混淆的情况下,数据是一种广义概念,可以表示控制信道上传输的控制信息,也可以表示共享信道上传输的数据,还可以同时表示控制信道上传输的控制信息以及共享信道上传输的数据。在3GPP V2X标准中,UE发送SCI可以表述为UE传输PSCCH(transmit the PSCCH),UE发送Data可以表述为UE传输PSSCH(transmit the PSSCH),因此,本发明实施例中,UE传输数据也可以表示UE传输PSCCH、UE传输PSSCH、UE传输PSCCH和UE传输PSSCH中的一种。UE发送的旁路控制信息仅指示该UE在未来一段时间内在该载波上传输SCI和Data时预留的资源,不能指示在其他载波上的预留资源。因此,按照现在的资源预留指示方法,当某个UE在多个载波上传输时,接收端需要在多个载波上进行盲检测才能知道对应UE是否在多个载波上预留的资源以及其预留的资源位置。对 于接收能力有限的终端而言,可能需要切换载波,而盲目的切换会导致接收能力下降,因为切换到某个载波会导致错过另一个载波上的车联网信息,此时,如果发送端UE能指示其跨载波调度信息,则可减少接收端的盲检测和盲切换。另外,对于支持多载波能力有限的终端而言,如果在资源选择时,可以获得其他UE在其他载波上的资源预留信息,则该UE可依据这些指示信息在对应载波上进行资源选择,从而可以减少在其他载波上侦听所带来的能量消耗。此外,未来可能支持一个大数据包在多个载波上传输,此时为了便于接收端UE接收与合并多个载波上的数据包,需要发送方UE指示跨载波调度信息。在这些场景中,都需要设计跨载波指示方式。本申请的方案可以应用于车联网系统的多载波传输过程。
下面,对该通信系统100所使用的用于无线通信的时频资源进行详细说明。
在本发明实施例中,时频资源可以包括时域、频域、空域和码域等多个维度。
例如,本申请中,时频资源在时域上可以划分为多个时间单元。
并且,在本发明实施例中,该多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本发明实施例并未特别限定。
在本发明实施例中,时间单元可以是包括用于上行信息(例如,上行数据)传输、下行信息(例如,下行数据)传输、sidelink链路信息(例如,sidelink上的数据)传输中至少一种的时间单元。
在本发明实施例中,一个时间单元的长度可以任意设定,本发明实施例并未特别限定。
例如,1个时间单元可以包括一个或多个子帧。
或者,1个时间单元可以包括一个或多个时隙。
或者,1个时间单元可以包括一个或多个符号。
或者,1个时间单元可以包括一个或多个传输时间间隔(Transmission Time Interval,TTI)。
或者,1个时间单元可以包括一个或多个短传输时间间隔(short Transmission Time Interval,sTTI)。
再例如,本申请中,时频资源在频域上可以被划分为多个载波或者多个频段。
并且,每个载波或者频段可以被划分为多个子载波。
其中,由一个子载波和一个符号唯一确定的时频资源可以被称为资源单元(Resource Element,RE),处于规定的时频范围和频域范围内的多个RE可以构成资源块(Resource Block,RB)。
即,在本发明实施例中,“时频资源的位置”可以是指时频资源的时域位置和/或频域位置。
下面,结合图3对本发明实施例的传输数据的方法200的具体流程进行详细说明。
该方法200可以应用于能够使用多个载波(即,M个载波的一例)的通信系统,例如,车联网系统。
该方法200可以涉及设备#A(即,第一设备的一例)对其发送数据时使用的时频资源(即,第一时频资源的一例,以下,为了便于理解和说明,记作时频资源#A)的指示过程。
其中,该设备#A可以是网络设备(例如,基站等接入网设备),或者,该设备#A也可以是车载设备或手机等终端设备。
需要说明的是,在本申请中,该设备#A可以支持基于该M个载波载波中的全部载波的通信,或者,该设备#A可以支持基于该M个载波载波中的部分载波的通信,本申请并未特别限定。
例如,设备#A可以在时段#a从该M个载波中确定N个载波,其中,该N个载波可以是设备#A在时段#b发送数据(以下,为了便于理解和说明,记作数据#A)时使用的载波,即,上述时频资源#A分布在该N个载波上,例如,该时频资源#A可以包括第i个载波上的时频资源#Ai,i∈[1,N],即,该时频资源#A由时频资源#A1、时频资源#A2、…时频资源#Ai…时频资源#AN构成。M为大于或等于2的整数,N为大于或等于2的整数,且N小于或等于M。该时段#a不晚于时段#b。
如图3所示,在S210,设备#A可以通过该M个载波中的载波#A(即,第一载波的一例)发送信息#A(即,第一信息的一例)。
其中,该信息#A用于指示该设备#A通过上述N个载波发送数据(包括控制信息和Data中的至少一种)。即,该信息#A可以用于指示M个载波中的哪些载波被作为该设备#A发送数据时使用的载波。
例如,该数据#A可以是终端设备发送给一个接收设备的数据,此情况下,设备#A可以采用单播方式向该接收设备发送该信息#A。并且,应理解,以上列举的发送方式仅为示例性说明,设备#A可以采用单播方式、组播方式或广播方式发送该信息#A,只要能够确保该数据的接收设备能够接收到该信息#A即可,本申请并未特别限定。
再例如,该数据#A可以是终端设备发送给多个接收设备的数据,此情况下,设备#A可以采用组播方式或广播方式向该多个接收设备发送该信息#A。
其中,该数据的接收设备可以是网络设备(例如,基站等接入网设备),或者,该接收设备也可以是车载设备或手机等终端设备。
以下,为了便于理解和说明,以设备#B为例,对接收设备的动作进行说明。
下面,对该信息#A的具体形式进行示例性说明。
形式1
在本申请实施例中,信息#A包括M-1个比特,该M-1个比特可以与该M个载波中除该载波#A以外的M-1个载波一一对应,其中,该信息#A中的第j个比特用于指示该第j个比特所对应的载波是否属于该N个载波,或者说,该信息#A中的第j个比特用于指示该第j个比特所对应的载波是否被设备#A用来传输数据,j∈[1,M-1]。
例如,当该第j个比特所对应的载波属于该N个载波(或者说,第j个比特所对应的载波被设备#A用于发送数据)时,该第j个比特的取值可以为1;相应地,当该第j个比特所对应的载波不属于该N个载波(或者说,未被设备#A用于发送数据)时,该第j个比特的取值可以为0。
应理解,以上列举的比特的取值与该比特所对应的载波是否被用于传输数据的关系仅为示例性说明,本发明并未限定于此,例如,当该第j个比特所对应的载波属于该N个载波(或者说,被设备#A用于发送数据)时,该第j个比特的取值可以为0;相应地,当该第j个比特所对应的载波不属于该N个载波(或者说,第j个比特所对应的载波未被设备#A用于发送数据)时,该第j个比特的取值可以为1。
作为示例而非限定,例如,通信系统可使用的载波数可以为8,此情况下,该信息#A可以包括7个比特。
例如,如图4所示,如果该载波#A为载波#6,并且,如果被设备#A用于发送数据的载波为载波#0、载波#2、载波#7,则该信息#A所包括的比特可以为1010001。
再例如,如图5所示,如果该载波#A为载波#1,并且,如果被设备#A用于发送数据的载波为载波#0、载波#2、载波#7,则该信息#A所包括的比特可以为1100001。
需要说明的是,该载波#A可以属于该N个载波也可以不属于该N个载波,本发明并未特别限定。对此,在本发明实施例中,可以采用以下方式确定该载波#A是否属于该N个载波。
方式a:通信系统或通信协议可以规定该载波#A(即,携带有第一信息的载波)属于该N个载波(即,被发送该第一信息的设备用于发送数据的载波)。
方式b:通信系统或通信协议可以规定该载波#A(即,携带有第一信息的载波)不属于该N个载波(即,被发送该第一信息的设备用于发送数据的载波)。
方式c:设备#B在接收数据时可以对载波#A进行盲检测,以确定该载波#A(即,携带有第一信息的载波)是否属于该N个载波(即,被发送该第一信息的设备用于发送数据的载波)。
方式d:设备#A在使用载波#A发送数据之前,可以通过该载波#A发送信息#B,该信息#B用于指示载波#A被该设备#A占用的时频资源,从而,设备#B可以根据载波#A上是否携带有该信息#B的情况, 确定该载波#A(即,携带有第一信息的载波)是否属于该N个载波(即,被发送该第一信息的设备用于发送数据的载波)。
并且,作为示例而非限定,该信息#B可以承载于数据包中的媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)中,其中,该数据包可以是设备#A对所需要发送的数据进行封装后形成的数据包。或者,该信息#B可以承载于SCI中。
此外,作为示例而非限定,该信息#A可以承载于SCI中。例如,该信息#A可以使用SCI中部分或全部比特,例如,SCI中预留位中的7个比特。
形式2
在本申请实施例中,信息#A包括M个比特,该M个比特可以与该M个载波一一对应,其中,该信息#A中的第j个比特用于指示该第j个比特所对应的载波是否属于该N个载波,或者说,该信息#A中的第j个比特用于指示该第j个比特所对应的载波是否被设备#A用来传输数据,j∈[1,M]。
例如,当该第j个比特所对应的载波属于该N个载波(或者说,当该第j个比特所对应的载波被设备#A用于发送数据)时,该第j个比特的取值可以为1;相应地,当该第j个比特所对应的载波不属于该N个载波(或者说,当该第j个比特所对应的载波未被设备#A用于发送数据)时,该第j个比特的取值可以为0。
应理解,以上列举的比特的取值与该比特所对应的载波是否被用于传输数据的关系仅为示例性说明,本发明并未限定于此,例如,当该第j个比特所对应的载波属于该N个载波(或者说,被设备#A用于发送数据)时,该第j个比特的取值可以为0;相应地,当该第j个比特所对应的载波不属于该N个载波(或者说,未被设备#A用于发送数据)时,该第j个比特的取值可以为1。
作为示例而非限定,例如,通信系统可使用的载波数可以为8,此情况下,该信息#A可以包括8个比特。
此外,作为示例而非限定,该信息#A可以承载于SCI中。例如,该信息#A可以使用SCI中预留的部分或全部比特,例如,SCI中预留位中的8个比特。
形式3
在本发明实施例中,可以为该M个载波中的每个载波分配一个唯一的标识.
从而,该信息#A可以包括该N个载波中每个载波的标识。进而,设备#B在接收到信息#A后,可以基于该信息#A中所包括的N个标识,确定该N个载波,进而,可以确定设备#A需要通过该N个载波发送数据。
或者,该信息#A可以包括该M个载波中除该N个载波以外的M-N个载波的标识。进而,设备#B在接收到信息#A后,可以基于该信息#A中所包括的M-N个标识,确定该M-N个载波,进而,可以确定设备#A所使用的载波是M个载波中除该M-N个载波以外的N个载波。
此外,作为示例而非限定,该信息#A可以承载于SCI中。例如,该信息#A可以占用SCI中的部分或全部比特。
下面,对该载波#A的确定方式进行详细说明。
作为示例而非限定,在本申请实施例中,该载波#A可以通过以下至少一种方式确定。
方式a
在本申请实施例中,该载波#A可以是通信系统或通信协议规定的载波。
例如,通信系统或通信协议可以配置该M个载波中的某一个载波为调度载波,该调度载波可以用于承载发送设备所发送的用于指示该发送设备发送数据时使用的载波的信息,例如,上述信息#A,从而,设备#A可以将该调度载波确定为载波#A,并且,设备#B可以在该调度载波上检测设备#A所发送的信息 #A。
并且,作为实例而非限定,当该M个载波包括主载波和辅载波的情况下,该载波#A可以是该M个载波中的主载波。
其中,该主载波可以是该通信系统配置的公共载波。
方式b
在本发明实施例中,例如,网络设备可以对L个终端进行分组,以确定K(K≤L)个设备组,其中,该M个载波中的K个载波可以与该K个设备组具有一一映射关系,其中,该K个载波中的第k个载波用于承载该第k个载波所对应的设备组中的设备所发送的第一信息(例如,上述信息#A),该第一信息可以用于指示该设备发送数据时使用的载波的信息,k∈[1,K]。此情况下,该设备#A和设备#B可以确定该设备#A所属于的设备组(为了便于理解和说明,记做设备组#A),并根据上述映射关系,确定该设备组#A对应的载波,并将该设备组#A对应的载波作为上述载波#A。
方式c
在本发明实施例中,设备#A可以将该M个载波中的任一载波确定为上述载波#A。
此情况下,为了使设备#B能够从M个载波中识别出该载波#A,可以采用以下至少一种处理方法。
处理方法1
具体地说,通信系统或通信协议可以规定一个标识#α(即,第一标识的一例)。该标识#α可以具有以下功能:当某个设备接收到标识#α时,该设备可以确定携带有标识#α的载波中,携带有发送设备发送数据时所使用的载波的指示信息,即,携带有标识#α的载波可以被确定为调度载波。
此情况下,设备#A可以通过该载波#A发送标识#α,从而,当设备#B在载波#A中检测到该标识#α时,可以确定该载波#A中携带有上述信息#A。
作为示例而非限定,例如,该标识#α可以承载于SCI中的资源预留(Resource reservation)字段(或者,也可以称为“域”)中,此情况下,该标识#α的值可以包括但不限于“1101”、“1110”或者“1111”中的一个。
再例如,该标识#α可以承载于SCI中的调制与编码方式(Modulation and coding scheme,MCS)字段中。需要说明的是,由于该标识#α占用了MCS字段,因此,此情况下,传输数据时使用的MCS的值可以为通信系统或通信协议规定的默认值。
再例如,该标识#α可以通过发送设备仅在特定载波(例如载波#A)上发送信息#A来指示,即发送设备不在除特定载波以外的载波上发送信息#A。因此,当设备#B在载波#A上检测到信息#A时,可以确定发送设备在载波#A上通过发送信息#A指示了隐含信息标识#α,从而确定该载波为发送设备的调度载波,即载波#A。
应理解,以上理解的标识#α的发送方式仅为示例性说明,本申请并未特别限定,例如,该标识#α也可以作为独立的信息而被单独发送。
处理方法2
具体地说,通信系统或通信协议可以规定:发送设备仅在调度载波(即,承载有第一信息的载波,该第一信息用于指示该发送设备发送数据时所使用的载波)上发送同步信号,即,在非调度载波(即,未承载第一信息)上不发送同步信号。
此情况下,设备#A可以在该载波#A上发送同步信号,从而,当设备#B在载波#A中检测到同步信号时,可以确定设备#A在该载波#A发送的部分数据中携带有上述信息#A。
处理方法3
具体地说,通信系统或通信协议可以规定一个特定的序列#β(即,第一序列的一例)。该标识#β可 以具有以下功能:当某个设备接收到标识#β对应的同步信号(或者,参考信号)时,该设备可以确定携带有标识#β对应的同步信号的载波中,携带有发送设备发送数据时所使用的载波的指示信息,即,携带有标识#β对应的同步信号的载波可以被确定为调度载波。
作为示例而非限定,例如,该同步信号可以为旁路主同步信号(Primary Sidelink Synchronization Signal,PSSS),此情况下,该序列#β可以为用于生成该PSSS的序列。
再例如,该同步信号可以为旁路辅同步信号(Secondary Sidelink Synchronization Signal,SSSS),此情况下,该序列#β可以为用于生成该SSSS的序列。
需要说明的是,在本发明实施例中,该载波#A可以属于该N个载波,即,该载波#A可以是设备#A发送数据时所使用的载波。或者,该载波#A也可以不属于该N个载波,即,设备#A在发送数据时不使用该载波#A。
例如,作为实例而非限定,在本发明实施例中,设备#A还可以在载波#A上发送信息#C,该信息#C可以用于指示该载波#A是否被设备#A用来发送数据。并且,作为实例而非限定,该信息#C与信息#A承载于同一消息或信息中,例如,该信息#C与信息#A可以承载于SCI中的不同字段中。或者,该信息#C与信息#A也可以承载于不同的消息或信息中,例如,该信息#A可以承载于SCI中,该信息#C可以承载于数据包的MAC CE中。
或者,通信系统或通信协议可以规定,携带有第一指示信息的载波被用于发送设备发送数据,此情况下,设备#B在通过载波#A接收到信息#A时,可以确定该载波#A被设备#A用于发送数据。
或者,通信系统或通信协议可以规定,携带有第一指示信息的载波不能被用于发送设备发送数据,此情况下,设备#B在通过载波#A接收到信息#A时,可以确定该载波#A不会被设备#A用于发送数据。
由此,通过上述方式,能够实现设备#A和设备#B通过载波#A传输信息#A的过程。
在本申请实施例中,设备#A还可以发送信息#D(即,第二指示信息),该信息#D可以用于指示该N个在载波中被设备#A用来传输数据的时频资源(即,上述时频资源#A1、时频资源#A2、…、时频资源#Ai、…、时频资源#AN)的位置。
其中,该时频资源的位置可以是指时频资源的时域位置,例如,时频资源对应的子帧、时隙或符号等。
或者,该时频资源的位置可以是指时频资源的频域位置,例如,时频资源对应的子载波等。
再或者,该时频资源的位置可以是指时频资源的频域位置和时域位置,例如,时频资源对应的资源单元(Resource Element,RE)、资源块(Resource Block,RB)、资源单元集合(Resource Element Group,REG)资源块集合(Resource Block Group,RBG)等。
作为实例而非限定,在本发明实施例中,可以采用以下任意一种方式发送该信息#D。
方式A
在本发明实施例中,可以在控制信息(例如,SCI)中携带该信息#D。
此情况下,该信息#A与信息#D可以承载于同一消息或信息中,例如,该信息#D与信息#A可以承载于SCI中的不同字段中,即,该信息#D与信息#A可以被设备#A可以在S210中一并发送。或者,该信息#D与信息#A可以被设备#A在不同的步骤中分别发送。并且,该信息#D与信息#A也可以承载于不同的字段、域或信息中,本发明并未特别限定。
例如,该N个载波中每个载波上被设备#A用来传输数据的时频资源单元的位置可以相同,此情况下,该信息#D可以仅指示该相同的时频资源的位置。
再例如,该信息#D可以包括N个子信息,该N个子信息与该N个时频资源(即,上述时频资源#A1、时频资源#A2、…、时频资源#Ai、…、时频资源#AN)一一对应,每个子信息用于指示所对应的 时频资源的位置。
方式B
在本发明实施例中,可以在数据包的MAC CE中携带该信息#D。设备#A可以在载波#A上发送的数据包的MAC CE上发送该信息#D;或者,设备#A也可以在后述S220中将该信息#D携带于数据包中发送。
例如,该N个载波中每个载波上被设备#A用来传输数据的时频资源单元的位置可以相同,此情况下,该信息#D可以仅指示该相同的时频资源的位置。
再例如,该信息#D可以包括N个子信息,该N个子信息与该N个时频资源(即,上述时频资源#A1、时频资源#A2、…、时频资源#Ai、…、时频资源#AN)一一对应,每个子信息用于指示所对应的时频资源的位置。
其中,该N个子信息可以承载于同一个MAC CE,其中,该同一个MAC CE可以是N个载波中的任意一个载波上承载的设备A发送的数据包中的MAC CE,或者,该同一个MAC CE可以是该载波#A上承载的设备A发送的数据包中的MAC CE。
或者,该N个子信息可以承载于不同MAC CE,例如,第n个子信息可以承载于该第n个子信息所对应的时频资源所属于的载波上的数据包的MAC CE中,n属于[1,N]。
下面,对该信息#D指示的具体内容进行详细说明。
在本申请实施例中,该信息#D可以指示以下至少一项内容。
内容1
时频资源在系统帧号(System Frame Number,SFN)周期或直接帧号(Direct Frame Number,DFN)周期的位置,例如,某一时频资源所承载于的子帧的子帧号等。
内容2
时频资源相对于参考位置的偏移量,例如,某一时频资源的时域位置相对于基准时域位置的时域偏移量。
其中,该参考位置可以是载波#B上被设备#A使用的时频资源的位置。
并且,该载波#B可以是该N个载波中的任意载波,或者,该载波#B也可以与载波#A为同一载波,本发明并未特别限定。
并且,当载波#B是N个载波中的任意载波时,为了使设备#B能够可靠的确定该载波#B,本申请可以提供以下至少处理方法:
处理方法A
具体地说,通信系统或通信协议可以规定一个标识#γ(即,第二标识的一例)。该标识#γ可以具有以下功能:当某个设备接收到标识#γ时,该设备可以确定携带有标识#γ的载波中被发送设备使用的时频资源的位置为参考位置。
此情况下,设备#A可以通过该载波#B发送标识#γ,从而,当设备#B在载波#B中检测到该标识#γ时,可以确定该载波#B中被设备#A使用的时频资源的位置为参考位置。
作为示例而非限定,例如,该标识#γ可以承载于SCI中的资源预留(Resource reservation)字段(或者,也可以称为“域”)中,此情况下,该标识#γ的值可以包括但不限于“1101”、“1110”或者“1111”中的一个。
再例如,该标识#γ可以承载于SCI中的调制与编码方式(Modulation and coding scheme,MCS)字段中。需要说明的是,由于该标识#γ占用了MCS字段,因此,此情况下,传输数据时使用的MCS的值可以为通信系统或通信协议规定的默认值。
应理解,以上理解的标识#γ的发送方式仅为示例性说明,本申请并未特别限定,例如,该标识#γ也可以作为独立的信息而被单独发送。
需要说明的是,该标识#γ与上述标识#α可以是同一标识也可以是不同标识,本发明并未特别限定。
处理方法B
具体地说,通信系统或通信协议可以规定:发送设备仅在被作为参考位置的时频资源所属于的载波上发送同步信号。
此情况下,设备#A可以通过该载波#B发送同步信号,从而,当设备#B在载波#B中检测到同步信号时,可以确定该载波#B中被设备#A使用的时频资源的位置为参考位置。
处理方法C
具体地说,通信系统或通信协议可以规定一个特定的序列#θ(即,第一序列的一例)。该标识#θ可以具有以下功能:当某个设备接收到标识#θ对应的同步信号(或者,参考信号)时,该设备可以确定携带有标识#θ对应的同步信号的载波中被发送设备占用的时频资源的位置为参考位置。
作为示例而非限定,例如,该同步信号可以为PSSS,此情况下,该序列#θ可以为用于生成该PSSS的序列。
再例如,该同步信号可以为SSSS,此情况下,该序列#θ可以为用于生成该SSSS的序列。
需要说明的是,该标识#γ与上述标识#β可以是同一标识也可以是不同标识,本发明并未特别限定。
由此,通过上述方式,能够实现设备#A和设备#B传输信息#D的过程。
从而,设备#B能够基于上述信息#A和信息#D准确获知设备#A发送数据时使用的载波,以及,该设备#A所使用的载波上被该设备#A占用的时频资源(即,针对该设备#A的预留资源)的位置。
从而,在S220,设备#A可以在该N个载波上的预留资源上发送数据。
该设备#B可以在基于信息#A和信息#D确定的时频资源上接收该数据。
另外,在本发明实施例中,设备#A还可以发送信息#E,该信息#E可以用于指示设备#A是否进行了跨载波调度,即,该信息#E可以用于指示在M个载波中的某一个载波(例如,载波#A)中是否承载有用于指示该设备#A发送数据时使用的多个载波的指示信息(例如,信息#A)。
例如,该信息#E可以占用例如,SCI中的一个比特位,例如,当该比特位为1时,可以表示设备#A进行了跨载波调度,此时,可以执行上述方法200描述的过程;当该比特位为0时,可以表示设备#A未进行跨载波调度,此时,可以基于现有技术进行传输。
并且,如上所示,由于上述信息#A~信息#E中的部分或全部信息可以承载于SCI,因此,本申请的SCI的格式可能与现有技术中的SCI的格式不同。此情况下,设备#A可以发送信息#F,该信息#F可以用于指示SCI的格式是否与现有技术不同,或者说,该信息#F可以用于指示SCI中是否承载有上述信息#A~信息#E中的部分或全部信息。
例如,该信息#E可以占用例如,SCI中的一个比特位,例如,当该比特位为1时,可以表示SCI使用本申请的格式,此时,可以基于上述方法200中的相关描述对SCI进行解读;当该比特位为0时,可以表示SCI未发生变化,此时,可以基于现有技术对SCI进行解读。
例如,一种实现方式,设备#A通过SCI中的一个比特位表示设备#A是否进行跨载波调度;如果设备#A进行跨载波调度,设备#A在MAC CE中携带信息#A和信息#D,用来表示设备#A传输数据所使用的载波的信息以及对应载波上的时频资源信息。
如图6所示,当发送设备占用了载波#X中的时频资源#x、载波#Y上的时频资源#y和载波#Z中的时频资源#z发送数据时,可以在载波#K上发送跨载波调度信息(即,第一信息的一例),该跨载波调度信息可以用于指示发送设备使用上述载波#X、载波#Y和载波#Z发送数据。
根据本申请的传输数据的方法,通过使发送设备在一个载波上发送第一信息,该第一信息用于指示发送设备发送数据时使用的多个载波,从而,无需接收设备对每个载波进行盲检测,而能够根据该第一信息确定各载波是否被发送设备使用的情况,从而,能够提高通信的效率,并降低接收设备的处理负担。
在上述实施例中,当设备#A为网络设备时,控制信息SCI可以替换为下行控制信息(Downlink Control Information,DCI)并且在物理下行控制信道(Physical Downlink Control Channel,PDCCH)上传输,PSSCH上传输的Data(包括MAC CE)可以改为在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上传输。
需要说明的是,在设备#B在确定设备#A在N个载波上发送数据后,可以在该N个载波中的部分载波上接收数据,也可以在该N个载波中的全部载波上接收数据,本发明并未特别限定。
根据前述方法,图7为本申请实施例提供的传输数据的装置10的示意图,如图7所示,该通信装置10可以为发送设备(例如,上述设备#A),也可以为芯片或电路,比如可设置于发送设备的芯片或电路。
该通信装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图3中对应的方法中发送设备(例如,设备#A)执行的步骤。
进一步的,该通信装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该通信装置10为发送设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
其中,通信装置10中各模块或单元可以用于执行上述方法中设备#A所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图8为本申请实施例提供的用于通信的装置30的示意图,如图8所示,该装置30可以为接收设备(例如,上述设备#B),也可以为芯片或电路,如可设置于接收设备内的芯片或电路。
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述方法中接收设备(例如,设备#B)执行的步骤。
进一步的,该装置30还可以包括输入口33(即,通信单元的一例)和输出口33(即,处理单元的另一例)。再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算计程序。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
其中,通信装置30中各模块或单元可以用于执行上述方法中接收设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图9为本申请提供的一种终端设备20的结构示意图。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备20的处理单元202。如图9所示,终端设备20包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图9所示的终端设备可以执行上述方法200中发送设备或接收设备所执行的各动作,这里,为了避免赘述,省略其详细说明。
图10为本申请实施例提供的一种网络设备40的结构示意图。网络设备40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图10示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
图10所示的网络设备可以执行上述方法200中发送设备或接收设备所执行的各动作,这里,为了避免赘述,省略其详细说明。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、 动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (46)

  1. 一种传输数据的方法,其特征在于,所述方法包括:
    第一设备通过第一载波发送第一信息,所述第一信息用于指示所述第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;
    所述第一设备通过所述N个载波发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息具体用于指示所述M个载波中除所述第一载波以外的每个载波是否包括第一时频资源的情况,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括M-1个比特,所述M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括所述第一时频资源,所述M-1个载波是所述M个载波中除所述第一载波以外的载波。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一载波是预先配置的载波,或者
    所述第一载波是由网络设备配置的载波,或者
    所述第一载波是所述M个载波中的主载波,或者
    所述第一载波承载有所述第一设备发送的第一标识,其中,所述第一标识是预配置的,或者是由网络设备配置的,且所述第一标识用于指示所述第一标识所承载于的载波中携带有第一信息,或者
    所述第一载波上承载有同步信号,且所述M个载波中除所述第一载波以外的载波上未承载同步信号,或者
    所述第一载波上承载的同步信号对应第一序列,其中,所述第一序列是预配置的序列,或者所述第一序列是由网络设备配置的序列,且所述第一序列用于指示所述第一序列对应的同步信号所承载于的载波中携带有第一信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述N个载波上的第一时频资源的位置是预配置的,或者所述N个载波上的第一时频资源的位置是由网络设备配置的,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备通过所述第一载波发送第二信息,所述第二信息用于指示所述第一载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源,其中,所述N个载波上的第一时频资源的位置与所述第一载波上的第一时频资源的位置相同。
  7. 根据权利要求6所述的方法,其特征在于,所述第二信息具体用于指示所述第一时频资源的位置相对于参考位置的偏移量。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备发送N个第三信息,其中,所述N个载波与所述N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  9. 根据权利要求8所述的方法,其特征在于,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
  10. 根据权利要求9所述的方法,其特征在于,所述参考位置是预配置的位置,或者
    所述参考位置是由网络设备配置的位置,或者
    所述参考位置是所述N个载波中的第二载波上的第一时频资源的位置,
    其中,所述第二载波是预配置的载波,或者
    所述第二载波是由网络设备配置的载波,或者
    所述第二载波是所述N个载波中的主载波,或者
    所述第二载波承载有规定的第二标识,其中,所述第二标识用于指示所述第二标识所承载于的载波中的第一时频资源的位置为参考位置,或者
    所述第二载波上承载有同步信号,且所述N个载波中除所述第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置,或者
    所述第二载波上承载的同步信号对应规定的第二序列,其中,所述第二序列用于指示所述第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考位置。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一设备发送N个第三信息,包括:
    所述第一设备通过所述第一载波发送所述N个第三信息;或者
    所述第一设备通过所述N个载波发送所述N个第三信息,其中,每个第三信息承载于所对应的载波上。
  12. 根据权利要求11所述的方法,其特征在于,所述N个第三信息承载于旁路控制信息SCI中,或者
    所述N个第三信息承载于媒体接入控制的控制单元MAC CE中。
  13. 一种传输数据的方法,其特征在于,所述方法包括:
    第二设备通过第一载波接收第一设备发送的第一信息,所述第一信息用于指示所述第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;
    所述第二设备通过所述N个载波中的一个或多个载波从所述第一设备接收数据。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息具体用于指示所述M个载波中除所述第一载波以外的每个载波是否包括第一时频资源的情况,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息包括M-1个比特,所述M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括所述第一时频资源,所述M-1个载波是所述M个载波中除所述第一载波以外的载波。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一载波是预配置的载波,或者
    述第一载波是网络设备配置的载波,或者
    所述第一载波是所述M个载波中的主载波,或者
    所述第一载波承载有所述第一设备发送的第一标识,其中,所述第一标识是预配置的标识,或所示第一标识网络设备配置的标识,且所述第一标识用于指示所述第一标识所承载于的载波中携带有第一信息,或者
    所述第一载波上承载有同步信号,且所述M个载波中除所述第一载波以外的载波上未承载同步信号,或者
    所述第一载波上承载的同步信号对应第一序列,其中,所述第一序列是预配置的序列,或所示第一序列是网络设备配置的序列,且所述第一序列用于指示所述第一序列对应的同步信号所承载于的载波中携带有第一信息。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述N个载波上的第一时频资源 的位置是预配置的,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备通过第一载波从所述第一设备接收第二信息,所述第二信息用于指示所述第一载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源,其中,所述N个载波上的第一时频资源的位置与所述第一载波上的第一时频资源的位置相同。
  19. 根据权利要求18所述的方法,其特征在于,所述第二信息具体用于指示所述第一时频资源的位置相对于参考位置的偏移量。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备从所述第一设备接收N个中的一个或多个第三信息,其中,所述N个载波与所述N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  21. 根据权利要求20所述的方法,其特征在于,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
  22. 根据权利要求21所述的方法,其特征在于,所述参考位置是所述预配置的位置,或者
    所述参考位置是网络设备配置的位置,或者
    所述参考位置是所述N个载波中的第二载波上的第一时频资源的位置,
    其中,所述第二载波是预配置的载波,或者
    所示第二载波是网络设备配置的载波,或者
    所述第二载波是所述N个载波中的主载波,或者
    所述第二载波承载有规定的第二标识,其中,所述第二标识用于指示所述第二标识所承载于的载波中的第一时频资源的位置为参考位置,或者
    所述第二载波上承载有同步信号,且所述N个载波中除所述第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置,或者
    所述第二载波上承载的同步信号对应规定的第二序列,其中,所述第二序列用于指示所述第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考位置。
  23. 根据权利要求20至22中任一项所述的方法,其特征在于,所述第二设备从所述第一设备接收N个第三信息,包括:
    所述第二设备通过所述第一载波从所述第一设备接收所述N个第三信息;或
    所述第二设备通过所述N个载波中的一个或多个载波从所述第一设备接收所述N个中的一个或多个第三信息,其中,每个第三信息承载于所对应的载波上。
  24. 根据权利要求23所述的方法,其特征在于,所述N个第三信息承载于旁路控制信息SCI中,或
    所述N个第三信息承载于媒体接入控制的控制单元MAC CE中。
  25. 一种通信设备,其特征在于,包括:
    收发器,用于接收或发送数据或信息;
    处理器,用于控制所述收发器通过第一载波发送第一信息,所述第一信息用于指示所述通信设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;
    所述通信设备通过所述N个载波发送数据。
  26. 根据权利要求25所述的通信设备,其特征在于,所述第一信息具体用于指示所述M个载波中除所述第一载波以外的每个载波是否包括第一时频资源的情况,所述第一时频资源是所述通信设备 发送数据时使用的时频资源。
  27. 根据权利要求26所述的通信设备,其特征在于,所述第一信息包括M-1个比特,所述M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括所述第一时频资源,所述M-1个载波是所述M个载波中除所述第一载波以外的载波。
  28. 根据权利要求25至27中任一项所述的通信设备,其特征在于,所述第一载波是预先配置的载波,或者
    所述第一载波是由网络设备配置的载波,或者
    所述第一载波是所述M个载波中的主载波,或者
    所述第一载波承载有所述通信设备发送的第一标识,其中,所述第一标识是预配置的,或者是由网络设备配置的,且所述第一标识用于指示所述第一标识所承载于的载波中携带有第一信息,或者
    所述第一载波上承载有同步信号,且所述M个载波中除所述第一载波以外的载波上未承载同步信号,或者
    所述第一载波上承载的同步信号对应第一序列,其中,所述第一序列是预配置的序列,或者所述第一序列是由网络设备配置的序列,且所述第一序列用于指示所述第一序列对应的同步信号所承载于的载波中携带有第一信息。
  29. 根据权利要求25至28中任一项所述的通信设备,其特征在于,所述N个载波上的第一时频资源的位置是预配置的,或者所述N个载波上的第一时频资源的位置是由网络设备配置的,所述第一时频资源是所述通信设备发送数据时使用的时频资源。
  30. 根据权利要求25至29中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器通过第一载波发送第二信息,所述第二信息用于指示所述第一载波上的第一时频资源的位置,所述第一时频资源是所述通信设备发送数据时使用的时频资源,其中,所述N个载波上的第一时频资源的位置与所述第一载波上的第一时频资源的位置相同。
  31. 根据权利要求25至30中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器发送N个第三信息,其中,所述N个载波与所述N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,所述第一时频资源是所述通信设备发送数据时使用的时频资源。
  32. 根据权利要求31所述的通信设备,其特征在于,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
  33. 根据权利要求32所述的通信设备,其特征在于,所述参考位置是预配置的位置,或者
    所述参考位置是由网络设备配置的位置,或者
    所述参考位置是所述N个载波中的第二载波上的第一时频资源的位置,
    其中,所述第二载波是预配置的载波,或者
    所述第二载波是由网络设备配置的载波,或者
    所述第二载波是所述N个载波中的主载波,或者
    所述第二载波承载有规定的第二标识,其中,所述第二标识用于指示所述第二标识所承载于的载波中的第一时频资源的位置为参考位置,或者
    所述第二载波上承载有同步信号,且所述N个载波中除所述第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置,或者
    所述第二载波上承载的同步信号对应规定的第二序列,其中,所述第二序列用于指示所述第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考位置。
  34. 根据权利要求31至33中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器通过所述第一载波发送所述N个第三信息;或
    所述处理器还用于控制所述收发器通过所述N个载波发送所述N个第三信息,其中,每个第三信息承载于所对应的载波上。
  35. 一种传输数据的通信设备,其特征在于,包括:
    收发器,用于接收或发送数据或信息;
    处理器,用于控制所述收发器通过第一载波接收第一设备发送的第一信息,所述第一信息用于指示所述第一设备使用M个载波中的N个载波发送数据,其中,N为大于或等于2的整数,且N小于或等于M;用于根据所述第一信息确定所述N个载波,并控制所述收发器通过所述N个载波中的一个或多个载波从所述所述第一设备接收数据。
  36. 根据权利要求35所述的通信设备,其特征在于,所述第一信息具体用于指示所述M个载波中除所述第一载波以外的每个载波是否包括第一时频资源的情况,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  37. 根据权利要求36所述的通信设备,其特征在于,所述第一信息包括M-1个比特,所述M-1个比特与M-1个载波一一对应,每个比特用于指示所对应的载波是否包括所述第一时频资源,所述M-1个载波是所述M个载波中除所述第一载波以外的载波。
  38. 根据权利要求35至37中任一项所述的通信设备,其特征在于,所述第一载波是预配置的载波,或者
    所述第一载波是网络设备配置的载波,或者
    所述第一载波是所述M个载波中的主载波,或者
    所述第一载波承载有所述第一设备发送的第一标识,其中,所述第一标识是预配置的标识,或所示第一标识网络设备配置的标识,且所述第一标识用于指示所述第一标识所承载于的载波中携带有第一信息,或者
    所述第一载波上承载有同步信号,且所述M个载波中除所述第一载波以外的载波上未承载同步信号,或者
    所述第一载波上承载的同步信号对应第一序列,其中,所述第一序列是预配置的序列,或所示第一序列是网络设备配置的序列,且所述第一序列用于指示所述第一序列对应的同步信号所承载于的载波中携带有第一信息。
  39. 根据权利要求35至38中任一项所述的通信设备,其特征在于,所述N个载波上的第一时频资源的位置是预配置的,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  40. 根据权利要求35至39中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器通过第一载波从所述第一设备接收第二信息,所述第二信息用于指示所述第一载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源,其中,所述N个载波上的第一时频资源的位置与所述第一载波上的第一时频资源的位置相同。
  41. 根据权利要求35至40中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器从所述第一设备接收N个中的一个或多个第三信息,其中,所述N个载波与所述N个第三指示信息一一对应,每个第三信息用于指示所对应的载波上的第一时频资源的位置,所述第一时频资源是所述第一设备发送数据时使用的时频资源。
  42. 根据权利要求41所述的通信设备,其特征在于,每个第三信息具体用于指示所对应的载波上的第一时频资源的位置相对于参考位置的偏移量。
  43. 根据权利要求42所述的通信设备,其特征在于,所述参考位置是所述预配置的位置,或者
    所述参考位置是网络设备配置的位置,或者
    所述参考位置是所述N个载波中的第二载波上的第一时频资源的位置,
    其中,所述第二载波是预配置的载波,或者
    所述第二载波是网络设备配置的载波,或者
    所述第二载波是所述N个载波中的主载波,或者
    所述第二载波承载有规定的第二标识,其中,所述第二标识用于指示所述第二标识所承载于的载波中的第一时频资源的位置为参考位置,或者
    所述第二载波上承载有同步信号,且所述N个载波中除所述第二载波以外的载波上未承载同步信号,其中,携带有同步信号的载波上的第一时频资源的位置为参考位置,或者
    所述第二载波上承载的同步信号对应规定的第二序列,其中,所述第二序列用于指示所述第二序列对应的同步信号所承载于的载波上的第一时频资源的位置为参考位置。
  44. 根据权利要求41至43中任一项所述的通信设备,其特征在于,所述处理器还用于控制所述收发器通过所述第一载波从所述第一设备接收所述N个第三信息;或
    所述处理器还用于控制所述收发器通过所述N个载波中的一个或多个载波从所述第一设备接收所述N个中的一个或多个第三信息,其中,每个第三信息承载于所对应的载波上。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至24中任意一项所述的方法。
  46. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至24中任意一项所述的方法。
PCT/CN2019/074483 2018-02-13 2019-02-01 传输数据的方法和装置以及通信设备 WO2019157995A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19753982.8A EP3726767B1 (en) 2018-02-13 2019-02-01 Data transmission method and device and communication apparatus
US16/969,697 US11516777B2 (en) 2018-02-13 2019-02-01 Data transmission method and apparatus and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150182.9A CN110149183B (zh) 2018-02-13 2018-02-13 通信设备
CN201810150182.9 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157995A1 true WO2019157995A1 (zh) 2019-08-22

Family

ID=67588059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074483 WO2019157995A1 (zh) 2018-02-13 2019-02-01 传输数据的方法和装置以及通信设备

Country Status (4)

Country Link
US (1) US11516777B2 (zh)
EP (1) EP3726767B1 (zh)
CN (1) CN110149183B (zh)
WO (1) WO2019157995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035642A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Sidelink carrier grouping for wireless communication

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115226254A (zh) * 2020-01-10 2022-10-21 上海朗帛通信技术有限公司 用于不连续接收的方法和装置
CN113133118B (zh) * 2020-01-15 2023-08-08 大唐移动通信设备有限公司 一种载波的确定方法、装置及可读存储介质
CN113543318B (zh) * 2020-04-15 2024-09-10 大唐移动通信设备有限公司 一种载波确定及指示方法、设备、装置、介质
CN114363978B (zh) * 2020-10-12 2024-09-24 北京紫光展锐通信技术有限公司 载波切换方法、管理节点、终端节点及存储介质
WO2023123318A1 (zh) * 2021-12-31 2023-07-06 Oppo广东移动通信有限公司 控制信息传输方法、装置、设备和存储介质
WO2023165387A1 (zh) * 2022-03-01 2023-09-07 华为技术有限公司 一种通信方法及设备
WO2024031463A1 (zh) * 2022-08-10 2024-02-15 Oppo广东移动通信有限公司 Sl通信方法、装置、设备、存储介质及程序产品
WO2024045042A1 (zh) * 2022-08-31 2024-03-07 北京小米移动软件有限公司 一种能力交互触发方法/装置/设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841892A (zh) * 2009-03-18 2010-09-22 中国移动通信集团公司 载波聚合系统中pdcch指示、检测方法、设备及系统
CN102271356A (zh) * 2010-06-02 2011-12-07 中国移动通信集团公司 载波聚合系统中的载波调度方法、通信方法、基站和终端
CN102811495A (zh) * 2011-06-02 2012-12-05 华为技术有限公司 接收、发送调度信息的方法、装置及系统
CN104869653A (zh) * 2014-02-23 2015-08-26 上海朗帛通信技术有限公司 一种基站、ue中非授权频谱上的调度方法和设备
CN105992378A (zh) * 2015-02-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的载波聚合中的pdcch方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644916B1 (en) * 2002-05-14 2020-05-05 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
EP3145108A1 (en) 2010-06-18 2017-03-22 BlackBerry Limited System and method for uplink control information transmission in carrier aggregation
KR101896385B1 (ko) * 2011-08-11 2018-09-11 삼성전자주식회사 디바이스 간 직접 통신 서비스를 지원하기 위한 장치 및 방법
CN103096488B (zh) * 2011-10-27 2015-07-08 华为技术有限公司 多载波调度的方法和设备
US9207777B2 (en) * 2012-11-01 2015-12-08 Blackberry Limited Electronic device with predictive URL domain key function
CN106788936B (zh) * 2016-12-26 2020-04-07 北京小米移动软件有限公司 信息反馈方法、装置、用户设备和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841892A (zh) * 2009-03-18 2010-09-22 中国移动通信集团公司 载波聚合系统中pdcch指示、检测方法、设备及系统
CN102271356A (zh) * 2010-06-02 2011-12-07 中国移动通信集团公司 载波聚合系统中的载波调度方法、通信方法、基站和终端
CN102811495A (zh) * 2011-06-02 2012-12-05 华为技术有限公司 接收、发送调度信息的方法、装置及系统
CN104869653A (zh) * 2014-02-23 2015-08-26 上海朗帛通信技术有限公司 一种基站、ue中非授权频谱上的调度方法和设备
CN105992378A (zh) * 2015-02-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的载波聚合中的pdcch方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726767A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035642A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Sidelink carrier grouping for wireless communication

Also Published As

Publication number Publication date
CN110149183B (zh) 2021-01-29
EP3726767A1 (en) 2020-10-21
US11516777B2 (en) 2022-11-29
EP3726767B1 (en) 2023-03-29
US20210014846A1 (en) 2021-01-14
CN110149183A (zh) 2019-08-20
EP3726767A4 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2019157995A1 (zh) 传输数据的方法和装置以及通信设备
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
CN108633041B (zh) 接收信息的方法及其装置和发送信息的方法及其装置
US11962387B2 (en) Wireless communication method and apparatus
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
US10686918B2 (en) Media access control protocol data unit processing method and apparatus
WO2018171606A1 (zh) 接收数据的方法及其装置和发送数据的方法及其装置
WO2019096232A1 (zh) 通信方法和通信装置
US12040854B2 (en) Wireless communication method, terminal device and network device
WO2018228533A1 (zh) 资源映射的方法和装置
WO2019072170A1 (zh) 通信方法和通信装置
US20210014868A1 (en) Method and device for sending uplink channel, and method and device for receiving uplink channel
CN110035548B (zh) 通信的方法和通信设备
WO2018137569A1 (zh) 数据发送方法和装置及数据接收方法和装置
AU2018407271A1 (en) Channel transmission method and apparatus, and computer storage medium
WO2022141105A1 (zh) 无线通信方法、终端设备和网络设备
CN112771963B (zh) 一种信息通知的方法和装置
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023108638A1 (zh) 无线通信的方法、终端设备和网络设备
CN114189947B (zh) 通信方法和通信设备
WO2022109838A1 (zh) 无线通信的方法和装置
WO2022027683A1 (zh) 确定传输使用的天线面板的方法和终端设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102813A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019753982

Country of ref document: EP

Effective date: 20200714

NENP Non-entry into the national phase

Ref country code: DE