WO2021044982A1 - Oct装置 - Google Patents

Oct装置 Download PDF

Info

Publication number
WO2021044982A1
WO2021044982A1 PCT/JP2020/032705 JP2020032705W WO2021044982A1 WO 2021044982 A1 WO2021044982 A1 WO 2021044982A1 JP 2020032705 W JP2020032705 W JP 2020032705W WO 2021044982 A1 WO2021044982 A1 WO 2021044982A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct
image
fundus
optical path
optical system
Prior art date
Application number
PCT/JP2020/032705
Other languages
English (en)
French (fr)
Inventor
愛 ▲高▼谷
倫全 佐竹
幸弘 樋口
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to US17/640,674 priority Critical patent/US20220322932A1/en
Priority to JP2021543743A priority patent/JPWO2021044982A1/ja
Publication of WO2021044982A1 publication Critical patent/WO2021044982A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present disclosure relates to an OCT device that acquires (photographs) OCT data of an eye to be inspected.
  • OCT device for obtaining OCT data of the eye to be inspected.
  • various adjustments such as optical path length adjustment for adjusting the optical path length between the measurement light and the reference light, focus adjustment for adjusting the focus on the subject, and polarization adjustment for adjusting the polarization state of the measurement light and the reference light are performed. It is done (see, for example, Patent Document 1).
  • OCT data with good image quality can be obtained in at least one case. Was difficult.
  • the technical subject of the present disclosure is to provide an OCT apparatus capable of acquiring good OCT data regardless of the curvature level of the image of the fundus.
  • the OCT apparatus has an optical divider for dividing the light from the OCT light source into a measurement optical path and a reference optical path, and is guided to the fundus of the eye to be inspected through the measurement optical path.
  • An OCT optical system that detects a spectral interference signal between the measurement light and the reference light from the reference optical path, an image processing means that processes the spectral interference signal output from the OCT optical system, and acquires OCT data of the fundus of the eye.
  • the position of the high-precision region which is a depth region where relatively high-precision OCT data can be obtained, is adjusted by controlling the OCT optical system according to the curvature level of the image of the fundus in the imaging range of the OCT data. Provide with control means.
  • good OCT data can be obtained regardless of the curvature level of the image of the fundus.
  • FIG. 1 to 7 are views according to an embodiment of the present embodiment.
  • the items classified by ⁇ > below can be used independently or in relation to each other.
  • the OCT apparatus includes an OCT optical system (see FIG. 1), an image processor (image processing means in the present embodiment), and a control unit (control means in the present embodiment, see FIG. 2). Be prepared.
  • the OCT optical system may be, for example, a Fourier domain OCT optical system (SS-OCT optical system, SD-OCT optical system), and the OCT optical system divides the light from the OCT light source into a measurement optical path and a reference optical path.
  • a detector may be used to detect a spectral interference signal between the measurement light guided to the test object via the measurement optical path and the reference light from the reference optical path.
  • the optical scanner may be provided to scan the measurement light guided to the eye to be inspected in the transverse direction (direction intersecting the depth direction) on the eye to be inspected.
  • the OCT optical system is not limited to the configuration provided with an optical scanner, and a full-field OCT optical system may be used.
  • the OCT optical system includes an optical path length adjusting unit (optical path length adjusting means in the present embodiment), a focus adjusting unit (focus adjusting means in the present embodiment), and a polarization adjusting unit (polarization adjusting means in the present embodiment). You may have at least one of them.
  • the optical path length adjusting unit changes at least one of the optical path lengths of the measurement optical path and the reference optical path.
  • the optical path length adjusting unit may change the optical path length by moving an optical member arranged in at least one of the measurement optical path and the reference optical path by the driving unit, and may change the working distance between the eye to be inspected and the device.
  • the optical path length may be changed by adjusting.
  • the focus adjustment unit is used to adjust the focus position (focus position) of the measurement light.
  • the focus adjusting unit may be provided with, for example, a moving lens, a variable focus lens such as a liquid crystal lens, or an optical system capable of changing the optical path length. It may be a lens.
  • the optical system whose optical path length can be changed may be, for example, one or more lenses, mirrors, or a combination thereof.
  • the polarization adjusting unit adjusts the polarization of at least one of the measurement light and the reference light.
  • the polarization adjusting unit may be a polarizer, or may be arranged in at least one of the measurement optical path and the reference optical path.
  • the image processor may be capable of acquiring OCT data by processing the spectral interference signal output from the OCT optical system.
  • image data G of a tomographic image which is an example of OCT data
  • the image data G is composed of a first image data G1 corresponding to the back side of the zero delay position Z and a second image data G2 corresponding to the front side of the zero delay position Z, and is symmetrical with respect to the zero delay position Z. It is an image. Specifically, the real and virtual images of the fundus image are formed symmetrically with respect to the zero delay position Z.
  • the optical path length is adjusted so that the zero delay position Z is formed on the front side (shallow layer side) of the retina surface, and in this case, a normal image is acquired as a real image.
  • the retina surfaces face each other between the first image data G1 and the second image data G2.
  • the real image is acquired in the first image data G1 and the virtual image (mirror image) is acquired in the second image data G2.
  • an inverse image is acquired as a real image as shown in FIG. 3B.
  • the retina surfaces of the first image data G1 and the second image data G2 are oriented in opposite directions.
  • the real image is acquired in the second image data G2
  • the virtual image is acquired in the first image data G1.
  • One of the real image and the virtual image thus formed may be extracted as a tomographic image displayed on the monitor.
  • any full-range technique may be applied, which may allow the acquisition of a wide range of OCT data from which virtual images have been selectively removed.
  • the zero delay position Z is not only adjusted to a position that does not overlap with the image of the fundus, as shown in FIGS. 3A and 3B, but also the position of the fundus. It is possible to obtain good OCT data by setting the zero delay position Z also at the position where it overlaps with the image.
  • Patent Document 1 a technology for removing a virtual image (also referred to as a mirror image) by additional hardware (for example, see Non-Patent Document 1) and a technology for correcting by software without using additional hardware (for example).
  • Patent Document 2 a technology for correcting by software without using additional hardware (for example).
  • Wojtkowski, M. et al. (2002) Full range complex spectral optical coherence tomography technique in eye imaging, Optics Letters, 27 (16), p. 1415.
  • Japanese Patent Application Laid-Open No. 2015-506772 Japanese Patent Application Laid-Open No. 2015-506772
  • Japanese Patent Application Laid-Open No. 2015-506772 Japanese Patent Application Laid-Open No. 2015-506772
  • a real image and a virtual image in the OCT data are based on a plurality of OCT data having different optical path lengths when detecting a spectral interference signal.
  • Yet another full-range technique has been proposed in which at least the complementary processing is performed on the overlapping area with the above and the OCT data to which the complementary processing is performed is generated, and this may be applied in the present embodiment.
  • the control unit (control means in the present embodiment, see FIG. 2) is a processor that controls various operations of the OCT device.
  • the control unit may be composed of, for example, a CPU, a RAM, a ROM, and the like. Further, the image processor may also be used by the control unit.
  • the control unit can change the position of the depth region (hereinafter referred to as the high-precision region) where relatively high-precision OCT data can be obtained by controlling the OCT optical system.
  • the accuracy of OCT data is not always uniform in the depth direction.
  • the accuracy referred to here may be expressed by, for example, the level of interference sensitivity.
  • the depth region closer to the zero delay position Z on the OCT data has higher sensitivity, and the sensitivity decreases as the distance from the zero delay position Z increases. That is, it can be said that the OCT data has relatively high accuracy in the depth region close to the zero delay position Z.
  • the accuracy of the retinal surface side portion is higher than that in the choroid side portion, and in the tomographic image shown in FIG. 3B, the relationships are interchanged.
  • the control unit adjusts the position of the high-precision region according to the curvature level (magnitude of curvature) of the image of the fundus in the imaging range.
  • the position of the high-precision region is adjusted by driving and controlling at least the optical path length adjusting unit in the OCT optical system.
  • the high-precision region is equated with the zero delay position Z and the region in the vicinity thereof.
  • the position of the precision region with respect to the reference position of the fundus image in each OCT data depends on the curvature level of the fundus image. It may be set at a different position for each data.
  • the curvature level is roughly classified into a first level and a second level (however, the curvature is larger than the first level), for example, a case where the curvature level is the first level and a case where the curvature level is the first level.
  • the positions of the high-precision regions with respect to the reference position of the image of the fundus may be set to different positions from those of the two levels.
  • control unit may adjust the position of the high-precision region to the shallower layer side in the case of the second level as opposed to the case of the first level.
  • curvature level may be divided into three or more stages, and the position of the high precision region may be adjusted to a position corresponding to each level.
  • the position of the high-precision region corresponding to at least the first level is on the shallow layer side of the retinal surface of the central region (region near the fovea) and It may be set to be deeper than the choroid in the peripheral region.
  • control unit sets a high-precision region for each scan line (each scan of each scan line) according to the curvature level of the fundus image for each scan line.
  • the position may be adjusted. As a result, good OCT data can be obtained at each scan line.
  • the position is not necessarily limited to this, and the position of the high-precision region may be controlled to be constant among a plurality of scan lines.
  • the curvature of the image of the fundus becomes larger toward the peripheral part of the fundus, and the peripheral part is depicted on the shallower layer side.
  • the peripheral part of the fundus is included in the imaging range, the position of the high-precision region is automatically adjusted to the shallower layer side, so that it is relatively emphasized in the observation / diagnosis of the peripheral part of the fundus. It smoothly transitions to a state suitable for the surface layer side of the retina.
  • the curvature of the image of the fundus naturally depends on individual differences.
  • cases where curvature due to individual differences becomes a problem include cases of diseased eyes accompanied by an increase in axial length, such as in the case of axial myopia.
  • thinning occurs in the central part of the fundus. Due to the thinning, the fundus itself is in a state where it is easy to acquire information on deep layers such as the choroid in the central part of the fundus with high accuracy, so that the position of the high precision region is adjusted to the shallower layer side. This facilitates good imaging of the fundus tissue at each position.
  • the image of the fundus has increased curvature on the peripheral side. That is, the curvature of the image of the fundus depends on the size and position of the imaging range of the OCT data on the fundus. Therefore, when the examiner is required to set the imaging range of the OCT data, the curvature level in the image of the fundus is corresponding to the imaging range set as a result of the operation. Therefore, the position of the high-precision region may be adjusted by controlling the OCT optical system (here, the optical path length adjusting unit) according to the photographing range set as a result of the operation.
  • the shooting range setting operation may be, for example, an operation of specifying the volume data acquisition range, or a selection operation of selecting one from a plurality of predetermined scan patterns. It may be an operation of setting the scan line at an arbitrary position and length on the fundus, or it may be another operation.
  • the curvature level when the central portion of the fundus is the imaging range may be the first level
  • the curvature level when the peripheral portion of the fundus is included in the imaging range may be the second level.
  • the OCT device may have an operation detection unit that detects (accepts) the setting operation of the shooting range.
  • the operation detection unit may be realized by, for example, a control unit and an input interface.
  • the imaging range of OCT data is regulated by the angle of view in the OCT optical system.
  • the OCT apparatus may have an angle of view switching unit that optically changes the angle of view in the OCT optical system.
  • the angle of view switching unit can switch the angle of view between the first angle of view corresponding to the central part of the fundus and the second angle of view corresponding to the wide-angle region including the central part of the fundus and the peripheral part of the fundus. You may. In this case, a larger curvature may occur in the image of the fundus at the second angle of view as compared with the case of the first angle of view.
  • control unit may adjust the position of the high-precision region by controlling the OCT optical system according to the curvature level within the imaging range in consideration of the angle of view.
  • the curvature level corresponding to the first angle of view may be the first level
  • the curvature level corresponding to the second angle of view may be the second level.
  • the angle of view switching unit may be, for example, a mechanism for inserting and removing an optical element such as a lens from the measurement optical path from the optical divider to the eye to be inspected. Further, for example, it may be a mechanism for displacing the position of the objective optical system in the OCT optical system.
  • the control unit may adjust the position of the high-precision region by controlling the OCT optical system according to the curvature level in consideration of the axial length information of the eye to be inspected.
  • the curvature level is assumed to be the first level
  • the axial length is in the second range (for example, the long eye).
  • the curvature level in the case of is may be the second level.
  • Axial axis length information is information related to the axial length value.
  • the axial length value may be measured via the OCT optical system, and the measured value may be acquired as axial length information. For example, it can be calculated based on the working distance and the depth position information of the retinal surface acquired via the OCT optical system.
  • the depth position information of the retinal surface (preferably the depth position information of the fovea centralis) can be acquired based on the optical path length difference between the measurement light and the reference light, and one or both of the spectral interference signals.
  • the working distance may be the value at the completion of alignment
  • the optical path length difference may be the value when the zero delay position Z is arranged on the surface of the retina.
  • the axial length information may be acquired as a measurement result by an axial length measuring device separate from the OCT device.
  • control unit may adjust the position of the high-precision region more directly based on the information indicating the curvature level of the image of the fundus.
  • information indicating the curvature level may be acquired as a processing result for the OCT data.
  • Information on the curvature level may be acquired based on the OCT data acquired when the optical path length is adjusted in the optimization control of shooting conditions (referred to as Optimize).
  • information on the curvature level may be acquired as a result of image processing on the OCT data.
  • the zero delay position Z in the OCT data is adjusted so as to be arranged at a predetermined position (for example, always in front of the retina surface) with respect to the image of the fundus.
  • the zero delay position Z may be further adjusted so that the evaluation value regarding the signal intensity of the image of the fundus is maximized.
  • the image of the fundus is determined by the ratio in which the image of the fundus is included in each of the range A within a predetermined distance from the zero delay position Z and the range B farther from the predetermined distance.
  • curve fitting may be performed on the image of the fundus in the OCT data, and the curvature level may be acquired based on the curvature of the fitting curve.
  • segmentation processing may be appropriately applied to the image of the fundus.
  • the polarization of the measurement light and the reference light also has a correlation with the interference sensitivity in each depth region.
  • the polarization state of reflected / scattered light is different for each tissue of the eye to be inspected (for each layer in the fundus). Therefore, when the polarization of the measurement light and the reference light is adjusted so that the sensitivity (interference sensitivity) is optimized for a certain tissue, the adjustment is applied to the tissue in another depth region. Good sensitivity is not always obtained.
  • the above accuracy may be due to the focus. That is, the deeper the depth region of the measurement light is closer to the focus position, the higher the contrast data becomes, but the contrast decreases as the distance from the focus position increases. Therefore, when focusing on the resolution as an index indicating the accuracy, it can be said that the OCT data has relatively high accuracy in the depth region close to the focus position.
  • At least one of the focus position and the polarization may be adjusted so as to be linked with the adjustment of the optical path length.
  • the focus position may be adjusted so that the contrast in the region near the zero delay position Z is optimized.
  • the polarization may be adjusted so that the interference sensitivity in the tissue near the zero delay position Z is optimized.
  • a method of adjusting the polarization so that the interference sensitivity is optimized in a specific tissue refer to Japanese Patent Application Laid-Open No. 2018-102789 by the applicant.
  • the high-precision region in the present embodiment is changed according to at least the optical path length, but is not necessarily limited to this, and depends on at least one of the focus position and the polarization. It may be changed.
  • the dispersion amount of the optical system between the measurement optical path and the reference light may be changed in conjunction with the control of the high-precision region described above. As a result, better OCT data is acquired.
  • the image processor may correct and display the layer thickness of the OCT data according to the displacement of the optical path length of the measured light to the retinal surface between each scan position. That is, in a region such as a peripheral region of the fundus where the influence of curvature is large, the layer thickness is depicted as if it is thin (see FIG. 4). Therefore, the image corrected by the influence of the curvature may be displayed by performing image conversion such as deforming the image or adjusting the aspect ratio in consideration of the influence of the curvature.
  • the OCT apparatus has, for example, a spectrum domain type OCT (SD-OCT) as a basic configuration.
  • SD-OCT spectrum domain type OCT
  • the OCT device 1 includes a light source 102, an OCT optical system 100, and an arithmetic controller (arithmetic control unit) 70 (see FIG. 2).
  • the OCT apparatus may be provided with a memory 72, a display unit 75, a front image observation system (not shown), and a fixation target projection system.
  • the arithmetic controller (hereinafter, control unit) 70 is connected to the light source 102, the OCT optical system 100, the memory 72, and the display unit 75.
  • the OCT optical system 100 guides the measurement light to the eye E by the light guide optical system 150.
  • the OCT optical system 100 guides the reference light to the reference optical system 110.
  • the OCT optical system 100 causes the detector (light receiving element) 120 to receive the interference signal light acquired by the interference between the measurement light reflected by the eye E and the reference light.
  • the OCT optical system 100 is mounted in a housing (device body) (not shown), and the housing is three-dimensionally moved with respect to the eye E by a well-known alignment movement mechanism via an operating member such as a joystick. May be aligned with the eye to be inspected.
  • the SD-OCT method is used for the OCT optical system 100.
  • the light source 102 a light source that emits a light flux having a low coherent length is used
  • the detector 120 a spectroscopic detector that disperses and detects a spectral interference signal for each wavelength component is used.
  • the coupler (splitter) 104 is used as a first optical splitter and divides the light emitted from the light source 102 into a measurement optical path and a reference optical path.
  • the coupler 104 guides the light from the light source 102 to the optical fiber 152 on the measurement optical path side and also to the reference optical system 110 on the reference optical path side.
  • the light guide optical system 150 is provided to guide the measurement light to the eye E.
  • the light guide optical system 150 is sequentially provided with, for example, an optical fiber 152, a collimator lens 153, a variable beam expander 154, a focusing lens 155, an optical scanner 156, and an objective lens system 158 (objective optical system in this embodiment). You may.
  • the measurement light is emitted from the exit end of the optical fiber 152 and becomes a parallel beam by the collimator lens 153.
  • the variable beam expander 154 the light is directed to the optical scanner 156 via the focusing lens 155.
  • the focusing lens 155 can be displaced along the optical axis by a drive unit (not shown), and is used for adjusting the condensing state at the fundus.
  • the light that has passed through the optical scanner 156 is applied to the eye E via the objective lens system 158.
  • the first turning point P1 is formed at a position conjugate with the optical scanner 156 with respect to the objective lens system 158. By locating the anterior segment of the eye at this turning point P1, the measurement light reaches the fundus without eclipse. Further, the measurement light is scanned on the fundus according to the operation of the optical scanner 156. At this time, the measurement light is scattered and reflected by the tissue of the fundus.
  • the optical scanner 156 may scan the measurement light on the eye E in the XY direction (transverse direction).
  • the optical scanner 156 is, for example, two galvano mirrors, and the reflection angle thereof is arbitrarily adjusted by a drive mechanism.
  • the luminous flux emitted from the light source 102 changes its reflection (traveling) direction and is scanned in an arbitrary direction on the fundus.
  • a reflection mirror galvano mirror, polygon mirror, resonant scanner
  • AOM acoustic optical element
  • the scattered light (reflected light) from the eye E by the measurement light is incident on the optical fiber 152 and reaches the coupler 104 by tracing the path at the time of projection.
  • the coupler 104 directs the light from the optical fiber 152 into an optical path toward the detector 120.
  • the attachment optical system 160 (an example of the “angle of view switching unit”) is inserted and removed between the objective optical system 158 of the light guide optical system 150 and the eye E to be inspected.
  • the attachment optical system 160 is inserted and removed between the objective optical system 158 and the eye E to be inspected.
  • the attachment optical system 160 may include a plurality of lenses 161 to 164.
  • the lens having the main positive power in the attachment optical system 160 shown in FIG. 1 is the lens 164 placed in front of the eye to be inspected. At least the insertion / removal position of the lens 164 is between the first turning point P1 formed by the objective optical system 158 and the eye E to be inspected.
  • the lens 164 bends the measurement light that has passed through the first turning point P1 toward the optical axis L
  • the second turning point P2 is formed at a position conjugate with the optical scanner 156 with respect to the attachment optical system 160 and the objective optical system 158. Will be done. That is, the attachment optical system 160 is an optical system that relays the turning point P1 to the turning point P2.
  • the solid angle of the measurement light at the second turning point P2 is larger than the solid angle at the first turning point P1.
  • the solid angle at the second turning point P2 is increased more than twice with respect to the solid angle at the first turning point P1.
  • scanning is possible with an angle of view of about ⁇ 60 ° in the retracted state, and scanning is possible with an angle of view of about ⁇ 100 ° in the inserted state.
  • the variable beam expander 154 is a luminous flux diameter adjusting unit in the embodiment.
  • the variable beam expander 154 may have a plurality of lenses forming a telecentric optical system on both sides, and the light flux diameter may be switched by changing the lens spacing by an actuator.
  • the variable beam expander 154 adjusts the luminous flux diameter of the measurement light based on the instruction from the control unit 70.
  • the control unit 70 drives the variable beam expander 154 according to the insertion / removal of the attachment optical system, and reduces the luminous flux diameter in the inserted state with respect to the retracted state.
  • the ratio of the luminous flux diameter (the luminous flux diameter in the variable beam expander 154) between the inserted state and the retracted state is the inverse ratio of the angle of view between the inserted state and the retracted state, and thus the resolving force based on the insertion / removal of the attachment optical system 160. Can suppress changes in.
  • the attachment optical system 160 In order to secure a sufficient working distance, the attachment optical system 160 needs to be bent toward the optical axis L from a position having a sufficient light beam height. Further, in order to suppress the aberration generated in the attachment optical system 160 within an allowable range, the power of each lens included in the attachment optical system 160 is limited. Therefore, it is difficult to shorten the optical path length of the attachment optical system 160.
  • the conventional OCT device although there is a configuration for adjusting the optical path length difference between the reference light and the measurement light, there is no device having an adjustment range applicable to the insertion / removal of the attachment optical system 160.
  • an optical adapter is attached to a fundus photography OCT to enable anterior segmental imaging (for example, refer to "Japanese Unexamined Patent Publication No. 2011-147612" by the present applicant. ).
  • this optical adapter does not relay the turning point formed by the optical system of the main body of the apparatus, and there is no request for widening the scanning range, so that the optical adapter can be formed with a relatively short optical path length.
  • the position of the image plane shifts from the fundus to the anterior segment of the eye. Therefore, it was not necessary to adjust the optical path length difference significantly with the insertion of the optical adapter.
  • the reference optical system 110 generates a reference light that is combined with the fundus reflected light of the measurement light.
  • the reference light passing through the reference optical system 110 is combined with the light from the measurement optical path by the coupler 148 and interferes with the light.
  • the reference optical system 110 may be a Michaelson type or a Machzenda type.
  • the reference optical system 110 shown in FIG. 1 is formed by a transmission optical system.
  • the reference optical system 110 guides the light from the coupler 104 to the detector 120 by transmitting it without returning it.
  • the reference optical system 110 may be formed by, for example, a reflective optical system, and may be guided to the detector 120 by reflecting the light from the coupler 104 by the reflective optical system.
  • the reference optical system 110 may be provided with a plurality of reference optical paths.
  • the reference optical path is divided into an optical path passing through the fiber 141 (the first branch optical path in the present embodiment) and an optical path passing through the fiber 142 (the second branch optical path in the present embodiment) by the coupler 140.
  • the fiber 141 and the fiber 142 are connected to the coupler 143, whereby the two branched optical paths are coupled and incident on the coupler 148 via the optical path length difference adjusting unit 145 and the polarization adjusting unit 147.
  • the reference light from the coupler 104 is simultaneously guided by the coupler 143 to the fiber 141 and the fiber 142.
  • the light passing through either the fiber 141 or the fiber 142 is combined with the measurement light (fundus reflected light) at the coupler 148.
  • the optical path length difference between the fiber 141 and the fiber 142 may be a fixed value.
  • the optical path length difference is substantially the same as the optical path length of the attachment optical system 160.
  • An optical member for adjusting the optical path length difference between the measurement light and the reference light may be arranged in at least one of the measurement optical path and the reference optical path.
  • a reference optical path adjusting unit 145 is provided, and two orthogonal planes are provided at the reference optical path in order to adjust the optical path length difference between the measurement light and the reference light.
  • a mirror 145a to be provided is provided. By moving the mirror 145a in the direction of the arrow by the actuator 145b, the optical path length of the reference optical path can be increased or decreased.
  • the configuration in which the optical path length difference between the measurement light and the reference light is adjusted is not limited to this.
  • the collimator lens 153 and the coupler are integrally moved to adjust the optical path length of the measurement light, and as a result, the optical path length difference between the measurement light and the reference light is adjusted. You may.
  • the reference optical path adjusting unit 145 is provided on the optical path between the coupler 143 and the coupler 148, that is, on the common optical path between the first branch optical path and the second branch optical path. , The adjustment of the optical path length difference between the measurement optical path and the reference optical path, and the adjustment regarding the individual difference in the axial length can be performed collectively for both the first branch optical path and the second branch optical path. It will be possible.
  • the adjustment range of the optical path length in the reference optical path adjusting unit 145 is based on the optical path length difference between the fiber 141 and the fiber 142 (in other words, the optical path length difference between the first branch optical path and the second branch optical path). It is preferable that the setting is sufficiently short.
  • the detector 120 is provided to detect the interference between the light from the measurement optical path and the light from the reference optical path.
  • the detector 120 is a spectroscopic detector, which includes, for example, a spectroscope and a line sensor, and the measurement light and the reference light combined by the coupler 148 are separated by the spectroscope.
  • Light is received in different regions (pixels) of the line sensor for each wavelength. As a result, the output for each pixel is acquired as a spectral interference signal.
  • the photodetector has a sufficient effective Depth range in consideration of the deviation.
  • the expected effective Depth It is preferable to use a line camera having a sufficient number of pixels for the range. Further, as a ⁇ modification example>, a configuration described later may be further adopted.
  • the control unit 70 processes (Fourier analysis) the spectral signal detected by the detector 120 to obtain OCT data of the eye to be inspected.
  • the arithmetic controller may obtain OCT data in the depth (Z) region by Fourier transforming the spectral signal in the wave number k space.
  • the information after the Fourier transform may be represented as a signal including a real number component and an imaginary number component in the Z space.
  • the control unit 70 may obtain OCT data by obtaining the absolute values of the real number component and the imaginary number component in the signal in the Z space.
  • the reference light passing through the first branch optical path and the reference light passing through the second branch optical path are simultaneously guided to the coupler 148, and each of them is combined with the measurement light. Since there is a large optical path length difference between the first branch optical path and the second branch optical path, which is about the same as the optical path length of the attachment optical system 160, the reference light passing through the first branch optical path and the reference light Of the reference light passing through the second branch optical path, one is likely to interfere with the measurement light, but the other is unlikely to interfere with the measurement light.
  • the spectral interference signal from the detector 120 includes a component due to the reference light passing through the first branch optical path and a component due to the reference light passing through the second branch optical path, of the two types of components One of them, depending on the state of the light guide optical system 150, is obtained as a significantly stronger signal than the other.
  • good OCT data can be obtained regardless of the state of the light guide optical system 150. That is, by having a plurality of reference optical paths having an optical path length difference corresponding to the attachment optical system 160, the OCT apparatus according to the embodiment is an amount of change in the optical path length difference between the measurement optical path and the reference optical path, and is an attachment. The amount of change due to the insertion / removal of the optical system 160 is compensated regardless of the state of the light guide optical system 150.
  • the reference optical path adjusting unit 145 It is necessary to control the reference optical path adjusting unit 145 and adjust the optical path length difference between the measurement optical path and the reference optical path, which is the optical path length difference with respect to the axial length of the eye E to be inspected, in advance.
  • the mirror 145a is moved within a predetermined adjustment range, the interference signal at each position is acquired, and the position of the mirror 145a is determined with reference to the position where the intensity of the interference signal is highest. You may do so.
  • the adjustment range of the optical path length in the reference optical path adjustment unit 145 is sufficiently smaller than the optical path length difference between the first branch optical path and the second branch optical path)
  • the interference signal in the adjustment range of the reference optical path adjustment unit 145 is uniquely specified.
  • the reflected light of the measurement light from the peripheral part of the fundus becomes weaker than the reflected light from the central part of the fundus, so that the zero delay position between the measurement optical path and the reference optical path is set in the peripheral part of the fundus.
  • the optical path length difference between the measurement optical path and the reference optical path is adjusted by the reference optical path adjustment unit 145 so as to overlap the desired fundus tissue (for example, retina, choroid, strong membrane, etc.) or translucent tissue (glass body, etc.). You may.
  • the control unit 70 may perform dispersion correction processing by software on the spectrum data output from the detector 120.
  • the control unit 70 obtains OCT data based on the spectrum data after dispersion correction. Therefore, there is a difference in image quality between the real image and the virtual image.
  • the difference in the amount of dispersion of the optical system between the measurement optical path and the reference optical path is corrected by signal processing.
  • the correction value stored in the memory 72 in advance is applied in the above-mentioned processing of the spectral signal.
  • the phase shift amount ⁇ (k) as a function of the wave number k is obtained, and the phase shift is returned for each value of k by I (k) and exp-i ⁇ (k).
  • the phase ⁇ (k) to be distributed-corrected can be obtained in advance by calibration, or the phase ⁇ (k) corresponding to the acquired tomographic image may be obtained. Then, a parameter for dispersion correction (for example, phase ⁇ (k)) is stored in the memory 72.
  • control unit 70 obtains OCT data by Fourier transforming the spectral intensity I (k) after the dispersion correction corrected by the set dispersion correction data.
  • the first dispersion correction value (for normal image) is acquired from the memory 72 as the dispersion correction value for correcting the influence of the dispersion on the real image, and the spectrum data output from the detector 120 is the first dispersion correction value.
  • the corrected spectral intensity data is Fourier transformed to form OCT data.
  • the real image R is acquired as a high-sensitivity, high-resolution image
  • the virtual image M is acquired as a low-resolution blurred image due to the difference in the dispersion correction value.
  • the real image when a real image is acquired in the first image area G1, the real image is acquired as a high-sensitivity, high-resolution image, and the virtual image (mirror image) is distributed and corrected in the second image area G2. It is acquired as a low-resolution blurred image due to the difference in values.
  • the real image when the real image is acquired in the second image region G2, the virtual image is acquired in the first image region G1 as a low-resolution blurred image due to the difference in the dispersion correction value.
  • the present invention is not limited to this, and software dispersion correction may be performed on the virtual image M.
  • the virtual image M is acquired as a high-sensitivity, high-resolution image
  • the real image R is acquired as a low-resolution blurred image.
  • the control unit 70 extracts the image data having the higher sensitivity and resolution from the image data of the real image and the virtual image. Just do it.
  • the first correction value corresponding to the retracted state and the second correction value different from the first correction value corresponding to the inserted state are stored in the memory 72 in advance, and are derived.
  • the correction value to be applied is switched according to the state of the optical optical system.
  • the amount of change in the amount of dispersion between the measurement optical path and the reference optical path is the amount of change due to the insertion / removal of the attachment optical system 160 in each state of the light guide optical system 150. Will be compensated.
  • a plurality of second correction values corresponding to the inserted state are set according to the scanning position of the measurement light.
  • the correction value for the central part of the fundus and the correction value for the peripheral part of the fundus are set as the second correction values with different values.
  • the first correction value may be applied to a region within ⁇ 60 ° of the fundus
  • the second correction value may be set as a value applied to a region farther than ⁇ 60 °. Since the attachment optical system 160 has a large power as a whole, it is considered that a significant difference in the amount of dispersion occurs between the light flux passing through the central part of the fundus and the light flux passing through the peripheral part of the fundus.
  • the correction value of the dispersion amount is changed according to the irradiation position of the measurement light on the fundus, good OCT data can be obtained in the wide-angle region of the fundus.
  • the second correction value may be further subdivided.
  • the entire fundus is divided into a central part of the fundus, a first peripheral part of the fundus outside the central part of the fundus, and a second peripheral part of the fundus outside the peripheral part of the first fundus.
  • the correction value corresponding to the portion, the correction value corresponding to the first peripheral portion of the fundus, and the correction value corresponding to the second peripheral portion of the fundus may be set as different values as the second correction value. ..
  • the control unit 70 may include a CPU (processor), RAM, ROM, and the like (see FIG. 2).
  • the CPU of the control unit 70 may control the OCT device.
  • the RAM temporarily stores various types of information.
  • Various programs for controlling the operation of the OCT device, initial values, and the like may be stored in the ROM of the control unit 70.
  • a non-volatile memory (hereinafter abbreviated as memory) 72, a display unit 75, or the like as a storage unit may be electrically connected to the control unit 70.
  • a non-transient storage medium capable of retaining the storage contents even when the power supply is cut off may be used.
  • a hard disk drive, a flash ROM, a USB memory detachably attached to the OCT device, and the like can be used as the memory 72.
  • the memory 72 may store a control program for controlling the acquisition of OCT data and the acquisition of OCT images. Further, in addition to the OCT image generated from the OCT data, various information related to photographing may be stored in the memory 72.
  • the display unit 75 may display an OCT image generated from the OCT data.
  • An insertion / removal detection unit that automatically detects whether or not the attachment optical system 160 is inserted into the light guide optical system may be provided, and the control unit 70 may be provided based on the detection signal from the detection unit. , Control and processing of each part in the OCT optical system 100 may be executed. For example, the above-mentioned switching control of the luminous flux diameter by the variable beam expander 154, setting control of the zero delay position by the reference optical path adjusting unit 145, change processing of the dispersion amount of the optical system between the measurement optical path and the reference light, and the like are performed. It may be executed as appropriate.
  • the insertion detection unit may be a sensor arranged in the vicinity of the objective optical system 158.
  • the examiner inputs information for specifying the state of the light guide optical system (insertion state / retracted state of the attachment optical system 160) into the UI (user interface) of the OCT device, and is based on the information.
  • the control unit may control and process each unit in the OCT optical system 100.
  • the angle of view is first set based on the insertion / withdrawal of the attachment optical system 160 (S1).
  • the angle of view setting operation is a part of the shooting range setting operation in this embodiment.
  • the device is aligned with respect to the eye to be inspected (S2).
  • the positional relationship between the eye to be inspected and the measurement optical axis is adjusted based on the anterior segment observation image taken by an anterior segment observation camera (not shown).
  • the center of the pupil of the eye to be inspected and the measurement optical axis are adjusted to coincide with each other.
  • the alignment may be adjusted manually or automatically.
  • a frontal image of the fundus may be acquired as an observation image via an observation optical system (not shown), and display on the monitor 75 may be started (see FIG. 6).
  • the scan range is set (S3).
  • the scan line may be set based on the operation input via the observation image displayed on the screen.
  • the operation input at this time may at least set the start point and the end point of the scan line on the observation image.
  • the control unit 70 may set the scan range by selecting one from a plurality of predetermined scan patterns.
  • the scan pattern selection operation is input via the input interface 80. Examples of the scan pattern include a raster scan, a multi-scan that scans a plurality of scan lines separated from each other, a cross scan in which a plurality of scan lines intersect each other, a radial scan in which a plurality of scan lines are formed radially, and the like. ..
  • optimization control is executed (S4).
  • the optimization control may be started, for example, by operating the Optimize button 501.
  • the optimization control makes it possible to acquire highly accurate (for example, high-sensitivity, high-resolution) OCT data at a desired fundus region.
  • the optical path length, focus, and polarization state are adjusted by the optimization control (S4) of this embodiment.
  • the optimization control is started by the optimization start operation for the input interface 80 as a trigger.
  • the optimization control in this embodiment will be described as an example with reference to the flowchart of FIG. 7.
  • the control unit 70 initializes the optical path length and the focus position (S10). For example, the control unit 70 moves each of the focusing lens 155 and the position of the mirror 145a to a predetermined initial position (movement start position). In this embodiment, each initial position may be either the upper limit or the lower limit of the movable range.
  • the control unit 70 adjusts the optical path length of the reference light so that the zero delay position Z is arranged on the surface of the retina. After the adjustment, the control unit 70 acquires a spectral interference signal between the measurement light and the reference light emitted along the optical axis L.
  • the axial length of the eye to be inspected is calculated and acquired by the control unit 70 based on the working distance and the depth position information of the retinal surface acquired via the OCT optical system. At this time, the distance between the irradiation position on the cornea and the irradiation position on the retina, which is the irradiation position of the measurement light, can be obtained as the axial length.
  • the working distance is the distance between the device in the anteroposterior direction and the eye to be inspected.
  • the working distance is assumed to be a fixed value.
  • the working distance may be an actually measured value, and in this case, the working distance may be obtained from the driving amount of the driving unit for adjusting the positional relationship between the OCT optical system 100 and the eye to be inspected in the Z direction. ..
  • the control unit 70 executes the bending level determination process.
  • the curvature level of the image of the fundus in the imaging range set in the processes of S1 and S3 is determined.
  • the depth region (high-precision region) from which relatively high-precision OCT data can be obtained is adjusted according to the determination result of the curvature level.
  • the flowchart of FIG. 7 includes two types of determination processes.
  • the curvature level is determined in consideration of the axial length and the scan length. For example, regarding the axial length, the threshold value for determining the long axial length in which the fundus is assumed to be greatly curved is compared with the axial length of the eye to be inspected obtained in the process of S12. (S13). As an example, 28 mm is set as a threshold value. If the axial length of the eye to be inspected is less than the threshold value (S13: No), the process proceeds to the second determination process (S15, S16).
  • the scan length set in the process of S3 is equal to or more than the threshold value (here, 9 mm as an example).
  • the threshold value here, 9 mm as an example.
  • the threshold is the scan length in which the accuracy of OCT data between each depth position where the image of the fundus exists starts to become a problem in the case of a long-axis long eye in which the fundus is greatly curved with respect to the normal eye. Good. This threshold value may be obtained empirically by experiments or the like.
  • the control unit 70 optimizes various conditions assuming that the curvature level is the second level (S18).
  • the optical path length is adjusted so that the zero delay position Z is arranged on the shallow layer side of the retinal surface in the central region of the image of the fundus.
  • the focus position may be adjusted so that the contrast of the region on the surface side of the retina in the image of the fundus is maximized.
  • the polarizer may be driven so that the interference sensitivity in the region of the fundus image on the surface side of the retina is maximized.
  • curvature level is the second level (relatively large curvature)
  • these adjustments make it easier to acquire (photograph) OCT data with a brighter peripheral side. Therefore, when the peripheral portion of the fundus is photographed, the peripheral portion is captured. It becomes easier to observe the lesions of. Further, in the long eye axis long eye, it becomes easy to acquire bright OCT data as a whole due to the influence of thinning of the central portion.
  • the process proceeds to the second determination process (S15, S16).
  • the curvature level is determined in consideration of the angle of view and the scan range.
  • the angle of view of the OCT optical system 100 is the first angle of view or the second angle of view (S15).
  • the second angle of view it is possible to scan a wide-angle region including the central portion of the fundus and the peripheral portion of the fundus. Especially when the peripheral portion of the fundus is scanned, the accuracy of OCT data between each depth position where the image of the fundus exists can be a problem. Therefore, in the present embodiment, in the case of the second angle of view (S15: Yes), it is determined whether or not the scan range set in the process of S3 includes the peripheral portion of the fundus (S16). Then, when the scan range includes the peripheral portion of the fundus (S16: Yes), the control unit 70 optimizes various conditions assuming that the curvature level is the second level (S18).
  • the control unit 70 optimizes various conditions assuming that the curvature level is the first level (S17). Further, even when the angle of view is the second angle of view (S14: No), even when the scan range set in the process of S3 is only the central part of the fundus (S16: No), the control unit 70 optimizes various conditions assuming that the curvature level is the first level (S17).
  • the optical path length is adjusted so that the zero delay position Z is arranged on the deeper side than the choroid in the central region of the image of the fundus.
  • the focus position may be adjusted so that the contrast of the region on the choroid side of the image of the fundus is maximized.
  • the polarizer may be driven so that the interference sensitivity in the choroidal region of the fundus image is maximized.
  • the photographing process is executed (S5) after the optimization control (S4).
  • OCT data tomographic image
  • the captured image is stored in the memory 72. It may also be displayed on the confirmation screen.
  • information regarding the depth position of the high-precision region in the captured OCT data may also be stored in the memory 72.
  • This information may be, for example, a parameter at the time of photographing of each adjustment unit (for example, at least one of the optical path length adjustment unit, the focus adjustment unit, and the polarization adjustment unit) regarding the position of the depth region.
  • This information may be stored in association with the identification information of the subject.
  • the control unit 70 may reproduce the adjustment state of each adjusting unit based on the above information and perform imaging. In this case, since the adjustment states of the adjustment units match for each shooting, it is easy to appropriately compare the OCT data shot on different days.
  • the eye characteristics such as the axial length and the refraction error of the eye to be inspected may have changed during the follow-up imaging from the previous imaging.
  • the change in the curvature level may be estimated according to the amount of change in the eye characteristics, and then the depth position of the high-precision region may be adjusted according to the estimated curvature level.
  • the OCT data in which the control unit 70 has a high-precision region set at a depth position corresponding to the bending level is uniquely photographed.
  • the present invention is not limited to this, and the position of the high-precision region may be adjusted to a position according to the operation from the examiner before and after the optimization control (S4). For example, it may be possible to manually set whether to image the retina side or the choroid side with high sensitivity based on the operation input. For example, each time the switching button 502 shown in FIG. 6 is selected, the depth position of the high-precision region may be switched between the retinal side and the choroid side.
  • the position of the high precision area may be changed with reference to the designated position. For example, if the upper part of the image of the fundus is specified, the zero delay position Z may be moved to the front side of the retinal surface, and if the lower part is specified, the zero delay may be moved to the back side of the choroid. The position Z may be moved or the like.
  • the present invention is not necessarily limited to this, and the above technique is also applied to a device for capturing OCT data of the anterior segment of the eye. be able to. That is, when a plurality of tissues are included in the shooting range, the tissues to be depicted with high accuracy may be automatically determined according to the shooting settings.
  • the position of the high-precision region may be adjusted according to various scan settings (shooting settings) such as the angle of view and the scan pattern. Further, the positions of different high-precision regions may be associated with each part of the anterior segment of the eye (anterior surface side of the cornea, posterior surface side of the cornea, anterior surface side of the crystalline lens, posterior surface side of the crystalline lens, etc.) in advance. The position of the high-precision region may be controlled by specifying the target portion of the above based on the setting operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

OCT装置1は、OCT光学系100と、画像処理器を兼ねる制御部70と、を備える。制御部70は、OCT光学系から出力されるスペクトル干渉信号を処理して眼底のOCTデータを取得する。また、制御部70は、相対的に高精度なOCTデータが得られる深さ領域である高精度領域の位置を、OCT光学系100をOCTデータの撮影範囲における眼底の像の湾曲レベルに応じて制御することによって調整する。その結果、眼底の湾曲レベルに関わらず良好なOCTデータが取得される。

Description

OCT装置
 本開示は、被検眼のOCTデータを取得(撮影)するOCT装置に関する。
 被検眼のOCTデータを得るためのOCT装置が知られている。OCT装置では、測定光と参照光との光路長を調整する光路長調整、被検体に対するフォーカスを調整するフォーカス調整、測定光と参照光の偏光状態を調整するポラリゼーション調整等の各種調整が行われている(例えば、特許文献1参照)。
特開2012-213489号公報
 OCTデータの撮影範囲において、眼底の像の湾曲が小さい場合と、大きい場合と、の間で、同一の基準で調整を行った場合、少なくとも一方の場合において、画質の良好なOCTデータを得ることが困難であった。 
 これに対し、それぞれの被検眼に応じて検者が手動で調整作業を行うことは煩雑であるし、また、煩雑である分、検査時間が長期化し、被検者にも負担が生じると考えられる。
 本開示は、従来技術の問題点に鑑み、眼底の像の湾曲レベルに関わらず良好なOCTデータを取得できるOCT装置を提供すること、を技術課題とする。
 本開示の第1態様に係るOCT装置は、OCT光源からの光を測定光路と参照光路とに分割するための光分割器を有し、前記測定光路を介して被検眼の眼底に導かれた測定光と前記参照光路からの参照光とのスペクトル干渉信号を検出するOCT光学系と、前記OCT光学系から出力されるスペクトル干渉信号を処理して眼底のOCTデータを取得する画像処理手段と、相対的に高精度なOCTデータが得られる深さ領域である高精度領域の位置を、前記OCT光学系を前記OCTデータの撮影範囲における眼底の像の湾曲レベルに応じて制御することによって調整する制御手段と、備える。 
 本開示によれば、眼底の像の湾曲レベルに関わらず良好なOCTデータを取得できる。
本実施例のOCT装置の光学系及び制御系を示す図である。 本実施例のOCT装置の制御系を示す図である。 本実施例に係るOCTデータの一例であり、網膜表面よりも浅層側にゼロディレイ位置が設定された状態を示す図である。 本実施例に係るOCTデータの一例であり、網膜表面よりも深層側にゼロディレイ位置が設定された状態を示す図である。 湾曲の大きな眼底の像が描写されるOCTデータの一例を示した図である。 本実施例のOCT装置の動作例を示すフローチャートである。 撮影に利用される画面の一例を示す図である。 最適化制御の一例を示すフローチャートである。
 本開示の実施形態の一例について図面に基づいて説明する。図1~図7は本実施形態の実施例に係る図である。なお、以下の<>にて分類された項目は、独立又は関連して利用されうる。
 本実施形態に係るOCT装置は、OCT光学系(図1参照)と、画像処理器(本実施形態における画像処理手段)と、制御部(本実施形態における制御手段、図2参照)と、を備える。
 <OCT光学系>
 OCT光学系は、例えば、フーリエドメインOCT光学系(SS-OCT光学系、SD-OCT光学系)であってもよく、OCT光学系は、OCT光源からの光を測定光路と参照光路に分割するための光分割器を有し、測定光路を介して被検物に導かれた測定光と参照光路からの参照光とのスペクトル干渉信号を、検出器によって検出してもよい。
 光スキャナは、被検眼に導かれる測定光を、被検眼上で横断方向(深さ方向と交差する方向)に走査させるために設けられてもよい。OCT光学系としては、光スキャナを備えた構成に限定されず、フルフィールドOCT光学系が用いられてもよい。
 また、OCT光学系は、光路長調整部(本実施形態における光路長調整手段)、フォーカス調整部(本実施形態におけるフォーカス調整手段)、および、偏光調整部(本実施形態における偏光調整手段)のうち少なくともいずれかを有してもよい。
 <光路長調整部>
 光路長調整部は、測定光路と前記参照光路との少なくともいずれかの光路長を変更する。光路長調整部は、測定光路と参照光路の少なくともいずれかに配置された光学部材を駆動部により移動させることによって光路長を変更してもよいし、被検眼と装置との間の作動距離を調整することによって光路長を変更してもよい。
 <フォーカス調整部>
 フォーカス調整部は、測定光のフォーカス位置(合焦位置)を調整するために利用される。フォーカス調整部は、例えば、移動されるレンズを備えたものであってもよいし、液晶レンズ等の可変焦点レンズを備えたものであってもよいし、光路長を変更可能な光学系を備えたものであってもよい。光路長を変更可能な光学系は、例えば、1つ又は複数の、レンズ、ミラー、または、これらの組み合わせであってもよい。
 <偏光調整部>
 偏光調整部は、測定光と参照光との少なくともいずれかの偏光を調整する。偏光調整部はポラライザであってもよく、測定光路と参照光路との少なくともいずれかに配置されていてもよい。
 <画像処理器>
 画像処理器は、OCT光学系から出力されるスペクトル干渉信号を処理してOCTデータを取得可能であってもよい。
 ここで、図3A,図3Bを参照して、OCTデータにおける眼底の像について説明する。3A,図3Bには、OCTデータの一例である断層画像の画像データGが示されている。画像データGは、ゼロディレイ位置Zより奥側に対応する第1の画像データG1と、ゼロディレイ位置Zより手前側に対応する第2の画像データG2からなり、ゼロディレイ位置Zに関して互いに対称な画像となっている。詳細には、眼底の像の実像と虚像とが、ゼロディレイ位置Zに関して互いに対称に形成される。
 図3Aでは、ゼロディレイ位置Zが網膜表面より手前側(浅層側)に形成されるように光路長が調整されており、この場合、実像として正像が取得される。第1の画像データG1と第2画像データG2との間で網膜表面が、向かい合った状態となる。この場合、第1の画像データG1において実像が取得され、第2画像データG2において虚像(ミラーイメージ)が取得される。
 一方、ゼロディレイ位置Zが網膜表面より奥側に形成されるように光路長が調整されていると、図3Bに示すように、実像として逆像が取得される。この場合、第1の画像データG1と第2画像データG2との間で網膜表面が、互いに反対方向を向いた状態となる。この場合、第2の画像データG2において実像が取得され、第1の画像データG1において虚像(ミラーイメージ)が取得される。
 このように形成される実像および虚像の一方が、モニタ上に表示される断層画像として抽出されてもよい。
  <フルレンジ化技術の適用>
 ところで、眼底の像の湾曲が大きければ、実像および虚像のそれぞれが、ゼロディレイ位置Zを跨ぐように形成されやすくなる(図4参照)。この場合、ゼロディレイ位置Zの近傍には、実像と虚像との重複領域OLが形成される。
 これに対し、フルレンジ化技術と呼ばれる、種々の虚像の除去手法が提案されている。本実施形態では、いずれかのフルレンジ化技術を適用してもよく、これによって、虚像が選択的に除去された広範囲のOCTデータが取得可能であってもよい。フルレンジ化技術によって虚像が除去された広範囲のOCTデータを利用する場合、ゼロディレイ位置Zを、図3A,図3Bに示すように、眼底の像と重ならない位置へ調整するのみではなく、眼底の像と重なる位置にもゼロディレイ位置Zを設定して良好なOCTデータを得ることが可能となる。
 なお、フルレンジ化技術の一例としては、追加のハードウェアにより虚像(鏡像ともいう)を除去する技術(例えば、非特許文献1参照)、追加のハードウェアを用いずにソフトウェアで補正する技術(例えば、特許文献2参照)等を挙げることができる。
Wojtkowski, M. et al. (2002) Full range complex spectral optical coherence tomography technique in eye imaging, Optics Letters, 27(16), p. 1415. 特表2015-506772号公報 また、本出願人による出願(特願2019-014771号)では、スペクトル干渉信号を検出する際の光路長が異なる複数のOCTデータに基づいて、OCTデータにおける実像と虚像との重複領域に対して少なくとも補完処理を行い、補完処理が施されたOCTデータを生成する、更に別のフルレンジ化技術が提案されており、これを本実施形態において適用してもよい。
 <制御部>
 制御部(本実施形態における制御手段,図2参照)は、OCT装置の各種動作を司るプロセッサである。制御部は、例えば、CPU、RAM、および、ROM等によって構成されてもよい。また、制御部によって、画像処理器が兼用されてもよい。
 制御部は、相対的に高精度なOCTデータが得られる深さ領域(以下、高精度領域と称する)の位置を、OCT光学系を制御することによって、変更可能である。
 OCTデータにおける精度は、深さ方向に関して必ずしも一様ではない。ここでいう精度は、例えば、干渉感度の高低によって表されてもよい。例えば、OCTデータ上のゼロディレイ位置Zに近い深さ領域ほど、感度が高く、ゼロディレイ位置Zから離れるにしたがって感度が低下していく。つまり、OCTデータは、ゼロディレイ位置Zに近い深さ領域において相対的に高精度であるといえる。例えば、図3Aに示した断層画像では、脈絡膜側部分よりも網膜表面側部分の精度が高く、図3Bに示した断層画像では、その関係が入れ替わる。但し、図3A,図3Bに示されている断層画像のように、撮影範囲において眼底の像の湾曲が十分に小さいのであれば、それぞれの深さ領域における精度の差については、観察時において許容されやすいものと考えられる。
 しかしながら、OCTデータの撮影範囲において眼底の像の湾曲が大きいほど(つまりは、被検体の像の高低差が大きいほど)、それぞれの深さ領域における精度の差が許容され難くなっていくものと考えられる。
 これに対し、制御部は、高精度領域の位置を、撮影範囲における眼底の像の湾曲レベル(湾曲の大きさ)に応じて調整する。一例として、以下の説明では、OCT光学系のうち少なくとも光路長調整部を駆動制御することによって、高精度領域の位置が調整される。湾曲レベルに応じて高精度領域の位置が調整される結果、後述するように、より良好に観察されやすいOCTデータが取得され得る。なお、この場合では、各図において、高精度領域は、ゼロディレイ位置Zおよびその近傍領域と同視される。
 例えば、各OCTデータにおける眼底の像の基準位置(例えば、像の中心部における網膜の所定の層であってもよい)に対する高精度領域の位置が、眼底の像の湾曲レベルに応じて、OCTデータ毎に異なる位置に設定されてもよい。一例として、湾曲レベルが、第1レベルと、第2レベル(但し、第1レベルよりも湾曲が大きい)と、に大別される場合において、例えば、湾曲レベルが第1レベルである場合と第2レベルである場合との間で、眼底の像の基準位置に対する高精度領域の位置が、互いに異なる位置に設定されてもよい。
 この場合において、制御部は、第1レベルである場合に対して、第2レベルである場合では、より浅層側へ高精度領域の位置を調整してもよい。また、湾曲レベルは、3段階以上に別れていてもよく、高精度領域の位置がそれぞれのレベルに応じた位置へ調整されてもよい。
 このとき、OCTデータがフルレンジ化処理後のものである場合において、例えば、少なくとも第1レベルと対応する高精度領域の位置は、中心領域(中心窩近傍領域)の網膜表面よりも浅層側且つ周辺領域の脈絡膜より深層側となるように設定されてもよい。
 また、撮影範囲として複数のスキャンラインが含まれている場合、制御部は、スキャンライン毎(各スキャンラインの走査毎)に、スキャンライン毎の眼底の像の湾曲レベルに応じて高精度領域の位置を調整してもよい。これにより、各スキャンラインにおいて良好なOCTデータが取得され得る。
 また、必ずしもこれに限られるものではなく、複数のスキャンラインの間で高精度領域の位置が一定に制御されてもよい。
 例えば、眼底の像の湾曲は、眼底におけるより周辺側の部位ほど大きくなって、周辺側の部位はより浅層側において描写される。また、現状では、眼底周辺部においては、眼底中心部と比べると、脈絡膜等の深層の情報を観察したいという臨床上のニーズが必ずしも高くない。このため、眼底周辺部が撮影範囲に含まれる場合に、高精度領域の位置が、より浅層側へ自動的に調整されることによって、眼底周辺部の観察・診断において相対的に重視されている網膜表層側に適した状態へ、スムーズに移行される。
 また、例えば、眼底の像の湾曲は、当然、個人差にも依存する。個人差による湾曲が問題となる場合としては、軸性近視の場合等、眼軸長の伸びを伴う疾病眼である場合が挙げられる。問題となるほどの湾曲が生じる場合、眼底中心部には菲薄化が生じることが考えられる。菲薄化が生じることで、眼底そのものが、眼底中心部における脈絡膜等の深層の情報を高精度に取得しやすい状態となっているので、より浅層側へ高精度領域の位置が調整されることによって、各位置の眼底組織が良好に撮影されやすくなる。
 眼底の像は、より周辺側において湾曲が増大される。つまり、眼底の像の湾曲は、眼底上におけるOCTデータの撮影範囲の大きさおよび位置に依存している。このため、検者に対してOCTデータの撮影範囲の設定操作が要求される場合であれば、眼底の像における湾曲レベルは、操作の結果として設定される撮影範囲に応じたものとなる。このため、操作の結果として設定される撮影範囲に応じてOCT光学系(ここでは、光路長調整部)を制御することによって、高精度領域の位置が調整されてもよい。撮影範囲の設定操作は、例えば、ボリュームデータの取得範囲を特定する操作であってもよいし、予め定められた複数のスキャンパターンの中からいずれかを選択する選択操作であってもよいし、スキャンラインを眼底上の任意の位置および長さに設定する操作であってもよいし、その他であってもよい。
 この場合において、例えば、眼底中心部が撮影範囲である場合の湾曲レベルは第1レベルであるものとし、眼底周辺部が撮影範囲に含まれる場合の湾曲レベルは第2レベルであるものとしてもよい。
 この場合において、OCT装置は、撮影範囲の設定操作を検出する(受け付ける)操作検出部を有してもよい。操作検出部は、例えば、制御部および入力インターフェイスによって実現されてもよい。
 また、OCTデータの撮影範囲は、OCT光学系における画角によって規制される。OCT装置は、OCT光学系における画角を、光学的に変更する画角切換部を有してもよい。画角切換部は、眼底の中心部と対応する第1画角と、眼底中心部および眼底周辺部を含む広角領域と対応する第2画角と、の間で、画角を切換可能であってもよい。この場合、第1画角の場合に比べて、第2画角では、眼底の像においてより大きな湾曲が生じ得る。そこで、制御部は、画角を考慮した撮影範囲内における湾曲レベルに応じてOCT光学系を制御することによって、高精度領域の位置を調整してもよい。この場合において、例えば、第1画角と対応する湾曲レベルが第1レベルであるものとし、第2画角と対応する湾曲レベルが第2レベルであるものとしてもよい。
 画角切換部は、例えば、光分割器から被検眼までの測定光路に対し、レンズ等の光学素子を挿脱する機構であってもよい。また、例えば、OCT光学系における対物光学系の位置を変位させる機構であってもよい。
 また、眼底の像の湾曲は、当然、眼底そのものの湾曲にも依存する。眼底の湾曲が問題となる場合としては、軸性近視の場合等、眼軸長の伸びを伴う疾病眼である場合が挙げられる。そこで、本実施形態において、制御部は、被検眼の眼軸長情報を考慮した湾曲レベルに応じてOCT光学系を制御することによって、高精度領域の位置を調整してもよい。この場合において、例えば、眼軸長が第1範囲(例えば、正常範囲)である場合の湾曲レベルは第1レベルであるものとし、眼軸長が第2範囲(例えば、長眼軸長眼)である場合の湾曲レベルは第2レベルであるものとしてもよい。
 眼軸長情報は、眼軸長値に関する情報である。眼軸長値を、OCT光学系を介して測定し、測定値を眼軸長情報として取得してもよい。例えば、ワーキングディスタンス、および、OCT光学系を介して取得される網膜表面の深さ位置情報に基づいて、演算され得る。網膜表面の深さ位置情報(好ましくは、中心窩の深さ位置情報)は、測定光と参照光との光路長差、および、スペクトル干渉信号の一方又は両方に基づいて取得され得る。この場合において、ワーキングディスタンスは、アライメント完了時の値であってもよく、また、光路長差は、ゼロディレイ位置Zが網膜表面に配置されるときの値であってもよい。また、眼軸長情報は、OCT装置とは別体の眼軸長測定装置による測定結果として取得されてもよい。
 また、制御部は、より直接的に眼底の像の湾曲レベルを示す情報に基づいて、高精度領域の位置を調整してもよい。この場合、例えば、OCTデータに対する処理結果として、湾曲レベルを示す情報を取得してもよい。
 撮影条件の最適化制御(Optimizeという)において光路長が調整される際に取得されるOCTデータに基づいて、湾曲レベルに関する情報が取得されてもよい。例えば、該OCTデータに対する画像処理の処理結果として、湾曲レベルに関する情報が取得されてもよい。
 最適化制御(Optimizeという)では、OCTデータにおけるゼロディレイ位置Zが眼底の像に対して予め定められた位置(例えば、常に網膜表面よりも手前側)に配置されるように調整される。例えば、更に、眼底の像の信号強度に関する評価値が最大化されるように、ゼロディレイ位置Zが調整されてもよい。
 調整後に得られるOCTデータにおいて、ゼロディレイ位置Zから奥側に所定距離以内の範囲Aと、所定距離よりも離れた範囲Bとのそれぞれに、眼底の像が含まれる割合によって、眼底の像の湾曲の大きさを把握できる。すなわち、湾曲が大きいほど、より深層側まで眼底の像が形成されるため、範囲Aに含まれる眼底の像の割合が大きくなると考えられる。
 また、OCTデータにおける眼底の像に対して曲線フィッティングを行い、フィッティング曲線の曲率に基づいて湾曲レベルを取得してもよい。曲線フィッティングの際には、眼底の像に対するセグメンテーション処理が適宜施されてもよい。
 また、測定光と参照光との偏光も、各深さ領域における干渉感度との相関がある。例えば、被検眼の組織毎に(眼底では層毎に)、反射・散乱光の偏光状態が異なっている。このため、ある組織に対し、感度(干渉感度)が最適化されるように測定光と参照光との偏光が調整されたときに、その調整が、他の深さ領域にある組織に対して良好な感度が得られるものとは限らない。
 また、例えば、上記精度は、フォーカスに起因していてもよい。つまり、測定光のフォーカス位置に近い深さ領域ほど、より高コントラストなデータとなるが、フォーカス位置から離れるにしたがってコントラストが低下していく。よって、精度を示す指標として分解能に着目した場合、OCTデータは、フォーカス位置に近い深さ領域において、相対的に高精度であるといえる。
 そこで、本実施形態では、例えば、光路長の調整と連動するように、フォーカス位置および偏光のうち少なくとも一方が調整されてもよい。この場合ゼロディレイ位置Zの近傍領域でのコントラストが最適化されるようにフォーカス位置が調整されてもよい。また、ゼロディレイ位置Zの近傍の組織における干渉感度が最適化されるように、偏光が調整されてもよい。なお、例えば、特定の組織において干渉感度が最適化されるように偏光を調整する手法については、本出願人による特開2018-102789号公報を参照されたい。
 但し、本実施形態では、本実施形態における高精度領域は、少なくとも光路長に応じて変更されるものとしたが、必ずしもこれに限られるものではなく、少なくともフォーカス位置および偏光のうち少なくとも一方に応じて変更されるものであってもよい。
 また、更に、上記の高精度領域の制御と連動して、測定光路と参照光との間における光学系の分散量が変更されてもよい。これにより、より良好なOCTデータが取得される。
 更に、本実施形態では、画像処理器は、各スキャン位置間での測定光の網膜表面までの光路長の変位に応じて、OCTデータの層厚を補正して表示させてもよい。すなわち、眼底の周辺領域等の湾曲の影響が大きな領域では、層厚が薄くなっているかのように描写される(図4参照)。そこで、湾曲の影響を考慮して画像を変形させる、縦横比を調整する、等の画像変換を行うことで、湾曲の影響を補正した画像を、表示させてもよい。
 「実施例」
 以下、実施例として、図1,図2に示される光コヒーレンストモグラフィー(OCT)装置を説明する。本実施例に係るOCT装置は、例えば、スペクトルドメイン式OCT(SD-OCT)を基本的構成としている。
 OCT装置1は、光源102、OCT光学系100、および、演算制御器(演算制御部)70(図2参照)を含む。その他、OCT装置には、メモリ72、表示部75、図示無き正面像観察系及び固視標投影系が設けられてもよい。演算制御器(以下、制御部)70は、光源102、OCT光学系100、メモリ72、表示部75に接続されている。
 OCT光学系100は、導光光学系150によって測定光を眼Eに導く。OCT光学系100は、参照光学系110に参照光を導く。OCT光学系100は、眼Eによって反射された測定光と参照光との干渉、によって取得される干渉信号光を検出器(受光素子)120に受光させる。なお、OCT光学系100は、図示無き筐体(装置本体)内に搭載され、ジョイスティック等の操作部材を介して周知のアライメント移動機構により眼Eに対して筐体を3次元的に移動させることによって被検眼に対するアライメントが行われてもよい。
 OCT光学系100には、SD-OCT方式が用いられる。光源102としては低コヒーレント長の光束を出射するものが用いられ、検出器120として、スペクトル干渉信号を波長成分ごとに分光して検出する分光検出器が用いられる。
 カップラ(スプリッタ)104は、第1の光分割器として用いられ、光源102から出射された光を測定光路と参照光路に分割する。カップラ104は、例えば、光源102からの光を測定光路側の光ファイバー152に導光すると共に、参照光路側の参照光学系110に導光する。
 <導光光学系>
 導光光学系150は、測定光を眼Eに導くために設けられる。導光光学系150には、例えば、光ファイバー152、コリメータレンズ153、可変ビームエキスパンダ154、フォーカシングレンズ155、光スキャナ156、及び、対物レンズ系158(本実施例における対物光学系)が順次設けられてもよい。この場合、測定光は、光ファイバー152の出射端から出射され、コリメータレンズ153によって平行ビームとなる。その後、可変ビームエキスパンダ154によって所望の光束径に調整されたうえで、フォーカシングレンズ155を介して、光スキャナ156に向かう。フォーカシングレンズ155は、図示なき駆動部によって光軸に沿って変位可能であり、眼底での集光状態を調整するために利用される。光スキャナ156を通過した光は、対物レンズ系158を介して、眼Eに照射される。対物レンズ系158に関して光スキャナ156と共役な位置に、第1の旋回点P1が形成される。この旋回点P1に前眼部が位置することで、測定光はケラレずに眼底に到達する。また、光スキャナ156の動作に応じて測定光が眼底上で走査される。このとき、測定光は、眼底の組織によって散乱・反射される。
 光スキャナ156は、眼E上でXY方向(横断方向)に測定光を走査させてもよい。光スキャナ156は、例えば、2つのガルバノミラーであり、その反射角度が駆動機構によって任意に調整される。光源102から出射された光束は、その反射(進行)方向が変化され、眼底上で任意の方向に走査される。光スキャナ156としては、例えば、反射ミラー(ガルバノミラー、ポリゴンミラー、レゾナントスキャナ)の他、光の進行(偏向)方向を変化させる音響光学素子(AOM)等が用いられてもよい。
 測定光による眼Eからの散乱光(反射光)は、投光時の経路を遡って、光ファイバー152へ入射され、カップラ104に達する。カップラ104は、光ファイバー152からの光を、検出器120に向かう光路へと導く。
 <アタッチメント光学系>
 実施例のOCT装置においてアタッチメント光学系160(「画角切換部」の一例)は、導光光学系150における対物光学系158と、被検眼Eとの間において挿脱される。アタッチメント光学系を含む鏡筒が、図示無き筐体面に対して着脱されることで、対物光学系158と被検眼Eとの間において、アタッチメント光学系160の挿脱が行われる。
 アタッチメント光学系160は複数のレンズ161~164を含んでいてもよい。ここで、図1に示したアタッチメント光学系160において主要な正のパワーを持つレンズは、被検眼の眼前に置かれたレンズ164である。少なくともレンズ164の挿脱位置は、対物光学系158によって形成される第1旋回点P1と被検眼Eとの間となっている。第1旋回点P1を通過した測定光を少なくともレンズ164が光軸Lに向けて折り曲げることで、アタッチメント光学系160および対物光学系158に関して光スキャナ156と共役な位置に第2旋回点P2が形成される。つまり、アタッチメント光学系160は、旋回点P1を旋回点P2へリレーする光学系である。
 本実施例において、第2旋回点P2における測定光の立体角は、第1旋回点P1における立体角に比べて大きくなる。例えば、第2旋回点P2での立体角は、第1旋回点P1における立体角に対して2倍以上に増大される。本実施例では、退避状態においてφ60°程度の画角で走査可能であり、挿入状態では、φ100°程度の画角で走査可能となる。
 可変ビームエキスパンダ154は、実施例における光束径調整部である。一例として、可変ビームエキスパンダ154は、両側テレセントリック光学系を形成する複数のレンズを有し、レンズ間隔がアクチュエータによって変化されることで、光束径を切換える構成であってもよい。可変ビームエキスパンダ154は、制御部70からの指示に基づいて測定光の光束径を調整する。
 仮に、挿入状態と退避状態との間で、可変ビームエキスパンダ154から光スキャナ156へ導かれる測定光の光束径が一定であるとすると、眼底上での測定光のスポットサイズは画角と比例するので、挿入状態では退避状態に比べて解像力が低下してしまう。そこで、本実施例では、制御部70は、アタッチメント光学系の挿脱に応じて、可変ビームエキスパンダ154を駆動し、挿入状態での光束径を、退避状態に対して縮小する。挿入状態と退避状態とにおける光束径(可変ビームエキスパンダ154における光束径)の比は、挿入状態と退避状態とにおける画角の逆比であることで、アタッチメント光学系160の挿脱に基づく解像力の変化を抑制できる。
 ところで、十分な作動距離を確保するために、アタッチメント光学系160は、十分な光線高さの位置から測定光が光軸Lに向けて折り曲げられる必要がある。また、アタッチメント光学系160で生じる収差を許容範囲に抑制するためには、アタッチメント光学系160に含まれる各々のレンズのパワーに制限がある。故に、アタッチメント光学系160の光路長を短くすることは困難である。
 従来のOCT装置において、参照光と測定光との光路長差を調整する構成は存在しているものの、アタッチメント光学系160の挿脱に適用できるような調整範囲を持つものは存在しなかった。例えば、従来、眼底撮影OCTに、光学アダプタを装着して前眼部撮影を可能とするものが知られている(例えば、本出願人による「特開2011-147612号公報」等を参照されたい)。しかし、この光学アダプタは、装置本体の光学系によって形成された旋回点のリレーを行うものではなく、また、走査範囲を広角化する要請も無いので、比較的短い光路長で形成できる。更に、光学アダプタの挿入に伴い、像面の位置が眼底から前眼部へ変移する。それ故、光学アダプタの挿入に伴って、光路長差を大きく調整する必要が無かった。
 <参照光学系>
 参照光学系110は、測定光の眼底反射光と合成される参照光を生成する。参照光学系110を経由した参照光は、カップラ148にて測定光路からの光と合波されて干渉する。参照光学系110は、マイケルソンタイプであってもよいし、マッハツェンダタイプであってもよい。
 図1に示す参照光学系110は、透過光学系によって形成されている。この場合、参照光学系110は、カップラ104からの光を戻さず透過させることにより検出器120へと導く。これに限らず、参照光学系110は、例えば、反射光学系によって形成され、カップラ104からの光を反射光学系により反射することにより検出器120に導いてもよい。
 本実施例において、参照光学系110は、複数の参照光路が設けられてもよい。例えば、図1では、カップラ140によって参照光路が、ファイバ141を通過する光路(本実施例における第1分岐光路)と、ファイバ142を通過する光路(本実施例における第2分岐光路)と、に分岐される。ファイバ141とファイバ142は、カップラ143に接続されており、これにより、2つの分岐光路は結合され、光路長差調整部145、偏波調整部147、を介してカップラ148へ入射される。
 本実施例において、カップラ104からの参照光は、カップラ143によってファイバ141とファイバ142との同時に導かれる。ファイバ141とファイバ142のいずれを経由した光も、カップラ148において測定光(眼底反射光)と合波される。
 ファイバ141とファイバ142との間における光路長差、つまり、第1分岐光路と第2分岐光路との間の光路長差は、固定値であってもよい。本実施例では、アタッチメント光学系160の光路長と略同一となるような光路長差を有する。
 なお、測定光路と参照光路の少なくともいずれかには、測定光と参照光との光路長差を調整するための光学部材が配置されてもよい。一例として、図1に示した光学系においては、参照光路調整部145が設けられており、当該箇所に、測定光と参照光との光路長差を調整するために、直交した2つの面を持つミラー145aが設けられている。このミラー145aがアクチュエータ145bによって矢印方向に移動されることによって、参照光路の光路長を増減することができる。勿論、測定光と参照光との光路長差が調整する構成は、これに限られるものではない。例えば、導光光学系150において、コリメータレンズ153とカップラとが一体的に移動されることで、測定光の光路長が調整され、結果として、測定光と参照光との光路長差が調整されてもよい。
 ここで、本実施例では、カップラ143とカップラ148との間の光路上、つまりは、第1分岐光路と第2分岐光路との共通光路上に、参照光路調整部145が設けられているので、測定光路と参照光路との間の光路長差の調整であって、眼軸長の個人差に関する調整を、第1分岐光路および第2分岐光路の両方に対して、まとめて実行することが可能となる。
 なお、参照光路調整部145における光路長の調整範囲は、ファイバ141とファイバ142との光路長差(換言すれば、第1分岐光路と第2分岐光路との間における光路長差)に対して十分短く設定されることが好ましい。
 <光検出器>
 検出器120は、測定光路からの光と参照光路からの光による干渉を検出するために設けられている。本実施例において、検出器120は、分光検出器であって、例えば、分光器と、ラインセンサとを含み、カップラ148によって合波された測定光と参照光とが、分光器で分光され、波長毎にラインセンサの異なる領域(画素)に受光される。これによって画素毎の出力が、スペクトル干渉信号として取得される。
 眼底の湾曲と測定光の結像面(集光面)とは必ずしも一致しておらず、アタッチメント光学系150の挿入状態では、眼底中心部または眼底周辺部の少なくとも一方において、両者の乖離が増大するので、光検出器においては、当該乖離を考慮した十分な有効Depth rangeが確保されていることが好ましい。例えば、SD-OCTでは、所期する有効Depth
rangeに対して十分な画素数のラインカメラが採用されることが好ましい。また、<変形例>として後述する構成が更に採用されてもよい。
  <深さ情報の取得>
 制御部70は、検出器120によって検出されたスペクトル信号を処理(フーリエ解析)し、被検眼のOCTデータを得る。
 スペクトル信号(スペクトルデータ)は、波長λの関数として書き換えられ、波数k(=2π/λ)に関して等間隔な関数I(k)に変換されてもよい。あるいは、初めから波数kに関して等間隔な関数I(k)として取得されてもよい(K―CLOCK技術)。演算制御器は、波数k空間でのスペクトル信号をフーリエ変換することにより深さ(Z)領域におけるOCTデータを得てもよい。
 さらに、フーリエ変換後の情報は、Z空間での実数成分と虚数成分を含む信号として表されてもよい。制御部70は、Z空間での信号における実数成分と虚数成分の絶対値を求めることによりOCTデータを得てもよい。
 ここで、カップラ148には、第1分岐光路を経由した参照光と、第2分岐光路を経由した参照光とが、同時に導かれており、各々が測定光と合波される。第1分岐光路と第2分岐光路との間には、アタッチメント光学系160の光路長と同程度という、大きな光路長差が存在していることから、第1分岐光路を経由した参照光と、第2分岐光路を経由した参照光とのうち、一方は、測定光との干渉が生じやすいものの、残り一方は、干渉が生じ難い。検出器120からのスペクトル干渉信号には、第1分岐光路を経由した参照光による成分と、第2分岐光路を経由した参照光による成分と、が含まれているものの、2種類の成分のうち、導光光学系150の状態に応じた一方が、他方に比べて際立って強い信号として得られる。結果、導光光学系150の状態にかかわらず、良好なOCTデータを得ることができる。つまり、アタッチメント光学系160に対応する光路長差を持つ、複数の参照光路を有することで、実施例に係るOCT装置は、測定光路と参照光路との光路長差の変化量であって、アタッチメント光学系160の挿脱に伴う変化量が、導光光学系150の状態にかかわらず補償される。
 なお、参照光路調整部145を制御し、測定光路と参照光路との光路長差であって、被検眼Eの眼軸長に関する光路長差を、事前に調整しておく必要がある。本実施例では、例えば、予め定められた調整範囲でミラー145aを移動させると共に、各位置での干渉信号を取得し、干渉信号の強度が最も高くなる位置を基準として、ミラー145aの位置を定めるようにしてもよい。参照光路調整部145における光路長の調整範囲が、第1分岐光路と第2分岐光路との間における光路長差)に対して十分小さい場合は、参照光路調整部145の調整範囲において、干渉信号の強度ピークとなる位置は、一義的に特定されうる。
 なお、挿入状態において、眼底周辺部からの測定光の眼底反射光は、眼底中心部からの反射光に対して微弱になるので、測定光路と参照光路とのゼロディレイ位置が、眼底周辺部において所期する眼底組織(例えば、網膜、脈絡膜、強膜等)または透光体組織(硝子体等)と重なるように、測定光路と参照光路との光路長差が参照光路調整部145によって調整されてもよい。
 <ソフトウェアによる分散補正>
 なお、本実施例において、制御部70は、検出器120から出力されるスペクトルデータに対しソフトウェアによる分散補正処理を施してもよい。制御部70は、分散補正後のスペクトルデータに基づいてOCTデータを得る。このため、実像と虚像との間で画質において差異が生じる。
 つまり、本実施例において、測定光路と参照光路との間における光学系の分散量の違いは、信号処理的に補正される。詳細には、予めメモリ72に記憶された補正値を、上記のスペクトル信号の処理において適用することによって行われる。
 制御部70は、検出器120から出力される受光信号に基づいて光のスペクトル強度を取得し、波長λの関数として書き換える。次に、スペクトル強度I(λ)を波数k(=2π/λ)に関して等間隔な関数I(k)に変換する。
 測定光と参照光との分散(dispersion)ミスマッチによる影響は、干渉成分の位相をシフトさせ、各波長の合波信号のピークを下げ、信号に拡がりを持たせる(解像度が下がる)。そこで、分散補正では、波長毎にシフトした位相を戻してやることで、干渉信号の低下による解像度の低下を補正する。この場合、波数kの関数としての位相ずれ量φ(k)を求めておき、I(k)・exp-iφ(k)によってkの値毎に位相のずれを戻す。ここで
、分散補正すべき位相φ(k)は、キャリブレーションによって予め求めることもできるし、取得された断層画像に対応する位相φ(k)を求めるようにしてもよい。そして、メモリ72には、分散補正用のパラメータ(例えば、位相φ(k))が記憶される。
 その後、制御部70は、設定された分散補正データによって補正された分散補正後のスペクトル強度I(k)をフーリエ変換することにより、OCTデータが得られる。
 例えば、実像に対する分散の影響を補正するための分散補正値として第1の分散補正値(正像用)をメモリ72から取得し、検出器120から出力されるスペクトルデータを第1の分散補正値を用いて補正し、補正されたスペクトル強度データをフーリエ変換してOCTデータを形成する。実像Rは、高感度・高解像度の画像にて取得され、虚像M(ミラーイメージ)は、分散補正値の違いにより低解像度のぼけた画像にて取得される。
 これにより、第1の画像領域G1において実像が取得されたとき、その実像は、高感度・高解像度の画像にて取得され、その虚像(ミラーイメージ)は、第2画像領域G2において、分散補正値の違いにより低解像度のぼけた画像にて取得される。一方、第2の画像領域G2において実像が取得されたとき、その虚像は、第1画像領域G1において、分散補正値の違いにより低解像度のぼけた画像にて取得される。
 もちろん、これに限定されず、虚像Mに対するソフトウェア分散補正が行われても良い。この場合、虚像Mが、高感度・高解像度の画像にて取得され、実像Rが低解像度のぼけた画像にて取得される。
 なお、上記のようにソフトウェアによって分散補正を行う手法の詳細については、米国特許第6980299号公報、特表2008-501118号公報、等を参考にされたい。また、特開2010-29648号公報を参考にされたい。
 ソフトウェアによる分散補正処理が行われる場合において、眼底中心部でのOCTデータを得る際、例えば、制御部70は、実像と虚像の画像データのうち、感度及び解像度が高い方の画像データを抽出すればよい。
 なお、本実施例では、退避状態に対応する第1補正値と、第1補正値とは異なる値であって挿入状態に対応する第2補正値とが予めメモリ72に記憶されており、導光光学系の状態に応じて適用する補正値が切換えられる。結果、実施例に係るOCT装置は、測定光路と参照光路との間における分散量の変化量であって、アタッチメント光学系160の挿脱に伴う変化量が、導光光学系150の各状態で補償される。
 更に、本実施例では、挿入状態に対応する第2補正値が、測定光の走査位置に応じて複数設定されている。詳細には、眼底中心部用の補正値と、眼底周辺部用の補正値と、が第2補正値として、互いに異なる値で設定される。例えば、第1補正値は、眼底のφ60°以内の領域に適用され、第2補正値は、φ60°よりも離れた領域に適用される値として設定されていてもよい。アタッチメント光学系160は、全体として大きなパワーを持つので、眼底中心部を通過する光束と、眼底周辺部を通過する光束との間で、有意な分散量の違いが生じることが考えられる。これに対し、本実施例では、眼底における測定光の照射位置に応じて、分散量の補正値が変更されるので、眼底の広角領域において良好なOCTデータを得ることができる。
 勿論、第2補正値は、更に細分化されていてもよい。例えば、眼底全体が、眼底中心部と、眼底中心部よりも外側の第1の眼底周辺部と、第1の眼底周辺部よりも外側の第2の眼底周辺部と、に分割され、眼底中心部に対応する補正値と、第1の眼底周辺部に対応する補正値と、第2の眼底周辺部に対応する補正値と、が第2補正値として、異なる値で設定されていてもよい。
 <制御系>
 制御部70は、CPU(プロセッサ)、RAM、ROM等を備えてもよい(図2参照)。例えば、制御部70のCPUは、OCT装置の制御を司ってもよい。RAMは、各種情報を一時的に記憶する。制御部70のROMには、OCT装置の動作を制御するための各種プログラム、初期値等が記憶されてもよい。
 制御部70には、記憶部としての不揮発性メモリ(以下、メモリに省略する)72、表示部75等が電気的に接続されてもよい。メモリ72には、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体が用いられてもよい。例えば、ハードディスクドライブ、フラッシュROM、および、OCT装置に着脱可能に装着されるUSBメモリ等をメモリ72として使用することができる。メモリ72には、OCTデータの取得及びOCT画像の撮影を制御するための制御プログラムが記憶されてもよい。また、メモリ72には、OCTデータから生成されるOCT画像の他、撮影に関する各種情報が記憶されてもよい。表示部75は、OCTデータから生成されるOCT画像を表示してもよい。
 なお、アタッチメント光学系160が導光光学系に挿入されているか否かを自動的に検出する挿脱検出部が設けられていてもよく、検出部からの検出信号に基づいて、制御部70は、OCT光学系100における各部の制御、処理を実行してもよい。例えば、上記した、可変ビームエキスパンダ154による光束径の切換制御、参照光路調整部145によるゼロディレイ位置の設定制御、測定光路と参照光との間における光学系の分散量の変更処理、等が適宜実行されてもよい。挿入検出部としては、対物光学系158の近傍に配置されたセンサであってもよい。
 勿論、検者が、OCT装置のUI(ユーザインターフェース)に対して、導光光学系の状態(アタッチメント光学系160の挿入状態/退避状態)を特定する情報を入力することで、当該情報に基づいて、制御部がOCT光学系100における各部の制御、処理を実行してもよい。
 <動作説明>
 次に、図5のフローチャートに沿って、本実施例における装置の動作を説明する。図5のフローチャートは、各種設定から撮影までの流れを示している。
 <画角の設定>
 図5のフローチャートでは、最初に、アタッチメント光学系160の挿入/退避に基づいて、画角が設定される(S1)。画角の設定操作は、本実施例における撮影範囲の設定操作の一部である。
 <アライメント>
 次に、被検眼に対して装置のアライメントが行われる(S2)。事前に被検者に固視標を注視させたうえで、図示無き前眼部観察用カメラで撮影される前眼部観察像に基づいて、被検眼と測定光軸との位置関係が調整される。例えば、被検眼の瞳孔中心と測定光軸とが一致するように調整される。アライメントは、手動で調整されてもよいし、自動で調整されてもよい。アライメント調整が完了した位置では、図示なき観察光学系を介して眼底の正面画像が観察画像として取得されると共に、モニタ75への表示が開始されてもよい(図6参照)。
 <スキャン範囲の設定>
 次に、スキャン範囲が設定される(S3)。例えば、図6に示すように、画面に表示される観察画像を介した操作入力に基づいてスキャンラインを設定されてもよい。このときの操作入力は、観察画像上でスキャンラインの始点と終点とを少なくとも設定するものであってもよい。また、制御部70は、予め定められた複数のスキャンパターンの中からいずれかを選択することで、スキャン範囲を設定してもよい。この場合、スキャンパターンの選択操作が、入力インターフェイス80を介して入力される。スキャンパターンとしては、例えば、ラスタースキャン、互いに離間した複数の走査ラインを走査するマルチスキャン、複数の走査ラインが互いに交差するクロススキャン、複数の走査ラインが放射状に形成されるラジアルスキャン等が挙げられる。
 <最適化制御>
 次に、最適化制御が実行される(S4)。最適化制御は、例えば、Optimizeボタン501が操作されることによって開始されてもよい。最適化制御によって、所望する眼底部位において高精度(例えば、高感度・高解像度)なOCTデータが取得可能となる。なお、本実施例の最適化制御(S4)によって、光路長、フォーカス、および、偏光状態が調整される。
 本実施例では、入力インターフェイス80に対する最適化開始操作をトリガとして、最適化制御が開始される。以下、図7のフローチャートを参照して、本実施例における最適化制御を、一例として説明する。
  <初期化>
 まず、制御部70は、光路長およびフォーカス位置を初期化する(S10)。例えば、制御部70は、フォーカシングレンズ155と、ミラー145aの位置と、のそれぞれを、予め定められた初期位置(移動開始位置)へ移動させる。本実施例において、各々の初期位置は、可動範囲の上限および下限のうちいずれかであってもよい。
 <眼軸長測定>
 初期化後、被検眼の眼軸長が測定される(S12)。制御部70は、ゼロディレイ位置Zが網膜表面に配置されるように、参照光の光路長を調整する。調整後、制御部70は、光軸Lに沿って照射された測定光と参照光とのスペクトル干渉信号を取得する。
 詳細は省略するが、被検眼の眼軸長は、ワーキングディスタンス、および、OCT光学系を介して取得される網膜表面の深さ位置情報に基づいて、制御部70によって演算され、取得される。このとき、測定光の照射位置であって、角膜における照射位置と、網膜における照射位置と、の間における距離を、眼軸長として得ることができる。
 なお、ワーキングディスタンスは、前後方向に関する装置と被検眼との距離である。本実施例において、ワーキングディスタンスは、固定値であるものとする。但し、ワーキングディスタンスは、実測値であってもよく、この場合、OCT光学系100と被検眼とのZ方向に関する位置関係を調整するための駆動部の駆動量から、ワーキングディスタンスを求めてもよい。
 <眼底の像の湾曲レベルを判定>
 次に、制御部70は、湾曲レベルの判定処理を実行する。判定処理では、S1,S3の処理で設定された撮影範囲における、眼底の像の湾曲レベルが判定される。相対的に高精度なOCTデータが得られる深さ領域(高精度領域)が、湾曲レベルの判定結果に応じて調整される。
 図7のフローチャートでは、S13,S14,S15,S16が、本実施例における判定処理の一例として示されている。
 図7のフローチャートでは、2種類の判定処理が含まれている。
 第1の判定処理(S13,S14)では、眼軸長と、スキャン長と、を考慮して、湾曲レベルが判定される。例えば、眼軸長に関しては、眼底が大きく湾曲していることが想定される長眼軸長として判定するための閾値と、S12の処理で取得された被検眼の眼軸長とが比較される(S13)。一例として、28mmが閾値として設定されている。被検眼の眼軸長が閾値未満である場合は(S13:No)、第2の判定処理(S15,S16)へと進む。
 一方、被検眼の眼軸長が閾値未満である場合は(S13:Yes)、S3の処理で設定されたスキャン長が閾値(ここでは、一例として9mm)以上であるか否かが判定される(S14)。ここで、眼軸長が長いことで眼底そのものが大きく湾曲していても、スキャン長が十分短ければ、眼底の像において湾曲(高低差)の影響は小さく、一方で、スキャン長が長くなるほど、眼底の像において湾曲(高低差)の影響が大きくなる。閾値は、正常眼に対して眼底が大きく湾曲した長眼軸長眼である場合において、眼底の像が存在する各深さ位置間でのOCTデータの精度が問題となり始めるスキャン長であってもよい。この閾値は、実験等によって経験的に求められてもよい。
 スキャン長が閾値以上である場合(S14:No)、制御部70は、湾曲レベルが第2レベルであるものとして各種条件を最適化する(S18)。本実施例では、眼底の像の中心領域における網膜表面よりも浅層側へゼロディレイ位置Zが配置されるように、光路長を調整する。また、眼底の像のうち網膜表面側の領域のコントラストが極大化されるようにフォーカス位置を調整してもよい。併せて、眼底の像のうち網膜表面側の領域における干渉感度が極大化されるように、ポラライザが駆動されてもよい。湾曲レベルが第2レベルである(相対的に湾曲が大きい)場合、これらの調整によって、より周辺側が明るいOCTデータが取得(撮影)されやすくなるので、眼底周辺部を撮影した場合においては周辺部の病変を良好に観察しやすくなる。また、長眼軸長眼においては中心部の菲薄化の影響で全体的に明るいOCTデータが取得されやすくなる。
 一方、スキャン長が閾値未満である場合(S14:No)、第2の判定処理(S15,S16)へと進む。
 第2の判定処理(S15,S16)では、画角と、スキャン範囲と、を考慮して、湾曲レベルが判定される。
 この場合、まず、OCT光学系100の画角が、第1画角であるか、それとも第2画角であるか、が判定される(S15)。第2画角である場合は、眼底中心部と眼底周辺部を含む広角領域をスキャン可能となる。特に眼底周辺部がスキャンされる場合に、眼底の像が存在する各深さ位置間でのOCTデータの精度が問題となり得る。そこで、本実施例では、第2画角である場合は(S15:Yes)、S3の処理で設定されたスキャン範囲が、眼底周辺部を含むものか否かが判定される(S16)。そして、スキャン範囲に眼底周辺部が含まれる場合は(S16:Yes)、制御部70は、湾曲レベルが第2レベルであるものとして各種条件を最適化する(S18)。
 また、S14の処理において、画角が第1画角である場合は(S14:Yes)、撮影範囲全域において眼底の像の湾曲が小さいと考えられる。この場合、制御部70は、湾曲レベルが第1レベルであるものとして各種条件を最適化する(S17)。また、画角が第2画角である場合であっても(S14:No)、S3の処理で設定されたスキャン範囲が、眼底中心部のみである場合にも(S16:No)、制御部70は、湾曲レベルが第1レベルであるものとして各種条件を最適化する(S17)。
 この場合、本実施例では、眼底の像の中心領域における脈絡膜よりも深層側へゼロディレイ位置Zが配置されるように、光路長を調整する。また、眼底の像のうち脈絡膜側の領域のコントラストが極大化されるようにフォーカス位置を調整してもよい。併せて、眼底の像のうち脈絡膜側の領域における干渉感度が極大化されるように、ポラライザが駆動されてもよい。湾曲レベルが第1レベルである(相対的に湾曲が小さい)場合、これらの調整によって、全体的に明るいOCTデータが取得(撮影)されやすくなる。
 <撮影処理>
 図5のフローチャートに戻って説明を続ける。本実施例では、最適化制御後(S4)、撮影処理が実行される(S5)。結果、湾曲レベルに応じた深さ位置に高精度領域が設定されたOCTデータ(断層画像)が撮影画像として撮影される。撮影画像は、メモリ72に保存される。また、確認画面において表示されてもよい。
 また、撮影されたOCTデータにおける高精度領域の深さ位置に関する情報が、併せてメモリ72に保存されてもよい。この情報は、例えば、深さ領域の位置に関する各調整部(例えば、光路長調整部、フォーカス調整部、および、偏光調整部の少なくともいずれか)の撮影時におけるパラメータであってもよい。この情報は、被検者の識別情報と対応付けて記憶されてもよい。後日、再撮影(フォローアップ撮影)が行われる場合において、制御部70は、上記の情報に基づいて各調整部の調整状態を再現して撮影を行ってもよい。この場合、撮影毎に各調整部の調整状態が一致することで異なる日に撮影されたOCTデータ同士を、適切に比較しやすい。
 また、フォローアップ撮影時に、眼軸長および被検眼の屈折誤差等の眼特性が、前回の撮影時から変化している場合が考えられる。この場合は、眼特性の変化量に応じて、湾曲レベルの変化を推測したうえで、推測した湾曲レベルに応じて高精度領域の深さ位置を調整しても良い
 「変容例」
 以上、実施形態および実施例に基づいて本開示を説明したが、本開示は必ずしもこれに限定されるものではない。
 例えば、上記実施例における撮影処理では、一義的に、制御部70が湾曲レベルに応じた深さ位置に高精度領域が設定されたOCTデータが、撮影される。しかし、必ずしもこれに限られるものではなく、最適化制御(S4)の前後で、高精度領域の位置を、検者からの操作に応じた位置へ調整可能であってもよい。例えば、網膜側/脈絡膜側どちらを感度高く撮影するかを、操作入力に基づいて手動で設定可能であってもよい。例えば、図6に示した切換ボタン502を選択する毎に、高精度領域の深さ位置を、網膜側と脈絡膜側との間で切換られてもよい。
 また、OCT画像上で、高精度に観察したい領域を指定することで、指定位置を基準として高精度領域の位置を変更してもよい。例えば、眼底の像の中でも上部が指定された場合は、網膜表面よりも手前側へゼロディレイ位置Zを移動させる等してもよく、下部を指定された場合に脈絡膜よりも奥側へゼロディレイ位置Zを移動させる等してもよい。
 また、例えば、上記説明では、眼底のOCTデータを撮影する装置による実施形態を説明したが、必ずしもこれに限られるものではなく、前眼部のOCTデータを撮影する装置においても上記技術を適用することができる。つまり、撮影範囲に複数の組織が含まれている場合において、高精度に描写する組織を、撮影の設定に応じて自動的に定めるために利用されてもよい。
 この場合、例えば、画角、スキャンパターン等の各種スキャン設定(撮影の設定)に応じて、高精度領域の位置が調整されてもよい。また、互いに異なる高精度領域の位置が、前眼部の各部位(角膜前面側、角膜後面側、水晶体前面側、水晶体後面側・・・等)毎に予め対応付けられていてもよく、撮影の対象となる部位が設定操作に基づいて特定されることによって、高精度領域の位置を制御してもよい。

Claims (16)

  1.  OCT光源からの光を測定光路と参照光路とに分割するための光分割器を有し、前記測定光路を介して被検眼の眼底に導かれた測定光と前記参照光路からの参照光とのスペクトル干渉信号を検出するOCT光学系と、
     前記OCT光学系から出力されるスペクトル干渉信号を処理して眼底のOCTデータを取得する画像処理手段と、
     相対的に高精度なOCTデータが得られる深さ領域である高精度領域の位置を、前記OCT光学系を前記OCTデータの撮影範囲における眼底の像の湾曲レベルに応じて制御することによって調整する制御手段と、
    を備えるOCT装置。
  2.  前記制御手段は、前記眼底の像の基準位置に対する高精度領域の位置を、眼底の像の湾曲レベルに応じて、OCTデータ毎に調整する請求項1記載のOCT装置。
  3.  前記OCT光学系は、前記測定光路と前記参照光路との少なくともいずれかの光路長を変更する光路長変更手段を更に含み、
     前記制御手段は、前記光路長変更手段を制御することによって、前記高精度領域の位置を調整する、請求項1又は2記載のOCT装置。
  4.  前記制御手段は、前記湾曲レベルが第1レベルである場合に対し、前記1範囲よりも湾曲が大きな第2レベルである場合では、より浅層側へ前記高精度領域の位置を変位させる、請求項3記載のOCT装置。
  5.  前記制御手段は、前記湾曲レベルが第1レベルである場合には、前記OCTデータ上のゼロディレイ位置を、前記眼底の像における中心窩近傍領域の網膜表面よりも深層側へ変位させる、請求項4記載のOCT装置。
  6.  前記制御手段は、前記湾曲レベルが第2レベルである場合には、前記OCTデータ上のゼロディレイ位置を、少なくとも前記眼底の像における中心窩近傍領域の網膜表面よりも浅層側へ変位させる、請求項4又は5に記載のOCT装置。
  7.  前記制御手段は、前記湾曲レベルが第2レベルである場合には、前記OCTデータ上のゼロディレイ位置を、前記眼底の像の周辺領域における網膜表面よりも浅層側へ変位させる、請求項6記載のOCT装置。
  8.  前記制御手段は、前記湾曲レベルが第2レベルである場合には、前記OCTデータ上のゼロディレイ位置を、前記眼底の像と重なる範囲へ変位させる、請求項6記載のOCT装置。
  9.  前記制御手段は、前記湾曲レベルが第2レベルである場合には、前記OCTデータ上のゼロディレイ位置を前記眼底の像と重なる範囲へ変位させたうえで、フルレンジ化技術によって虚像を選択的に除去する請求項8記載のOCT装置。
  10.  前記OCT光学系は、フォーカス位置を調整するためのフォーカス調整手段を更に含み、
     前記制御手段は、前記フォーカス調整手段を制御することによって、前記高精度領域の位置を調整する、請求項1から9のいずれかに記載のOCT装置。
  11.  前記OCT光学系は、前記測定光と前記参照光との偏光を調整する偏光調整手段を更に含み、
     前記制御手段は、前記偏光調整手段を制御することによって、前記高精度領域の位置を調整する、請求項1から10のいずれかに記載のOCT装置。
  12.  前記撮影範囲の設定操作を検出する操作検出手段を、更に有し、
     前記制御手段は、前記設定操作によって設定される前記撮影範囲内における前記湾曲レベルに応じて前記OCT光学系を制御し、前記高精度領域の位置を調整する、請求項1から11のいずれかに記載のOCT装置。
  13.  前記OCT光学系における画角を光学的に変更する画角切換手段を有し、
     前記制御手段は、前記画角を考慮した前記撮影範囲内における前記湾曲レベルに応じて前記OCT光学系を制御し、前記高精度領域の位置を調整する請求項1から12のいずれかに記載のOCT装置。
  14.  被検眼における眼軸長値に関する眼軸長情報を取得する眼軸長情報取得手段を、更に有し、
     前記制御手段は、前記眼軸長情報を考慮した前記湾曲レベルに応じて前記OCT光学系を制御し、前記高精度領域の位置を調整する、請求項1から13のいずれかに記載のOCT装置。
  15.  前記制御手段は、深さ方向に関する眼底の像の像位置であって、眼底の像に関する信号強度が最大化されるように前記光路長調整手段が駆動された状態での像位置に基づいて前記OCT光学系を制御し、前記高精度領域の位置を調整する、請求項1から14のいずれかに記載のOCT装置。
  16.  前記画像処理器は、前記OCTデータに基づいて前記湾曲レベルに関する情報を検出し、
     前記制御手段は、前記検出された前記情報に基づいて前記高精度領域の位置を調整する、請求項1から15のいずれかに記載のOCT装置。
PCT/JP2020/032705 2019-09-04 2020-08-28 Oct装置 WO2021044982A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/640,674 US20220322932A1 (en) 2019-09-04 2020-08-28 Oct device
JP2021543743A JPWO2021044982A1 (ja) 2019-09-04 2020-08-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161606 2019-09-04
JP2019161606 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044982A1 true WO2021044982A1 (ja) 2021-03-11

Family

ID=74853183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032705 WO2021044982A1 (ja) 2019-09-04 2020-08-28 Oct装置

Country Status (3)

Country Link
US (1) US20220322932A1 (ja)
JP (1) JPWO2021044982A1 (ja)
WO (1) WO2021044982A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497396B2 (en) * 2021-03-24 2022-11-15 Acucela Inc. Axial length measurement monitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208574A (ja) * 2014-04-28 2015-11-24 キヤノン株式会社 眼科撮影装置、その制御方法、およびプログラム
JP2018171168A (ja) * 2017-03-31 2018-11-08 株式会社ニデック Oct装置
JP2019033919A (ja) * 2017-08-17 2019-03-07 キヤノン株式会社 計測装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255524B2 (ja) * 2008-07-04 2013-08-07 株式会社ニデック 光断層像撮影装置、光断層像処理装置。
JP5690193B2 (ja) * 2011-04-18 2015-03-25 株式会社ニデック 光断層像撮影装置
US9095281B2 (en) * 2012-02-10 2015-08-04 Carl Zeiss Meditec, Inc. Segmentation and enhanced visualization techniques for full-range fourier domain optical coherence tomography
JP6007527B2 (ja) * 2012-03-13 2016-10-12 株式会社ニデック 眼底撮影装置
US8876292B2 (en) * 2012-07-03 2014-11-04 Nidek Co., Ltd. Fundus imaging apparatus
JP6652281B2 (ja) * 2015-01-09 2020-02-19 キヤノン株式会社 光断層撮像装置、その制御方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208574A (ja) * 2014-04-28 2015-11-24 キヤノン株式会社 眼科撮影装置、その制御方法、およびプログラム
JP2018171168A (ja) * 2017-03-31 2018-11-08 株式会社ニデック Oct装置
JP2019033919A (ja) * 2017-08-17 2019-03-07 キヤノン株式会社 計測装置

Also Published As

Publication number Publication date
JPWO2021044982A1 (ja) 2021-03-11
US20220322932A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP6007527B2 (ja) 眼底撮影装置
JP5255524B2 (ja) 光断層像撮影装置、光断層像処理装置。
EP3222204B1 (en) Ophthalmologic apparatus
JP5331395B2 (ja) 光断層像撮影装置
JP5511437B2 (ja) 光断層像撮影装置
EP3090681A1 (en) Ophthalmic imaging device
JP5701660B2 (ja) 眼底撮影装置
JP6703730B2 (ja) 光コヒーレンストモグラフィ装置、および光コヒーレンストモグラフィ制御プログラム
JP6221516B2 (ja) 眼科撮影装置及び眼科撮影プログラム
JP7243023B2 (ja) Oct装置
JP7009823B2 (ja) Oct装置
US8876292B2 (en) Fundus imaging apparatus
JP2018186930A (ja) 眼科撮影装置
JP6604020B2 (ja) 眼底撮像装置及び眼底撮像プログラム
JP6421919B2 (ja) 眼科撮影装置
WO2021044982A1 (ja) Oct装置
JP7279379B2 (ja) Oct装置及びoct画像処理プログラム
JP2016049368A (ja) 眼科撮影装置
JP2018102789A (ja) 光干渉断層撮像装置
WO2022186115A1 (ja) Oct装置および眼科画像処理プログラム
JP7043790B2 (ja) Oct装置
JP2015085043A (ja) 眼底撮影装置
JP2019097944A (ja) 眼科撮影装置
JP6160807B2 (ja) 眼科撮影装置及び眼科撮影プログラム
JP7452042B2 (ja) 眼底撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860899

Country of ref document: EP

Kind code of ref document: A1