WO2021044927A1 - 複合偏光子及びその製造方法 - Google Patents

複合偏光子及びその製造方法 Download PDF

Info

Publication number
WO2021044927A1
WO2021044927A1 PCT/JP2020/032225 JP2020032225W WO2021044927A1 WO 2021044927 A1 WO2021044927 A1 WO 2021044927A1 JP 2020032225 W JP2020032225 W JP 2020032225W WO 2021044927 A1 WO2021044927 A1 WO 2021044927A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
resin
composite
layer
composite polarizer
Prior art date
Application number
PCT/JP2020/032225
Other languages
English (en)
French (fr)
Inventor
柴野 博史
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2021543718A priority Critical patent/JPWO2021044927A1/ja
Publication of WO2021044927A1 publication Critical patent/WO2021044927A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a composite polarizer and a method for producing the same.
  • a liquid crystal display device usually has polarizing plates bonded to both the visual side and the light source side of the liquid crystal cell, and the polarizing plate is composed of a laminate of a polarizing element and a polarizing element protective film.
  • a rigid film having a thickness of 40 to 100 ⁇ m such as triacetyl cellulose (TAC), acrylic resin, cyclic polyolefin (COP), and polyethylene terephthalate (PET) is used.
  • TAC triacetyl cellulose
  • COP cyclic polyolefin
  • PET polyethylene terephthalate
  • an absorption type polarizer such as one in which a dichroic dye is adsorbed on polyvinyl alcohol and one in which a liquid crystal compound orientation layer containing the dichroic dye is formed is known.
  • the absorption type polarizer absorbs only the light component that oscillates in one direction, and the light component that is orthogonal to it is transmitted. Therefore, when natural light (unpolarized light) is passed through the polarizer, there is a problem that the amount of light passed through is halved.
  • a method of providing a reflective polarizing plate between the light source and the light source side polarizing plate is used.
  • the reflective polarizing plate is generally a multilayer laminate having different resin compositions of a polyester system oriented in one direction and has a thickness of several tens of ⁇ m.
  • Patent Document 1 has proposed a method of laminating a retardation film as it is on a polarizing element instead of a polarizing element protective film existing between a polarizing element and a liquid crystal display cell. Further, a composite polarizing plate in which a polarizer is directly bonded to a reflective polarizing plate has also been proposed (for example, Patent Documents 2 and 3).
  • the above-mentioned composite polarizing plate is not simple in terms of manufacturing process because a reflective polarizing plate and an absorption type polarizing plate are separately manufactured and bonded to each other.
  • a polarizer made of a liquid crystal compound by coating a reflective polarizing plate with a liquid crystal compound (for example, Patent Document 4).
  • the polarizer made of a liquid crystal compound has a lower degree of polarization than the polarizer obtained by stretching polyvinyl alcohol, and cannot be fully adapted to a wide range of applications.
  • one object of the present invention is to propose a composite polarizer capable of supporting a thinner liquid crystal display device and a method for manufacturing the same.
  • a further object of the present invention is a composite polarized light obtained by stretching polyvinyl alcohol having a sufficiently high degree of polarization, which is a composite polarized light of an absorption type polarizing plate and a reflective polarizing plate, yet has a simple manufacturing process and high productivity. It proposes a child and its manufacturing method.
  • a typical invention is as follows.
  • Item 1 A method for producing a composite polarizer having a reflective polarizer and an absorbent polarizer containing polyvinyl alcohol, which is a step of preparing a precursor of a composite polarizer having a layer of polyvinyl alcohol on the precursor of the reflective polarizer. , And a step of stretching the precursor of the composite polarizer in at least one direction, in this order.
  • Item 2. Item 2.
  • Step of melting resin a and resin b Step of extruding the melted resin a and resin b as a sheet having the following structure (B1) or (B2) (B1)
  • the melted resin a and resin b are Structure in which the molten resin a and the resin b are laminated alternately (B2) A structure in which the molten resin a and the resin b form a sea island (C)
  • a step of preparing a laminated body having a polyvinyl alcohol layer on one side of the extruded sheet Item 2.
  • step (D) Dyeing step of adsorbing a dichroic dye on the polyvinyl alcohol layer of the precursor of the composite polarizer
  • step (E) Step of stretching the precursor of the composite polarizer in at least one direction 4.
  • Item 2. The method for producing a composite polarizer according to Item 2 or 3, wherein the step (C) includes the following steps (C1) and (C2).
  • C1) Step of providing an easy-adhesion layer on at least one side of the extruded sheet C2 Step of providing a layer of polyvinyl alcohol on the easy-adhesion layer Item 5.
  • Item 4. The method for producing a composite polarizer according to Item 4, wherein the easy-adhesion layer contains a water-insoluble resin and a water-soluble resin.
  • Item 6. The method for producing a composite polarizer according to any one of Items 2 to 5, wherein at least one of the resin a and the resin b is polyester.
  • Item 7. A method for manufacturing a retardation layer laminated composite polarizing element, wherein a retardation layer is provided on an absorption type polarizer surface of the composite polarizer obtained by the manufacturing method according to any one of Items 1 to 6.
  • Item 8. Protecting the polarizer on the absorption-type polarizer surface of the composite polarizer obtained by the manufacturing method according to any one of Items 1 to 6 or the retardation layer surface of the retardation layer laminated composite polarizer obtained according to Item 7.
  • the reflective and absorptive polarizers are composite polarizers that are directly laminated without the intervention of either an adhesive layer or an adhesive.
  • the reflective polarizer is an alternating laminated film of a layer made of resin a and a layer made of resin b, or a sea-island structure film made of resin a and resin b.
  • Absorbent polarizer consists of polyvinyl alcohol and dichroic dye The orientation direction of the reflective polarizer and the orientation direction of the absorption polarizer are the same.
  • Composite polarizer Item 11. Item 10. The composite polarizer according to Item 10, which has an easy-adhesion layer between the reflective and absorptive polarizers. Item 12. Item 2. The composite polarizing element according to Item 11, wherein the easy-adhesion layer contains a water-insoluble resin and a water-soluble resin. Item 13. Item 2.
  • Item 4. A retardation layer laminated composite polarizer having a retardation layer on the absorption type polarizer surface of the composite polarizer according to any one of Items 10 to 13.
  • Item 15. A composite with a protective layer having a polarizer protective layer on the absorption type polarizer surface of the composite polarizer according to any one of Items 10 to 13 or the retardation layer surface of the retardation layer laminated composite polarizer according to Item 14. Polarizer.
  • Item 16. One side of the liquid crystal display cell and Item 3.
  • the composite polarizer includes a reflection type polarizer and an absorption type polarizer.
  • the reflective polarizer has a function of transmitting only a component of natural light (unpolarized light) that vibrates in one direction, and a component in a vibration direction orthogonal to the component that vibrates in one direction.
  • the reflective polarizer is preferably an alternating laminated film of a layer made of resin a and a layer made of resin b, or a sea-island structure film made of resin a and resin b.
  • the resin a and the resin b include polyester-based resin, polycarbonate-based resin, polyamide-based resin, acrylic-based resin, polystyrene-based resin, and polyurethane-based resin.
  • the resin a and the resin b have different compositions, they may be resins of the same system (type) as each other.
  • the resin a and the resin b are preferably polyester resins having different compositions from each other, and examples of the polyester resin include polyethylene naphthalate, polytrimethylene naphthalate, polytetramethylene naphthalate, polyethylene terephthalate, and polytrimethylene terephthalate. Polytetramethylene terephthalate and these copolymerized polyesters are preferred.
  • the copolymerization component terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, cyclohexanedicarboxylic acid and the like are preferable examples of the acid component.
  • glycol component ethylene glycol, diethylene glycol, neopentyl glycol, trimethylene glycol, tetramethylene glycol, hexanediol, cyclohexanedimethanol and the like are preferable examples. Further, in order to adjust the melt viscosity, a trifunctional or higher functional acid component such as trimellitic acid or trimethylolpropane or a glycol component may be copolymerized.
  • the resin a exhibits birefringence by being oriented.
  • the resin b may exhibit birefringence depending on the orientation, but has a lower birefringence than the resin a or has the opposite characteristic (the resin a has a higher refractive index in the orientation direction).
  • the resin b preferably has a refractive index (the refractive index decreases in the orientation direction).
  • the resin a when it is polyester, it may be a homopolymer such as polyethylene naphthalate, polytrimethylene naphthalate, polytetramethylene naphthalate, polyethylene terephthalate, polytrimethylene terephthalate, or polytetramethylene terephthalate.
  • the copolymerization component was copolymerized with 20 mol% or less (the total amount of the copolymerized dicarboxylic acid component and the copolymerized glycol component when the total amount of the dicarboxylic acid component and the glycol component was 200 mol%). It is preferable that it is a thing.
  • the copolymerization component is further preferably 17 mol% or less, and particularly preferably 15 mol% or less.
  • the resin b is polyester, it is preferably copolymerized in an amount of more than 20 mol% based on the homopolymer, and more preferably 25 mol% or more.
  • the copolymerization ratio is preferably 80 mol% or less, more preferably 70 mol% or less, and particularly preferably 60 mol% or less.
  • the light component is more strongly reflected at the interface between the resin a and the resin b, while the light component vibrating in the direction orthogonal to the orientation direction is easily transmitted at the interface between the resin a and the resin b. It will have the function of a child.
  • the thickness of each layer is preferably 0.01 to 2 ⁇ m, more preferably 0.02 to 1 ⁇ m, and even more preferably 0.02 to 1 ⁇ m. Is 0.05 to 0.5 ⁇ m.
  • the number of layers is preferably 50 to 2000, more preferably 100 to 1500, and particularly preferably 200 to 1000.
  • the reflective polarizer is a sea-island structure film composed of resin a and resin b
  • resin a is preferably an island component.
  • the aspect ratio (major axis length / minor axis length) of the island component is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more.
  • the upper limit of the aspect ratio is about 20 as a realistic value.
  • the average minor axis length of the island component is preferably 0.01 to 2 ⁇ m, more preferably 0.02 to 1 ⁇ m, and even more preferably 0.05 to 0.5 ⁇ m.
  • the aspect ratio of the island component can be measured by the method shown in Examples described later, and the average minor axis length is the average value of the minor axis lengths of the 50 island components adopted when determining the aspect ratio of the island component.
  • the resin a / resin b is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, and particularly preferably 3/7 to 7/3 in terms of mass ratio.
  • Another resin (resin c) may be added in addition to the resin a and the resin b, but the total of the resin a and the resin b is preferably 80% by mass or more based on the total mass of the reflective polarizer, and more preferably 90. It is preferably mass% or more.
  • the resin a and the resin b may be a blend of two or more kinds of resins as long as they are in a state of being compatible with each other. In that case, the entire blend is regarded as the resin a or the resin b. be able to.
  • the state of compatibility means that the phase separation structure is not recognized and the state is transparent when observed with an optical microscope.
  • the thickness of the reflective polarizer is preferably, for example, 10 to 100 ⁇ m, preferably 10 to 70 ⁇ m, and more preferably 15 to 50 ⁇ m from the viewpoint of thinning.
  • the reflective polarizer may be subjected to surface modification such as corona treatment or plasma treatment in order to ensure adhesion to the absorption type polarizer, or may be provided with an easy-adhesion layer.
  • the easy-adhesive layer is not an adhesive, but is intended to improve the adhesion to an absorbent type polarizer provided by a method described later and prevent peeling trouble.
  • the easy-adhesion layer is preferably a resin coating layer.
  • the resin used for the easy-adhesion layer include polyester, polycarbonate, acrylic, polyurethane, polystyrene, and polyamide, which can be selected in consideration of compatibility with the material of the reflective polarizer.
  • a water-insoluble resin is preferable, and specifically, a water-insoluble resin having the above-mentioned composition can be preferably used.
  • the easy-adhesion layer preferably contains a water-soluble resin in order to further increase the affinity with the absorbent polarizer.
  • the water-soluble resin include polyvinyl alcohol, polyacrylamide, carboxymethyl cellulose, polyvinylpyrrolidone, polyethyleneimine, poly (meth) acrylic acid, starch, agar, gelatin and the like.
  • the water-soluble resin is preferably 2 to 30% by mass with respect to the total solid component of the easy-adhesion layer in order to secure moisture and heat resistance while ensuring adhesion to the absorbent type polarizer.
  • the easy-adhesion layer is preferably crosslinked to ensure moisture and heat resistance.
  • the cross-linking agent those generally used as a cross-linking agent for resins such as an isocyanate compound, an epoxy resin, an oxazoline group-containing compound, a carbodiimide group-containing compound, a double bond-containing compound, and a melamine compound can be used.
  • the easy-adhesion layer is preferably provided by coating with an organic solvent-based or water-based paint.
  • the thickness of the easy-adhesion layer is preferably 0.01 to 3 ⁇ m, more preferably 0.05 to 1 ⁇ m.
  • Absorption type polarizer As the absorption type polarizer, it is preferable to use a polyvinyl alcohol (PVA) -based resin in which iodine or an organic dichroic dye is adsorbed.
  • PVA polyvinyl alcohol
  • PVA-based resins examples include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • Polyvinyl alcohol is obtained by saponification of polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is preferably 85 mol% to 100 mol%, more preferably 95.0 mol% to 99.95 mol%, and further preferably 99.0 mol% to 99.93 mol%. ..
  • the degree of saponification was determined according to JIS K 6726-1994.
  • the average degree of polymerization of the PVA-based resin is preferably 1000 to 10000, more preferably 1200 to 4500, and even more preferably 1500 to 4300.
  • the average degree of polymerization was determined according to JIS K 6726-1994. By setting the degree of saponification and the average degree of polymerization within the above ranges, an absorption-type polarizer having excellent durability and strength and a uniform film thickness can be obtained.
  • the absorption type polarizer is preferably oriented, and the orientation direction is preferably the same (parallel) as the orientation direction of the reflection type polarizer.
  • the absorption type polarizer absorbs the light oscillating in the orientation direction and transmits the light oscillating in the direction orthogonal to the orientation direction.
  • the orientation direction of the absorption type polarizer can be understood by the orientation direction being the absorption axis.
  • the orientation direction of the reflective polarizer can be determined by the orientation direction being the reflection axis (orthogonal direction with the transmission axis). These can be confirmed by observing the absorption axial direction through a known polarizing plate, and can be determined based on the axial direction. Since the reflective and absorptive polarizers are manufactured by stretching the precursor, there is no difference in the orientation direction, but the same as above is about 2 degrees, which is an error range in measurement. Differences shall be included.
  • the thickness of the absorption type polarizer is preferably 0.5 to 10 ⁇ m, more preferably 1.0 to 7 ⁇ m, and particularly preferably 2 to 6 ⁇ m.
  • a polarizer protective layer may be provided on the surface of the composite polarizer on the side of the absorption type polarizer.
  • the polarizer protective layer include a polarizer protective film and a polarizer protective coat layer.
  • a film having no birefringence such as triacetyl cellulose (TAC), polycyclic olefin (COP), acrylic resin, and polycarbonate (PC) is preferable.
  • the thickness of the polarizer protective film is preferably 5 to 60 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the polarizer protective coat is preferably a resin coat such as PVA, PVOH, acrylic resin, polyester, polyurethane, and polystyrene.
  • the polarizer protective coat is preferably crosslinked, and examples of the crosslinking agent include isocyanate compounds, epoxy resins, amino resins such as melamine, carbodiimides, and oxazoline-containing compounds. Further, an acrylic monomer or an oligomer obtained by cross-linking with ultraviolet rays is also preferable.
  • the thickness of the protective coat layer is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a retardation layer may be provided on the surface of the composite polarizer on the absorption type polarizer side.
  • the retardation layer is provided with a retardation film obtained by stretching a film such as TAC, COP, PC, or acrylic resin, and a layer of a liquid crystal compound oriented to these stretched films or the above-mentioned polarizer protective film (aligned liquid crystal compound layer).
  • a retardation film can be mentioned.
  • the one in which the oriented liquid crystal compound layer is directly coated on the surface of the absorption type polarizer and the one in which the oriented liquid crystal compound layer coated on the release film is transferred and provided can be made thinner. , It is particularly preferable as the retardation layer of the present invention.
  • the liquid crystal compound a rod-shaped liquid crystal compound, a discotic liquid crystal compound, or the like can be used. Further, the liquid crystal compound is preferably a polymerizable liquid crystal compound having a polymerizable group such as a double bond in terms of being able to fix the orientation state.
  • rod-shaped liquid crystal compound examples include JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, JP-A-2007-119415, JP-A-2007-186430, and special publications. Examples thereof include rod-shaped liquid crystal compounds having a polymerizable group described in Kaihei 11-513360.
  • rod-shaped liquid crystal compounds are commercially available from BASF as LC242 and the like, and they can be used.
  • a plurality of these rod-shaped liquid crystal compounds may be used in combination at any ratio.
  • discotic liquid crystal compound examples include benzene derivatives, tolucene derivatives, cyclohexane derivatives, azacrown-based, phenylacetylene-based macrocycles, and the like.
  • Various discotic liquid crystal compounds are described in Japanese Patent Application Laid-Open No. 2001-155866, and these are preferably used.
  • R 1 to R 6 are independently represented by hydrogen, halogen, alkyl group, or —X (where X is an alkyl group, an acyl group, an alkoxybenzyl group, or an epoxy-modified alkoxybenzyl group. Group, acryloyloxy-modified alkoxybenzyl group, acryloyloxy-modified alkyl group).
  • R 1 to R 6 are preferably acryloyloxy-modified alkoxybenzyl groups (m is an integer of 4 to 10) represented by the following general formula (2).
  • the degree of phase difference is appropriately set depending on the type of the liquid crystal cell and the properties of the liquid crystal compound used in the liquid crystal cell.
  • an O-plate using a discotic liquid crystal and a tilted orientation are preferably used.
  • a C plate or A plate using a rod-shaped liquid crystal compound or a discotic liquid crystal compound is preferably used.
  • These retardation layers may be used as a single layer, or a plurality of retardation layers may be used in combination.
  • the thickness of the retardation layer varies depending on the required retardation, but in the case of a retardation film, it is preferably 5 to 60 ⁇ m, more preferably 10 to 50 ⁇ m, and further preferably 12 to 40 ⁇ m.
  • the thickness per oriented liquid crystal layer is preferably 1 to 10 ⁇ m, more preferably 1.5 to 7 ⁇ m, and further preferably 2 to 5 ⁇ m.
  • the retardation layer may be provided on the polarizer protective layer (the surface opposite to the composite polarizer), or may be provided directly on the absorption type polarizer surface without providing the polarizer protective layer.
  • a retardation layer protection layer may be provided on the retardation layer (the surface opposite to the composite polarizer).
  • the retardation layer protective layer is similar to the polarizer protective layer.
  • the retarder protective layer may be generically referred to including the retardation protective layer.
  • the composite polarizer of the present invention is obtained, for example, after undergoing a step of preparing a precursor of a composite polarizer having a layer of polyvinyl alcohol on the precursor of a reflective polarizer, at least the precursor of the obtained composite polarizer is used. It can be produced by a method including a stretching step of stretching in one direction in this order.
  • the composite polarizer can be produced by the following steps. It is preferable that at least the steps (A) to (C) are included in this order, and then the steps (D) and (E) are included (however, the order of (D) and (E) does not matter).
  • Step A Step of melting the resin a and the resin b
  • Step B Step of extruding the melted resin a and b as a sheet having the following structure (B1) or (B2)
  • B1 The melted resin a and b Alternately laminated structure (B2) Structure in which molten resins a and b form a sea island
  • Step C Step of creating a laminate having a polyvinyl alcohol layer on one side of an extruded sheet
  • Step D Polyvinyl Step of adsorbing a bicolor dye on a laminate having an alcohol layer
  • step E A step of stretching the laminate having a polyvinyl alcohol layer in at least one direction.
  • Steps A and B are steps of producing a resin sheet containing the resin a and the resin b which are precursors of the reflective polarizer.
  • the resin sheet exhibits the function of a reflective polarizer by being oriented by the stretching step described later.
  • the resin sheet containing the precursor resin a and the resin b may be simply referred to as a resin sheet.
  • the resin a and the resin b are melt-kneaded separately by an extruder or the like at a temperature equal to or higher than the melting point in the same extruder.
  • the extruder may be a single-screw extruder or a twin-screw extruder.
  • the melting temperature is preferably the melting point of the resin + 5 ° C. or higher and the melting point + 80 ° C. or lower, and further preferably the melting point of the resin + 10 ° C. or higher and the melting point + 70 ° C. or lower.
  • the molten resin a and resin b are extruded into a sheet.
  • the structure is such that the molten resin a and the resin b are alternately laminated (B1), or the molten resin a and the resin b have a sea-island-like structure (B2).
  • the resin a and the resin b are melted by separate extruders or the like, and then the resin a and the resin b are fed in multiple layers. It is preferable to guide the blocks to multiple layers, increase the number of layers with a multiplier or the like, guide the blocks to a hanger die or the like, and extrude them onto a cooling roll or a cooling belt. By using the number of layers of the feed block or a plurality of feed blocks, it is possible to adjust to the target number of layers.
  • the ratio of the melt viscosity of the resin a to the melt viscosity of the resin b at the temperature of the multi-layering step is preferably 1/10 to 10/1, more preferably 1/5 to 5/1, still more preferably 1/4 to 4 It is 1/1, particularly preferably 1/3 to 3/1.
  • the melt viscosity can be adjusted by adjusting the molecular weight and composition of the resin. The melt viscosity can be measured using an apparatus conforming to JIS K7199 (1999).
  • the resin a and the resin b are melted by separate extruders and the like, and then the melted resin a and the melted resin b are mixed.
  • a method of mixing the resin a and the resin b a method of adding the molten resin b to an extruder in which the resin a is melt-kneaded, a method of adding the melted resin a to an extruder in which the resin b is melt-kneaded, and a method of adding the melted resin a to an extruder in which the resin b is melt-kneaded.
  • a method of introducing the molten resin a and the molten resin b into yet another (third) extruder, a method of merging the molten resin a and the molten resin b in a pipe, and further mixing them with a mixer in the pipe. Can be mentioned.
  • the resin a and the resin b may be charged from different inlets of the same extruder and melt-kneaded at a temperature equal to or higher than the melting point.
  • the resin a and the resin b are polyester, the resin a and the resin b may transesterify, making it difficult to form a clear sea-island structure.
  • the inlet of the resin a and the inlet of the resin b are separated, the time in which the resin a and the resin b are melt-mixed is shortened, the amount of the catalyst of the resin a and the resin b is adjusted, and the catalyst is used. It is preferable to take a method such as deactivating the resin to prevent transesterification from occurring.
  • a method of guiding the melt-mixed blend of resin a and resin b to a hanger die or the like and extruding it into a sheet on a cooling roll or a cooling belt is preferable.
  • a resin having a small amount and a resin having a high melt viscosity tend to have an island structure. Therefore, which of the resin a and the resin b is an island can be adjusted by the addition ratio of the resin a and the resin b and the melt viscosity of the resin a and the resin b.
  • the melt viscosity can be adjusted by adjusting the molecular weight and composition ratio of the resin.
  • the rotation speed of the cooling roll and the transport speed of the cooling belt may be adjusted with respect to the speed of the extruded resin to apply a draft.
  • the draft ratio (peripheral speed of the cooling roll or transfer speed of the cooling belt / speed of the extruded sheet) is preferably 0.8 to 5.0, more preferably 1.0 to 4.0, and particularly preferably 1.0 to 4.0. It is 1.1 to 3.0.
  • the cooled resin sheet is peeled off from the cooling roll or the cooling belt and used in the next step C.
  • the resin sheet may be stretched (expanded) in the flow direction or width direction of sheet production before being subjected to step C, and in particular, the main direction of stretching performed in step E. It is preferably performed in the direction orthogonal to the above.
  • the stretching (expansion treatment) may be performed in both directions.
  • the stretching (expansion treatment) is preferably 1.05 to 4 times, more preferably 1.1 to 3 times, still more preferably 1.2 to 2.5 times, and particularly preferably 1.3 to 2 times. Stretching can be performed in the same manner as the stretching in step E, which will be described later.
  • the easy-adhesion layer is preferably provided by a coat.
  • the coating of the easy-adhesion layer may be performed offline, in which the resin sheet is once wound and then rewound and coated, or in-line, which is applied before winding the resin sheet. Further, the corona treatment may be performed before winding the resin sheet.
  • a layer of polyvinyl alcohol-based resin is provided on one side of the resin sheet (step C).
  • a method of applying a solution of the polyvinyl alcohol-based resin to the resin sheet is preferable.
  • the solvent of the solution of the polyvinyl alcohol-based resin water, an alcohol-based solvent, or a mixture thereof is preferable.
  • a surfactant, a leveling agent, or the like may be added to the solution of the polyvinyl alcohol-based resin.
  • the resin sheet coated with the solution of the polyvinyl alcohol-based resin is heat-dried, and the laminate which is the precursor of the composite polarizer having the polyvinyl alcohol layer on one side of the resin sheet (simply called the resin PVA laminate). There is).
  • the coating and drying may be performed before the resin sheet is peeled from the cooling drum or the cooling sheet, or may be performed after the resin sheet is peeled off.
  • step E The precursor of the composite polarizer thus obtained has the dichroic dye adsorbed on the PVA layer (step D) and stretched in at least one direction (step E).
  • step E may be performed first, and then step D may be performed. Further, it may be stretched in one direction before the step D (pre-stretching: step E1), followed by the step D, and then further stretched (post-stretching: step E2).
  • the dichroic dye an organic dye such as iodine or an azo dye is preferably used.
  • iodine is preferable in that an absorption-type polarizer having a high degree of polarization can be obtained.
  • the adsorption method include a method of immersing the precursor of the composite polarizer in a dyeing solution containing a dichroic dye, a method of applying the staining solution to the PVA surface of the precursor of the composite polarizer, and the like.
  • a method of immersing the precursor of the composite polarizer in the dyeing solution is preferable in that a homogeneous adsorption treatment can be easily performed.
  • the dyeing solution preferably contains 0.1 parts by weight to 0.5 parts by weight of iodine with respect to 100 parts by weight of water.
  • iodide examples include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. And so on. Of these, potassium iodide is preferred.
  • the blending amount of the iodide is preferably 0.02 parts by weight to 20 parts by weight, and more preferably 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of water.
  • the temperature of the dyeing solution is preferably 20 ° C to 50 ° C.
  • the time for immersing the precursor of the composite polarizer in the dyeing solution is preferably 5 seconds to 5 minutes, more preferably 10 seconds to 3 minutes.
  • the resin sheet By stretching the precursor of the composite polarizer, the resin sheet can be provided with a function as a reflective polarizer, and the PVA layer can be provided with a function as an absorption-type polarizer.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching may be used, but in order to secure a sufficient function as a reflective polarizer and an absorption type polarizer, it may be performed in one direction. Strong stretching is preferable. In addition, this stronger stretching may be referred to as main stretching.
  • the main stretching direction may be the manufacturing flow direction (MD direction), the width direction (TD direction), or an oblique direction of about 45 degrees.
  • the stretching method roll stretching, tenter stretching, etc. can be adopted according to the stretching direction.
  • the stretching direction for example, in the case of MD stretching, roll stretching is preferable, and in the case of TD direction or diagonal direction, tenter stretching is preferable.
  • the stretching may be multi-step stretching. In the case of multiple stages, the final draw ratio is the product of the draw ratios of each stage.
  • the stretching may be carried out in water while the precursor of the composite polarizer is immersed in a stretching bath, may be stretched in the air, or may be a combination of stretching in water and stretching in the air.
  • stretching in water roll stretching is preferable.
  • the stretching temperature can be set to an arbitrary appropriate value according to the resin sheet forming material, stretching method, and the like.
  • the stretching temperature is preferably the glass transition temperature (Tg) or higher of the resin a and the resin b of the resin sheet, more preferably the glass transition temperature (Tg) + 5 ° C. or higher, and particularly preferably Tg + 10 ° C. or higher. is there.
  • the stretching temperature is preferably 160 ° C. or lower.
  • the resin sheet and PVA layer are softened to obtain a composite polarizer having uniform characteristics while suppressing the crystallization and decomposition of the PVA layer and the crystallization of the resin a and b of the resin sheet. be able to.
  • the liquid temperature of the stretching bath is preferably 40 ° C. to 95 ° C., more preferably 50 ° C. to 95 ° C., and even more preferably 60 ° C. to 90 ° C. Within the above range, it is possible to stretch at a high magnification while suppressing the dissolution of the PVA-based resin film.
  • the precursor of the composite polarizer in an aqueous boric acid solution for stretching.
  • the PVA layer is less likely to dissolve in the stretching bath, and the PVA layer can be made rigid to form an absorption-type polarizer having a high degree of polarization.
  • the boric acid concentration of the boric acid aqueous solution is preferably 1 part by weight to 10 parts by weight with respect to 100 parts by weight of water. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin film can be effectively suppressed, and a polarizing film having higher characteristics can be produced.
  • an aqueous solution of a boron compound such as borax, glyoxal, or glutaraldehyde may also be used.
  • step E When step E is performed after step D, it is preferable to add iodide to the boric acid aqueous solution.
  • iodide By adding iodide, the elution of iodine adsorbed on the PVA layer can be suppressed.
  • Specific examples of iodide are as described above.
  • the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
  • the immersion time of the precursor of the composite polarizer in the stretching bath in the stretching in water is preferably 10 seconds to 5 minutes, more preferably 15 seconds to 3 minutes, and further preferably 20 seconds to 2 minutes.
  • the draw ratio is preferably 4.0 times or more, more preferably 5 times or more in the main drawing direction.
  • the draw ratio is preferably 20 times or less, more preferably 15 times or less.
  • the stretching ratio referred to here is the total of the pre-stretching (E1) and the post-stretching (E2), and in the case of multi-stage stretching, it is the total of each stage and does not include the stretching of the expansion treatment.
  • the stretching ratio in the direction orthogonal to the main stretching direction is preferably 1.02 to 2 times, more preferably 1.05 to 1.5 times.
  • the relaxation treatment may be performed in a direction orthogonal to the main stretching direction.
  • the relaxation treatment is preferably 0.3 to 0.99 times, more preferably 0.4 to 0.98 times.
  • the relaxation treatment also includes neck-in during roll stretching.
  • a method of shrinking in the MD direction using a simultaneous biaxial stretching machine is preferable.
  • step E In order to sufficiently adsorb iodine in the PVA layer and secure a high degree of polarization even in a thin film, it is preferable to perform step E after step D.
  • the ratio of the stretching ratios of E1 and E2 is preferably 1/9 to 9/1, more preferably 2/8 to 8 /. 2, more preferably 3/7 to 7/3.
  • (E1 / E2) is preferably 1/9 to 3/7.
  • the stretching ratios of E1 and E2 are the ratios of the lengths before and after stretching, respectively.
  • Cross-linking process It is also a preferable method to carry out a cross-linking treatment on the PVA layer of the precursor of the composite polarizer.
  • the cross-linking treatment is also called an insolubilization treatment, and is a step of cross-linking the PVA layer by contacting and cross-linking the PVA layer with an aqueous boric acid solution to impart water resistance to the dyeing solution in the dyeing treatment and the aqueous solution in stretching in water. ..
  • the cross-linking treatment can be carried out by a method of immersing the precursor of the composite polarizer in an aqueous solution of boric acid, a method of applying the aqueous solution of boric acid to the PVA layer surface of the precursor of the composite polarizer, or the like.
  • concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • the temperature of the crosslinking treatment is preferably 20 to 50 ° C.
  • the cross-linking treatment can be performed on each part before the dyeing treatment, before the stretching treatment, and after the stretching treatment, and may be performed on a plurality of parts.
  • stretching in water in the stretching treatment it is preferable to perform stretching in water.
  • iodide when the cross-linking treatment is performed after the dyeing treatment, it is preferable to further add iodide to the boric acid aqueous solution used for the cross-linking treatment.
  • the blending amount of iodide is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of iodide are as described above.
  • the stretched product of the precursor of the composite polarizer obtained through each of the above steps is preferably washed and then dried to form a composite polarizer in which the reflective and absorptive polarizers are directly laminated.
  • a method of immersing a stretched product of a precursor of a potassium iodide aqueous solution composite polarizer, or applying an aqueous solution of potassium iodide to a stretched product of a precursor of a composite polarizer on a shower is used.
  • the drying is preferably carried out by guiding the stretched product of the precursor of the composite polarizer into a drying oven.
  • the temperature of the drying oven is preferably 60 ° C to 120 ° C.
  • the drying time is preferably 0.5 to 10 minutes, more preferably 1 to 7 minutes, and even more preferably 1 to 5 minutes.
  • the stretched product of the precursor of the composite polarizer is preferably heat-fixed in order to reduce the heat shrinkage rate.
  • the heat fixing temperature is preferably 110 to 180 ° C, more preferably 120 to 170 ° C.
  • the heat fixing time is preferably 5 to 180 seconds, more preferably 10 to 150 seconds, and even more preferably 15 to 120 seconds. Within the above range, the heat shrinkage rate can be effectively reduced while suppressing the decomposition of PVA.
  • the relaxation treatment may be performed in the main stretching direction or in the direction orthogonal to the heat fixing or in the latter half of the heat fixing.
  • the relaxation treatment is preferably 0.1 to 5% (shrinks 0.1 to 5% from the width or length after stretching), and more preferably 0.5 to 3%.
  • Heat fixing may be performed at any stage after the stretching treatment is completed. After drying, it may be dried in a drying oven and then continuously guided to a heat-fixing zone of the oven. In the case of roll stretching, heat fixing may be performed by continuously contacting the roll for heat fixing after stretching.
  • the polarizer protective layer is a polarizer protective film
  • a separately prepared polarizer protective film can be provided by being bonded to the absorption type polarizer surface of the composite polarizer.
  • the pressure-sensitive adhesive is a base-less optical pressure-sensitive adhesive sheet.
  • a separately prepared retardation film can be provided by being bonded to an absorption type polarizer surface of a composite polarizer or a polarizer protective layer surface.
  • the same adhesive and adhesive as above can be used for bonding.
  • the paint for the oriented liquid crystal compound layer may be applied to the absorption type polarizer surface of the composite polarizer or the polarizer protective layer surface, dried, and if necessary, crosslinked. it can.
  • the method for orienting the liquid crystal compound include the following. -A method of applying polarized ultraviolet rays after applying and drying the paint for the liquid crystal compound layer-The surface to which the paint for the liquid crystal compound alignment layer is applied (absorption type polarizer surface or polarizer protective layer surface) is rubbed in advance. Method-A method in which an orientation control layer is provided on the surface to which the paint for the liquid crystal compound alignment layer is applied, and the orientation control layer is subjected to rubbing treatment or the alignment control layer is irradiated with polarized ultraviolet rays.
  • orientation control layer is a rubbing treatment
  • a polymer such as polyvinyl alcohol and its derivative, polyimide and its derivative, acrylic resin, and polysiloxane derivative is preferably used as the orientation control layer. Only one type of polymer may be used, or two or more types may be used in combination. A paint containing these polymers can be applied and provided.
  • the orientation control layer is preferably a photoreactive cured product of a polymer and / or a monomer having a photoreactive group.
  • the photoreactive group is preferably a group that produces a liquid crystal orientation ability by irradiation with light. Specifically, a molecular orientation-inducing or isomerization reaction, a dimerization reaction, a photocrosslinking reaction, etc. Alternatively, it is preferably a group that causes a photoreaction that is the origin of the liquid crystal orientation ability, such as a photodecomposition reaction.
  • the photoreactive groups those that cause a dimerization reaction or a photocrosslinking reaction are preferable in that they have excellent orientation and maintain a smectic liquid crystal state.
  • the number of substituents is not particularly limited, but is, for example, 1, 2, 3, or 4.
  • a photoreactive group capable of causing a photodimerization reaction is preferable, and a photo-alignment layer in which a cinnamoyl group and a chalcone group require a relatively small amount of polarized light for photo-orientation and are excellent in thermal stability and temporal stability is obtained. It is preferable because it is easy to obtain.
  • a polymer having a photoreactive group a polymer having a cinnamoyl group such that the terminal portion of the side chain of the polymer has a cinnamic acid structure is particularly preferable. Examples of the structure of the main chain include polyimide, polyamide, (meth) acrylic, polyester and the like.
  • the thickness of these orientation control layers is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • the paint for the alignment liquid crystal compound layer and the orientation control layer may contain a solvent, a cross-linking agent, a leveling agent, and the like.
  • these paints contain a photopolymerizable compound, a polymerization initiator, a sensitizer, and a polymerization agent are used. It may contain a banning agent, a polymerizable non-liquid compound, and the like.
  • a method of providing an oriented liquid crystal compound layer on a releasable substrate by the above method and transferring the layer is also preferable.
  • the releasable base material those generally used as releasable films such as polyester (PET) film, TAC film, COP film, polypropylene (PP) film can be used.
  • the release film may be provided with a retardation layer protective layer, and a retardation layer may be further provided on the release film to transfer the retardation layer and the retardation layer protection layer at the same time.
  • the above-mentioned adhesives and adhesives are preferably used.
  • a light diffusing layer may be provided on the reflective polarizer surface of the composite polarizing element (the surface of the reflective polarizer on the opposite side of the absorbing polarizing element).
  • the light diffusion layer is, for example, a resin coat containing particles and a layer having an uneven surface.
  • Examples of particles used in the resin coating containing particles include resin particles and inorganic particles.
  • the resin particles include acrylic type, polystyrene type, silicone type, melamine type, and benzoguanamine type, and may be non-crosslinked particles or crosslinked particles.
  • the inorganic particles include silica, titania, zirconia, alumina, and glass. The particles may be surface-treated in order to improve dispersibility and adhesion to the binder resin.
  • the average particle size of the particles is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the average particle size is a number average value obtained by randomly measuring the diameters of 100 particles from an image obtained by observing the particles with an electron microscope.
  • binder resin those listed as the resin for the easy-adhesion layer can be preferably used.
  • cross-linking agent those listed as the resin of the easy-adhesion layer can be preferably used.
  • the amount of the particles added is preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and further preferably 5 to 20% by mass in the light diffusion layer.
  • the surface unevenness processing is called prism processing or lens processing.
  • prism processing a triangular prism, a trapezoidal quadrangular prism, a shape that diffuses light in only one direction such as a pentagonal prism, a triangular pyramid, a quadrangular pyramid, a pentagonal pyramid, a hexagonal pyramid, a triangular pyramid, and a quadrangular pyramid.
  • Examples include shapes that diffuse light in multiple directions, such as a table, a pentagonal pyramid, and a hexagonal pyramid.
  • lens processing examples include a shape that diffuses light in only one direction, such as a semi-cylindrical shape and a semi-cylindrical shape, and a shape that diffuses light in multiple directions, such as a hemispherical shape and a semi-elliptical spherical shape.
  • a photocurable paint containing an acrylic monomer or an oligomer is applied to the reflective polarizer surface of the composite polarizing element, and the coated surface is pressed against a roll engraved with a predetermined shape to emit ultraviolet rays or the like. It can be formed by irradiation.
  • a photocurable paint may be applied to a roll engraved with a predetermined shape, and ultraviolet rays or the like may be irradiated while the coated surface of the roll is pressed against the reflective polarizer surface of the composite polarizing element.
  • the reflective polarizer surface of the composite polarizer may be subjected to corona treatment or the like. Further, an easy-adhesion layer may be provided.
  • the easy-adhesion layer the same resin and cross-linking agent as the easy-adhesion layer provided on the absorbent polarizing surface are used. However, it is not necessary to use a water-soluble resin for the easy-adhesion layer of the reflective polarizing element surface.
  • a heated mold may be pressed against the reflective polarizer surface of the composite polarizer and embossed to form an uneven surface.
  • the composite polarizer of the present invention preferably has a polarization ratio of 97% or more, more preferably 99% or more, and further preferably 99% or more when irradiating light from the reflective polarizer surface and observing from the absorption type polarizer surface. It is preferably 99.5% or more, and particularly preferably 99.7% or more. With the above, it is possible to display a high-contrast image as a liquid crystal display device. Details of the measurement method are described in Examples. When the composite polarizer includes a retardation layer, it is a value measured before the retardation layer is provided. The polarization rate can be adjusted by the conditions of dyeing treatment, cross-linking treatment, and stretching conditions.
  • the composite polarizer of the present invention is used when polarized light having a vibration direction parallel to the transmission axis of the absorption-type polarizer of the composite polarizer is irradiated with light from the reflection-type polarizer surface and observed from the absorption-type polarizer surface.
  • the transmittance is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more. The higher the transmittance, the more preferable, but the upper limit as a realistic value is about 98%. By setting the above, it is possible to obtain a liquid crystal display device having high brightness. Details of the measurement method are described in Examples.
  • the transmittance can be adjusted by adjusting the refractive index (composition) of the resin a and the resin b and the stretching conditions.
  • the composite polarizer of the present invention preferably has a reflectance of 5 to 50%, more preferably 10 to 47%, and even more preferably 20 to 45% of the reflectance of the reflective polarizer surface. Details of the measurement method are described in Examples.
  • the polarization rate of the reflected light on the reflective polarizer surface is preferably 70%, more preferably 80% or more, still more preferably 85% or more, and particularly preferably 90%. That is all.
  • the upper limit of the polarization rate of the reflected light is practically about 99.9%. Details of the measurement method are described in Examples.
  • the reflectance and the polarization rate of the reflected light can be adjusted by adjusting the refractive index (composition) of the resin a and the resin b and the stretching conditions.
  • the maximum value of the difference in the width direction of the absorption axis of the composite polarizer of the present invention is preferably 5 degrees or less, more preferably 4 degrees or less, still more preferably 3 degrees or less, and particularly preferably 2 degrees. It is less than the degree. If it exceeds 5 degrees, the brightness may be uneven in the screen when the liquid crystal display device is used, and light may partially leak especially when black is displayed.
  • the difference in the width direction of the absorption axis of the composite polarizer can be adjusted by the stretching conditions. In particular, stretching in the MD direction tends to cause a difference in the width direction of the absorption shaft, which can be adjusted by the stretching speed, stretching temperature, thermal process temperature, etc., and it is also preferable to set the temperature in the width direction during stretching.
  • a simultaneous biaxial tenter and relax (shrink) in the MD direction when stretching in the TD direction.
  • stretch in the MD direction a difference is likely to occur if neck-in occurs suddenly.
  • the distance between the stretching rolls can be lengthened and adjusted by the temperature at the time of stretching, the stretching ratio, and the like.
  • a slit roll within the above range by cutting the end portion where the absorption shaft has a large inclination with a slit after manufacturing the composite polarizer.
  • the composite polarizer of the present invention is preferably used as a light source side polarizing plate of a liquid crystal cell.
  • the absorption type polarizer surface of the composite polarizer, or the surface of the polarizer protective layer, the retardation layer, etc., if provided, and the side surface of the light source of the liquid crystal cell are bonded to each other.
  • the bonding can be performed with an adhesive, an adhesive, or the like, and it is preferable to bond them with an adhesive.
  • the adhesive or the pressure-sensitive adhesive may be provided on the bonding surface of the composite polarizing element by coating or the like, and if it is a pressure-sensitive adhesive, it is also preferable to use a base-less optical pressure-sensitive adhesive sheet.
  • Bonding is a method of unwinding a composite polarizing element that is slit to the required width and wound into a roll shape, and cutting it to the required length immediately before bonding to the liquid crystal cell or while bonding, in advance. Examples thereof include a method of bonding a single-wafer composite polarizing element having a required width and length by cutting it to a liquid crystal cell.
  • a polarizing element (polarizing plate) is also provided on the visual side of the liquid crystal cell to form a liquid crystal display panel. It is preferable that the polarizing plate provided on the viewing side is also thin. As such a thin polarizing plate, for example, PVA is applied to a releasable resin base material, dyed, and the PVA polarizer obtained by stretching the releasable resin base material is transferred to a polarizer protective film.
  • Examples thereof include a polarizing plate having a polarizer protective film on only one side thereof, and a polarizing plate having a retardation layer provided on the other surface of the polarizing plate (the surface opposite to the polarizer protective film of the polarizer).
  • the above-mentioned polarizer is the same as the method for producing a composite polarizer of the present invention, in which a sheet made of a resin such as polyester, polypropylene, or polyurethane is used instead of the resin sheet containing the precursor resin a and the resin b. It can be manufactured by the manufacturing method of.
  • a sheet made of a resin such as polyester, polypropylene, or polyurethane
  • Examples of the polarizing element protective film used for the polarizing plate on the visual side include the polarizer protective film described above, and a polyethylene terephthalate film having an in-plane retardation of 3000 to 30000 nm.
  • the retardation layer used for the polarizing plate on the viewing side the retardation layer described above is exemplified.
  • a PVA polarizer obtained by stretching the release resin base material together with the retardation film described above is also preferably used.
  • a polarizer protective layer may be provided on the surface opposite to the retardation film of the PVA polarizer, and it is particularly preferable to provide a polarizer protective coat layer.
  • the PVA polarizer obtained by stretching the release resin base material together is transferred to the visible side of the liquid crystal cell, and the polarizer is directly attached to the visible side of the liquid crystal cell.
  • an oriented liquid crystal compound layer may be provided on the visible side of the liquid crystal cell by transfer, and a polarizer may be further transferred onto the oriented liquid crystal compound layer.
  • An oriented liquid crystal compound layer may be provided on the polarizing element surface of the above by transfer or coating, and the laminate of the retardation layer and the polarizer may be transferred to the liquid crystal cell.
  • the composite polarizer of the present invention can be manufactured by a simple process and is thin. It can be suitably used not only for televisions and digital signage, but also for applications requiring particularly thinness, such as smartphones, tablet terminals, mobile PCs, in-vehicle displays, cameras and monitors for electronic devices.
  • Polarization rate of transmitted light indicates the degree of polarization of light transmitted through a reflective polarizer-absorption-type polarizer, and is in the direction of the transmission axis of the absorption-type polarizer in the transmitted light. It is a value that simply indicates the proportion of components that vibrate in the light.
  • a commercially available absorbent polarizing plate was superposed on the absorption type polarizing element surface side of the composite polarizer obtained in the example, and the end portion was fixed with cellophane tape.
  • Two types of samples were prepared: one in which the absorption axis of the absorption type polarizer of the composite polarizing element and the absorption axis of a commercially available polarizing plate are parallel (type P) and one in which the absorption axes are orthogonal (type V).
  • type P absorption axis of the absorption type polarizer of the composite polarizing element
  • type V absorption axis of a commercially available polarizing plate
  • absorbent polarizing plates those having a single transmittance of 42.3 ⁇ 1.0%, an orthogonal transmittance of 0.08% or less, and a degree of polarization of 99.8% or more were used.
  • the composite polarizer was measured before the retardation layer was provided.
  • an integrating sphere accessory (ISR-3100: manufactured by Shimadzu Corporation) is set in a self-recording spectrophotometer (UV-3150: manufactured by Shimadzu Corporation), and the slit width is 12 nm and the wavelength is 300 to 800 nm.
  • the range was scanned at high speed to measure the spectral spectrum and the transmittance at 550 nm was measured.
  • the sample was set so that the reflective polarizer was on the light source side and the absorption axis of the composite polarizer was in the horizontal direction.
  • the transmittance of the type P sample was Tp
  • the transmittance of the type V sample was Tv
  • the value of the following formula (1) was the polarization rate of the transmitted light. (Tp-Tv) / (Tp + Tv) ⁇ 100 Equation (1)
  • Polarization rate of reflected light on the surface of the reflective polarizer indicates the degree of polarization of the light reflected by the reflective polarizer, and indicates the degree of polarization of the light reflected by the reflective polarizer in the direction of the reflection axis of the reflective polarizer in the reflected light. It is a value that simply indicates the ratio of components that vibrate in the direction orthogonal to the transmission axis direction).
  • a commercially available absorbent polarizing plate was superposed on the reflective polarizer surface side of the composite polarizing element obtained in the example, and the end portion was fixed with cellophane tape.
  • the direction orthogonal to the absorption axis direction of the commercially available polarizing plate in the quenching direction was defined as the absorption axis of the absorption type polarizer of the composite polarizer.
  • the difference in the angles in the absorption axis direction of the two points where the most angular difference occurs in the absorption axis direction of the composite polarizer measured at five points was defined as the difference in the width direction of the absorption axis of the composite polarizer.
  • a resin sheet 4 was obtained in the same manner as the resin sheet 3 except that the polyesters a4 and b4 in Table 1 were used.
  • the temperature of the reaction solution was lowered to 50 ° C., and a mixture of 42 parts of diethyl malonate, 34 parts of ethyl acetoacetate and 0.8 parts of a 28% sodium methylate solution was gradually added. After completion of the addition, the reaction was continued at 60 ° C. for 6 hours. Then, 14 parts of 1-butanol was added, and the mixture was sufficiently stirred. Was dropped. The infrared spectrum of the reaction solution was measured to confirm that the absorption of isocyanate groups had disappeared, and a blocked polyisocyanate solution having a solid content of 75% by mass was obtained.
  • Example 1 Coating of easy adhesive layer
  • the coating material 1 for an easy-adhesion layer was applied to one side of the resin sheet 1 and then dried at 100 ° C. to provide an easy-adhesion layer having a coating amount of 0.1 g / m 2 after drying.
  • the obtained composite polarizer precursor was stretched 1.8 times in the MD direction between rolls having different peripheral speeds in an oven at 130 ° C. Further, the stretched precursor of the composite polarizer was immersed in a 4 mass% boric acid aqueous solution at a liquid temperature of 30 ° C. for 30 seconds to perform an insolubilization treatment.
  • the precursor of the composite polarizer was immersed in an aqueous solution of 0.4% by mass of iodine and 3.0% by mass of potassium iodide (liquid temperature 30 ° C.) for 60 seconds to perform a dyeing treatment. Further, the dyed composite polarizer precursor was immersed in an aqueous solution of 3% by mass of potassium iodide and 3% by mass of boric acid (liquid temperature 30 ° C.) for 30 seconds for cross-linking treatment.
  • the precursor of the composite polarizer after the cross-linking treatment was uniaxially stretched in an oven at 130 ° C. so that the total stretching ratio was 5.5 times in the MD direction between rolls having different peripheral speeds.
  • the precursor of the composite polarizer after stretching was immersed in a 4 mass% potassium iodide aqueous solution (liquid temperature 30 ° C.) and washed. Further, the resin PVA laminate was dried in an oven at 85 ° C., and subsequently heat-fixed at 150 ° C. for 20 seconds, and then the end portion was slit to obtain a roll of the composite polarizer 1 having a width of 700 mm.
  • the obtained composite polarizer 1 had a reflective polarizer having a thickness of 80 ⁇ m and an absorbing polarizing element having a thickness of 5 ⁇ m.
  • Example 2 A composite polarizer 2 was obtained in the same manner as in Example 1 except that the resin sheet 2 was used.
  • the aspect ratio of the sea-island structure was 6.3.
  • Example 3 The resin sheet 3 was used, the easy-adhesion layer paint 2 was used for coating the easy-adhesion layer, the drying temperature was set to 60 ° C, and the oven temperature for stretching before the dyeing treatment was set to 120 ° C.
  • the stretching after the dyeing treatment was carried out in the same manner as in Example 1 except that it was stretched in water by immersing it in a 3.0 mass% boric acid aqueous solution at a liquid temperature of 70 ° C. to obtain a composite polarizer 3.
  • Example 4 A composite polarizer 4 was obtained in the same manner as in Example 3 except that the resin sheet 4 was used.
  • Table 2 shows the characteristics of the composite polarizers 1 to 4.
  • Example 5 Liquid Crystal Panel Using Composite Polarizer (Preparation of Composite Polarizer with Laminated Phase Difference Layers) (Coating liquid for orientation control layer) ⁇ 10 parts by mass of the following modified polyvinyl alcohol ⁇ 371 parts by mass of water ⁇ 119 parts by mass of methanol ⁇ 0.5 parts by mass of glutaraldehyde
  • Fluoropolymer 2-perfluorohexyl ethyl acrylate / N, N-dimethylacrylamide (40/60 molar ratio) copolymer
  • a non-easy adhesive layer surface of a biaxially stretched polyester film (Toyobo Cosmo Shine (TM) A4100, thickness 38 ⁇ m) is corona-treated, and the composition paint for an orientation control layer is applied to the corona-treated surface and dried at 100 ° C.
  • An orientation control layer having a thickness of 0.5 ⁇ m was provided. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon brushed cloth. Subsequently, after applying the retardation layer assembly paint A, the solvent was evaporated by heating at 125 ° C. for 3 minutes, and the discotic liquid crystal compound was oriented. Subsequently, ultraviolet rays were subsequently irradiated for 30 seconds in an environment of 80 ° C. to obtain a laminate for retardation layer transfer.
  • An ultraviolet curable adhesive is applied to the absorption type polarizing element surfaces of the composite polarizers 1 to 4, the retardation layer surfaces of the retardation layer transfer laminate are bonded together, and ultraviolet rays are irradiated from the retardation layer transfer laminate side.
  • a composite polarizer in which retardation layers were laminated was laminated.
  • the biaxially stretched polyester film was peeled off to obtain composite polarizers 5 to 8. The bonding was performed so that the transmission axis direction of the composite polarizer and the rubbing direction on the retardation layer transfer laminate side were parallel.
  • a non-easy adhesive layer surface of a biaxially stretched polyester film (Toyobo Cosmo Shine (TM) A4100, thickness 38 ⁇ m) is subjected to corona treatment, and the following composition for a low refractive index layer is applied to the corona treated surface and 90 ° C. in an oven. After the solvent was evaporated, the film was irradiated with ultraviolet rays to form a low refractive index layer having a thickness of 0.5 ⁇ m. Further, the following composition for a hard coat layer was applied onto the low refraction layer, dried at 90 ° C.
  • TM Toyobo Cosmo Shine
  • LRP low-reflection layer-polarizer laminate
  • composition paint for low refraction layer ⁇ Pertron (registered trademark) A-2508LR (Hollow silica-containing type made by Pernox Co., Ltd. Refractive index 1.33 (Abbe)) 100 parts by mass Irgacure 184 0.13 parts by mass
  • a high retardation PET film with a thickness of 80 ⁇ m (Cosmo Shine (R) SRF manufactured by Toyo Boseki Co., Ltd.) is bonded to the PVA polarizing element surface of the PVA polarizing element transfer laminate using an ultraviolet curable adhesive, and then PVA polarized light is used.
  • the PET substrate of the child transfer laminate was peeled off to obtain a polarizer protective film-polarizer laminate (PFP).
  • a coating composition for an orientation control layer is applied to the polarizer surface of a low-reflection layer for transfer-polarizer laminate (LRP, the base material PET of the laminate for PVA polarizer transfer has been peeled off), dried at 100 ° C., and thickened.
  • An orientation control layer having a size of 0.5 ⁇ m was provided.
  • the orientation control layer was treated with a rubbing roll wrapped with a nylon brushed cloth. The rubbing direction was set to be orthogonal to the absorption axis direction of the polarizer.
  • the liquid crystal panel and the reflective polarizing plate were taken out from the commercially available IPS type and VA type liquid crystal televisions, and the polarizing plates on the light source side and the visual recognition side were peeled off from the liquid crystal panel to make a liquid crystal cell.
  • the absorption-type polarizer surface or retardation layer surface of the composite polarizer obtained above is placed on the light source side of the obtained liquid crystal cell on the visible side surface of the liquid crystal cell.
  • a liquid crystal panel was prepared by laminating the laminated bodies LRP, PFP, and LRPR. The configuration of each liquid crystal panel is shown in Table 3.
  • the polarizing plate of the original liquid crystal television is one in which TAC-based polarizing element protective films having a thickness of 60 ⁇ m are provided on both sides of a PVA-based polarizing element (thickness 20 ⁇ m).
  • the thickness of the polarizing element on the light source side and the polarizing plate on the reflective side can be reduced by 100 ⁇ m or more, and when combined with the polarizing plate on the viewing side described above, the thickness can be reduced by 150 to 200 ⁇ m or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

薄型化液晶表示装置に対応できる複合偏光子及びその製造方法の提案。 反射型偏光子とポリビニルアルコールを含む吸収型偏光子を有する複合偏光子の製造方法であって、反射型偏光子の前駆体上にポリビニルアルコールの層を有する複合偏光子の前駆体を準備する工程、および、該複合偏光子の前駆体を少なくとも一方向に延伸する工程、をこの順で含む複合偏光子の製造方法。

Description

複合偏光子及びその製造方法
 本発明は複合偏光子及びその製造方法に関する。
 液晶表示装置は、通常、液晶セルの視認側及び光源側の両面に偏光板が貼り合わせてあり、偏光板は偏光子と偏光子保護フィルムとの積層体で構成される。偏光子保護フィルムとしては、トリアセチルセルロース(TAC)、アクリル樹脂、環状ポリオレフィン(COP)、ポリエチレンテレフタレート(PET)などの40~100μmの剛直なフィルムが用いられている。一方、偏光子としては、ポリビニルアルコールに二色性色素が吸着されたもの、二色性色素を含む液晶化合物配向層からなるもの等の吸収型偏光子が知られている。
 吸収型偏光子は、一方向に振動する光の成分のみを吸収し、それと直交する光の成分は透過する。そのため、自然光(非偏光光)を偏光子に通過させると、通過した光量は半減するという問題がある。液晶表示装置の輝度を上げるため、光源と光源側偏光板との間に反射型偏光板を設ける方法が用いられている。反射型偏光板は、一般には、ポリエステル系の異なる樹脂組成の多層積層体が一方向に配向されたものであり、数十μmの厚みを有するものである。
 近年、液晶画像表示装置は薄型化が要求されており、片面のみに偏光子保護フィルムを有する偏光板の偏光子面に粘着層を設け、偏光子と液晶表示セルを直接貼り合わせる方法(例えば、特許文献1)、偏光子と液晶表示セルとの間に存在する偏光子保護フィルムの代わりに位相差フィルムをそのまま偏光子に積層する方法等が提案されている。また、反射型の偏光板に直接偏光子を貼り合わせた複合偏光板も提案されている(例えば、特許文献2、3)。しかし、上記の複合偏光板は、反射型の偏光板と吸収型の偏光子を別々に製造して貼りあわせるため、製造プロセス面で簡便なものではなかった。
 さらに、反射型の偏光板に液晶化合物を塗工することで液晶化合物からなる偏光子を設けるという提案があった(例えば、特許文献4)。しかし、液晶化合物からなる偏光子は、ポリビニルアルコールを延伸させた偏光子と比較して偏光度が低く、広い用途に適応しきれるものではなかった。
特開2010-277018号公報 WO17/205106 特開2017-211515号公報 特開2018-124467号公報
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の1つの目的は、さらなる薄型化の液晶表示装置に対応できる複合偏光子及びその製造方法を提案するものである。また、本発明の更なる目的は、偏光度が十分に高いポリビニルアルコールを延伸させた吸収型偏光子と反射型偏光板の複合偏光子でありながら、製造プロセスが簡便で生産性の高い複合偏光子とその製造方法を提案するものである。
 代表的な本発明は、以下のとおりである。
項1.
反射型偏光子とポリビニルアルコールを含む吸収型偏光子を有する複合偏光子の製造方法であって、反射型偏光子の前駆体上にポリビニルアルコールの層を有する複合偏光子の前駆体を準備する工程、および、該複合偏光子の前駆体を少なくとも一方向に延伸する工程、をこの順で含む複合偏光子の製造方法。
項2.
複合偏光子の前駆体を準備する工程が、少なくとも下記(A)~(C)の工程をこの順で含むことを特徴とする項1記載の複合偏光子の製造方法。
(A)樹脂aおよび樹脂bを溶融する工程
(B)溶融した樹脂aおよび樹脂bを下記構造(B1)または(B2)を有するシートとして押し出す工程
    (B1)溶融した樹脂aと樹脂bとが交互に積層された構造
    (B2)溶融した樹脂aと樹脂bとが海島状となる構造
(C)押し出されたシートの片面にポリビニルアルコールの層を有する積層体を作成する工程
項3.
複合偏光子の前駆体を準備した後、(D)および(E)の工程を含むことを特徴とする、項1または2に記載の複合偏光子の製造方法。
(D)複合偏光子の前駆体のポリビニルアルコールの層に二色性色素を吸着させる染色工程
(E)複合偏光子の前駆体を少なくとも一方向に延伸する工程
項4.
(C)工程が、下記(C1)及び(C2)工程を含む、項2または3に記載の複合偏光子の製造方法。
(C1)押し出されたシートの少なくとも片面に易接着層を設ける工程
(C2)易接着層の上にポリビニルアルコールの層を設ける工程
項5.
 易接着層が、水不溶性樹脂および水溶性樹脂を含む項4に記載の複合偏光子の製造方法。
項6.
 樹脂a又は樹脂bの少なくとも一方がポリエステルである項2~5のいずれかに記載の複合偏光子の製造方法。
項7.
 項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面に位相差層を設ける、位相差層積層複合偏光子の製造方法。
項8.
 項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面、または、項7によって得られた位相差層積層複合偏光子の位相差層面に、偏光子保護層を設ける、保護層付き複合偏光子の製造方法。
項9.
 液晶表示セルの一方の面と、
項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面、項7に記載の製造方法によって得られた位相差層積層複合偏光子の位相差層面、又は項8に記載の製造方法によって得られた保護層付き複合偏光子の偏光子保護層面、のいずれかと液晶セルを貼り合わせる、液晶表示パネルの製造方法。
項10.
 反射型偏光子と吸収型偏光子が、接着剤層および粘着剤のいずれをも介することなく、直接積層された複合偏光子であって、
 反射型偏光子が、樹脂aからなる層および樹脂bからなる層の交互積層フィルム、又は、樹脂aおよび樹脂bからなる海島構造フィルムであり、
 吸収型偏光子が、ポリビニルアルコールと二色性色素からなり、
 反射型偏光子の配向方向と吸収型偏光子の配向方向が同一である、
複合偏光子。
項11.
 反射型偏光子と吸収型偏光子の間に易接着層を有する項10に記載の複合偏光子。
項12.
 易接着層が水不溶性樹脂および水溶性樹脂を含む項11に記載の複合偏光子。
項13.
 樹脂a又は樹脂bの少なくとも一方がポリエステルである項10~12のいずれかに記載の複合偏光子。
項14.
 項10~13のいずれかに記載の複合偏光子の吸収型偏光子面に位相差層を有する位相差層積層複合偏光子。
項15.
 項10~13のいずれかに記載の複合偏光子の吸収型偏光子面、または、項14に記載の位相差層積層複合偏光子の位相差層面に、偏光子保護層を有する保護層付き複合偏光子。
項16.
 液晶表示セルの一方の面と、
項10~13のいずれかに記載の複合偏光子の吸収型偏光子面、項14に記載の位相差層積層複合偏光子の位相差層面、又は項15に記載の保護層付き複合偏光子の偏光子保護層面、のいずれかと液晶セルを貼り合わせた液晶表示パネル。
 本発明によれば、さらなる薄型化の液晶表示装置に対応できる複合偏光子及びその製造方法を提供することができる。
 本発明において、複合偏光子は、反射型偏光子及び吸収型偏光子を含む。
 (反射型偏光子)
 反射型偏光子は、自然光(非偏光光)のうち一方向に振動する成分のみを透過させ、これと直交する振動方向の成分は反射する機能を有することが好ましい。
 反射型偏光子としては、樹脂aからなる層および樹脂bからなる層の交互積層フィルム、又は、樹脂aおよび樹脂bからなる海島構造フィルムであることが好ましい。樹脂aおよび樹脂bは、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリウレタン系樹脂、等が挙げられる。樹脂aおよび樹脂bは異なる組成であるが、互いに同じ系(種類)の樹脂であってよい。
 樹脂aおよび樹脂bは、互いに組成の異なるポリエステル系樹脂であることが好ましく、ポリエステル系樹脂としては、ポリエチレンナフタレート、ポリトリメチレンナフタレート、ポリテトラメチレンナフタレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、これらの共重合ポリエステルが好ましい。共重合成分として、酸成分は、テレフタル酸、ナフタレンジカルボン酸、イソフタル酸、シクロヘキサンジカルボン酸等が好ましい例として挙げられる。グリコール成分は、エチレングリコール、ジエチレングリコール、ネオペンチルグリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、シクロヘキサンジメタノール等が好ましい例として挙げられる。また、溶融粘度を調節するため、トリメリット酸、トリメチロールプロパンなどの3官能以上の酸成分やグリコール成分を共重合させてもよい。
 樹脂aは配向されることにより複屈折が発現されるものであることが好ましい。また、樹脂bは配向により複屈折が発現されるものであってもよいが、樹脂aよりは複屈折性の低いものであるか、逆の特性(樹脂aが配向方向の屈折率が高くなる場合は樹脂bは配向方向で屈折率が低くなる)を有するものが好ましい。
 このような特性を持たせるため、樹脂aはポリエステルである場合、ポリエチレンナフタレート、ポリトリメチレンナフタレート、ポリテトラメチレンナフタレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレートなどのホモポリマーであるか、これらに20モル%以下(ジカルボン酸成分およびグリコール成分の合計量を200モル%とした場合の、共重合ジカルボン酸性分および共重合グリコール成分の総量)で共重合成分を共重合させたものであることが好ましい。共重合成分はさらには17モル%以下であることが好ましく、特には15モル%以下であることが好ましい。
 樹脂bがポリエステルである場合、上記ホモポリマーをベースに20モル%を越えて共重合されたものであることが好ましく、さらには25モル%以上共重合されたものであることが好ましい。共重合の割合は80モル%以下が好ましく、さらには70モル%以下、特には60モル%以下であることが好ましい。
 このような樹脂aおよび樹脂bを用いることで、配向方向での樹脂aと樹脂bとの屈折率差と配向方向と直交する方向での樹脂aと樹脂bとの屈折率差に違いが生じ、反射型偏光子の機能を持たせることができる。具体的には、たとえば、配向方向での樹脂aと樹脂bとの屈折率差が大きく、配向方向と直交する方向での樹脂aと樹脂bとの屈折率差が小さくなり、配向方向に振動する光の成分が樹脂aと樹脂bの界面でより強く反射され、一方、配向方向と直交する方向に振動する光の成分は樹脂aと樹脂bの界面で透過し易くなるため、反射型偏光子の機能を有することになる。
 反射型偏光子が樹脂aからなる層および樹脂bからなる層の交互積層フィルムである場合、各層の厚みは0.01~2μmであることが好ましく、より好ましくは0.02~1μm、さらに好ましくは0.05~0.5μmである。層数としては50~2000層であることが好ましく、さらには100~1500層、特には200~1000層であることが好ましい。
 反射型偏光子が樹脂aおよび樹脂bからなる海島構造フィルムである場合、樹脂aおよび樹脂bのどちらが島成分であってもよいが、樹脂aが島成分であることが好ましい。フィルム面の法線方向から観察した場合、島成分のアスペクト比(長軸長/短軸長)は好ましくは2以上、さらに好ましくは3以上、特に好ましくは4以上である。アスペクト比の上限は、現実的な値としては20程度である。島成分の平均短軸長は、好ましくは0.01~2μm、より好ましくは0.02~1μm、さらに好ましくは0.05~0.5μmである。なお、島成分のアスペクト比は、後述の実施例に示す方法で測定でき、平均短軸長は島成分のアスペクト比を求める時に採用した50個の島成分の短軸長の平均値である。
 樹脂aと樹脂bの比率としては、質量比で樹脂a/樹脂bが好ましくは1/9~9/1、さらに好ましくは2/8~8/2、特に好ましくは3/7~7/3である。樹脂aおよび樹脂b以外に別の樹脂(樹脂c)を加えてもよいが、樹脂aと樹脂bの合計が反射型偏光子の全質量中80質量%以上であることが好ましく、さらには90質量%以上であることが好ましい。
 なお、樹脂aおよび樹脂bは、各々相溶している状態のものであれば二種以上の樹脂をブレンドしたものであってもよく、その場合はブレンド物全体を樹脂aまたは樹脂bとみなすことができる。ここで相溶している状態とは、光学顕微鏡で観察して相分離構造が認められず、透明な状態であることをいう。
 反射型偏光子の厚みは、例えば、10~100μmであることが好ましく、薄膜化の観点から、好ましくは10~70μmであり、より好ましくは15~50μmである。
 反射型偏光子は、吸収型偏光子との密着性を確保するために、コロナ処理又はプラズマ処理などの表面改質が施されていてもよく、易接着層を設けてもよい。
(易接着層)
 易接着層は、接着剤ではなく、後述する方法によって設ける吸収型偏光子との密着性を上げ、剥離トラブルを防ぐものである。易接着層は樹脂の塗工層であることが好ましい。易接着層に用いられる樹脂としては、ポリエステル、ポリカーボネート、アクリル、ポリウレタン、ポリスチレン、ポリアミドなどが挙げられ、反射型偏光子の素材との親和性を考慮して選択できる。特に、水不溶性樹脂が好ましく、具体的には、前述した組成からなる水不溶性樹脂を好ましく用いることができる。
 易接着層はさらに、吸収型偏光子との親和性を上げるため、水溶性樹脂を含むことが好ましい。水溶性樹脂としては、ポリビニルアルコール、ポリアクリルアミド、カルボキシメチルセルロース、ポリビニルピロリドン、ポリエチレンイミン、ポリ(メタ)アクリル酸、でんぷん、寒天、ゼラチン等が挙げられる。水溶性樹脂は、吸収型偏光子との密着性を確保しながら、耐湿熱性を確保するため、易接着層の全固形成分に対して、2~30質量%であることが好ましい。
 易接着層は、耐湿熱性を確保するため架橋されていることが好ましい。架橋剤としては、イソシアネート化合物、エポキシ樹脂、オキサゾリン基含有化合物、カルボジイミド基含有化合物、二重結合含有化合物、メラミン化合物など、一般的に樹脂の架橋剤として用いられるものを用いることができる。
 易接着層は、有機溶媒系、水系の塗料を用いて塗工によって設けられることが好ましい。易接着層の厚みは、好ましくは0.01~3μm、より好ましくは0.05~1μmである。
(吸収型偏光子)
 吸収型偏光子は、ポリビニルアルコール(PVA)系樹脂にヨウ素又は有機系の二色性色素を吸着させたものを用いることが好ましい。
 PVA系樹脂としては、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、好ましくは85モル%~100モル%、より好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めたものである。
 PVA系樹脂の平均重合度は好ましくは1000~10000、より好ましくは1200~4500、さらに好ましくは1500~4300である。平均重合度は、JIS K 6726-1994に準じて求めたものである。ケン化度、平均重合度を上記範囲にすることで、耐久性および強度に優れ、均質な膜厚の吸収型偏光子が得られる。
 吸収型偏光子は配向されていることが好ましく、配向方向は反射型偏光子の配向方向と同一(平行)であることが好ましい。配向していることで、吸収型偏光子は配向方向に振動する光を吸収し、配向方向と直交する方向に振動する光を透過する。なお、吸収型偏光子の配向方向は配向方向が吸収軸となることで分かる。反射型偏光子の配向方向は、配向方向が反射軸(透過軸とは直行方向)となっていることで分る。これらは吸収軸方向を既知の偏光板を通して観察することで確認し、その軸方向に基づいて決定することができる。なお、反射型偏光子と吸収型偏光子は前駆体を延伸することで製造されるため、配向方向に差は生じないが、上記の同一とは、測定上の誤差範囲である2度程度の差は含むものとする。
 吸収型偏光子の厚みは、好ましくは0.5~10μm、さらに好ましくは1.0~7μm、特に好ましくは2~6μmである。
(偏光子保護層)
 複合偏光子の吸収型偏光子側の面には偏光子保護層が設けられていてもよい。偏光子保護層としては、偏光子保護フィルムや偏光子保護コート層が挙げられる。偏光子保護フィルムとしては、トリアセチルセルロース(TAC)、ポリ環状オレフィン(COP)、アクリル樹脂、ポリカーボネート(PC)などの、複屈折性のないフィルムが好ましい。偏光子保護フィルムの厚みは、好ましくは5~60μm、より好ましくは10~50μmである。
 偏光子保護コートとしては、PVA、PVOH、アクリル樹脂、ポリエステル、ポリウレタン、ポリスチレンなどの樹脂コートであることが好ましい。偏光子保護コートは架橋されていることが好ましく、架橋剤としては、イソシアネート化合物、エポキシ樹脂、メラミン等のアミノ樹脂、カルボジイミド、オキサゾリン含有化合物などが挙げられる。また、アクリルモノマーやオリゴマーを紫外線架橋させたものも好ましい。保護コート層の厚みは、好ましくは1~20μm、より好ましくは2~10μmである。
(位相差層)
 複合偏光子の吸収型偏光子側の面には位相差層が設けられていてもよい。位相差層は、TAC、COP、PC、アクリル樹脂などのフィルムを延伸した位相差フィルム、これら延伸フィルムや上記偏光子保護フィルムに配向された液晶化合物の層(配向液晶化合物層)を設けた位相差フィルムが挙げられる。また、配向液晶化合物層を直接吸収型偏光子の面に塗工で設けたものや、離型フィルム上に塗工された配向液晶化合物層を転写して設けたものは薄型化が可能であり、本発明の位相差層として特に好ましいものである。
 液晶化合物としては、棒状液晶化合物、ディスコティック液晶化合物などを使用することができる。また、液晶化合物としては、配向状態を固定できるという面で、二重結合などの重合性基を持つ重合性液晶化合物であることが好ましい。
 棒状液晶化合物の例としては、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報、及び特開平11-513360号公報に記載された重合性基を有する棒状液晶化合物が挙げられる。
 具体的な棒状液晶化合物としては、
CH=CHCOO-(CH-O-Ph1-COO-Ph2-OCO-Ph1-O-(CH-OCO-CH=CH
CH=CHCOO-(CH-O-Ph1-COO-NPh-OCO-Ph1-O-(CH-OCO-CH=CH
CH=CHCOO-(CH-O-Ph1-COO-Ph2-OCH
CH=CHCOO-(CH-O-Ph1-COO-Ph1-Ph1-CHCH(CH)C
(式中、m及びnは2~6の整数であり、Ph1及びPh2は1,4-フェニレン基(Ph2は2位にメチル基が置換されていてもよい)であり、NPhは2,6-ナフチレン基である)
が挙げられる。
 これらの棒状液晶化合物は、BASF社製からLC242等として市販されており、それらを利用することができる。
 これらの棒状液晶化合物は複数種を任意の比率で組み合わせて用いてもよい。
 ディスコティック液晶化合物としては、ベンゼン誘導体、トルキセン誘導体、シクロヘキサン誘導体、アザクラウン系、フェニルアセチレン系マクロサイクル等が挙げられる。ディスコティック液晶化合物は、特開2001-155866号公報にも様々なものが記載されており、これらが好適に用いられる。
 中でもディスコティック液晶化合物としては、下記一般式(1)で表されるトリフェニレン環を有する化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 式中、R~Rはそれぞれ独立して水素、ハロゲン、アルキル基、又は-O-Xで示される基(ここで、Xは、アルキル基、アシル基、アルコキシベンジル基、エポキシ変性アルコキシベンジル基、アクリロイルオキシ変性アルコキシベンジル基、アクリロイルオキシ変性アルキル基である)である。R~Rは、下記一般式(2)で表されるアクリロイルオキシ変性アルコキシベンジル基(mは4~10の整数)であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 位相差の程度は、液晶セルのタイプ、液晶セルに用いられる液晶化合物の性質により適宜設定される。例えば、TNタイプの場合はディスコティック液晶を用いたOプレート、傾斜配向が好ましく用いられる。VAタイプ又はIPSタイプの場合、棒状液晶化合物又はディスコティック液晶化合物を用いたCプレート又はAプレートが好ましく用いられる。これらの位相差層は単層で用いてもよく、複数の位相差層を組み合わせて用いてもよい。
 位相差層の厚みは、必要な位相差に異なるが、位相差フィルムである場合には、好ましくは5~60μm、より好ましくは10~50μm、さらに好ましくは12~40μmである。位相差層が配向液晶化合物層である場合は、配向液晶層1層あたりの厚みで、好ましくは1~10μm、より好ましくは1.5~7μm、さらに好ましくは2~5μmである。
 位相差層は偏光子保護層の上(複合偏光子とは反対面)に設けられていてもよく、偏光子保護層を設けず、直接吸収型偏光子面上に設けられていてもよい。また、位相差層が配向液晶化合物層である場合、位相差層の上(複合偏光子とは反対面)に位相差層保護層を設けてもよい。位相差層保護層は偏光子保護層と同様である。なお、本発明では位相差保護層も含め、総称として偏光子保護層と言うことがある。
(複合偏光子の製造方法)
 本発明の複合偏光子は、例えば、反射型偏光子の前駆体上にポリビニルアルコールの層を有する複合偏光子の前駆体を準備する工程を経た後、得られた複合偏光子の前駆体を少なくとも一方向に延伸する延伸工程、をこの順で含む方法により製造することができる。
 より細分化すると、例えば、複合偏光子は以下の工程により製造することができる。少なくとも(A)~(C)の工程をこの順で含み、さらにその後、(D)及び(E)の工程を含む(但し、(D)、(E)の順序は問わない)ことが好ましい。
(工程A)樹脂a、樹脂bを溶融する工程
(工程B)溶融した樹脂aおよびbを下記構造(B1)または(B2)を有するシートとして押し出す工程
    (B1)溶融した樹脂aとbとが交互に積層された構造
    (B2)溶融した樹脂aとbとが海島状となる構造
(工程C)押し出されたシートの片面にポリビニルアルコールの層を有する積層体を作成する工程
(工程D)ポリビニルアルコールの層を有する積層体に二色性色素を吸着させる工程
(工程E)ポリビニルアルコールの層を有する積層体を少なくとも一方向に延伸する工程
(反射型偏光子用樹脂シートの作成~PVA樹脂の積層)
 工程Aおよび工程Bは反射型偏光子の前駆体となる樹脂aおよび樹脂bを含有する樹脂シートを作成する工程である。樹脂シートは後述する延伸工程により配向されることで、反射型偏光子の機能を発揮する。なお、本明細書では、この前駆体となる樹脂aおよび樹脂bを含有する樹脂シートを単に樹脂シートということがある。
 まず、樹脂aおよび樹脂bを押出機などで別々に、または同一の押出機で融点以上の温度で溶融混練する。押出機は単軸押出機であっても二軸押出機であってもよい。溶融温度は、好ましくは樹脂の融点+5℃以上、融点+80℃以下、さらには樹脂の融点+10℃以上、融点+70℃以下であることが好ましい。
 次に、溶融した樹脂aおよび樹脂bをシート状に押し出す。このとき、溶融した樹脂aと樹脂bとが交互に積層された構造(B1)、または、溶融した樹脂aと樹脂bとが海島状となる構造(B2)となるようにする。
 樹脂aと樹脂bとが交互に積層された構造(B1)とするためには、例えば、樹脂aおよび樹脂bを別々の押出機等で溶融させた後、樹脂aおよび樹脂bを多層のフィードブロックに導き多層化し、これをさらにマルチプライヤー等で層数を増やした後、ハンガーダイ等に導き、冷却ロールや冷却ベルト上に押し出す方法が好ましい。フィードブロックの層数や複数のフィードブロックを用いることで、目的の層数に調整することができる。
 このとき、樹脂aと樹脂bの溶融粘度を近づけることで均一で安定した層構造が作りやすくなる。多層化工程の温度における樹脂aの溶融粘度/樹脂bの溶融粘度の比は、好ましくは1/10~10/1、より好ましくは1/5~5/1、さらに好ましくは1/4~4/1、特に好ましくは1/3~3/1である。溶融粘度は樹脂の分子量や組成で調整することができる。溶融粘度は、JIS K7199(1999)に準拠した装置を用いて測定することができる。
 樹脂aと樹脂bとが海島状となる構造(B2)にするためには、樹脂aおよび樹脂bを別々の押出機等で溶融させた後に溶融した樹脂aおよび溶融した樹脂bを混合する。樹脂aと樹脂bとの混合方法としては、樹脂aを溶融混練している押出機に溶融した樹脂bを加える方法、樹脂bを溶融混練している押出機に溶融した樹脂aを加える方法、溶融した樹脂aおよび溶融した樹脂bをさらに別の(第3の)押出機に導入する方法、溶融した樹脂aと溶融した樹脂bを配管内で合流させ、さらに配管内のミキサーで混合する方法が挙げられる。
 また、別の方法として、樹脂aおよび樹脂bを同一の押出機の別々の投入口から投入しで融点以上の温度で溶融混練してもよい。
 樹脂aと樹脂bがポリエステルである場合には、樹脂aと樹脂bがエステル交換して、明確な海島構造となりにくい場合がある。これを防ぐため、樹脂aの投入口と樹脂bの投入口を離す、樹脂aと樹脂bが溶融混合された状態の時間を短くする、樹脂aや樹脂bの触媒量を調節したり触媒を失活させて、エステル交換が起こりにくくするなどの方法をとることが好ましい。
 溶融混合された樹脂aと樹脂bのブレンド物をハンガーダイ等に導き、冷却ロールまたは冷却ベルト上にシート状に押し出す方法が好ましい。
 樹脂の海島構造において、一般的には、量の少ない樹脂、溶融粘度の高い樹脂が島構造になりやすい。従って、樹脂aおよび樹脂bのどちらが島とするかは、樹脂aと樹脂bの添加比率、樹脂aと樹脂bの溶融粘度で調整することができる。溶融粘度は、樹脂の分子量や組成比で調整することができる。
 ハンガーダイ等からシート状に押し出す際には、押し出される樹脂の速度に対して冷却ロールの回転数や冷却ベルトの搬送速度を調整してドラフトをかけてもよい。ドラフト比(冷却ロールの周速または冷却ベルトの搬送速度/押し出されたシート状物の速度)は、好ましくは0.8~5.0、さらに好ましくは1.0~4.0、特に好ましくは1.1~3.0である。冷却された樹脂シートは冷却ロールまたは冷却ベルトから剥離され、次の工程Cに用いられる。
 また、樹脂シートは、生産性を上げるため、工程Cに供される前にシート製造の流れ方向または幅方向に延伸(拡張処理)されてもよく、特に、工程Eで行われる延伸の主方向に対して直交方向に行われることが好ましい。なお延伸(拡張処理)は両方向であってもよい。延伸(拡張処理)は好ましくは1.05~4倍、より好ましくは1.1~3倍、さらに好ましくは1.2~2.5倍、特に好ましくは1.3~2倍である。延伸は後述する工程Eの延伸と同様の方法で行うことができる。
 樹脂シートには易接着層を設けることが好ましい。易接着層はコートにより設けることが好ましい。易接着層のコートは樹脂シートを一旦巻き取った後、再び巻き出してコートするオフラインで行ってもよく、樹脂シートを巻き取る前に塗工するインラインで行ってもよい。
 また、樹脂シートを巻き取る前にコロナ処理を行ってもよい。
 次に、樹脂シートの片面にポリビニルアルコール系樹脂の層を設ける(工程C)。ポリビニルアルコール系樹脂の層はポリビニルアルコール系樹脂の溶液を樹脂シートに塗布する方法が好ましい。ポリビニルアルコール系樹脂の溶液の溶剤としては、水やアルコール系溶媒やこれらの混合物が好ましい。ポリビニルアルコール系樹脂の溶液には、界面活性剤やレベリング剤などが添加されていてもよい。
 引き続き、ポリビニルアルコール系樹脂の溶液が塗布された樹脂シートは加熱乾燥させられ、樹脂シートの片面にポリビニルアルコールの層を有する複合偏光子の前駆体である積層体(単に樹脂PVA積層体ということがある)となる。なお、塗布、乾燥は樹脂シートを冷却ドラムまたは冷却シートから剥離する前に行っても、剥離した後に行ってもよい。
 このようにして得られた複合偏光子の前駆体は、PVA層に二色性色素が吸着させられ(工程D)、少なくとも一方向に延伸させられる(工程E)。これらの工程にいて、工程Eを先に行い、その後工程Dを行ってもよい。また、工程Dの前に一方向に延伸し(前延伸:工程E1)、引き続き工程Dを行い、その後にさらに延伸(後延伸:工程E2)を行ってもよい。
(染色工程:工程D)
 二色性色素としてはヨウ素やアゾ系染料などの有機系色素が好ましく用いられる。なかでも高い偏光度を有する吸収型偏光子が得られる点でヨウ素が好ましい。吸着方法としては、例えば、二色性色素を含む染色液に複合偏光子の前駆体を浸漬させる方法、複合偏光子の前駆体のPVA面に染色液を塗工する方法等が挙げられ、中でも容易に均質な吸着処理が可能であるという点で、染色液に複合偏光子の前駆体を浸漬させる方法が好ましい。
 ヨウ素を用いる場合、染色液は水100重量部に対してヨウ素は0.1重量部~0.5重量部であることが好ましい。ヨウ素の水に対する溶解度を高めるため、染色液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.02重量部~20重量部、より好ましくは0.1重量部~10重量部である。
 染色液の温度は20℃~50℃が好ましい。染色液に複合偏光子の前駆体を浸漬する時間は、好ましくは5秒~5分、さらには10秒~3分が好ましい。
 (延伸工程:工程E)   
 複合偏光子の前駆体は延伸を行うことで、樹脂シートには反射型偏光子としての機能を、PVA層には吸収型偏光子としての機能を付与することができる。延伸は一軸延伸であっても二軸延伸であってもよい。二軸延伸の場合、逐次二軸延伸であっても同時二軸延伸であってもよいが、十分な反射型偏光子としての機能や吸収型偏光子としての機能を確保するため、一方向により強い延伸とすることが好ましい。なお、このより強い延伸を主延伸という場合がある。
 主延伸方向は、製造の流れ方向(MD方向)であっても、幅方向(TD方向)であってもよく、約45度の斜め方向であってもよい。
 延伸方法としては、ロール延伸、テンター延伸などを延伸方向に合わせて採用することができる。例えば、MD延伸であればロール延伸が好ましく、TD方向や斜め方向の場合はテンター延伸が好ましい。延伸は多段階延伸であってもよい。多段階の場合、最終的な延伸倍率は各段階の延伸倍率の積となる。
 延伸は、複合偏光子の前駆体を延伸浴に浸漬させながら行う水中延伸であっても、空中延伸であってもよく、水中延伸と空中延伸の組合せであってもよい。水中延伸を行う場合はロール延伸が好ましい。
 延伸温度は、樹脂シートの形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。空中延伸の場合、延伸温度は、好ましくは樹脂シートの樹脂a、樹脂bのガラス転移温度(Tg)以上であり、さらに好ましくはガラス転移温度(Tg)+5℃以上、特に好ましくはTg+10℃以上である。また、延伸温度は160℃以下が好ましい。上記範囲とすることで、PVA層の結晶化や分解、樹脂シートの樹脂aや樹脂bの結晶化を抑制しつつ、樹脂シートやPVA層を軟化させて、均一な特性の複合偏光子とすることができる。
 水中延伸の場合、延伸浴の液温は、好ましくは40℃~95℃、より好ましくは50℃~95℃、さらに好ましくは60℃~90℃である。上記範囲とすることで、PVA系樹脂膜の溶解を抑制しながら高倍率に延伸することができる。
 水中延伸の場合、複合偏光子の前駆体をホウ酸水溶液中に浸漬させて延伸することが好ましい。ホウ酸水溶液を延伸浴とすることで、PVA層が延伸浴に溶解しにくくなり、PVA層に剛性を付与して高い偏光度を有する吸収型偏光子とすることができる。
 上記ホウ酸水溶液のホウ酸濃度は、水100重量部に対して1重量部~10重量部であることが好ましい。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂膜の溶解を効果的に抑制することができ、より高特性の偏光膜を作製することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等の水溶液も用いてもよい。   
 工程Dの後に工程Eを行う場合、ホウ酸水溶液にはヨウ化物を添加することが好ましい。ヨウ化物を添加することにより、PVA層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。   
 水中延伸での複合偏光子の前駆体の延伸浴への浸漬時間は、好ましくは10秒~5分、より好ましくは、15秒~3分、さらに好ましくは20秒~2分である。   
 延伸倍率は、主延伸方向で、好ましくは4.0倍以上、さらに好ましくは5倍以上である。延伸倍率は好ましくは20倍以下さらに好ましくは15倍以下である。なお、ここでいう延伸倍率は、前延伸(E1)と後延伸(E2)の合計であり、多段延伸である場合は各段階の合計であり、拡張処理の延伸は含めない。二軸延伸の場合、主延伸方向と直交する方向の延伸倍率は、好ましくは1.02~2倍、さらに好ましくは1.05~1.5倍である。また、主延伸を行う時に、主延伸方向と直交する方向に緩和処理を行ってもよい。緩和処理は、好ましくは0.3~0.99倍、より好ましくは0.4~0.98倍である。緩和処理は、ロール延伸時のネックインも含む。なお、テンターでのTD方向の延伸時には、同時二軸延伸機を用い、MD方向に縮める方法が好ましい。
 PVA層中に十分にヨウ素を吸着させ、薄膜でも高い偏光度を確保するためには、工程Dの後に工程Eを行うことが好ましい。
 前延伸(E1)と後延伸(E2)を行う場合、E1とE2の延伸倍率の比(E1/E2)は、好ましくは1/9~9/1、よりに好ましくは2/8~8/2、さらに好ましくは、3/7~7/3である。薄膜でも高い偏光度を確保するためには、(E1/E2)は1/9~3/7であることが好ましい。なお、E1、E2の延伸倍率は、それぞれの延伸前と延伸後の長さの比である。
 (架橋処理:工程G)   
 複合偏光子の前駆体のPVA層に架橋処理を行うことも好ましい方法である。架橋処理は、不溶化処理とも言われ、PVA層をホウ酸水溶液に接触、架橋させることでPVA層を架橋し、染色処理での染色液や水中延伸での水溶液に対する耐水性を付与する工程である。また、吸収型偏光子に耐水性を付与し、湿度変化による吸収型偏光子の寸法変化率を低減し、水系の接着剤などに対する耐水性も上げることができる。
 架橋処理は複合偏光子の前駆体をホウ酸水溶液に浸漬させる方法、ホウ酸水溶液を複合偏光子の前駆体のPVA層面に塗布する方法などで行うことができる。ホウ酸水溶液の濃度は、水100重量部に対して、1~4重量部であることが好ましい。架橋処理の温度は20~50℃であることが好ましい。
 架橋処理は、染色処理前、延伸処理前、延伸処理後の各部分で行うことができ、複数の部分で行ってもよい。延伸処理で水中延伸を行う場合は、水中延伸前に行うことが好ましい。特に染色処理、架橋処理および水中延伸の順で行うことが好ましい。   
 また、染色処理後に架橋処理を行う場合、さらに、架橋処理に用いるホウ酸水溶液にはヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂膜に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、1重量部~5重量部であることが好ましい。ヨウ化物の具体例は、上述のとおりである。
(洗浄・乾燥)   
 上記の各工程を経て得られた複合偏光子の前駆体の延伸物は、好ましくは洗浄後、乾燥させて反射型偏光子と吸収型偏光子が直接積層された複合偏光子となる。洗浄は、例えば、ヨウ化カリウム水溶液複合偏光子の前駆体の延伸物を浸漬させる、ヨウ化カリウム水溶液をシャワー上に複合偏光子の前駆体の延伸物にかける等の方法が用いられる。乾燥は、複合偏光子の前駆体の延伸物を乾燥オーブンに導いて行われることが好ましい。乾燥オーブンの温度は60℃~120℃であることが好ましい。乾燥時間は好ましくは0.5~10分、より好ましくは1~7分、さらに好ましくは1~5分である。
(熱固定)
 複合偏光子の前駆体の延伸物は、熱収縮率を低くするため、熱固定されることが好ましい。熱固定温度は、好ましくは110~180℃、より好ましくは120~170℃である。熱固定時間は好ましくは5~180秒、より好ましくは10~150秒、さらに好ましくは15~120秒である。上記範囲とすることで、PVAの分解を抑制しながら効果的に熱収縮率を低減させることができる。また、熱固定時または熱固定の後半に、主延伸方向や直交する方向に緩和処理を行ってもよい。緩和処理は好ましくは0.1~5%(延伸後の幅または長さより0.1~5%縮める)であり、より好ましくは0.5~3%である。
 熱固定は延伸処理終了後、どの段階で行ってもよい。乾燥後、乾燥オーブン中で乾燥後、引き続きオーブンの熱固定のゾーンに導いて行ってもよい。ロール延伸の場合、延伸後に引き続き熱固定用のロールに接触させて熱固定を行ってもよい。
(偏光子保護層の積層)
 偏光子保護層が偏光子保護フィルムである場合、別途用意した偏光子保護フィルムを複合偏光子の吸収型偏光子面に貼り合わせて設けることができる。貼り合わせは、ポリビニルアルコール系の水系接着剤、紫外線硬化型接着剤、粘着剤など、従来から偏光子と偏光子保護フィルムを貼り合わせるための接着剤、粘着剤として使用されるものを用いることができる。粘着剤は基材レスの光学用粘着剤シートであることも好ましい。偏光子保護層がコート層である場合、偏光子保護層用の塗料を複合偏光子の吸収型偏光子面に塗工、乾燥させ、必要により架橋させて設けることができる。
(位相差層の積層)
 位相差層が位相差フィルムである場合、別途用意した位相差フィルムを複合偏光子の吸収型偏光子面、または偏光子保護層面に貼り合わせて設けることができる。貼り合わせは、同上の接着剤、粘着剤を用いることができる。
 位相差層が配向液晶化合物層である場合、複合偏光子の吸収型偏光子面、または偏光子保護層面に配向液晶化合物層用の塗料を塗布し、乾燥させ、必要により架橋させて設けることができる。液晶化合物の配向方法としては下記等が挙げられる。
・液晶化合物層用の塗料を塗布、乾燥後、偏光紫外線を照射する方法
・液晶化合物配向層用の塗料を塗布する面(吸収型偏光子面または偏光子保護層面)を予めラビング処理しておく方法
・液晶化合物配向層用の塗料を塗布する面に配向制御層を設け、この配向制御層をラビング処理するか、配向制御層に偏光紫外線を照射する方法
 ラビング処理による配向制御層であれば、配向制御層はポリビニルアルコール及びその誘導体、ポリイミド及びその誘導体、アクリル樹脂、ポリシロキサン誘導体などのポリマーが好ましく用いられる。ポリマーは1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。これらポリマーを含有する塗料を塗工して設けることができる。
 紫外線照射による配向制御層である場合は、配向制御層は光反応性基を有するポリマー及び/又はモノマーの光反応硬化物であることが好ましい。光反応性基は、光照射により液晶配向能を生じる基であることが好ましく、具体的には、光を照射することで生じる分子の配向誘起又は異性化反応、二量化反応、光架橋反応、あるいは光分解反応のような、液晶配向能の起源となる光反応を生じる基であることが好ましい。当該光反応性基の中でも、二量化反応又は光架橋反応を起こすものが、配向性に優れ、スメクチック液晶状態を保持する点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合であると好ましく、C=C結合、C=N結合、N=N結合、C=O結合からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
 C=C結合を有する光反応性基としては、例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基、シンナモイル基などが挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基及び芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、アゾキシベンゼンを基本構造とするものなどが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基、マレイミド基などが挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。置換基の数は、特に制限されないが、例えば、1、2、3、又は4個である。
 中でも、光二量化反応を起こしうる光反応性基が好ましく、シンナモイル基及びカルコン基が、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性及び経時安定性に優れる光配向層が得られやすいため好ましい。さらに、光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。主鎖の構造としては、ポリイミド、ポリアミド、(メタ)アクリル、ポリエステル等が挙げられる。
 これらの配向制御層の厚さは、好ましくは0.01~10μm、さらに好ましくは0.05~5μm、特に好ましくは0.1μm~1μmである。
 配向液晶化合物層用や配向制御層用の塗料は、溶剤、架橋剤、レベリング剤等を含んでもよく、これらの塗料が光重合性化合物を含有する場合は、重合開始剤、増感剤、重合禁止剤、重合性非液晶化合物、等を含んでもよい。
 複合偏光子に位相差層を設ける方法として、離型性基材に上記の方法で配向液晶化合物層を設け、これを転写する方法も好ましい方法である。離型性基材としては、ポリエステル(PET)フィルム、TACフィルム、COPフィルム、ポリプロピレン(PP)フィルムなど、一般に離型性フィルムとして用いられるものを用いることができる。
 また、離型性フィルムに位相差層保護層を設け、さらにこの上に位相差層を設けて、位相差層と位相差層保護層を同時に転写してもよい。転写では、上記した接着剤、粘着剤が好ましく用いられる
(光拡散層)
 複合偏光子の反射型偏光子面(反射型偏光子の吸収型偏光子とは反対側の面)には、光拡散層が設けられていてもよい。光拡散層は、例えば、粒子を含有する樹脂コート、表面の凹凸加工の層である。
 粒子を含有する樹脂コートで用いられる粒子は樹脂粒子や無機粒子が挙げられる。樹脂粒子としては、アクリル系、ポリスチレン系、シリコーン系、メラミン系、ベンゾグアナミン系などが挙げられ、非架橋粒子であっても架橋粒子であってもよい。無機粒子としては、シリカ、チタニア、ジルコニア、アルミナ、ガラスなどが挙げられる。粒子には分散性やバインダー樹脂との密着性を上げるために表面処理が行われていてもよい。
 粒子の平均粒径は、好ましくは0.1~10μm、さらに好ましくは0.5~5μmである。なお、平均粒径は、粒子を電子顕微鏡で観察した画像から、ランダムに100個の粒子の直径を測定した数平均値である。
 バインダー樹脂としては、易接着層の樹脂として挙げたものを好ましく用いることができる。また、架橋剤も易接着層の樹脂として挙げたものを好ましく用いることができる。粒子の添加量は光拡散層中で、好ましくは1~50質量%、より好ましくは3~30質量%、さらに好ましくは5~20質量%となるようにする。
 表面の凹凸加工は、プリズム加工、レンズ加工といわれるものであることが好ましい。具体的には、プリズム加工としては、三角柱、台形状四角柱、五角柱のように一方向にのみ光を拡散させる形状、三角錐、四角錐、五角錐、六角錐、三角錐台、四角錐台、五角錐台、六角錐台などの多方向に光を拡散させる形状が挙げられる。レンズ加工としても、半円柱形やかまぼこ形のような一方向にのみ光を拡散させる形状、半球状や半楕円球状のような多方向に光を拡散させる形状が挙げられる。
 これらの形状は、例えば、アクリルモノマーやオリゴマーを含有する光硬化性塗料を複合偏光子の反射型偏光子面に塗布し、所定形状が刻まれたロールに塗布面を押し当てながら、紫外線等を照射して形成することができる。また、所定形状が刻まれたロールに光硬化性塗料を塗布し、ロールの塗布面を複合偏光子の反射型偏光子面に押し当てながら、紫外線等を照射しもよい。
 光拡散層を設ける場合、複合偏光子の反射型偏光子面はコロナ処理等が行われていてもよい。また、易接着層が設けられていてもよい。易接着層は吸収型偏光子面に設けられる易接着層と同様な樹脂、架橋剤が用いられる。但し、反射型偏光子面の易接着層には水溶性樹脂を用いる必要はない。
 また、複合偏光子の反射型偏光子面に加熱した金型を押し付け、エンボス加工を行って凹凸面を形成してもよい。
(複合偏光子の光学特性)
 本発明の複合偏光子は、反射型偏光子面から光を照射して吸収型偏光子面から観察した場合に、偏光率が97%以上であることが好ましく、より好ましくは99%以上、さらに好ましくは99.5%以上、特に好ましくは99.7%以上である。上記以上とすることで、液晶表示装置として高いコントラストの画像を表示することができる。測定方法の詳細は実施例に記載した。なお複合偏光子が位相差層を含む場合は、位相差層を設ける前に測定した値である。偏光率は、染色処理や架橋処理の条件や延伸条件で調整することができる。
 本発明の複合偏光子は、複合偏光子の吸収型偏光子の透過軸と平行な振動方向を有する偏光を反射型偏光子面から光を照射して吸収型偏光子面から観察した場合に、透過率が70%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは85%以上である。透過率は高いほど好ましいが、現実的な値としての上限は98%程度である。上記以上とすることで輝度の高い液晶表示装置とすることができる。測定方法の詳細は実施例に記載した。透過率は、樹脂aおよび樹脂bの屈折率(組成)や延伸条件で調整することができる。
 本発明の複合偏光子は、反射型偏光子面の反射率が好ましくは5~50%であり、より好ましくは10~47%、さらに好ましくは20~45%である。測定方法の詳細は実施例に記載した。
 本発明の複合偏光子は、反射型偏光子面の反射光の偏光率が好ましくは70%であり、より好ましくは80%以上であり、さらに好ましくは85%以上であり、特に好ましくは90%以上である。反射光の偏光率の上限は現実的には99.9%程度である。測定方法の詳細は実施例に記載した。反射率および反射光の偏光率は樹脂aおよび樹脂bの屈折率(組成)や延伸条件で調整することができる。
 本発明の複合偏光子の吸収軸の幅方向での差の最大値は、好ましくは5度以下であり、より好ましくは4度以下であり、さらに好ましくは3度以下であり、特に好ましくは2度以下である。5度を超えると、液晶表示装置とした場合に、画面内で輝度にムラがでる場合があり、特に黒色を表示した場合に部分的に光が漏れる場合がある。複合偏光子の吸収軸の幅方向での差は、延伸条件で調節することができる。特にMD方向での延伸で吸収軸の幅方向での差が出やすく、延伸速度や延伸温度、熱工程温度などで調整することができ、延伸時に幅方向で温度をつけることも好ましい。また、同時二軸のテンターを用い、TD方向に延伸する際にMD方向に緩和(縮める)ことも好ましい。MD方向の延伸ではネックインが急激に起こると差が出やすい。延伸ロール間距離を長くし、延伸時の温度、延伸倍率などで調整することができる。
 また、複合偏光子を製造した後、吸収軸の傾きが大きい端部をスリットにより切除することで、上記範囲内のスリットロールとすることも好ましい。
(複合偏光子と液晶セルとの積層)
 本発明の複合偏光子は液晶セルの光源側偏光板として用いられることが好ましい。複合偏光子の吸収型偏光子面、または、偏光子保護層や位相差層などが設けられている場合は偏光子保護層や位相差層等の面と、液晶セルの光源側面を貼り合わせる。貼り合わせは、接着剤、粘着剤などで貼り合わせることができ、粘着剤で貼り合わせることが好ましい形態である。接着剤や粘着剤は、複合偏光子の貼り合わせ面に塗工等により設けてもよく、粘着剤であれば、基材レスの光学用粘着剤シートを用いることも好ましい。
 貼り合わせは、必要幅にスリットしてロール状に巻き取られた複合偏光子を巻き出して、液晶セルに貼り合わせる直前、または貼り合わせながら必要長さにカットする方法、予め、複合偏光子をカットして必要な幅、長さとした枚葉の複合偏光子を液晶セルと貼り合わせる方法などが挙げられる。
(液晶セルの視認側偏光子)
 液晶セルの視認側にも偏光子(偏光板)が設けられ液晶表示パネルとなる。視認側に設けられる偏光板としても薄型であることが好ましい。このような薄型の偏光板としては、例えば、離型性樹脂基材にPVAを塗工し、染色、離型性樹脂基材ごと延伸して得られたPVA偏光子を偏光子保護フィルムに転写して得られた、片面のみ偏光子保護フィルムを有する偏光板、さらにこの偏光板の他面(偏光子の偏光子保護フィルムとは反対面)に位相差層を設けた偏光板が挙げられる。
 上記の偏光子は、本発明の複合偏光子の製造方法で、前駆体となる樹脂aおよび樹脂bを含有する樹脂シートの代わりにポリエステル、ポリプロピレン、ポリウレタンなどの樹脂からなるシートを用いて、同様の製造方法で製造することができる。
 視認側の偏光板に用いられる偏光子保護フィルムとしては、先に説明した偏光子保護フィルムが例示されるほか、面内レタデーションが3000~30000nmのポリエチレンテレフタレートフィルムなどが挙げられる。視認側の偏光板に用いられる位相差層としては、先に説明した位相差層が例示される。
 また、先に述べた位相差フィルムに離型性樹脂基材ごと延伸して得られたPVA偏光子を転写したものも好ましく用いられる。この場合、PVA偏光子の位相差フィルムとは反対面には偏光子保護層を設けてもよく、特に、偏光子保護コート層を設けることが好ましい。
 さらに、離型性樹脂基材ごと延伸して得られたPVA偏光子を液晶セルの視認側に転写して、液晶セルの視認側に直接偏光子を貼り合わせたものも好ましい。この場合、まず、液晶セルの視認側に配向液晶化合物層を転写により設け、さらにその上に偏光子を転写してもよく、予め離型性樹脂基材ごと延伸して得られたPVA偏光子の偏光子面に配向液晶化合物層を転写または塗工により設け、この位相差層と偏光子の積層体を液晶セルに転写してもよい。
 本発明の複合偏光子は、簡略なプロセスで製造することができ、薄型である。テレビやデジタルサイネージなどだけでなく、スマートフォンやタブレット末端、モバイル用PC、車載用ディスプレイ、カメラや電子機器類のモニターなど、特に薄型が要求される用途に好適に用いることができる。
(1)固有粘度
 JIS K 7367-5に記載の「プラスチック-毛細管型粘度計を用いたポリマー希釈溶液の粘度の求め方-」により、フェノール/1,1,2,2-テトラクロロエタン(60/40;質量部)の混合溶媒を用いて、30℃で測定した。
(2)偏光子厚み
 複合偏光子をエポキシ樹脂で包埋後、断面のサンプル薄片を切り出し光学顕微鏡で観察して測定した。
(3)透過光の偏光率
 透過光の偏光率は、反射型偏光子-吸収型偏光子を透過して来た光の偏光の程度を示し、透過光中の吸収型偏光子の透過軸方向に振動する成分の割合を簡易的に示す値である。実施例で得られた複合偏光子の吸収型偏光子面側に市販の吸収型偏光板を重ね合わせ、端部をセロハンテープで固定した。サンプルは複合偏光子の吸収型偏光子の吸収軸と市販の偏光板の吸収軸が平行となるもの(タイプP)と直交となるもの(タイプV)の二種類を用意した。市販の吸収型偏光板は、単体透過率が42.3±1.0%、直交透過率が0.08%以下、偏光度が99.8%以上のものを用いた。複合偏光子は位相差層を設ける前のものを測定した。
 それぞれのサンプルに対して、自記分光光度計(UV-3150:島津製作所社製)に積分球付属装置(ISR-3100:島津製作所社製)をセットして、スリット幅12nmで波長300~800nmの範囲を高速でスキャンして分光スペクトルの測定を行い、550nmにおける透過率を測定した。サンプルは反射型偏光子が光源側で、複合偏光子の吸収軸が水平方向となるようにセットした。タイプPのサンプルの透過率をTp、タイプVのサンプルの透過率をTvとし、下記式(1)の値を透過光の偏光率とした。
     (Tp-Tv)/(Tp+Tv)×100     式(1)
(4)吸収型偏光子の透過軸と平行な偏光成分の透過率
 同上の分光光度計を用い、積分球のサンプル光源、リファレンス光源の両方に市販の偏光板を設置し、作製した複合偏光子から切り出したサンプル片を偏光板の透過軸と複合偏光子の吸収型偏光子の透過軸が平行となるように設置し測定した。550nmにおける透過率を測定した。なお、偏光板を通過した光が、複合偏光子の反射型偏光子面側から入射するように配置した。
(5)複合偏光子の反射型偏光子面の反射率
 同上の分光光度計に積分球を装着し、標準白色板(SpereOptics社製白色標準板「ZRS-99-010-W」)の反射率を100%として校正し、複合偏光子の反射型偏光子面の分光反射率を測定した。550nmにおける反射率を測定した。尚、複合偏光子の吸収型偏光子面には無反射の黒台紙をセロハンテープで固定した。
(6)反射型偏光子面の反射光の偏光率
 反射光の偏光率は、反射型偏光子で反射された光の偏光の程度を示し、反射光中の反射型偏光子の反射軸方向(透過軸方向とは直交する方向)に振動する成分の割合を簡易的に示す値である。実施例で得られた複合偏光子の反射型偏光子面側に市販の吸収型偏光板を重ね合わせ、端部をセロハンテープで固定した。サンプルは複合偏光子の吸収型偏光子の吸収軸(反射型偏光子の反射軸)と市販の偏光板の吸収軸が平行となるもの(タイプP)と直交となるもの(タイプV)の二種類を用意した。それぞれのサンプルに対して(5)と同様の方法で反射率を測定した。タイプPのサンプルの反射率をRp、タイプVのサンプルの反射率をRvとし、下記式(2)の値を透過光の偏光率とした。
     (Rv-Rp)/(Rv+Rp)×100     式(2)
(7)複合偏光子の吸収軸の幅方向での差
 まず、複合偏光子のTD方向での、両端部(各端部から内側に5cmの地点)、中央部、及び中央部と両端部の中間にある中間部の5カ所で複合偏光子の吸収軸方向を決定した。なお、吸収軸方向は、LED光源のトレース台に複合偏光子の反射型偏光子面を下にして置き、さらにその上に吸収軸方向が既知の市販の偏光板を置いて、市販の偏光板を回転させて消光する方向を探した。消光する方向での、市販の偏光板の吸収軸方向と直交する方向を複合偏光子の吸収型偏光子の吸収軸とした。5カ所で測定された複合偏光子の吸収軸方向で最も角度差が生じる2点の吸収軸方向の角度の差を複合偏光子の吸収軸の幅方向での差とした。
(8)海島構造のアスペクト比
 複合偏光子の小片をエポキシ樹脂で包埋後、反射型偏光子部分をフィルムの平面と平行な断面のサンプル薄片を切り出し、ルテニウムで染色した後、透過型電子顕微鏡で観察した。サンプル薄片の中央部付近から無作為に50個の島相を選び出し、それぞれで長軸方向で最大となる箇所の長さ(長軸)および長軸方向と直交する方向で最大となる箇所の長さ(短軸)の値を測定し、長軸/短軸の値を求めた。得られた50個の値の平均値を海島構造のアスペクト比とした。
(9)ポリエステルの組成比
BRUKER社製NMR装置AVANCE-500を用いて、H-NMR分析を行ってその積分比より各組成のモル%比を決定した。但し、グリコール成分が二量化したと思われるエーテル成分は、同一グリコールのエーテルである場合は元のグリコールとして計算し、異なるグリコールのエーテルである場合は無視した。
(樹脂シート1の作成)
 表1のポリエステルa1およびポリエステルb1をそれぞれ別の押出機で295℃で溶融し、溶融樹脂をフィードブロックで積層し、さらに4Xのマルチプライヤーを4回通過させてダイに導き、多層シートとして冷却ロール上に押し出し、樹脂シート1を得た。多層シートの理論積層数は512層である。
(樹脂シート2の作成)
 表1のポリエステルa2およびポリエステルb2を別々の供給口から1:1の質量比で押出機に投入し、295℃で溶融後、ダイに導き、ポリエステルb2を海成分、ポリエステルa2を島成分としたシートとして冷却ロール上に押し出し、樹脂シート2を得た。
(樹脂シート3の作成)
 表1のポリエステルa3およびポリエステルb3を用い、280℃で溶融した以外は樹脂シート1と同様にして、樹脂シート3を得た。
(樹脂シート4の作成)
 表1のポリエステルa4およびポリエステルb4を用いた以外は樹脂シート3と同様にして、樹脂シート4を得た。
Figure JPOXMLDOC01-appb-T000003
(易接着層用塗料の作成)
(共重合ポリエステル水分散体の調製)
 攪拌機、温度計及び還流装置を備えた反応器に、共重合ポリエステル樹脂(テレフタル酸成分/イソフタル酸成分/5-ナトリウムスルホイソフタル酸性分//エチレングリコール成分/ジエチレングリコール成分=50/45/5//30/70(モル比))30質量部、及びエチレングリコールn-ブチルエーテル15質量部を入れ、110℃で加熱しながら攪拌することにより樹脂を溶解した。樹脂が完全に溶解した後、共重合ポリエステル溶液を攪拌しつつ、水55質量部を徐々に添加した。添加終了後、混合液を攪拌しつつ室温まで冷却して、固形分30質量%の乳白色の共重合ポリエステル水分散体を得た。
(ポリビニルアルコール水溶液の調製)
 攪拌機及び温度計を備えた容器に、水90質量部を入れ、攪拌しながらポリビニルアルコール樹脂(クラレ製、重合度500及びケン化度74%)10質量部を徐々に添加した。添加終了後、混合液を攪拌しながら、95℃まで加熱し、樹脂を溶解させた。樹脂が溶解した後、混合液を攪拌しながら室温まで冷却して、固形分10質量%のポリビニルアルコール水溶液を得た。
(ブロックポリイソシアネート架橋剤の作成)
 攪拌機、温度計及び還流冷却管を備えたフラスコに、ヘキサメチレンジイソシアネートを原料としたイソシアヌレート構造を有するポリイソシアネート化合物(旭化成ケミカルズ製、デュラネートTPA)100質量部、プロピレングリコールモノメチルエーテルアセテート55質量部、及びポリエチレングリコールモノメチルエーテル(平均分子量750)30質量部を仕込み、窒素雰囲気下、70℃で4時間保持した。その後、反応液の温度を50℃に下げ、マロン酸ジエチル42部、アセト酢酸エチル34部、28%ナトリウムメチラート溶液0.8部の混合物を徐々に添加した。添加終了後、60℃で6時間反応を続けた。その後1-ブタノール14部を添加し、充分撹拌した。を滴下した。反応液の赤外スペクトルを測定し、イソシアネート基の吸収が消失したことを確認し、固形分75質量%のブロックポリイソシアネート溶液を得た。
(易接着層用塗料1の調製)
 下記の原料を混合して塗料を作成した。
水                               40.61質量%
イソプロパノール                        30.00質量%
共重合ポリエステル水分散体                    11.67質量%
ポリビニルアルコール水溶液                   15.00質量%
ブロックイソシアネート溶液                     0.67質量%
触媒(有機スズ系化合物 固形分濃度14質量%)        0.3質量%
界面活性剤(シリコン系、固形分濃度10質量%)        0.5質量%
(易接着層用塗料2の調整)
 ブロックイソシアネート系架橋剤を用いない以外は易接着用塗料1と同様にして作成した。
実施例1
(易接着層の塗工)
 樹脂シート1の片面に上記易接着層用塗料1を塗布後、100℃で乾燥して、乾燥後の塗布量0.1g/mの易接着層を設けた。
(樹脂PVA積層体の作成)
 上記樹脂シートの易接着層面に、下記ポリビニルアルコールとアセトアセチル変性PVAからなる15質量%の水溶液を60℃で塗布および乾燥して、厚み10μmのPVA系樹脂層を形成し、複合偏光子の前駆体を作製した。
・ポリビニルアルコール(重合度4200、ケン化度99モル%)90重量部
・アセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)10重量部
(複合偏光子の作成)
 得られた複合偏光子の前駆体を、130℃のオーブン内で周速の異なるロール間でMD方向に1.8倍に延伸した。さらに、延伸した複合偏光子の前駆体を、液温30℃の4質量%ホウ酸水溶液に30秒間浸漬させ、不溶化処理を行った。   
 引き続き、複合偏光子の前駆体を、ヨウ素0.4質量%、ヨウ化カリウム3.0質量%の水溶液(液温30℃)に60秒間浸漬させ、染色処理を行った。さらに、染色処理された複合偏光子の前駆体を、ヨウ化カリウム3質量%、ホウ酸3質量%の水溶液(液温30℃)に30秒間浸漬させ、架橋処理を行った。   
 その後、架橋処理後の複合偏光子の前駆体を、130℃のオーブン内で、周速の異なるロール間でMD方向に総延伸倍率が5.5倍となるように一軸延伸を行った。   
 延伸後の複合偏光子の前駆体を4質量%ヨウ化カリウム水溶液(液温30℃)に浸漬させ、洗浄処理した。さらに、樹脂PVA積層体を85℃のオーブンで乾燥させ、引き続き150℃で20秒間熱固定を行った後、端部をスリットして、幅700mmの複合偏光子1のロールを得た。得られた複合偏光子1は反射型偏光子の厚みが80μm、吸収型偏光子の厚みが5μmであった。
実施例2
 樹脂シート2を用いた以外は実施例1と同様にし、複合偏光子2を得た。海島構造のアスペクト比は6.3であった。
実施例3
 樹脂シート3を用いたこと、易接着層の塗工で易接着層用塗料2を用い、乾燥温度を60℃にしたこと、染色処理前の延伸でのオーブンの温度を120℃にしたこと、染色処理後の延伸を、液温70℃の3.0質量%ホウ酸水溶液に浸漬させて水中延伸としたこと、以外は実施例1と同様にし、複合偏光子3を得た。
実施例4
 樹脂シート4を用いた以外は実施例3と同様にし、複合偏光子4を得た。
 複合偏光子1~4の特性を表2に示す。
Figure JPOXMLDOC01-appb-T000004
実施例5:複合偏光子を用いた液晶パネル
(位相差層が積層された複合偏光子の作成)
(配向制御層用塗布液)
・下記変性ポリビニルアルコール         10質量部
・水                      371質量部
・メタノール                  119質量部
・グルタルアルデヒド              0.5質量部
Figure JPOXMLDOC01-appb-C000005
(位相差層用塗料A)
下記の円盤状液晶性化合物                 18質量部
エチレンオキサイド変性トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製)          2.0質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 0.6質量部
増感剤(カヤキュアーDETX、日本化薬(株)製)    0.2質量部
下記フッ素系ポリマー                  0.1質量部
メチルエチルケトン                    39質量部
円盤状液晶性化合物
Figure JPOXMLDOC01-appb-C000006
フッ素系ポリマー:2-パーフルオロヘキシルエチルアクリレート/N,N-ジメチルアクリルアミド(40/60モル比)共重合体
(位相差層転写用積層体の作成)
 二軸延伸ポリエステルフィルム(東洋紡製コスモシャイン(TM)A4100、厚み38μm)の非易接着層面にコロナ処理を行い、このコロナ処理面に配向制御層用組成物塗料を塗布、100℃で乾燥させ、厚さ0.5μmの配向制御層を設けた。さらに配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。引き続き、位相差層用組塗料Aを塗布後、125℃で3分間加熱して溶剤を蒸発させると共に、ディスコティック液晶性化合物を配向させた。引き続き、80℃の環境下で紫外線を30秒間照射し、位相差層転写用積層体を得た。
 複合偏光子1~4の吸収型偏光子面に紫外線硬化型の接着剤を塗布し、位相差層転写用積層体の位相差層面を貼り合わせ、位相差層転写用積層体側から紫外線を照射して貼り合わせ、位相差層が積層された複合偏光子を得た。その後、二軸延伸ポリエステルフィルムを剥離し、複合偏光子5~8を得た。貼り合わせは、複合偏光子の透過軸方向と位相差層転写用積層体側のラビング方向が平行になるようにした。
(液晶表示装置への組み込み)
(PVA偏光子転写用積層体の作成)
 樹脂シート3の代わりに、IV=0.63の未延伸ポリエチレンテレフタレートのシートを用い、易接着層を設けずにPVAを塗布した以外は実施例3と同様にして、PVA偏光子転写用の積層体を得た。
(視認側用の転写用低反射層-偏光子積層体の作成)
  二軸延伸ポリエステルフィルム(東洋紡製コスモシャイン(TM)A4100、厚み38μm)の非易接着層面にコロナ処理を行い、このコロナ処理面に下記低屈折層用組成物を塗布し、オーブン中で90℃で乾燥させて溶剤を蒸発させた後に紫外線を照射し、厚さ0.5μmの低屈折率層を形成した。さらに低屈折層の上に下記ハードコート層用組成物を塗布し、オーブン中で90℃で乾燥させて溶剤を蒸発させた後に紫外線を照射し、厚み5μmのハードコート層を形成した。引き続き、ハードコート層面にアクリル系の紫外線硬化型接着剤を塗布し、PVA偏光子転写用積層体の偏光子面と重ね合わせ、紫外線を照射して接着剤を硬化させ、PVA偏光子転写用積層体のPET基材を剥離して、転写用低反射層-偏光子積層体(LRP)を得た。
(低屈折層用組成物塗料)
・ペルトロン(登録商標) A-2508LR(ペルノックス株式会社製 中空シリカ含有タイプ 屈折率1.33(アッベ))  100質量部
イルガキュア184                0.13質量部
(ハードコート層用塗料)
・ペンタエリスリトールテトラアクリレート 95質量部
・二重結合含有アクリル樹脂 5質量部
(2-ヒドロキシエチルアクリレート/ブチルアクリレート(17/83モル比)共重合体にアクリル酸クロライドを反応させ二重結合を導入したもの)
・イルガキュア819 4質量部
・メチルエチルケトン/シクロヘキサノン(95/5質量比) 100質量部
(視認側用の偏光子保護フィルム-偏光子積層体の作成)
 厚さ80μmの高レタデーションPETフィルム(東洋紡(株)製 コスモシャイン(R) SRF)に紫外線硬化型接着剤を用いてPVA偏光子転写用積層体のPVA偏光子面を貼り合わせた後、PVA偏光子転写用積層体のPET基材を剥離して、偏光子保護フィルム-偏光子積層体(PFP)を得た。
(視認側用の転写用低反射層-偏光子-位相差層積層体の作成) 
 転写用低反射層-偏光子積層体(LRP、PVA偏光子転写用積層体の基材PETは剥離済み)の偏光子面に配向制御層用塗料組成物を塗布、100℃で乾燥させ、厚さ0.5μmの配向制御層を設けた。配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビング方向は偏光子の吸収軸方向と直交する方向とした。引き続き、ラビング処理した面に位相差層用塗料Bを塗布後、110℃で3分間加熱して溶剤を蒸発させると共に、棒状液晶性化合物を配向させた。さらに、110℃の環境下で紫外線を30秒間照射し、転写用の低反射層-偏光子-位相差層積層体(LRPR)を得た。
(位相差層用塗料B)
  LC242(BASF社製)       95質量部
  トリメチロールプロパントリアクリレート  5質量部
  イルガキュア379            3質量部
  界面活性剤              0.1質量部
  メチルエチルケトン          250質量部
 市販のIPSタイプとVAタイプの液晶テレビから液晶パネル、反射型偏光板(輝度向上フィルム)を取り出し、液晶パネルから光源側、視認側の偏光板を剥がし、液晶セルの状態にした。市販の基材レスの光学用粘着剤を用いて、得られた液晶セルの光源側に上記で得られた複合偏光子の吸収型偏光子面または位相差層面を、液晶セルの視認側面には積層体LRP、PFP、LRPRを貼り合わせ、液晶パネルを作成した。各液晶パネルの構成を表3に示す。組み合わせは、表3のとおりであり、吸収型偏光子の吸収軸方向は液晶パネルに貼り合わされていた元の偏光子と同じ方向にした。作成した液晶パネルを元の液晶テレビに組み付け(反射型偏光板は取り外したまま)、画像を観察した。
Figure JPOXMLDOC01-appb-T000007
 実施例の複合偏光子を用いた液晶テレビは、いずれも元の液晶テレビと同等の輝度を有しており、鮮明な画像が観察された。また、画像内の輝度や色のムラは観察されなかった。さらに、元の液晶テレビの偏光板は、PVA系の偏光子(厚み20μm)の両面に厚さ60μmのTAC系偏光子保護フィルムを設けたものであり、実施例1~8の複合偏光子は光源側の偏光子と反射型偏光板と合わせて100μm以上の薄型化が可能であり、上記で述べた視認側偏光板と合わせた場合、150~200μm以上の薄型化が可能となった。

Claims (16)

  1.  反射型偏光子とポリビニルアルコールを含む吸収型偏光子を有する複合偏光子の製造方法であって、反射型偏光子の前駆体上にポリビニルアルコールの層を有する複合偏光子の前駆体を準備する工程、および、該複合偏光子の前駆体を少なくとも一方向に延伸する工程、をこの順で含む複合偏光子の製造方法。
  2.  複合偏光子の前駆体を準備する工程が、少なくとも下記(A)~(C)の工程をこの順で含むことを特徴とする請求項1記載の複合偏光子の製造方法。
    (A)樹脂aおよび樹脂bを溶融する工程
    (B)溶融した樹脂aおよび樹脂bを下記構造(B1)または(B2)を有するシートとして押し出す工程
        (B1)溶融した樹脂aと樹脂bとが交互に積層された構造
        (B2)溶融した樹脂aと樹脂bとが海島状となる構造
    (C)押し出されたシートの片面にポリビニルアルコールの層を有する積層体を作成する工程
  3. 複合偏光子の前駆体を準備した後、(D)および(E)の工程を含むことを特徴とする、請求項1または2に記載の複合偏光子の製造方法。
    (D)複合偏光子の前駆体のポリビニルアルコールの層に二色性色素を吸着させる染色工程
    (E)複合偏光子の前駆体を少なくとも一方向に延伸する工程
  4. (C)工程が、下記(C1)及び(C2)工程を含む、請求項2または3に記載の複合偏光子の製造方法。
    (C1)押し出されたシートの少なくとも片面に易接着層を設ける工程
    (C2)易接着層の上にポリビニルアルコールの層を設ける工程
  5.  易接着層が、水不溶性樹脂および水溶性樹脂を含む請求項4に記載の複合偏光子の製造方法。
  6.  樹脂a又は樹脂bの少なくとも一方がポリエステルである請求項2~5のいずれかに記載の複合偏光子の製造方法。
  7.  請求項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面に位相差層を設ける、位相差層積層複合偏光子の製造方法。
  8.  請求項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面、または、請求項7によって得られた位相差層積層複合偏光子の位相差層面に、偏光子保護層を設ける、保護層付き複合偏光子の製造方法。
  9.  液晶表示セルの一方の面と、
    請求項1~6のいずれかに記載の製造方法によって得られた複合偏光子の吸収型偏光子面、請求項7に記載の製造方法によって得られた位相差層積層複合偏光子の位相差層面、または請求項8に記載の製造方法によって得られた保護層付き複合偏光子の偏光子保護層面、のいずれかと液晶セルを貼り合わせることを含む、液晶表示パネルの製造方法。
  10.  反射型偏光子と吸収型偏光子が、接着剤層および粘着剤のいずれをも介することなく、積層された複合偏光子であって、
     反射型偏光子が、樹脂aからなる層および樹脂bからなる層の交互積層フィルム、又は、樹脂aおよび樹脂bからなる海島構造フィルムであり、
     吸収型偏光子が、ポリビニルアルコールと二色性色素からなり、
     反射型偏光子の配向方向と吸収型偏光子の配向方向が同一である、
    複合偏光子。
  11.  反射型偏光子と吸収型偏光子の間に易接着層を有する請求項10に記載の複合偏光子。
  12.  易接着層が水不溶性樹脂および水溶性樹脂を含む請求項11に記載の複合偏光子。
  13.  樹脂a又は樹脂bの少なくとも一方がポリエステルである請求項10~12のいずれかに記載の複合偏光子。
  14.  請求項10~13のいずれかに記載の複合偏光子の吸収型偏光子面に位相差層を有する位相差層積層複合偏光子。
  15.  請求項10~13のいずれかに記載の複合偏光子の吸収型偏光子面、または、請求項14に記載の位相差層積層複合偏光子の位相差層面に、偏光子保護層を有する保護層付き複合偏光子。
  16.  液晶表示セルの一方の面と、
    請求項10~13のいずれかに記載の複合偏光子の吸収型偏光子面、請求項14に記載の位相差層積層複合偏光子の位相差層面、請求項15に記載の保護層付き複合偏光子の偏光子保護層面、のいずれかと液晶セルを貼り合わせた液晶表示パネル。
PCT/JP2020/032225 2019-09-03 2020-08-26 複合偏光子及びその製造方法 WO2021044927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543718A JPWO2021044927A1 (ja) 2019-09-03 2020-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160551 2019-09-03
JP2019160551 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021044927A1 true WO2021044927A1 (ja) 2021-03-11

Family

ID=74852896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032225 WO2021044927A1 (ja) 2019-09-03 2020-08-26 複合偏光子及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2021044927A1 (ja)
WO (1) WO2021044927A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156624A (ja) * 2001-11-22 2003-05-30 Fuji Photo Film Co Ltd 偏光板および液晶表示装置
US20080083998A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Multiple draw gap length orientation process
JP2016045498A (ja) * 2014-08-26 2016-04-04 東友ファインケム株式会社 光学異方性フィルムの製造方法
JP2017067964A (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 光学シートとその製造方法、液晶表示装置
JP2018141984A (ja) * 2012-08-24 2018-09-13 三菱ケミカル株式会社 光学積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003156624A (ja) * 2001-11-22 2003-05-30 Fuji Photo Film Co Ltd 偏光板および液晶表示装置
US20080083998A1 (en) * 2006-10-06 2008-04-10 3M Innovative Properties Company Multiple draw gap length orientation process
JP2018141984A (ja) * 2012-08-24 2018-09-13 三菱ケミカル株式会社 光学積層体
JP2016045498A (ja) * 2014-08-26 2016-04-04 東友ファインケム株式会社 光学異方性フィルムの製造方法
JP2017067964A (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 光学シートとその製造方法、液晶表示装置

Also Published As

Publication number Publication date
JPWO2021044927A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP5524501B2 (ja) 偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
JP2009109993A (ja) 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2018022060A (ja) 長尺偏光フィルム及び液晶表示装置、エレクトレットルミネッセンス表示装置
JP2009048179A (ja) 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
JP2014010291A (ja) 円偏光板および表示装置
JP2009109995A (ja) 偏光板およびそれを用いた液晶表示装置
JP2009157348A (ja) 偏光板およびそれを用いた液晶表示装置
KR20070006863A (ko) 광학 필름 및 액정 표시 장치
JP2004226752A (ja) 光学積層体の製造方法、当該積層体からなる楕円偏光板、円偏光板および液晶表示装置
JP4530256B2 (ja) 位相差フィルム、その製造方法、およびこれを用いた光学フィルム
JP2021170117A (ja) 偏光子、偏光子の製造方法および該偏光子を含む光学積層体
JP4070510B2 (ja) 複屈折フィルム、光学補償層一体型偏光板、画像表示装置、並びに複屈折フィルムの製造法
JP2009157343A (ja) 偏光板およびそれを用いた液晶表示装置
JP7259453B2 (ja) 可撓性画像表示装置、及びそれに用いる円偏光板の製造方法
JP7331400B2 (ja) 可撓性画像表示装置、及びそれに用いる円偏光板の製造方法
KR20200110182A (ko) 화상 표시 장치 및 상기 화상 표시 장치에 사용되는 원편광판
WO2021044927A1 (ja) 複合偏光子及びその製造方法
JP2004309771A (ja) 光学積層体の製造方法、当該積層体からなる楕円偏光板、円偏光板および液晶表示装置
JP2010049063A (ja) 偏光板
JP2010072091A (ja) 偏光板
WO2022244301A1 (ja) 円偏光板およびそれを用いた画像表示装置
WO2023176624A1 (ja) レンズ部、表示体および表示方法
WO2023176625A1 (ja) レンズ部、表示体および表示方法
WO2023176693A1 (ja) 表示システム、表示方法、表示体および表示体の製造方法
WO2023176367A1 (ja) レンズ部、積層体、表示体、表示体の製造方法および表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861033

Country of ref document: EP

Kind code of ref document: A1