WO2021044912A1 - 高圧水流絡合用繊維処理剤及びその利用 - Google Patents

高圧水流絡合用繊維処理剤及びその利用 Download PDF

Info

Publication number
WO2021044912A1
WO2021044912A1 PCT/JP2020/032093 JP2020032093W WO2021044912A1 WO 2021044912 A1 WO2021044912 A1 WO 2021044912A1 JP 2020032093 W JP2020032093 W JP 2020032093W WO 2021044912 A1 WO2021044912 A1 WO 2021044912A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment agent
pressure water
water flow
fiber
component
Prior art date
Application number
PCT/JP2020/032093
Other languages
English (en)
French (fr)
Inventor
永田 智大
裕志 小南
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2021539100A priority Critical patent/JP6994611B2/ja
Priority to CN202080062349.1A priority patent/CN114341422B/zh
Publication of WO2021044912A1 publication Critical patent/WO2021044912A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers

Definitions

  • the present invention relates to a fiber treatment agent for high-pressure water flow entanglement, short fibers to which the treatment agent is attached, a non-woven fabric, and a method for producing a non-woven fabric.
  • the high-pressure water entanglement method has been used as a method for producing non-woven fabrics such as hand towels and wipers, and the high-pressure water entanglement method is used by using cotton, rayon, polyester, acrylic, polyamide or polyolefin short fibers alone or by mixing each fiber. Non-woven fabrics are manufactured.
  • a treatment agent for fibers may be used for the purpose of imparting characteristics such as focusing properties required in the process of producing a non-woven fabric.
  • characteristics such as focusing properties required in the process of producing a non-woven fabric.
  • a treatment agent for fibers a treatment agent mainly composed of an alkyl phosphate salt and a combination of a nonionic surfactant and a cationic activator is generally used, but these components have a property of foaming and have a high pressure.
  • the web is disturbed due to the foaming of the water used by the fiber treatment agent that has fallen off during water flow entanglement, the thickness of the non-woven fabric is uneven, and the quality of the non-woven fabric is deteriorated.
  • Patent Document 1 proposes a treatment agent obtained by mixing a specific ester compound and a specific phosphate salt in a specific ratio.
  • Patent Document 2 proposes a treatment agent containing a polyoxyalkylene derivative of a specific fatty acid and a specific function-imparting agent.
  • these conventional treatment agents for fibers have a problem that they cannot both impart sufficient focusing property during the non-woven fabric processing and reduce air bubbles in the high-pressure water flow entanglement step.
  • the problem to be solved by the present invention is to provide a fiber treatment agent for high-pressure water flow entanglement and the treatment agent capable of imparting focusing property to the fibers and reducing foaming in the non-woven fabric manufacturing process by the high-pressure water flow entanglement method.
  • the purpose is to provide the short fibers used.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention is a high-pressure water flow entanglement fiber treatment agent containing the component (A) and the component (B), and the component (A) is a polyoxyalkylene alkyl ether.
  • the constituent fatty acids of the fatty acid triglyceride are fatty acids having 12 to 22 carbon atoms. It is preferable that the total weight ratio of the component (A) and the component (B) to the non-volatile content of the treatment agent is 15% by weight or more.
  • the weight ratio of the component (A) to the non-volatile content of the treatment agent is preferably 15 to 85% by weight, and the weight ratio of the component (B) is preferably 15 to 85% by weight.
  • the polyoxyalkylene alkyl ether has a branched alkyl chain.
  • the polyoxyalkylene alkyl ether is preferably a polyoxyethylene alkyl ether.
  • the component (C) which is an anionic surfactant, is further contained, and the weight ratio of the component (C) to the non-volatile content of the treatment agent is less than 10% by weight. It is preferably for viscose rayon.
  • the short fiber of the present invention is obtained by applying the above-mentioned treatment agent to the raw material short fiber.
  • the non-woven fabric of the present invention contains the above-mentioned short fibers.
  • the method for producing a non-woven fabric of the present invention includes a step of accumulating the short fibers to prepare a fiber web and entwining the obtained fiber web with a high-pressure water flow.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention imparts focusing property to the raw material short fibers to which the treatment agent is applied and imparts low foaming property, so that a non-woven fabric having a good texture can be obtained.
  • the short fibers treated with the high-pressure water flow entanglement fiber treatment agent of the present invention have excellent focusing properties during the non-woven fabric processing, and can reduce the foaming property in the non-woven fabric manufacturing process by the high-pressure water flow entanglement method.
  • the non-woven fabric containing short fibers treated with the high-pressure water flow entanglement fiber treatment agent of the present invention has a good texture.
  • the method for producing a non-woven fabric using short fibers treated with the high-pressure water flow entanglement fiber treatment agent of the present invention can improve operability in the non-woven fabric manufacturing process.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention contains a specific component (A) and a component (B). This will be described in detail below.
  • the component (A) is an essential component for the high-pressure water flow entanglement fiber treatment agent of the present invention.
  • the component (A) is a polyoxyalkylene alkyl ether.
  • the polyoxyalkylene alkyl ether is, for example, a component that can be represented by the following chemical formula (1).
  • R 1 is not particularly limited as long as it is an alkyl group, but from the viewpoint of focusing property and low foaming property, R 1 preferably has 4 to 24 carbon atoms, and more preferably 6 to 22 carbon atoms. , 8 to 20 carbon atoms are more preferable.
  • R 1 is preferably a branched alkyl chain from the viewpoint of focusing property and low foaming property.
  • the branched alkyl chain include a secondary alkyl group and an alcohol residue of gelve alcohol.
  • the polyoxyalkylene alkyl ether having a branched chain include sophthalol (manufactured by Nippon Shokubai Co., Ltd.), ADEKATOR SO (manufactured by ADEKA), and dispanol TOC (manufactured by NOF CORPORATION).
  • R 1 examples include n-octyl group, n-nonyl group, n-decyl group, n-undecylic group, lauryl group, n-tridecylic group, myristyl group, 2-ethylhexyl group, iso-undecyl group and iso-. Examples thereof include a tridecylic group, a 2-dodecyl group, a 3-dodecyl group, a 2-tridecylic group, and a 3-tridecylic group.
  • AO is an oxyalkylene group, and examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group. Among them, as the oxyalkylene group, an oxyethylene group is preferable from the viewpoint of focusing property and low foaming property.
  • the ratio of the oxyethylene group to the total oxyalkylene group is preferably 75 mol% or more, particularly preferably 100 mol%.
  • the bonding form of each different type of oxyalkylene group is not particularly limited, and may be a block-shaped, random-shaped, or alternating-shaped bonding form. You may.
  • a indicates the average number of moles of the oxyalkylene group, and is generally referred to as the average number of added moles.
  • the average number of moles of oxyalkylene groups means the total number of moles of oxyalkylene groups contained in one mole of component (A).
  • a is preferably 3 to 15. Although a may be outside the range of 3 to 15, if a is less than 3 or more than 15, the focusing property may be deteriorated.
  • Examples of the component (A) include polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene polyoxypropylene octyl ether, and poly. Examples thereof include oxyethylene polyoxypropylene decyl ether, polyoxyethylene polyoxypropylene lauryl ether, polyoxyethylene polyoxypropylene tridecyl ether, and polyoxyethylene polyoxypropylene myristyl ether.
  • the component (A) may be composed of one of these, or may be composed of two or more.
  • the component (A) is produced, for example, by adding an alkylene oxide such as ethylene oxide to a chain-type saturated alcohol such as n-octyl alcohol or lauryl alcohol in the presence of a catalyst.
  • the component (B) is an essential component for the high-pressure water flow entanglement fiber treatment agent of the present invention.
  • Ingredient (B) is fatty acid triglyceride. When used in combination with the above component (A), it is characterized in that the focusing property is improved and the foaming is reduced at the same time.
  • Fatty acids The fatty acids that make up triglyceride include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, and palmitreic acid.
  • Isocetyl acid margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, buxenoic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosic acid, gadrainic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, erucic acid, tetracosan
  • acids isotetracosanoic acid, nervonic acid, cellotic acid, montanic acid and melicic acid.
  • saturated fatty acids having C16 or less carbon atoms such as capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, and palmitic acid, palmitrenic acid, from the viewpoint that the effects of the present application are easily exhibited.
  • Unsaturated fatty acids such as margaric acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, vacene acid, gadrainic acid, erucic acid, nervonic acid, and branched chains such as isosecylic acid, isostearic acid, isoeicosaic acid, isodocosanoic acid, and isotetracosanoic acid. Acids are preferred.
  • the weight ratio of the fatty acid having 12 to 22 carbon atoms to the total fatty acid constituting the fatty acid triglyceride is preferably 50% by weight or more, preferably 65% by weight or more, from the viewpoint of improving the focusing property and reducing the foaming at the same time. More preferably, 75% by weight or more is further preferable, and 85% by weight or more is particularly preferable.
  • the preferable upper limit of the weight ratio of the fatty acid having 12 to 22 carbon atoms to the total fatty acid constituting the fatty acid triglyceride is 100% by weight.
  • Fatty acid triglyceride also contains naturally derived fats and oils. Specific examples thereof include vegetable oils and fats such as coconut oil, palm oil, rice oil, rapeseed oil and soybean oil, animal fats and oils such as lard, beef tallow and fish oil, and hydrogenated fats and oils thereof.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention preferably further contains the component (C) which is an anionic surfactant.
  • the anionic surfactant is at least one selected from a sulfonic acid type anionic surfactant (C1), a sulfate ester type anionic surfactant (C2), and a phosphoric acid ester type anionic surfactant (C3).
  • a sulfonic acid type anionic surfactant (C1) and a phosphoric acid ester type anionic surfactant (C3) is preferable.
  • Examples of the sulfonic acid type anionic surfactant (C1) include alkylbenzene sulfonates such as linear sodium dodecylbenzenesulfonate and branched sodium dodecylbenzenesulfonate; sodium ⁇ -tetradecenesulfonate and sodium ⁇ -hexadecenesulfonate.
  • ⁇ -Olefin sulfonates such as potassium ⁇ -hexadecene sulfonate; alkane sulfonates such as sodium dodecyl sulfonate, sodium tetradecyl sulfonate; methyl sodium ⁇ -sulfolaurate, methoxyhexaethylene glycol- ⁇ -sulfolaurin ⁇ -Sulfonate ester salts such as methyl sodium acid acid; acyl ISEthionates such as sodium cocoyl isomerate and ammonium cocoyl acetylate; N-acyl-N-methyl taurate such as sodium cocoyl methyl taurine; sodium dioctyl sulfosuccinate Dialkyl sulfosuccinates such as; alkylnaphthalene sulfonates such as sodium propylnaphthalene sulfonate and the like can be mentioned.
  • alkylbenzene sulfonate, ⁇ -olefin sulfonate, alkane sulfonate, dialkyl sulfosuccinate and the like are preferable, and dialkyl sulfosuccinate and the like are more preferable.
  • These sulfonic acid type anionic surfactants may be used alone or in combination of two or more.
  • Examples of the sulfate ester type anionic surfactant (C2) include alkyl sulfates such as sodium dodecyl sulfate, potassium dodecyl sulfate, triethanolamine dodecyl sulfate, sodium stearyl sulfate, and sodium oleyl sulfate; polyoxyethylene (3) dodecyl.
  • Polyoxyethylene alkylale sulfates such as sodium sulfate, polyoxyethylene (3) sodium cetyl sulfate, polyoxyethylene (3) cetyl sulfate triethanolamine; sulfated oils such as funnel oil; sulfated oleic acid Examples thereof include sulfated fatty acid ester salts such as butyl.
  • the polyoxyethylene (3) means a polyoxyethylene group having 3 repeating units of the oxyethylene group.
  • an alkyl sulfate ester salt, a polyoxyethylene alkyl ether sulfate ester salt, a sulfated fatty acid ester salt and the like are preferable, and an alkyl sulfate ester salt, a polyoxyethylene alkyl AEL sulfate ester salt and the like are more preferable. ..
  • These sulfate ester-type anionic surfactants may be used alone or in combination of two or more.
  • Examples of the phosphoric acid ester-type anionic surfactant (C3) include alkyl phosphates such as sodium dodecyl phosphate, potassium dodecyl phosphate, sodium stearyl phosphate, and potassium stearyl phosphate: polyoxyethylene (3) lauryl ether phosphorus.
  • alkyl phosphates such as sodium dodecyl phosphate, potassium dodecyl phosphate, sodium stearyl phosphate, and potassium stearyl phosphate: polyoxyethylene (3) lauryl ether phosphorus.
  • Polyoxyethylene alkyl ether phosphoric acid ester salts such as sodium acid, polyoxyethylene (3) potassium lauryl ether phosphate: polyoxyethylene (3) sodium laurylphenyl ether phosphate, polyoxyethylene (3) laurylphenyl ether phosphoric acid
  • Examples thereof include polyoxyethylene alkyl phenyl ether phosphate such as potassium.
  • phosphoric acid ester type anionic surfactant an alkyl phosphate ester salt, a polyoxyethylene alkyl ether phosphoric acid ester salt and the like are preferable, and an alkyl phosphoric acid ester salt is more preferable.
  • These phosphoric acid ester type anionic surfactants may be used alone or in combination of two or more.
  • the total weight ratio of the component (A) and the component (B) to the non-volatile content of the treatment agent is preferably 15% by weight or more, preferably 25% by weight or more, from the viewpoint of reducing foaming and excellent focusing property at the same time. More preferably, 40% by weight or more is further preferable, and 50% by weight or more is particularly preferable.
  • the preferable upper limit of the total weight ratio of the component (A) and the component (B) to the non-volatile content of the treatment agent is 100% by weight.
  • the weight ratio of the component (A) to the non-volatile content of the treatment agent is preferably 15 to 85% by weight, more preferably 17 to 70% by weight, and 19 to 19 to 70%, from the viewpoint of reducing foaming and excellent focusing property at the same time. 60% by weight is more preferable, and 20 to 40% by weight is particularly preferable.
  • the weight ratio of the component (B) to the non-volatile content of the treatment agent is preferably 15 to 85% by weight, more preferably 20 to 80% by weight, and 25 to 80% from the viewpoint of reducing foaming and excellent focusing property at the same time. 70% by weight is more preferable, and 30 to 60% by weight is particularly preferable.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention is preferably for viscose rayon from the viewpoint of satisfying the required characteristics of both low foaming property and focusing property.
  • the short fiber of the present invention is obtained by adding the fiber treatment agent for high-pressure water flow entanglement of the present invention to the raw material short fiber used for high-pressure water flow entanglement.
  • the amount of the high-pressure water flow entanglement fiber treatment agent applied is 0.05 to 2.0% by weight, preferably 0.06 to 1.5% by weight, and 0.07 to 1.0% by weight with respect to the raw material short fibers. By weight% is more preferred, and 0.08 to 0.7% by weight is most preferred. If it is less than 0.05%, the card passability in the pre-process of producing the non-woven fabric may be inferior, and if it exceeds 2.0% by weight, the low foaming property may be inferior.
  • the high-pressure water flow entanglement fiber treatment agent of the present invention may be attached to the raw material short fiber body without being diluted as it is, and the concentration of the total non-volatile content may be 0.2 to 15% by weight with water or the like. It may be diluted and attached to the raw material short fiber body as an emulsion.
  • the step of adhering the high-pressure water flow entanglement fiber treatment agent to the raw material short fiber main body may be any of a spinning step, a drawing step, a crimping step, a cutting step, and the like of the raw material short fiber main body.
  • the means for adhering the high-pressure water flow entanglement fiber treatment agent of the present invention to the raw material short fiber body is not particularly limited, and means such as roller refueling, nozzle spray refueling, and dip refueling may be used.
  • a method may be adopted in which the desired adhesion rate can be obtained more uniformly and efficiently according to the manufacturing process of the short fiber and its characteristics.
  • a drying method a method of drying by hot air and infrared rays, a method of contacting with a heat source and drying, and the like may be used.
  • the raw material short fibers used for high-pressure water flow entanglement of the present invention include cotton fibers, natural fibers such as bleached cotton fibers, recycled fibers such as rayon fibers, cupra fibers and acetate fibers, polyolefin fibers, polyester fibers and polyamide fibers. , Acrylic fiber, polyvinyl chloride fiber, synthetic fiber such as composite fiber composed of two or more kinds of thermoplastic resins.
  • the polyamide fiber include 6-nylon fiber, 6,6-nylon fiber, aromatic polyamide fiber and the like.
  • recycled fibers and synthetic fibers tend to adhere a large amount of high-pressure water flow entanglement fiber treatment agent from the viewpoint of preventing static electricity, and the treatment agent of the present invention is used from the viewpoint that it is more necessary to reduce foaming property. It is preferable to apply.
  • the rayon fiber include viscous rayon fiber, strong rayon fiber, high-strength rayon fiber, high-wet elastic rayon fiber, solvent-spun rayon fiber, polynosic fiber and the like.
  • polyolefin resin / polyolefin resin for example, high density polyethylene / polypropylene, linear high density polyethylene / polypropylene, low density polyethylene / polypropylene, propylene and other ⁇ -olefin.
  • examples thereof include a former copolymer or a ternary copolymer / polypropylene, a linear high-density polyethylene / high-density polyethylene, and a low-density polyethylene / high-density polyethylene.
  • polyolefin resin / polyester resin for example, polypropylene / polyethylene terephthalate, high density polyethylene / polyethylene terephthalate, linear high density polyethylene / polyethylene terephthalate, low density polyethylene / polyethylene terephthalate and the like can be mentioned.
  • polyester-based resin / polyester-based resin for example, copolymerized polyester / polyethylene terephthalate and the like can be mentioned.
  • fibers made of polyamide resin / polyester resin, polyolefin resin / polyamide resin and the like can also be mentioned.
  • the raw material fiber is a viscose rayon fiber
  • the focusing property is likely to be insufficient
  • the raw material fiber is a viscose rayon fiber.
  • the raw material fiber is water-repellent, water pressure is required for high-pressure water flow entanglement, and from the viewpoint that it is more necessary to reduce foaming property, polyolefin-based resin / polyolefin-based resin, polyolefin-based resin / polyester-based resin, Polyester-based resin / polyester-based resin is more preferable.
  • the cross-sectional shape of the fiber can be circular or irregular. In the case of a deformed shape, it can be any shape such as a flat shape, a polygonal shape such as a triangle to an octagon, a T-shape, a hollow shape, and a multi-leaf shape.
  • the cross-sectional structure of the composite fiber can be exemplified as a sheath core type, a parallel type, an eccentric sheath core type, a multi-layer type, a radial type or a sea-island type.
  • the sheath core type or the parallel type including the above is preferable.
  • the non-woven fabric of the present invention is a non-woven fabric produced by accumulating the short fibers of the present invention to prepare a fiber web, and then subjecting the fiber web to a high-pressure water flow entanglement treatment step of treating the fiber web by a high-pressure water flow entanglement method.
  • the short fibers of the present invention are opened in a fiber opening step, and when two or more types of short fibers are used, they are mixed and a fiber web is produced by carding with a card machine.
  • the fibers may be supplied to the card machine, and the fleece discharged from the card machine may be appropriately laminated.
  • a card machine As a card machine, a parallel card machine in which the fibers in the fleece are arranged in almost one direction, a random card machine in which the fibers in the fleece are not oriented, a semi-random card machine in which the fibers in the fleece are oriented in the middle of the former two, and conventional cotton
  • a flat card machine or the like which is most commonly used for fiber opening, can be used.
  • a large number of fleeces discharged from the card machine may be stacked as they are to form a web in which fibers are arranged in one direction or a fiber web in which fibers are non-oriented.
  • a large number of fleeces in which fibers are arranged in one direction may be stacked in a state where the fibers of each fleece are orthogonal to each other to form a fiber web having uniform length and width.
  • the longitudinal and horizontal tensile strengths are the same. Therefore, as the fiber web, the fiber web in which the cotton fibers are non-oriented or the fiber web in which the cotton fibers between the fleets are orthogonal to each other. It is preferable to adopt.
  • the weight (weight) of the fiber web is preferably about 10 to 150 g / m 2. If the basis weight is less than 10 g / m 2 , the fiber density becomes low, the efficiency of applying energy by the high-pressure water flow entanglement treatment to the fibers becomes poor, and the three-dimensional entanglement tends to be insufficient. On the other hand, when the basis weight exceeds 150 g / m 2 , the amount of fibers per unit area is too large, and it becomes difficult to give energy to all the fibers by the high-pressure water flow entanglement treatment, resulting in insufficient three-dimensional entanglement. A tendency arises.
  • the high-pressure water flow entanglement treatment is an entanglement treatment means in which a high-pressure water flow is made to collide with the fiber web.
  • the high-pressure water flow is, for example, a liquid such as water or hot water at an injection pressure of about 5 to 150 kg / cm 2 ⁇ G from an injection hole having a hole diameter of about 0.05 to 2.0 mm, particularly 0.1 to 0.4 mm. If it is spouted, it can be easily obtained.
  • a device in which a large number of injection holes are arranged in a single row or a plurality of rows at intervals of 0.3 to 10 mm is arranged so that the traveling direction of the fiber web and the row of injection holes are orthogonal to each other. This is done by colliding a high pressure stream of water onto the traveling fiber web.
  • the distance between the injection hole and the fiber web is preferably about 1 to 15 cm. If this distance is less than 1 cm, the energy when the high-pressure water stream collides with the fiber web is too large, and the texture of the obtained non-woven fabric may be disturbed. On the other hand, if it exceeds 15 cm, the energy when the high-pressure water stream collides with the fiber web becomes small, sufficient kinetic energy cannot be given to the fiber, and the three-dimensional entanglement tends to be insufficient.
  • the high-pressure water flow entanglement treatment is preferably performed in two or more steps. That is, in the first-stage high-pressure water flow entanglement treatment, the injection pressure of the high-pressure water flow is lowered to reduce the momentum given to the fibers, and the formation of the fiber webs is prevented from being disturbed to some extent between the fibers. Gives a preliminary three-dimensional entanglement of.
  • the injection pressure in the first stage is preferably about 5 to 30 kg / cm 2 ⁇ G. If the injection pressure is less than 5 kg / cm 2 ⁇ G, there is a possibility that three-dimensional entanglement between the fibers hardly occurs. Further, if the injection pressure exceeds 30 kg / cm 2 ⁇ G, the formation of the fiber web may be disturbed.
  • the fibers are entangled, and the fibers are restrained to some extent, and then the second-stage high-pressure water flow entanglement treatment is performed.
  • the injection pressure at this time is made higher than the injection pressure of the first stage to give a large momentum to the fibers and further promote the three-dimensional entanglement between the fibers.
  • the injection pressure in the second stage is preferably about 40 to 150 kg / cm 2 ⁇ G. If the injection pressure is less than 40 kg / cm 2 ⁇ G, the progress of three-dimensional entanglement between the fibers tends to be insufficient.
  • the injection pressure exceeds 150 kg / cm 2 ⁇ G
  • the three-dimensional entanglement between the fibers becomes too strong, and the flexibility and bulkiness of the obtained non-woven fabric tend to decrease.
  • the texture of the obtained non-woven fabric may be disturbed even though the fibers are restrained to some extent. According to the above method, there is an advantage that the texture of the obtained non-woven fabric is less disturbed and the tensile strength is increased.
  • the fiber web When the fiber web is subjected to a high-pressure water flow entanglement treatment, the fiber web is usually supported on a support. That is, the support is placed on the opposite side to the side where the high-pressure water flow entanglement treatment is applied.
  • the support any one can be used as long as it allows the high-pressure water flow applied to the fiber web to pass through well, and for example, a mesh screen, a perforated plate, or the like is adopted.
  • a mesh screen such as a wire mesh is adopted, and the size of the holes is preferably about 20 to 100 mesh.
  • the fiber web After the fiber web is subjected to a high-pressure water flow entanglement treatment, the fiber web is in a state of being impregnated with a liquid such as water or hot water used as a liquid flow, and this liquid is removed by a conventionally known method.
  • a non-woven fabric is obtained.
  • a method of removing the liquid first, an excess liquid is mechanically removed by using a drawing device such as a mangle roll, and then a drying device such as a continuous hot air dryer is used to remove the residual liquid. A method of removing or the like is used.
  • the non-woven fabric obtained as described above has sufficient three-dimensional entanglement between the fibers and has sufficient tensile strength to be used as a material for hand towels and hand towels.
  • the non-woven fabric of the present invention has a feature of being excellent in the focusing property of the fiber web, the texture is not disturbed, the fibers are not disturbed and the basis weight is not uneven, and a high-quality non-woven fabric can be obtained. Further, since the non-woven fabric of the present invention is characterized in that there is little foaming when the high-pressure water flow entanglement treatment is performed, the fibers on the non-woven fabric do not disturb the fibers and the texture becomes uneven, and the quality is high. A non-woven fabric is obtained.
  • A-1 Polyoxyethylene (3) C12-13 secondary alkyl ether A-2: Polyoxyethylene (5) C12-13 secondary alkyl ether A-3: Polyoxyethylene (12) C12-13 secondary alkyl ether A- 4: Polyoxyethylene polyoxypropylene C12-13 secondary alkyl ether (molecular weight 900)
  • A-5 Polyoxyethylene (3) Lauryl ether A-6: Polyoxyethylene (8)
  • C-1 Dioctyl sulfosuccinate sodium salt
  • C-2 Oleyl sulfate sodium salt
  • C-3 Stearyl phosphate potassium salt
  • C-4 Sulfated rapeseed oil Sodium salt
  • D-1 Mineral oil (viscosity 380 seconds)
  • the amount of the non-volatile component of the treatment agent attached to the raw material short fiber was 0.2% by weight and 0.
  • the emulsion of the treatment agent was lubricated to 4% by weight, and the raw cotton was dried at 80 ° C. for 2 hours. The obtained treated cotton was subjected to each of the following evaluations.
  • Foam height (cm))
  • (Very good): Foam height is less than 1.0 cm.
  • Non-woven fabric formation evaluation 40 g of cotton with a treatment agent was subjected to a fiber-spreading treatment by a fiber-spreading machine (model OP-400) manufactured by Daiwa-Kiko Co., Ltd. Next, the spread-treated treated cotton was supplied to a random card machine, and the discharged fleece was laminated to obtain a fiber web having a basis weight of 100 g / m 2. This fiber web is placed on a support made of a metal net , subjected to the first-stage high-pressure water flow entanglement treatment at an injection pressure of 15 kg / cm 2 ⁇ G, and the cotton fibers are preliminarily three-dimensionally entangled with each other. I let you.
  • a second-stage high-pressure water flow entanglement treatment was performed at an injection pressure of 100 kg / cm 2 ⁇ G and dried to obtain each non-woven fabric.
  • the texture of the obtained non-woven fabric was evaluated by visual judgment. Index for judging the texture of the non-woven fabric ⁇ : The texture of the non-woven fabric is less disturbed and the appearance is good. ⁇ : Some irregularities are seen in the texture of the non-woven fabric. X: The texture of the non-woven fabric is disturbed.
  • the short fibers to which the high-pressure water flow entanglement fiber treatment agent of Examples 1 to 18 is applied can impart focusing property to the fibers and reduce foaming.
  • Comparative Examples 1 to 8 when neither the component (A) nor the component (B) is present (Comparative Examples 1 and 8), when the component (A) is not present (Comparative Examples 3 and 6), the component (B) is present. ) Is absent (Comparative Examples 2, 4, 5 and 7), either the focusing property or the low foaming property cannot be solved.
  • the fiber to which the treatment agent is applied is excellent in focusing property and low foaming property
  • the cotton, rayon, polyester, polyolefin fiber and polyolefin fiber to which the treatment agent is applied are used.
  • Polyamide fibers are used in the process of making non-woven fabrics by high pressure water flow entanglement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

高圧水流絡合法による不織布作製工程において、繊維に集束性を付与し、起泡を低減することができる高圧水流絡合用繊維処理剤及び該処理剤を用いた短繊維を提供する。 成分(A)及び成分(B)を含む高圧水流絡合用繊維処理剤であって、前記成分(A)がポリオキシアルキレンアルキルエーテルであり、前記成分(B)が脂肪酸トリグリセライドである、高圧水流絡合用繊維処理剤。前記脂肪酸トリグリセライドが、構成脂肪酸の50重量%以上が炭素数12~22の脂肪酸であると好ましい。処理剤の不揮発分に占める前記成分(A)と成分(B)の重量割合の合計が15重量%以上であると好ましい。

Description

高圧水流絡合用繊維処理剤及びその利用
 本発明は、高圧水流絡合用繊維処理剤、該処理剤が付着した短繊維、不織布及び不織布の製造方法に関する。
 従来から、おしぼりやワイパー等の不織布製造方法として、高圧水流絡合法が用いられており、木綿、レーヨン、ポリエステル、アクリル、ポリアミド又はポリオレフィン短繊維の単独及び各繊維を混合して高圧水流絡合法による不織布が製造されている。
 これらの短繊維には、不織布作製工程において必要となる集束性などの特性の付与を目的として、繊維用処理剤が使用されることがある。集束性が不足する場合、不織布加工途中のウェブの均一性が不十分となって、不織布の品質の低下が生じる問題がある。
 また、この繊維用処理剤としては、一般にアルキルホスフェート塩を主体とし、ノニオン活性剤やカチオン活性剤等を併用した処理剤が使用されているが、これらの成分は起泡する性質があり、高圧水流絡合の際に脱落した繊維処理剤による使用水の起泡によって、ウェブが乱れ、不織布の厚さに斑が生じ、不織布の品質が低下する問題がある。
 低起泡性を改善する手段として、特許文献1、2に開示される繊維用処理剤が提案されている。特許文献1では、特定のエステル化合物と特定のホスフェート塩を特定の割合で混合して成る処理剤が提案されている。特許文献2では、特定の脂肪酸のポリオキシアルキレン誘導体と特定の機能付与剤を含有して成る処理剤が提案されている。しかし、これら従来の繊維用処理剤は、不織布加工途中において十分な集束性の付与と、高圧水流絡合工程における気泡の低減とを、両立できていないという問題がある。
特許第5921051号公報 特許第6132966号公報
 そこで、本発明が解決しようとする課題は、高圧水流絡合法による不織布作製工程において、繊維に集束性を付与し、起泡を低減することができる高圧水流絡合用繊維処理剤及び該処理剤を用いた短繊維を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の2成分を含有する高圧水流絡合用繊維処理剤であれば、上記課題が解決できることを見出した。すなわち、本発明の高圧水流絡合用繊維処理剤は、成分(A)及び成分(B)を含む高圧水流絡合用繊維処理剤であって、前記成分(A)がポリオキシアルキレンアルキルエーテルであり、前記成分(B)が脂肪酸トリグリセライドである、高圧水流絡合用繊維処理剤である。
 前記脂肪酸トリグリセライドが、構成脂肪酸の50重量%以上が炭素数12~22の脂肪酸であると好ましい。
 処理剤の不揮発分に占める前記成分(A)と成分(B)の重量割合の合計が15重量%以上であると好ましい。
 処理剤の不揮発分に占める前記成分(A)の重量割合が15~85重量%であり、前記成分(B)の重量割合が15~85重量%であると好ましい。
 前記ポリオキシアルキレンアルキルエーテルが分岐アルキル鎖を持つと好ましい。
 前記ポリオキシアルキレンアルキルエーテルが、ポリオキシエチレンアルキルエーテルであると好ましい。
 アニオン界面活性剤である成分(C)をさらに含み、処理剤の不揮発分に占める前記成分(C)の重量割合が10重量%未満であると好ましい。
 ビスコースレーヨン用であると好ましい。
 本発明の短繊維は、原料短繊維に対して、上記処理剤を付与してなる。
 本発明の不織布は、上記短繊維を含有する。
 本発明の不織布の製造方法は、上記短繊維を集積させて繊維ウェブを作製し、得られた繊維ウェブを高圧水流絡合させる工程を含む。
 本発明の高圧水流絡合用繊維処理剤は、該処理剤が付与された原料短繊維に集束性を付与し、低起泡性を付与するため、地合が良好な不織布が得られる。
 本発明の高圧水流絡合用繊維処理剤が処理された短繊維は、不織布加工途中において集束性に優れ、高圧水流絡合法による不織布作製工程において、起泡性を低減することができる。
 本発明の高圧水流絡合用繊維処理剤が処理された短繊維を含む不織布は、地合が良好である。
 本発明の高圧水流絡合用繊維処理剤が処理された短繊維を用いた不織布の製造方法であれば、不織布作製工程において、操業性を向上させることができる。
 本発明の高圧水流絡合用繊維処理剤は、特定の成分(A)及び成分(B)を含む。以下に詳細に説明する。
〔成分(A)〕
 成分(A)は、本発明の高圧水流絡合用繊維処理剤に必須の成分である。成分(A)は、ポリオキシアルキレンアルキルエーテルである。
 ポリオキシアルキレンアルキルエーテルは、たとえば、下記化学式(1)で表現することができる成分である。
 RO-(AO)a-H       (1)
 化学式(1)において、Rはアルキル基であれば特に制限はないが、集束性及び低起泡性の観点から、Rが炭素数4~24が好ましく、炭素数6~22がより好ましく、炭素数8~20がさらに好ましい。
 Rは、集束性及び低起泡性の観点から、分岐アルキル鎖が好ましい。分岐アルキル鎖としては、セカンダリーアルキル基、ゲルベアルコールのアルコール残基等が挙げられる。
 分岐鎖を持つポリオキシアルキレンアルキルエーテルとしては、ソフタノール(日本触媒社製)、アデカトールSO(ADEKA社製)、ディスパノールTOC(日油社製)等が挙げられる。
 Rとしては、たとえば、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、ミリスチル基、2-エチルヘキシル基、iso-ウンデシル基、iso-トリデシル基、2-ドデシル基、3-ドデシル基、2-トリデシル基、3-トリデシル基等を挙げることができる。
 化学式(1)において、AOはオキシアルキレン基であり、たとえば、オキシエチレン基、オキシプロピレン基、オキシブチレン基等を挙げることができる。なかでも、オキシアルキレン基としては、集束性及び低起泡性の観点から、オキシエチレン基が好ましい。
 オキシアルキレン基がオキシエチレン基を含む場合、オキシアルキレン基全体に占めるオキシエチレン基の割合は、好ましくは75モル%以上、特に好ましくは100モル%である。
 オキシアルキレン基が2種以上のオキシアルキレン基から構成される場合、それぞれ種類の異なるオキシアルキレン基の結合形式については、特に限定はなく、ブロック状、ランダム状、交互状のいずれの結合形式であってもよい。
 化学式(1)において、aはオキシアルキレン基の平均モル数を示し、一般には平均付加モル数ということもある。オキシアルキレン基の平均モル数は、成分(A)1モル当たりに含まれるオキシアルキレン基の総モル数を意味する。aは好ましくは3~15である。aが3~15の範囲外であってもよいが、aが3未満又は15超であると、集束性が悪くなることがある。
 成分(A)としては、たとえば、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンポリオキシプロピレンオクチルエーテル、ポリオキシエチレンポリオキシプロピレンデシルエーテル、ポリオキシエチレンポリオキシプロピレンラウリルエーテル、ポリオキシエチレンポリオキシプロピレントリデシルエーテル、ポリオキシエチレンポリオキシプロピレンミリスチルエーテル等が挙げられる。成分(A)は、これらのうちの1種から構成されていてもよく、または、2種以上から構成されていてもよい。
 成分(A)は、たとえば、n-オクチルアルコール、ラウリルアルコール等の鎖式飽和アルコールに、触媒存在下で、エチレンオキシド等のアルキレンオキシドを付加反応させて製造される。
〔成分(B)〕
 成分(B)は、本発明の高圧水流絡合用繊維処理剤に必須の成分である。成分(B)は、脂肪酸トリグリセライドである。上記成分(A)と併用することで、集束性の向上と、起泡の低減とが同時に優れるという特徴がある。
 脂肪酸トリグリセライドを構成する脂肪酸としては、酪酸、クロトン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、パルミトレイン酸、イソセチル酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、エライジン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、イソエイコサ酸、ガドレイン酸、エイコセン酸、ドコサン酸、イソドコサン酸、エルカ酸、テトラコサン酸、イソテトラコサン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
 これらの中でも、本願効果が発揮され易い観点から、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸などの炭素数C16以下の飽和脂肪酸、パルミトレイン酸、マルガリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、バクセン酸、ガドレイン酸、エルカ酸、ネルボン酸などの不飽和脂肪酸、イソセチル酸、イソステアリン酸、イソエイコサ酸、イソドコサン酸、イソテトラコサン酸などの分岐鎖脂肪酸が好ましい。
 脂肪酸トリグリセライドを構成する脂肪酸全体に対する炭素数12~22の脂肪酸の重量割合が、集束性の向上と、起泡の低減とが同時に優れるという観点から、50重量%以上が好ましく、65重量%以上がより好ましく、75重量%以上がさらに好ましく、85重量%以上が特に好ましい。脂肪酸トリグリセライドを構成する脂肪酸全体に対する炭素数12~22の脂肪酸の重量割合の好ましい上限値は100重量%である。
 脂肪酸トリグリセライドには天然由来の油脂も含まれる。具体的には、ヤシ油、パーム油、米油、菜種油、大豆油などの植物油脂、豚脂、牛脂、魚油などの動物油脂、及びこれらの水素添加油脂等を挙げることが出来る。
〔成分(C)〕
 本発明の高圧水流絡合用繊維処理剤は、帯電防止の観点から、アニオン界面活性剤である成分(C)をさらに含むことが好ましい。
 アニオン界面活性剤としては、スルホン酸型アニオン界面活性剤(C1)、硫酸エステル型アニオン界面活性剤(C2)、及びリン酸エステル型アニオン界面活性剤(C3)から選ばれる少なくとも1種であり、帯電防止の観点から、スルホン酸型アニオン界面活性剤(C1)、及びリン酸エステル型アニオン界面活性剤(C3)から選ばれる少なくとも1種が好ましい。
 また、帯電防止の観点から、スルホン酸型アニオン界面活性剤(C1)を含むとより好ましい。
 スルホン酸型アニオン界面活性剤(C1)としては、例えば、直鎖ドデシルベンゼンスルホン酸ナトリウム、分岐ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;α-テトラデセンスルホン酸ナトリウム、α-ヘキサデセンスルホン酸ナトリウム、α-ヘキサデセンスルホン酸カリウム等のα-オレフィンスルホン酸塩;ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウム等のアルカンスルホン酸塩;α-スルホラウリン酸メチルナトリウム、メトキシヘキサエチレングリコール-α-スルホラウリン酸メチルナトリウム等のα-スルホ脂肪酸エステル塩;ココイルイセチオン酸ナトリウム、ココイルイセチオン酸アンモニウム等のアシルイセチオン酸塩;ココイルメチルタウリンナトリウム等のN-アシル-N-メチルタウリン酸塩;ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩;プロピルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩等を挙げることができる。スルホン酸型アニオン界面活性剤としては、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩等が好ましく、ジアルキルスルホコハク酸塩等がさらに好ましい。これらのスルホン酸型アニオン界面活性剤は1種または2種以上を併用してもよい。
 硫酸エステル型アニオン界面活性剤(C2)としては、例えば、ドデシル硫酸ナトリウム、ドデシル硫酸カリウム、ドデシル硫酸トリエタノールアミン、ステアリル硫酸ナトリウム、オレイル硫酸ナトリウム等のアルキル硫酸エステル塩;ポリオキシエチレン(3)ドデシル硫酸エステルナトリウム、ポリオキシエチレン(3)セチル硫酸エステルナトリウム、ポリオキシエチレン(3)セチル硫酸エステルトリエタノールアミン等のポリオキシエチレンアルキルエーエル硫酸エステル塩;ロート油等の硫酸化油;硫酸化オレイン酸ブチル等の硫酸化脂肪酸エステル塩等を挙げることができる。上記で、ポリオキシエチレン(3)とは、オキシエチレン基の繰返し単位数が3であるポリオキシエチレン基を意味する。硫酸エステル型アニオン界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、硫酸化脂肪酸エステル塩等が好ましく、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーエル硫酸エステル塩等がさらに好ましい。これらの硫酸エステル型アニオン界面活性剤は1種または2種以上を併用してもよい。
 リン酸エステル型アニオン界面活性剤(C3)としては、例えば、ドデシルリン酸ナトリウム、ドデシルリン酸カリウム、ステアリルリン酸ナトリウム、ステアリルリン酸カリウム、等のアルキルリン酸塩:ポリオキシエチレン(3)ラウリルエーテルリン酸ナトリウム、ポリオキシエチレン(3)ラウリルエーテルリン酸カリウム等のポリオキシエチレンアルキルエーテルリン酸エステル塩:ポリオキシエチレン(3)ラウリルフェニルエーテルリン酸ナトリウム、ポリオキシエチレン(3)ラウリルフェニルエーテルリン酸カリウム等のポリオキシエチレンアルキルフェニルエーテルリン酸塩をあげることができる。リン酸エステル型アニオン界面活性剤としては、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸エステル塩等が好ましく、アルキルリン酸エステル塩がさらに好ましい。これらのリン酸エステル型アニオン界面活性剤は1種または2種以上を併用してもよい。
〔高圧水流絡合用繊維処理剤〕
 処理剤の不揮発分に占める前記成分(A)と成分(B)の重量割合の合計は、起泡の低減と集束性が同時に優れるという観点から、15重量%以上が好ましく、25重量%以上がより好ましく、40重量%以上がさらに好ましく、50重量%以上が特に好ましい。
 処理剤の不揮発分に占める前記成分(A)と成分(B)の重量割合の合計の好ましい上限値は100重量%である。
 処理剤の不揮発分に占める前記成分(A)の重量割合は、起泡の低減と集束性が同時に優れるという観点から、15~85重量%が好ましく、17~70重量%がより好ましく、19~60重量%がさらに好ましく、20~40重量%が特に好ましい。
 処理剤の不揮発分に占める前記成分(B)の重量割合は、起泡の低減と集束性が同時に優れるという観点から、15~85重量%が好ましく、20~80重量%がより好ましく、25~70重量%がさらに好ましく、30~60重量%が特に好ましい。
 本発明の高圧水流絡合用繊維処理剤は、低起泡性及び集束性を両立する要求特性を満たすという観点から、ビスコースレーヨン用であると好ましい。
〔短繊維〕
 本発明の短繊維は、高圧水流絡合用に用いる原料短繊維に対して、本発明の高圧水流絡合用繊維処理剤が付与されたものである。高圧水流絡合用繊維処理剤の付与量は、原料短繊維に対して、0.05~2.0重量%であり、0.06~1.5重量%が好ましく、0.07~1.0重量%がさらに好ましく、0.08~0.7重量%が最も好ましい。0.05%未満では、不織布作製の前工程でのカード通過性が劣る可能性があり、2.0重量%超では、低起泡性が劣る可能性がある。
 本発明の高圧水流絡合用繊維処理剤は、そのまま希釈等せずに原料短繊維本体に付着させてもよく、水等で不揮発分全体の重量割合が0.2~15重量%となる濃度に希釈してエマルジョンとして原料短繊維本体に付着させてもよい。高圧水流絡合用繊維処理剤を原料短繊維本体へ付着させる工程は、原料短繊維本体の紡糸工程、延伸工程、捲縮工程、切断工程手前等のいずれであってもよい。本発明の高圧水流絡合用繊維処理剤を原料短繊維本体に付着させる手段については、特に限定はなく、ローラー給油、ノズルスプレー給油、ディップ給油等の手段を使用してもよい。短繊維の製造工程やその特性に合わせ、より均一に効率よく目的の付着率が得られる方法を採用すればよい。また、乾燥の方法としては、熱風および赤外線により乾燥させる方法、熱源に接触させて乾燥させる方法等を用いてよい。
 本発明の高圧水流絡合用に用いる原料短繊維としては、木綿繊維、晒し処理された木綿繊維等の天然繊維、レーヨン繊維、キュプラ繊維、アセテート繊維等の再生繊維、ポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリ塩化ビニル繊維、2種類以上の熱可塑性樹脂からなる複合繊維等の合成繊維が挙げられる。ポリアミド繊維としては、6-ナイロン繊維、6,6-ナイロン繊維、芳香族ポリアミド繊維等が挙げられる。
 これらの中でも、再生繊維及び合成繊維は、静電気防止の観点から、高圧水流絡合用繊維処理剤を多く付着させる傾向にあり、起泡性低減がより必要との観点から、本発明の処理剤を適用することが好ましい。
 レーヨン繊維としては、ビスコースレーヨン繊維、強力レーヨン繊維、高強力レーヨン繊維、高湿潤弾性レーヨン繊維、溶剤紡糸レーヨン繊維、ポリノジック繊維等が挙げられる。
 複合繊維の組み合わせとしては、ポリオレフィン系樹脂/ポリオレフィン系樹脂の場合、例えば、高密度ポリエチレン/ポリプロピレン、直鎖状高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンと他のα-オレフィンとの二元共重合体または三元共重合体/ポリプロピレン、直鎖状高密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン等が挙げられる。また、ポリオレフィン系樹脂/ポリエステル系樹脂の場合、例えば、ポリプロピレン/ポリエチレンテレフタレート、高密度ポリエチレン/ポリエチレンテレフタレート、直鎖状高密度ポリエチレン/ポリエチレンテレフタレート、低密度ポリエチレン/ポリエチレンテレフタレート等が挙げられる。また、ポリエステル系樹脂/ポリエステル系樹脂の場合、例えば、共重合ポリエステル/ポリエチレンテレフタレート等が挙げられる。さらにポリアミド系樹脂/ポリエステル系樹脂、ポリオレフィン系樹脂/ポリアミド系樹脂等からなる繊維も挙げられる。
 これらの中でも、原料繊維がビスコースレーヨン繊維であれば、集束性が不足しやすく、繊維処理剤による集束性の付与が必要との観点から、原料繊維がビスコースレーヨン繊維であることが、さらに好ましい。又、原料繊維が撥水性であるために高圧水流絡合用により水圧が必要であり、起泡性低減がより必要との観点から、ポリオレフィン系樹脂/ポリオレフィン系樹脂、ポリオレフィン系樹脂/ポリエステル系樹脂、ポリエステル系樹脂/ポリエステル系樹脂がさらに好ましい。
 繊維の断面形状は円形または異形形状とすることができる。異形形状の場合、例えば扁平型、三角形~八角形等の多角型、T字型、中空型、多葉型等の任意の形状とすることができる。また、複合繊維の断面構造は鞘芯型、並列型、偏心鞘芯型、多層型、放射型あるいは海島型が例示できるが、繊維製造工程での生産性や、不織布加工の容易さから、偏心を含む鞘芯型または並列型が好ましい。
[不織布]
 本発明の不織布は、本発明の短繊維を集積させて繊維ウェブを作製し、ついで、この繊維ウェブに高圧水流絡合法で処理する高圧水流絡合処理工程を施して作製した不織布である。
 具体的には、本発明の短繊維を開繊工程にて開繊し、2以上の種類の短繊維を使用する場合には混綿し、カード機によるカーディングにて繊維ウェブを作製する。繊維ウェブを作製するには、繊維をカード機に供給し、カード機から排出されるフリースを適宜積層すればよい。カード機としては、フリース中の繊維がほぼ一方向に配列するパラレルカード機、フリース中の繊維が無配向となるランダムカード機、前二者の中間程度の配向となるセミランダムカード機、従来綿繊維の開繊に最も一般的に使用されているフラットカード機等を使用することができる。カード機から排出されたフリースを、そのまま多数枚重ねて、一方向に繊維が配列したウェブまたは繊維が無配向となっている繊維ウェブとしてもよい。また、一方向に繊維が配列したフリースを、各フリースの繊維が直交する状態で多数枚重ねて、縦・横均一な繊維ウェブとしてもよい。本発明においては、縦・横の引張強度が同等である方が好ましいので、繊維ウェブとしても、綿繊維が無配向となっている繊維ウェブまたは各フリース間の綿繊維が直交している繊維ウェブを採用することが好ましい。
 繊維ウェブの重量(目付)は、10~150g/m程度であるのが好ましい。目付が10g/m未満であると、繊維密度が小さくなって、高圧水流絡合処理によるエネルギーを繊維に与える効率が悪くなり、三次元的絡合が不十分になる傾向が生じる。一方、目付が150g/mを超える場合も、単位面積当りの繊維量が多すぎて、全ての繊維に高圧水流絡合処理によるエネルギーを与えにくくなり、三次元的絡合が不十分になる傾向が生じる。
 次に、高圧水流絡合処理が繊維ウェブに施される。高圧水流絡合処理は、繊維ウェブに高圧水流を衝突させるという絡合処理手段である。この手段によって、高圧水流のエネルギーが、繊維ウェブ中の繊維に与えられ、繊維はこのエネルギーによって運動させられ、その結果、繊維相互間に三次元的絡合が発現してくるのである。高圧水流は、例えば、孔径が0.05~2.0mm程度、特に0.1~0.4mmの噴射孔から、噴射圧力5~150kg/cm・G程度で、水または温水等の液体を噴出させれば、容易に得ることができる。高圧水流絡合処理は、一般的に、この噴射孔が0.3~10mm間隔で一列または複数列に多数配列した装置を、繊維ウェブの進行方向と噴射孔の列とが直交するように配置し、進行する繊維ウェブ上に、高圧水流を衝突させることによって行われる。噴射孔と繊維ウェブ間との距離は、1~15cm程度が好ましい。この距離が1cm未満であると、繊維ウェブに高圧水流が衝突したときのエネルギーが大きすぎて、得られる不織布の地合が乱れるおそれがある。一方、15cmを超えると、繊維ウェブに高圧水流が衝突したときのエネルギーが小さくなって、繊維に十分な運動エネルギーを与えることができず、三次元的絡合が不十分になる傾向が生じる。
 高圧水流絡合処理については、二段階またはそれ以上に別けて施すのが好ましい。すなわち、第一段階の高圧水流絡合処理においては、高圧水流の噴射圧力を低くして、繊維に与える運動量を少なくし、繊維ウェブの地合が乱れるのを防止しながら、繊維相互間にある程度の予備的な三次元的絡合を与える。この第一段階における噴射圧力としては、5~30kg/cm・G程度であるのが好ましい。噴射圧力が5kg/cm・G未満であると、繊維相互間に三次元的絡合が殆ど生じないおそれがある。また、噴射圧力が30kg/cm・Gを超えると、繊維ウェブの地合が乱れるおそれがある。このような第一段階の高圧水流絡合処理によって、繊維に絡合が与えられ、ある程度、繊維が拘束された状態で、第二段階の高圧水流絡合処理を施す。この際の噴射圧力は、第一段階の噴射圧力よりも高くして、繊維に大きな運動量を与え、繊維相互間の三次元的絡合をさらに進行させるのである。第二段階における噴射圧力は、40~150kg/cm・G程度が好ましい。噴射圧力が40kg/cm・G未満であると、繊維相互間の三次元的絡合の進行が不十分になる傾向が生じる。また、噴射圧力が150kg/cm・Gを超えると、繊維相互間の三次元的絡合が強固になりすぎて、得られる不織布の柔軟性や嵩高性が低下する傾向が生じる。また、第一段階の処理で、ある程度繊維が拘束されているにもかかわらず、得られる不織布の地合が乱れる恐れもある。以上のような方法によると、得られる不織布の地合の乱れが少なくなり、且つ引張強度が高くなるという利点がある。
 繊維ウェブに高圧水流絡合処理を施す際、繊維ウェブは、通常、支持体に担持されている。すなわち、高圧水流絡合処理が施される側とは、反対面に支持体が置かれている。この支持体は、繊維ウェブに施された高圧水流を良好に通過させるものであれば、どのようなものでも使用でき、例えばメッシュスクリーンや有孔板等が採用される。一般的には、金網等のメッシュスクリーンが採用され、また孔の大きさは、20~100メッシュ程度であるのが好ましい。
 繊維ウェブに高圧水流絡合処理を施した後、繊維ウェブには液体流として使用した水や温水等の液体が含浸された状態になっており、この液体を従来公知の方法で除去して、不織布が得られるのである。ここで、液体を除去する方法としては、まず、マングルロール等の絞り装置を用いて、過剰の液体を機械的に除去し、引き続き連続熱風乾燥機等の乾燥装置を用いて、残余の液体を除去する方法等が用いられる。以上のようにして得られた不織布は、繊維相互間の三次元的絡合が十分になされており、おしぼりや手拭き等の素材として使用するのに十分な引張強度を持つものである。
 本発明の不織布は、繊維ウェブの集束性に優れるという特徴があるため、地合いが乱れることがなく、繊維が乱れて目付けが不均一になることがなく、高品質の不織布が得られる。又、本発明の不織布は、高圧水流絡合処理を施す際に起泡が少ないという特徴があるため、不織布上の泡により、繊維が乱れて目付けが不均一になることがなく、高品質の不織布が得られる。
 以下に本発明を実施例によって説明するが、本発明はこれに限定されるものではない。尚、各実施例、比較例における評価項目と評価方法は以下の通りである。又、各実施例、比較例における処理剤の明細と評価結果を表1~表3にまとめて示す。明細書中、配合比率はいずれも重量%を表す。
 下記(A-1~D-7)の各成分を用い、表1~3に記載の比率で混合を行い、撹拌して、各実施例・比較例の高圧水流絡合用繊維処理剤の不揮発分を調製し、イオン交換水で希釈して、0.5%濃度のエマルションを得た。
A-1:ポリオキシエチレン(3)C12~13セカンダリーアルキルエーテル
A-2:ポリオキシエチレン(5)C12~13セカンダリーアルキルエーテル
A-3:ポリオキシエチレン(12)C12~13セカンダリーアルキルエーテル
A-4:ポリオキシエチレンポリオキシプロピレンC12~13セカンダリーアルキルエーテル(分子量900)
A-5:ポリオキシエチレン(3)ラウリルエーテル
A-6:ポリオキシエチレン(8)オレイルエーテル
B-1:ヤシ油
B-2:パーム油
B-3:菜種油
B-4:牛脂
B-5:米油
C-1:ジオクチルスルホサクシネートナトリウム塩
C-2:オレイルサルフェートナトリウム塩
C-3:ステアリルホスフェートカリウム塩
C-4:硫酸化菜種油ナトリウム塩
D-1:鉱物油(粘度380秒)
D-2:ソルビタントリオレエート
D-3:ソルビタントリステアレート
D-4:PEG(600)ステアレート
D-5:ポリオキシエチレン(20)ソルビタンモノステアレート
D-6:ポリオキシエチレン(10)ひまし油エーテル
D-7:ポリオキシエチレンポリオキシプロピレンブロックポリマー(分子量:2000)
 次に、予め脱脂しておき、処理剤が付着していない1.7dtex×44mmの原料ポリエステル短繊維を用い、原料短繊維に対する処理剤の不揮発分の付着量が0.2重量%及び0.4重量%になるように、前記処理剤のエマルションを給油し、当該原綿を80℃、2時間で乾燥した。得られた処理剤付与綿を下記の各評価に供した。
[低起泡性]
 処理剤付与綿30gを500mlのビーカーに入れ、その上に常温のイオン交換水300gを注ぎ入れ、ラップで蓋をして4時間放置後、イオン交換水に浸漬した処理剤付与綿から別の300mlビーカーに浸漬液200mlを搾り出した。次に、その搾り液30mlを100m1の栓付きメスシリンダーに入れて、10回強振した後、その5分後の泡の高さを測定した。泡の高さが2.0cm未満で低起泡性が良好であると判断した。
  低起泡性の判断の指標(泡の高さ(cm))
   ◎(非常に良好):泡の高さが1.0cm未満。
   ○(良好)   :泡の高さが1.0cm以上2.0cm未満。
   △(不良)   :泡の高さが2.0cm以上5.0cm未満。
   ×(非常に不良):泡の高さが5.0cm以上。
[集束性]
 処理剤付与綿40gをそれぞれ大和機工社製開繊機(型式OP-400)により開繊処理を施した。次いで、開繊処理された処理剤付与綿をランダムカード機に供給し、排出されたフリースを積層して、目付100g/mの繊維ウェブを得た。この繊維ウェブから10cm×5cm引張り試験用試験片を作製し、50m/minの速度で引張り試験を行った。引張り試験は、20℃の室内中、ロードセル50Nの条件下で、引張圧縮試験機(TG-2kN型引張圧縮試験機、ミネベア株式会社製)を用いて測定した。力の最大値が2.7N以上であった場合に、集束性が良好と判断した。
  集束性の判断の指標
   ◎(非常に良好):引抜き抵抗力が3.0N以上。
   〇(良好)   :引抜き抵抗力が2.7N以上、3.0N未満。
   △(不良)   :引抜き抵抗力が2.4N以上、2.7N未満。
   ×(非常に不良):引抜き抵抗力が2.4N未満。
[不織布の地合評価]
 処理剤付与綿40gをそれぞれ大和機工社製開繊機(型式OP-400)により開繊処理を施した。次いで、開繊処理された処理剤付与綿をランダムカード機に供給し、排出されたフリースを積層して、目付100g/mの繊維ウェブを得た。この繊維ウェブを、金属製ネットよりなる支持体上に配置し、噴射圧力15kg/cm・Gで第一段階の高圧水流絡合処理を施し、綿繊維相互間を予備的に三次元絡合させた。引き続き、噴射圧力100kg/cm・Gで第二段階の高圧水流絡合処理を施し、乾燥して不織布をそれぞれ得た。得られた不織布の地合を目視判定にて評価した。
  不織布の地合の判断の指標
   ○:不織布の地合の乱れが少なく、見た目が良好である。
   △:不織布の地合に若干の乱れが見られる。
   ×:不織布の地合に乱れが見られる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び2から分かるように、実施例1~18の高圧水流絡合用繊維処理剤を付与した短繊維は、繊維に集束性を付与し、起泡を低減することができている。
 一方、比較例1~8では、成分(A)及び成分(B)のいずれもがない場合(比較例1及び8)、成分(A)がない場合(比較例3及び6)、成分(B)がない場合(比較例2、4、5及び7)には、集束性又は低起泡性のいずれかが解決できていない。
 本発明の高圧水流絡合用繊維処理剤は、当該処理剤が付与された繊維が集束性及び低起泡性に優れることから、当該処理剤が付与された木綿、レーヨン、ポリエステル、ポリオレフィン系繊維及びポリアミド繊維は、高圧水流絡合による不織布作製工程で使用される。

Claims (11)

  1.  成分(A)及び成分(B)を含む高圧水流絡合用繊維処理剤であって、
    前記成分(A)がポリオキシアルキレンアルキルエーテルであり、
    前記成分(B)が脂肪酸トリグリセライドである、高圧水流絡合用繊維処理剤。
  2.  前記脂肪酸トリグリセライドが、構成脂肪酸の50重量%以上が炭素数12~22の脂肪酸である、請求項1に記載の高圧水流絡合用繊維処理剤。
  3.  処理剤の不揮発分に占める前記成分(A)と成分(B)の重量割合の合計が15重量%以上である、請求項1又は2に記載の高圧水流絡合用繊維処理剤。
  4.  処理剤の不揮発分に占める前記成分(A)の重量割合が15~85重量%であり、前記成分(B)の重量割合が15~85重量%である、請求項1~3のいずれかに記載の高圧水流絡合用繊維処理剤。
  5.  前記ポリオキシアルキレンアルキルエーテルが分岐アルキル鎖を持つ、請求項1~4のいずれかに記載の高圧水流絡合用繊維処理剤。
  6.  前記ポリオキシアルキレンアルキルエーテルが、ポリオキシエチレンアルキルエーテルである、請求項1~5のいずれかに記載の高圧水流絡合用繊維処理剤。
  7.  アニオン界面活性剤である成分(C)をさらに含み、
    処理剤の不揮発分に占める前記成分(C)の重量割合が10重量%未満である、請求項1~6のいずれかに記載の高圧水流絡合用繊維処理剤。
  8.  ビスコースレーヨン用である、請求項1~7のいずれかに記載の高圧水流絡合用繊維処理剤。
  9.  原料短繊維に対して、請求項1~8のいずれかに記載の高圧水流絡合用繊維処理剤を付与してなる、短繊維。
  10.  請求項9に記載の短繊維を含有する、不織布。
  11.  請求項9に記載の短繊維を集積させて繊維ウェブを作製し、得られた繊維ウェブを高圧水流絡合させる工程を含む、不織布の製造方法。
PCT/JP2020/032093 2019-09-06 2020-08-26 高圧水流絡合用繊維処理剤及びその利用 WO2021044912A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539100A JP6994611B2 (ja) 2019-09-06 2020-08-26 高圧水流絡合用繊維処理剤及びその利用
CN202080062349.1A CN114341422B (zh) 2019-09-06 2020-08-26 高压水刺用纤维处理剂及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162532 2019-09-06
JP2019162532 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021044912A1 true WO2021044912A1 (ja) 2021-03-11

Family

ID=74852892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032093 WO2021044912A1 (ja) 2019-09-06 2020-08-26 高圧水流絡合用繊維処理剤及びその利用

Country Status (3)

Country Link
JP (1) JP6994611B2 (ja)
CN (1) CN114341422B (ja)
WO (1) WO2021044912A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252684B1 (ja) 2022-09-12 2023-04-05 竹本油脂株式会社 ビスコースレーヨン用処理剤、ビスコースレーヨン、ビスコースレーヨン短繊維、及びスパンレース不織布の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223355A (ja) * 1986-03-20 1987-10-01 日本バイリ−ン株式会社 水流絡合不織布およびその製法
JP2014240530A (ja) * 2013-06-11 2014-12-25 松本油脂製薬株式会社 高圧水流絡合用繊維処理剤とその用途
WO2016104106A1 (ja) * 2014-12-24 2016-06-30 松本油脂製薬株式会社 不織布製造用処理剤及びその利用
JP2016199812A (ja) * 2015-04-07 2016-12-01 松本油脂製薬株式会社 不織布製造用処理剤とその利用
JP2018071013A (ja) * 2016-10-26 2018-05-10 竹本油脂株式会社 スパンレース用繊維処理剤及びスパンレース不織布の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408749B2 (ja) * 2016-05-18 2018-10-17 松本油脂製薬株式会社 短繊維用繊維処理剤及びその利用
JP6454047B1 (ja) * 2018-06-28 2019-01-16 竹本油脂株式会社 ビスコースレーヨン不織布用処理剤及びビスコースレーヨン
JP6533020B1 (ja) * 2019-01-04 2019-06-19 竹本油脂株式会社 短繊維用処理剤、短繊維、及び、スパンレース不織布の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223355A (ja) * 1986-03-20 1987-10-01 日本バイリ−ン株式会社 水流絡合不織布およびその製法
JP2014240530A (ja) * 2013-06-11 2014-12-25 松本油脂製薬株式会社 高圧水流絡合用繊維処理剤とその用途
WO2016104106A1 (ja) * 2014-12-24 2016-06-30 松本油脂製薬株式会社 不織布製造用処理剤及びその利用
JP2016199812A (ja) * 2015-04-07 2016-12-01 松本油脂製薬株式会社 不織布製造用処理剤とその利用
JP2018071013A (ja) * 2016-10-26 2018-05-10 竹本油脂株式会社 スパンレース用繊維処理剤及びスパンレース不織布の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252684B1 (ja) 2022-09-12 2023-04-05 竹本油脂株式会社 ビスコースレーヨン用処理剤、ビスコースレーヨン、ビスコースレーヨン短繊維、及びスパンレース不織布の製造方法
JP2024039910A (ja) * 2022-09-12 2024-03-25 竹本油脂株式会社 ビスコースレーヨン用処理剤、ビスコースレーヨン、ビスコースレーヨン短繊維、及びスパンレース不織布の製造方法

Also Published As

Publication number Publication date
CN114341422A (zh) 2022-04-12
CN114341422B (zh) 2023-12-19
JP6994611B2 (ja) 2022-02-04
JPWO2021044912A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6720083B2 (ja) 不織布製造用処理剤及びその利用
CN109154131B (zh) 短纤维用纤维处理剂及其利用
KR102106115B1 (ko) 폴리올레핀 섬유를 영구적으로 친수화하기 위한 조성물 및 이의 용도
JP4217757B2 (ja) 繊維処理剤およびその応用
CN111757954B (zh) 短纤维用处理剂、短纤维及水刺无纺布的制造方法
JP6605833B2 (ja) 不織布製造用処理剤とその利用
KR20090061656A (ko) 피혁 유사 시트 및 그의 제조 방법
JP5481314B2 (ja) 積層不織布及びワイパー
JP6994611B2 (ja) 高圧水流絡合用繊維処理剤及びその利用
JP6096061B2 (ja) 高圧水流絡合用繊維処理剤とその用途
JP6871238B2 (ja) 不織布製造用処理剤及びその利用
US5902754A (en) Highly smooth fiber, fabric, and formed article
CN111684118B (zh) 复合非织造片材材料
JP5813360B2 (ja) 不織布製造用繊維処理剤およびその応用
JP4026280B2 (ja) ポリオレフィン系分割型複合繊維、その製造方法及びその繊維を用いた繊維成形体
KR20070084119A (ko) 기능성 잠재형 폴리올레핀계 물품, 이의 제조 방법 및기능성 발현형 폴리올레핀계 물품의 제조 방법
JP4453179B2 (ja) 分割繊維及びこれを用いた繊維成形体
JP2004169249A (ja) 不織布及びそれを用いたワイピング材
JP5111987B2 (ja) 伸縮性不織布及びその製造方法
JP2018040100A (ja) エアレイド不織布用レーヨン繊維とその製造方法、エアレイド不織布とその製造方法、及び水解紙
JP3904332B2 (ja) 水性エマルジョンとして繊維糸条に付着させる紡糸油剤用の添加剤及びこれを含有する紡糸油剤
CN114008260A (zh) 复合非织造片材
JP2003113578A (ja) 親水性ポリオレフィン系繊維、その製造方法及びこれを用いた不織布
KR19980033894A (ko) 분할형 폴리올레핀 복합섬유 및 부직포
JPH0959856A (ja) 綿製不織布の製造方法、及び高圧液体流処理用油剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860602

Country of ref document: EP

Kind code of ref document: A1