WO2021043296A1 - Électrode et batterie à semi-conducteurs à base de particules d'oxyde inorganique - Google Patents

Électrode et batterie à semi-conducteurs à base de particules d'oxyde inorganique Download PDF

Info

Publication number
WO2021043296A1
WO2021043296A1 PCT/CN2020/113647 CN2020113647W WO2021043296A1 WO 2021043296 A1 WO2021043296 A1 WO 2021043296A1 CN 2020113647 W CN2020113647 W CN 2020113647W WO 2021043296 A1 WO2021043296 A1 WO 2021043296A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
oxide particles
electrode
solid
active layer
Prior art date
Application number
PCT/CN2020/113647
Other languages
English (en)
Chinese (zh)
Inventor
李长明
辛民昌
陈久存
吴超
辛程勋
Original Assignee
青岛九环新越新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛九环新越新能源科技股份有限公司 filed Critical 青岛九环新越新能源科技股份有限公司
Publication of WO2021043296A1 publication Critical patent/WO2021043296A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of energy storage equipment, and specifically is an electrode and a solid-state battery based on inorganic oxide particles.
  • Solid-state battery is a battery technology. Unlike lithium-ion batteries and lithium-ion polymer batteries commonly used today, solid-state batteries are batteries that use solid electrodes and solid electrolytes.
  • the traditional liquid lithium battery is vividly called "rocking chair battery” by scientists. The two ends of the rocking chair are the positive and negative poles of the battery, and the middle is the electrolyte (liquid). Lithium ions are like excellent athletes, running back and forth on both ends of the rocking chair. During the movement of lithium ions from the first capacitor electrode to the second capacitor electrode and then to the first capacitor electrode, the charging and discharging process of the battery is completed.
  • solid-state battery The principle of a solid-state battery is the same, except that its electrolyte is solid, with a density and structure that allows more charged ions to gather at one end, conduct a larger current, and then increase the battery capacity. Therefore, with the same amount of power, the volume of solid-state batteries will become smaller. Not only that, because there is no electrolyte in the solid-state battery, it will be easier to seal. When used in large equipment such as automobiles, there is no need to add additional cooling tubes, electronic controls, etc., which not only saves costs, but also effectively reduces weight.
  • the purpose of the present invention is to provide an electrode and a solid-state battery based on inorganic oxide particles, which can effectively increase the ion permeability in the electrode and reduce the interface resistance.
  • the present invention provides the following technical solutions:
  • the present invention first proposes an electrode based on inorganic oxide particles, which includes an electrode active layer containing inorganic oxide particles I for conducting ions.
  • the particle size of the inorganic oxide particles I is less than or equal to the thickness of the electrode active layer.
  • the inorganic oxide particles I include but are not limited to Li 1.5 Al 0.5 Ti 1.5 P 3 O 12 , Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 , Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , Li 6.28 Al 0.24 La 3 Zr 2 O 12 , Li 6.40 Ga 0.20 La 3 Zr 2 O 12 , Li 0.45 La 0.55 TiO 3 or Li x PO y N z .
  • it also includes an electrode current collector; the side of the inorganic oxide particles I facing away from the electrode current collector exposes the electrode active layer; or, at least two of the inorganic oxide particles I contact each other and form Inorganic oxide particle group I, in the inorganic oxide particle group I, at least one of the inorganic oxide particles I exposes the electrode active layer.
  • the present invention also provides a solid-state battery based on inorganic oxide particles, including a positive electrode, a negative electrode, and a solid electrolyte layer located between the positive electrode and the negative electrode.
  • the positive electrode and/or the negative electrode adopt the above-mentioned inorganic oxide-based Particle electrode.
  • the solid electrolyte layer contains inorganic oxide particles II.
  • the particle size of the inorganic oxide particles II is less than or equal to the thickness of the solid electrolyte layer.
  • the inorganic oxide particles II include but are not limited to Li 1.5 Al 0.5 Ti 1.5 P 3 O 12 , Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 , Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , Li 6.28 Al 0.24 La 3 Zr 2 O 12 , Li 6.40 Ga 0.20 La 3 Zr 2 O 12 , Li 0.45 La 0.55 TiO 3 or Li x PO y N z .
  • the solid electrolyte layer is exposed on both sides of the inorganic oxide particles II; or at least two of the inorganic oxide particles II are in contact with each other and form an inorganic oxide particle group II, the inorganic oxide particles In group II, at least two of the inorganic oxide particles II are respectively exposed on both sides of the solid electrolyte layer.
  • the inorganic oxide particles II arranged in the solid electrolyte layer are in contact with the inorganic oxide particles I arranged in the positive electrode and/or the negative electrode to realize ion transmission.
  • the electrode of the present invention is based on inorganic oxide particles.
  • the inorganic oxide particles I can conduct ions.
  • the inorganic oxide particles I can conduct ions to the inside of the electrode active layer. It can effectively increase the ion permeability in the electrode active layer and reduce the interface resistance.
  • Inorganic oxide particles I are arranged in the positive electrode and/or negative electrode, which can increase the ion permeability in the positive electrode and/or negative electrode and reduce the interface resistance;
  • Inorganic oxide particles II are arranged in the solid electrolyte layer.
  • the inorganic oxide particles II can effectively separate the positive electrode and the negative electrode. In this way, the positive electrode and the negative electrode can be prevented from contacting and short-circuit, and the solid electrolyte layer can be made thinner and reduced. Small internal resistance
  • the inorganic oxide particles II arranged in the solid electrolyte layer are in contact and coordination with the inorganic oxide particles I arranged in the positive electrode and the negative electrode, that is, ion transport channels can be formed between the inorganic oxide particles I and the inorganic oxide particles II. , Enhance ion transmission efficiency.
  • FIG. 1 is a schematic structural diagram of an embodiment of a solid-state battery based on inorganic oxide particles of the present invention
  • Figure 2 is a schematic diagram of the structure of an electrode based on inorganic oxide particles.
  • FIG. 1 it is a schematic structural diagram of an embodiment of a solid-state battery based on inorganic oxide particles of the present invention.
  • the solid-state battery based on inorganic oxide particles in this embodiment includes a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3 located between the positive electrode 1 and the negative electrode 2, and the positive electrode 1 and/or the negative electrode 2 are made of an electrode based on inorganic oxide particles.
  • Both the positive electrode 1 and the negative electrode 2 of this embodiment adopt electrodes based on inorganic oxide particles.
  • the positive electrode 1 as an electrode based on inorganic oxide particles to increase the ion permeability of the positive electrode 1, or only the negative electrode 2
  • An electrode based on inorganic oxide particles is used to increase the ion permeability of the negative electrode 2.
  • the electrode based on inorganic oxide particles of this embodiment includes an electrode active layer 4, and the electrode active layer 4 contains inorganic oxide particles I5 for conducting ions.
  • the particle size of the inorganic oxide particles I5 is less than or equal to the thickness of the electrode active layer 4, the particle size of the inorganic oxide particles I5 in this embodiment is equal to the thickness of the electrode active layer 4, and the mass of all the inorganic oxide particles I5 in this embodiment The ratio to the total mass of the electrode active layer 4 is less than or equal to 50%, so as to prevent the inorganic oxide particles I5 from excessively affecting the energy density of the electrode active layer 4.
  • the inorganic oxide particles I5 include but are not limited to Li 1.5 Al 0.5 Ti 1.5 P 3 O 12 , Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 , Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , Li 6.28 Al 0.24 La 3 Zr 2 O 12 , Li 6.40 Ga 0.20 La 3 Zr 2 O 12 , Li 0.45 La 0.55 TiO 3 or Li x PO y N z .
  • the solid electrolyte layer 3 contains inorganic oxide particles II6, and the particle size of the inorganic oxide particles II6 is less than or equal to the thickness of the solid electrolyte layer 3.
  • the particle size of the inorganic oxide particles II6 of this embodiment is equal to the thickness of the solid electrolyte layer 3. Since the ceramic material used in the inorganic oxide particles II6 can be used to transport ions, the ratio between the mass of the inorganic oxide particles II6 and the total mass of the solid electrolyte layer 3 may not be particularly limited.
  • the gelatinous material used in the solid electrolyte layer 3 On the one hand, the solid electrolyte material can be used to transport ions, and on the other hand, it can fill the space between the inorganic oxide particles II6. Therefore, the solid electrolyte layer 3 is obtained by curing the inorganic oxide particles II6 and the colloidal solid electrolyte material.
  • the inorganic oxide particles II6 include but are not limited to Li 1.5 Al 0.5 Ti 1.5 P 3 O 12 , Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 , Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12 , Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 , Li 6.28 Al 0.24 La 3 Zr 2 O 12 , Li 6.40 Ga 0.20 La 3 Zr 2 O 12 , Li 0.45 La 0.55 TiO 3 or Li x PO y N z .
  • the electrode of this embodiment further includes an electrode current collector 7; the side of the inorganic oxide particles I5 facing away from the electrode current collector 7 exposes the electrode active layer 4; or, at least two inorganic oxide particles I5 contact each other and form Inorganic oxide particle group I, in the inorganic oxide particle group I, at least one inorganic oxide particle I exposes the electrode active layer 4, that is, the inorganic oxide particle I5 exposes the electrode active layer 4 to facilitate ion conduction to the electrode active layer 4 internal.
  • the side of the inorganic oxide particles I5 facing away from the electrode current collector 7 of this embodiment exposes the electrode active layer 4.
  • the solid electrolyte layer 3 is exposed on both sides of the inorganic oxide particles II6; or at least two inorganic oxide particles II6 are in contact with each other to form an inorganic oxide particle group II.
  • the inorganic oxide particle group II there are at least two inorganic oxide particles.
  • the oxide particles II are respectively exposed on both sides of the solid electrolyte layer. In this way, ions can be directly conducted between the positive electrode 1 and the negative electrode 2 through the inorganic oxide particles II6, without the need to transfer the ions between the ceramic material and other solid electrolyte materials, which can effectively improve the ion transmission efficiency.
  • the solid electrolyte layer 3 is exposed on both sides of the inorganic oxide particles II6 of this embodiment.
  • the inorganic oxide particles II6 arranged in the solid electrolyte layer 3 are in contact with the inorganic oxide particles I5 arranged in the positive electrode 1 and/or the negative electrode 2 to achieve ion transmission.
  • the positive electrode 1 and the negative electrode 2 can transmit ions through the ion transmission channel constructed between the inorganic oxide particles I5 and the inorganic oxide particles II6, and can also transmit ions through other solid electrolyte materials, and the ion transmission efficiency is higher.
  • the present invention is a solid-state battery based on inorganic oxide particles.
  • the inorganic oxide particles I can conduct ions.
  • the inorganic oxide particles I can conduct ions to the inside of the electrode active layer. It can effectively increase the ion permeability in the electrode active layer and reduce the interface resistance.
  • Inorganic oxide particles I are arranged in the positive electrode and/or negative electrode, which can increase the ion permeability in the positive electrode and/or negative electrode and reduce the interface resistance;
  • Inorganic oxide particles II are arranged in the solid electrolyte layer.
  • the inorganic oxide particles II can effectively separate the positive electrode and the negative electrode. In this way, the positive electrode and the negative electrode can be prevented from contacting and short-circuit, and the solid electrolyte layer can be made thinner and reduced. Small internal resistance
  • the inorganic oxide particles II arranged in the solid electrolyte layer are in contact and coordination with the inorganic oxide particles I arranged in the positive electrode and the negative electrode, that is, ion transport channels can be formed between the inorganic oxide particles I and the inorganic oxide particles II. , Enhance ion transmission efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne une électrode à base de particules d'oxyde inorganique, l'électrode comprenant une couche active d'électrode, des particules d'oxyde inorganique I pour conduire des ions étant incluses dans la couche active d'électrode. L'invention concerne en outre une batterie à semi-conducteurs à base de particules d'oxyde inorganique, la batterie à semi-conducteurs comprenant une électrode positive, une électrode négative, et une couche d'électrolyte à semi-conducteurs située entre l'électrode positive et l'électrode négative, l'électrode à base des particules d'oxyde inorganique étant utilisée en tant qu'électrode positive et/ou électrode négative. Dans l'électrode à base de particules d'oxyde inorganique de la présente invention, en fournissant des particules d'oxyde inorganique I à l'intérieur d'une couche active d'électrode, les particules d'oxyde inorganique I peuvent conduire des ions, de telle sorte que les ions peuvent être conduits vers l'intérieur de la couche active d'électrode en utilisant les particules d'oxyde inorganique I, et par conséquent, la perméabilité ionique dans la couche active d'électrode peut être efficacement améliorée, et la résistance d'interface peut être réduite.
PCT/CN2020/113647 2019-09-06 2020-09-06 Électrode et batterie à semi-conducteurs à base de particules d'oxyde inorganique WO2021043296A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910843248.7A CN112467091A (zh) 2019-09-06 2019-09-06 基于无机氧化物颗粒的电极及固态电池
CN201910843248.7 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043296A1 true WO2021043296A1 (fr) 2021-03-11

Family

ID=74807800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113647 WO2021043296A1 (fr) 2019-09-06 2020-09-06 Électrode et batterie à semi-conducteurs à base de particules d'oxyde inorganique

Country Status (2)

Country Link
CN (1) CN112467091A (fr)
WO (1) WO2021043296A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池
CN104362288A (zh) * 2009-08-18 2015-02-18 精工爱普生株式会社 锂电池用电极体及锂电池
CN106104849A (zh) * 2014-03-06 2016-11-09 国际商业机器公司 离子传导复合隔膜
CN106560948A (zh) * 2015-10-05 2017-04-12 丰田自动车株式会社 全固体电池
CN107039640A (zh) * 2017-03-02 2017-08-11 清华大学 复合电极材料及其应用
JP2017216066A (ja) * 2016-05-30 2017-12-07 旭化成株式会社 固体電解質粒子膜の製造方法
CN210167439U (zh) * 2019-09-06 2020-03-20 青岛九环新越新能源科技股份有限公司 基于无机氧化物颗粒的电极及固态电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362288A (zh) * 2009-08-18 2015-02-18 精工爱普生株式会社 锂电池用电极体及锂电池
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池
CN106104849A (zh) * 2014-03-06 2016-11-09 国际商业机器公司 离子传导复合隔膜
CN106560948A (zh) * 2015-10-05 2017-04-12 丰田自动车株式会社 全固体电池
JP2017216066A (ja) * 2016-05-30 2017-12-07 旭化成株式会社 固体電解質粒子膜の製造方法
CN107039640A (zh) * 2017-03-02 2017-08-11 清华大学 复合电极材料及其应用
CN210167439U (zh) * 2019-09-06 2020-03-20 青岛九环新越新能源科技股份有限公司 基于无机氧化物颗粒的电极及固态电池

Also Published As

Publication number Publication date
CN112467091A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN110034275B (zh) 一种硫化物固态电池用缓冲层及其制备方法和固态电池
CN111952663A (zh) 一种界面修饰的固态石榴石型电池及其制备方法
WO2021184262A1 (fr) Cellule de batterie au lithium-ion, son procédé de préparation et batterie au lithium-ion la comprenant
WO2017128983A1 (fr) Matériau composite d'électrode positive pour accumulateur lithium-ion tout solide et son procédé de préparation et son application
US20230282827A1 (en) Lithium-ion battery
CN109155433A (zh) 一种二次电池及其制备方法
WO2022117080A1 (fr) Batterie lithium-ion et véhicule électrique
CN101154750A (zh) 高倍率凝胶聚合物锂离子动力电池及其制造方法
CN109361019A (zh) 一种全固态金属锂电池及其电化学性能提高方法
JP2016207614A (ja) 固体電池
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN115295767A (zh) 一种正极片和锂离子电池
JP2020031024A (ja) 全固体電池
CN207303231U (zh) 一种石墨烯锂离子负极极片
CN210167439U (zh) 基于无机氧化物颗粒的电极及固态电池
CN210272536U (zh) 一种新型负极片及锂离子电池
CN116598418B (zh) 一种三电极电池及其预锂化的预锂量计算方法
WO2021043296A1 (fr) Électrode et batterie à semi-conducteurs à base de particules d'oxyde inorganique
CN109545567B (zh) 一种全固态电池型电容器
CN207303230U (zh) 一种硅碳负极极片
CN111224048B (zh) 富勒烯在固态电池中的应用和固态电池及其组装工艺
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
CN112436106B (zh) 金属正极和基于金属正极的电池
CN209461572U (zh) 一种石墨烯电池
WO2024139441A1 (fr) Batterie secondaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861399

Country of ref document: EP

Kind code of ref document: A1