WO2021042852A1 - 载波相位测量值的偏差消除和获取方法、装置及接收机 - Google Patents

载波相位测量值的偏差消除和获取方法、装置及接收机 Download PDF

Info

Publication number
WO2021042852A1
WO2021042852A1 PCT/CN2020/099632 CN2020099632W WO2021042852A1 WO 2021042852 A1 WO2021042852 A1 WO 2021042852A1 CN 2020099632 W CN2020099632 W CN 2020099632W WO 2021042852 A1 WO2021042852 A1 WO 2021042852A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase measurement
carrier phase
measurement value
deviation
carried
Prior art date
Application number
PCT/CN2020/099632
Other languages
English (en)
French (fr)
Inventor
任斌
达人
李刚
张振宇
于大飞
郑占旗
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021042852A1 publication Critical patent/WO2021042852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network

Definitions

  • This application relates to the field of communication technology, and in particular to methods, devices and receivers for eliminating and obtaining deviations of carrier phase measurement values.
  • Orthogonal Frequency Division Multiplexing (OFDM) carrier phase positioning requires a system model that considers the influence of phase shift caused by transmission delay.
  • the existing OFDM signal system model does not consider the influence of the phase offset caused by the transmission delay, and is not suitable for positioning based on the carrier phase.
  • the positioning of the OFDM carrier phase requires a system model that can fully integrate the effects of various errors and interference factors on the OFDM carrier phase.
  • the existing OFDM signal system model only considers certain factors based on needs, such as the impact of timing deviation or frequency deviation on the received OFDM signal, and lacks a system model to fully consider the impact of various factors. At the same time, there is no processing method for both frequency deviation and timing deviation in the prior art.
  • the embodiments of the present application propose methods, devices and receivers for eliminating and obtaining deviations of carrier phase measurement values.
  • an embodiment of the present application proposes a method for eliminating deviations of carrier phase measurement values, including:
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are both the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • an embodiment of the present application proposes a method for obtaining a carrier phase measurement value, including:
  • Receive and measure the positioning reference signal after passing through the channel obtain the carrier phase measurement value carrying frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network side according to the carrier wave sent by each receiver
  • the phase measurement value calculates the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value, and obtains the deviation-eliminated double-differential carrier phase measurement value
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • an embodiment of the present application proposes a device for eliminating deviations of carrier phase measurement values, including:
  • the deviation elimination module is configured to calculate the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value to obtain the deviation-eliminated double-differential carrier phase measurement value;
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • an embodiment of the present application proposes a carrier phase measurement value acquisition device, including:
  • the phase measurement module is configured to receive and measure the positioning reference signal after passing through the channel, obtain the carrier phase measurement value carrying the frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network side is based on
  • the carrier phase measurement value sent by each receiver calculates the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value to obtain the deviation-eliminated double-differential carrier phase measurement value;
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • an embodiment of the present application proposes a receiver, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, wherein the processor executes the program when the program is running. The following steps:
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • an embodiment of the present application proposes a receiver, including a memory, a processor, and a computer program stored in the memory and capable of being run on the processor, wherein the processor executes the program when the program is running. The following steps:
  • Receive and measure the positioning reference signal after passing through the channel obtain the carrier phase measurement value carrying frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network side according to the carrier wave sent by each receiver
  • the phase measurement value calculates the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value, and obtains the deviation-eliminated double-differential carrier phase measurement value
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the embodiment of the present application also proposes a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores a computer program, and the computer program causes the computer to execute the aforementioned carrier phase measurement value.
  • the embodiment of the present application considers the frequency deviation and timing deviation of the carrier phase measurement value at the same time.
  • the measured value of the carrier phase can effectively remove the influence of various deviations on the measured value of the carrier phase, improve the accuracy of the measured value of the carrier phase, and thus improve the accuracy of positioning.
  • FIG. 1 is a schematic flowchart of a method for eliminating deviations of carrier phase measurement values according to an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for obtaining carrier phase measurement values according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a timing deviation provided by an embodiment of this application.
  • Figure 4 is a schematic diagram of a carrier phase sending and receiving scenario provided by an embodiment of the application.
  • Fig. 5 is a schematic diagram of a carrier phase sending and receiving process according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a device for eliminating deviations of carrier phase measurement values according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an apparatus for obtaining carrier phase measurement values according to an embodiment of the application.
  • FIG. 8 is a logical block diagram of a receiver provided by an embodiment of this application.
  • Fig. 9 is a logical block diagram of a receiver provided by another embodiment of the application.
  • FIG. 1 shows a schematic flowchart of a method for eliminating deviations of carrier phase measurement values provided by this embodiment, including:
  • S101 Calculate the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value to obtain the double-differential carrier phase measurement value that eliminates the deviation.
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the first single differential carrier phase measurement value is the difference between the first carrier phase measurement value and the second carrier phase measurement value.
  • the second single differential carrier phase measurement value is the difference between the third carrier phase measurement value and the fourth carrier phase measurement value.
  • the first carrier phase measured value, the second carrier phase measured value, the third carrier phase measured value, and the fourth carrier phase measured value are all carrier phase measured values that carry frequency deviation and timing deviation.
  • the first carrier phase measurement value is obtained by the first receiver by measuring the received first reference signal sent by the first transmitter.
  • the second carrier phase measurement value is obtained by the first receiver by measuring the received second reference signal sent by the second transmitter.
  • the third carrier phase measurement value is obtained by the second receiver by measuring the received third reference signal sent by the first transmitter.
  • the fourth carrier phase measurement value is obtained by the second receiver by measuring the received fourth reference signal sent by the second transmitter.
  • the receiver after receiving the positioning reference signal sent by the transmitter and passing through the channel, the receiver measures the positioning reference signal to obtain a carrier phase measurement value carrying frequency deviation and timing deviation, and reports the carrier phase measurement value To the network side, the network side obtains the single differential carrier phase measurement value by performing the difference operation on the two received carrier phase measurement values; further, by performing the difference operation on the two single differential carrier phase measurement values, the deviation is eliminated The measured value of the dual differential carrier phase.
  • the frequency deviation and timing deviation of the carrier phase measurement value are considered at the same time.
  • a double differential carrier phase measurement value that eliminates the deviation is obtained, which can be effective.
  • the influence of various deviations on the measured value of the carrier phase is removed, and the accuracy of the measured value of the carrier phase is improved, thereby improving the accuracy of positioning.
  • FIG. 2 shows a schematic flowchart of a method for obtaining carrier phase measurement values provided by this embodiment, including:
  • S201 Receive and measure the positioning reference signal after passing through the channel, obtain the carrier phase measurement value carrying frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network side transmits according to each receiver Calculate the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value from the measured carrier phase to obtain the deviation-eliminated double-differential carrier phase measurement value;
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the positioning reference signal is a signal sent by the transmitter to the receiver after passing through the channel.
  • the positioning reference signal is transmitted from the transmitter to the receiver after passing through the channel using the waveform of the OFDM symbol.
  • the carrier phase measurement value is the measured value of the carrier phase carrying the frequency deviation and the timing deviation after the receiver receives the positioning reference signal sent by the transmitter and passed through the channel, and then measures the positioning reference signal.
  • this embodiment performs two difference processing on the carrier phase measurement value carrying the frequency deviation and timing deviation, and obtains the deviation-eliminated double differential carrier phase measurement value, which can effectively remove the influence of various deviations on the carrier phase measurement value. Influence, improve the accuracy of the carrier phase measurement value, thereby improving the accuracy of positioning.
  • the carrier phase measurement value is calculated according to the frequency domain equivalent received signal model of each subcarrier.
  • the frequency domain equivalent received signal model is obtained by adding frequency deviation and timing deviation to the ideal model of the frequency domain equivalent received signal.
  • the ideal OFDM system model that does not consider the transmission delay, it includes the transmission signal model and the channel model.
  • OFDM transmission is based on the block OFDM model, that is, the channel in each OFDM symbol remains unchanged.
  • IDFT normalized inverse discrete time Fourier transform
  • the time domain signal x m (t) is up-converted to the center frequency f c of the carrier, and the radio frequency signal obtained is shown in the following equation (3):
  • h l (t) and ⁇ l correspond to the relative attenuation and propagation delay of the l-th path, respectively.
  • the number of multipath components is L, and ⁇ ( ⁇ ) represents the unit impulse (Dirac delta) function.
  • h l and ⁇ l are the attenuation and delay components of the l-th path, respectively.
  • the unit of the delay component ⁇ l is seconds.
  • the delay component takes the number of samples as the unit, and the value is
  • the nth data sample of the mth OFDM symbol received can be expressed by the following formula:
  • H k is the equivalent frequency domain channel response on the k-th subcarrier, and the calculation formula is as follows:
  • the ideal model of the equivalent received signal in the frequency domain on the mth OFDM symbol and the kth subcarrier can be obtained as:
  • Obey the complex Gaussian distribution with a mean value of 0 and a variance of ⁇ 2 , and H k refer to formula (7).
  • the ideal OFDM system model considering the transmission delay it also includes the transmission signal model and the channel model.
  • the transmission signal model of the ideal OFDM system model considering the transmission delay is exactly the same as the transmission signal model of the ideal OFDM system model without considering the transmission delay, and will not be repeated.
  • h l (t), ⁇ l (t) and ⁇ l respectively correspond to the relative attenuation, phase shift and propagation delay of the l-th path.
  • the number of multipath components is L, and ⁇ ( ⁇ ) represents the unit impulse (Dirac delta) function.
  • the phase offset ⁇ l (t) includes the component due to free space propagation plus the component due to other phase noise experienced in the channel among them, It may be caused by the initial phase noise.
  • ⁇ l (t) can be expressed by the following formula:
  • h l , ⁇ l and ⁇ l are the amplitude attenuation, phase shift and delay components of the l-th path, respectively.
  • the unit of the delay component ⁇ l is seconds.
  • the delay component is based on the number of sampling points, and the value is
  • formula (4) does not include the phase offset ⁇ l (t)
  • formula (9) includes the phase offset ⁇ l (t); for carrier phase
  • the key metric value expected to be obtained is the component caused by the free space propagation included in the phase offset ⁇ l (t), that is, 2 ⁇ f c ⁇ l .
  • the nth data sample of the mth OFDM symbol received can be expressed by the following formula:
  • H k is the equivalent frequency domain channel response on the k-th subcarrier, and the calculation formula is as follows:
  • the frequency-domain equivalent received signal model on the m-th OFDM symbol and the k-th subcarrier can be obtained as:
  • the main difference between formula (14) and formula (8) is the frequency-domain equivalent received signal on the k-th subcarrier of the m-th OFDM symbol
  • the phase value of is not the same, the phase value in formula (14) is It is related to the carrier frequency and can truly reflect the transmission distance; while the phase value in formula (8) is -j2 ⁇ (k ⁇ f SCS ) ⁇ l , which has nothing to do with the carrier frequency and cannot truly reflect the transmission distance.
  • ⁇ TX (t) and ⁇ RX (t) are the phase noise of the oscillators of the transmitter and receiver, respectively.
  • the influence of ⁇ TX (t) on the up-conversion of the transmitted signal x m (t) and the influence of ⁇ RX (t) on the down-conversion of the received signal y m (t) can be expressed as with
  • the frequency domain channel bandwidth corresponding to each subcarrier can usually be considered as a frequency flat fading channel.
  • the phase noise of the transmitter and the receiver have the same effect on the OFDM system model. Therefore, in the OFDM system model, the phase noise of the receiver oscillator can be used to represent the common influence of the phase noise of the transmitter and the receiver on the OFDM system model.
  • the frequency domain equivalent received signal of each subcarrier is based on frequency deviation, timing deviation and equivalent frequency domain channel.
  • the response is calculated; wherein, the timing deviation and the equivalent frequency domain channel response are calculated according to the center frequency of the carrier.
  • m is the total number of orthogonal frequency division multiplexing OFDM symbols
  • k is the sequence number of the subcarrier
  • 1i is the imaginary unit
  • ⁇ m 1 is the phase deviation caused by the frequency deviation
  • f c is the center frequency of the carrier
  • ⁇ f SCS is the subcarrier spacing
  • ⁇ f is the frequency deviation
  • ⁇ t is the timing deviation
  • Weight factor H k is the equivalent frequency domain channel response on the kth subcarrier of the mth OFDM symbol
  • X k is the modulation symbol sent on the kth subcarrier of the mth OFDM symbol
  • W k is the mth subcarrier
  • l is the sequence number of the channel multipath component
  • L is the number of channel multipath components
  • J kr is the phase noise weighting factor of the (kr)th sample point
  • N is The number of sample points corresponding to the OFDM symbol
  • Formula (15) defines the frequency-domain received symbol on the k-th subcarrier of the m-th OFDM symbol, and the influence of each parameter is analyzed below.
  • phase shift ⁇ m,1 caused by the frequency deviation ⁇ f is the same for all subcarriers of the OFDM symbol. If we ignore the inter-subcarrier interference caused by the phase shift caused by ⁇ f Then ⁇ m,1 is determined by the frequency offset ⁇ f and the time interval from the start of the slot to the mth OFDM symbol.
  • the influence of the propagation delay ( ⁇ l ) of the multipath channel on the measured value of the carrier phase is reflected in the channel frequency response H k shown in formula (13).
  • the accuracy of carrier phase positioning depends on whether the carrier phase measurement value caused by the propagation delay can be obtained correctly.
  • the key is how to obtain the components that only contain free space propagation (ie 2 ⁇ f c ⁇ l ), and eliminate the frequency deviation ⁇ f, timing deviation ⁇ t, and phase noise. Impact.
  • double differential is used to eliminate the influence of frequency deviation ⁇ f and timing deviation ⁇ t on the measured value of carrier phase.
  • the purpose of the double differential scheme is to eliminate the influence of frequency deviation ⁇ f and timing deviation ⁇ t, and obtain the carrier phase caused by free space propagation. Value (ie 2 ⁇ f c ⁇ l ).
  • the output carrier phase measurement value should not include the influence of subcarrier k, but an OFDM symbol will only output the same carrier phase measurement value, therefore, in formula (19) The components corresponding to the different subcarriers k will not be reflected in the final carrier phase measurement value. And when the PLL is initially locked, the output carrier phase value is between 0 and 2 ⁇ .
  • the following analyzes the measured value of the carrier phase when the PLL is initially locked, and the expressions of the double-differential elimination frequency deviation ⁇ f and timing deviation ⁇ t.
  • Each carrier phase measurement value is calculated based on the frequency deviation phase measurement value, the timing deviation phase measurement value, the propagation delay phase measurement value, and the phase noise phase measurement value.
  • timing deviation phase measurement value and the propagation delay phase measurement value are both calculated according to the center frequency of the carrier.
  • the measured value of the first carrier phase The second carrier phase measurement value
  • the third carrier phase measurement value The fourth carrier phase measurement value They are as follows:
  • a is the first receiver
  • b is the second receiver
  • i is the first transmitter
  • j is the second transmitter
  • m is the total number of orthogonal frequency division multiplexing OFDM symbols.
  • the number, q is the sequence number of the OFDM symbol, 0 ⁇ q ⁇ m-1
  • N is the number of sample points corresponding to the OFDM symbol
  • Is the number of sample points corresponding to the cyclic prefix of the qth OFDM symbol
  • f c is the center frequency of the carrier
  • Is the frequency deviation carried by the first carrier phase measurement value Is the frequency deviation carried by the second carrier phase measurement value
  • Is the frequency deviation carried by the fourth carrier phase measurement value Is the timing deviation carried by the first carrier phase measurement value, Is the timing deviation carried by the second carrier phase measurement value, Is the timing deviation carried by the third carrier phase measurement value, Is the timing deviation carried by the fourth carrier phase measurement value, Is the propagation delay carried by the first carrier
  • the superscript "ij" indicates that the single-difference operation is performed between the measured values of i and j of the two base stations (transmitting ends), namely
  • ⁇ f represents the frequency deviation of the crystal oscillator of the base station and the UE, not the Doppler frequency shift of the UE.
  • the phase deviation caused by the UE timing deviation and the frequency error of the UE crystal oscillator can be eliminated by double differential, and the desired double differential propagation delay value can be obtained.
  • N m represents the double difference integer ambiguity to be solved.
  • This embodiment provides a complete system model that integrates the effects of various errors and interference factors on the phase of the OFDM carrier.
  • the system model includes the effects of wireless fading channel transmission delay, timing deviation, frequency deviation, and phase noise on the OFDM carrier.
  • the influence of the phase can be applied to the carrier phase positioning scheme based on the OFDM system, and the influence of the frequency deviation ⁇ f and the time deviation ⁇ t on the measured value of the carrier phase is eliminated based on the double differential.
  • Step1 to Step4 the overall flow chart of carrier phase positioning based on double differential to eliminate the frequency offset and time offset error of the OFDM signal is shown in FIG. 5.
  • Step1 to Step4, Step6 to Step9, and Step11 are existing technologies
  • Step5 and Step10 are unique innovations of this application.
  • the sending end can be a base station or a terminal
  • the receiving end can be a terminal or a base station.
  • the base station is the sender:
  • Step 1 Perform serial-to-parallel conversion for downlink reference signal (Reference Signal, RS) transmission signals;
  • Reference Signal Reference Signal
  • Step2 Perform an inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) operation, as shown in formula (2);
  • Step3 perform parallel-to-serial conversion
  • Step5 through the equivalent baseband channel, and add signal transmission delay, timing deviation, frequency deviation and phase noise.
  • the terminal is the receiving end:
  • Step6 go to CP
  • Step7 Perform serial-to-parallel conversion for the downlink RS received signal
  • Step8 Perform Fast Fourier Transform (FFT) operation
  • Step9. Perform parallel-to-serial conversion to obtain the frequency domain received symbol shown in formula (15)
  • Step10 Receive symbols based on the frequency domain shown in formula (15) Calculate the carrier phase measurement value, and use the double differential method described in this embodiment to calculate the double differential carrier phase measurement value shown in formula (28)
  • Step11 double differential carrier phase measurement value It is reported to the network side for the network side to jointly calculate the double-differential ambiguity N m based on the known base station position and reference UE position, and then calculate the target UE position or the target UE itself.
  • This embodiment provides carrier phase measurement values that include transmission delay, timing deviation, frequency deviation, phase noise, and other errors, which can better simulate the effect of errors on the accuracy of carrier phase measurement values; at the same time, double differentials are used to eliminate frequency deviations.
  • the influence of ⁇ f and timing deviation ⁇ t on the measured value of the carrier phase can effectively remove the influence of the above-mentioned error on the measured value of the carrier phase, improve the accuracy of the measured value of the carrier phase, and thus improve the accuracy of positioning.
  • FIG. 6 shows a schematic structural diagram of a device for eliminating deviations of carrier phase measurement values provided by this embodiment.
  • the device includes: a deviation eliminating module 601, wherein:
  • the deviation elimination module 601 is configured to calculate the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value to obtain the deviation-eliminated double-differential carrier phase measurement value;
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the device for eliminating the deviation of the carrier phase measurement value described in this embodiment can be used to execute the corresponding method embodiment described above, and its principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 shows a schematic structural diagram of an apparatus for obtaining carrier phase measurement values provided by this embodiment.
  • the apparatus includes: a phase measurement module 701, wherein:
  • the phase measurement module 701 is configured to receive and measure the positioning reference signal after passing through the channel, obtain the carrier phase measurement value carrying frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network The side calculates the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value according to the carrier phase measurement value sent by each receiver, and obtains the deviation-eliminated double-differential carrier phase measurement value;
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the apparatus for obtaining carrier phase measurement values described in this embodiment can be used to execute the corresponding method embodiments described above, and its principles and technical effects are similar, and will not be repeated here.
  • the receiver includes: a processor (processor) 801, a memory (memory) 802, and a bus 803;
  • the processor 801 and the memory 802 communicate with each other through the bus 803;
  • the processor 801 is configured to call program instructions in the memory 802 to perform the following steps:
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • the frequency deviation and timing deviation of the carrier phase measurement value are considered at the same time.
  • a double differential carrier phase measurement value that eliminates the deviation is obtained, which can be effective.
  • the influence of various deviations on the measured value of the carrier phase is removed, and the accuracy of the measured value of the carrier phase is improved, thereby improving the accuracy of positioning.
  • the first single differential carrier phase measurement value is the difference between the first carrier phase measurement value and the second carrier phase measurement value
  • the second single differential carrier phase measurement value is the difference between the third carrier phase measurement value and the fourth carrier phase measurement value
  • the first carrier phase measurement value, the second carrier phase measurement value, the third carrier phase measurement value, and the fourth carrier phase measurement value are all carrier phase measurement values that carry frequency deviation and timing deviation.
  • the first carrier phase measurement value is obtained by the first receiver by measuring the received first reference signal sent by the first transmitter;
  • the second carrier phase measurement value is obtained by measuring the second reference signal sent by the second transmitter received by the first receiver;
  • the third carrier phase measurement value is obtained by the second receiver by measuring the received third reference signal sent by the first transmitter;
  • the fourth carrier phase measurement value is obtained by the second receiver by measuring the received fourth reference signal sent by the second transmitter.
  • each carrier phase measurement value is calculated according to the frequency deviation phase measurement value, the timing deviation phase measurement value, the propagation delay phase measurement value, and the phase noise phase measurement value;
  • timing deviation phase measurement value and the propagation delay phase measurement value are both calculated according to the center frequency of the carrier.
  • first carrier phase measurement value The second carrier phase measurement value
  • third carrier phase measurement value The fourth carrier phase measurement value
  • a is the first receiver
  • b is the second receiver
  • i is the first transmitter
  • j is the second transmitter
  • m is the total number of orthogonal frequency division multiplexing OFDM symbols.
  • the number, q is the sequence number of the OFDM symbol, 0 ⁇ q ⁇ m-1
  • N is the number of sample points corresponding to the OFDM symbol
  • Is the number of sample points corresponding to the cyclic prefix of the qth OFDM symbol
  • f c is the center frequency of the carrier
  • Is the frequency deviation carried by the first carrier phase measurement value Is the frequency deviation carried by the second carrier phase measurement value
  • Is the frequency deviation carried by the fourth carrier phase measurement value Is the timing deviation carried by the first carrier phase measurement value, Is the timing deviation carried by the second carrier phase measurement value, Is the timing deviation carried by the third carrier phase measurement value, Is the timing deviation carried by the fourth carrier phase measurement value, Is the propagation delay carried by the first carrier
  • the calculating the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value to obtain the deviation-eliminated double-differential carrier phase measurement value specifically includes:
  • the receiver described in this embodiment can be used to execute the corresponding method embodiments described above, and its principles and technical effects are similar, and will not be repeated here.
  • the receiver includes: a processor (processor) 901, a memory (memory) 902 and a bus 903;
  • the processor 901 and the memory 902 communicate with each other through the bus 903;
  • the processor 901 is configured to call program instructions in the memory 902 to perform the following steps:
  • Receive and measure the positioning reference signal after passing through the channel obtain the carrier phase measurement value carrying frequency deviation and timing deviation, and send the carrier phase measurement value to the network side, so that the network side according to the carrier wave sent by each receiver
  • the phase measurement value calculates the difference between the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value, and obtains the deviation-eliminated double-differential carrier phase measurement value
  • the first single-differential carrier phase measurement value and the second single-differential carrier phase measurement value are respectively the difference of two carrier phase measurement values, and the two carrier phase measurement values carry frequency deviation and timing deviation.
  • this embodiment After the transmitter sends the positioning reference signal, it passes through the channel, so when the positioning reference signal arrives at the receiver, it carries frequency deviation and timing deviation, that is, the carrier phase measurement value measured by the receiver carries frequency deviation and timing deviation.
  • this embodiment performs two difference processing on the carrier phase measurement value carrying the frequency deviation and timing deviation, and obtains the deviation-eliminated double differential carrier phase measurement value, which can effectively remove the influence of various deviations on the carrier phase measurement value. Influence, improve the accuracy of the carrier phase measurement value, thereby improving the accuracy of positioning.
  • the carrier phase measurement value is calculated according to the frequency domain equivalent received signal of each subcarrier.
  • the frequency domain equivalent received signal of each subcarrier is calculated according to frequency deviation, timing deviation and equivalent frequency domain channel response
  • timing deviation and the equivalent frequency domain channel response are both calculated according to the center frequency of the carrier.
  • m is the total number of orthogonal frequency division multiplexing OFDM symbols
  • k is the sequence number of the subcarrier
  • 1i is the imaginary unit
  • ⁇ m 1 is the phase deviation caused by the frequency deviation
  • f c is the center frequency of the carrier
  • ⁇ f SCS is the subcarrier spacing
  • ⁇ f is the frequency deviation
  • ⁇ t is the timing deviation
  • Is the common phase deviation introduced by frequency deviation, timing deviation and phase noise to the kth subcarrier
  • J 0 is the common phase weighting factor introduced by phase noise to the kth subcarrier
  • H k is the kth subcarrier for the mth OFDM symbol
  • X k is the modulation symbol sent on the kth subcarrier at the mth OFDM symbol
  • W k is the complex Gaussian noise on the kth subcarrier
  • l is the sequence number of the channel multipath component
  • L is the number of channel multipath components
  • J kr is the phase noise weight
  • H k is the equivalent frequency domain channel response on the kth subcarrier of the mth OFDM symbol
  • X k is the modulation symbol transmitted on the k th subcarrier of the m-th OFDM symbol
  • W k is the k complex Gaussian noise on the m-th subcarriers of OFDM symbols.
  • the positioning reference signal adopts an OFDM symbol waveform to be transmitted from the transmitter to the receiver after passing through the channel.
  • the receiver described in this embodiment can be used to execute the corresponding method embodiments described above, and its principles and technical effects are similar, and will not be repeated here.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer The methods provided in the foregoing method embodiments can be executed.
  • This embodiment provides a non-transitory computer-readable storage medium that stores computer instructions that cause the computer to execute the methods provided in the foregoing method embodiments.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One location, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Based on the disclosure of this application, those of ordinary skill in the art can understand and implement the technical solutions disclosed in this application without creative work.
  • an embodiment of the present application provides a computer software product, which can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., and includes several instructions to make a computer
  • a device for example, a personal computer, a server, or a network device, etc. executes the method described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本申请实施例公开了载波相位测量值的偏差消除和获取方法、装置及接收机,载波相位测量值的偏差消除方法包括:计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。本申请实施例同时考虑了载波相位测量值的频率偏差和定时偏差,通过对携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。

Description

载波相位测量值的偏差消除和获取方法、装置及接收机
相关申请的交叉引用
本申请要求于2019年9月5日提交的申请号为201910838639.X,发明名称为“载波相位测量值的偏差消除和获取方法、装置及接收机”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信技术领域,具体涉及载波相位测量值的偏差消除和获取方法、装置及接收机。
背景技术
OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)载波相位的定位需要一个考虑传输时延导致的相位偏移影响的系统模型。
现有的OFDM信号的系统模型没有考虑传输时延导致的相位偏移的影响,不适用基于载波相位的定位。此外,OFDM载波相位的定位需要一个能完整综合各种误差和干扰因素对OFDM载波相位影响的系统模型。但现有的OFDM信号的系统模型只根据需要来考虑某种因素,例如定时偏差或频率偏差对所接收的OFDM信号的影响,缺乏一个系统模型完整地考虑各种因素的影响。同时,现有技术中也没有同时针对频率偏差和定时偏差的处理方法。
发明内容
由于现有方法存在上述问题,本申请实施例提出载波相位测量值的偏差消除和获取方法、装置及接收机。
在第一方面,本申请实施例提出一种载波相位测量值的偏差消除方法,包括:
计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值均为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏 差和定时偏差。
在第二方面,本申请实施例提出一种载波相位测量值的获取方法,包括:
接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
在第三方面,本申请实施例提出一种载波相位测量值的偏差消除装置,包括:
偏差消除模块,配置成计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
在第四方面,本申请实施例提出一种载波相位测量值的获取装置,包括:
相位测量模块,配置成接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
在第五方面,本申请实施例提出一种接收机,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处 理器运行所述程序时执行如下步骤:
计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
在第六方面,本申请实施例提出一种接收机,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器运行所述程序时执行如下步骤:
接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
在第七方面,本申请实施例还提出一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机程序,所述计算机程序使所述计算机执行上述载波相位测量值的偏差消除方法,和/或,载波相位测量值的获取方法。
由上述技术方案可知,本申请实施例同时考虑了载波相位测量值的频率偏差和定时偏差,通过对携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员 来讲,在不付出创造性劳动的前提下,还可以根据这些图获得其他的附图。
图1为本申请一实施例提供的一种载波相位测量值的偏差消除方法的流程示意图;
图2为本申请一实施例提供的一种载波相位测量值的获取方法的流程示意图;
图3为本申请一实施例提供的一种定时偏差的示意图;
图4为本申请一实施例提供的一种载波相位的发送和接收场景示意图;
图5为本申请一实施例提供的一种载波相位的发送和接收流程示意图;
图6为本申请一实施例提供的一种载波相位测量值的偏差消除装置的结构示意图;
图7为本申请一实施例提供的一种载波相位测量值的获取装置的结构示意图;
图8为本申请一实施例提供的接收机的逻辑框图;
图9为本申请另一实施例提供的接收机的逻辑框图。
具体实施方式
下面结合附图,对本申请的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本申请的技术方案,而不能以此来限制本申请的保护范围。
图1示出了本实施例提供的一种载波相位测量值的偏差消除方法的流程示意图,包括:
S101:计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值。
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
所述第一单差分载波相位测量值为第一载波相位测量值和第二载波相位测量值的差值。
所述第二单差分载波相位测量值为第三载波相位测量值和第四载波相位测量值的差值。
所述第一载波相位测量值、第二载波相位测量值、第三载波相位测量 值和第四载波相位测量值均为携带频率偏差和定时偏差的载波相位测量值。
所述第一载波相位测量值为第一接收机通过测量所接收到的第一发送机发送的第一参考信号获得。
所述第二载波相位测量值为所述第一接收机通过测量所接收到的第二发送机发送的第二参考信号获得。
所述第三载波相位测量值为第二接收机通过测量所接收到的所述第一发送机发送的第三参考信号获得。
所述第四载波相位测量值为所述第二接收机通过测量所接收到的所述第二发送机发送的第四参考信号获得。
具体地,接收机在接收到发送机发送的且经过信道的定位参考信号后,对该定位参考信号进行测量,得到携带频率偏差和定时偏差的载波相位测量值,并将该载波相位测量值上报至网络侧,网络侧通过对接收的两个载波相位测量值进行作差运算,得到单差分载波相位测量值;进一步地,通过对两个单差分载波相位测量值进行作差运算,得到消除偏差的双差分载波相位测量值。
本实施例同时考虑了载波相位测量值的频率偏差和定时偏差,通过对携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。
图2示出了本实施例提供的一种载波相位测量值的获取方法的流程示意图,包括:
S201:接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
其中,所述定位参考信号为发送机向接收机发送的且经过信道后的信号。
所述定位参考信号采用OFDM符号的波形从发送机经过信道后发送至接收机。
所述载波相位测量值为接收机接收到发送机发送的且经过信道的定位参考信号后,对该定位参考信号进行测量,得到的携带频率偏差和定时偏差的载波相位的测量值。
具体地,发送机发送定位参考信号后,由于经过了信道,因此当该定位参考信号到达接收机时,携带了频率偏差和定时偏差,即接收机测量得到的载波相位测量值携带了频率偏差和定时偏差。为了消除偏差,本实施例对携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。
进一步地,在上述方法实施例的基础上,所述载波相位测量值根据各子载波的频域等效接收信号模型计算得到。
所述频域等效接收信号模型为频域等效接收信号理想模型添加频率偏差和定时偏差后得到。
具体来说,对于不考虑传输时延的理想OFDM系统模型,包括了发送信号模型和信道模型,下面介绍各模型中使用到的基本参数和符号定义:
1、发送信号模型:
考虑具有N个子载波的OFDM传输,子载波间隔Δf SCS,以及采样时间间隔T s=1/(NΔf SCS)。OFDM传输是基于块OFDM模型的,即每个OFDM符号内的信道保持不变。假设N个正交幅度调制(QAM)符号X k,k∈{0,1,…,N-1}被分组为矢量X=[X 0,…,X N-1] T,并在时隙中的第m个OFDM符号中发送。X做归一化逆离散时间傅立叶变换(IDFT),可得持续时间为T=NT s=1/Δf SCS的OFDM符号的复包络的连续时间表示。
Figure PCTCN2020099632-appb-000001
从(1)通过采样时间间隔T s采样获得的数字基带中的离散时间信号在时刻
Figure PCTCN2020099632-appb-000002
可以表示为
Figure PCTCN2020099632-appb-000003
时域信号x m(t)被上变频到载波的中心频率f c得到的射频信号如下式(3)所示:
Figure PCTCN2020099632-appb-000004
2、信道模型:
假设在时刻t发射机和接收机之间的多径信道的脉冲响应通过如下公式(4)建模:
Figure PCTCN2020099632-appb-000005
其中,h l(t)和τ l分别对应于第l路径的相对衰减和传播延迟。多径分量的数量为L,δ(·)表示单位冲激(Dirac delta)函数。
假设信道是准静态信道,即在一个OFDM符号传输期间内信道保持不变,则准静态信道可以用时间离散信道脉冲响应(CIR)h=[h 0,h 1,...,h L-1] T来描述,
Figure PCTCN2020099632-appb-000006
其中,h l和τ l分别是第l个路径的衰减和延迟分量。延迟分量τ l的单位是秒。用采样间隔采样时,延迟分量以采样数为单位,取值为
Figure PCTCN2020099632-appb-000007
3、不考虑传输时延的理想OFDM系统模型:
在理想的OFDM接收条件下,假设发射机和接收机之间具有理想的时间同步和频率同步,没有相位噪声。接收端去除属于循环前缀(CP)的接收信号样本之后,接收到的第m个OFDM符号的第n个数据样本可以通过下式表示:
Figure PCTCN2020099632-appb-000008
Figure PCTCN2020099632-appb-000009
其中,H k是第k个子载波上的等效频域信道响应,计算公式如下:
Figure PCTCN2020099632-appb-000010
针对公式(7)的等式两端做归一化DFT操作,可得第m个OFDM符号、第k个子载波上的频域等效接收信号理想模型为:
Figure PCTCN2020099632-appb-000011
其中,
Figure PCTCN2020099632-appb-000012
服从均值为0,方差为σ 2的复高斯分布,H k参见公式(7)。
进一步地,对于考虑传输时延的理想OFDM系统模型,也包括了发送信号模型和信道模型,下面介绍各模型中使用到的基本参数和符号定义:
1、发送信号模型:
考虑传输时延的理想OFDM系统模型的发送信号模型与不考虑传输时延的理想OFDM系统模型的发送信号模型完全相同,不再赘述。
2、信道模型:
假设在时刻t发射机和接收机之间的多径信道的脉冲响应通过如下公式建模:
Figure PCTCN2020099632-appb-000013
其中,h l(t),φ l(t)和τ l分别对应于第l路径的相对衰减,相位偏移和传播延迟。多径分量的数量为L,δ(·)表示单位冲激(Dirac delta)函数。相位偏移φ l(t)包括由于自由空间传播引起的分量加上由于在信道中经历的其它相位噪声引起的分量
Figure PCTCN2020099632-appb-000014
其中,
Figure PCTCN2020099632-appb-000015
可能是由于初始相位噪声导致的。φ l(t)可以由下式表示:
Figure PCTCN2020099632-appb-000016
假设信道是准静态信道,即在一个OFDM符号传输期间内信道保持不变,则准静态信道可以用时间离散信道脉冲响应(CIR)h=[h 0,h 1,...,h L-1] T来描述:
Figure PCTCN2020099632-appb-000017
其中,h ll和τ l分别是第l个路径的幅度衰减、相移和延迟分量。延迟分量τ l的单位是秒。用采样间隔采样时,延迟分量以采样样值点数为单位,取值为
Figure PCTCN2020099632-appb-000018
需要说明的是,与不考虑传输时延的理想OFDM系统模型对比,公式(4)不包含相位偏移φ l(t),公式(9)包含相位偏移φ l(t);针对载波相位技术方案,期望获取的关键度量值是相位偏移φ l(t)包括的自由空间传播引起的分量,即2πf cτ l
3、理想条件下的OFDM系统模型:
在理想的OFDM接收条件下,假设发射机和接收机之间具有理想的时间同步和频率同步,没有相位噪声。接收端去除属于循环前缀(CP)的接收信号样本之后,接收到的第m个OFDM符号的第n个数据样本可以通过下式表示:
Figure PCTCN2020099632-appb-000019
其中,H k是第k个子载波上的等效频域信道响应,计算公式如下:
Figure PCTCN2020099632-appb-000020
针对公式(12)的等式两端做归一化离散时间傅里叶变换(DFT)操作,可得第m个OFDM符号、第k个子载波上的频域等效接收信号模型 为:
Figure PCTCN2020099632-appb-000021
其中,
Figure PCTCN2020099632-appb-000022
服从均值为0,方差为σ 2的复高斯分布,H k参见公式(13)。
需要说明的是,与不考虑传输时延的理想OFDM系统模型对比,公式(14)和公式(8)的主要区别在于第m个OFDM符号的第k个子载波上的频域等效接收信号
Figure PCTCN2020099632-appb-000023
的相位值不相同,公式(14)中的相位值是
Figure PCTCN2020099632-appb-000024
与载波频率相关,能够真实反应传输距离;而公式(8)中的相位值是-j2π(kΔf SCSl,与载波频率无关,不能真实反应传输距离。
更进一步地,对于定时偏差、频率偏差和相位噪声条件下的完整OFDM系统模型,介绍如下:
首先给出定时偏差Δt,频率偏差Δf和相位噪声的定义。
如图3所示,定义
Figure PCTCN2020099632-appb-000025
表示接收端实际定时与理想定时之间的定时偏差,
Figure PCTCN2020099632-appb-000026
表示发送端实际定时与理想定时之间的定时偏差,
Figure PCTCN2020099632-appb-000027
表示发射端和接收端之间的定时偏差,则在接收端时刻t Rx收到的接收信号对应于发送端时刻t Tx=t Rx-Δt。
假设在接收端和发射端之间进行初始时间同步和频率同步之后的载波频率偏差(CFO)是Δf,并且采用δf=Δf/Δf SCS是归一化的频率偏差,其中,Δf SCS是子载波间隔。
假设φ TX(t)和φ RX(t)分别是发射机和接收机的振荡器的相位噪声。φ TX(t)对发射信号x m(t)的上变频转换的影响以及φ RX(t)对接收信号y m(t)的下变频转换的影响可以表示为
Figure PCTCN2020099632-appb-000028
Figure PCTCN2020099632-appb-000029
在OFDM系统模型中,每个子载波对应的频域信道带宽内通常可认为是频率平坦衰落信道。在频率平坦衰落信道条件下,发射机和接收机的相位噪声对OFDM系统模型有相同的影响。于是,在OFDM系统模型中,可使用接收机振荡器的相位噪声来代表发射机和接收机的相位噪声对OFDM系统模型的共同影响。
基于上述定义,通过数学推导可以得到OFDM系统在同时存在定时偏差Δt,频率偏差Δf和相位噪声的影响下,各子载波的频域等效接收信号 根据频率偏差、定时偏差和等效频域信道响应计算得到;其中,所述定时偏差和等效频域信道响应均根据载波的中心频率计算得到。
具体地,第m个OFDM符号的第k个子载波上的频域接收符号
Figure PCTCN2020099632-appb-000030
的表达式,即频域等效接收信号模型如下:
Figure PCTCN2020099632-appb-000031
其中,
Figure PCTCN2020099632-appb-000032
Figure PCTCN2020099632-appb-000033
Figure PCTCN2020099632-appb-000034
Figure PCTCN2020099632-appb-000035
其中,m为正交频分复用OFDM符号的总个数,k为子载波的序号,1i为虚数单位,θ m,1为频率偏差引起的相位偏差,f c为载波的中心频率,Δf SCS为子载波间隔,δf为频率偏差,Δt为定时偏差,
Figure PCTCN2020099632-appb-000036
Figure PCTCN2020099632-appb-000037
权因子,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第m个OFDM符号的第k个子载波上的复高斯噪声,l为信道多径分量的序号,L为信道多径分量的数量,J k-r为第(k-r)个样值点的相位噪声加权因子,N为OFDM符号对应的样值点数,h l为第l条信道多径分量的相对幅度衰减,τ l为第l条信道多径分量的相位偏移,
Figure PCTCN2020099632-appb-000038
为第l条信道多径分量的传播延迟,J p为第p个样值点的相位噪声加权因子,
Figure PCTCN2020099632-appb-000039
为m个OFDM符号的第n个样值点上的相位噪声,
Figure PCTCN2020099632-appb-000040
为第m个OFDM符号上频率偏差引入的公共相位偏差,
Figure PCTCN2020099632-appb-000041
为第m个OFDM符号的第n个样值点上频率偏差引入的独立相位偏差,n为样值点序号,
Figure PCTCN2020099632-appb-000042
为第q个OFDM符号的循环前缀对 应的样值点数。
公式(15)定义了第m个OFDM符号的第k个子载波上的频域接收符号,下面分析各个参数的影响。
第一,由频率偏差δf引起的相移θ m,1对于OFDM符号的所有子载波都是相同的。如果忽略由δf引起的相移带来的子载波间干扰
Figure PCTCN2020099632-appb-000043
则θ m,1由频率偏移δf和从时隙开始到第m个OFDM符号的时间间隔确定。
第二,由
Figure PCTCN2020099632-appb-000044
上的定时偏差Δt引起的载波相位偏差取决于子载波k的绝对载波频率f c+kΔf SCS,例如,
Figure PCTCN2020099632-appb-000045
在绝大多数研究OFDM技术的现有论文中,只提到了
Figure PCTCN2020099632-appb-000046
而忽略了
Figure PCTCN2020099632-appb-000047
对于基于OFDM信号的载波相位的定位技术方案,
Figure PCTCN2020099632-appb-000048
对载波相位测量值的影响不可忽略。
第三,多径信道的传播时延(τ l)对载波相位测量值的影响体现在公式(13)所示的信道频率响应H k中。载波相位定位的精确度取决于能否正确地获得由传播时延引起的载波相位测量值。
第四,由频率偏差δf、定时偏差Δt、相位噪声
Figure PCTCN2020099632-appb-000049
和传播延迟(τ l)引起的载波相位偏差在载波相位测量值中混合在一起,因此需要在载波相位测量公式中综合考虑。对于基于载波相位的定位技术,需要消除频率偏差δf、时间偏差Δt对载波相位测量值的影响。
需要说明的是,针对载波相位技术方案,关键是如何得到只包含自由空间传播引起的分量(即2πf cτ l),而消除包含频率偏差δf、定时偏差Δt、相位噪声
Figure PCTCN2020099632-appb-000050
的影响。
更进一步地,采用双差分消除频率偏差δf和定时偏差Δt对载波相位测量值的影响,双差分方案的目的是消除频率偏差δf和定时偏差Δt的影响,得到只包含自由空间传播引起的载波相位值(即2πf cτ l)。
根据公式(15)可知,在不考虑由于相位噪声和频率偏差引入的子载波间干扰(ICI)条件下,第k个子载波上的目标接收信号
Figure PCTCN2020099632-appb-000051
的相位值是:
Figure PCTCN2020099632-appb-000052
在基于OFDM信号的接收机锁相环(PLL)输出的载波相位测量值不应该包含子载波k的影响,而是一个OFDM符号只会输出同一个载波相 位测量值,因此,公式(19)中的不同子载波k对应的分量将不会体现在最终的载波相位测量值中。并且采用PLL初始锁定状态时,输出的载波相位值是介于0到2π之间。
下面分析PLL初始锁定状态时的载波相位测量值,以及双差分消除频率偏差δf和定时偏差Δt的表达式。
如图4所示,设目标UE接收机a和参考UE接收机b从m(m>2)个基站获得TOA(Time of Arrival,到达时间)和相位测量值,目标UE a和参考UE b通过基站i(i=1,…,m)发送的参考信号获取载波相位测量值为
Figure PCTCN2020099632-appb-000053
Figure PCTCN2020099632-appb-000054
目标UE a和参考UE b通过基站j发送的参考信号获取载波相位测量值为
Figure PCTCN2020099632-appb-000055
Figure PCTCN2020099632-appb-000056
如图4所示,右上角的即是参考UE接收机b,右下角的是目标UE接收机a。
各载波相位测量值根据频率偏差相位测量值、定时偏差相位测量值、传播时延相位测量值和相位噪声相位测量值计算得到。
其中,所述定时偏差相位测量值和所述传播时延相位测量值均根据载波的中心频率计算得到。
根据公式(19)可知,所述第一载波相位测量值
Figure PCTCN2020099632-appb-000057
所述第二载波相位测量值
Figure PCTCN2020099632-appb-000058
所述第三载波相位测量值
Figure PCTCN2020099632-appb-000059
所述第四载波相位测量值
Figure PCTCN2020099632-appb-000060
分别如下式所示:
Figure PCTCN2020099632-appb-000061
Figure PCTCN2020099632-appb-000062
Figure PCTCN2020099632-appb-000063
Figure PCTCN2020099632-appb-000064
其中,a为所述第一接收机,b为所述第二接收机,i为所述第一发送机,j为所述第二发送机,m为正交频分复用OFDM符号的总个数,q为OFDM符号的序号,0≤q≤m-1,N为OFDM符号对应的样值点数,
Figure PCTCN2020099632-appb-000065
为第 q个OFDM符号的循环前缀对应的样值点数,f c为载波的中心频率,
Figure PCTCN2020099632-appb-000066
为所述第一载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000067
为所述第二载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000068
为所述第三载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000069
为所述第四载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000070
为所述第一载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000071
为所述第二载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000072
为所述第三载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000073
为所述第四载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000074
为所述第一载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000075
为所述第二载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000076
为所述第三载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000077
为所述第四载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000078
为所述第一载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000079
为所述第二载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000080
为所述第三载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000081
为所述第四载波相位测量值携带的相位噪声。
公式(20)减去公式(21),可得目标UE a测量的来自基站i和基站j的单差分载波相位测量值
Figure PCTCN2020099632-appb-000082
为:
Figure PCTCN2020099632-appb-000083
其中,上标“ij”表示单差分运算是相对两个基站(发送端)i和j测量值之间进行的,即
Figure PCTCN2020099632-appb-000084
同理,公式(22)减去公式(23),可得针对参考UE b测量的来自基站i和基站j的单差分载波相位测量值
Figure PCTCN2020099632-appb-000085
为:
Figure PCTCN2020099632-appb-000086
采用公式(24)减去公式(26),可得基于基站i和基站j、目标UE a和参考UE b的双差分载波相位测量值
Figure PCTCN2020099632-appb-000087
为:
Figure PCTCN2020099632-appb-000088
Figure PCTCN2020099632-appb-000089
为所述第一单差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000090
为所述第二单差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000091
为所述双差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000092
为所述第一单差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000093
为所述第二单差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000094
为 所述双差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000095
为所述第一单差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000096
为所述第二单差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000097
为所述双差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000098
为所述第一单差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000099
为所述第二单差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000100
为所述双差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000101
以下对公式(27)的双差分载波相位测量值
Figure PCTCN2020099632-appb-000102
包含的每一项进行分析:
Figure PCTCN2020099632-appb-000103
其中,δf表示由于基站和UE的晶振的频率偏差,不是UE的多普勒频移。
Figure PCTCN2020099632-appb-000104
因此可得,
Figure PCTCN2020099632-appb-000105
Figure PCTCN2020099632-appb-000106
Figure PCTCN2020099632-appb-000107
是与UE定位相关的双差分传播时延值;
Figure PCTCN2020099632-appb-000108
Figure PCTCN2020099632-appb-000109
与目标UE a和参考UE b无关。
综上所述,在不考虑由于相位噪声和频率偏差引入的ICI条件下,UE定时偏差引入的相位偏差和UE晶振的频率误差可以通过双差分消除,得到期望获取的双差分传播时延值
Figure PCTCN2020099632-appb-000110
Figure PCTCN2020099632-appb-000111
其中,N m表示待求解的双差分整周模糊度。
本实施例提供了一个完整的、综合各种误差和干扰因素对OFDM载波相位影响的系统模型,该系统模型包含了无线衰落信道传输时延、定时偏差、频率偏差和相位噪声等误差对OFDM载波相位的影响,能够适用于基于OFDM系统载波相位定位方案,基于双差分消除频率偏差δf和时间偏差Δt对载波相位测量值的影响。
举例来说,基于双差分消除OFDM信号的频偏和时偏误差的载波相位定位的总体流程图如图5所示。其中,Step1~Step4、Step6~Step9、Step11 是现有技术,Step5和Step10是本申请特有的创新点。发送端可以是基站也可以是终端,接收端可以是终端,也可以是基站。
一、基站为发送端:
Step1、针对下行参考信号(Reference Signal,RS)发送信号做串并变换;
Step2、进行逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)操作,如公式(2)所示;
Step3、进行并串变换;
Step4、插入循环前缀(CP);
Step5、经过等效基带信道,并添加信号传输时延、定时偏差、频率偏差和相位噪声。
二、终端为接收端:
Step6、去CP;
Step7、针对下行RS接收信号做串并变换;
Step8、进行快速傅里叶变换(Fast Fourier Transform,FFT)操作;
Step9、做并串变换,得到公式(15)所示的频域接收符号
Figure PCTCN2020099632-appb-000112
Step10、基于公式(15)所示的频域接收符号
Figure PCTCN2020099632-appb-000113
计算载波相位测量值,并采用本实施例所述的双差分方法,计算得到公式(28)所示的双差分载波相位测量值
Figure PCTCN2020099632-appb-000114
Step11、双差分载波相位测量值
Figure PCTCN2020099632-appb-000115
上报给网络侧,用于网络侧结合已知的基站位置和参考UE位置等信息联合计算双差分整周模糊度N m,然后计算得到目标UE位置,或者目标UE自身计算。
本实施例提供了包含传输时延,以及定时偏差、频率偏差和相位噪声等误差影响的载波相位测量值,能够较好地模拟误差针对载波相位测量值精度的影响;同时采用双差分消除频率偏差δf和定时偏差Δt对载波相位测量值的影响,能够有效地去除上述误差针对载波相位测量值的影响,提高载波相位测量值的精度,从而提高定位的精度。
图6示出了本实施例提供的一种载波相位测量值的偏差消除装置的结构示意图,所述装置包括:偏差消除模块601,其中:
所述偏差消除模块601配置成计算第一单差分载波相位测量值和第二 单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
本实施例所述的载波相位测量值的偏差消除装置可以用于执行上述对应的方法实施例,其原理和技术效果类似,此处不再赘述。
图7示出了本实施例提供的一种载波相位测量值的获取装置的结构示意图,所述装置包括:相位测量模块701,其中:
所述相位测量模块701配置成接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
本实施例所述的载波相位测量值的获取装置可以用于执行上述对应的方法实施例,其原理和技术效果类似,此处不再赘述。
参照图8,所述接收机,包括:处理器(processor)801、存储器(memory)802和总线803;
其中,
所述处理器801和存储器802通过所述总线803实现相互间的通信;
所述处理器801配置成调用所述存储器802中的程序指令,以执行下述步骤:
计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
本实施例同时考虑了载波相位测量值的频率偏差和定时偏差,通过对 携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。
进一步地,所述第一单差分载波相位测量值为第一载波相位测量值和第二载波相位测量值的差值;
所述第二单差分载波相位测量值为第三载波相位测量值和第四载波相位测量值的差值;
其中,所述第一载波相位测量值、第二载波相位测量值、第三载波相位测量值和第四载波相位测量值均为携带频率偏差和定时偏差的载波相位测量值。
进一步地,所述第一载波相位测量值为第一接收机通过测量所接收到的第一发送机发送的第一参考信号获得;
所述第二载波相位测量值为所述第一接收机通过测量所接收到的第二发送机发送的第二参考信号获得;
所述第三载波相位测量值为第二接收机通过测量所接收到的所述第一发送机发送的第三参考信号获得;
所述第四载波相位测量值为所述第二接收机通过测量所接收到的所述第二发送机发送的第四参考信号获得。
进一步地,各载波相位测量值根据频率偏差相位测量值、定时偏差相位测量值、传播时延相位测量值和相位噪声相位测量值计算得到;
其中,所述定时偏差相位测量值和所述传播时延相位测量值均根据载波的中心频率计算得到。
进一步地,所述第一载波相位测量值
Figure PCTCN2020099632-appb-000116
所述第二载波相位测量值
Figure PCTCN2020099632-appb-000117
所述第三载波相位测量值
Figure PCTCN2020099632-appb-000118
所述第四载波相位测量值
Figure PCTCN2020099632-appb-000119
分别为
Figure PCTCN2020099632-appb-000120
Figure PCTCN2020099632-appb-000121
Figure PCTCN2020099632-appb-000122
Figure PCTCN2020099632-appb-000123
其中,a为所述第一接收机,b为所述第二接收机,i为所述第一发送机,j为所述第二发送机,m为正交频分复用OFDM符号的总个数,q为OFDM符号的序号,0≤q≤m-1,N为OFDM符号对应的样值点数,
Figure PCTCN2020099632-appb-000124
为第q个OFDM符号的循环前缀对应的样值点数,f c为载波的中心频率,
Figure PCTCN2020099632-appb-000125
为所述第一载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000126
为所述第二载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000127
为所述第三载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000128
为所述第四载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000129
为所述第一载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000130
为所述第二载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000131
为所述第三载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000132
为所述第四载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000133
为所述第一载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000134
为所述第二载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000135
为所述第三载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000136
为所述第四载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000137
为所述第一载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000138
为所述第二载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000139
为所述第三载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000140
为所述第四载波相位测量值携带的相位噪声。
进一步地,所述计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值,具体包括:
计算第一单差分载波相位测量值
Figure PCTCN2020099632-appb-000141
和第二单差分载波相位测量值
Figure PCTCN2020099632-appb-000142
的差值,得到消除偏差的双差分载波相位测量值
Figure PCTCN2020099632-appb-000143
Figure PCTCN2020099632-appb-000144
其中,
Figure PCTCN2020099632-appb-000145
Figure PCTCN2020099632-appb-000146
Figure PCTCN2020099632-appb-000147
为所述第一单差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000148
为所述第二单差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000149
为所述双差分载波相位测量值携带的频率偏差,
Figure PCTCN2020099632-appb-000150
为所述第一单差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000151
为所述第二单差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000152
为所述双差分载波相位测量值携带的定时偏差,
Figure PCTCN2020099632-appb-000153
为所述第一单差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000154
为所述第二单差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000155
为所述双差分载波相位测量值携带的传播延迟,
Figure PCTCN2020099632-appb-000156
为所述第一单差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000157
为所述第二单差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000158
为所述双差分载波相位测量值携带的相位噪声,
Figure PCTCN2020099632-appb-000159
本实施例所述的接收机可以用于执行上述对应的方法实施例,其原理和技术效果类似,此处不再赘述。
参照图9,所述接收机,包括:处理器(processor)901、存储器(memory)902和总线903;
其中,
所述处理器901和存储器902通过所述总线903实现相互间的通信;
所述处理器901配置成调用所述存储器902中的程序指令,以执行下述步骤:
接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
发送机发送定位参考信号后,由于经过了信道,因此当该定位参考信号到达接收机时,携带了频率偏差和定时偏差,即接收机测量得到的载波相位测量值携带了频率偏差和定时偏差。为了消除偏差,本实施例对携带频率偏差和定时偏差的载波相位测量值进行两次作差处理,得到消除偏差的双差分载波相位测量值,能够有效地去除各种偏差对载波相位测量值的影响,提高了载波相位测量值的精度,从而提高了定位的精度。
进一步地,所述载波相位测量值根据各子载波的频域等效接收信号计算得到。
进一步地,各子载波的频域等效接收信号根据频率偏差、定时偏差和等效频域信道响应计算得到;
其中,所述定时偏差和等效频域信道响应均根据载波的中心频率计算得到。
进一步地,第m个正交频分复用OFDM符号的第k个子载波上的频域等效接收信号
Figure PCTCN2020099632-appb-000160
Figure PCTCN2020099632-appb-000161
其中,
Figure PCTCN2020099632-appb-000162
Figure PCTCN2020099632-appb-000163
Figure PCTCN2020099632-appb-000164
Figure PCTCN2020099632-appb-000165
其中,m为正交频分复用OFDM符号的总个数,k为子载波的序号,1i为虚数单位,θ m,1为频率偏差引起的相位偏差,f c为载波的中心频率,Δf SCS为子载波间隔,δf为频率偏差,Δt为定时偏差,
Figure PCTCN2020099632-appb-000166
Figure PCTCN2020099632-appb-000167
为频率偏差、定时偏差和相位噪声对第k个子载波引入的公共相位偏差,J 0为相位噪声对第k个子载波引入的公共相位加权因子,H k第m个OFDM符号的为第k个子载波上的等效频域信道响应,X k第m个OFDM符号的为第k个子载波上发送的调制符号,W k为第k个子载波上的复高斯噪声,l为信道多径分量的序号,L为信道多径分量的数量,J k-r为第(k-r)个样值点的相位噪声加权因子,N为OFDM符号对应的样值点数,h l为第l条信道多径分量的相对幅度衰减,τ l为第l条信道多径分量的相位偏移,
Figure PCTCN2020099632-appb-000168
为第l条信道多径分量的传播延迟,J p为第p个样值点的相位噪声加权因子,
Figure PCTCN2020099632-appb-000169
为m个OFDM符号的第n个样值点上的相位噪声,
Figure PCTCN2020099632-appb-000170
为第m个OFDM符号上频率偏差引入的公共相位偏差,
Figure PCTCN2020099632-appb-000171
为第m个OFDM符号的第n个样值点上频率偏差引入的独立相位偏差,n为样值点序号,
Figure PCTCN2020099632-appb-000172
为第q个OFDM符号的循环前缀对应的样值点数。
进一步地,第m个OFDM符号的第k个子载波上的频域等效接收信号
Figure PCTCN2020099632-appb-000173
Figure PCTCN2020099632-appb-000174
其中,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,
Figure PCTCN2020099632-appb-000175
X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第m个OFDM符号的第k个子载波上的复高斯噪声。
进一步地,所述定位参考信号采用OFDM符号的波形从发送机经过信道后发送至接收机。
本实施例所述的接收机可以用于执行上述对应的方法实施例,其原理和技术效果类似,此处不再赘述。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指 令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的方法。
本实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述各方法实施例所提供的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个位置,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。基于本申请公开内容,本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施本申请公开的技术方案。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件结合所需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。由此,本申请的一个实施例提供一种计算机软件产品,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(例如,是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (27)

  1. 一种载波相位测量值的偏差消除方法,其特征在于,包括:
    计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,所述两个载波相位测量值携带频率偏差和定时偏差。
  2. 根据权利要求1所述的载波相位测量值的偏差消除方法,其特征在于,所述第一单差分载波相位测量值为第一载波相位测量值和第二载波相位测量值的差值;
    所述第二单差分载波相位测量值为第三载波相位测量值和第四载波相位测量值的差值;
    其中,所述第一载波相位测量值、第二载波相位测量值、第三载波相位测量值和第四载波相位测量值均为携带频率偏差和定时偏差的载波相位测量值。
  3. 根据权利要求2所述的载波相位测量值的偏差消除方法,其特征在于,所述第一载波相位测量值为第一接收机通过测量所接收到的第一发送机发送的第一参考信号获得;
    所述第二载波相位测量值为所述第一接收机通过测量所接收到的第二发送机发送的第二参考信号获得;
    所述第三载波相位测量值为第二接收机通过测量所接收到的所述第一发送机发送的第三参考信号获得;
    所述第四载波相位测量值为所述第二接收机通过测量所接收到的所述第二发送机发送的第四参考信号获得。
  4. 根据权利要求3所述的载波相位测量值的偏差消除方法,其特征在于,各载波相位测量值根据频率偏差相位测量值、定时偏差相位测量值、传播时延相位测量值和相位噪声相位测量值计算得到;
    其中,所述定时偏差相位测量值和所述传播时延相位测量值均根据载波的中心频率计算得到。
  5. 根据权利要求4所述的载波相位测量值的偏差消除方法,其特征在于,所述第一载波相位测量值
    Figure PCTCN2020099632-appb-100001
    所述第二载波相位测量值
    Figure PCTCN2020099632-appb-100002
    所述第三载波相位测量值
    Figure PCTCN2020099632-appb-100003
    所述第四载波相位测量值
    Figure PCTCN2020099632-appb-100004
    分别为
    Figure PCTCN2020099632-appb-100005
    Figure PCTCN2020099632-appb-100006
    Figure PCTCN2020099632-appb-100007
    Figure PCTCN2020099632-appb-100008
    其中,a为所述第一接收机,b为所述第二接收机,i为所述第一发送机,j为所述第二发送机,m为正交频分复用OFDM符号的总个数,q为OFDM符号的序号,0≤q≤m-1,N为OFDM符号对应的样值点数,
    Figure PCTCN2020099632-appb-100009
    为第q个OFDM符号的循环前缀对应的样值点数,f c为载波的中心频率,
    Figure PCTCN2020099632-appb-100010
    为所述第一载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100011
    为所述第二载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100012
    为所述第三载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100013
    为所述第四载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100014
    为所述第一载波相位 测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100015
    为所述第二载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100016
    为所述第三载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100017
    为所述第四载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100018
    为所述第一载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100019
    为所述第二载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100020
    为所述第三载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100021
    为所述第四载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100022
    为所述第一载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100023
    为所述第二载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100024
    为所述第三载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100025
    为所述第四载波相位测量值携带的相位噪声。
  6. 根据权利要求5所述的载波相位测量值的偏差消除方法,其特征在于,所述计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值,具体包括:
    计算第一单差分载波相位测量值
    Figure PCTCN2020099632-appb-100026
    和第二单差分载波相位测量值
    Figure PCTCN2020099632-appb-100027
    的差值,得到消除偏差的双差分载波相位测量值
    Figure PCTCN2020099632-appb-100028
    Figure PCTCN2020099632-appb-100029
    其中,
    Figure PCTCN2020099632-appb-100030
    Figure PCTCN2020099632-appb-100031
    Figure PCTCN2020099632-appb-100032
    为所述第一单差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100033
    为所述 第二单差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100034
    为所述双差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100035
    为所述第一单差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100036
    为所述第二单差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100037
    为所述双差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100038
    为所述第一单差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100039
    为所述第二单差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100040
    为所述双差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100041
    为所述第一单差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100042
    为所述第二单差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100043
    为所述双差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100044
  7. 一种载波相位测量值的获取方法,其特征在于,包括:
    接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,所述两个载波相位测量值携带频率偏差和定时偏差。
  8. 根据权利要求7所述的载波相位测量值的获取方法,其特征在于,所述载波相位测量值根据各子载波的频域等效接收信号计算得到。
  9. 根据权利要求8所述的载波相位测量值的获取方法,其特征在于,各子载波的频域等效接收信号根据频率偏差、定时偏差和等效频域信道响应计算得到;
    其中,所述定时偏差和等效频域信道响应均根据载波的中心频率计算得到。
  10. 根据权利要求9所述的载波相位测量值的获取方法,其特征在于,第m个正交频分复用OFDM符号的第k个子载波上的频域等效接收信号
    Figure PCTCN2020099632-appb-100045
    Figure PCTCN2020099632-appb-100046
    其中,
    Figure PCTCN2020099632-appb-100047
    Figure PCTCN2020099632-appb-100048
    Figure PCTCN2020099632-appb-100049
    Figure PCTCN2020099632-appb-100050
    其中,m为正交频分复用OFDM符号的总个数,k为子载波的序号,1i为虚数单位,θ m,1为频率偏差引起的相位偏差,f c为载波的中心频率,Δf SCS为子载波间隔,δf为频率偏差,Δt为定时偏差,
    Figure PCTCN2020099632-appb-100051
    Figure PCTCN2020099632-appb-100052
    为频率偏差、定时偏差和相位噪声对第k个子载波引入的公共相位偏差,J 0为相位噪声对第k个子载波引入的公共相位加权因子,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第k个子载波上的复高斯噪声,l为信道多径分量的序号,L为信道多径分量的数量,J k-r为第(k-r)个样值点的相位噪声加权因子,N为OFDM符号对应的样值点数,h l为第l条信道多径分量的相对幅度衰减,τ l为第l条信道多径分量的相位偏移,
    Figure PCTCN2020099632-appb-100053
    为第l条信道多径分量的传播延迟,J p为第p个样值点的相位噪声加权因子,
    Figure PCTCN2020099632-appb-100054
    为m个OFDM符号的第n个样值点上的相位噪声,
    Figure PCTCN2020099632-appb-100055
    为第m个OFDM符号上频率偏差引入的公共相位偏差,
    Figure PCTCN2020099632-appb-100056
    为第m个OFDM符号的第n个样值点上频率偏差引入的独立相位偏差,n为样值点序号,
    Figure PCTCN2020099632-appb-100057
    为第q个OFDM符号的循环前缀对应的样值点数。
  11. 根据权利要求9或10所述的载波相位测量值的获取方法,其特征在于,第m个OFDM符号的第k个子载波上的频域等效接收信号
    Figure PCTCN2020099632-appb-100058
    Figure PCTCN2020099632-appb-100059
    其中,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,
    Figure PCTCN2020099632-appb-100060
    X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第m个OFDM符号的第k个子载波上的复高斯噪声。
  12. 根据权利要求9或10所述的载波相位测量值的获取方法,其特征在于,所述定位参考信号采用OFDM符号的波形从发送机经过信道后发送至接收机。
  13. 一种载波相位测量值的偏差消除装置,其特征在于,包括:
    偏差消除模块,配置成计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,所述两个载波相位测量值携带频率偏差和定时偏差。
  14. 一种载波相位测量值的获取装置,其特征在于,包括:
    相位测量模块,配置成接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,所述两个载波相位测量值携带频率偏差和定时偏差。
  15. 一种接收机,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器运行所述程序时执行如下步骤:
    计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,该两个载波相位测量值携带频率偏差和定时偏差。
  16. 根据权利要求15所述的接收机,其特征在于,所述第一单差分载波相位测量值为第一载波相位测量值和第二载波相位测量值的差值;
    所述第二单差分载波相位测量值为第三载波相位测量值和第四载波相位测量值的差值;
    其中,所述第一载波相位测量值、第二载波相位测量值、第三载波相位测量值和第四载波相位测量值均为携带频率偏差和定时偏差的载波相位测量值。
  17. 根据权利要求16所述的接收机,其特征在于,所述第一载波相位测量值为第一接收机通过测量所接收到的第一发送机发送的第一参考信号获得;
    所述第二载波相位测量值为所述第一接收机通过测量所接收到的第二发送机发送的第二参考信号获得;
    所述第三载波相位测量值为第二接收机通过测量所接收到的所述第一发送机发送的第三参考信号获得;
    所述第四载波相位测量值为所述第二接收机通过测量所接收到的所述第二发送机发送的第四参考信号获得。
  18. 根据权利要求17所述的接收机,其特征在于,各载波相位测量值根据频率偏差相位测量值、定时偏差相位测量值、传播时延相位测量值和相位噪声相位测量值计算得到;
    其中,所述定时偏差相位测量值和所述传播时延相位测量值均根据载波的中心频率计算得到。
  19. 根据权利要求18所述的接收机,其特征在于,所述第一载波相位测量值
    Figure PCTCN2020099632-appb-100061
    所述第二载波相位测量值
    Figure PCTCN2020099632-appb-100062
    所述第三载波相位测量值
    Figure PCTCN2020099632-appb-100063
    所述第四载波相位测量值
    Figure PCTCN2020099632-appb-100064
    分别为
    Figure PCTCN2020099632-appb-100065
    Figure PCTCN2020099632-appb-100066
    Figure PCTCN2020099632-appb-100067
    Figure PCTCN2020099632-appb-100068
    其中,a为所述第一接收机,b为所述第二接收机,i为所述第一发送机,j为所述第二发送机,m为正交频分复用OFDM符号的总个数,q为OFDM符号的序号,0≤q≤m-1,N为OFDM符号对应的样值点数,
    Figure PCTCN2020099632-appb-100069
    为第q个OFDM符号的循环前缀对应的样值点数,f c为载波的中心频率,
    Figure PCTCN2020099632-appb-100070
    为所述第一载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100071
    为所述第二载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100072
    为所述第三载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100073
    为所述第四载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100074
    为所述第一载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100075
    为所述第二载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100076
    为所述第三载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100077
    为所述第四载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100078
    为所述第一载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100079
    为所述第二载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100080
    为所述第三载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100081
    为所述第四载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100082
    为所述第一载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100083
    为所述第二载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100084
    为所述第三载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100085
    为所述第四载波相位测量值携带的相位噪声。
  20. 根据权利要求19所述的接收机,其特征在于,所述计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值,具体包括:
    计算第一单差分载波相位测量值
    Figure PCTCN2020099632-appb-100086
    和第二单差分载波相位测量值
    Figure PCTCN2020099632-appb-100087
    的差值,得到消除偏差的双差分载波相位测量值
    Figure PCTCN2020099632-appb-100088
    Figure PCTCN2020099632-appb-100089
    其中,
    Figure PCTCN2020099632-appb-100090
    Figure PCTCN2020099632-appb-100091
    Figure PCTCN2020099632-appb-100092
    为所述第一单差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100093
    为所述第二单差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100094
    为所述双差分载波相位测量值携带的频率偏差,
    Figure PCTCN2020099632-appb-100095
    为所述第一单差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100096
    为所述第二单差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100097
    为所述双差分载波相位测量值携带的定时偏差,
    Figure PCTCN2020099632-appb-100098
    为所述第一单差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100099
    为所述第二单差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100100
    为所述双差分载波相位测量值携带的传播延迟,
    Figure PCTCN2020099632-appb-100101
    为所述第一单差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100102
    为所述第二单差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100103
    为所述双差分载波相位测量值携带的相位噪声,
    Figure PCTCN2020099632-appb-100104
  21. 一种接收机,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器运行所述程序时执行如下步骤:
    接收并测量经过信道后的定位参考信号,获得携带频率偏差和定时偏差的载波相位测量值,并将所述载波相位测量值发送至网络侧,以使所述网络侧根据各接收机发送的载波相位测量值计算第一单差分载波相位测量值和第二单差分载波相位测量值的差值,得到消除偏差的双差分载波相位测量值;
    其中,所述第一单差分载波相位测量值和所述第二单差分载波相位测量值分别为两个载波相位测量值的差值,所述两个载波相位测量值携带频率偏差和定时偏差。
  22. 根据权利要求21所述的接收机,其特征在于,所述载波相位测量值根据各子载波的频域等效接收信号计算得到。
  23. 根据权利要求22所述的接收机,其特征在于,各子载波的频域等效接收信号根据频率偏差、定时偏差和等效频域信道响应计算得到;
    其中,所述定时偏差和等效频域信道响应均根据载波的中心频率计算得到。
  24. 根据权利要求23所述的接收机,其特征在于,第m个正交频分复用OFDM符号的第k个子载波上的频域等效接收信号
    Figure PCTCN2020099632-appb-100105
    Figure PCTCN2020099632-appb-100106
    其中,
    Figure PCTCN2020099632-appb-100107
    Figure PCTCN2020099632-appb-100108
    Figure PCTCN2020099632-appb-100109
    Figure PCTCN2020099632-appb-100110
    其中,m为正交频分复用OFDM符号的总个数,k为子载波的序号,1i为虚数单位,θ m,1为频率偏差引起的相位偏差,f c为载波的中心频率,Δf SCS为子载波间隔,δf为频率偏差,Δt为定时偏差,
    Figure PCTCN2020099632-appb-100111
    Figure PCTCN2020099632-appb-100112
    为频率偏差、定时偏差和相位噪声对第k个子载波引入的公共相位偏差,J 0为相位噪声对第k个子载波引入的公共相位加权因子,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第m个OFDM符号的第k个子载波上的复高斯噪声,l为信道多径分量的序号,L为信道多径分量的数量,J k-r为第(k-r)个样值点的相位噪声加权因子,N为OFDM符号对应的样值点数,h l为第l条信道多径分量的相对幅度衰减,τ l为第l条信道多径分量的相位偏移,
    Figure PCTCN2020099632-appb-100113
    为第l条信道多径分量的传播延迟,J p为第p个样值点的相位噪声加权因子,
    Figure PCTCN2020099632-appb-100114
    为m个OFDM符号的第n个样值点上的相位噪声,
    Figure PCTCN2020099632-appb-100115
    为第m个OFDM符号上频率偏差引入的公共相位偏差,
    Figure PCTCN2020099632-appb-100116
    为第m个OFDM符号的第n个样值点上频率偏差引入的独立相位偏差,n为样值点序号,
    Figure PCTCN2020099632-appb-100117
    为第q个OFDM符号的循环前缀对应的样值点数。
  25. 根据权利要求23或24所述的接收机,其特征在于,第m个正交频分复用OFDM符号的第k个子载波上的频域等效接收信号
    Figure PCTCN2020099632-appb-100118
    Figure PCTCN2020099632-appb-100119
    其中,H k为第m个OFDM符号的第k个子载波上的等效频域信道响应,
    Figure PCTCN2020099632-appb-100120
    X k为第m个OFDM符号的第k个子载波上发送的调制符号,W k为第m个OFDM符号的第k个子载波上的复高斯噪声。
  26. 根据权利要求23或24所述的接收机,其特征在于,所述定位参考信号采用OFDM符号的波形从发送机经过信道后发送至接收机。
  27. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至6任一所述的载波相位测量值的偏差消除方法,和/或,如权利要求7至12任一所述的载波相位测量值的获取方法。
PCT/CN2020/099632 2019-09-05 2020-07-01 载波相位测量值的偏差消除和获取方法、装置及接收机 WO2021042852A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910838639.XA CN112543160B (zh) 2019-09-05 2019-09-05 载波相位测量值的偏差消除和获取方法、装置及接收机
CN201910838639.X 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021042852A1 true WO2021042852A1 (zh) 2021-03-11

Family

ID=74852428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099632 WO2021042852A1 (zh) 2019-09-05 2020-07-01 载波相位测量值的偏差消除和获取方法、装置及接收机

Country Status (3)

Country Link
CN (1) CN112543160B (zh)
TW (1) TWI740543B (zh)
WO (1) WO2021042852A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020354A1 (zh) * 2021-08-19 2023-02-23 华为技术有限公司 一种定位方法及装置
WO2023143114A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 通信方法和通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543160B (zh) * 2019-09-05 2022-09-13 大唐移动通信设备有限公司 载波相位测量值的偏差消除和获取方法、装置及接收机
CN116017267A (zh) * 2021-10-21 2023-04-25 华为技术有限公司 信息处理的方法和电子设备
WO2023186135A1 (zh) * 2022-03-31 2023-10-05 华为技术有限公司 定位信息的确定方法、定位方法以及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232489A (zh) * 2006-10-05 2008-07-30 马维尔国际贸易有限公司 具有差分相关的基带解调系统及方法
CN101299735A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 一种载波频率偏移估计的方法和系统
US20120213316A1 (en) * 2006-03-17 2012-08-23 Marvell International Ltd. Preamble detection with unknown channel
CN102998690A (zh) * 2012-11-26 2013-03-27 哈尔滨工程大学 一种基于gps载波双差方程的姿态角直接求解方法
CN103685116A (zh) * 2012-09-18 2014-03-26 昆明至上力合科技有限公司 一种非线性双环结构载波同步实现方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352746A (ja) * 2005-06-20 2006-12-28 Fujitsu Ltd 直交周波数分割多重伝送用受信機
US8803736B2 (en) * 2010-02-26 2014-08-12 Navcom Technology, Inc. Method and system for estimating position with bias compensation
CN102565821B (zh) * 2011-12-22 2013-09-04 浙江大学 多普勒频偏辅助的卫星导航信号载波周跳实时探测与修复的方法
US10233745B2 (en) * 2015-03-26 2019-03-19 Chevron U.S.A. Inc. Methods, apparatus, and systems for steam flow profiling
CN113438724B (zh) * 2019-03-18 2022-03-25 大唐移动通信设备有限公司 时钟偏移确定及其处理方法、装置、系统
CN112543160B (zh) * 2019-09-05 2022-09-13 大唐移动通信设备有限公司 载波相位测量值的偏差消除和获取方法、装置及接收机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213316A1 (en) * 2006-03-17 2012-08-23 Marvell International Ltd. Preamble detection with unknown channel
CN101232489A (zh) * 2006-10-05 2008-07-30 马维尔国际贸易有限公司 具有差分相关的基带解调系统及方法
CN101299735A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 一种载波频率偏移估计的方法和系统
CN103685116A (zh) * 2012-09-18 2014-03-26 昆明至上力合科技有限公司 一种非线性双环结构载波同步实现方法
CN102998690A (zh) * 2012-11-26 2013-03-27 哈尔滨工程大学 一种基于gps载波双差方程的姿态角直接求解方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020354A1 (zh) * 2021-08-19 2023-02-23 华为技术有限公司 一种定位方法及装置
WO2023143114A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
CN112543160B (zh) 2022-09-13
TW202112107A (zh) 2021-03-16
TWI740543B (zh) 2021-09-21
CN112543160A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021042852A1 (zh) 载波相位测量值的偏差消除和获取方法、装置及接收机
CN107426123B (zh) 一种利用多符号间导频进行联合整数频偏估计方法及装置
CN109039981B (zh) 无线综测仪窄带物理上行共享信道的频偏估计方法及系统
CN108199994B (zh) 一种无线综测仪ofdm信号频偏估计方法及系统
US8270545B2 (en) Methods and systems using fine frequency tracking loop design for WiMAX
US9961495B2 (en) Sub-decimeter radio frequency ranging
US20190086505A1 (en) Methods for estimating angle of arrival or angle of departure
CN106878229B (zh) 基于初始相位补偿的iq不平衡估计和补偿方法及装置
CN101726720A (zh) 接收设备、移动角估计方法、程序和无线通信系统
US11968597B2 (en) Systems and methods for multicarrier phase-based localization
US20170111197A1 (en) High-Precision Blind Carrier Synchronization Methods for LTE SC-FDMA Uplink
US10334605B2 (en) Time domain pilot of single-carrier MIMO system and synchronization method thereof
CN103023832B (zh) 接收机频偏估计和补偿的方法与装置
CN112866163B (zh) 一种用于WiFi业务残余频偏估计的方法和系统
CN109495414B (zh) 一种频偏估计方法、装置、设备及计算机可读存储介质
WO2021143644A1 (zh) 一种载波相位跟踪方法及装置
TWI360974B (en) A synchronization method for ofdm systems
CN114650595A (zh) 一种室内定位方法、装置、设备及介质
Noschese et al. A low-complexity approach for time of arrival estimation in OFDM systems
US20090252261A1 (en) System, Apparatus, and Method for Processing a Received Orthogonal Frequency Division Multiplexing Signal
CN110943949A (zh) 一种基于sc-fde传输体制的宽带角跟踪方法
WO2022127205A1 (zh) 无线信道类型检测方法及其装置
CN102594758A (zh) 一种细定时同步估计装置及方法
CN102594757A (zh) 一种粗定时和细定时同步估计装置及方法
CN107592143B (zh) 一种两用户分布式协作传输系统中考虑用户时延差的宽带预编码和干扰抑制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861303

Country of ref document: EP

Kind code of ref document: A1