WO2021039970A1 - 熱可塑性樹脂組成物及び成形品 - Google Patents

熱可塑性樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2021039970A1
WO2021039970A1 PCT/JP2020/032639 JP2020032639W WO2021039970A1 WO 2021039970 A1 WO2021039970 A1 WO 2021039970A1 JP 2020032639 W JP2020032639 W JP 2020032639W WO 2021039970 A1 WO2021039970 A1 WO 2021039970A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
general formula
resin composition
repeating unit
group
Prior art date
Application number
PCT/JP2020/032639
Other languages
English (en)
French (fr)
Inventor
将平 富田
正志 横木
浩喜 柴田
真矢 山下
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020227006677A priority Critical patent/KR20220056178A/ko
Priority to EP20858320.3A priority patent/EP4023698A4/en
Priority to CN202080060623.1A priority patent/CN114302905A/zh
Priority to JP2021543046A priority patent/JPWO2021039970A1/ja
Publication of WO2021039970A1 publication Critical patent/WO2021039970A1/ja
Priority to US17/682,008 priority patent/US20220195114A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded product thereof, which are excellent in radio wave transmission in the microwave and / or millimeter wave band, and also in heat resistance and flame retardancy, and for microwaves and / or millimeter waves.
  • the housing for communication equipment with a built-in antenna Regarding the housing for communication equipment with a built-in antenna.
  • the present invention also relates to a communication device using this communication device housing.
  • Polycarbonate resin has excellent mechanical strength, electrical properties, transparency, etc., and is widely used as an engineering plastic in various fields such as electrical and electronic equipment fields and automobile fields.
  • Patent Document 1 proposes a millimeter-wave radar cover in which the dielectric loss tangent is lowered and the millimeter-wave transparency of 75 GHz to 81 GHz is improved by using a polycarbonate resin made from bisphenol having a specific substituent.
  • Patent Document 2 discloses a polycarbonate composition and copolycarbonate having excellent heat resistance and fire resistance, which are produced by using two specific types of bisphenols as raw materials.
  • Patent Document 3 discloses a polycarbonate having excellent surface hardness, which is produced by using bisphenols different from the conventional bisphenol A as a raw material.
  • radio waves in high frequency bands such as microwaves and millimeter waves have come to be used in the fields of electrical and electronic equipment and automobiles, and along with this, they have both a low relative permittivity and a low dielectric loss tangent. Material is required. Particularly in the fields of electricity and electronics, high heat resistance and high flame retardancy are required in addition to low relative permittivity and low dielectric loss tangent.
  • radio waves in a higher frequency band for high-speed communication.
  • radio waves exceeding 3 GHz which are classified into the microwave band, are used.
  • 5G fifth-generation mobile communication system
  • the market is expected to rise in the 28 GHz band, which is a higher frequency in the microwave band.
  • radio waves in the millimeter wave band will be used in next-generation communications.
  • the transmission loss is proportional to the square root of the relative permittivity ( ⁇ r ) of the dielectric and the dielectric loss tangent (tan ⁇ ) of the dielectric. Therefore, in order to increase the radio wave transmission of the housing, it is necessary to reduce the relative permittivity ⁇ r and the dielectric loss tangent tan ⁇ of the material used for the housing.
  • Information and communication equipment that transmits and receives radio waves in high frequency bands such as microwaves and / or millimeter waves is characterized by easily generating heat. From this, it is desirable that the material used in such a field not only has a low relative permittivity and a low dielectric loss tangent, but also has appropriate heat resistance and flame retardancy, and satisfies these conditions. There is a strong demand for materials. However, conventional materials have not been able to meet all of these requirements.
  • Patent Document 1 proposes a cover for a millimeter wave radar in which the dielectric loss tangent is lowered and the millimeter wave permeability is improved by using a thermoplastic resin composition containing a polycarbonate resin made from bisphenol having a specific substituent.
  • thermoplastic resin compositions have insufficient heat resistance and flame retardancy for use as information communication devices such as laptop computers, tablet terminals, smartphones, and router devices.
  • Patent Document 2 discloses a polycarbonate copolymer having improved heat resistance and fire resistance, but does not mention any dielectric properties.
  • the conventional polycarbonate resin made from bisphenol A has insufficient surface hardness and alkali resistance for these required characteristics. Therefore, the development of a polycarbonate resin having high surface hardness and alkali resistance has been desired, and some proposals have been made.
  • Patent Document 2 discloses a polycarbonate composition and copolycarbonate having excellent alkali resistance, which are produced by using two specific types of bisphenols as raw materials.
  • Patent Document 3 discloses a polycarbonate having excellent surface hardness, which is produced by using bisphenols different from the conventional bisphenol A as a raw material.
  • the present invention includes a thermoplastic resin composition and a molded product having excellent radio wave transmission in the microwave and / or millimeter wave band, and also having excellent heat resistance and flame retardancy, and microwave and /.
  • Another object of the present invention is to provide a housing for a communication device and a communication device having a built-in millimeter-wave antenna.
  • the present inventor has made a thermoplastic resin composition containing a polycarbonate resin having two specific types of repeating units and a molded product thereof, and a housing for a communication device incorporating a microwave and / or millimeter wave antenna. , It has been found that the housing for a communication device has a built-in microwave and / or millimeter wave antenna that meets the above purpose.
  • the present invention according to the first aspect exists in the following [1] to [32].
  • thermoplastic resin composition containing a polycarbonate resin having a repeating unit (A) represented by the following general formula (1) and a repeating unit (B') represented by the following general formula (2').
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • X' represents a single bond or a methylene group.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 1 and R 2 are methyl groups, or the alkyl groups of R 1 and R 2 are bonded to each other and are represented by the following formula (1a) or (1b).
  • thermoplastic resin composition according to [1] or [2], wherein R 3 and R 4 are methyl groups in the general formula (1).
  • thermoplastic resin composition according to any one of [1] to [3], wherein the repeating unit (B') is a repeating unit represented by the following general formula (2A').
  • thermoplastic resin composition according to any one of [1] to [4], wherein the repeating unit (B') is a repeating unit represented by the following general formula (2B').
  • thermoplastic resin composition according to any one of [1] to [5] , wherein R 6 to R 9 are methyl groups in the general formula (2').
  • the thermoplastic resin composition according to any one of [1] to [6], which is the ratio of.
  • thermoplastic resin composition according to any one of.
  • thermoplastic resin composition according to any one of [1] to [8], wherein the polycarbonate resin has a glass transition temperature of 125 ° C. or higher.
  • thermoplastic resin composition according to any one of [1] to [9], wherein the thermoplastic resin composition contains 50% by mass or more of the polycarbonate resin.
  • thermoplastic resin composition according to any one of [1] to [10], which comprises the polycarbonate resin as a copolymerized polycarbonate resin of the repeating unit (A) and the repeating unit (B').
  • polycarbonate resin is contained as a blend of the polycarbonate resin containing the repeating unit (A) and the polycarbonate resin containing the repeating unit (B'). Thermoplastic resin composition.
  • thermoplastic resin composition according to any one of [1] to [12], wherein the viscosity average molecular weight (Mv) of the polycarbonate resin is in the range of 14,500 to 30,000.
  • thermoplastic resin composition according to any one of [1] to [14], wherein the pencil hardness measured by a method conforming to ISO 15184 is H or more.
  • thermoplastic resin composition containing a polycarbonate resin having a repeating unit (A) represented by the following general formula (1) and a repeating unit (B) represented by the following general formula (2). Molded product.
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • X represents a single bond or a divalent organic group represented by the following general formula (3).
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group.
  • R 1 and R 2 are methyl groups, or the alkyl groups of R 1 and R 2 are bonded to each other and are represented by the following formula (1a) or (1b).
  • R 5 is a hydrogen atom or a methyl group
  • the molded product according to any one of [16] to [22].
  • the sum of the content ratios of the repeating unit (A) and the repeating unit (B) contained in the polycarbonate resin is 50 mol% or more in the total carbonate structural units of the polycarbonate resin [16].
  • thermoplastic resin composition contains 50% by mass or more of the polycarbonate resin.
  • a housing for a communication device having a built-in microwave and / or millimeter wave antenna which is obtained by using the molded product according to any one of [16] to [28].
  • a communication device having a built-in microwave and / or millimeter wave antenna which is obtained by using the communication device housing according to any one of [29] to [31].
  • An object of the present invention according to the second aspect is to provide a polycarbonate resin composition having high hardness, excellent alkali resistance, heat resistance, and impact resistance.
  • the present inventor has found that a polycarbonate resin composition containing a carbonate structural unit derived from two specific aromatic dihydroxy compounds can be used to obtain a polycarbonate resin composition that meets the above objectives.
  • the gist of the present invention according to the second aspect exists in the following [33] to [44].
  • a carbonate structural unit (X) derived from an aromatic dihydroxy compound represented by the following general formula (11) and a carbonate structural unit (Y) derived from an aromatic dihydroxy compound represented by the following general formula (12). ) In a molar ratio of (X) / (Y) 1/99 to 99/1.
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • the polycarbonate resin composition according to [33] which is a blend of a polycarbonate resin containing the carbonate structural unit (X) and a polycarbonate resin containing the carbonate structural unit (Y).
  • R 10 and R 11 each independently represent a hydrogen atom or a methyl group.
  • R 12 and R 13 each independently represent a methyl group or an ethyl group.
  • R 15 ⁇ R 18 each independently represent a methyl group or an ethyl group,.
  • R 20 to R 23 each independently represent a methyl group or an ethyl group.
  • An object of the present invention according to the third aspect is to provide a polycarbonate resin composition having excellent surface hardness, alkali resistance, heat resistance, impact resistance, and fluidity.
  • the present inventor has found that a polycarbonate resin composition containing a carbonate structural unit derived from two specific aromatic dihydroxy compounds can be used to obtain a polycarbonate resin composition that meets the above objectives.
  • the gist of the present invention according to the third aspect exists in the following [45] to [59].
  • a carbonate structural unit (X) derived from an aromatic dihydroxy compound represented by the following general formula (11) and a carbonate structural unit (Z) derived from an aromatic dihydroxy compound represented by the following general formula (21). ) In a mol ratio of carbonate structural unit (X) / carbonate structural unit (Z) 1/99 to 99/1.
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • the polycarbonate resin composition according to [45] which is a blend of a polycarbonate resin containing the carbonate structural unit (X) and a polycarbonate resin containing the carbonate structural unit (Z).
  • the polycarbonate resin composition according to any one of [45] to [51].
  • R 10 and R 11 each independently represent a hydrogen atom or a methyl group.
  • R 12 and R 13 each independently represent a methyl group or an ethyl group.
  • R 31 to R 34 each independently represent a methyl group or an ethyl group.
  • R 31 to R 34 have the same meaning as in the general formula (22).
  • the molded product of the present invention according to the first aspect and the housing for a communication device incorporating a microwave and / or millimeter wave antenna are excellent in radio wave transmission in the microwave and / or millimeter wave band, and have heat resistance and heat resistance. Since it is also excellent in flame retardancy, it can be widely used as a housing for communication devices having a built-in microwave and / or millimeter wave antenna, for example, a notebook computer, a tablet terminal, a smartphone, or a router device. Further, it is possible to provide a molded product having excellent impact resistance and a housing for a communication device having a built-in microwave and / or millimeter wave antenna.
  • the present invention according to the second aspect, it is possible to provide a polycarbonate resin composition having high hardness, excellent alkali resistance, and excellent mechanical strength such as heat resistance and impact resistance.
  • the polycarbonate resin composition of the present invention according to the second aspect and the third aspect has such excellent properties, it is widely used as a material for manufacturing parts in automobiles, electric / electronic devices, and other industrial fields. Can be done.
  • first invention the present invention according to the first aspect
  • second invention the present invention according to the second aspect
  • third invention the present invention according to the third aspect
  • invention may be collectively referred to as the "invention”.
  • the molded product of the first invention and the housing for communication equipment incorporating the microwave and / or millimeter wave antenna have the repeating unit (A) represented by the general formula (1) and the general.
  • a polycarbonate resin having a repeating unit (B') represented by the formula (2') or a repeating unit (B) represented by the general formula (2) (hereinafter, may be referred to as "polycarbonate resin of the first invention”. It is characterized in that it is obtained from a thermoplastic resin composition containing (hereinafter, may be referred to as "the thermoplastic resin composition of the present invention").
  • the communication device of the present invention is a communication device with a built-in microwave and / or millimeter wave antenna obtained by using the housing for the communication device.
  • the polycarbonate resin of the first invention has a repeating unit (A) represented by the following general formula (1), a repeating unit (B') represented by the following general formula (2'), or the following general formula (2). It is characterized by having a repeating unit (B) represented.
  • repeating unit (B') or repeating unit (B) may be described as “repeating unit (B'), (B)".
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • X' represents a single bond or a methylene group.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • X represents a single bond or a divalent organic group represented by the following general formula (3).
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 5 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group.
  • the polycarbonate resin of the first invention may be a polycarbonate resin mixture of a polycarbonate resin containing a repeating unit (A) and a polycarbonate resin containing the repeating units (B') and (B), and the repeating unit (A) and the repeating unit (A) are repeated. It may be a copolymerized polycarbonate resin containing the units (B') and (B). Further, the polycarbonate resin containing the repeating unit (A) and / or the polycarbonate resin containing the repeating units (B') and (B) and the repeating unit (A) and the repeating units (B') and (B) are included. It may be a polycarbonate resin mixture containing a polymerized polycarbonate resin.
  • R 1 and R 2 are independently hydrogen atoms and alkyls having 1 to 20 carbon atoms substituted or unsubstituted. Indicates a group or a substituted or unsubstituted aryl group.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 1 and R 2 are represented by the following formula (1a) or (1b) from the viewpoint of improving heat resistance, in which a methyl group or an alkyl group of R 1 and R 2 is bonded to each other. It is preferable to form a ring. From the viewpoint of the balance between heat resistance and fluidity, it is particularly preferable that R 1 and R 2 are methyl groups.
  • R 3 and R 4 are preferably methyl groups from the viewpoint of flame retardancy and improvement of dielectric properties.
  • the repeating unit (A) is a repeating structural unit derived from 2,2-bis (4-hydroxy-3-methylphenyl) propane (hereinafter sometimes abbreviated as "BPC”), and has the following formula ( It is particularly preferable that it is a repeating unit represented by 4).
  • the polycarbonate resin of the first invention may contain only one type of the repeating unit (A), or may contain two or more types.
  • X represents a single bond or a divalent organic group represented by the following general formula (3).
  • X is preferably a single bond or a methylene group from the viewpoint of improving dielectric properties and flame retardancy. That is, in the following general formula (3), R 5 is preferably a hydrogen atom.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 6 to R 9 are preferably methyl groups from the viewpoint of improving heat resistance and flame retardancy.
  • the replacement position of R 6 to R 9 there is no limitation on the replacement position of R 6 to R 9 , but it is usually a replacement position usually represented by the following general formula (2A') or the following general formula (2B'). From the viewpoint of improving impact resistance, the substitution position of the following general formula (2A') is particularly preferable.
  • the replacement positions of R 6 to R 9 are not limited, but are usually the replacement positions represented by the following general formula (2A) or the following general formula (2B), and are impact resistant. From the viewpoint of improving the property, the substitution position of the following general formula (2A) is particularly preferable.
  • the repeating units (B') and (B) are the following general formulas, which are repeating units derived from 4,4-methylenebis (2,6-dimethylphenol) (hereinafter, may be abbreviated as "TmBPF").
  • the polycarbonate resin of the first invention may contain only one type of repeating units (B') and (B), or may contain two or more types.
  • the content ratio of the repeating unit (A) and the repeating units (B') and (B) in the polycarbonate resin of the first invention is not particularly limited, but the repeating unit (A) / repeating unit (B'), (B)
  • the (molar ratio) is preferably 1:99 to 99: 1, particularly 1:99 to 90:10, particularly 10:90 to 80:20, and particularly preferably 15:85 to 70:30.
  • the polycarbonate resin of the first invention is one or two of other repeating units (C) other than the repeating unit (A) and the repeating units (B') and (B) as long as the object of the first invention is not impaired. It may contain more than a seed.
  • Other repeating units (C) include, for example, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxyphenyl) cyclohexane, and 2,2-bis (4-hydroxyphenyl).
  • aromatic dihydroxy compounds such as hydroxyphenyl) -3,3,5-trimethylcyclohexane, 6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindane.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • 6,6'-dihydroxy-3,3,3', 3'-tetramethyl-1,1'-spirobiindane is preferable.
  • the total carbonate structural unit in the polycarbonate resin of the first invention is set to 100 mol%.
  • the ratio of the sum of the repeating unit (A) and the repeating units (B') and (B) is preferably 40 mol% or more, more preferably 50 mol% or more, and more preferably 60 mol% or more. It is more preferable, and 70 mol% or more is particularly preferable.
  • the molecular weight of the polycarbonate resin of the first invention is not particularly limited, but it is preferable that the viscosity average molecular weight (Mv) converted from the solution viscosity is 14,500 or more.
  • Mv viscosity average molecular weight
  • the viscosity average molecular weight of the polycarbonate resin of the first invention is more preferably 16,000 or more, further preferably 17,000 or more, particularly preferably 18,000 or more, and most preferably. It is over 18,500.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin of the first invention is preferably 30,000 or less.
  • the viscosity average molecular weight is more preferably 29,000 or less, further preferably 28,000 or less, particularly preferably 27,000 or less, and most preferably. It is 26,500 or less.
  • the intrinsic viscosity (extreme viscosity) [ ⁇ ] is a value calculated by the following formula by measuring the specific viscosity [ ⁇ sp] at each solution concentration [C] (g / dL).
  • the glass transition temperature (Tg) of the polycarbonate resin of the first invention is not limited, but is preferably 125 to 200 ° C.
  • Tg is 125 ° C. or higher
  • the heat resistance of the thermoplastic resin composition of the first invention, the molded product, and the housing for communication equipment is improved.
  • the Tg of the polycarbonate resin is 200 ° C. or lower
  • the fluidity of the thermoplastic resin composition of the first invention containing the polycarbonate resin of the first invention becomes good, and high molding processability can be obtained.
  • the glass transition temperature (Tg) of the polycarbonate resin of the first invention is preferably 125 to 200 ° C.
  • the Tg of the polycarbonate resin is measured by the method described in the section of Examples described later.
  • thermoplastic resin composition of the first invention containing the polycarbonate resin of the first invention has a high hardness property such that the pencil hardness measured by a method conforming to ISO 15184 is preferably F or more.
  • the pencil hardness is more preferably H or more, and particularly preferably 2H or more.
  • the pencil hardness of the thermoplastic resin composition is measured by the method described in the section of Examples described later for a molded product made of the thermoplastic resin composition.
  • the flame retardancy of the polycarbonate resin of the first invention is determined when the result of the 20 mm vertical combustion test (0.8 mmt) described in the section of Examples described later is V-2 in the classification of the material described in UL94. It is preferable that the time required for the labeling cotton to be ignited by the fuming substance or the dropping material is the longest, for example, 10 seconds or more. Further, the classification of the above-mentioned materials is more preferably V-1 or V-0, and particularly preferably V-0.
  • the polycarbonate resin of the first invention preferably has a relative permittivity ( ⁇ r ) measured at a temperature of 23 ° C. and a frequency of 10 GHz, preferably 2.60 or less, more preferably 2.55 or less, and particularly preferably 2.50 or less.
  • the dielectric loss tangent (tan ⁇ ⁇ 10 -3 ) is preferably 4.00 or less, more preferably 3.00 or less, and particularly preferably 2.50 or less.
  • the relative permittivity ( ⁇ r ) and dielectric loss tangent (tan ⁇ ⁇ 10 -3 ) of the polycarbonate resin are from a film having a thickness of 30 to 250 ⁇ m formed using this polycarbonate resin to a strip-shaped film having a length of 70 mm and a width of 2 mm. Is cut out, and the humidity is adjusted for 48 hours under the conditions of room temperature of 23 ° C. and humidity of 50%, and then measured at a frequency of 10 GHz using a cavity resonator. Details are as described in the Examples section below.
  • the polycarbonate resin of the first invention can be produced by a conventionally known polymerization method, and the polymerization method is not particularly limited.
  • the polymerization method include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, a solid phase transesterification method of a prepolymer, and the like.
  • an interfacial polymerization method e.g., a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, a solid phase transesterification method of a prepolymer, and the like.
  • Interfacial polymerization method In the interfacial polymerization method, the pH is usually maintained at 9 or higher in the presence of an organic solvent and an alkaline aqueous solution inert to the reaction, the raw material dihydroxy compound and the carbonate-forming compound are reacted, and then in the presence of a polymerization catalyst.
  • a polycarbonate resin is obtained by performing interfacial polymerization.
  • a molecular weight modifier may be present in the reaction system, or an antioxidant may be present to prevent oxidation of the raw material dihydroxy compound.
  • the organic solvent inert to the reaction is not particularly limited, but for example, chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene, dichlorobenzene and the like; aromatic hydrocarbons such as benzene, toluene and xylene. Hydrogen; etc.
  • chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene, dichlorobenzene and the like
  • aromatic hydrocarbons such as benzene, toluene and xylene. Hydrogen; etc.
  • 1 type may be used, or 2 or more types may be used in any combination and ratio.
  • the alkaline compound contained in the alkaline aqueous solution is not particularly limited, and examples thereof include alkali metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, and alkaline earth metal compounds. Of these, sodium hydroxide and potassium hydroxide are preferable.
  • alkaline compound one kind may be used, or two or more kinds may be used in any combination and ratio.
  • the concentration of the alkaline compound in the alkaline aqueous solution is not limit to the concentration of the alkaline compound in the alkaline aqueous solution, but usually, the alkaline compound concentration is used at 5 to 10% by mass in order to control the pH of the alkaline aqueous solution to 10 to 12.
  • the molar ratio of the raw material dihydroxy compound to the alkaline compound is usually 1: 1.9 in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11. Above all, it is preferably 1: 2.0 or more, usually 1: 3.2 or less, and above all, 1: 2.5 or less.
  • the raw material dihydroxy compound at least a dihydroxy compound capable of forming a repeating unit (A) and repeating units (B') and (B) by reaction with a carbonate-forming compound is used.
  • Carbonyl halide is preferably used as the carbonate-forming compound. Of these, it is preferable to use phosgene.
  • the method when phosgene is used is particularly called the phosgene method.
  • the polymerization catalyst is not particularly limited, but is, for example, an aliphatic tertiary amine such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine; N, N'-dimethylcyclohexylamine, N, N'-diethylcyclohexyl.
  • Alicyclic tertiary amines such as amines; aromatic tertiary amines such as N, N'-dimethylaniline, N, N'-diethylaniline; trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride and the like.
  • Tertiary ammonium salts and the like pyridines; guanines; guanidine salts; etc.
  • one type may be used, or two or more types may be used in combination in any combination and ratio.
  • the molecular weight adjusting agent is not particularly limited, and examples thereof include aromatic phenols having a monovalent phenolic hydroxyl group; fatty alcohols such as methanol and butanol; mercaptan; phthalic acid imide and the like. Of these, aromatic phenol is preferable.
  • aromatic phenols include phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, p-isobutylphenol, o.
  • the amount of the molecular weight adjusting agent used is not particularly limited, but is, for example, usually 0.5 mol or more, preferably 1 mol or more, usually 50 mol or less, preferably 30 mol or less, based on 100 mol of the raw material dihydroxy compound. is there.
  • the antioxidant is not particularly limited, and examples thereof include a hindered phenolic antioxidant. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl).
  • pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate are preferable.
  • examples of commercially available products of such phenolic antioxidants include "Irganox 1010” and “Irganox 1076" manufactured by BASF, "ADEKA STAB AO-50" and “ADEKA STAB AO-60” manufactured by ADEKA.
  • One type of antioxidant may be used, or two or more types may be used in any combination and ratio.
  • the amount of the antioxidant used is not particularly limited, but is preferably 0.001 part by mass or more, more preferably 0.01 part by mass or more, and further preferably 0.1 part by mass with respect to 100 parts by mass of the raw material dihydroxy compound. That is all. By setting the amount of the antioxidant used to be equal to or higher than the above lower limit, the effect as the antioxidant becomes sufficient.
  • the amount of the antioxidant used is preferably 1 part by mass or less, more preferably 0.5 part by mass or less, based on 100 parts by mass of the raw material dihydroxy compound. By setting the amount of the antioxidant to be used below the above upper limit, gas generation during injection molding can be suppressed.
  • reaction substrate reaction raw material
  • reaction solvent organic solvent
  • catalyst additives, etc.
  • the molecular weight modifier can be mixed at any time between the reaction (phosgenation) of the raw material dihydroxy compound and phosgene and the start of the polymerization reaction. ..
  • the reaction temperature is not particularly limited, but is preferably 0 to 40 ° C.
  • the reaction time is not particularly limited, but is preferably several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt ester exchange method for example, a transesterification reaction between a carbonate ester and a raw material dihydroxy compound is performed.
  • the raw material dihydroxy compound is the same as that in the interfacial polymerization method.
  • the carbonate ester may be, for example, a compound represented by the following general formula (I), and is dihydroxy such as aryl carbonates, dialkyl carbonates, biscarbonates of dihydroxy compounds, monocarbonates of dihydroxy compounds, and cyclic carbonates. Examples thereof include carbonate compounds of compounds.
  • R 101 and R 102 independently represent an alkyl group having 1 to 30 carbon atoms, an aryl group, or an arylalkyl group, respectively.
  • R 101 and R 102 when R 101 and R 102 are an alkyl group or an arylalkyl group, they may be referred to as a dialkyl carbonate, and when they are an aryl group, they may be referred to as a diallyl carbonate.
  • both R 101 and R 102 are preferably aryl groups, and more preferably diaryl carbonate represented by the following general formula (II).
  • R 103 and R 104 independently have a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 20 carbon atoms, and 4 carbon atoms, respectively. It is a cycloalkyl group of up to 20 or an aryl group having 6 to 20 carbon atoms. p and q each independently represent an integer of 0 to 5.
  • carbonate esters include dialkyl carbonates such as dimethyl carbonate, diethyl carbonate and di-t-butyl carbonate, diphenyl carbonate (hereinafter, may be abbreviated as "DPC"), and bis (4-).
  • DPC diphenyl carbonate
  • Methylphenyl) carbonate bis (4-chlorophenyl) carbonate, bis (4-fluorophenyl) carbonate, bis (2-chlorophenyl) carbonate, bis (2,4-difluorophenyl) carbonate, bis (4-nitrophenyl) carbonate
  • Examples thereof include diaryl carbonates (which may have a substituent) such as bis (2-nitrophenyl) carbonate, bis (methylsalitylphenyl) carbonate, and ditril carbonate. Of these, diphenyl carbonate is preferable.
  • These carbonate esters can be used alone or in admixture of two or more.
  • the carbonate ester may be replaced with a dicarboxylic acid or a dicarboxylic acid ester in an amount of preferably 50 mol% or less, more preferably 30 mol% or less.
  • Typical dicarboxylic acids or dicarboxylic acid esters include terephthalic acid, isophthalic acid, diphenyl terephthalate, diphenyl isophthalate and the like. When substituted with such a dicarboxylic acid or dicarboxylic acid ester, a polyester carbonate is obtained.
  • the ratio of the raw material dihydroxy compound to the carbonate ester is arbitrary as long as a desired polycarbonate resin can be obtained, but it is preferable to use these carbonate esters in excess with respect to the raw material dihydroxy compound when polymerizing with the dihydroxy compound.
  • the amount of the carbonate ester is preferably 1.01 times (molar ratio) or more, more preferably 1.02 times or more, based on the dihydroxy compound. By setting the molar ratio to the above lower limit or more, the thermal stability of the obtained polycarbonate resin becomes good.
  • the amount of the carbonate ester is preferably 1.30 times (molar ratio) or less, and more preferably 1.20 times or less with respect to the dihydroxy compound.
  • the molar ratio By setting the molar ratio to the above upper limit or less, the reactivity is improved, the productivity of the polycarbonate resin having a desired molecular weight is improved, and the amount of residual carbonate ester in the resin is reduced, thereby molding. It is suitable because it can suppress the generation of odor when it is processed or made into a molded product.
  • a transesterification catalyst When producing a polycarbonate resin by the transesterification method, a transesterification catalyst is usually used.
  • the transesterification catalyst is not particularly limited, and conventionally known ones can be used.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound may be used in combination.
  • One type of transesterification catalyst may be used, or two or more types may be used in any combination and ratio.
  • the reaction temperature is not particularly limited, but is usually 100 to 320 ° C.
  • the pressure during the reaction is not particularly limited, but is usually a reduced pressure condition of 2 mmHg or less.
  • the melt polycondensation reaction may be carried out under the above conditions while removing by-products.
  • the polycarbonate resin of the present invention is significantly affected by heat history and oxidation in the presence of an alkaline catalyst, leading to deterioration of hue. Therefore, it is preferable to set the reaction temperature to 320 ° C. or lower, and to select a decompression condition with a lower limit of about 0.05 mmHg in order to prevent oxygen from leaking from the equipment due to excessive depressurization.
  • the reaction format can be either batch type or continuous type.
  • the order of mixing the reaction substrate, reaction solvent, catalyst, additives and the like is arbitrary as long as a desired polycarbonate resin can be obtained, and an appropriate order may be set arbitrarily.
  • a catalytic deactivator may be used if necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof, phosphorus-containing acidic compounds and derivatives thereof, and the like.
  • the catalyst deactivator one type may be used, or two or more types may be used in combination in any combination and ratio.
  • the amount of the catalyst deactivator used is not particularly limited, but is usually 0.5 equivalents or more, preferably 1 equivalent or more, more preferably 3 equivalents or more, and usually 50 equivalents or less, with respect to the transesterification catalyst. It is preferably 10 equivalents or less, more preferably 8 equivalents or less.
  • the amount of the catalyst deactivator used is usually 1 ppm or more, 100 ppm or less, and preferably 50 ppm or less with respect to the polycarbonate resin.
  • thermoplastic resin composition of the first invention may contain other components in addition to the above-mentioned polycarbonate resin of the first invention, if necessary, as long as the desired physical properties are not significantly impaired.
  • other components include resins other than the polycarbonate resin of the first invention, various resin additives, and the like.
  • one type may be contained, or two or more types may be contained in any combination and ratio.
  • Thermoplastic polyester resins such as polyethylene terephthalate resin (PET resin), polytrimethylene terephthalate (PTT resin), polybutylene terephthalate resin (PBT resin); Polystyrene resin (PS resin), high impact polystyrene resin (HIPS), acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA) Resin), styrene resin such as acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin); Polyethylene resins such as polyethylene resin (PE resin), polypropylene resin (PP resin), cyclic cycloolefin resin (COP resin); Polyamide resin (PA resin); Polyimide resin (PI resin); Polyether
  • thermoplastic resin composition of the first invention may contain one kind of resin other than the above-mentioned polycarbonate resin of the first invention, or two or more kinds may be contained in any combination and ratio. ..
  • thermoplastic resin composition of the first invention contains a resin other than the polycarbonate resin of the first invention
  • the effect of the first invention by containing the polycarbonate resin of the first invention can be obtained more effectively.
  • the proportion of the polycarbonate resin of the first invention in the total resin components contained in the thermoplastic resin composition is preferably 20% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass. % Or more, particularly preferably 50% by mass or more, and most preferably 60% by mass or more.
  • the resin additive examples include a heat stabilizer, an antioxidant, a mold release agent, an ultraviolet absorber, a dye pigment, a flame retardant, a drip inhibitor, an antistatic agent, an antifogging agent, a lubricant, an antiblocking agent, and a fluidity.
  • examples thereof include improvers, plasticizers, dispersants, antibacterial agents, glass fibers, carbon fibers, inorganic fillers and organic fibers.
  • the thermoplastic resin composition of the first invention may contain one of these resin additives, or two or more of them may be contained in any combination and ratio.
  • the content of the polycarbonate resin of the first invention in the thermoplastic resin composition of the first invention is preferably 30% by mass or more. It is more preferably 40% by mass or more, further preferably 50% by mass or more, particularly preferably 60% by mass, and most preferably 70 to 100% by mass.
  • thermoplastic resin composition The method for producing the thermoplastic resin composition of the first invention is not limited, and a known method for producing the thermoplastic resin composition can be widely adopted. Specifically, the polycarbonate resin of the first invention and other resins and resin additives used as needed are melted in a mixer such as a Banbury mixer, a roll, a single-screw kneading extruder, a twin-screw kneading extruder, or a kneader. There is a method of kneading.
  • pellets obtained by pelletizing the thermoplastic resin composition produced as described above are molded by various molding methods. It may be a molded product, or the thermoplastic resin composition of the first invention melt-kneaded by an extruder without passing through pellets may be directly molded to be a molded product.
  • the shape of the molded product of the first invention is not particularly limited and may be appropriately selected depending on the intended use and purpose of the molded product.
  • a plate shape, a plate shape, a rod shape, a sheet shape, a film shape, or a cylinder examples thereof include a shape, an annular shape, a circular shape, an elliptical shape, a polygonal shape, a deformed product, a hollow product, a frame shape, a box shape, and a panel shape.
  • the surface may have irregularities or a three-dimensional shape having a three-dimensional curved surface.
  • it when it is used as a sheet, a film, a plate, or the like, it may be a laminated body having a multi-layer structure laminated with another resin sheet.
  • the method for molding the molded product is not particularly limited, and a conventionally known molding method can be adopted.
  • injection molding method injection compression molding method, extrusion molding method, deformed extrusion method, transfer molding method, hollow molding method, gas-assisted hollow molding method, blow molding method, extrusion blow molding, IMC (in-mold coating molding) molding method.
  • Rotational molding method multi-layer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, pressure molding method, sheet molding method, thermal molding method, laminated molding method, press molding method and the like. ..
  • the injection molding method or the extrusion molding method is particularly preferably used.
  • the molding temperature at the time of molding the thermoplastic resin composition of the first invention is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and most preferably 280 ° C. or higher. By setting the molding temperature to the above lower limit or higher, the fluidity is improved and the moldability is improved.
  • the molding temperature at the time of molding the thermoplastic resin composition of the first invention is preferably 350 ° C. or lower, particularly preferably 320 ° C. or lower. By setting the molding temperature to the above upper limit or less, the color tone of the thermoplastic resin composition can be improved.
  • thermoplastic resin composition of the first invention In performing injection molding or extrusion molding, pigments, dyes, mold release agents, heat stabilizers and the like can be appropriately added to the thermoplastic resin composition of the first invention as long as the object of the present invention is not impaired.
  • thermoplastic resin composition of the first invention can be suitably used as an injection-molded product by injection molding.
  • the injection molding method is not particularly limited, and any molding method generally used for thermoplastic resins can be adopted. Examples include ultra-high-speed injection molding, injection compression molding, two-color molding, hollow molding such as gas assist, molding using a heat insulating mold, molding using a rapid heating mold, and foaming. Examples include molding (including supercritical fluid), insert molding, and IMC (in-mold coating molding) molding method. Further, a molding method using a hot runner method can also be used.
  • the mold temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and most preferably 100 ° C. or lower.
  • the mold temperature is preferably 30 ° C. or higher, particularly preferably 50 ° C. or higher.
  • thermoplastic resin composition of the first invention can be suitably used as an extrusion-molded product by extrusion molding.
  • An extrusion molding machine is usually used for producing an extrusion molded product from the thermoplastic resin composition of the first invention, although there is no particular limitation.
  • the extrusion molding machine is equipped with a T die, a round die, or the like, and extrusion-molded products having various shapes can be obtained.
  • the extruded product include sheets, films, plates, tubes, pipes and the like. Among these, a sheet or a film is preferable.
  • a hard coat layer may be laminated on both sides or one side of the extruded product in order to improve adhesiveness, coatability and printability, and weather resistance and / or
  • the scratch resistance improving film may be heat-laminated on both sides or one side of the extruded product. Further, treatments such as surface graining, translucency and opacity may be performed.
  • the molded product of the first invention obtained by using the thermoplastic resin composition of the first invention has excellent radio wave transmission in the microwave and / or millimeter wave band, and is also excellent in heat resistance and flame retardancy. It is useful as a housing for communication equipment incorporating a microwave and / or millimeter wave antenna whose characteristics are strictly required.
  • the housing for communication equipment that incorporates such a microwave and / or millimeter wave antenna, and for communication equipment that incorporates the microwave and / or millimeter wave antenna. It can be appropriately selected according to the application of the housing.
  • a microwave is a radio wave having a frequency of 3.0 to 30 GHz
  • a millimeter wave is a radio wave having a frequency of 30 to 300 GHz. Therefore, microwaves and / or millimeter waves are radio waves of 3.0 to 300 GHz.
  • a communication device having a built-in microwave and / or millimeter wave antenna is a communication device having a built-in antenna for transmitting and receiving radio waves having a frequency of 3.0 to 300 GHz.
  • Specific examples of the communication device include a notebook computer, a tablet terminal, a smartphone, a router device, and the like that transmit and receive radio waves having a frequency of 3.0 to 300 GHz.
  • the frequency transmitted and received by the microwave and / or millimeter wave antenna of the housing for communication equipment incorporating the microwave and / or millimeter wave antenna of the first invention is not particularly limited as long as it is 3.0 to 300 GHz. Is more suitable for radio waves in the frequency band of 3.2 to 250 GHz, and more suitable for radio waves in the frequency band of 3.4 to 200 GHz.
  • the housing for communication equipment incorporating the microwave and / or millimeter wave antenna of the first invention is used for radio waves in the frequency band of 3.5 to 30 GHz used in 5G (5th generation mobile communication system). On the other hand, it can be preferably used.
  • Radio waves in the microwave and / or millimeter wave band tend to have poor radio transmission.
  • a housing for a communication device having an antenna for transmitting and receiving microwave and / or millimeter wave band radio waves is required to have high radio wave transmission.
  • a housing for communication devices that has a built-in antenna that transmits and receives microwave and / or millimeter-wave band radio waves is required to have high heat resistance and flame retardancy.
  • thermoplastic resin composition of the first invention used for a housing for a communication device having an antenna for transmitting and receiving microwave and / or millimeter wave band radio waves of the first invention is It has a low relative permittivity, low dielectric loss tangent, high heat resistance, and high flame retardancy. Therefore, the thermoplastic resin composition of the first invention containing the polycarbonate resin of the first invention has low relative permittivity, low dielectric loss tangent, high heat resistance, and high flame retardancy, and has microwaves and high flame retardancy. / Or suitable for use in the housing of a communication device that transmits and receives radio waves in the millimeter wave band.
  • a housing for a communication device having a built-in microwave and / or millimeter wave antenna include a housing for a notebook computer, tablet terminal, smartphone, router device, or the like.
  • the molded article of the first invention comprising the thermoplastic resin composition of the first invention is particularly suitable for these uses.
  • the polycarbonate resin composition of the second invention is a carbonate structural unit (X) derived from an aromatic dihydroxy compound represented by the following formula (11) (hereinafter, may be referred to as “aromatic dihydroxy compound (11)”). ) (Hereinafter, it may be simply referred to as “carbonate structural unit (X)”) and an aromatic dihydroxy compound represented by the following formula (12) (hereinafter, when it is referred to as "aromatic dihydroxy compound (12)”).
  • the surface hardness, alkali resistance, heat resistance, and impact strength are remarkably good, and further, high transparency and hue can be obtained.
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • the polycarbonate resin composition of the second invention may contain the carbonate structural unit (X) and the carbonate structural unit (Y) in the above (X) / (Y) molar ratio, and may contain the carbonate structural unit (X). There is no particular limitation on the content form of the carbonate structural unit (Y). Usually, the carbonate structural unit (X) and the carbonate structural unit (Y) are contained in the polycarbonate resin. That is, the polycarbonate resin composition of the second invention may be a polycarbonate resin mixture of a polycarbonate resin containing a carbonate structural unit (X) and a polycarbonate resin containing a carbonate structural unit (Y), and the polycarbonate structural unit (X) may be used. It may contain a copolymerization type polycarbonate resin containing the carbonate structural unit (Y) at the same time.
  • the polycarbonate resin composition of the second invention contains a carbonate structural unit (X) and a carbonate structural unit (Y) as a copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Y), the second The polycarbonate resin composition of the present invention is called "polycarbonate resin".
  • the polycarbonate resin composition of the second invention is a mixture of a polycarbonate resin containing a carbonate structural unit (X) and a polycarbonate resin containing a carbonate structural unit (Y), it is usually referred to as a "polycarbonate resin composition".
  • polycarbonate resin composition including the case where it is composed of one kind of copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Y). ..
  • R 1 and R 2 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substitutions. Alternatively, it indicates an unsubstituted aryl group.
  • substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms of R 1 and R 2 include the following. Methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group , N-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, n-icosyl group; Methyl ethyl group, Methyl propyl group, Methyl butyl
  • R 1 and R 2 which are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms in the general formula (11), may be bonded to each other to form a ring, and specific examples thereof include. , The following general formulas (15), (16) and the like can be mentioned.
  • R 3 and R 4 are synonymous with those in the general formula (11).
  • substituted or unsubstituted aryl group of R 1 and R 2 include a phenyl group, a tolyl group, a 4-methylphenyl group, a naphthyl group and the like.
  • R 1 and R 2 are preferably a hydrogen atom, a methyl group, and an ethyl group, more preferably a methyl group, and particularly preferably both R 1 and R 2 are methyl groups.
  • R 3 and R 4 are independently substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted. Indicates the aryl group of.
  • R 3 and R 4 are independently substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted. Indicates the aryl group of.
  • R 3 and R 4 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, n-hexyl group and cyclohexyl.
  • a methyl group is preferable.
  • the aromatic dihydroxy compound represented by the following general formula (13) is preferable from the viewpoint of improving the surface hardness.
  • R 10 and R 11 each independently represent a hydrogen atom or a methyl group.
  • R 12 and R 13 each independently represent a methyl group or an ethyl group.
  • aromatic dihydroxy compound (11) As a preferable specific example of the aromatic dihydroxy compound (11) according to the second invention, 2,2-bis (4-hydroxy-3-methylphenyl) propane represented by the following formula (11a) (hereinafter, "BPC") , 22-bis (2-hydroxy-5-biphenylyl) propane represented by the following formula (11b), 1,1-bis represented by the following formula (11c).
  • BPC 2,2-bis (4-hydroxy-3-methylphenyl) propane represented by the following formula (11a) (hereinafter, "BPC")
  • 22-bis (2-hydroxy-5-biphenylyl) propane represented by the following formula (11b)
  • 1,1-bis represented by the following formula (11c).
  • BPC represented by the above formula (11a) is most preferable.
  • the carbonate structural unit (Y) in the second invention has the impact resistance and the like of the polycarbonate resin composition of the second invention by connecting the benzene ring of bisphenol with a methylene group as in the general formula (12). Can be improved.
  • R 6 to R 9 are independently substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted. Indicates the aryl group of.
  • R 6 to R 9 are preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the aromatic dihydroxy compound represented by the following general formula (14), particularly the aromatic dihydroxy compound represented by the following general formula (14A) has a surface hardness. It is preferable from the viewpoint of improving impact resistance and alkali resistance.
  • R 15 ⁇ R 18 each independently represent a methyl group or an ethyl group,.
  • R 20 to R 23 each independently represent a methyl group or an ethyl group.
  • the replacement positions of R 22 and R 23 are more preferably the positions represented by the following general formula (14B).
  • R 20 to R 23 are synonymous with those in the general formula (14A).
  • aromatic dihydroxy compound (12) As a preferable specific example of the aromatic dihydroxy compound (12) according to the second invention, 4,4-methylenebis (2,6-dimethylphenol) represented by the following formula (12a) (hereinafter, abbreviated as "TmBPF”). ”, 4,4-Methylenebis (2,5-dimethylphenol) represented by the following formula (12b) (hereinafter, may be abbreviated as“ Bis25X-F ”) and the like.
  • the polycarbonate resin composition of the second invention may contain only one type of carbonate structural unit (X), or may contain two or more types. That is, it may contain a carbonate structural unit (X) derived from two or more kinds of aromatic dihydroxy compounds (11). Further, the carbonate structural unit (Y) may also contain only one type, or may contain two or more types. That is, it may contain a carbonate structural unit (Y) derived from two or more kinds of aromatic dihydroxy compounds (12).
  • the polycarbonate resin composition of the second invention may contain the carbonate structural unit (X) and the carbonate structural unit (Y) in the above (X) / (Y) molar ratio, and the polycarbonate of the second invention may be used.
  • the content of each of the carbonate structural units (X) and (Y) can be any content as long as the characteristics of the resin composition are not impaired.
  • the polycarbonate resin composition of the second invention is all in the polycarbonate resin composition in order to surely obtain the effect of the second invention by containing the carbonate structural unit (X) and the carbonate structural unit (Y).
  • the total amount of the carbonate structural unit (X) and the carbonate structural unit (Y) is preferably 10 mol% or more, preferably 15 mol% or more, more preferably 20 mol% or more, and particularly 25. It is preferably contained in an amount of ⁇ 100 mol%.
  • the polycarbonate resin composition of the second invention is a carbonate structural unit other than the carbonate structural units (X) and (Y), that is, the aromatic dihydroxy compound (11), as long as the object of the second invention is not impaired. It may contain a carbonate structural unit derived from a dihydroxy compound other than 12).
  • dihydroxy compound other than the aromatic dihydroxy compounds (11) and (12) examples include the following.
  • Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl; 2,2′-dihydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxy Dihydroxydiaryl ethers such as diphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene; , 2-bis (4-hydroxyphenyl) propane (hereinafter sometimes abbreviated as "BPA"), 1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4- Hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxypheny
  • Cardo-structure-containing bisphenols such as: 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide and other dihydroxydiarylsulfides; 4,4'-dihydroxydiphenylsulfoxide, 4, Dihydroxydiarylsulfoxides such as 4'-dihydroxy-3,3'-dimethyldiphenylsulfoxide; dihydroxydiarylsulfones such as 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfon ;etc
  • bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and impact resistance is particularly high.
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • dihydroxy compounds other than the aromatic dihydroxy compounds (11) and (12) one type may be used, or two or more types may be used in any combination and ratio.
  • the molecular weight of the polycarbonate resin composition of the second invention is the viscosity average molecular weight (Mv) converted from the solution viscosity, and is preferably 15,000 to 33,000.
  • Mv the viscosity average molecular weight
  • the mechanical properties and alkali resistance of the polycarbonate resin composition of the second invention are good.
  • the viscosity average molecular weight is not more than the above upper limit value, the fluidity of the polycarbonate resin composition of the second invention tends to be sufficient.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin composition of the second invention is preferably 16,500 or more, more preferably 18,000 or more. Further, it is preferably 31,500 or less, more preferably 30,000 or less.
  • the polycarbonate resin composition of the second invention has a high hardness property such that the pencil hardness measured by a method conforming to ISO 15184 is preferably H or more, and the pencil hardness is more preferably 2H or more. is there.
  • the pencil hardness of the polycarbonate resin composition is measured by the method described in the section of Examples described later for a molded product made of the polycarbonate resin composition.
  • the polycarbonate resin composition of the second invention preferably has a glass transition temperature Tg of 130 to 200 ° C.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • the glass transition temperature Tg of the polycarbonate resin composition of the second invention is particularly preferably 130 to 200 ° C.
  • the Tg of the polycarbonate resin composition is measured by the method described in the section of Examples described later.
  • the polycarbonate resin composition of the second invention contains other components other than the polycarbonate resin containing the carbonate structural unit (X) and / or the carbonate structural unit (Y), as necessary, as long as the desired physical properties are not significantly impaired. It may be contained. Examples of other components include polycarbonate resins containing no carbonate structural unit (X) and carbonate structural unit (Y), resins other than polycarbonate resins, and various resin additives.
  • Resin additives include, for example, heat stabilizers, antioxidants, mold release agents, lightfasteners (HALS), flame retardants, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, and plasticizers. , Dispersants, antibacterial agents, dyes, pigments and the like.
  • One type of resin additive may be contained, or two or more types may be contained in any combination and ratio.
  • thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polystyrene resin, high impact polystyrene resin (HIPS), acrylonitrile-styrene copolymer (AS resin), and the like.
  • HIPS high impact polystyrene resin
  • AS resin acrylonitrile-styrene copolymer
  • Styrene resins such as acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin); polyolefin resins such as polyethylene resin and polypropylene resin; polyamide resin; polyimide resin Polyetherimide resin; polyurethane resin; polyphenylene ether resin; polyphenylene sulfide resin; polysulfone resin; polymethacrylate resin and the like.
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylene propylene rubber-styrene copolymer
  • polyolefin resins such as polyethylene resin and polypropylene resin
  • polyamide resin polyimide resin
  • Polyetherimide resin polyurethane resin
  • polyphenylene ether resin polyphenylene sulfide resin
  • polysulfone resin polymethacryl
  • the polycarbonate resin constituting the polycarbonate resin composition of the second invention is the same as the above-mentioned polycarbonate resin of the first invention except that at least an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (12) are used as raw material dihydroxy compounds.
  • at least an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (12) are used as raw material dihydroxy compounds.
  • a copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Y) is produced by using a raw material dihydroxy compound containing an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (12). can do. By using one of these aromatic dihydroxy compounds, a polycarbonate resin containing a carbonate structural unit (X) or a carbonate structural unit (Y) can be produced.
  • the molding temperature at the time of molding the polycarbonate resin composition of the second invention is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and most preferably 280 ° C. or higher. Further, 350 ° C. or lower is preferable, and 320 ° C. or lower is particularly preferable. If the molding temperature is too low, the melt viscosity may increase, the fluidity may decrease, and the formability may decrease. If the molding temperature is too high, the polycarbonate resin composition may be colored and the color tone of the obtained molded product may be deteriorated, which is not preferable.
  • pigments, dyes, mold release agents, heat stabilizers and the like can be appropriately added to the polycarbonate resin composition of the second invention as long as the object of the second invention is not impaired.
  • the mold temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and most preferably 100 ° C. or lower. Further, 30 ° C. or higher is preferable, and 50 ° C. or higher is particularly preferable. If the mold temperature is too high, it is necessary to lengthen the cooling time during molding, which may lengthen the manufacturing cycle of the molded product and reduce productivity. If the mold temperature is too low, the melt viscosity of the polycarbonate resin composition becomes too high, and a uniform molded product may not be obtained, which causes problems such as unevenness on the surface of the molded product, which is not preferable.
  • Extruded product> An ordinary extrusion molding machine is used to produce an extrusion molded product from the polycarbonate resin composition of the second invention. Generally, the extrusion molding machine is equipped with a T die, a round die, or the like, and extrusion-molded products having various shapes can be obtained. Examples of the extruded product include sheets, films, plates, tubes, pipes and the like. Among these, a sheet or a film is preferable.
  • a hard coat layer may be laminated on both sides or one side of the extruded product in order to improve adhesiveness, coatability and printability, and weather resistance and / or resistance may be obtained.
  • the scratch resistance improving film may be heat-laminated on both sides or one side of the extruded product. Further, treatments such as surface graining, translucency and opacity may be performed.
  • the molded product of the polycarbonate resin composition of the second invention can be used in various fields such as buildings, vehicles, electrical / electronic devices, machines, and others.
  • the polycarbonate resin composition of the third invention is a carbonate structural unit (hereinafter, may be referred to as "aromatic dihydroxy compound (11)") represented by the following general formula (11).
  • X (hereinafter, may be simply referred to as “carbonate structural unit (X)") and an aromatic dihydroxy compound represented by the following general formula (21) (hereinafter, "aromatic dihydroxy compound (21)”.
  • the surface hardness, alkali resistance, heat resistance, impact strength, and fluidity of the material are remarkably good, and further, it is possible to have high transparency and hue.
  • R 1 and R 2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group, respectively.
  • the alkyl groups of R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 and R 4 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • R 6 to R 9 independently represent substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted aryl groups, respectively.
  • the carbonate structural unit (X) and the carbonate structural unit (Z) are contained in the polycarbonate resin.
  • the polycarbonate resin composition of the third invention may be a polycarbonate resin mixture of a polycarbonate resin containing a carbonate structural unit (X) and a polycarbonate resin containing a carbonate structural unit (Z), and the carbonate structural unit (X) and carbonate may be used. It may contain a copolymerization type polycarbonate resin containing a structural unit (Z) at the same time.
  • the polycarbonate resin composition of the third invention is a polycarbonate resin containing a carbonate structural unit (X) and / or a carbonate structural unit (Z), and a copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Z). It may be a mixture with, and may further contain a polycarbonate resin containing neither a carbonate structural unit (X) nor a carbonate structural unit (Z).
  • the polycarbonate resin composition of the third invention contains a carbonate structural unit (X) and a carbonate structural unit (Z) as a copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Z), the third The polycarbonate resin composition of the present invention is called "polycarbonate resin".
  • the polycarbonate resin composition of the third invention is a mixture of a polycarbonate resin containing a carbonate structural unit (X) and a polycarbonate resin containing a carbonate structural unit (Z), it is usually referred to as a "polycarbonate resin composition". The same applies to the above other containing forms.
  • polycarbonate resin composition including the case where it is composed of one kind of copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Z). ..
  • the carbonate structural unit (Z) improves impact resistance by connecting two benzene rings with each other in a single bond as shown in the general formula (21). Can be made to.
  • R 6 to R 9 are independently substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, or substituted or unsubstituted. Indicates the aryl group of.
  • R 6 to R 9 By having an alkyl group having 1 to 20 carbon atoms substituted or unsubstituted as R 6 to R 9 , or an aryl group substituted or unsubstituted, the surface hardness, alkali resistance, etc. of the polycarbonate resin composition of the third invention can be obtained. Can be improved.
  • substituted or unsubstituted alkyl group having 1 to 20 carbon atoms of R 6 to R 9 or the substituted or unsubstituted aryl group include the substitution of R 3 and R 4 in the general formula (11).
  • examples thereof include those exemplified as specific examples of an unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group, preferably a methyl group or an ethyl group, and more preferably methyl. Is the basis.
  • the aromatic dihydroxy compound represented by the following general formula (22), particularly the aromatic dihydroxy compound represented by the following general formula (22A) has a surface hardness. It is preferable from the viewpoint of improving impact resistance and alkali resistance.
  • R 31 to R 34 each independently represent a methyl group or an ethyl group.
  • R 31 to R 34 have the same meaning as in the general formula (22).
  • the replacement positions of R 33 and R 34 are more preferably the positions represented by the following general formula (22B).
  • R 31 to R 34 are synonymous with those in the general formula (22A).
  • TmBP 2,2,6,6-tetramethyl-4,4-biphenol represented by the following formula (23) (hereinafter, “TmBP”). , 3', 5,5'-tetramethyl-1,1'-biphenyl-4,4'-diol).
  • the mol ratio of the carbonate structural unit (X) and the carbonate structural unit (Z) contained in the polycarbonate resin composition of the third invention is measured by 1 H-NMR of the polycarbonate resin composition dissolved in deuterated chloroform. It can be calculated by doing so. Specifically, a deuterated chloroform solution of a polycarbonate resin is prepared so that the concentration of the polycarbonate resin is 50 mg / mL, and the measurement is performed at 30 ° C. with a relaxation time of 6 seconds and an integration number of 128 times.
  • the ratio of the carbonate structural unit (X), the carbonate structural unit (Z), and other carbonate structural units described below contained in the polycarbonate resin composition of the third invention is calculated from the charged composition ratio of the dihydroxy compound at the time of producing the polycarbonate resin. You can also do it. In the examples described later, it is obtained from this charged composition ratio.
  • the polycarbonate resin composition of the third invention may contain only one type of carbonate structural unit (X), or may contain two or more types. That is, it may contain a carbonate structural unit (X) derived from two or more kinds of aromatic dihydroxy compounds (11). Further, the carbonate structural unit (Z) may also contain only one type, or may contain two or more types. That is, it may contain a carbonate structural unit (Z) derived from two or more kinds of aromatic dihydroxy compounds (21).
  • the polycarbonate resin composition of the third invention may contain the carbonate structural unit (X) and the carbonate structural unit (Z) in the above (X) / (Z) mol ratio, and the polycarbonate of the third invention may be used.
  • the content of each of the carbonate structural units (X) and (Z) can be any content as long as the characteristics of the resin composition are not impaired.
  • the polycarbonate resin composition of the third invention is all in the polycarbonate resin composition in order to surely obtain the effect of the third invention by containing the carbonate structural unit (X) and the carbonate structural unit (Z).
  • the total amount of the carbonate structural unit (X) and the carbonate structural unit (Z) is preferably 20 mol% or more, preferably 40 mol% or more, more preferably 60 mol% or more, and particularly 60. It is preferably contained in an amount of ⁇ 100 mol%.
  • the polycarbonate resin composition of the third invention is a carbonate structural unit other than the carbonate structural units (X) and (Z), that is, the aromatic dihydroxy compound (11), as long as the object of the third invention is not impaired. It may contain a carbonate structural unit derived from a dihydroxy compound other than 21).
  • dihydroxy compound other than the aromatic dihydroxy compounds (11) and (21) examples include the following.
  • Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl; 2,2'-Dihydroxydiphenyl ether, 3,3'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) Dihydroxydiaryl ethers such as benzene and 1,3-bis (4-hydroxyphenoxy) benzene; 2,2-Bis (4-hydroxyphenyl) propane (hereinafter, may be abbreviated as "BPA"), 1,1-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-) 4-Hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-meth
  • bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and impact resistance is particularly high.
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • TmBPF bis (4-hydroxy-3,5-dimethylphenyl) methane
  • TmBPF is preferable from the viewpoint of a dielectric property factory.
  • dihydroxy compounds other than the aromatic dihydroxy compounds (11) and (21) one type may be used, or two or more types may be used in combination in any combination and ratio.
  • the molecular weight of the polycarbonate resin in the polycarbonate resin composition of the third invention is not particularly limited, but the viscosity average molecular weight (Mv) converted from the solution viscosity is preferably 16,000 or more.
  • Mv the viscosity average molecular weight
  • the mechanical properties and alkali resistance of the polycarbonate resin composition of the third invention are improved, which is preferable.
  • the viscosity average molecular weight of the polycarbonate resin is more preferably 17,000 or more, further preferably 18,000 or more, and particularly preferably 18,500 or more.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin in the polycarbonate resin composition of the third invention is preferably 30,000 or less.
  • the viscosity average molecular weight of the polycarbonate resin is more preferably 29,000 or less, further preferably 28,000 or less, and particularly preferably 27,000 or less.
  • the polycarbonate resin composition of the third invention has a high hardness property such that the pencil hardness measured by a method conforming to ISO 15184 is not particularly limited, but is preferably H or more, and this pencil hardness. Is more preferably 2H or more.
  • the pencil hardness of the polycarbonate resin composition is measured by the method described in the section of Examples described later for a molded product made of the polycarbonate resin composition.
  • the polycarbonate resin composition of the third invention preferably has a glass transition temperature Tg of 130 to 200 ° C.
  • Tg glass transition temperature
  • the glass transition temperature Tg of the polycarbonate resin composition of the third invention is preferably 130 to 200 ° C.
  • the Tg of the polycarbonate resin composition is measured by the method described in the section of Examples described later.
  • the polycarbonate resin composition of the third invention contains other components other than the polycarbonate resin containing the carbonate structural unit (X) and / or the carbonate structural unit (Z), if necessary, as long as the desired physical properties are not significantly impaired. It may be contained. Examples of other components include a polycarbonate resin containing no carbonate structural unit (X) and a carbonate structural unit (Z), a resin other than the polycarbonate resin, and various resin additives.
  • the polycarbonate resin composition of the third invention is 100% by mass of the polycarbonate resin composition in order to surely obtain the effect of the third invention by containing the polycarbonate resin containing the carbonate structural unit (X) and the carbonate structural unit (Z). It is preferable that the total amount of the carbonate structural unit (X) and the carbonate structural unit (Z) is 65% by mass or more, particularly 70% by mass or more, particularly 75% by mass or more.
  • the content of the polycarbonate resin in the polycarbonate resin composition of the third invention is preferably 80% by mass or more with respect to 100% by mass of the polycarbonate resin composition of the third invention in order to effectively bring out the features of the third invention. , More preferably 85% by mass or more, and particularly preferably 90% by mass or more.
  • Resin additives include, for example, heat stabilizers, antioxidants, mold release agents, lightfasteners (HALS), flame retardants, antistatic agents, antifogging agents, lubricants, antiblocking agents, fluidity improvers, and plasticizers. , Dispersants, antibacterial agents, dyes, pigments and the like.
  • One type of resin additive may be contained, or two or more types may be contained in any combination and ratio.
  • thermoplastic polyester resins such as polyethylene terephthalate resin, polytrimethylene terephthalate, and polybutylene terephthalate resin; polystyrene resin, high impact polystyrene resin (HIPS), acrylonitrile-styrene copolymer (AS resin), and the like.
  • HIPS high impact polystyrene resin
  • AS resin acrylonitrile-styrene copolymer
  • Styrene resins such as acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin); polyolefin resins such as polyethylene resin and polypropylene resin; polyamide resin; polyimide resin Polyetherimide resin; polyurethane resin; polyphenylene ether resin; polyphenylene sulfide resin; polysulfone resin; polymethacrylate resin and the like.
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylene propylene rubber-styrene copolymer
  • polyolefin resins such as polyethylene resin and polypropylene resin
  • polyamide resin polyimide resin
  • Polyetherimide resin polyurethane resin
  • polyphenylene ether resin polyphenylene sulfide resin
  • polysulfone resin polymethacryl
  • the polycarbonate resin constituting the polycarbonate resin composition of the third invention is the same as the above-mentioned polycarbonate resin of the first invention except that at least an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (21) are used as raw material dihydroxy compounds.
  • at least an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (21) are used as raw material dihydroxy compounds.
  • a copolymerized polycarbonate resin containing a carbonate structural unit (X) and a carbonate structural unit (Z) is produced by using a raw material dihydroxy compound containing an aromatic dihydroxy compound (11) and an aromatic dihydroxy compound (21). can do. By using one of these aromatic dihydroxy compounds, a polycarbonate resin containing a carbonate structural unit (X) or a carbonate structural unit (Z) can be produced.
  • the molding temperature at the time of molding the polycarbonate resin composition of the third invention is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, and most preferably 280 ° C. or higher. By setting the molding temperature to the above lower limit or higher, the fluidity is improved and the moldability is improved.
  • the molding temperature at the time of molding the polycarbonate resin composition of the third invention is preferably 350 ° C. or lower, particularly preferably 320 ° C. or lower. By setting the molding temperature to the above upper limit or less, the color tone of the polycarbonate resin composition can be improved.
  • pigments, dyes, mold release agents, heat stabilizers and the like can be appropriately added to the polycarbonate resin composition of the third invention as long as the object of the present invention is not impaired.
  • the polycarbonate resin composition of the third invention can be suitably used as a molded product by heat processing such as injection molding and extrusion molding.
  • heat processing such as injection molding and extrusion molding.
  • shape, pattern, color, size, etc. of such a polycarbonate resin molded product can be appropriately selected depending on the intended use of the molded product.
  • various shapes such as a special shape can be mentioned.
  • the surface may have irregularities or a three-dimensional shape having a three-dimensional curved surface.
  • the polycarbonate resin composition of the third invention can be suitably used as an injection-molded product by injection molding.
  • the injection molding method is not particularly limited, and any molding method generally used for thermoplastic resins can be adopted. Examples include ultra-high-speed injection molding, injection compression molding, two-color molding, hollow molding such as gas assist, molding using a heat insulating mold, molding using a rapid heating mold, and foaming. Examples include molding (including supercritical fluid), insert molding, and IMC (in-mold coating molding) molding method. Further, a molding method using a hot runner method can also be used.
  • the mold temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and most preferably 100 ° C. or lower.
  • the mold temperature is preferably 30 ° C. or higher, particularly preferably 50 ° C. or higher.
  • the polycarbonate resin composition of the third invention can be suitably used as an extrusion-molded product by extrusion molding.
  • An extrusion molding machine is usually used for producing an extrusion molded product from the polycarbonate resin composition of the third invention, although there is no particular limitation.
  • the extrusion molding machine is equipped with a T die, a round die, or the like, and extrusion-molded products having various shapes can be obtained.
  • the extruded product include sheets, films, plates, tubes, pipes and the like. Among these, a sheet or a film is preferable.
  • a hard coat layer may be laminated on both sides or one side of the extruded product in order to improve adhesiveness, coatability and printability, and weather resistance and / or resistance may be obtained.
  • the scratch resistance improving film may be heat-laminated on both sides or one side of the extruded product. Further, treatments such as surface graining, translucency and opacity may be performed.
  • the molded product of the polycarbonate resin composition of the third invention is, for example, various automobile parts, electric / electronic equipment, information terminal equipment, OA equipment, mechanical parts, home appliances, vehicle parts, building parts, various containers, leisure goods / miscellaneous goods. , Can be used as parts for lighting equipment, etc.
  • the molded product of the present invention is excellent in surface hardness, alkali resistance, heat resistance, impact resistance, and fluidity, and therefore, in particular, electrical / electronic equipment, information terminal equipment, OA equipment, home appliances, etc. It is suitable for use in parts of the above, and can be particularly preferably used as a molding material for housings of electric / electronic devices, information terminal devices, OA devices, automobile interior parts, and home electric appliances.
  • Tg Glass transition temperature (Tg) Using a differential operation calorimeter (DSC6220 manufactured by SII), heat about 10 mg of a polycarbonate resin sample at a temperature rise rate of 20 ° C./min to measure the calorific value, and set the baseline on the low temperature side in accordance with JIS K7121.
  • the start temperature of the polycarbonate transition which is the temperature at the intersection of the straight line extending to the high temperature side and the tangent drawn at the point where the slope of the curve of the stepwise change portion of the glass transition is maximized, was determined.
  • the extrapolated glass transition temperature was defined as the glass transition temperature (Tg).
  • Dielectric properties Relative permittivity ( ⁇ r ), dielectric loss tangent (tan ⁇ )
  • ⁇ r Relative permittivity
  • tan ⁇ dielectric loss tangent
  • Example 1 4,4-Methylenebis (2,6-dimethylphenol) (TmBPF) (manufactured by Tokyo Kasei Kogyo Co., Ltd.) in a glass reactor with an internal capacity of 150 ml equipped with a reactor stirrer, a reactor heating device, and a reactor pressure regulator. 23.34 g (about 0.091 mol), 2,2-bis (4-hydroxy-3-methylphenyl) propane (BPC) (manufactured by Honshu Kagaku Co., Ltd.) 93.37 g (about 0.364 mol), and diphenyl carbonate (about 0.364 mol).
  • BPC 2,2-bis (4-hydroxy-3-methylphenyl) propane
  • BPC 2,2-bis (4-hydroxy-3-methylphenyl) propane
  • diphenyl carbonate about 0.364 mol
  • a raw material mixture was prepared by adding 99.97 g (about 0.467 mol) of DPC) and a 0.4% by mass aqueous solution of cesium carbonate as a catalyst so that the amount of cesium carbonate was 3 ⁇ mol per 1 mol of the total dihydroxy compound.
  • the inside of the glass reactor was depressurized to about 50 Pa (0.38 Torr), and then the operation of restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reactor with nitrogen.
  • the outside temperature of the reactor was set to 220 ° C.
  • the internal temperature of the reactor was gradually raised, and the mixture was dissolved.
  • the stirrer was rotated at 100 rpm.
  • the pressure inside the reactor was increased from 101.3 kPa (760 Torr) to 13.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reactor at 13.3 kPa and further distilling off phenol.
  • the outside temperature of the reactor was raised to 250 ° C., and the pressure inside the reactor was reduced to an absolute pressure from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) over 40 minutes to remove the distilled phenol from the system. ..
  • the outside temperature of the reactor was raised to 285 ° C., the absolute pressure inside the reactor was reduced to 30 Pa (about 0.2 Torr), and the polycondensation reaction was carried out. The polycondensation reaction was terminated when the stirrer of the reactor became a predetermined stirring power.
  • Example 2 TmBPF (manufactured by Tokyo Chemical Industry Co., Ltd.) 46.69 g (about 0.182 mol), BPC (manufactured by Honshu Chemical Co., Ltd.) 70.02 g (about 0.273 mol), DPC 99.97 g (about 0.467 mol), and catalyst
  • a 0.4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 5 ⁇ mol per 1 mol of the total dihydroxy compound, and the mixture was prepared by the method described in Example 1.
  • Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Tables 1 and 3.
  • Example 3 TmBPF (manufactured by Tokyo Chemical Industry Co., Ltd.) 93.37 g (about 0.364 mol), BPC (manufactured by Honshu Chemical Co., Ltd.) 23.34 g (about 0.091 mol), DPC 99.97 g (about 0.467 mol), and catalyst A 0.4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 8 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture, but the method described in Example 1 was carried out. Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Tables 1 and 3.
  • Example 4 11.67 g (about 0.046 mol) of TmBPF (manufactured by Tokyo Chemical Industry Co., Ltd.), 105.04 g (about 0.410 mol) of BPC (manufactured by Honshu Chemical Co., Ltd.), 99.97 g (about 0.467 mol) of DPC, and a catalyst.
  • a 0.4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 8 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture, but the method described in Example 1 was carried out.
  • Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Table 1.
  • TmBP 2,2,6,6-tetramethyl-4,4-biphenol
  • BPC 2,2-bis (4-hydroxy-3-methylphenyl) propane
  • a raw material mixture was prepared by adding 103.33 g (about 0.482 mol) of diphenyl carbonate (DPC) and a 0.4 mass% aqueous solution of cesium carbonate as a catalyst so that the amount of cesium carbonate was 3 ⁇ mol per 1 mol of the total dihydroxy compound.
  • DPC diphenyl carbonate
  • the inside of the glass reactor was depressurized to about 50 Pa (0.38 Torr), and then the operation of restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reactor with nitrogen.
  • the outside temperature of the reactor was set to 220 ° C.
  • the internal temperature of the reactor was gradually raised, and the mixture was dissolved.
  • the stirrer was rotated at 100 rpm.
  • the pressure inside the reactor was increased from 101.3 kPa (760 Torr) to 13.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reactor at 13.3 kPa and further distilling off phenol.
  • the temperature outside the reactor was raised to 250 ° C., and the pressure inside the reactor was reduced to an absolute pressure from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) over 40 minutes to remove the distilled phenol from the system. ..
  • the outside temperature of the reactor was raised to 285 ° C., the absolute pressure inside the reactor was reduced to 30 Pa (about 0.2 Torr), and the polycondensation reaction was carried out. The polycondensation reaction was terminated when the stirrer of the reactor became a predetermined stirring power.
  • Example 7 TmBP (manufactured by Tokyo Chemical Industry Co., Ltd.) 45.12 g (about 0.186 mol), BPC (manufactured by Honshu Chemical Co., Ltd.) 71.59 g (about 0.279 mol), DPC 103.90 g (about 0.485 mol), and catalyst A 0.4% by mass aqueous solution of cesium carbonate was added so that the amount of cesium carbonate was 3.2 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture, but the method described in Example 6 was carried out. Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Tables 1 and 3.
  • Example 8 TmBP (manufactured by Tokyo Chemical Industry Co., Ltd.) 11.09 g (about 0.046 mol), BPC (manufactured by Honshu Kagaku Co., Ltd.) 93.88 g (about 0.366 mol), and 4,4-methylenebis (2,6-dimethylphenol) (TmBPF) (manufactured by Tokyo Chemical Industry Co., Ltd.) 11.74 g (about 0.046 mol), DPC 101.50 g (about 0.474 mol), 0.4% by mass aqueous solution of cesium carbonate as a catalyst, and cesium carbonate as a total dihydroxy compound.
  • the method described in Example 6 was carried out except that the raw material mixture was prepared by adding the mixture so as to be 3 ⁇ mol per 1 mol. Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Table 1.
  • Example 9 TmBP (manufactured by Tokyo Chemical Industry Co., Ltd.) 22.31 g (about 0.092 mol), BPC (manufactured by Honshu Chemical Co., Ltd.) 70.80 g (about 0.276 mol), and TmBPF (manufactured by Tokyo Chemical Industry Co., Ltd.) 23.60 g (about) 0.092 mol), 102.06 g (about 0.476 mol) of DPC, and a 0.4 mass% aqueous solution of cesium carbonate as a catalyst were added so that cesium carbonate was 3 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture.
  • the method described in Example 6 was used.
  • Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Table 1.
  • Example 10 4,4-Etilidenebis (2,6-dimethylphenol) (TmBPE) 71.51 g (about 0.265 mol), BPC (manufactured by Honshu Chemical Industry Co., Ltd.) 45.20 g (about 0.176 mol), DPC 96.79 g (Approximately 0.452 mol), and 0.4% by mass aqueous solution of cesium carbonate as a catalyst was added so that the amount of cesium carbonate was 5 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture, as described in Example 1. It was carried out by the method. Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Table 3.
  • the inside of the glass reactor was depressurized to about 50 Pa (0.38 Torr), and then the operation of restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reactor with nitrogen.
  • the outside temperature of the reactor was set to 220 ° C.
  • the internal temperature of the reactor was gradually raised, and the mixture was dissolved.
  • the stirrer was rotated at 100 rpm.
  • the pressure inside the reactor was increased from 101.3 kPa (760 Torr) to 13.
  • the pressure was reduced to 3 kPa (100 Torr).
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reactor at 13.3 kPa and further distilling off phenol.
  • the outside temperature of the reactor was raised to 250 ° C., and the pressure inside the reactor was reduced to an absolute pressure from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) over 40 minutes to remove the distilled phenol from the system. ..
  • the temperature outside the reactor was raised to 285 ° C., the reaction solution crystallized and it became difficult to continue the reaction, so that the reaction was stopped.
  • this Comparative Example 1 since only TmBPF was used, crystallization proceeded and the polymer could not be obtained. Therefore, each evaluation in the above procedure is not carried out.
  • TmBPA 2,2-Bis (4-hydroxy-3,5-dimethylphenyl) propane (hereinafter, may be abbreviated as "TmBPA”) (manufactured by Honshu Kagaku Co., Ltd.) 116.71 g (about 0.410 mol) and DPC Example 1 except that 88.79 g (about 0.414 mol) and a 0.4% by mass aqueous solution of cesium carbonate as a catalyst were added so that cesium carbonate was 5 ⁇ mol per 1 mol of the total dihydroxy compound to prepare a raw material mixture. It was carried out by the method described in. Each evaluation was carried out on the polycarbonate resin thus obtained by the above procedure. The results are shown in Tables 2 and 3.
  • Examples 1 to 4 and Examples 7 to 9 have good impact resistance because there is no break in the five-time impact test.
  • Comparative Example 4 has good impact resistance, but is inferior in pencil hardness and alkali resistance to Examples 1 to 4 and Examples 7 to 9.
  • Comparative Example 2 also has good impact resistance, but its alkali resistance and pencil hardness are inferior to those of Examples 1 to 4 and Examples 7 to 9.
  • Examples 5 and 6 do not have the same impact resistance as those of Examples 1 to 4 and Examples 7 to 9, but the pencil hardness is very high and the alkali resistance is also good.
  • Comparative Example 2 and Comparative Example 4 have good impact resistance, but the pencil hardness is inferior to that of Example 5 and Example 6.
  • Comparative Example 1 it is difficult to obtain a polymer because crystallization occurs during polymerization. Although the pencil hardness of Comparative Example 3 is good, the impact resistance is inferior to that of Examples 1 to 9, and the heat resistance is also inferior because the Tg is low. Comparative Example 5 and Comparative Example 7 have good pencil hardness and alkali resistance, but are significantly inferior in impact resistance as compared with Examples 1 to 9. Comparative Example 6 has good alkali resistance, but is inferior in pencil hardness and impact resistance as compared with Examples 1 to 9.
  • the polycarbonate resins of Examples 2 and 3 having the repeating units (A) (derived from BPC) and the repeating units (B'), (B) (derived from TmBPF) have a relative permittivity as compared with Comparative Example 4. It is excellent in dielectric loss tangent, has excellent heat resistance, relative permittivity, and dielectric loss tangent compared to Comparative Example 8, and has the same level of dielectric properties and heat resistance as Comparative Example 7, but is flame-retardant. Is remarkably excellent. Examples 7 and 10 are superior in heat resistance, flame retardancy, and impact resistance as compared with Comparative Example 3, and are excellent in heat resistance, dielectric properties, and flame retardancy as compared with Comparative Example 4.
  • Comparative Example 1 is difficult to mold because it crystallizes, and cannot be used as a housing for a communication device having a built-in microwave and / or millimeter wave antenna.
  • Examples 1 to 10 can be injection molded by a general injection molding machine without any problem, and are excellent in fluidity and molding processability.
  • the polycarbonate resins of Examples 1 to 10 which are the polycarbonate resin compositions of the present invention are superior in both surface hardness and alkali resistance to the polycarbonate resins of Comparative Examples 1 to 8, and also have heat resistance and impact resistance. It can be seen that it is also excellent in fluidity.
  • the polycarbonate resins of Examples 2 and 3, which are the polycarbonate resins of the first invention are resins having excellent dielectric properties, heat resistance, and flame retardancy, and have a built-in microwave and / or millimeter wave antenna. It can be seen that the resin is suitable for use as a housing for communication equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2)で表される繰り返し単位(B)を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物を用いて得られる成形品。R,Rは、水素原子、置換/無置換の炭素数1~20のアルキル基、又は置換/無置換のアリール基。RとRのアルキル基は互いに結合して環を形成していてもよい。R,Rは、置換/無置換の炭素数1~20のアルキル基、又は置換/無置換のアリール基。Xは、単結合又は下記一般式(3)で表される基。R~Rは、置換/無置換の炭素数1~20のアルキル基、又は置換/無置換のアリール基。Rは、水素原子、置換/無置換の炭素数1~20のアルキル基、又は置換/無置換のアリール基。

Description

熱可塑性樹脂組成物及び成形品
 本発明は、マイクロ波及び/又はミリ波帯域の電波透過性が優れると共に、耐熱性、及び難燃性にも優れた熱可塑性樹脂組成物及びその成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体に関する。本発明はまた、この通信機器用筐体を用いた通信機器に関する。
 ポリカーボネート樹脂は、機械的強度、電気特性、透明性などに優れ、エンジニアリングプラスチックとして、電気・電子機器分野、自動車分野等様々な分野において幅広く利用されている。
 特許文献1では、特定の置換基を有するビスフェノールを原料としたポリカーボネート樹脂を使用することで、誘電正接が下がり75GHz~81GHzのミリ波透過性が向上したミリ波レーダー用カバーが提案されている。
 特許文献2には、特定の二種類のビスフェノール類を原料として用いて製造された、耐熱性や耐火性に優れたポリカーボネート組成物やコポリカーボネートが開示されている。
 特許文献3には、従来のビスフェノールAとは異なるビスフェノール類を原料として用いて製造された、表面硬度に優れたポリカーボネートが開示されている。
特開2019-197048号公報 特開昭49-73455号公報 特開昭64-69625号公報
 近年では電気・電子機器分野や自動車分野において、マイクロ波やミリ波のような高周波数帯の電波が使用されるようになり、これに伴って、低い比誘電率、及び低い誘電正接を兼ね備えた材料が要求されている。
 特に電気・電子分野においては、低い比誘電率、及び低い誘電正接に加え、高耐熱性や高難燃性が求められている。
 しかし、従来のビスフェノールAを原料としたポリカーボネート樹脂ではこれらの要求を十分に満たすことができなかった。
 近年、情報通信量の増加に伴い、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置等の情報通信機器の通信速度の高速化が強く求められている。高速で通信を行うにはより高周波数帯域の電波を使用することが好適である。最近ではマイクロ波帯に分類される3GHzを超える電波が使用されている。次世代の、第5世代移動通信システム(5G)では、マイクロ波帯域において、より高周波数である、28GHz帯での市場の立ち上がりが有望視されている。さらに次世代の通信ではミリ波帯域の電波が使用されることも想定される。
 これに伴い、マイクロ波及び/又はミリ波帯域の使用が想定される情報通信機器の筐体についても、高性能化への要求が高まっている。このような高周波数帯域の電波は、より低周波数帯域の電波よりも伝送損失が大きく、物質の透過性が悪いという特徴がある。よって、マイクロ波及び/又はミリ波通信に利用される筐体は、これまでよりも更に電波透過性のよいものであることが望まれる。
 伝送損失は、誘電体の比誘電率(ε)の平方根、及び誘電体の誘電正接(tanδ)に比例する。よって筐体の電波透過性を上げるためには、筐体に使われる材料の比誘電率ε、及び誘電正接tanδを小さいものにする必要がある。
 マイクロ波及び/又はミリ波のような高周波数帯域の電波を送受信する情報通信機器は熱を発生しやすい特徴がある。このことから、このような分野で使用される材料には、低い比誘電率及び低い誘電正接を有するだけでなく、適度な耐熱性や、難燃性を有することが望ましく、これらの条件を満たす材料が強く求められている。
 しかし、従来の材料ではこのような要求をすべて満たすことができなかった。
 特許文献1では、特定の置換基を有するビスフェノールを原料としたポリカーボネート樹脂を含む熱可塑性樹脂組成物を使用することで、誘電正接が下がりミリ波透過性が向上したミリ波レーダー用カバーが提案されているが、これらの熱可塑性樹脂組成物は、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置等の情報通信機器として使用するには耐熱性や難燃性が不十分であった。
 特許文献2では、耐熱性や耐火性が改善されたポリカーボネート共重合体が開示されているが、誘電特性についてはなんら言及されていない。
 一方で、エンジニアリングプラスチックとしての電気・電子機器分野、自動車分野等の用途分野においては、成形加工品の薄肉化、小型化、軽量化が進展し、成形素材のさらなる性能向上が要求されている。
 しかし、ビスフェノールAを原料とする従来のポリカーボネート樹脂は、これらの要求特性に対して表面硬度や耐アルカリ性が不十分である。このため、表面硬度や耐アルカリ性の高いポリカーボネート樹脂の開発が望まれるようになり、いくつかの提案がされている。
 前述の特許文献2には、特定の二種類のビスフェノール類を原料として用いて製造された、耐アルカリ性に優れたポリカーボネート組成物やコポリカーボネートが開示されている。
 特許文献3には、従来のビスフェノールAとは異なるビスフェノール類を原料として用いて製造された、表面硬度に優れたポリカーボネートが開示されている。
 しかし、従来法では、表面硬度、耐アルカリ性が共に優れ、しかも耐熱性、耐衝撃性にも優れたポリカーボネート樹脂組成物を得ることができなかった。
 第1態様に係る本発明は、マイクロ波及び/又はミリ波帯域の電波透過性が優れると共に、耐熱性、及び難燃性にも優れた熱可塑性樹脂組成物及び成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体及び通信機器を提供することを課題とする。
 本発明者は、特定の2種類の繰り返し単位を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物及びその成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体とすることにより、上記目的に合致するマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体となることを見出した。
 第1態様に係る本発明は、以下の[1]~[32]に存する。
[1] 下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2’)で表される繰り返し単位(B’)を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物。
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000013
 一般式(2’)中、X’は、単結合又はメチレン基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
[2] 前記一般式(1)中、R及びRがメチル基であるか、或いは、R及びRのアルキル基が互いに結合して下記式(1a)若しくは(1b)で表される環を形成する、[1]に記載の熱可塑性樹脂組成物。
Figure JPOXMLDOC01-appb-C000014
[3] 前記一般式(1)中、R及びRがメチル基である、[1]又は[2]に記載の熱可塑性樹脂組成物。
[4] 前記繰り返し単位(B’)が、下記一般式(2A’)で表される繰り返し単位である、[1]~[3]のいずれかに記載の熱可塑性樹脂組成物。
Figure JPOXMLDOC01-appb-C000015
 一般式(2A’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
[5] 前記繰り返し単位(B’)が、下記一般式(2B’)で表される繰り返し単位である、[1]~[4]のいずれかに記載の熱可塑性樹脂組成物。
Figure JPOXMLDOC01-appb-C000016
 一般式(2B’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
[6] 前記一般式(2’)中、R~Rがメチル基である、[1]~[5]のいずれかに記載の熱可塑性樹脂組成物。
[7] 前記ポリカーボネート樹脂における前記繰り返し単位(A)と前記繰り返し単位(B’)の含有割合が、モル比で、繰り返し単位(A):繰り返し単位(B’)=1:99~99:1の割合である、[1]~[6]のいずれかに記載の熱可塑性樹脂組成物。
[8] 前記ポリカーボネート樹脂中に含まれる前記繰り返し単位(A)及び前記繰り返し単位(B’)の含有割合の和が、該ポリカーボネート樹脂の全カーボネート構造単位中、50モル%以上である、[1]~[7]のいずれかに記載の熱可塑性樹脂組成物。
[9] 前記ポリカーボネート樹脂のガラス転移温度が、125℃以上である、[1]~[8]のいずれかに記載の熱可塑性樹脂組成物。
[10] 前記熱可塑性樹脂組成物が、前記ポリカーボネート樹脂を50質量%以上含む、[1]~[9]のいずれかに記載の熱可塑性樹脂組成物。
[11] 前記ポリカーボネート樹脂を、前記繰り返し単位(A)と前記繰り返し単位(B’)との共重合ポリカーボネート樹脂として含む、[1]~[10]のいずれかに記載の熱可塑性樹脂組成物。
[12] 前記ポリカーボネート樹脂を、前記繰り返し単位(A)を含むポリカーボネート樹脂と、前記繰り返し単位(B’)を含むポリカーボネート樹脂とのブレンド物として含む、[1]~[10]のいずれかに記載の熱可塑性樹脂組成物。
[13] 前記ポリカーボネート樹脂の粘度平均分子量(Mv)が14,500~30,000の範囲である、[1]~[12]のいずれかに記載の熱可塑性樹脂組成物。
[14] 前記ポリカーボネート樹脂の粘度平均分子量(Mv)が18,000~28,000の範囲である、[13]に記載の熱可塑性樹脂組成物。
[15] ISO 15184に準拠した方法で測定される鉛筆硬度がH以上である、[1]~[14]のいずれかに記載の熱可塑性樹脂組成物。
[16] 下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2)で表される繰り返し単位(B)を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物を用いて得られる成形品。
Figure JPOXMLDOC01-appb-C000017
 一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000018
 一般式(2)中、Xは、単結合又は下記一般式(3)で表される2価の有機基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000019
 一般式(3)中、Rは、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
[17] 前記一般式(1)中、R及びRがメチル基であるか、或いは、R及びRのアルキル基が互いに結合して下記式(1a)若しくは(1b)で表される環を形成する、[16]に記載の成形品。
Figure JPOXMLDOC01-appb-C000020
[18] 前記一般式(1)中、R及びRがメチル基である、[16]又は[17]に記載の成形品。
[19] 前記繰り返し単位(B)が、下記一般式(2A)で表される繰り返し単位である、[16]~[18]のいずれかに記載の成形品。
Figure JPOXMLDOC01-appb-C000021
 一般式(2A)中、X、及びR~Rは、前記一般式(2)におけると同義である。
[20] 前記繰り返し単位(B)が、下記一般式(2B)で表される繰り返し単位である、[16]~[19]のいずれかに記載の成形品。
Figure JPOXMLDOC01-appb-C000022
 一般式(2B)中、X、及びR~Rは、前記一般式(2)におけると同義である。
[21] 前記一般式(2)中、R~Rがメチル基である、[16]~[20]のいずれかに記載の成形品。
[22] 前記一般式(3)中、Rが水素原子又はメチル基である、[16]~[21]のいずれかに記載の成形品。
[23] 前記ポリカーボネート樹脂における前記繰り返し単位(A)と前記繰り返し単位(B)の含有割合が、モル比で、繰り返し単位(A):繰り返し単位(B)=1:99~99:1の割合である、[16]~[22]のいずれかに記載の成形品。
[24] 前記ポリカーボネート樹脂中に含まれる前記繰り返し単位(A)及び前記繰り返し単位(B)の含有割合の和が、該ポリカーボネート樹脂の全カーボネート構造単位中、50モル%以上である、[16]~[23]のいずれかに記載の成形品。
[25] 前記ポリカーボネート樹脂のガラス転移温度が、125℃以上である、[16]~[24]のいずれかに記載の成形品。
[26] 前記熱可塑性樹脂組成物が、前記ポリカーボネート樹脂を50質量%以上含む、[16]~[25]のいずれかに記載の成形品。
[27] 前記成形品が押出成形品又は射出成形品である、[16]~[26]のいずれかに記載の成形品。
[28] 前記押出成形品がシート又はフィルムである、[27]に記載の成形品。
[29] [16]~[28]のいずれかに記載の成形品を用いて得られる、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体。
[30] 前記アンテナが、3.5~30GHzの周波数帯の電波に対して使用される、[29]に記載の通信機器筐体。
[31] 前記通信機器が、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置である、[29]又は[30]に記載の通信機器用筐体。
[32] [29]~[31]のいずれかに記載の通信機器用筐体を用いて得られる、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器。
 第2態様に係る本発明は、高硬度で耐アルカリ性に優れ、且つ耐熱性、耐衝撃性にも優れたポリカーボネート樹脂組成物を提供することを課題とする。
 本発明者は、特定の二種類の芳香族ジヒドロキシ化合物に由来するカーボネート構造単位を含むポリカーボネート樹脂組成物とすることにより、上記目的に合致するポリカーボネート樹脂組成物となることを見出た。
 第2態様に係る本発明の趣旨は、以下の[33]~[44]に存する。
[33] 下記一般式(11)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位(X)と、下記一般式(12)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位(Y)とを、モル比で、(X)/(Y)=1/99~99/1の割合で含むことを特徴とするポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
 一般式(11)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000024
 一般式(12)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
[34] 前記カーボネート構造単位(X)と前記カーボネート構造単位(Y)とを共重合ポリカーボネート樹脂として含む、[33]に記載のポリカーボネート樹脂組成物。
[35] 前記カーボネート構造単位(X)を含むポリカーボネート樹脂と、前記カーボネート構造単位(Y)を含むポリカーボネート樹脂とのブレンド物である、[33]に記載のポリカーボネート樹脂組成物。
[36] ポリカーボネート樹脂組成物の粘度平均分子量(Mv)が15,000~33,000の範囲である、[33]~[35]のいずれかに記載のポリカーボネート樹脂組成物。
[37] ポリカーボネート樹脂組成物のISO 15184に準拠した方法で測定される鉛筆硬度がH以上である、[33]~[36]のいずれかに記載のポリカーボネート樹脂組成物。
[38] ポリカーボネート樹脂組成物のガラス転移温度Tgが130~200℃である、[33]~[37]のいずれかに記載のポリカーボネート樹脂組成物。
[39] 前記カーボネート構造単位(X)が、下記一般式(13)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[33]~[38]のいずれかに記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000025
 一般式(13)中、R10及びR11は、それぞれ独立に、水素原子、またはメチル基を示す。R12及びR13は、それぞれ独立に、メチル基、またはエチル基を示す。
[40] 前記カーボネート構造単位(Y)が、下記一般式(14)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[33]~[39]のいずれかに記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000026
 一般式(14)中、R15~R18は、それぞれ独立に、メチル基、またはエチル基を示す。
[41] 前記カーボネート構造単位(Y)が、下記一般式(14A)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[40]に記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000027
 一般式(14A)中、R20~R23は、それぞれ独立に、メチル基、またはエチル基を示す。
[42] [33]~[41]のいずれかに記載のポリカーボネート樹脂組成物を射出成形してなる射出成形品。
[43] [33]~[3419]のいずれかに記載のポリカーボネート樹脂組成物を押出成形してなる押出成形品。
[44] 前記押出成形品がシートまたはフィルムである、[43]に記載の押出成形品。
 第3態様に係る本発明は、表面硬度、耐アルカリ性に優れ、且つ耐熱性、耐衝撃性、流動性にも優れたポリカーボネート樹脂組成物を提供することを課題とする。
 本発明者は、特定の二種類の芳香族ジヒドロキシ化合物に由来するカーボネート構造単位を含むポリカーボネート樹脂組成物とすることにより、上記目的に合致するポリカーボネート樹脂組成物となることを見出した。
 第3態様に係る本発明の趣旨は、以下の[45]~[59]に存する。
[45] 下記一般式(11)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位(X)と、下記一般式(21)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位(Z)とを、mol比で、カーボネート構造単位(X)/カーボネート構造単位(Z)=1/99~99/1の割合で含むことを特徴とするポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000028
 一般式(11)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000029
 一般式(21)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
[46] 前記カーボネート構造単位(X)と前記カーボネート構造単位(Z)とを共重合ポリカーボネート樹脂として含む、[45]に記載のポリカーボネート樹脂組成物。
[47] 前記カーボネート構造単位(X)を含むポリカーボネート樹脂と、前記カーボネート構造単位(Z)を含むポリカーボネート樹脂とのブレンド物である、[45]に記載のポリカーボネート樹脂組成物。
[48] ポリカーボネート樹脂組成物中のポリカーボネート樹脂の粘度平均分子量(Mv)が16,000~30,000の範囲である、[45]~[47]のいずれかに記載のポリカーボネート樹脂組成物。
[49] ポリカーボネート樹脂組成物のISO 15184に準拠した方法で測定される鉛筆硬度がH以上である、[45]~[48]のいずれかに記載のポリカーボネート樹脂組成物。
[50] ポリカーボネート樹脂組成物のガラス転移温度Tgが130~200℃である、[45]~[49]のいずれかに記載のポリカーボネート樹脂組成物。
[51] ポリカーボネート樹脂組成物中のポリカーボネート樹脂の粘度平均分子量(Mv)が18,000~28,000の範囲である、[45]~[50]のいずれかに記載のポリカーボネート樹脂組成物。
[52] 前記カーボネート構造単位(X)と、前記カーボネート構造単位(Z)とを、mol比で、カーボネート構造単位(X)/カーボネート構造単位(Z)=1/99~85/15の割合で含む、[45]~[51]のいずれかに記載のポリカーボネート樹脂組成物。
[53] 前記カーボネート構造単位(X)が、下記一般式(13)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[45]~[52]のいずれかに記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000030
 一般式(13)中、R10及びR11は、それぞれ独立に、水素原子、またはメチル基を示す。R12及びR13は、それぞれ独立に、メチル基、またはエチル基を示す。
[54] 前記カーボネート構造単位(Z)が、下記一般式(22)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[45]~[53]のいずれかに記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000031
 一般式(22)中、R31~R34は、それぞれ独立に、メチル基、またはエチル基を示す。
[55] 前記カーボネート構造単位(Z)が、下記一般式(22A)で表される芳香族ジヒドロキシ化合物に由来するカーボネート構造単位である、[54]に記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000032
 一般式(22A)中、R31~R34は、前記一般式(22)におけると同義である。
[56] [45]~[55]のいずれかに記載のポリカーボネート樹脂組成物から得られる成形品。
[57] [45]~[55]のいずれかに記載のポリカーボネート樹脂組成物を用いた射出成形品。
[58] [45]~[55]のいずれかに記載のポリカーボネート樹脂組成物を用いた押出成形品。
[59] 前記押出成形品がシートまたはフィルムである、[58]に記載の押出成形品。
 第1態様に係る本発明の成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体は、マイクロ波及び/又はミリ波帯域の電波透過性が優れると共に、耐熱性及び難燃性にも優れているため、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器、例えば、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置等の筐体として幅広く利用することができる。さらには、耐衝撃性にも優れる成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体を提供することができる。
 第2態様に係る本発明によれば、高硬度で耐アルカリ性に優れ、且つ耐熱性、耐衝撃性等の機械強度にも優れるポリカーボネート樹脂組成物を提供することができる。
 第3態様に係る本発明によれば、表面硬度、耐アルカリ性に優れ、且つ耐熱性、耐衝撃性、流動性にも優れるポリカーボネート樹脂組成物を提供することができる。
 第2態様及び第3態様に係る本発明のポリカーボネート樹脂組成物は、このような優れた特性を有することから、自動車、電気・電子機器、その他の工業分野における部品製造用材料として幅広く利用することができる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明する。本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。
 本明細書において、「~」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。
 以下において、第1態様に係る本発明を、「第1発明」と称し、第2態様に係る本発明を「第2発明」と称し、第3態様に係る本発明を「第3発明」と称し、これらをまとめて「本発明」と称す場合がある。
〔第1発明〕
[概要]
 第1発明の成形品、並びにマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体は、前述の通り、前記一般式(1)で表される繰り返し単位(A)と、前記一般式(2’)で表される繰り返し単位(B’)又は前記一般式(2)で表される繰り返し単位(B)を有するポリカーボネート樹脂(以下、「第1発明のポリカーボネート樹脂」と称す場合がある。)を含む熱可塑性樹脂組成物(以下、「本発明の熱可塑性樹脂組成物」と称す場合がある。)から得られることを特徴とする。
 本発明の通信機器は、この通信機器用筐体を用いて得られるマイクロ波及び/又はミリ波用アンテナ内蔵通信機器である。
 以下、第1発明のポリカーボネート樹脂、及び、第1発明のポリカーボネート樹脂を含む第1発明の熱可塑性樹脂組成物を構成する各成分等につき、詳細に説明する。
[ポリカーボネート樹脂]
 第1発明のポリカーボネート樹脂は、下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2’)で表される繰り返し単位(B’)又は下記一般式(2)で表される繰り返し単位(B)を有することを特徴とする。
 下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2’)で表される繰り返し単位(B’)又は下記一般式(2)で表される繰り返し単位(B)を有する第1発明のポリカーボネート樹脂を含む熱可塑性樹脂組成物を使用することで、第1発明の成形品及び通信機器用筐体の、マイクロ波及び/又はミリ波帯域の電波透過性、耐熱性及び難燃性を優れたものにすることができる。
 以下において、「繰り返し単位(B’)又は繰り返し単位(B)」を「繰り返し単位(B’),(B)」と記載する場合がある。
Figure JPOXMLDOC01-appb-C000033
 一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000034
 一般式(2’)中、X’は、単結合又はメチレン基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000035
 一般式(2)中、Xは、単結合又は下記一般式(3)で表される2価の有機基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000036
 一般式(3)中、Rは、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
 第1発明のポリカーボネート樹脂は、繰り返し単位(A)を含むポリカーボネート樹脂と繰り返し単位(B’),(B)を含むポリカーボネート樹脂とのポリカーボネート樹脂混合物であってもよく、繰り返し単位(A)と繰り返し単位(B’),(B)とを含む共重合ポリカーボネート樹脂であってもよい。また、繰り返し単位(A)を含むポリカーボネート樹脂及び/又は繰り返し単位(B’),(B)を含むポリカーボネート樹脂と、繰り返し単位(A)及び繰り返し単位(B’),(B)とを含む共重合ポリカーボネート樹脂とを含むポリカーボネート樹脂混合物であってもよい。
<繰り返し単位(A)>
 第1発明のポリカーボネート樹脂の繰り返し単位(A)を表す前記一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
 一般式(1)中、R及びRは耐熱性向上の観点から、メチル基、又は、R及びRのアルキル基が互いに結合して下記式(1a)若しくは(1b)で表される環を形成することが好ましい。耐熱性と流動性のバランスの観点から、R及びRがメチル基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000037
 一般式(1)中、R及びRは、難燃性と誘電特性向上の観点から、メチル基であることが好ましい。
 すなわち、繰り返し単位(A)は、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(以下「BPC」と略記されることがある)に由来する繰り返し構造単位である、下記式(4)で表される繰り返し単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000038
 第1発明のポリカーボネート樹脂は、繰り返し単位(A)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。
<繰り返し単位(B’),(B)>
 本発明のポリカーボネート樹脂の繰り返し単位(B’)を表す前記一般式(2’)中、X’は単結合又はメチレン基を示す。
 第1発明のポリカーボネート樹脂の繰り返し単位(B)を表す前記一般式(2)中、Xは、単結合又は下記一般式(3)で表される2価の有機基を示す。
 一般式(2)中、Xは、誘電特性、及び難燃性向上の観点から、単結合又はメチレン基であることが好ましい。すなわち、下記一般式(3)中、Rは、水素原子であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
 一般式(2’),(2)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
 一般式(2’)中、R~Rは、耐熱性及び難燃性向上の観点からメチル基であることが好ましい。
 前記一般式(2’)中、R~Rの置換する位置に制限はないが、好ましくは通常下記一般式(2A’)又は下記一般式(2B’)で表される置換位置であり、耐衝撃性向上の観点から、特に下記一般式(2A’)の置換位置であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 一般式(2A’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
Figure JPOXMLDOC01-appb-C000041
 一般式(2B’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
 前記一般式(2)中、R~Rの置換する位置に制限はないが、好ましくは通常下記一般式(2A)又は下記一般式(2B)で表される置換位置であり、耐衝撃性向上の観点から、特に下記一般式(2A)の置換位置であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 一般式(2A)中、X、R~Rは、前記一般式(2)におけると同義である。
Figure JPOXMLDOC01-appb-C000043
 一般式(2B)中、X、R~Rは、前記一般式(2)におけると同義である。
 繰り返し単位(B’),(B)は、中でも、4,4-メチレンビス(2,6-ジメチルフェノール)(以下、「TmBPF」と略記する場合がある)に由来する繰り返し単位である下記一般式(5)で表される繰り返し単位、又は、2,2,6,6-テトラメチル-4,4-ビフェノール(以下、「TmBP」と略記する場合がある。3,3’,5,5’-テトラメチル-1,1’-ビフェニル-4,4’-ジオールとも称される。)に由来する繰り返し単位である、下記一般式(6)で表される繰り返し単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000044
 第1発明のポリカーボネート樹脂は、繰り返し単位(B’),(B)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。
<繰り返し単位(A)/繰り返し単位(B’),(B)>
 第1発明のポリカーボネート樹脂中の、繰り返し単位(A)と繰り返し単位(B’),(B)の含有比率は特に制限されないが、繰り返し単位(A)/繰り返し単位(B’),(B)(モル比)は1:99~99:1、特に1:99~90:10、とりわけ10:90~80:20、中でも15:85~70:30であることが好ましい。
<その他の繰り返し単位(C)>
 第1発明のポリカーボネート樹脂は、第1発明の目的を損なわない範囲において、繰り返し単位(A)及び繰り返し単位(B’),(B)以外の、その他の繰り返し単位(C)の1種又は2種以上を含んでいてもよい。その他の繰り返し単位(C)としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン等の芳香族ジヒドロキシ化合物に由来する繰り返し単位が挙げられる。中でも、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンに由来する繰り返し単位が好ましい。
 繰り返し単位(A)と繰り返し単位(B’),(B)とを含むことによる第1発明の効果を確実に得る上で、第1発明のポリカーボネート樹脂中の全カーボネート構造単位を100モル%として、繰り返し単位(A)と繰り返し単位(B’),(B)の和の割合が、40モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。
<ポリカーボネート樹脂の分子量>
 第1発明のポリカーボネート樹脂の分子量には特に制限はないが、溶液粘度から換算した粘度平均分子量(Mv)が14,500以上であることが好ましい。粘度平均分子量が上記下限値以上の場合、第1発明の熱可塑性樹脂組成物、成形品及び通信機器用筐体の耐熱性や難燃性が向上するため好ましい。このような観点から、第1発明のポリカーボネート樹脂の粘度平均分子量はより好ましくは16,000以上であり、さらに好ましくは17,000以上であり、特に好ましくは18,000以上であり、最も好ましくは18,500以上である。
 一方、第1発明のポリカーボネート樹脂の粘度平均分子量(Mv)は30,000以下であることが好ましい。粘度平均分子量が上記上限値以下である場合は、第1発明のポリカーボネート樹脂を含む第1発明の熱可塑性樹脂組成物の流動性が良好となる傾向があり好ましい。このような観点から、第1発明のポリカーボネート樹脂の粘度平均分子量はより好ましくは29,000以下であり、さらに好ましくは28,000以下であり、特に好ましくは27,000以下であり、最も好ましくは26,500以下である。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、溶媒として塩化メチレンを使用し、ウベローデ粘度計を用いて温度20℃での固有粘度(極限粘度)[η](単位dL/g)を求め、Schnellの粘度式、即ち、η=1.23×10-4Mv0.83から算出される値を意味する。
 固有粘度(極限粘度)[η]とは、各溶液濃度[C](g/dL)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000045
 後述の第2発明及び第3発明における粘度平均分子量(Mv)についても同様である。
<ガラス転移温度(Tg)>
 第1発明のポリカーボネート樹脂のガラス転移温度(Tg)には制限はないが、125~200℃であることが好ましい。Tgが125℃以上であれば、第1発明の熱可塑性樹脂組成物、成形品及び通信機器用筐体の耐熱性が向上する。一方、ポリカーボネート樹脂のTgが200℃以下であれば、第1発明のポリカーボネート樹脂を含む第1発明の熱可塑性樹脂組成物の流動性が良好となり、高い成形加工性を得ることができる。このことから、第1発明のポリカーボネート樹脂のガラス転移温度(Tg)は125~200℃であることが好ましい。
 ポリカーボネート樹脂のTgは、後掲の実施例の項に記載の方法で測定される。
<鉛筆硬度>
 第1発明のポリカーボネート樹脂を含む第1発明の熱可塑性樹脂組成物は、ISO 15184に準拠した方法で測定される鉛筆硬度が好ましくはF以上であるような高硬度特性を有するものであり、この鉛筆硬度はより好ましくはH以上であり、特に好ましくは2H以上である。
 熱可塑性樹脂組成物の鉛筆硬度は、熱可塑性樹脂組成物よりなる成形品について後述の実施例の項に記載の方法で測定される。
<難燃性:20mm垂直燃焼試験(0.8mmt)>
 第1発明のポリカーボネート樹脂の難燃性は、後掲の実施例の項に記載の20mm垂直燃焼試験(0.8mmt)の結果が、UL94に記載の材料の分類においてV-2である場合、発煙物質又は滴下物による標識用綿の着火が起きるまでに、最も要した時間が長いほうが、好ましく、例えば、10秒以上であることが好ましい。また、前述の材料の分類がV-1又はV-0であることがより好ましく、V-0であることが特に好ましい。
<比誘電率(ε)、誘電正接(tanδ)>
 第1発明のポリカーボネート樹脂は、温度23℃、周波数10GHzで測定した比誘電率(ε)が2.60以下が好ましく、2.55以下がより好ましく、2.50以下が特に好ましい。また、誘電正接(tanδ×10-3)が4.00以下が好ましく、3.00以下がより好ましく、2.50以下が特に好ましい。比誘電率、及び誘電正接が上記上限以下であることにより、マイクロ波及び/又はミリ波帯域の電波の透過性が良好なものになる。
 ポリカーボネート樹脂の比誘電率(ε)及び誘電正接(tanδ×10-3)は、このポリカーボネート樹脂を用いて成形した厚みが30~250μm厚のフィルムから長さ70mm、幅2mmの短冊状のフィルムを切り出し、室温23℃、湿度50%の条件で48時間調湿した後、空洞共振器を用いて周波数10GHzにて測定される。詳細には後掲の実施例の項に記載の通りである。
<ポリカーボネート樹脂の製造方法>
 第1発明のポリカーボネート樹脂は、従来から知られている重合法により製造することができ、その重合法は、特に限定されるものではない。重合法の例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等を挙げることができる。以下、これらの方法のうち特に好適なものについて具体的に説明する。
(界面重合法)
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、原料のジヒドロキシ化合物とカーボネート形成性化合物とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させてもよく、原料ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させてもよい。
 反応に不活性な有機溶媒としては、特に限定されないが、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;等が挙げられる。
 有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液に含有されるアルカリ化合物としては、特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられる。中でも水酸化ナトリウム及び水酸化カリウムが好ましい。
 アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液中のアルカリ化合物の濃度に制限は無いが、通常、アルカリ水溶液のpHを10~12にコントロールするために、アルカリ化合物濃度は5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、原料ジヒドロキシ化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上で、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
 原料ジヒドロキシ化合物としては、カーボネート形成性化合物との反応で繰り返し単位(A)と繰り返し単位(B’),(B)とを生成し得るジヒドロキシ化合物を少なくとも用いる。
 カーボネート形成性化合物としては、カルボニルハライドが好適に用いられる。中でもホスゲンを用いることが好ましい。ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
 重合触媒としては、特に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。
 重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調整剤としては、特に限定されないが、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノール等の脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられる。中でも芳香族フェノールが好ましい。
 このような芳香族フェノールとしては、具体的には、フェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、o-t-ブチルフェノール、m-t-ブチルフェノール、p-t-ブチルフェノール、o-n-ペンチルフェノール、m-n-ペンチルフェノール、p-n-ペンチルフェノール、o-n-ヘキシルフェノール、m-n-ヘキシルフェノール、p-n-ヘキシルフェノール、p-t-オクチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-n-ノニルフェノール、m-n-ノニルフェノール、p-n-ノニルフェノール、o-クミルフェノール、m-クミルフェノール、p-クミルフェノール、o-ナフチルフェノール、m-ナフチルフェノール、p-ナフチルフェノール、2,5-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2,5-ジクミルフェノール、3,5-ジクミルフェノール、p-クレゾール、ブロモフェノール、トリブロモフェノール、平均炭素数12~35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン、9-(4-ヒドロキシ-3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル)フルオレン、4-(1-アダマンチル)フェノール等が挙げられる。
 これらの中では、p-t-ブチルフェノール、p-フェニルフェノール及びp-クミルフェノールが好ましく用いられる。
 分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調整剤の使用量は、特に限定されないが、例えば、原料のジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上で、通常50モル以下、好ましくは30モル以下である。
 酸化防止剤としては、特に限定されないが、例えば、ヒンダードフェノール系酸化防止剤が挙げられる。
 その具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン,2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
 中でも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤の市販品としては、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
 酸化防止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 酸化防止剤の使用量は、特に限定されないが、原料ジヒドロキシ化合物100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上、さらに好ましくは0.1質量部以上である。酸化防止剤の使用量を上記下限以上とすることで、酸化防止剤としての効果が十分なものとなる。酸化防止剤の使用量は、原料ジヒドロキシ化合物100質量部に対して、好ましくは1質量部以下、より好ましくは0.5質量部以下である。酸化防止剤の使用量を上記上限以下とすることで射出成形時のガス発生を抑制することができる。
 反応の際に、反応基質(反応原料)、反応溶媒(有機溶媒)、触媒、添加剤等を混合する順序は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順序を任意に設定すればよい。例えば、カーボネート形成性化合物としてホスゲンを用いた場合には、分子量調整剤は原料ジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
 尚、反応温度は特に限定されないが、好ましくは0~40℃である。反応時間は、特に限定されないが、好ましくは数分(例えば、10分)~数時間(例えば、6時間)である。
(溶融エステル交換法)
 溶融エステル交換法では、例えば、カーボネートエステルと原料ジヒドロキシ化合物とのエステル交換反応を行う。
 原料ジヒドロキシ化合物は、界面重合法におけるものと同様である。
 カーボネートエステルとしては、例えば、下記一般式(I)で表される化合物であればよく、アリールカーボネート類、ジアルキルカーボネート類やジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
Figure JPOXMLDOC01-appb-C000046
 上記一般式(I)中、R101及びR102は、それぞれ独立に炭素数1~30のアルキル基、アリール基、又はアリールアルキル基を示す。以下、R101及びR102が、アルキル基、アリールアルキル基のとき、ジアルキルカーボネートと称し、アリール基のとき、ジアリールカーボネートと称すことがある。中でもジヒドロキシ化合物との反応性の観点よりR101及びR102は、共にアリール基であることが好ましく、下記一般式(II)で表されるジアリールカーボネートであることがより好ましい。
Figure JPOXMLDOC01-appb-C000047
 上記一般式(II)中、R103及びR104は、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシカルボニル基、炭素数4~20のシクロアルキル基、又は炭素数6~20のアリール基である。p及びqはそれぞれ独立に0~5の整数を表す。
 このようなカーボネートエステルとしては、具体的にはジメチルカーボネート、ジエチルカーボネート、ジ-t-ブチルカーボネート等のジアルキルカーボネート、ジフェニルカーボネート(以下、「DPC」と略記する場合がある。)、ビス(4-メチルフェニル)カーボネート、ビス(4-クロロフェニル)カーボネート、ビス(4-フルオロフェニル)カーボネート、ビス(2-クロロフェニル)カーボネート、ビス(2,4-ジフルオロフェニル)カーボネート、ビス(4-ニトロフェニル)カーボネート、ビス(2-ニトロフェニル)カーボネート、ビス(メチルサリチルフェニル)カーボネート、ジトリルカーボネート等の(置換基を有していてもよい)ジアリールカーボネートが挙げられる。中でもジフェニルカーボネートが好ましい。
 これらのカーボネートエステルは、単独で又は2種以上を混合して用いることができる。
 前記のカーボネートエステルは、好ましくはその50モル%以下、さらに好ましくは30モル%以下の量を、ジカルボン酸又はジカルボン酸エステルで置換してもよい。代表的なジカルボン酸又はジカルボン酸エステルとしては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル、イソフタル酸ジフェニル等が挙げられる。このようなジカルボン酸又はジカルボン酸エステルで置換した場合には、ポリエステルカーボネートが得られる。
 原料ジヒドロキシ化合物とカーボネートエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、これらカーボネートエステルは、ジヒドロキシ化合物と重合させる際に、原料ジヒドロキシ化合物に対して過剰に用いることが好ましい。
 カーボネートエステルは、ジヒドロキシ化合物に対して、1.01倍量(モル比)以上であることが好ましく、1.02倍量以上であることがより好ましい。モル比を上記下限以上とすることで、得られるポリカーボネート樹脂の熱安定性が良好なものとなる。
 カーボネートエステルは、ジヒドロキシ化合物に対して、1.30倍量(モル比)以下であることが好ましく、1.20倍量以下であることがより好ましい。モル比を上記上限以下とすることで、反応性が向上し、所望の分子量を有するポリカーボネート樹脂の生産性が良好なものとなることや、樹脂中の残存カーボネートエステル量が少なくなることにより、成形加工時や成形品としたとき、臭気発生を抑制することができる等、好適である。
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は、特に限定されず、従来から公知のものを使用できる。例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用してもよい。
 エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法において、反応温度は、特に限定されないが、通常100~320℃である。
 反応時の圧力は、特に限定されないが、通常2mmHg以下の減圧条件である。
 具体的操作としては、前記の条件で、副生成物を除去しながら、溶融重縮合反応を行えばよい。
 本発明のポリカーボネート樹脂は、アルカリ触媒存在下では、顕著に熱履歴や酸化の影響を受け、色相の悪化に繋がる。そのため、反応温度は320℃以下とし、また、過度の減圧により、機器からの酸素の漏れ込みを防ぐため、0.05mmHg程度までを下限とした減圧条件を選択することが好ましい。
 反応形式は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応溶媒、触媒、添加剤等を混合する順序は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順序を任意に設定すればよい。
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体、リン含有酸性化合物及びその誘導体等が挙げられる。
 触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 触媒失活剤の使用量は、特に限定されないが、前記のエステル交換触媒に対して、通常0.5当量以上、好ましくは1当量以上、より好ましくは3当量以上であり、通常50当量以下、好ましくは10当量以下、より好ましくは8当量以下である。触媒失活剤の使用量は、ポリカーボネート樹脂に対して、通常1ppm以上、100ppm以下で、好ましくは50ppm以下である。
[その他の成分]
 第1発明の熱可塑性樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述した第1発明のポリカーボネート樹脂以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、第1発明のポリカーボネート樹脂以外の樹脂、各種樹脂添加剤などが挙げられる。
 その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 第1発明のポリカーボネート樹脂以外の樹脂としては、例えば、以下の樹脂が挙げられる。
 ポリエチレンテレフタレート樹脂(PET樹脂)、ポリトリメチレンテレフタレート(PTT樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)等の熱可塑性ポリエステル樹脂;
 ポリスチレン樹脂(PS樹脂)、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)等のスチレン系樹脂;
 ポリエチレン樹脂(PE樹脂)、ポリプロピレン樹脂(PP樹脂)、環状シクロオレフィン樹脂(COP樹脂)等のポリオレフィン樹脂;
 ポリアミド樹脂(PA樹脂);ポリイミド樹脂(PI樹脂);ポリエーテルイミド樹脂(PEI樹脂);ポリウレタン樹脂(PU樹脂);ポリフェニレンエーテル樹脂(PPE樹脂);ポリフェニレンサルファイド樹脂(PPS樹脂);ポリスルホン樹脂(PSU樹脂);ポリメタクリレート樹脂(PMMA樹脂);液晶ポリマー(LCP)等
 第1発明の熱可塑性樹脂組成物には、上述の第1発明のポリカーボネート樹脂以外の樹脂の1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 第1発明の熱可塑性樹脂組成物が第1発明のポリカーボネート樹脂以外の樹脂を含む場合、第1発明のポリカーボネート樹脂を含むことによる第1発明の効果をより有効に得る上で、第1発明の熱可塑性樹脂組成物に含まれる全樹脂成分中の第1発明のポリカーボネート樹脂の割合が20質量%以上となるようにすることが好ましく、より好ましくは30質量%以上であり、さらに好ましくは40質量%以上であり、特に好ましくは50質量%以上であり、最も好ましくは60質量%以上である。
 樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、離型剤、紫外線吸収剤、染顔料、難燃剤、滴下防止剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、ガラス繊維、炭素繊維、無機フィラー、有機繊維などが挙げられる。
 第1発明の熱可塑性樹脂組成物には、これらの樹脂添加剤の1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 これらの第1発明のポリカーボネート樹脂以外の樹脂及び樹脂添加剤も含めて、第1発明の熱可塑性樹脂組成物中の第1発明のポリカーボネート樹脂の含有量は30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、60質量%であることが特に好ましく、70~100質量%であることが最も好ましい。
[熱可塑性樹脂組成物の製造方法]
 第1発明の熱可塑性樹脂組成物の製造方法に制限はなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。具体的には、第1発明のポリカーボネート樹脂と必要に応じて用いられるその他の樹脂や樹脂添加剤をバンバリーミキサー、ロール、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
[成形品]
 第1発明の熱可塑性樹脂組成物を用いて第1発明の成形品を製造するには、上述のようにして製造された熱可塑性樹脂組成物をペレタイズしたペレットを各種の成形法で成形して成形品としてもよいし、またペレットを経由せずに、押出機で溶融混練された第1発明の熱可塑性樹脂組成物を直接、成形して成形品としてもよい。
 第1発明の成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。また、例えば表面に凹凸を有していたり、三次元曲面を有する立体的な形状のものであってもよい。また、シートやフィルム、板状等として使用する場合には、他の樹脂シートと積層した多層構造の積層体としてもよい。
 成形品を成形する方法としては、特に制限されず、従来公知の成形法を採用できる。例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコーティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法、シート成形法、熱成形法、積層成形法、プレス成形法等が挙げられる。これらのうち、特に射出成形法又は押出成形法が好適に用いられる。
 第1発明の熱可塑性樹脂組成物を成形する際の成形温度は、200℃以上が好ましく、250℃以上がさらに好ましく、280℃以上が最も好ましい。成形温度を上記下限以上とすることで、流動性が向上し成形性が向上する。第1発明の熱可塑性樹脂組成物を成形する際の成形温度は、350℃以下が好ましく、320℃以下が特に好ましい。成形温度を上記上限以下とすることで、熱可塑性樹脂組成物の色調を良好なものにすることができる。
 射出成形あるいは押出成形を行うにあたり、第1発明の熱可塑性樹脂組成物に顔料、染料、離型剤、熱安定剤等を本発明の目的を損なわない範囲において適宜添加することができる。
<射出成形品>
 第1発明の熱可塑性樹脂組成物は、射出成形によって射出成形品として好適に用いることができる。射出成形の方法は特に限定されず、熱可塑性樹脂について一般に採用されている成形法を任意に採用できる。その例を挙げると、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることもできる。
 射出成形機等を使用する場合の金型温度は、150℃以下が好ましく、120℃以下がさらに好ましく、100℃以下が最も好ましい。金型温度を上記上限以下とすることで、成形時の冷却時間を短縮することができ、成形品の製造サイクルが短くなるため、生産性が向上する。射出成形機等を使用する場合の金型温度は、30℃以上が好ましく、50℃以上が特に好ましい。金型温度を上記下限以上とすることで、均一な成形品を得ることができるため好ましい。
<押出成形品>
 第1発明の熱可塑性樹脂組成物は、押出成形によって押出成形品として好適に用いることができる。第1発明の熱可塑性樹脂組成物から押出成形品を製造するには、特に制限はないが、通常押出成形機が使用される。該押出成形機には一般的には、Tダイや丸ダイ等が装着されており、種々形状の押出成形品を得ることができる。押出成形品としてはシート、フィルム、板、チューブ、パイプ等が挙げられる。これらのなかでも、シート又はフィルムが好ましい。
 第1発明の熱可塑性樹脂組成物の押出成形品には、接着性、塗装性、印刷性改善のためにハードコート層を該押出成形品の両面もしくは片面に積層したり、耐候性及び/又は耐擦傷性改善フィルムを該押出成形品の両面もしくは片面に熱ラミネートしたりしてもよい。また、表面のしぼ加工や半透明及び不透明加工等の処理を施してもよい。
[通信機器用筐体]
 第1発明の熱可塑性樹脂組成物を用いて得られる第1発明の成形品は、マイクロ波及び/又はミリ波帯域の電波透過性が優れると共に、耐熱性及び難燃性にも優れることから、これらの特性が厳しく求められるマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体として有用である。
 このようなマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体の形状、模様、色彩、寸法などに制限はなく、そのマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体の用途に応じて適宜選択することができる。
 第1発明において、マイクロ波とは周波数が3.0~30GHzの電波であり、ミリ波とは周波数が30~300GHzの電波のことである。よってマイクロ波及び/又はミリ波とは、3.0~300GHzの電波のことである。すなわち、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器とは、周波数が3.0~300GHzの電波を送受信するアンテナを内蔵する通信機器のことである。該通信機器の具体例としては周波数が3.0~300GHzの電波を送受信するノートパソコン、タブレット端末、スマートフォン、又はルータ装置等が挙げられる。
 第1発明のマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体の、マイクロ波及び/又はミリ波用アンテナが送受信する周波数は、3.0~300GHzであれば特に制限はないが、3.2~250GHzの周波数帯の電波に対してより好適であり、3.4~200GHzの周波数帯の電波に対してさらに好適である。
 特に、第1発明のマイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体は、5G(第5世代移動通信システム)で利用される、3.5~30GHzの周波数帯の電波に対して、好適に使用できる。
 マイクロ波及び/又はミリ波帯域の電波は、電波透過性が悪い傾向がある。このような観点から、マイクロ波及び/又はミリ波帯域の電波を送受信するアンテナを内蔵する通信機器用筐体は、電波透過性が高いことが要求される。
 また、マイクロ波及び/又はミリ波帯域の電波を送受信する通信機器は、熱を発する傾向がみられることから、マイクロ波及び/又はミリ波帯域の電波を送受信するアンテナを内蔵する通信機器用筐体には高い耐熱性及び難燃性が求められる。
 第1発明のマイクロ波及び/又はミリ波帯域の電波を送受信するアンテナを内蔵する通信機器用筐体に使用される第1発明の熱可塑性樹脂組成物に含まれる第1発明のポリカーボネート樹脂は、低い比誘電率、低い誘電正接、高い耐熱性、及び高い難燃性を兼ね備えている。よって、このような第1発明のポリカーボネート樹脂を含む第1発明の熱可塑性樹脂組成物は、低い比誘電率、低い誘電正接、高い耐熱性、及び高い難燃性を兼ね備えており、マイクロ波及び/又はミリ波帯域の電波を送受信する通信機器の筐体に使用して好適である。
 マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体の具体例としては、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置等の筐体が挙げられる。第1発明の熱可塑性樹脂組成物よりなる第1発明の成形品は、これらの用途として特に好適である。
〔第2発明〕
[ポリカーボネート樹脂組成物]
 第2発明のポリカーボネート樹脂組成物は、下記式(11)で表される芳香族ジヒドロキシ化合物(以下、「芳香族ジヒドロキシ化合物(11)」と称す場合がある。)に由来するカーボネート構造単位(X)(以下、単に「カーボネート構造単位(X)」と称す場合がある。)と、下記式(12)で表される芳香族ジヒドロキシ化合物(以下、「芳香族ジヒドロキシ化合物(12)」と称す場合がある。)に由来するカーボネート構造単位(Y)(以下、単に「カーボネート構造単位(Y)」と称す場合がある。)とを、モル比で、(X)/(Y)=1/99~99/1の割合で含む。カーボネート構造単位(X)とカーボネート構造単位(Y)とを、(X)/(Y)=1/99~99/1(モル比)の割合で含むことで、本発明のポリカーボネート樹脂組成物の表面硬度や耐アルカリ性、耐熱性、衝撃強度が顕著に良好なものとなり、さらには高い透明性、色相をも有するものとすることができる。
Figure JPOXMLDOC01-appb-C000048
 一般式(11)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000049
 一般式(12)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
 第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)とカーボネート構造単位(Y)とを上記(X)/(Y)モル比で含むものであればよく、カーボネート構造単位(X)とカーボネート構造単位(Y)の含有形態については特に制限はない。通常、カーボネート構造単位(X)とカーボネート構造単位(Y)は、ポリカーボネート樹脂中に含まれる。即ち、第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)を含むポリカーボネート樹脂とカーボネート構造単位(Y)を含むポリカーボネート樹脂とのポリカーボネート樹脂混合物であってもよく、カーボネート構造単位(X)とカーボネート構造単位(Y)とを同時に含む共重合タイプのポリカーボネート樹脂を含むものであってもよい。
 第2発明のポリカーボネート樹脂組成物が、カーボネート構造単位(X)とカーボネート構造単位(Y)とを含む共重合ポリカーボネート樹脂としてカーボネート構造単位(X)とカーボネート構造単位(Y)を含む場合、第2発明のポリカーボネート樹脂組成物は、「ポリカーボネート樹脂」と称されるものである。
 第2発明のポリカーボネート樹脂組成物がカーボネート構造単位(X)を含むポリカーボネート樹脂とカーボネート構造単位(Y)を含むポリカーボネート樹脂との混合物である場合は、通常「ポリカーボネート樹脂組成物」と称される。
 第2発明においては、このように、カーボネート構造単位(X)とカーボネート構造単位(Y)を含む1種類の共重合ポリカーボネート樹脂よりなる場合も含めて「ポリカーボネート樹脂組成物」と呼称することとする。
<一般式(11),(12)>
 第2発明のポリカーボネート樹脂組成物において、前記一般式(11)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
 R及びRの、置換若しくは無置換の炭素数1~炭素数20のアルキル基の具体例としては次のようなものが挙げられる。
 メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基;
 メチルエチル基、メチルプロピル基、メチルブチル基、メチルペンチル基、メチルヘキシル基、メチルへプチル基、メチルオクチル基、メチルノニル基、メチルデシル基、メチルウンデシル基、メチルドデシル基、メチルトリデシル基、メチルテトラデシル基、メチルペンタデシル基、メチルヘキサデシル基、メチルヘプタデシル基、メチルオクタデシル基、メチルノナデシル基;
 ジメチルエチル基、ジメチルプロピル基、ジメチルブチル基、ジメチルペンチル基、ジメチルヘキシル基、ジメチルへプチル基、ジメチルオクチル基、ジメチルノニル基、ジメチルデシル基、ジメチルウンデシル基、ジメチルドデシル基、ジメチルトリデシル基、ジメチルテトラデシル基、ジメチルペンタデシル基、ジメチルヘキサデシル基、ジメチルヘプタデシル基、ジメチルオクタデシル基;
 トリメチルブチル基、トリメチルペンチル基、トリメチルヘキシル基、トリメチルへプチル基、トリメチルオクチル基、トリメチルノニル基、トリメチルデシル基、トリメチルウンデシル基、トリメチルドデシル基、トリメチルトリデシル基、トリメチルテトラデシル基、トリメチルペンタデシル基、トリメチルヘキサデシル基、トリメチルヘプタデシル基;
 エチルペンチル基、エチルヘキシル基、エチルへプチル基、エチルオクチル基、エチルノニル基、エチルデシル基、エチルウンデシル基、エチルドデシル基、エチルトリデシル基、エチルテトラデシル基、エチルペンタデシル基、エチルヘキサデシル基、エチルヘプタデシル基、エチルオクタデシル基;
 プロピルヘキシル基、プロピルへプチル基、プロピルオクチル基、プロピルノニル基、プロピルデシル基、プロピルウンデシル基、プロピルドデシル基、プロピルトリデシル基、プロピルテトラデシル基、プロピルペンタデシル基、プロピルヘキサデシル基、プロピルヘプタデシル基;
 ブチルヘキシル基、ブチルへプチル基、ブチルオクチル基、ブチルノニル基、ブチルデシル基、ブチルウンデシル基、ブチルドデシル基、ブチルトリデシル基、ブチルテトラデシル基、ブチルペンタデシル基、ブチルヘキサデシル基等
 前記一般式(11)中の置換若しくは無置換の炭素数1~炭素数20のアルキル基であるR及びRは、互いに結合して環を形成していてもよく、その具体例としては、下記一般式(15)、(16)で表されるもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000050
 一般式(15),(16)中、R及びRは一般式(11)におけると同義である。
 R及びRの、置換若しくは無置換のアリール基の具体例としては、フェニル基、トリル基、4-メチルフェニル基、ナフチル基等が挙げられる。
 R及びRは、これらの中でも、水素原子、メチル基、エチル基が好ましく、メチル基がより好ましく、特にR及びRの両方がメチル基であることが好ましい。
 第2発明のポリカーボネート樹脂組成物において、前記一般式(11e)中、R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を有することで、第2発明のポリカーボネート樹脂組成物の表面硬度や耐アルカリ性等を向上させることができる。
 R及びRの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、フェニル基、トリル基等が挙げられる。中でもメチル基が好ましい。
 第2発明に係る芳香族ジヒドロキシ化合物(11)としては、下記一般式(13)で表される芳香族ジヒドロキシ化合物が表面硬度向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000051
 一般式(13)中、R10及びR11は、それぞれ独立に、水素原子、またはメチル基を示す。R12及びR13は、それぞれ独立に、メチル基、またはエチル基を示す。
 第2発明に係る芳香族ジヒドロキシ化合物(11)の好適な具体例としては、下記式(11a)で表される2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(以下、「BPC」と略記する場合がある。)、下記式(11b)で表される2,2-ビス(2-ヒドロキシ-5-ビフェニルイル)プロパン、下記式(11c)で表される1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロドデカン、下記式(11d)で表される4,4-エチリデンビス(2-メチルフェノール)、下記式(11e)で表される4,4-(オクタヒドロ-4,7-メタノ-5H-インデン-5-イリデン)ビス(2-メチルフェノール)、下記式(11f)で表される1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000052
 これらのうち、上記式(11a)で表されるBPCが最も好ましい。
 第2発明におけるカーボネート構造単位(Y)は、前記一般式(12)のようにビスフェノールのベンゼン環がメチレン基で連結されていることで、第2発明のポリカーボネート樹脂組成物の耐衝撃性等を向上させることができる。
 第2発明のポリカーボネート樹脂組成物において、前記一般式(12)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。R~Rとして置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を有することで、第2発明のポリカーボネート樹脂組成物の表面硬度や耐アルカリ性等を向上させることができる。R~Rは好ましくはメチル基、またはエチル基であり、より好ましくはメチル基である。
 第2発明に係る芳香族ジヒドロキシ化合物(12)としては、下記一般式(14)で表される芳香族ジヒドロキシ化合物、特に、下記一般式(14A)で表される芳香族ジヒドロキシ化合物が表面硬度、耐衝撃性、及び耐アルカリ性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000053
 一般式(14)中、R15~R18は、それぞれ独立に、メチル基、またはエチル基を示す。
Figure JPOXMLDOC01-appb-C000054
 一般式(14A)中、R20~R23は、それぞれ独立に、メチル基、またはエチル基を示す。
 また、一般式(14A)において、R22、R23の置換位置は下記一般式(14B)に示される位置であることがより好ましい。
Figure JPOXMLDOC01-appb-C000055
 一般式(14B)中、R20~R23は一般式(14A)におけると同義である。
 第2発明に係る芳香族ジヒドロキシ化合物(12)の好適な具体例としては、下記式(12a)で表される4,4-メチレンビス(2,6-ジメチルフェノール)(以下、「TmBPF」と略記する場合がある。)、下記式(12b)で表される4,4-メチレンビス(2,5-ジメチルフェノール)(以下、「Bis25X-F」と略記する場合がある。)などが挙げられる。
Figure JPOXMLDOC01-appb-C000056
<カーボネート構造単位(X)、(Y)>
 第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Y)とを、モル比で、(X)/(Y)=1/99~99/1の割合で含むことを特徴とするものである。カーボネート構造単位(Y)の比率を増やすことで、耐熱性がより向上するため、この割合は好ましくは、(X)/(Y)=1/99~85/15、より好ましくは(X)/(Y)=15/75~65/35である。
 第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。即ち、2種以上の芳香族ジヒドロキシ化合物(11)に由来するカーボネート構造単位(X)を含んでいてもよい。また、カーボネート構造単位(Y)についても1種のみを含むものであってもよく、2種以上を含むものであってもよい。即ち、2種以上の芳香族ジヒドロキシ化合物(12)に由来するカーボネート構造単位(Y)を含んでいてもよい。
 第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Y)とを、上記(X)/(Y)モル比で含むものであればよく、第2発明のポリカーボネート樹脂組成物の特徴を損なわない範囲で、各カーボネート構造単位(X),(Y)の含有量については任意の含有量で含むことができる。ただし、第2発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Y)とを含むことによる第2発明の効果を確実に得る上で、ポリカーボネート樹脂組成物中の全カーボネート構造単位に対してカーボネート構造単位(X)とカーボネート構造単位(Y)とを合計で10mol%以上含むことが好ましく、15mol%以上含むことが好ましく、20mol%以上含むことがさらに好ましく、特に25~100mol%含むことが好ましい。
<その他のカーボネート構造単位>
 第2発明のポリカーボネート樹脂組成物は、第2発明の目的を損なわない範囲において、カーボネート構造単位(X),(Y)以外のその他のカーボネート構造単位、即ち、芳香族ジヒドロキシ化合物(11),(12)以外のジヒドロキシ化合物に由来するカーボネート構造単位を含むものであってもよい。
 芳香族ジヒドロキシ化合物(11),(12)以外のジヒドロキシ化合物としては、以下のものが挙げられる。
 2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「BPA」と略記することがある)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、α,α'-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、1-ビス(4-ヒドロキシフェニル)ブタン、2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、1-ビス(4-ヒドロキシフェニル)オクタン、2-ビス(4-ヒドロキシフェニル)オクタン、1-ビス(4-ヒドロキシフェニル)ヘキサン、2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、10-ビス(4-ヒドロキシフェニル)デカン、1-ビス(4-ヒドロキシフェニル)ドデカン、等のビス(ヒドロキシアリール)アルカン類;1-ビス(4-ヒドロキシフェニル)シクロペンタン、1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、等のビス(ヒドロキシアリール)シクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;等
 芳香族ジヒドロキシ化合物(11),(12)以外のジヒドロキシ化合物としては、これらのなかでもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の観点からは2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)が好ましい。
 芳香族ジヒドロキシ化合物(11),(12)以外のジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<ポリカーボネート樹脂組成物の分子量>
 第2発明のポリカーボネート樹脂組成物の分子量は、溶液粘度から換算した粘度平均分子量(Mv)で、好ましくは15,000~33,000である。粘度平均分子量が上記下限値以上であれば、第2発明のポリカーボネート樹脂組成物の機械物性や耐アルカリ性が良好となる。粘度平均分子量が上記上限値以下であれば、第2発明のポリカーボネート樹脂組成物の流動性が十分となる傾向がある。このような観点より、第2発明のポリカーボネート樹脂組成物の粘度平均分子量(Mv)は、好ましくは16,500以上、より好ましくは18,000以上である。また、好ましくは31,500以下、より好ましくは30,000以下である。
<鉛筆硬度>
 第2発明のポリカーボネート樹脂組成物は、ISO 15184に準拠した方法で測定される鉛筆硬度が好ましくはH以上であるような高硬度特性を有するものであり、この鉛筆硬度はより好ましくは2H以上である。
 ポリカーボネート樹脂組成物の鉛筆硬度は、ポリカーボネート樹脂組成物よりなる成形品について後述の実施例の項に記載の方法で測定される。
<ガラス転移温度>
 第2発明のポリカーボネート樹脂組成物は、ガラス転移温度Tgが130~200℃であることが好ましい。Tgが130℃以上であれば、高い耐熱性を得ることができる。一方、Tgが200℃以下であれば流動性が良好となり、高い成形加工性を得ることができる。このことから、第2発明のポリカーボネート樹脂組成物のガラス転移温度Tgは特に130~200℃であることが好ましい。
 ポリカーボネート樹脂組成物のTgは、後述の実施例の項に記載の方法で測定される。
<その他の成分>
 第2発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、カーボネート構造単位(X)及び/又はカーボネート構造単位(Y)を含むポリカーボネート樹脂以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、カーボネート構造単位(X)及びカーボネート構造単位(Y)を含まないポリカーボネート樹脂やポリカーボネート樹脂以外の樹脂、各種樹脂添加剤等が挙げられる。
 樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、離型剤、耐光剤(HALS)、難燃剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、染料、顔料等が挙げられる。
 樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂等の熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)等のスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
 その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[ポリカーボネート樹脂組成物の製造方法]
 第2発明のポリカーボネート樹脂組成物を構成するポリカーボネート樹脂は、原料ジヒドロキシ化合物として少なくとも芳香族ジヒドロキシ化合物(11)と芳香族ジヒドロキシ化合物(12)を用いること以外は前述の第1発明のポリカーボネート樹脂と同様に製造することができる。
 原料ジヒドロキシ化合物として、芳香族ジヒドロキシ化合物(11)と芳香族ジヒドロキシ化合物(12)を含むものを用いることにより、カーボネート構造単位(X)とカーボネート構造単位(Y)とを含む共重合ポリカーボネート樹脂を製造することができる。これらの芳香族ジヒドロキシ化合物のうちの一方を用いることにより、カーボネート構造単位(X)又はカーボネート構造単位(Y)を含むポリカーボネート樹脂を製造することができる。
[成形品の製造方法]
 第2発明のポリカーボネート樹脂組成物から樹脂成形品を製造するには、通常の押出成形機又は射出成形機が使用される。
 第2発明のポリカーボネート樹脂組成物を成形する際の成形温度は、200℃以上が好ましく、250℃以上がさらに好ましく、280℃以上が最も好ましい。また、350℃以下が好ましく、320℃以下が特に好ましい。成形温度が低すぎると、溶融粘度が高くなり、流動性が低下し、成形性が低下する可能性がある。成形温度が高すぎるとポリカーボネート樹脂組成物が着色してしまい、得られる成形品の色調も悪化する場合があり、好ましくない。
 射出成形あるいは押出成形を行うにあたり、第2発明のポリカーボネート樹脂組成物に顔料、染料、離型剤、熱安定剤等を第2発明の目的を損なわない範囲において適宜添加することができる。
<射出成形品>
 第2発明のポリカーボネート樹脂組成物から射出成形品を製造するには、通常の射出成形機が使用される。
 射出成形機等を使用する場合の金型温度は、150℃以下が好ましく、120℃以下がさらに好ましく、100℃以下が最も好ましい。また、30℃以上が好ましく、50℃以上が特に好ましい。金型温度が高すぎると、成形時の冷却時間を長くする必要があり、成形品の製造サイクルが長くなり、生産性が低下する場合がある。金型温度が低すぎると、ポリカーボネート樹脂組成物の溶融粘度が高くなりすぎ、均一な成形品を得ることができない可能性があり、成形品表面にムラができるなどの問題が生じ、好ましくない。
<押出成形品>
 第2発明のポリカーボネート樹脂組成物から押出成形品を製造するには、通常の押出成形機が使用される。該押出成形機には一般的には、Tダイや丸ダイ等が装着されており、種々形状の押出成形品を得ることができる。押出成形品としてはシート、フィルム、板、チューブ、パイプ等が挙げられる。これらのなかでも、シート又はフィルムが好ましい。
 第2発明のポリカーボネート樹脂組成物の押出成形品には、接着性、塗装性、印刷性改善のためにハードコート層を該押出成形品の両面もしくは片面に積層したり、耐候性及び/又は耐擦傷性改善フィルムを該押出成形品の両面もしくは片面に熱ラミネートしたりしてもよい。また、表面のしぼ加工や半透明及び不透明加工等の処理を施してもよい。
 第2発明のポリカーボネート樹脂組成物の成形品は、建築物、車両、電気・電子機器、機械、その他の各種分野で使用できる。
〔第3発明〕
[ポリカーボネート樹脂組成物]
 第3発明のポリカーボネート樹脂組成物は、下記一般式(11)で表される芳香族ジヒドロキシ化合物(以下、「芳香族ジヒドロキシ化合物(11)」と称す場合がある。)に由来するカーボネート構造単位(X)(以下、単に「カーボネート構造単位(X)」と称す場合がある。)と、下記一般式(21)で表される芳香族ジヒドロキシ化合物(以下、「芳香族ジヒドロキシ化合物(21)」と称す場合がある。)に由来するカーボネート構造単位(Z)(以下、単に「カーボネート構造単位(Z)」と称す場合がある。)とを、mol比で、カーボネート構造単位(X)/カーボネート構造単位(Z)(以下、「(X)/(Z)」と称す場合がある。)=1/99~99/1の割合で含む。カーボネート構造単位(X)とカーボネート構造単位(Z)とを、(X)/(Z)=1/99~99/1(mol比)の割合で含むことで、第3発明のポリカーボネート樹脂組成物の表面硬度や耐アルカリ性、耐熱性、衝撃強度、流動性が顕著に良好なものとなり、さらには高い透明性、色相をも有するものとすることができる。
Figure JPOXMLDOC01-appb-C000057
 一般式(11)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
Figure JPOXMLDOC01-appb-C000058
 一般式(21)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)とカーボネート構造単位(Z)とを、mol比で、(X)/(Z)=1/99~99/1の割合で含むものであればよく、カーボネート構造単位(X)とカーボネート構造単位(Z)の含有形態については特に制限はない。通常、カーボネート構造単位(X)とカーボネート構造単位(Z)は、ポリカーボネート樹脂中に含まれる。
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)を含むポリカーボネート樹脂とカーボネート構造単位(Z)を含むポリカーボネート樹脂とのポリカーボネート樹脂混合物であってもよく、カーボネート構造単位(X)とカーボネート構造単位(Z)とを同時に含む共重合タイプのポリカーボネート樹脂を含むものであってもよい。第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)及び/又はカーボネート構造単位(Z)を含むポリカーボネート樹脂と、カーボネート構造単位(X)及びカーボネート構造単位(Z)を含む共重合ポリカーボネート樹脂との混合物であってもよく、更にカーボネート構造単位(X)もカーボネート構造単位(Z)も含まないポリカーボネート樹脂を含むものであってもよい。
 第3発明のポリカーボネート樹脂組成物が、カーボネート構造単位(X)とカーボネート構造単位(Z)とを含む共重合ポリカーボネート樹脂としてカーボネート構造単位(X)とカーボネート構造単位(Z)を含む場合、第3発明のポリカーボネート樹脂組成物は、「ポリカーボネート樹脂」と称されるものである。
 第3発明のポリカーボネート樹脂組成物がカーボネート構造単位(X)を含むポリカーボネート樹脂とカーボネート構造単位(Z)を含むポリカーボネート樹脂との混合物である場合は、通常「ポリカーボネート樹脂組成物」と称される。上記その他の含有形態においても同様である。
 第3発明においては、このように、カーボネート構造単位(X)とカーボネート構造単位(Z)を含む1種類の共重合ポリカーボネート樹脂よりなる場合も含めて「ポリカーボネート樹脂組成物」と呼称することとする。
<一般式(11),(21)>
 第3発明のポリカーボネート樹脂組成物における一般式(11)、芳香族ジヒドロキシ化合物(11)、及びカーボネート構造単位(X)については、第2発明のポリカーボネート樹脂組成物における一般式(11)、芳香族ジヒドロキシ化合物(11)、及びカーボネート構造単位(X)と同一であり、好ましいものも同じである。
 第3発明のポリカーボネート樹脂組成物では、カーボネート構造単位(Z)は、前記一般式(21)に示されるように2つのベンゼン環同士が単結合で連結していることで、耐衝撃性を向上させることができる。
 第3発明のポリカーボネート樹脂組成物において、前記一般式(21)中、R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を示す。R~Rとして置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基を有することで、第3発明のポリカーボネート樹脂組成物の表面硬度や耐アルカリ性等を向上させることができる。R~Rの置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基の具体例としては、前記一般式(11)におけるR,Rの置換若しくは無置換の炭素数1~炭素数20のアルキル基、または置換若しくは無置換のアリール基の具体例として例示したものが挙げられるが、好ましくはメチル基、またはエチル基であり、より好ましくはメチル基である。
 第3発明に係る芳香族ジヒドロキシ化合物(21)としては、下記一般式(22)で表される芳香族ジヒドロキシ化合物、特に、下記一般式(22A)で表される芳香族ジヒドロキシ化合物が、表面硬度、耐衝撃性、及び耐アルカリ性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000059
 一般式(22)中、R31~R34は、それぞれ独立に、メチル基、またはエチル基を示す。
Figure JPOXMLDOC01-appb-C000060
 一般式(22A)中、R31~R34は、前記一般式(22)におけると同義である。
 また、一般式(22A)において、R33、R34の置換位置は下記一般式(22B)に示される位置であることがより好ましい。
Figure JPOXMLDOC01-appb-C000061
 一般式(22B)中、R31~R34は一般式(22A)におけると同義である。
 第3発明に係る芳香族ジヒドロキシ化合物(21)の好適な具体例としては、下記式(23)で表される2,2,6,6-テトラメチル-4,4-ビフェノール(以下、「TmBP」と略記する場合がある。3,3’,5,5’-テトラメチル-1,1’-ビフェニル-4,4’-ジオールとも称される。)が挙げられる。
Figure JPOXMLDOC01-appb-C000062
<カーボネート構造単位(X)、(Z)>
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Z)とを、mol比で、(X)/(Z)=1/99~99/1の割合で含むことを特徴とするものである。カーボネート構造単位(Z)の比率を増やすことで、耐熱性がより向上するため、この割合は好ましくは、(X)/(Z)=1/99~95/5、より好ましくは(X)/(Z)=5/95~90/10である。
 第3発明のポリカーボネート樹脂組成物に含まれるカーボネート構造単位(X)と、カーボネート構造単位(Z)とのmol比は、重クロロホルム中に溶解させたポリカーボネート樹脂組成物のH-NMRの測定をすることにより算出することができる。具体的にはポリカーボネート樹脂濃度が50mg/mLとなるようにポリカーボネート樹脂の重クロロホルム溶液を調製し、30℃で、緩和時間を6秒、積算回数を128回として測定される。
 第3発明のポリカーボネート樹脂組成物に含まれるカーボネート構造単位(X)、カーボネート構造単位(Z)や後述のその他のカーボネート構造単位の割合は、ポリカーボネート樹脂製造時のジヒドロキシ化合物の仕込組成比から算出することもできる。後掲の実施例では、この仕込組成比から求めている。
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)の1種のみを含むものであってもよく、2種以上を含むものであってもよい。即ち、2種以上の芳香族ジヒドロキシ化合物(11)に由来するカーボネート構造単位(X)を含んでいてもよい。また、カーボネート構造単位(Z)についても1種のみを含むものであってもよく、2種以上を含むものであってもよい。即ち、2種以上の芳香族ジヒドロキシ化合物(21)に由来するカーボネート構造単位(Z)を含んでいてもよい。
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Z)とを、上記(X)/(Z)mol比で含むものであればよく、第3発明のポリカーボネート樹脂組成物の特徴を損なわない範囲で、各カーボネート構造単位(X),(Z)の含有量については任意の含有量で含むことができる。ただし、第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)と、カーボネート構造単位(Z)とを含むことによる第3発明の効果を確実に得る上で、ポリカーボネート樹脂組成物中の全カーボネート構造単位に対してカーボネート構造単位(X)とカーボネート構造単位(Z)とを合計で20mol%以上含むことが好ましく、40mol%以上含むことが好ましく、60mol%以上含むことがさらに好ましく、特に60~100mol%含むことが好ましい。
<その他のカーボネート構造単位>
 第3発明のポリカーボネート樹脂組成物は、第3発明の目的を損なわない範囲において、カーボネート構造単位(X),(Z)以外のその他のカーボネート構造単位、即ち、芳香族ジヒドロキシ化合物(11),(21)以外のジヒドロキシ化合物に由来するカーボネート構造単位を含むものであってもよい。
 芳香族ジヒドロキシ化合物(11),(21)以外のジヒドロキシ化合物としては、以下のものが挙げられる。
 2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
 2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
 2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「BPA」と略記する場合がある。)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン(以下、「TmBPA」と略記する場合がある。)、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン(4,4-メチレンビス(2,6-ジメチルフェノール)(以下、「TmBPF」と略記する場合がある。)とも称される。)、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、1-ビス(4-ヒドロキシフェニル)ブタン、2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、1-ビス(4-ヒドロキシフェニル)オクタン、2-ビス(4-ヒドロキシフェニル)オクタン、1-ビス(4-ヒドロキシフェニル)ヘキサン、2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、10-ビス(4-ヒドロキシフェニル)デカン、1-ビス(4-ヒドロキシフェニル)ドデカン等のビス(ヒドロキシアリール)アルカン類;
 1-ビス(4-ヒドロキシフェニル)シクロペンタン、1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;
 9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
 4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
 4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
 4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;等
 芳香族ジヒドロキシ化合物(11),(21)以外のジヒドロキシ化合物としては、これらのなかでもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の観点からは2,2-ビス(4-ヒドロキシフェニル)プロパン(BPA)、またはビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン(4,4-メチレンビス(2,6-ジメチルフェノール)(TmBPF))が好ましく、誘電特性工場の観点からは、TmBPFが好ましい。
 芳香族ジヒドロキシ化合物(11),(21)以外のジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<ポリカーボネート樹脂の分子量>
 第3発明のポリカーボネート樹脂組成物中のポリカーボネート樹脂の分子量には特に制限はないが、溶液粘度から換算した粘度平均分子量(Mv)が16,000以上であることが好ましい。粘度平均分子量が上記下限値以上の場合、第3発明のポリカーボネート樹脂組成物の機械物性や耐アルカリ性が向上するため好ましい。このような観点から、ポリカーボネート樹脂の粘度平均分子量はより好ましくは17,000以上であり、さらに好ましくは18,000以上であり、特に好ましくは18,500以上である。第3発明のポリカーボネート樹脂組成物中のポリカーボネート樹脂の粘度平均分子量(Mv)は30,000以下であることが好ましい。粘度平均分子量が上記上限値以下である場合は、第3発明のポリカーボネート樹脂組成物の流動性が良好となる傾向があり好ましい。このような観点から、ポリカーボネート樹脂の粘度平均分子量はより好ましくは29,000以下であり、さらに好ましくは28,000以下であり、特に好ましくは27,000以下である。
<鉛筆硬度>
 第3発明のポリカーボネート樹脂組成物は、ISO 15184に準拠した方法で測定される鉛筆硬度が、特に制限はないが、好ましくはH以上であるような高硬度特性を有するものであり、この鉛筆硬度はより好ましくは2H以上である。
 ポリカーボネート樹脂組成物の鉛筆硬度は、ポリカーボネート樹脂組成物よりなる成形品について後述の実施例の項に記載の方法で測定される。
<ガラス転移温度>
 第3発明のポリカーボネート樹脂組成物は、ガラス転移温度Tgが130~200℃であることが好ましい。Tgが130℃以上であれば、高い耐熱性を得ることができる。一方、Tgが200℃以下であれば流動性が良好となり、高い成形加工性を得ることができる。このことから、第3発明のポリカーボネート樹脂組成物のガラス転移温度Tgは130~200℃であることが好ましい。
 ポリカーボネート樹脂組成物のTgは、後述の実施例の項に記載の方法で測定される。
<その他の成分>
 第3発明のポリカーボネート樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、カーボネート構造単位(X)及び/又はカーボネート構造単位(Z)を含むポリカーボネート樹脂以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、カーボネート構造単位(X)及びカーボネート構造単位(Z)を含まないポリカーボネート樹脂やポリカーボネート樹脂以外の樹脂、各種樹脂添加剤等が挙げられる。
 第3発明のポリカーボネート樹脂組成物は、カーボネート構造単位(X)及びカーボネート構造単位(Z)を含むポリカーボネート樹脂を含むことによる第3発明の効果を確実に得るために、ポリカーボネート樹脂組成物100質量%中に、カーボネート構造単位(X)及びカーボネート構造単位(Z)をその合計で65質量%以上、特に70質量%以上、とりわけ75質量%以上含むことが好ましい。
 第3発明のポリカーボネート樹脂組成物のポリカーボネート樹脂の含有量は、第3発明の特徴を効果的に引き出す上で、第3発明のポリカーボネート樹脂組成物100質量%に対して、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
 樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、離型剤、耐光剤(HALS)、難燃剤、帯電防止剤、防曇剤、滑剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、染料、顔料等が挙げられる。
 樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂等の熱可塑性ポリエステル樹脂;ポリスチレン樹脂、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)等のスチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
 その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[ポリカーボネート樹脂の製造方法]
 第3発明のポリカーボネート樹脂組成物を構成するポリカーボネート樹脂は、原料ジヒドロキシ化合物として少なくとも芳香族ジヒドロキシ化合物(11)と芳香族ジヒドロキシ化合物(21)を用いること以外は前述の第1発明のポリカーボネート樹脂と同様に製造することができる。
 原料ジヒドロキシ化合物として、芳香族ジヒドロキシ化合物(11)と芳香族ジヒドロキシ化合物(21)を含むものを用いることにより、カーボネート構造単位(X)とカーボネート構造単位(Z)とを含む共重合ポリカーボネート樹脂を製造することができる。これらの芳香族ジヒドロキシ化合物のうちの一方を用いることにより、カーボネート構造単位(X)又はカーボネート構造単位(Z)を含むポリカーボネート樹脂を製造することができる。
[ポリカーボネート樹脂成形品の製造方法]
 第3発明のポリカーボネート樹脂組成物からポリカーボネート樹脂成形品を製造するには、通常の押出成形機又は射出成形機が使用される。
 第3発明のポリカーボネート樹脂組成物を成形する際の成形温度は、200℃以上が好ましく、250℃以上がさらに好ましく、280℃以上が最も好ましい。成形温度を上記下限以上とすることで、流動性が向上し成形性が向上する。第3発明のポリカーボネート樹脂組成物を成形する際の成形温度は、350℃以下が好ましく、320℃以下が特に好ましい。成形温度を上記上限以下とすることで、ポリカーボネート樹脂組成物の色調を良好なものにすることができる。
 射出成形あるいは押出成形を行うにあたり、第3発明のポリカーボネート樹脂組成物に顔料、染料、離型剤、熱安定剤等を本発明の目的を損なわない範囲において適宜添加することができる。
[成形品]
 第3発明のポリカーボネート樹脂組成物は、射出成形、押出成形等の熱加工によって成形品として好適に用いることができる。このようなポリカーボネート樹脂成形品の形状、模様、色彩、寸法などに制限はなく、その成形品の用途に応じて適宜選択することができる。例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等、また特殊な形状のもの等、各種形状のものが挙げられる。また、例えば表面に凹凸を有していたり、三次元曲面を有する立体的な形状のものであってもよい。
<射出成形品>
 第3発明のポリカーボネート樹脂組成物は、射出成形によって射出成形品として好適に用いることができる。射出成形の方法は特に限定されず、熱可塑性樹脂について一般に採用されている成形法を任意に採用できる。その例を挙げると、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることもできる。
 射出成形機等を使用する場合の金型温度は、150℃以下が好ましく、120℃以下がさらに好ましく、100℃以下が最も好ましい。金型温度を上記上限以下とすることで、成形時の冷却時間を短縮することができ、成形品の製造サイクルが短くなるため、生産性が向上する。射出成形機等を使用する場合の金型温度は、30℃以上が好ましく、50℃以上が特に好ましい。金型温度を上記下限以上とすることで、均一な成形品を得ることができるため好ましい。
<押出成形品>
 第3発明のポリカーボネート樹脂組成物は、押出成形によって押出成形品として好適に用いることができる。第3発明のポリカーボネート樹脂組成物から押出成形品を製造するには、特に制限はないが、通常押出成形機が使用される。該押出成形機には一般的には、Tダイや丸ダイ等が装着されており、種々形状の押出成形品を得ることができる。押出成形品としてはシート、フィルム、板、チューブ、パイプ等が挙げられる。これらのなかでも、シート又はフィルムが好ましい。
 第3発明のポリカーボネート樹脂組成物の押出成形品には、接着性、塗装性、印刷性改善のためにハードコート層を該押出成形品の両面もしくは片面に積層したり、耐候性及び/又は耐擦傷性改善フィルムを該押出成形品の両面もしくは片面に熱ラミネートしたりしてもよい。また、表面のしぼ加工や半透明及び不透明加工等の処理を施してもよい。
<用途>
 第3発明のポリカーボネート樹脂組成物の成形品は、例えば各種自動車部材、電気・電子機器、情報端末機器、OA機器、機械部品、家電製品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類、照明機器等の部品等としてとして使用できる。これらの中でも、本発明の成形品は、表面硬度、耐アルカリ性に優れ、且つ耐熱性、耐衝撃性、流動性に優れることから、特に電気・電子機器、情報端末機器、OA機器、家電製品等の部品へ用いて好適であり、電気・電子機器、情報端末機器、OA機器、自動車内装部品、家電製品の筐体の成形材料として特に好適に用いることができる。
 以下、実施例に基づき本発明をさらに具体的に説明する。
 本発明は以下の実施例に限定されるものではない。
 以下の実施例及び比較例で得られたポリカーボネート樹脂の物性は、下記の方法により評価した。
(1)表面硬度:鉛筆硬度
 小型射出成形機(株式会社新興セルビックC,Mobile)を用いて、表1,2に記載のシリンダー温度及び金型温度の条件下にて、厚み3mm、縦25mm、横25mmのポリカーボネート樹脂のプレートを成形し、試験片を得た。該試験片について、ISO 15184に準拠し、鉛筆硬度試験機(東洋精機株式会社製)を用いて、荷重750gで鉛筆硬度を測定した。
(2)流動性:粘度平均分子量(Mv)
 ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管(森友理化工業社製)を用いて、20℃における固有粘度(極限粘度)[η](単位dL/g)を求め、Schnellの粘度式(下記式)から粘度平均分子量(Mv)を算出した。
   η=1.23×10-4Mv0.83
(3)耐熱性:ガラス転移温度(Tg)
 示差操作熱量計(SII製DSC6220)を用いて、ポリカーボネート樹脂の試料約10mgを20℃/minの昇温速度で加熱して熱量を測定し、JIS K7121に準拠して、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大となるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求めた。該補外ガラス転移温度をガラス転移温度(Tg)とした。
(4)耐衝撃性:アイゾッド衝撃強度
 小型射出成形機(株式会社新興セルビックC,Mobile)を用いて、表1,2に記載のシリンダー温度及び金型温度の条件下にて、厚み3.2mm、縦53.5mm、横12.7mmのポリカーボネート樹脂のプレートを成形し、試験片を得た。JIS K-7110に準拠して、該試験片に対して60kgハンマーを用いて5回衝撃試験を行い、ブレイク本数の比較を行った。
(5)耐アルカリ性
 小型射出成形機(株式会社新興セルビックC,Mobile)を用いて、表1,2に記載のシリンダー温度及び金型温度の条件下にて、厚み3mm、縦25mm、横25mmのポリカーボネート樹脂のプレートを成形し、試験片を得た。シャーレに満たした25質量%のNaOH水溶液に該試験片を50℃で92時間浸漬した後取り出し、水洗後、該試験片が試験前と変化がなければ「S」、わずかに白化していれば「A」、白化していれば「B」、著しく白化していれば「C」の評価とした。
(6)難燃性:20mm垂直燃焼試験(0.8mmt)
 ポリカーボネート樹脂のペレットを120℃で4時間乾燥した後、射出成形機(住友重機械工業社製「SE100」)により、シリンダー温度300℃、金型温度80℃で125mm×13mm×厚さ0.8mmの燃焼試験用試験片を成形した。
 得られた燃焼試験用試験片について、UL94(1996年10月29日、第5版)に準拠した20mm垂直燃焼試験を行った。燃焼性試験結果は、UL94に記載の材料の分類に従って、V-0、V-1、V-2、及び不適合に分類した。
 分類結果がV-2であった場合は、発煙物質又は滴下物による標識用綿の着火が起きるまでに、最も要した時間を記録し、比較を行った。
(7)誘電特性:比誘電率(ε)・誘電正接(tanδ)
 80℃で5時間真空乾燥をしたポリカーボネート樹脂を熱プレス成形機によりフィルム状に成形し、厚みが40~150μmのフィルムを作製した。なお、熱プレス成形機の成形条件は、温度150~250℃、圧力10~15MPaの範囲で適宜調整した。このフィルムから長さ70mm、幅2mmの短冊状のフィルムを切り出し、室温23℃、湿度50%の条件下で48時間調湿した後、空洞共振器(株式会社関東応用電子開発製 CP-531)及び、シリーズ・ネットワークアナライザー(キーサイト・テクノロジー社製 E8361A PNA)を用いて、周波数10GHzにて比誘電率(ε)と誘電正接(tanδ×10-3)を測定した。
[実施例1]
 反応器攪拌機、反応器加熱装置、反応器圧力調整装置を付帯した内容量150mlのガラス製反応器に、4,4-メチレンビス(2,6-ジメチルフェノール)(TmBPF)(東京化成工業社製)23.34g(約0.091mol)と、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)(本州化学社製)93.37g(約0.364mol)と、ジフェニルカーボネート(DPC)99.97g(約0.467mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した。
 次に、ガラス製反応器内を約50Pa(0.38Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、混合物を溶解させた。その後、100rpmで攪拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を250℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器外部温度を285℃に昇温、反応器内の絶対圧を30Pa(約0.2Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。
 次いで、反応器内を、窒素により絶対圧で101.3kPaに復圧の上、ゲージ圧で0.2MPaまで昇圧し、反応器の槽底からポリカーボネート樹脂をストランド状に抜き出し、ストランド状のポリカーボネート樹脂を得た後、回転式カッターを使用してペレット化した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例2]
 TmBPF(東京化成工業社製)46.69g(約0.182mol)と、BPC(本州化学社製)70.02g(約0.273mol)と、DPC 99.97g(約0.467mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1及び表3に示す。
[実施例3]
 TmBPF(東京化成工業社製)93.37g(約0.364mol)と、BPC(本州化学社製)23.34g(約0.091mol)と、DPC 99.97g(約0.467mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり8μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1及び表3に示す。
[実施例4]
 TmBPF(東京化成工業社製)11.67g(約0.046mol)と、BPC(本州化学社製)105.04g(約0.410mol)と、DPC 99.97g(約0.467mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり8μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例5]
 TmBPF(東京化成工業社製)46.68g(約0.182mol)と、BPC(本州化学社製)70.03g(約0.273mol)と、DPC 99.97g(約0.467mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例6]
 反応器攪拌機、反応器加熱装置、反応器圧力調整装置を付帯した内容量150mlのガラス製反応器に、2,2,6,6-テトラメチル-4,4-ビフェノール(TmBP)(東京化成工業社製)27.96g(約0.115mol)と、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(BPC)(本州化学社製)88.75g(約0.3462mol)と、ジフェニルカーボネート(DPC)103.33g(約0.482mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した。
 次に、ガラス製反応器内を約50Pa(0.38Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、混合物を溶解させた。その後、100rpmで攪拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を250℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器外部温度を285℃に昇温、反応器内の絶対圧を30Pa(約0.2Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。
 次いで、反応器内を、窒素により絶対圧で101.3kPaに復圧の上、ゲージ圧で0.2MPaまで昇圧し、反応器の槽底からポリカーボネート樹脂をストランド状に抜き出し、ストランド状のポリカーボネート樹脂を得た後、回転式カッターを使用してペレット化した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例7]
 TmBP(東京化成工業社製)45.12g(約0.186mol)と、BPC(本州化学社製)71.59g(約0.279mol)と、DPC 103.90g(約0.485mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3.2μmolとなるように添加して原料混合物を調製した以外は、実施例6に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1及び表3に示す。
[実施例8]
 TmBP(東京化成工業社製)11.09g(約0.046mol)と、BPC(本州化学社製)93.88g(約0.366mol)と、4,4-メチレンビス(2,6-ジメチルフェノール)(TmBPF)(東京化成工業社製)11.74g(約0.046mol)、DPC 101.50g(約0.474mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した以外は、実施例6に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例9]
 TmBP(東京化成工業社製)22.31g(約0.092mol)と、BPC(本州化学社製)70.80g(約0.276mol)と、TmBPF(東京化成工業社製)23.60g(約0.092mol)、DPC 102.06g(約0.476mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した以外は、実施例6に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表1に示す。
[実施例10]
 4,4-エチリデンビス(2,6-ジメチルフェノール)(TmBPE)71.51g(約0.265mol)と、BPC(本州化学社製)45.20g(約0.176mol)と、DPC 96.79g(約0.452mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表3に示す。
[比較例1]
 TmBPF(東京化成工業社製)116.71g(約0.455mol)と、DPC 99.48g(約0.464mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり5μmolとなるように添加して原料混合物を調製した。
 次に、ガラス製反応器内を約50Pa(0.38Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、混合物を溶解させた。その後、100rpmで攪拌機を回転させた。そして、反応器の内部で行われるジヒドロキシ化合物とDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を250℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに、反応器外部温度を285℃に昇温したところで、反応溶液の結晶化が起き、反応の継続が困難となったため、反応を停止した。
 この比較例1ではTmBPFのみを用いたために、結晶化が進行し、ポリマーが取得できなかった。このため、上記の手順での各評価は実施していない。
[比較例2]
 TmBPF(東京化成工業社製)61.73g(約0.241mol)と、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「BPA」と略記する場合がある。)54.98g(約0.241mol)と、DPC 108.34g(約0.506mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2に示す。
[比較例3]
 BPC(本州化学社製)100.00g(約0.390mol)と、DPC 86.08g(約0.402mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり4.5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2及び表3に示す。
[比較例4]
 BPA 116.71g(約0.511mol)と、DPC 117.18g(約0.547mol)、及び触媒として炭酸セシウム0.04質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり0.5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2及び表3に示す。
[比較例5]
 2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン(以下、「TmBPA」と略記する場合がある。)(本州化学社製)116.71g(約0.410mol)と、DPC 88.79g(約0.414mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり5μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2及び表3に示す。
[比較例6]
 TmBPA(本州化学社製)25.34g(約0.089mol)と、TmBPF(東京化成工業社製)91.37g(約0.356mol)と、DPC 97.83g(約0.457mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり8μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2に示す。
[比較例7]
 TmBPA(本州化学社製)61.38g(約0.216mol)と、BPC(本州化学社製)55.33g(約0.216mol)と、DPC 95.71g(約0.447mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり2μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2及び表3に示す。
[比較例8]
 BPA(本州化学社製)54.98g(約0.241mol)と、BPC(本州化学社製)61.73g(約0.241mol)と、DPC 107.82g(約0.503mol)、及び触媒として炭酸セシウム0.4質量%水溶液を、炭酸セシウムが全ジヒドロキシ化合物1mol当たり3μmolとなるように添加して原料混合物を調製した以外は、実施例1に記載の手法で実施した。
 このようにして得られたポリカーボネート樹脂に対して、上記の手順で各評価を実施した。結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
[考察]
 以上の結果から、次のことが分かる。
 実施例1~4及び実施例7~9は、5回衝撃試験でのブレイクがないことから耐衝撃性が良好である。
 比較例4は耐衝撃性が良好であるが、鉛筆硬度、及び耐アルカリ性が、実施例1~4及び実施例7~9に比べて劣っている。また、比較例2も耐衝撃性は良好であるが、耐アルカリ性と鉛筆硬度が実施例1~4及び実施例7~9に比べて劣っている。
 実施例5や実施例6は、実施例1~4及び実施例7~9ほどの耐衝撃性は見られないが、鉛筆硬度が非常に高く、耐アルカリ性も良好である。
 比較例2や比較例4は耐衝撃性が良好であるが、鉛筆硬度が実施例5や実施例6と比較すると劣っている。
 比較例1は重合中に結晶化が起きるため、ポリマー取得が困難である。
 比較例3は鉛筆硬度が良好であるが、実施例1~9と比較すると耐衝撃性が劣っており、またTgが低いため耐熱性も劣っている。
 比較例5や比較例7は鉛筆硬度、及び耐アルカリ性が良好であるが、実施例1~9と比較して耐衝撃性が著しく劣っている。
 比較例6は耐アルカリ性が良好であるが、実施例1~9と比較すると鉛筆硬度と耐衝撃性が劣っている。
 また、繰り返し単位(A)(BPC由来)と繰り返し単位(B’),(B)(TmBPF由来)とを有する実施例2及び3のポリカーボネート樹脂は、比較例4と比較して比誘電率、誘電正接に優れており、比較例8と比較して耐熱性、比誘電率、誘電正接に優れており、比較例7と比較して誘電特性、耐熱性は同等レベルではあるが、難燃性が顕著に優れている。
 実施例7及び10は、比較例3と比較して、耐熱性、難燃性、耐衝撃性が優れており、比較例4と比較して、耐熱性、誘電特性、難燃性が優れており、比較例5と比較し難燃性、耐衝撃性が顕著に優れている。実施例7及び10は比較例7と比較して難燃性、耐衝撃性が優れて優れている。実施例7及び10は比較例8と比較して、耐熱性が顕著に優れており、誘電特性、難燃性も優れている。
 比較例1は結晶化してしまうことから成形が困難であり、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体として使用できない。
 なお、実施例1~10は、一般的な射出成形機で問題なく射出成形することができ、流動性、成形加工性に優れる。
 以上より、本発明のポリカーボネート樹脂組成物である実施例1~10のポリカーボネート樹脂は、比較例1~8のポリカーボネート樹脂に比べて、表面硬度、耐アルカリ性が共に優れ、しかも耐熱性、耐衝撃性、流動性にも優れたものであることが分かる。
 また、第1発明のポリカーボネート樹脂である実施例2及び3のポリカーボネート樹脂は、誘電特性に優れ、しかも耐熱性、難燃性に優れた樹脂であり、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体としての用途に適している樹脂であることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年8月29日付で出願された日本特許出願2019-157059、2020年6月11日付で出願された日本特許出願2020-101649、及び、2020年7月17日付で出願された日本特許出願2020-122968に基づいており、その全体が引用により援用される。

Claims (32)

  1.  下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2’)で表される繰り返し単位(B’)を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2’)中、X’は、単結合又はメチレン基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
  2.  前記一般式(1)中、R及びRがメチル基であるか、或いは、R及びRのアルキル基が互いに結合して下記式(1a)若しくは(1b)で表される環を形成する、請求項1に記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
  3.  前記一般式(1)中、R及びRがメチル基である、請求項1又は2に記載の熱可塑性樹脂組成物。
  4.  前記繰り返し単位(B’)が、下記一般式(2A’)で表される繰り返し単位である、請求項1~3のいずれか1項に記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
     一般式(2A’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
  5.  前記繰り返し単位(B’)が、下記一般式(2B’)で表される繰り返し単位である、請求項1~4のいずれか1項に記載の熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
     一般式(2B’)中、X’、及びR~Rは、前記一般式(2’)におけると同義である。
  6.  前記一般式(2’)中、R~Rがメチル基である、請求項1~5のいずれか1項に記載の熱可塑性樹脂組成物。
  7.  前記ポリカーボネート樹脂における前記繰り返し単位(A)と前記繰り返し単位(B’)の含有割合が、モル比で、繰り返し単位(A):繰り返し単位(B’)=1:99~99:1の割合である、請求項1~6のいずれか1項に記載の熱可塑性樹脂組成物。
  8.  前記ポリカーボネート樹脂中に含まれる前記繰り返し単位(A)及び前記繰り返し単位(B’)の含有割合の和が、該ポリカーボネート樹脂の全カーボネート構造単位中、50モル%以上である、請求項1~7のいずれか1項に記載の熱可塑性樹脂組成物。
  9.  前記ポリカーボネート樹脂のガラス転移温度が、125℃以上である、請求項1~8のいずれか1項に記載の熱可塑性樹脂組成物。
  10.  前記熱可塑性樹脂組成物が、前記ポリカーボネート樹脂を50質量%以上含む、請求項1~9のいずれか1項に記載の熱可塑性樹脂組成物。
  11.  前記ポリカーボネート樹脂を、前記繰り返し単位(A)と前記繰り返し単位(B’)との共重合ポリカーボネート樹脂として含む、請求項1~10のいずれか1項に記載の熱可塑性樹脂組成物。
  12.  前記ポリカーボネート樹脂を、前記繰り返し単位(A)を含むポリカーボネート樹脂と、前記繰り返し単位(B’)を含むポリカーボネート樹脂とのブレンド物として含む、請求項1~10のいずれか1項に記載の熱可塑性樹脂組成物。
  13.  前記ポリカーボネート樹脂の粘度平均分子量(Mv)が14,500~30,000の範囲である、請求項1~12のいずれか1項に記載の熱可塑性樹脂組成物。
  14.  前記ポリカーボネート樹脂の粘度平均分子量(Mv)が18,000~28,000の範囲である、請求項13に記載の熱可塑性樹脂組成物。
  15.  ISO 15184に準拠した方法で測定される鉛筆硬度がH以上である、請求項1~14のいずれか1項に記載の熱可塑性樹脂組成物。
  16.  下記一般式(1)で表される繰り返し単位(A)と、下記一般式(2)で表される繰り返し単位(B)を有するポリカーボネート樹脂を含む熱可塑性樹脂組成物を用いて得られる成形品。
    Figure JPOXMLDOC01-appb-C000006
     一般式(1)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。RとRのアルキル基は互いに結合して環を形成していてもよい。R及びRは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
    Figure JPOXMLDOC01-appb-C000007
     一般式(2)中、Xは、単結合又は下記一般式(3)で表される2価の有機基を示す。R~Rは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
    Figure JPOXMLDOC01-appb-C000008
     一般式(3)中、Rは、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、又は置換若しくは無置換のアリール基を示す。
  17.  前記一般式(1)中、R及びRがメチル基であるか、或いは、R及びRのアルキル基が互いに結合して下記式(1a)若しくは(1b)で表される環を形成する、請求項16に記載の成形品。
    Figure JPOXMLDOC01-appb-C000009
  18.  前記一般式(1)中、R及びRがメチル基である、請求項16又は17に記載の成形品。
  19.  前記繰り返し単位(B)が、下記一般式(2A)で表される繰り返し単位である、請求項16~18のいずれか1項に記載の成形品。
    Figure JPOXMLDOC01-appb-C000010
     一般式(2A)中、X、及びR~Rは、前記一般式(2)におけると同義である。
  20.  前記繰り返し単位(B)が、下記一般式(2B)で表される繰り返し単位である、請求項16~19のいずれか1項に記載の成形品。
    Figure JPOXMLDOC01-appb-C000011
     一般式(2B)中、X、及びR~Rは、前記一般式(2)におけると同義である。
  21.  前記一般式(2)中、R~Rがメチル基である、請求項16~20のいずれか1項に記載の成形品。
  22.  前記一般式(3)中、Rが水素原子又はメチル基である、請求項16~21のいずれかに1項に記載の成形品。
  23.  前記ポリカーボネート樹脂における前記繰り返し単位(A)と前記繰り返し単位(B)の含有割合が、モル比で、繰り返し単位(A):繰り返し単位(B)=1:99~99:1の割合である、請求項16~22のいずれか1項に記載の成形品。
  24.  前記ポリカーボネート樹脂中に含まれる前記繰り返し単位(A)及び前記繰り返し単位(B)の含有割合の和が、該ポリカーボネート樹脂の全カーボネート構造単位中、50モル%以上である、請求項16~23のいずれか1項に記載の成形品。
  25.  前記ポリカーボネート樹脂のガラス転移温度が、125℃以上である、請求項16~24のいずれか1項に記載の成形品。
  26.  前記熱可塑性樹脂組成物が、前記ポリカーボネート樹脂を50質量%以上含む、請求項16~25のいずれか1項に記載の成形品。
  27.  前記成形品が押出成形品又は射出成形品である、請求項16~26のいずれか1項に記載の成形品。
  28.  前記押出成形品がシート又はフィルムである、請求項27に記載の成形品。
  29.  請求項16~28のいずれか1項に記載の成形品を用いて得られる、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器用筐体。
  30.  前記アンテナが、3.5~30GHzの周波数帯の電波に対して使用される、請求項29に記載の通信機器筐体。
  31.  前記通信機器が、ノートパソコン、タブレット端末、スマートフォン、又はルータ装置である、請求項29又は30に記載の通信機器用筐体。
  32.  請求項29~31のいずれか1項に記載の通信機器用筐体を用いて得られる、マイクロ波及び/又はミリ波用アンテナを内蔵する通信機器。
PCT/JP2020/032639 2019-08-29 2020-08-28 熱可塑性樹脂組成物及び成形品 WO2021039970A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227006677A KR20220056178A (ko) 2019-08-29 2020-08-28 열가소성 수지 조성물 및 성형품
EP20858320.3A EP4023698A4 (en) 2019-08-29 2020-08-28 THERMOPLASTIC RESIN COMPOSITION AND MOLDING ARTICLES
CN202080060623.1A CN114302905A (zh) 2019-08-29 2020-08-28 热塑性树脂组合物和成型品
JP2021543046A JPWO2021039970A1 (ja) 2019-08-29 2020-08-28
US17/682,008 US20220195114A1 (en) 2019-08-29 2022-02-28 Thermoplastic resin composition and formed product

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-157059 2019-08-29
JP2019157059 2019-08-29
JP2020101649 2020-06-11
JP2020-101649 2020-06-11
JP2020122968 2020-07-17
JP2020-122968 2020-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/682,008 Continuation US20220195114A1 (en) 2019-08-29 2022-02-28 Thermoplastic resin composition and formed product

Publications (1)

Publication Number Publication Date
WO2021039970A1 true WO2021039970A1 (ja) 2021-03-04

Family

ID=74685154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032639 WO2021039970A1 (ja) 2019-08-29 2020-08-28 熱可塑性樹脂組成物及び成形品

Country Status (6)

Country Link
US (1) US20220195114A1 (ja)
EP (1) EP4023698A4 (ja)
JP (1) JPWO2021039970A1 (ja)
KR (1) KR20220056178A (ja)
CN (1) CN114302905A (ja)
WO (1) WO2021039970A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054665A1 (ja) 2021-09-30 2023-04-06 三菱ケミカル株式会社 熱可塑性樹脂組成物、通信機器部材、並びにマイクロ波及び/又はミリ波用通信機器
WO2024038853A1 (ja) * 2022-08-18 2024-02-22 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044222A (ja) * 1990-04-20 1992-01-08 Idemitsu Kosan Co Ltd 光学機器用素材
JPH10176046A (ja) * 1996-12-19 1998-06-30 Teijin Ltd ポリカーボネート共重合体
JPH11100341A (ja) * 1997-09-29 1999-04-13 Teijin Ltd ビスフェノール化合物の精製方法
JP2006008759A (ja) * 2004-06-23 2006-01-12 Mitsubishi Gas Chem Co Inc 光ディスク用基板
JP2019157059A (ja) 2018-03-16 2019-09-19 日本化薬株式会社 ディスプレイ用接着剤
WO2019212020A1 (ja) * 2018-05-02 2019-11-07 三菱エンジニアリングプラスチックス株式会社 ミリ波レーダー用カバー及びそれを備えるミリ波レーダーモジュール
JP2020101649A (ja) 2018-12-21 2020-07-02 富士通株式会社 波長変換装置及び励起光切替方法
JP2020122968A (ja) 2013-05-20 2020-08-13 株式会社半導体エネルギー研究所 電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2248817C2 (de) 1972-10-05 1981-09-24 Bayer Ag, 5090 Leverkusen Polycarbonatmischungen
JPS6469625A (en) 1987-09-10 1989-03-15 Daicel Chem Polycarbonate polymer having excellent surface hardness
JP5293537B2 (ja) * 2009-09-28 2013-09-18 三菱エンジニアリングプラスチックス株式会社 ミリ波レーダー用カバー及びミリ波レーダー

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044222A (ja) * 1990-04-20 1992-01-08 Idemitsu Kosan Co Ltd 光学機器用素材
JPH10176046A (ja) * 1996-12-19 1998-06-30 Teijin Ltd ポリカーボネート共重合体
JPH11100341A (ja) * 1997-09-29 1999-04-13 Teijin Ltd ビスフェノール化合物の精製方法
JP2006008759A (ja) * 2004-06-23 2006-01-12 Mitsubishi Gas Chem Co Inc 光ディスク用基板
JP2020122968A (ja) 2013-05-20 2020-08-13 株式会社半導体エネルギー研究所 電子機器
JP2019157059A (ja) 2018-03-16 2019-09-19 日本化薬株式会社 ディスプレイ用接着剤
WO2019212020A1 (ja) * 2018-05-02 2019-11-07 三菱エンジニアリングプラスチックス株式会社 ミリ波レーダー用カバー及びそれを備えるミリ波レーダーモジュール
JP2020101649A (ja) 2018-12-21 2020-07-02 富士通株式会社 波長変換装置及び励起光切替方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023698A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054665A1 (ja) 2021-09-30 2023-04-06 三菱ケミカル株式会社 熱可塑性樹脂組成物、通信機器部材、並びにマイクロ波及び/又はミリ波用通信機器
WO2024038853A1 (ja) * 2022-08-18 2024-02-22 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Also Published As

Publication number Publication date
JPWO2021039970A1 (ja) 2021-03-04
EP4023698A1 (en) 2022-07-06
US20220195114A1 (en) 2022-06-23
EP4023698A4 (en) 2022-08-10
CN114302905A (zh) 2022-04-08
KR20220056178A (ko) 2022-05-04

Similar Documents

Publication Publication Date Title
TW201439200A (zh) 聚碳酸酯樹脂組合物及成形體
EP2554599B1 (en) Polycarbonate resin composition, method for producing same and molded article of this resin composition
US20220195114A1 (en) Thermoplastic resin composition and formed product
JP2010111848A (ja) 透明難燃性芳香族ポリカーボネート樹脂組成物及びその成形体
JP4770937B2 (ja) ポリカーボネート樹脂組成物
JP6176066B2 (ja) ポリカーボネート樹脂組成物
JP6476926B2 (ja) ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形体
JP5770487B2 (ja) ポリカーボネート樹脂組成物
JP5044535B2 (ja) ポリカーボネート樹脂組成物及びその成形体
JP6543944B2 (ja) ポリカーボネート樹脂組成物及びポリカーボネート樹脂成形体
JP2023115695A (ja) 成形品、通信機器用材料、及び通信機器
JP2015089893A (ja) 熱伝導性ポリカーボネート樹脂組成物及び成形品
JP2014062178A (ja) 高熱伝導性ポリカーボネート樹脂組成物
JP2022067467A (ja) 通信機器用筐体
JP2024044937A (ja) 熱可塑性樹脂組成物、通信機器部材、並びにマイクロ波及び/又はミリ波用通信機器
JP2023050576A (ja) 通信機器部材及び通信機器
WO2023074738A1 (ja) ポリカーボネート樹脂組成物
WO2022211025A1 (ja) 通信機器用成形体、及びポリシアヌレート
JP2023035361A (ja) ポリカーボネート樹脂組成物
JP2023051874A (ja) 熱可塑性樹脂組成物、通信機器部材、並びにマイクロ波及び/又はミリ波用通信機器
KR20240070458A (ko) 열가소성 수지 조성물, 통신 기기 부재, 그리고 마이크로파 및/또는 밀리파용 통신 기기
JP2023093273A (ja) 熱可塑性樹脂組成物及びフィルム
WO2023054665A1 (ja) 熱可塑性樹脂組成物、通信機器部材、並びにマイクロ波及び/又はミリ波用通信機器
JP2023115694A (ja) ポリカーボネート樹脂、樹脂組成物、及びその成形品
JP6610104B2 (ja) ポリカーボネート樹脂及びポリカーボネート樹脂の製造方法並びにポリカーボネート樹脂成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858320

Country of ref document: EP

Effective date: 20220329