WO2021039820A1 - リン含有低結晶性バナジウム硫化物 - Google Patents

リン含有低結晶性バナジウム硫化物 Download PDF

Info

Publication number
WO2021039820A1
WO2021039820A1 PCT/JP2020/032118 JP2020032118W WO2021039820A1 WO 2021039820 A1 WO2021039820 A1 WO 2021039820A1 JP 2020032118 W JP2020032118 W JP 2020032118W WO 2021039820 A1 WO2021039820 A1 WO 2021039820A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
containing low
vanadium sulfide
charge
sulfur
Prior art date
Application number
PCT/JP2020/032118
Other languages
English (en)
French (fr)
Inventor
勇輝 梅村
竹内 友成
栄部 比夏里
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US17/638,591 priority Critical patent/US20220396496A1/en
Priority to JP2021542952A priority patent/JP7285026B2/ja
Priority to CN202080060522.4A priority patent/CN114302859B/zh
Priority to EP20859506.6A priority patent/EP4023602A4/en
Publication of WO2021039820A1 publication Critical patent/WO2021039820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to phosphorus-containing low crystalline vanadium sulfide.
  • the lithium-ion secondary batteries used for them are required to have higher capacities.
  • the capacity of the positive electrode is insufficiently increased as compared with the negative electrode, and the capacity of the lithium nickelate material, which is said to have a relatively high capacity, is only about 190 to 220 mAh / g. Absent.
  • sulfur has a high theoretical capacity of about 1670 mAh / g and is expected to be used as a positive electrode material, but it also has a problem that it has low electron conductivity and elutes into an organic electrolytic solution as lithium polysulfide during charging and discharging.
  • a technique for suppressing elution into an organic electrolyte is indispensable.
  • metal sulfide has electron conductivity and elution to organic electrolyte is small, its theoretical capacity is lower than that of sulfur, and it is caused by a large structural change due to Li insertion and desorption during charging and discharging. There is a problem that the reversibility is low.
  • the maximum capacity is determined by the site where Li is inserted during discharge is defined by the crystal space group. It is difficult to exceed this maximum capacity value as it is determined.
  • Non-Patent Document 1 proposes a nanocomposite VS 4- rGO with graphene oxide produced by a hydrothermal synthesis method as a negative electrode material for a lithium ion secondary battery because of its high output characteristics.
  • this material is crystalline, the maximum capacity is determined by the space group of the crystal defining the site where Li is inserted during discharge when a nanocomplex with another material is formed. There is room for improvement in capacity.
  • an object of the present invention to obtain an electrode active material for a lithium ion secondary battery having a sufficiently high initial capacity and improved charge / discharge cycle characteristics and Coulomb efficiency in a medium-term charge / discharge cycle.
  • the present inventors have conducted extensive research to achieve the above-mentioned object.
  • the initial capacity is sufficiently high, and the charge / discharge cycle characteristics and the medium-term charge / discharge cycle It was found to improve the Coulomb efficiency in.
  • the present invention has been further studied and completed based on such findings. That is, the present invention includes the following configurations.
  • Item 1 Contains vanadium, phosphorus and sulfur as constituent elements
  • the composition ratio (P / V) of the vanadium and the phosphorus is 0.1 to 1.0 in terms of molar ratio.
  • the composition ratio (S / V) of the vanadium and the sulfur is 4.00 to 10.00 in terms of molar ratio.
  • Item 2 General formula (1): PxVSy (1) [In the formula, x is 0.1 to 1.0. y is 4.00 to 10.00. ] Item 2. The phosphorus-containing low-crystalline vanadium sulfide having a composition represented by.
  • Item 3 The phosphorus-containing low crystalline vanadium sulfide according to Item 1 or 2, which has a VS type 4 crystal structure.
  • Item 6 The method for producing a phosphorus-containing low crystalline vanadium sulfide according to any one of Items 1 to 5.
  • a production method comprising a step of using a starting material containing vanadium sulfide and a phosphorus-containing material as a raw material or an intermediate and subjecting it to a mechanical milling treatment.
  • Item 7. The production method according to Item 6, wherein the starting material further contains sulfur.
  • Item 8 The electrode active material for a lithium ion secondary battery, which contains the phosphorus-containing low crystalline vanadium sulfide according to any one of Items 1 to 5.
  • Item 9. An electrode for a lithium ion secondary battery, which contains the electrode active material for the lithium ion secondary battery according to Item 8.
  • Item 10 A lithium ion secondary battery comprising the electrode for the lithium ion secondary battery according to Item 9.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention is a material having a sufficiently high initial capacity and capable of improving charge / discharge cycle characteristics and Coulomb efficiency in the medium-term charge / discharge cycle.
  • the X-ray diffraction pattern of the powder obtained in Examples 1 to 4 is shown. Shows the particle size distribution of VS 4 powder obtained in Comparative Example 1. The particle size distribution of the P 0.1 VS 4.25 powder obtained in Example 1-1 is shown. The particle size distribution of the P 0.2 VS 4.50 powder obtained in Example 2-1 is shown. The particle size distribution of the P 0.4 VS 5.00 powder obtained in Example 4-1 is shown. The particle size distribution of the P 0.5 VS 6.00 powder obtained in Example 5 is shown. The particle size distribution of the PVS 8.00 powder obtained in Example 6 is shown. Showing charge-discharge curves (50 cycles) using the VS 4 powder obtained in Comparative Example 1.
  • the charge / discharge curve (50 cycles) using the P 0.1 VS 4.25 powder obtained in Example 1-1 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.2 VS 4.50 powder obtained in Example 2-1 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.4 VS 5.00 powder obtained in Example 4-1 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.5 VS 6.00 powder obtained in Example 5 is shown.
  • the charge / discharge curve (50 cycles) using the PVS 8.00 powder obtained in Example 6 is shown.
  • the capacity retention rate by the charge / discharge cycle of is shown.
  • the Coulomb efficiency in each charge / discharge cycle is shown for VS 4 powder, P 0.1 VS 4.25 powder, P 0.2 VS 4.50 powder and P 0.4 VS 5.00 powder.
  • the X-ray diffraction pattern of the powder obtained in Examples 7 to 10 is shown.
  • the particle size distribution of the P 0.2 VS 4 powder obtained in Example 7 is shown.
  • the particle size distribution of the P 0.3 VS 4 powder obtained in Example 8 is shown.
  • the particle size distribution of the P 0.4 VS 4 powder obtained in Example 9 is shown.
  • the particle size distribution of the P 0.5 VS 4 powder obtained in Example 10 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.2 VS 4 powder obtained in Example 7 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.3 VS 4 powder obtained in Example 8 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.4 VS 4 powder obtained in Example 9 is shown.
  • the charge / discharge curve (50 cycles) using the P 0.5 VS 4 powder obtained in Example 8 is shown.
  • the capacity retention rate by the charge / discharge cycle up to the cycle is shown.
  • the Coulomb efficiency in each charge / discharge cycle is shown for VS 4 powder, P 0.2 VS 4 powder, P 0.3 VS 4 powder, P 0.4 VS 4 powder and P 0.5 VS 4 powder.
  • the charge / discharge curve (50 cycles) using S powder is shown.
  • S powder the capacity retention rate by charge / discharge cycle up to 50 cycles is shown with the discharge capacity of the first cycle as 100%.
  • the Coulomb efficiency in each charge / discharge cycle is shown.
  • the "lithium ion secondary battery” is a concept including a lithium secondary battery using a lithium metal as a negative electrode active material.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention contains vanadium, phosphorus and sulfur as constituent elements, and the composition ratio (P / V) of the vanadium to the phosphorus is a molar ratio. It is 0.1 to 1.0, and the composition ratio (S / V) of the vanadium and the sulfur is 4.00 to 10.00 in terms of molar ratio.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention has the general formula (1): PxVSy (1) [In the formula, x is 0.1 to 1.0. y is 4.00 to 10.00. ] It is preferable to have a composition represented by.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention has a high elemental ratio of sulfur to vanadium. Therefore, the phosphorus-containing low-crystalline vanadium sulfide of the present invention has a high initial charge / discharge capacity.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention can improve the charge / discharge cycle characteristics and the Coulomb efficiency in the medium-term charge / discharge cycle by containing phosphorus.
  • x is preferably 0.1 to 1.0, more preferably 0.2 to 0.5, and even more preferably 0.3 to 0.4.
  • y is preferably 4.00 to 10.00, more preferably 4.20 to 9.00, and particularly preferably 5.00 to 8.00.
  • the phosphorus-containing low crystalline vanadium sulfide of the present invention may have a crystal structure similar to that of crystalline vanadium tetrasulfide (IV) (VS 4 ) (hereinafter, may be referred to as “VS 4 type crystal structure”). preferable.
  • Range of 9 ° (preferably 14.5 ° to 15.5 °, 23.8 ° to 24.8 °, 32.4 ° to 33.4 °, 35.7 ° to 36.7 °, and 53. It is preferable to have a peak having a maximum value (in the range of 4 ° to 54.4 °).
  • the X-ray diffraction pattern is obtained by the powder X-ray diffraction measurement method.
  • Measuring device D8 ADVANCE (Bruker AXS)
  • X-ray source CuK ⁇ 40kV / 40mA
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention is a sulfide in which a bond is formed between a phosphorus atom and a sulfur atom, and the average composition is a high proportion of sulfur. Is almost absent as a simple sulfur, and because it combines with vanadium and phosphorus to form a low-crystalline sulfide, the formation of by-products is suppressed, resulting in a low-crystalline vanadium sulfide that does not contain phosphorus. Even in comparison, charging and discharging are reversibly proceeding.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention had VS bonds and PS bonds.
  • IV crystalline vanadium tetrasulfide
  • the carbonate solvent reacts with the elemental sulfur and the ether solvent dissolves a large amount of the sulfur component.
  • the range of solvent selection was narrow in order to cause performance deterioration.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention contains almost no elemental sulfur or the like, when it is used as an electrode active material (positive electrode active material or the like), a carbonate solvent or an ether solvent is used.
  • a material containing almost no elemental sulfur can be obtained, the concern of causing a reaction with the electrolytic solution as described above is reduced, and the initial charge / discharge capacity is reduced. , Charge / discharge cycle characteristics and cooling efficiency in the medium-term charge / discharge cycle can be further improved.
  • the low crystalline vanadium sulfide of the present invention preferably has an average particle size D50 of 0.90 to 1.20 ⁇ m (particularly 0.92 to 1.15 ⁇ m).
  • the X-ray diffraction pattern due to the particle size is not broadened, but the X-ray diffraction pattern is broadened due to the decrease in crystallinity (low crystallinity). Is preferable.
  • impurities may be contained as long as the performance of the phosphorus-containing low crystalline vanadium sulfide of the present invention is not impaired.
  • impurities include phosphorus sulfide (P 2 S 5, etc.) and vanadium sulfide (V 2 S 3 , VS 4, etc.) which are raw materials, phosphorus and vanadium which may be mixed in the raw materials, and other raw materials. And oxygen and the like that may be mixed during production can be exemplified.
  • the amount of these impurities is preferably in a range that does not impair the performance of the phosphorus-containing low-crystalline vanadium sulfide of the present invention described above, and the total amount of the phosphorus-containing low-crystalline vanadium sulfide of the present invention is usually 100% by mass. , 2% by mass or less (0 to 2% by mass) is preferable, and 1.5% by mass or less (0 to 1.5% by mass) is more preferable. However, as described above, it is preferable that elemental sulfur is not contained as an impurity as much as possible.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention has a sufficiently high initial capacity and can improve the charge / discharge cycle characteristics and the Coulomb efficiency in the medium-term charge / discharge cycle. Therefore, it is a lithium ion secondary. It is useful as an electrode active material for batteries (particularly a positive electrode active material for lithium ion secondary batteries).
  • the phosphorus-containing low-crystal vanadium sulfide of the present invention is It can be obtained by a production method comprising a step of subjecting to a mechanical milling treatment using a starting material containing vanadium sulfide and a phosphorus-containing material as a raw material or an intermediate.
  • the starting material may also contain sulfur depending on the target composition.
  • the mechanical milling treatment is a method of grinding and mixing raw materials while applying mechanical energy. According to this method, vanadium sulfide, which is obtained by applying mechanical impact and friction to the raw materials and mixing them. The phosphorus-containing material and, if necessary, sulfur are violently contacted and refined, resulting in a reaction of the raw material. That is, at this time, mixing, pulverization and reaction occur at the same time. Therefore, it is possible to react the raw material more reliably without heating the raw material to a high temperature. By using the mechanical milling treatment, a metastable crystal structure that cannot be obtained by ordinary heat treatment may be obtained.
  • mixed pulverization can be performed using a mechanical pulverizer such as a ball mill, a bead mill, a rod mill, a vibration mill, a disc mill, a hammer mill, or a jet mill.
  • a mechanical pulverizer such as a ball mill, a bead mill, a rod mill, a vibration mill, a disc mill, a hammer mill, or a jet mill.
  • All of these raw materials or intermediates can be mixed at the same time and subjected to mechanical milling treatment. Some materials or intermediates are first subjected to mechanical milling treatment, and then the remaining materials are added to perform mechanical milling treatment. It can also be offered to.
  • vanadium sulfide As a specific raw material, it is preferable to use crystalline vanadium sulfide (III) (V 2 S 3 ), crystalline vanadium sulfide (VIII) (VS 4) or the like as vanadium sulfide.
  • the vanadium sulfide is not particularly limited, and any commercially available vanadium sulfide can be used. In particular, it is preferable to use a high-purity product. Further, since the vanadium sulfide is mixed and pulverized by a mechanical milling treatment, the particle size of the vanadium sulfide used is not limited, and a commercially available powdered vanadium sulfide can be usually used.
  • the phosphorus-containing material in addition to elemental phosphorus (P) , phosphor sulfides such as crystalline phosphorus sulfide (V) (P 2 S 5 ) can also be used.
  • the phosphorus-containing material is not particularly limited, and any commercially available phosphorus-containing material can be used. In particular, it is preferable to use a high-purity product. Further, since the phosphorus-containing material is mixed and pulverized by a mechanical milling treatment, the particle size of the phosphorus-containing material used is not limited, and a commercially available powdered phosphorus-containing material can be usually used.
  • sulfur it is possible to use elemental sulfur (S 8 ) in an amount necessary for forming a sulfide having a composition used as an intermediate so as to have a composition of a sulfide finally obtained. ..
  • the sulfur used as a raw material is not particularly limited, and any sulfur can be used. In particular, it is preferable to use a high-purity product. Further, since sulfur is mixed and pulverized by a mechanical milling treatment, the particle size of sulfur used is not limited, and commercially available powdered sulfur can be usually used.
  • a low crystalline vanadium sulfide (low crystalline VS 4, etc.) having a desired composition can be used as the intermediate. ..
  • the ratio of the raw materials charged is almost the same as the ratio of each element of the product, so the ratio is the same as the element ratio of vanadium, phosphorus and sulfur in the target phosphorus-containing low crystalline vanadium sulfide. Can be.
  • the temperature at which the mechanical milling treatment is performed is not particularly limited, and is preferably 300 ° C. or lower, more preferably -10 to 200 ° C., because sulfur is less likely to volatilize and the previously reported crystal phase is less likely to be formed.
  • the time of the mechanical milling treatment is not particularly limited, and the mechanical milling treatment can be performed for an arbitrary time until the target phosphorus-containing low-crystalline vanadium sulfide is precipitated.
  • the mechanical milling treatment can be performed with an energy amount of 0.1 to 100 kWh / 1 kg of the raw material mixture within a treatment time range of 0.1 to 100 hours (particularly 10 to 80 hours). It should be noted that this mechanical milling process can be performed in a plurality of times with a pause in the middle, if necessary.
  • the target phosphorus-containing low crystalline vanadium sulfide can be obtained as a fine powder.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention has a sufficiently high initial capacity, and has a charge / discharge cycle characteristic and a Coulomb efficiency in a medium-term charge / discharge cycle. Since it can be improved, it is particularly useful as an electrode active material for a lithium ion secondary battery.
  • the lithium ion secondary battery capable of effectively using the phosphorus-containing low crystalline vanadium sulfide of the present invention as an electrode active material (particularly a positive electrode active material) is a non-aqueous electrolyte lithium ion secondary battery using a non-aqueous electrolyte as an electrolyte.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention is particularly useful when used in a non-aqueous electrolytic solution lithium ion secondary battery because it can reduce the concern of causing a reaction with the electrolytic solution.
  • the structures of the non-aqueous electrolyte lithium ion secondary battery and the all-solid-state lithium ion secondary battery are known except that the phosphorus-containing low crystalline vanadium sulfide of the present invention is used as an electrode active material (particularly a positive electrode active material). It can be the same as the lithium ion secondary battery of.
  • the basic structure is not known except that the phosphorus-containing low crystalline vanadium sulfide of the present invention is used as an electrode active material (particularly a positive electrode active material). It can be the same as the water electrolyte lithium ion secondary battery.
  • the positive electrode active material when the phosphorus-containing low-crystalline vanadium sulfide of the present invention is used as the positive electrode active material, the same as the known positive electrode except that the phosphorus-containing low-crystalline vanadium sulfide of the present invention is used as the positive electrode active material. It can be a structure.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention and, if necessary, a positive electrode mixture containing a conductive agent and a binder can be supported on a positive electrode current collector such as Al, Ni, stainless steel, or carbon cloth.
  • a carbon material such as graphite, coke, carbon black (Ketjen black or the like), and needle-shaped carbon
  • the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, polyacrylic, styrene butadiene rubber (SBR), and styrene-ethylene-butylene-styrene.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • SBR styrene butadiene rubber
  • SBR styrene-ethylene-butylene-styrene
  • SEBS copolymer
  • CMC carboxymethyl styrene
  • the positive electrode active material includes lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMn). 2 O 4), lithium iron phosphate (LiFePO 4), vanadium oxide materials, may be a known positive electrode active material such sulfur-based materials.
  • the negative electrode active material when the phosphorus-containing low-crystalline vanadium sulfide of the present invention is used as the negative electrode active material, the same as the known negative electrode except that the phosphorus-containing low-crystalline vanadium sulfide of the present invention is used as the negative electrode active material.
  • It can be a structure.
  • the phosphorus-containing low-crystalline vanadium sulfide of the present invention and, if necessary, a negative electrode mixture containing a conductive agent and a binder can be supported on a negative electrode current collector such as Al, Ni, stainless steel, or carbon cloth.
  • a negative electrode current collector such as Al, Ni, stainless steel, or carbon cloth.
  • a carbon material such as graphite, coke, carbon black, or needle-shaped carbon can be used.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI), polyamide, polyamideimide, polyacrylic, styrene butadiene rubber (SBR), and styrene-ethylene-butylene-styrene.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PI polyimide
  • PI polyamide
  • polyamideimide polyacrylic
  • SBR styrene butadiene rubber
  • SEBS copolymer
  • CMC carboxymethyl styrene
  • the negative electrode active material includes metallic lithium, carbon-based materials (activated carbon, graphite, etc.), silicon, silicon oxide, and Si—SiO.
  • a known negative electrode active material such as a system material or lithium titanium oxide can also be used.
  • a solvent known as a solvent for a non-aqueous lithium ion secondary battery such as carbonate, ether, nitrile, and sulfur-containing compound can be used.
  • simple sulfur is used as the positive electrode active material, it cannot be used because the simple sulfur reacts with the carbonate when carbonate is used as the solvent, and when ether is used as the solvent, a large amount of sulfur component is contained in the electrolytic solution.
  • These solvents could not be used to dissolve and cause performance degradation, but when the phosphorus-containing low crystalline vanadium sulfide of the present invention is used as the electrode active material (particularly the positive electrode active material), they are used. Since the above problem can be solved, any solvent can be applied, and the selectivity of the solvent in the electrolytic solution can be improved.
  • the separator for example, it is made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin, nylon, an aromatic aramid, or an inorganic glass, and a material in the form of a porous film, a non-woven fabric, a woven cloth, or the like can be used.
  • the all-solid-state lithium-ion secondary battery is also a known all-solid-state lithium-ion secondary battery except that the phosphorus-containing low-crystalline vanadium sulfide of the present invention is used as an electrode active material (particularly a positive electrode active material). It can have a similar structure. In this case, the above-mentioned ones can be adopted as the positive electrode, the negative electrode and the separator.
  • the electrolyte includes, for example, a polymer-based solid electrolyte such as a polyethylene oxide-based polymer compound; a polymer compound containing at least one of a polyorganosiloxane chain and a polyoxyalkylene chain, and a sulfide-based solid electrolyte. Oxide-based solid electrolytes and the like can also be used.
  • the shape of the non-aqueous electrolyte lithium ion secondary battery and the all-solid-state lithium ion secondary battery is not particularly limited, and either a cylindrical type, a square type, or the like can be adopted.
  • the crystalline VS 4 (c-VS 4 ) used as a raw material is commercially available vanadium sulfide (III) (V 2 S 3 ; manufactured by High Purity Chemical Industries, Ltd.) and sulfur (manufactured by High Purity Chemical Industries, Ltd.). It was obtained by vacuum-sealing Fujifilm Wako Pure Chemical Industries, Ltd. and firing at 400 ° C. for 5 hours.
  • Comparative Example 1 Synthesis of VS 4 Powder Commercially available vanadium sulfide (III) (V 2 S 3 ; manufactured by High Purity Chemical Laboratory Co., Ltd.) and sulfur (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with argon gas so that the molar ratio is 1: 6.
  • V 2 S 3 vanadium sulfide
  • sulfur manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • argon gas so that the molar ratio is 1: 6.
  • the vacuum-sealed sample was calcined in a tube furnace at 400 ° C. for 5 hours.
  • the calcined sample was calcined in vacuum at 200 ° C. for 8 hours to desulfurize excess sulfur and synthesize crystalline vanadium sulfide VS 4 (c-VS 4).
  • crystalline VS 4 (c-VS 4 ) was mechanically milled (balls) for 40 hours in a glove box (dew point -80 ° C) in an argon gas atmosphere with a ball mill device (PL-7 manufactured by Fritsch).
  • a low crystalline vanadium sulfide VS 4 (a-VS 4 ) was synthesized by carrying out a diameter of 4 mm and a rotation speed of 270 rpm.
  • Example 1 Synthesis of P 0.1 VS 4.25 powder
  • Example 1-1 milling for 15 hours the crystalline VS 4 (c-VS 4) and phosphorus sulfide (V); a (P 2 S 5 made Aldrich), the molar ratio of 1: 0.05 and so as, argon gas Weighing in an atmospheric glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 15 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystalline vanadium Sulfide P 0.1 VS 4.25 (a-P 0.1 VS 4.25 ) was synthesized.
  • a-P 0.1 VS 4.25 phosphorus-containing low crystalline vanadium Sulfide
  • Example 1-2 Milling for 30 hours The treatment was carried out in the same manner as in Example 1-1 except that the mechanical milling treatment was performed for 30 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.1 VS 4.25 (a). -P 0.1 VS 4.25 ) was synthesized.
  • Example 1-3 Milling for 45 hours The treatment was carried out in the same manner as in Example 1-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.1 VS 4.25 (a). -P 0.1 VS 4.25 ) was synthesized.
  • Example 1-4 Milling 60 hours The treatment was carried out in the same manner as in Example 1-1 except that the mechanical milling treatment was performed for 60 hours, and the phosphorus-containing low crystalline vanadium sulfide P 0.1 VS 4.25 (a). -P 0.1 VS 4.25 ) was synthesized.
  • Example 2 Synthesis of P 0.2 VS 4.50 powder
  • Example 2-1 milling for 15 hours the crystalline VS 4 (c-VS 4) and phosphorus sulfide (V); a (P 2 S 5 made Aldrich), the molar ratio of 1: 0.1 and so as, argon gas Weighing in an atmospheric glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 15 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystalline vanadium Sulfide P 0.2 VS 4.50 (a-P 0.2 VS 4.50 ) was synthesized.
  • a-P 0.2 VS 4.50 phosphorus-containing low crystalline vanadium Sulfide
  • Example 2-2 Milling for 30 hours The treatment was carried out in the same manner as in Example 2-1 except that the mechanical milling treatment was performed for 30 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.2 VS 4.5 (a). -P 0.2 VS 4.5 ) was synthesized.
  • Example 2-3 Milling 45 hours The treatment was carried out in the same manner as in Example 2-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.2 VS 4.5 (a). -P 0.2 VS 4.5 ) was synthesized.
  • Example 2-4 Milling 60 hours The treatment was carried out in the same manner as in Example 2-1 except that the mechanical milling treatment was carried out for 60 hours, and the phosphorus-containing low crystalline vanadium sulfide P 0.2 VS 4.5 (a). -P 0.2 VS 4.5 ) was synthesized.
  • Example 3 Synthesis of P 0.3 VS 4.75 powder
  • Example 3-1 milling for 15 hours the crystalline VS 4 (c-VS 4) and phosphorus sulfide (V); a (P 2 S 5 made Aldrich), the molar ratio of 1: 0.15 and so as, argon gas Weighing in an atmospheric glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 15 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystalline vanadium Sulfide P 0.3 VS 4.75 (a-P 0.3 VS 4.75 ) was synthesized.
  • a-P 0.3 VS 4.75 phosphorus-containing low crystalline vanadium Sulfide
  • Example 3-2 Milling 30 hours The treatment was carried out in the same manner as in Example 3-1 except that the mechanical milling treatment was carried out for 30 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.3 VS 4.75 (a). -P 0.3 VS 4.75 ) was synthesized.
  • Example 3-3 Milling 45 hours The treatment was carried out in the same manner as in Example 3-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.3 VS 4.75 (a). -P 0.3 VS 4.75 ) was synthesized.
  • Example 3-4 Milling 60 hours The treatment was carried out in the same manner as in Example 3-1 except that the mechanical milling treatment was performed for 60 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.3 VS 4.75 (a). -P 0.3 VS 4.75 ) was synthesized.
  • Example 4 Synthesis of P 0.4 VS 5.00 powder
  • Example 4-1 milling for 15 hours the crystalline VS 4 (c-VS 4) and phosphorus sulfide (V); a (P 2 S 5 made Aldrich), the molar ratio of 1: 0.2 and so as, argon gas Weighing in an atmospheric glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 15 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystalline vanadium Sulfide P 0.4 VS 5.00 (a-P 0.4 VS 5.00 ) was synthesized.
  • a-P 0.4 VS 5.00 phosphorus-containing low crystalline vanadium Sulfide
  • Example 4-2 Milling for 30 hours The treatment was carried out in the same manner as in Example 4-1 except that the mechanical milling treatment was carried out for 30 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.4 VS 5.00 (a). -P 0.4 VS 5.00 ) was synthesized.
  • Example 4-3 Milling 45 hours The treatment was carried out in the same manner as in Example 4-1 except that the mechanical milling treatment was carried out for 45 hours, and the phosphorus-containing low crystalline vanadium sulfide P 0.4 VS 5.00 (a). -P 0.4 VS 5.00 ) was synthesized.
  • Example 4-4 Milling 60 hours The treatment was carried out in the same manner as in Example 4-1 except that the mechanical milling treatment was performed for 60 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.4 VS 5.00 (a). -P 0.4 VS 5.00 ) was synthesized.
  • Example 5 Synthesis of P 0.5 VS 6.00 powder
  • Phosphorus-containing low-crystalline vanadium sulfide P 0.5 VS 6.00 (a-P 0.5 VS 6.00 ) was synthesized.
  • Example 6 Synthesis of PVS 8.00 powder
  • Crystalline VS 4 (c-VS 4) phosphorus sulfide (V); a (P 2 S 5 manufactured Aldrich) and sulfur (manufactured by Fuji Film Wako Pure Chemical Co.), a molar ratio of 1: 0.5: 1
  • Phosphorus-containing low-crystalline vanadium sulfide PVS 8.00 (a-PVS 8.00 ) was synthesized.
  • Example 7 Synthesis of P 0.2 VS 4.0 powder
  • Example 7-1 Milling 30 hours Crystalline VS 4 (c-VS 4 ) and elemental phosphorus (P; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with argon so that the molar ratio is 1: 0.2. Weighing in a gas-like glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 30 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystallinity Vanadium sulfide P 0.2 VS 4.0 (a-P 0.2 VS 4.0 ) was synthesized.
  • Example 7-2 Milling 45 hours The treatment was carried out in the same manner as in Example 7-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.2 VS 4.0 (a). -P 0.2 VS 4.0 ) was synthesized.
  • Example 7-3 Milling 105 hours The treatment was carried out in the same manner as in Example 7-1 except that the mechanical milling treatment was carried out for 105 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.2 VS 4.0 (a). -P 0.2 VS 4.0 ) was synthesized.
  • Example 8 Synthesis of P 0.3 VS 4.0 powder
  • Example 8-1 Milling 30 hours Crystalline VS 4 (c-VS 4 ) and elemental phosphorus (P; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with argon so that the molar ratio is 1: 0.3. Weighing in a gas-like glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 30 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystallinity Vanadium sulfide P 0.3 VS 4.0 (a-P 0.3 VS 4.0 ) was synthesized.
  • Example 8-2 Milling 45 hours The treatment was carried out in the same manner as in Example 8-1 except that the mechanical milling treatment was carried out for 45 hours, and the phosphorus-containing low crystalline vanadium sulfide P 0.3 VS 4.0 (a). -P 0.3 VS 4.0 ) was synthesized.
  • Example 8-3 Milling 105 hours The treatment was carried out in the same manner as in Example 8-1 except that the mechanical milling treatment was carried out for 105 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.3 VS 4.0 (a). -P 0.3 VS 4.0 ) was synthesized.
  • Example 9 Synthesis of P 0.4 VS 4.0 powder
  • Example 9-1 Milling 30 hours Crystalline VS 4 (c-VS 4 ) and elemental phosphorus (P; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with argon so that the molar ratio is 1: 0.4. Weighing in a gas-like glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 30 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystallinity Vanadium sulfide P 0.4 VS 4.0 (a-P 0.4 VS 4.0 ) was synthesized.
  • Example 9-2 Milling for 45 hours The treatment was carried out in the same manner as in Example 9-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.4 VS 4.0 (a). -P 0.4 VS 4.0 ) was synthesized.
  • Example 9-3 Milling 105 hours The treatment was carried out in the same manner as in Example 9-1 except that the mechanical milling treatment was carried out for 105 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.4 VS 4.0 (a). -P 0.4 VS 4.0 ) was synthesized.
  • Example 10 Synthesis of P 0.5 VS 4.0 powder
  • Example 10-1 Milling 30 hours Crystalline VS 4 (c-VS 4 ) and elemental phosphorus (P; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with argon so that the molar ratio is 1: 0.5. Weighing in a gas-like glove box (dew point -80 ° C) and performing mechanical milling treatment (ball diameter 4 mm, rotation speed 270 rpm) for 30 hours with a ball mill device (PL-7 manufactured by Fritsch), phosphorus-containing low crystallinity Vanadium sulfide P 0.5 VS 4.0 (a-P 0.5 VS 4.0 ) was synthesized.
  • Example 10-2 Milling for 45 hours The treatment was carried out in the same manner as in Example 10-1 except that the mechanical milling treatment was carried out for 45 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.5 VS 4.0 (a). -P 0.5 VS 4.0 ) was synthesized.
  • Example 10-3 Milling 105 hours The treatment was carried out in the same manner as in Example 10-1 except that the mechanical milling treatment was carried out for 105 hours, and phosphorus-containing low crystalline vanadium sulfide P 0.5 VS 4.0 (a). -P 0.5 VS 4.0 ) was synthesized.
  • FIG. 1 also shows the peaks of the raw materials and intermediates vanadium (III) sulfide, phosphorus (V) sulfide, and crystalline VS 4 (c-VS 4) for comparison.
  • FIG. 16 also shows the peaks of vanadium (III) sulfide and elemental phosphorus, which are raw materials, for comparison.
  • Example 2 Particle size distribution
  • VS 4 powder obtained in Comparative Example 1 P 0.1 VS 4.25 powder obtained in Example 1-1, P 0.2 VS 4.50 powder obtained in Example 2-1 and Example 4- Particle size distribution measuring device (Nikkiso ) for P 0.4 VS 5.00 powder obtained in 1, P 0.5 VS 6.00 powder obtained in Example 5 , and PVS 8.00 powder obtained in Example 6.
  • the particle size distribution and average particle size D50 were measured by AEROTRAC SPR MODEL: 7340). The results are shown in FIGS. 2 to 7.
  • the average particle size of each sample was about 1 ⁇ m (0.93 to 1.12 ⁇ m), and the broadening of the X-ray diffraction pattern was not due to the particle size, but the crystallinity of the material decreased (low crystallinity). It can be understood that it is derived from (sex).
  • Example 3 Charging / Discharging Test
  • the VS 4 powder obtained in Comparative Example 1 the P 0.1 VS 4.25 powder obtained in Example 1-1, and the P 0.2 VS 4.50 powder obtained in Example 2-1 were carried out.
  • P 0.4 VS 5.00 powder obtained in Example 4-1 P 0.5 VS 6.00 powder obtained in Example 5, PVS 8.00 powder obtained in Example 6, Example 7-1.
  • VS 4 powder obtained in Comparative Example 1 P 0.1 VS 4.25 powder obtained in Example 1-1, and Examples.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • FIG. 8 shows a charge / discharge curve (50 cycles) using the VS 4 powder obtained in Comparative Example 1
  • FIG. 9 shows a charge / discharge curve using the P 0.1 VS 4.25 powder obtained in Example 1-1 (50 cycles).
  • FIG. 10 shows a charge / discharge curve (50 cycles) using the P 0.2 VS 4.50 powder obtained in Example 2-1
  • FIG. 11 shows P 0.4 obtained in Example 4-1.
  • FIG. 12 shows charge / discharge curve (50 cycles) using P 0.5 VS 6.00 powder obtained in Example 5
  • FIG. 13 shows Example. It is a charge / discharge curve (50 cycles) using the PVS 8.00 powder obtained in 6.
  • FIG. 21 shows a charge / discharge curve (50 cycles) using the P 0.2 VS 4.00 powder obtained in Example 7-1
  • FIG. 22 shows the P 0.3 VS 4 obtained in Example 8-1
  • FIG. 23 shows charge / discharge curve using P 0.4 VS 4.00 powder obtained in Example 9-1
  • FIG. 24 shows Example.
  • FIG. 14 VS 4 powder obtained in Comparative Example 1, P 0.1 VS 4.25 powder obtained in Example 1-1, P 0.2 VS 4 obtained in Example 2-1.
  • the capacity retention rate by the charge / discharge cycle up to 50 cycles is shown with the discharge capacity of the second cycle as 100%.
  • the charge / discharge cycle characteristics of all the samples of the examples are remarkably improved as compared with the samples of the comparative examples.
  • FIG. 25 shows the VS 4 powder obtained in Comparative Example 1, the P 0.2 VS 4.00 powder obtained in Example 7-1, and the P 0.3 VS 4. obtained in Example 8-1.
  • the capacity retention rate by the charge / discharge cycle up to 50 cycles is shown with the discharge capacity of the second cycle as 100%.
  • the charge / discharge cycle characteristics of all the samples of the examples are remarkably improved as compared with the samples of the comparative examples.
  • FIG. 15 shows the VS 4 powder obtained in Comparative Example 1, the P 0.1 VS 4.25 powder obtained in Example 1-1, and the P 0.2 VS 4.50 obtained in Example 2-1.
  • the Coulomb efficiency in each charge / discharge cycle is shown for the powder and the P 0.4 VS 5.00 powder obtained in Example 4-1.
  • the Coulomb efficiency of the sample of the comparative example was remarkably lowered after 15 cycles, but the coulomb efficiency of all the samples of the example could be remarkably suppressed and the charge / discharge efficiency was improved. I can understand that there is.
  • FIG. 26 shows the VS 4 powder obtained in Comparative Example 1, the P 0.2 VS 4.00 powder obtained in Example 7-1, and the P 0.3 VS 4.00 obtained in Example 8-1.
  • the Coulomb efficiency in each charge / discharge cycle is shown for the powder and the P 0.4 VS 4.00 powder obtained in Example 9-1.
  • the Coulomb efficiency of the sample of the comparative example was remarkably lowered after 15 cycles, but the coulomb efficiency of all the samples of the example could be remarkably suppressed and the charge / discharge efficiency was improved. I can understand that there is.
  • FIG. 27 shows a charge / discharge curve using S powder
  • FIG. 28 shows a capacity retention rate of S powder in charge / discharge cycles up to 50 cycles, where the discharge capacity in the first cycle is 100%
  • FIG. 29 shows.
  • S powder the Coulomb efficiency in each charge / discharge cycle is shown.
  • the initial discharge capacity is slightly observed (about 100 mAh / g)
  • the electrode active material in It can be seen that the desired characteristics cannot be obtained by simply increasing the S content ratio of the above to 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

バナジウム、リン及び硫黄を構成元素として含み、前記バナジウムと前記リンとの組成比(P/V)がモル比で0.1~1.0であり、前記バナジウムと前記硫黄との組成比(S/V)がモル比で4.00~10.00である、リン含有低結晶性バナジウム硫化物により、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させたリチウムイオン二次電池用の電極活物質を得ることができる。

Description

リン含有低結晶性バナジウム硫化物
 本発明は、リン含有低結晶性バナジウム硫化物に関する。
 近年の携帯電子機器・ハイブリッド車等の高性能化により、それに用いられるリチウムイオン二次電池は益々高容量化が求められている。しかしながら、現行のリチウムイオン二次電池は、負極に比べて正極の高容量化が不十分であり、比較的高容量と言われるニッケル酸リチウム系材料でもその容量は190~220mAh/g程度に過ぎない。
 一方、硫黄は理論容量が約1670mAh/gと高く、正極材料としての利用が期待されるが、電子伝導性が低く、更に充放電時に多硫化リチウムとして有機電解液に溶出するという問題もあり、有機電解液への溶出を抑制する技術が不可欠である。
 金属硫化物は電子伝導性を有しており、有機電解液への溶出も少ないものの、硫黄に比べて理論容量が低く、更に、充放電時のLi挿入及び脱離に伴う大きな構造変化が原因で可逆性が低いという問題がある。金属硫化物の高容量化の実現には、硫黄含量の増加が必要であるが、結晶性金属硫化物では、放電時にLiが挿入されるサイトが結晶の空間群により規定さることで最大容量が決定されるため、この最大容量値を超えることは困難である。
 例えば、金属硫化物のなかでも、バナジウム硫化物としては、試薬として販売されている結晶性硫化バナジウム(III)(V2.03.0)を正極活物質として用いた場合には、理論容量は811.0mAh/gと高いにもかかわらず、有機電解液との反応を抑制することができないために、実測の容量は充電容量が23mAh/g程度、放電容量が52mAh/g程度に過ぎない。また、非特許文献1には、水熱合成法で作製した酸化グラフェンとのナノ複合体VS-rGOが出力特性が高く、リチウムイオン二次電池の負極材料として提案されている。しかしながら、この材料は結晶性であるため、他材料とのナノ複合体を形成したところで、放電時にLiが挿入されるサイトが結晶の空間群により規定されることで最大容量が決定される理由から容量には改善の余地がある。
 このような観点から、本発明者らは、鋭意研究を行った結果、所定の低結晶性バナジウム硫化物が、実際の容量を向上させることができることを見いだした(例えば、特許文献1参照)。
国際公開第2018/181698号
X. Xu, et al., J. Mater. Chem. A, 2. (2014) 10847-10853.
 しかしながら、上記した低結晶性バナジウム硫化物によれば、初期容量を向上させることはできるものの、充放電サイクル特性は十分とは言えなかった。また、初期の充放電サイクルにおけるクーロン効率は優れているが、15サイクル以降は悪化しており、中期(15~40サイクル、特に20~35サイクル)の充放電サイクルにおけるクーロン効率は十分とは言えなかった。
 以上から、本発明は、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させたリチウムイオン二次電池用の電極活物質を得ることを目的とする。
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の組成を有するリン含有低結晶性バナジウム硫化物が、リチウムイオン二次電池用電極活物質として使用した場合に、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることを見出した。本発明は、このような知見に基づき、さらに研究を重ね、完成されたものである。即ち、本発明は、以下の構成を包含する。
 項1.バナジウム、リン及び硫黄を構成元素として含み、
前記バナジウムと前記リンとの組成比(P/V)がモル比で0.1~1.0であり、
前記バナジウムと前記硫黄との組成比(S/V)がモル比で4.00~10.00である、
リン含有低結晶性バナジウム硫化物。
 項2.一般式(1):
PxVSy   (1)
[式中、xは0.1~1.0である。yは4.00~10.00である。]
で表される組成を有する、項1に記載のリン含有低結晶性バナジウム硫化物。
 項3.VS型結晶構造を有する、項1又は2に記載のリン含有低結晶性バナジウム硫化物。
 項4.CuKα線によるX線回折図における回折角2θ=10°~80°の範囲内において、±1.0°の許容範囲で、少なくとも、15.0°、24.3°、32.9°、36.2°及び53.9°に極大値を有するピークを有する、項1~3のいずれか1項に記載のリン含有低結晶性バナジウム硫化物。
 項5.前記2θ=15.0°に極大値を有するピークの半値全幅が、1.0°~3.0°である、項1~4のいずれか1項に記載のリン含有低結晶性バナジウム硫化物。
 項6.項1~5のいずれか1項に記載のリン含有低結晶性バナジウム硫化物の製造方法であって、
原料又は中間体として、バナジウム硫化物及びリン含有材料を含む出発物質を用い、メカニカルミリング処理に供する工程
を備える、製造方法。
 項7.前記出発物質が、さらに、硫黄を含む、項6に記載の製造方法。
 項8.項1~5のいずれか1項に記載のリン含有低結晶性バナジウム硫化物を含有する、リチウムイオン二次電池用電極活物質。
 項9.項8に記載のリチウムイオン二次電池用電極活物質を含有する、リチウムイオン二次電池用電極。
 項10.項9に記載のリチウムイオン二次電池用電極を備える、リチウムイオン二次電池。
 本発明のリン含有低結晶性バナジウム硫化物は、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることができる材料である。
実施例1~4で得られた粉末のX線回折図を示す。 比較例1で得たVS粉末の粒度分布を示す。 実施例1-1で得たP0.1VS4.25粉末の粒度分布を示す。 実施例2-1で得たP0.2VS4.50粉末の粒度分布を示す。 実施例4-1で得たP0.4VS5.00粉末の粒度分布を示す。 実施例5で得たP0.5VS6.00粉末の粒度分布を示す。 実施例6で得たPVS8.00粉末の粒度分布を示す。 比較例1で得たVS粉末を用いた充放電曲線(50サイクル)を示す。 実施例1-1で得たP0.1VS4.25粉末を用いた充放電曲線(50サイクル)を示す。 実施例2-1で得たP0.2VS4.50粉末を用いた充放電曲線(50サイクル)を示す。 実施例4-1で得たP0.4VS5.00粉末を用いた充放電曲線(50サイクル)を示す。 実施例5で得たP0.5VS6.00粉末を用いた充放電曲線(50サイクル)を示す。 実施例6で得たPVS8.00粉末を用いた充放電曲線(50サイクル)を示す。 VS粉末、P0.1VS4.25粉末、P0.2VS4.50粉末及びP0.4VS5.00粉末について、それぞれ2サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率を示す。 VS粉末、P0.1VS4.25粉末、P0.2VS4.50粉末及びP0.4VS5.00粉末について、各充放電サイクルにおけるクーロン効率を示す。 実施例7~10で得られた粉末のX線回折図を示す。 実施例7で得たP0.2VS粉末の粒度分布を示す。 実施例8で得たP0.3VS粉末の粒度分布を示す。 実施例9で得たP0.4VS粉末の粒度分布を示す。 実施例10で得たP0.5VS粉末の粒度分布を示す。 実施例7で得たP0.2VS粉末を用いた充放電曲線(50サイクル)を示す。 実施例8で得たP0.3VS粉末を用いた充放電曲線(50サイクル)を示す。 実施例9で得たP0.4VS粉末を用いた充放電曲線(50サイクル)を示す。 実施例8で得たP0.5VS粉末を用いた充放電曲線(50サイクル)を示す。 VS粉末、P0.2VS粉末、P0.3VS粉末、P0.4VS粉末及びP0.5VS粉末について、それぞれ2サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率を示す。 VS粉末、P0.2VS粉末、P0.3VS粉末、P0.4VS粉末及びP0.5VS粉末について、各充放電サイクルにおけるクーロン効率を示す。 S粉末を用いた充放電曲線(50サイクル)を示す。 S粉末について、1サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率を示す。 S粉末について、各充放電サイクルにおけるクーロン効率を示す。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。
 また、本明細書において、「A~B」との表記は、「A以上且つB以下」を意味する。
 さらに、本明細書において、「リチウムイオン二次電池」は、リチウム金属を負極活物質とするリチウム二次電池も包含する概念である。
 1.リン含有低結晶性バナジウム硫化物
 本発明のリン含有低結晶性バナジウム硫化物は、バナジウム、リン及び硫黄を構成元素として含み、前記バナジウムと前記リンとの組成比(P/V)がモル比で0.1~1.0であり、前記バナジウムと前記硫黄との組成比(S/V)がモル比で4.00~10.00である。
 より詳細には、本発明のリン含有低結晶性バナジウム硫化物は、一般式(1):
PxVSy   (1)
[式中、xは0.1~1.0である。yは4.00~10.00である。]
で表される組成を有することが好ましい。
 このように、本発明のリン含有低結晶性バナジウム硫化物は、バナジウムに対する硫黄の元素比が高い。このため、本発明のリン含有低結晶性バナジウム硫化物は、高い初期充放電容量を有する。また、本発明のリン含有低結晶性バナジウム硫化物は、リンを含有していることによって、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることができる。
 なお、本発明では、リンの含有量(x値)を適度な範囲に調整することで、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を特に向上させることができる。このため、xは0.1~1.0が好ましく、0.2~0.5がより好ましく、0.3~0.4がさらに好ましい。
 また、本発明では、硫黄の含有量を高くするほど(yを大きくするほど)充放電容量が高くなりやすく、硫黄の含有量を低くするほど(yを小さくするほど)単体硫黄を含みにくくして充放電サイクル特性が高くなりやすい。これらのバランスを取る観点から、yとしては4.00~10.00が好ましく、4.20~9.00がより好ましく、5.00~8.00が特に好ましい。
 なお、x値とy値との関係については特に制限されるわけではないが、充放電容量、充放電サイクル特性、中期の充放電サイクルにおけるクーロン効率等の観点から、y=2.5x+4とすることが好ましい。
 本発明のリン含有低結晶性バナジウム硫化物は、結晶性四硫化バナジウム(IV)(VS)と類似した結晶構造(以下、「VS型結晶構造」と言うこともある)を有することが好ましい。
 より具体的には、本発明のリン含有低結晶性バナジウム硫化物は、CuKα線によるX線回折図における回折角2θ=10°~80°の範囲内において、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で、少なくとも、15.0°、24.3°、32.9°、36.2°及び53.9°に極大値を有するピークを有することが好ましい。つまり、14.0°~16.0°、23.3°~25.3°、31.9°~33.9°、35.2°~37.2°、及び52.9°~54.9°の範囲(好ましくは14.5°~15.5°、23.8°~24.8°、32.4°~33.4°、35.7°~36.7°、及び53.4°~54.4°の範囲)に極大値を有するピークを有することが好ましい。
 なお、本発明において、X線回折図は、粉末X線回折測定法によって求められるものであり、例えば、以下の測定条件:
測定装置: D8 ADVANCE(Bruker AXS)
X線源:CuKα 40kV/40mA
測定条件:2θ=10°~80°、0.1°ステップ、走査速度0.01°/秒
で測定することができる。
 本発明のリン含有低結晶性バナジウム硫化物は、リン原子と硫黄原子との間に結合が形成されており、また、平均組成としては硫黄の比率が高い硫化物であるにもかかわらず、硫黄は単体硫黄としてはほとんど存在せず、バナジウム及びリンと結合して低結晶性の硫化物を形成しているために副生成物の形成が抑制され、リンを含有しない低結晶性バナジウム硫化物と比較しても可逆的に充放電が進行している。このように、低結晶性バナジウム硫化物ではV-S結合のみであったことと比較すると、本発明のリン含有低結晶性バナジウム硫化物においてはV-S結合及びP-S結合が存在しており、硫黄原子との結合手が増えたことによって、充放電に伴う硫黄原子の溶出や、硫黄原子由来の副生成物の形成をさらに抑制し、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率の改善に至ったものと考えられる。
 以下、本発明における「低結晶性」について説明する。本発明のリン含有低結晶性バナジウム硫化物においては、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で2θ=15.0°(具体的には14.0°~16.0°、特に14.5°~15.5°)に極大値を有するピークの半値全幅が1.0°~3.0°(特に2.0°~2.8°)が好ましい。このように、本発明のリン含有低結晶性バナジウム硫化物は、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で2θ=15.0°に極大値を有するピークの半値全幅が、結晶性四硫化バナジウム(IV)(VS)等と比較すると大きいことが好ましい。このように、本発明においては低結晶性であることにより、Liが安定して存在できるサイトが増えるため、初期充放電容量、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることができる。
 また、単体硫黄等を多量に含む材料を電極活物質(正極活物質等)として用いた場合には、カーボネート系溶媒は単体硫黄と反応を起こすうえに、エーテル系溶媒は硫黄成分を大量に溶解させるために性能悪化を引起こすために溶媒選択の幅が狭かった。これに対して、本発明のリン含有低結晶性バナジウム硫化物は単体硫黄等をほとんど含んでいないため、電極活物質(正極活物質等)として使用する場合には、カーボネート系溶媒、エーテル系溶媒を用いた場合にもこれらの問題は生じず、電解液用の溶媒の選択性を向上させることができる。
 より具体的には、硫黄(S)の最も強いピークは、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で、2θ=23.0°に極大値を有する。このことから、CuKα線によるX線回折図において、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で、単体硫黄に特徴的なピークである、2θ=23.0°に極大値を有するピークを有さないことが好ましい。これにより、本発明のリン含有低結晶性バナジウム硫化物において、単体硫黄をほとんど含まない材料とすることができ、上記のような電解液との反応を起こす懸念をより少なくし、初期充放電容量、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率をより向上させることができる。
 本発明の低結晶性バナジウム硫化物は、他にも、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で、単体硫黄に特徴的なピークである2θ=25.8°及び27.8°の位置にも、極大値を有するピークを有さないことが好ましい。これにより、本発明のリン含有低結晶性バナジウム硫化物において、単体硫黄をほとんど含まない材料とすることができ、上記のような電解液との反応を起こす懸念をより少なくし、初期充放電容量、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率をより向上させることができる。
 本発明の低結晶性バナジウム硫化物は、他にも、±1.0°の許容範囲(好ましくは±0.5°の許容範囲)で、リンを含有しない低結晶性バナジウム硫化物に特徴的なピークである2θ=45.0°の位置にも、極大値を有するピークを有さないことが好ましい。これにより、本発明のリン含有低結晶性バナジウム硫化物において、リンとバナジウム及び硫黄とが結合を形成し、上記のような電解液との反応を起こす懸念をより少なくし、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率をより向上させることができる。
 また、本発明の低結晶性バナジウム硫化物は、平均粒子径D50の値は0.90~1.20μm(特に0.92~1.15μm)が好ましい。特に、本発明の低結晶性バナジウム硫化物は、粒子径に起因するX線回折パターンがブロード化しているのではなく、結晶性の低下(低結晶性)によりX線回折パターンがブロード化していることが好ましい。
 なお、本発明では、本発明のリン含有低結晶性バナジウム硫化物の性能を阻害しない範囲であれば、その他の不純物も含まれ得る。このような不純物としては、原料となる硫化リン(P等)、硫化バナジウム(V、VS等)等や原料に混入する可能性のあるリン、バナジウム等の他、原料及び製造時に混入する可能性のある酸素等を例示できる。
 これらの不純物の量については、上記した本発明のリン含有低結晶性バナジウム硫化物の性能を阻害しない範囲が好ましく、本発明のリン含有低結晶性バナジウム硫化物の総量を100質量%として、通常、2質量%以下(0~2質量%)が好ましく、1.5質量%以下(0~1.5質量%)がより好ましい。ただし、不純物としては、上記したように、単体硫黄は極力含まないことが好ましい。
 以上のように、本発明のリン含有低結晶性バナジウム硫化物は、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることができることから、リチウムイオン二次電池用電極活物質(特にリチウムイオン二次電池用正極活物質)として有用である。
 2.リン含有低結晶性バナジウム硫化物の製造方法
 本発明のリン含有低結晶性バナジウム硫化物は、
原料又は中間体として、バナジウム硫化物及びリン含有材料を含む出発物質を用い、メカニカルミリング処理に供する工程
を備える製造方法によって得ることができる。また、出発物質は、目的組成によっては硫黄を含むこともできる。
 メカニカルミリング処理は、機械的エネルギーを付与しながら原料を摩砕混合する方法であり、この方法によれば、原料に機械的な衝撃及び摩擦を与えて摩砕混合することによって、バナジウム硫化物、リン含有材料及び必要に応じて硫黄が激しく接触して微細化され、原料の反応が生じる。つまり、この際、混合、粉砕及び反応が同時に生じる。このため、原料を高温に熱することなく、原料をより確実に反応させることが可能である。メカニカルミリング処理を用いることで通常の熱処理では得ることのできない、準安定結晶構造が得られることがある。
 メカニカルミリング処理としては、具体的には、例えば、ボールミル、ビーズミル、ロッドミル、振動ミル、ディスクミル、ハンマーミル、ジェットミル等の機械的粉砕装置を用いて混合粉砕を行うことができる。
 これらの原料又は中間体については、全てを同時に混合してメカニカルミリング処理に供することもでき、一部の材料又は中間体についてまずメカニカルミリング処理に供した後、残りの材料を加えてメカニカルミリング処理に供することもできる。
 具体的な原料としては、バナジウム硫化物として、結晶性硫化バナジウム(III)(V)、結晶性硫化バナジウム(VIII)(VS)等を使用することが好ましい。バナジウム硫化物は、特に限定はなく、市販されている任意のバナジウム硫化物を用いることができる。特に、高純度のものを用いることが好ましい。また、バナジウム硫化物をメカニカルミリング処理によって混合粉砕するので、使用するバナジウム硫化物の粒径についても限定はなく、通常は、市販されている粉末状のバナジウム硫化物を用いることができる。
 また、リン含有材料として、単体リン(P)の他、結晶性硫化リン(V)(P)等のリン硫化物も使用することができる。リン含有材料は、特に限定はなく、市販されている任意のリン含有材料を用いることができる。特に、高純度のものを用いることが好ましい。また、リン含有材料をメカニカルミリング処理によって混合粉砕するので、使用するリン含有材料の粒径についても限定はなく、通常は、市販されている粉末状のリン含有材料を用いることができる。
 また、硫黄としては、最終的に得られる硫化物の組成となるように、中間体として用いる組成の硫化物を形成するたに必要な量の単体硫黄(S)を用いることが可能である。原料として用いる硫黄についても特に限定はなく、任意の硫黄を用いることができる。特に、高純度のものを用いることが好ましい。また、硫黄をメカニカルミリング処理によって混合粉砕するので、使用する硫黄の粒径についても限定はなく、通常は、市販されている粉末状の硫黄を用いることができる。
 さらに、上記したように、複数(特に2段階)のメカニカルミリング処理に供する場合、中間体としては、所望の組成の低結晶性バナジウム硫化物(低結晶性VS等)等を用いることもできる。
 原料の混合割合については、原料の仕込み比率が、ほとんどそのまま生成物の各元素の比率となるため、目的とするリン含有低結晶性バナジウム硫化物におけるバナジウム、リン及び硫黄の元素比と同一の比率とし得る。
 メカニカルミリング処理を行う際の温度については、特に制限はなく、硫黄が揮発しにくくするとともに、既報の結晶相が生成されにくくするため、300℃以下が好ましく、-10~200℃がより好ましい。
 メカニカルミリング処理の時間については、特に限定はなく、目的のリン含有低結晶性バナジウム硫化物が析出した状態となるまで任意の時間メカニカルミリング処理を行うことができる。
 例えば、メカニカルミリング処理は、0.1~100時間(特に10~80時間)の処理時間の範囲内において、0.1~100kWh/原料混合物1kgのエネルギー量で行うことができる。なお、このメカニカルミリング処理は、必要に応じて途中に休止を挟みながら複数回に分けて行うこともできる。
 なお、メカニカルミリング処理を複数回繰り返す場合は、各工程のメカニカルミリング処理において、上記条件とすることができる。
 上記したメカニカルミリング処理により、目的とするリン含有低結晶性バナジウム硫化物を微粉末として得ることができる。
 3.リン含有低結晶性バナジウム硫化物の用途
 上記した本発明のリン含有低結晶性バナジウム硫化物は、上記のとおり、初期容量が十分に高く、充放電サイクル特性及び中期の充放電サイクルにおけるクーロン効率を向上させることができることから、特に、リチウムイオン二次電池用電極活物質として有用である。本発明のリン含有低結晶性バナジウム硫化物を電極活物質(特に正極活物質)として有効に使用できるリチウムイオン二次電池は、電解質として非水電解液を用いる非水電解液リチウムイオン二次電池ともし得るし、リチウムイオン伝導性の固体電解質を用いる全固体型リチウムイオン二次電池ともし得る。本発明のリン含有低結晶性バナジウム硫化物によれば、電解液との反応を起こす懸念を少なくすることができるため、非水電解液リチウムイオン二次電池に採用した場合に特に有用である。
 非水電解液リチウムイオン二次電池及び全固体型リチウムイオン二次電池の構造は、本発明のリン含有低結晶性バナジウム硫化物を電極活物質(特に正極活物質)として用いること以外は、公知のリチウムイオン二次電池と同様とすることができる。
 例えば、非水電解液リチウムイオン二次電池としては、本発明のリン含有低結晶性バナジウム硫化物を電極活物質(特に正極活物質)として使用する他は、基本的な構造は、公知の非水電解液リチウムイオン二次電池と同様とすることができる。
 正極については、本発明のリン含有低結晶性バナジウム硫化物を正極活物質として用いる場合は、本発明のリン含有低結晶性バナジウム硫化物を正極活物質として用いる他は、公知の正極と同様の構造とすることができる。例えば、本発明のリン含有低結晶性バナジウム硫化物と必要に応じて導電剤及びバインダーを含む正極合剤をAl、Ni、ステンレス、カーボンクロス等の正極集電体に担持させることができる。導電剤としては、例えば、黒鉛、コークス、カーボンブラック(ケッチェンブラック等)、針状カーボン等の炭素材料を用いることができる。また、バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム(SBR)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、カルボキシメチルセルロース(CMC)等の材料を単独で用いることもでき、2種以上を組合せて用いることもできる。一方、本発明のリン含有低結晶性バナジウム硫化物を正極活物質として用いない場合は、正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リン酸鉄リチウム(LiFePO)、酸化バナジウム系材料、硫黄系材料等の公知の正極活物質を用いることもできる。
 負極については、本発明のリン含有低結晶性バナジウム硫化物を負極活物質として用いる場合は、本発明のリン含有低結晶性バナジウム硫化物を負極活物質として用いる他は、公知の負極と同様の構造とすることができる。例えば、本発明のリン含有低結晶性バナジウム硫化物と必要に応じて導電剤及びバインダーを含む負極合剤をAl、Ni、ステンレス、カーボンクロス等の負極集電体に担持させることができる。導電剤としては、例えば、黒鉛、コークス、カーボンブラック、針状カーボン等の炭素材料を用いることができる。また、バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム(SBR)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、カルボキシメチルセルロース(CMC)等の材料を単独で用いることもでき、2種以上を組合せて用いることもできる。一方、本発明のリン含有低結晶性バナジウム硫化物を負極活物質として用いない場合は、負極活物質としては、金属リチウム、炭素系材料(活性炭、黒鉛等)、ケイ素、酸化ケイ素、Si-SiO系材料、リチウムチタン酸化物等の公知の負極活物質を用いることもできる。
 非水電解液の溶媒としては、カーボネート、エーテル、ニトリル、含硫黄化合物等の非水系リチウムイオン二次電池の溶媒として公知の溶媒を用いることができる。特に、単体硫黄を正極活物質として用いた場合には、カーボネートを溶媒に用いると単体硫黄とカーボネートとが反応を起こすため使用できず、エーテルを溶媒に用いると硫黄成分が電解液中に大量に溶解して性能悪化を引起こすために、これらの溶媒を使用することはできなかったが、本発明のリン含有低結晶性バナジウム硫化物を電極活物質(特に正極活物質)として使用すると、これらの問題を解決することができるため、いずれの溶媒でも適用可能であり、電解液中の溶媒の選択性を向上させることができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミド、無機ガラス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。
 一方、全固体型リチウムイオン二次電池についても、本発明のリン含有低結晶性バナジウム硫化物を電極活物質(特に正極活物質)として用いる以外は、公知の全固体型リチウムイオン二次電池と同様の構造とすることができる。この場合、正極、負極及びセパレータとしては、上記したものを採用できる。
 この場合、電解質としては、例えば、ポリエチレンオキサイド系の高分子化合物;ポリオルガノシロキサン鎖及びポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物等のポリマー系固体電解質の他、硫化物系固体電解質、酸化物系固体電解質等も用いることができる。
 非水電解液リチウムイオン二次電池及び全固体型リチウムイオン二次電池の形状についても特に限定はなく、円筒型、角型等のいずれも採用し得る。
 以下、実施例を挙げて本発明を更に詳細に説明する。しかしながら、本発明は、以下の実施例のみに限定されないことは言うまでもない。
 なお、以下の実施例において、原料として使用した結晶性VS(c-VS)は、市販の硫化バナジウム(III)(V;(株)高純度化学研究所製)及び硫黄(富士フイルム和光純薬(株)製)を真空封管し400℃で5時間焼成することで得た。
 [比較例1:VS粉末の合成]
 市販の硫化バナジウム(III)(V;(株)高純度化学研究所製)及び硫黄(富士フイルム和光純薬(株)製)を、モル比が1:6となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、真空中にてガラス管内に封管を行った。真空封管した試料を管状炉にて400℃で5時間焼成を行った。焼成した試料を真空中にて200℃で8時間焼成することで、余剰硫黄を脱硫し、結晶性バナジウム硫化物VS(c-VS)を合成した。
 次に、得られた結晶性VS(c-VS)を、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で、ボールミル装置(フリッチュ製PL-7)で40時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、低結晶性バナジウム硫化物VS(a-VS)を合成した。
 [実施例1:P0.1VS4.25粉末の合成]
 実施例1-1:ミリング15時間
 結晶性VS(c-VS)及び硫化リン(V)(P;Aldrich製)を、モル比が1:0.05となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.1VS4.25(a-P0.1VS4.25)を合成した。
 実施例1-2:ミリング30時間
 メカニカルミリング処理を30時間行ったこと以外は実施例1-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.1VS4.25(a-P0.1VS4.25)を合成した。
 実施例1-3:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例1-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.1VS4.25(a-P0.1VS4.25)を合成した。
 実施例1-4:ミリング60時間
 メカニカルミリング処理を60時間行ったこと以外は実施例1-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.1VS4.25(a-P0.1VS4.25)を合成した。
 [実施例2:P0.2VS4.50粉末の合成]
 実施例2-1:ミリング15時間
 結晶性VS(c-VS)及び硫化リン(V)(P;Aldrich製)を、モル比が1:0.1となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.2VS4.50(a-P0.2VS4.50)を合成した。
 実施例2-2:ミリング30時間
 メカニカルミリング処理を30時間行ったこと以外は実施例2-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.2VS4.5(a-P0.2VS4.5)を合成した。
 実施例2-3:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例2-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.2VS4.5(a-P0.2VS4.5)を合成した。
 実施例2-4:ミリング60時間
 メカニカルミリング処理を60時間行ったこと以外は実施例2-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.2VS4.5(a-P0.2VS4.5)を合成した。
 [実施例3:P0.3VS4.75粉末の合成]
 実施例3-1:ミリング15時間
 結晶性VS(c-VS)及び硫化リン(V)(P;Aldrich製)を、モル比が1:0.15となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.3VS4.75(a-P0.3VS4.75)を合成した。
 実施例3-2:ミリング30時間
 メカニカルミリング処理を30時間行ったこと以外は実施例3-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.3VS4.75(a-P0.3VS4.75)を合成した。
 実施例3-3:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例3-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.3VS4.75(a-P0.3VS4.75)を合成した。
 実施例3-4:ミリング60時間
 メカニカルミリング処理を60時間行ったこと以外は実施例3-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.3VS4.75(a-P0.3VS4.75)を合成した。
 [実施例4:P0.4VS5.00粉末の合成]
 実施例4-1:ミリング15時間
 結晶性VS(c-VS)及び硫化リン(V)(P;Aldrich製)を、モル比が1:0.2となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.4VS5.00(a-P0.4VS5.00)を合成した。
 実施例4-2:ミリング30時間
 メカニカルミリング処理を30時間行ったこと以外は実施例4-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.4VS5.00(a-P0.4VS5.00)を合成した。
 実施例4-3:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例4-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.4VS5.00(a-P0.4VS5.00)を合成した。
 実施例4-4:ミリング60時間
 メカニカルミリング処理を60時間行ったこと以外は実施例4-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.4VS5.00(a-P0.4VS5.00)を合成した。
 [実施例5:P0.5VS6.00粉末の合成]
 結晶性VS(c-VS)、硫化リン(V)(P;Aldrich製)及び硫黄(富士フイルム和光純薬(株)製)を、モル比が1:0.25:0.75となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.5VS6.00(a-P0.5VS6.00)を合成した。
 [実施例6:PVS8.00粉末の合成]
 結晶性VS(c-VS)、硫化リン(V)(P;Aldrich製)及び硫黄(富士フイルム和光純薬(株)製)を、モル比が1:0.5:1.5となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で15時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物PVS8.00(a-PVS8.00)を合成した。
 [実施例7:P0.2VS4.0粉末の合成]
 実施例7-1:ミリング30時間
 結晶性VS(c-VS)及び単体リン(P;富士フイルム和光純薬(株)製)を、モル比が1:0.2となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で30時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.2VS4.0(a-P0.2VS4.0)を合成した。
 実施例7-2:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例7-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.2VS4.0(a-P0.2VS4.0)を合成した。
 実施例7-3:ミリング105時間
 メカニカルミリング処理を105時間行ったこと以外は実施例7-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.2VS4.0(a-P0.2VS4.0)を合成した。
 [実施例8:P0.3VS4.0粉末の合成]
 実施例8-1:ミリング30時間
 結晶性VS(c-VS)及び単体リン(P;富士フイルム和光純薬(株)製)を、モル比が1:0.3となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で30時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.3VS4.0(a-P0.3VS4.0)を合成した。
 実施例8-2:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例8-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.3VS4.0(a-P0.3VS4.0)を合成した。
 実施例8-3:ミリング105時間
 メカニカルミリング処理を105時間行ったこと以外は実施例8-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.3VS4.0(a-P0.3VS4.0)を合成した。
 [実施例9:P0.4VS4.0粉末の合成]
 実施例9-1:ミリング30時間
 結晶性VS(c-VS)及び単体リン(P;富士フイルム和光純薬(株)製)を、モル比が1:0.4となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で30時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.4VS4.0(a-P0.4VS4.0)を合成した。
 実施例9-2:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例9-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.4VS4.0(a-P0.4VS4.0)を合成した。
 実施例9-3:ミリング105時間
 メカニカルミリング処理を105時間行ったこと以外は実施例9-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.4VS4.0(a-P0.4VS4.0)を合成した。
 [実施例10:P0.5VS4.0粉末の合成]
 実施例10-1:ミリング30時間
 結晶性VS(c-VS)及び単体リン(P;富士フイルム和光純薬(株)製)を、モル比が1:0.5となるよう、アルゴンガス雰囲気のグローブボックス内(露点-80℃)で秤量し、ボールミル装置(フリッチュ製PL-7)で30時間メカニカルミリング処理(ボール径4mm、回転数270rpm)を行うことで、リン含有低結晶性バナジウム硫化物P0.5VS4.0(a-P0.5VS4.0)を合成した。
 実施例10-2:ミリング45時間
 メカニカルミリング処理を45時間行ったこと以外は実施例10-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.5VS4.0(a-P0.5VS4.0)を合成した。
 実施例10-3:ミリング105時間
 メカニカルミリング処理を105時間行ったこと以外は実施例10-1と同様に処理を行い、リン含有低結晶性バナジウム硫化物P0.5VS4.0(a-P0.5VS4.0)を合成した。
 [試験例1:X線回折]
 実施例1~4及び比較例1で得られた粉末について、
測定装置:D8 ADVANCE(Bruker AXS)
X線源:CuKα 40kV/40mA
0.1°step
走査速度:0.02°/秒
を用いたX線回折(XRD)を測定した。結果を図1に示す。
 図1に示すX線回折図では、実施例1~4の試料は、メカニカルミリングの処理時間が15時間、30時間、45時間及び60時間いずれにおいても、回折角2θ=10°~80°の範囲内において、15.0°、24.3°、33.0°、36.5°及び54.0°にピークを有しており、VSと類似のパターンを示していた。実施例1~4の試料において2θ=15.0°に極大を有するピークの半値全幅は2.0°~2.8°であった。また、いずれの試料も、2θ=23.0°の位置にはピークが存在しないため硫黄のピークが消滅していることが理解できる。また、いずれの試料も、2θ=45.0°の位置にはピークが存在しないためリンを含有しない低結晶性バナジウム硫化物の存在は確認できなかった。なお、図1では、比較のため、原料及び中間体である硫化バナジウム(III)、硫化リン(V)、及び結晶性VS(c-VS)のピークも示す。結晶性VSの2θ=15.0°のピークの半値全幅は0.17°であり、上記実施例1~4の試料における値(2.0°~2.8°)と明らかに異なり、実施例1~4の試料は低結晶化していることが明瞭である。
 また、図16に示すX線回折図では、実施例7~9の試料は、メカニカルミリングの処理時間が30時間、45時間及び105時間いずれにおいても、回折角2θ=10°~80°の範囲内において、15.0°、24.3°、33.0°、36.5°及び54.0°にピークを有しており、VSと類似のパターンを示していた。実施例7~9の試料において2θ=15.0°に極大を有するピークの半値全幅は2.0~2.8°であった。また、いずれの試料も、2θ=23.0°の位置にはピークが存在しないため硫黄のピークが消滅していることが理解できる。また、いずれの試料も、2θ=45.0°の位置にはピークが存在しないためリンを含有しない低結晶性バナジウム硫化物の存在は確認できなかった。なお、図16では、比較のため、原料である硫化バナジウム(III)及び単体リンのピークも示す。
 [試験例2:粒度分布]
 比較例1で得たVS粉末、実施例1-1で得たP0.1VS4.25粉末、実施例2-1で得たP0.2VS4.50粉末、実施例4-1で得たP0.4VS5.00粉末、実施例5で得たP0.5VS6.00粉末、及び実施例6で得たPVS8.00粉末について、粒度分布測定装置(日機装株式会社 AEROTRAC SPR MODEL:7340)により、粒度分布及び平均粒子径D50を測定した。結果を図2~7に示す。測定の結果、各試料で平均粒径は約1μm(0.93~1.12μm)であり、X線回折パターンのブロード化は、粒径によるものではなく、材料の結晶性が低下(低結晶性)したことに由来していることが理解できる。
 実施例7で得たP0.2VS粉末、実施例8で得たP0.3VS粉末、実施例9で得たP0.4VS粉末、及び実施例10で得たP0.5VS粉末について、粒度分布測定装置(日機装株式会社 AEROTRAC SPR MODEL:7340)により、粒度分布及び平均粒子径D50を測定した。結果を図17~20に示す。測定の結果、各試料で平均粒径は約1μm(1.71~1.89μm)であり、X線回折パターンのブロード化は、粒径によるものではなく、材料の結晶性が低下(低結晶性)したことに由来していることが理解できる。
 [試験例3:充放電試験]
 次に、比較例1で得たVS粉末、実施例1-1で得たP0.1VS4.25粉末、実施例2-1で得たP0.2VS4.50粉末、実施例4-1で得たP0.4VS5.00粉末、実施例5で得たP0.5VS6.00粉末、実施例6で得たPVS8.00粉末、実施例7-1で得たP0.2VS4.00粉末、実施例8-1で得たP0.3VS4.00粉末、実施例9-1で得たP0.4VS4.00粉末、又は実施例10-1で得たP0.5VS4.00粉末を正極活物質として用いて、以下の方法で試験用電気化学セル(リチウム二次電池)を作製し、30℃において、充放電レート:0.1C(1C=1197mAh/g)で、電圧1.5~2.6V(実施例6で得たPVS8.00粉末は1.5~3.0V)の範囲内で、サイクル間の休止時間10分として、定電流充放電測定を行った。
 試験用電気化学セルの作製方法としては、まず、作用極(正極)は、比較例1で得たVS粉末、実施例1-1で得たP0.1VS4.25粉末、実施例2-1で得たP0.2VS4.50粉末、実施例4-1で得たP0.4VS5.00粉末、実施例5で得たP0.5VS6.00粉末、実施例6で得たPVS8.00粉末、実施例7-1で得たP0.2VS4.00粉末、実施例8-1で得たP0.3VS4.00粉末、実施例9-1で得たP0.4VS4.00粉末、又は実施例10-1で得たP0.5VS4.00粉末10mgに対して、ケッチェンブラック5mg及びバインダーであるポリテトラフルオロエチレン(PTFE)2mgを加え、乳鉢で8分間混合した後、アルミニウムメッシュに張り付けることで作製した。対極(負極)としてはリチウム金属を用いた。電解液としては、1Mのヘキサフルオロリン酸リチウム(LiPF)をエチレンカーボネート(EC)とジメチルカーボネート(DMC)との質量比1:1の混合溶媒に溶解させたもの(1M LiPF EC/DMC)を用いた。セパレータとしてはポリプロピレンを用いた。
 図8は比較例1で得たVS粉末を用いた充放電曲線(50サイクル)、図9は実施例1-1で得たP0.1VS4.25粉末を用いた充放電曲線(50サイクル)、図10は実施例2-1で得たP0.2VS4.50粉末を用いた充放電曲線(50サイクル)、図11は実施例4-1で得たP0.4VS5.00粉末を用いた充放電曲線(50サイクル)、図12は実施例5で得たP0.5VS6.00粉末を用いた充放電曲線(50サイクル)、図13は実施例6で得たPVS8.00粉末を用いた充放電曲線(50サイクル)である。この結果、実施例の試料は、いずれも、十分な初期充放電容量を有することが理解できる。また、比較例の試料は、初期放電容量は高いものの、25サイクル以降の放電容量は、実施例のいずれの試料にも劣ることが理解できる。
 また、図21は実施例7-1で得たP0.2VS4.00粉末を用いた充放電曲線(50サイクル)、図22は実施例8-1で得たP0.3VS4.00粉末を用いた充放電曲線(50サイクル)、図23は実施例9-1で得たP0.4VS4.00粉末を用いた充放電曲線(50サイクル)、図24は実施例10-1で得たP0.5VS4.00粉末を用いた充放電曲線(50サイクルである。この結果、実施例の試料は、いずれも、十分な初期充放電容量を有することが理解できる。
 次に、図14は、比較例1で得たVS粉末、実施例1-1で得たP0.1VS4.25粉末、実施例2-1で得たP0.2VS4.50粉末、及び実施例4-1で得たP0.4VS5.00粉末について、それぞれ2サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率を示す。この結果、実施例の試料は、いずれも、比較例の試料と比較し、充放電サイクル特性が顕著に向上していることが理解できる。
 次に、図25は、比較例1で得たVS粉末、実施例7-1で得たP0.2VS4.00粉末、実施例8-1で得たP0.3VS4.00粉末、及び実施例9-1で得たP0.4VS4.00粉末について、それぞれ2サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率を示す。この結果、実施例の試料は、いずれも、比較例の試料と比較し、充放電サイクル特性が顕著に向上していることが理解できる。
 さらに、図15は、比較例1で得たVS粉末、実施例1-1で得たP0.1VS4.25粉末、実施例2-1で得たP0.2VS4.50粉末、及び実施例4-1で得たP0.4VS5.00粉末について、各充放電サイクルにおけるクーロン効率を示す。この結果、比較例の試料は、15サイクル以降にクーロン効率が顕著に低下していたが、実施例の試料は、いずれも、クーロン効率の低下を顕著に抑制でき、充放電効率が改善していることが理解できる。
 さらに、図26は、比較例1で得たVS粉末、実施例7-1で得たP0.2VS4.00粉末、実施例8-1で得たP0.3VS4.00粉末、及び実施例9-1で得たP0.4VS4.00粉末について、各充放電サイクルにおけるクーロン効率を示す。この結果、比較例の試料は、15サイクル以降にクーロン効率が顕著に低下していたが、実施例の試料は、いずれも、クーロン効率の低下を顕著に抑制でき、充放電効率が改善していることが理解できる。
 さらに、図27は、S粉末を用いた充放電曲線、図28は、S粉末について、1サイクル目の放電容量を100%として、50サイクルまでの充放電サイクルによる容量維持率、図29は、S粉末について、各充放電サイクルにおけるクーロン効率を、それぞれ示す。VS電極と異なり、初期放電容量がわずかに認められるものの(約100mAh/g)、以降のサイクルではほとんど容量が得られず、クーロン効率も低いまま推移していることが分かり、電極活物質中のS含有比率を単純に100%に増大させるだけでは所望の特性が得られないことが分かる。

Claims (10)

  1. バナジウム、リン及び硫黄を構成元素として含み、
    前記バナジウムと前記リンとの組成比(P/V)がモル比で0.1~1.0であり、
    前記バナジウムと前記硫黄との組成比(S/V)がモル比で4.00~10.00である、
    リン含有低結晶性バナジウム硫化物。
  2. 一般式(1):
    PxVSy   (1)
    [式中、xは0.1~1.0である。yは4.00~10.00である。]
    で表される組成を有する、請求項1に記載のリン含有低結晶性バナジウム硫化物。
  3. VS型結晶構造を有する、請求項1又は2に記載のリン含有低結晶性バナジウム硫化物。
  4. CuKα線によるX線回折図における回折角2θ=10°~80°の範囲内において、±1.0°の許容範囲で、少なくとも、15.0°、24.3°、32.9°、36.2°及び53.9°に極大値を有するピークを有する、請求項1~3のいずれか1項に記載のリン含有低結晶性バナジウム硫化物。
  5. 前記2θ=15.0°に極大値を有するピークの半値全幅が、1.0°~3.0°である、請求項1~4のいずれか1項に記載のリン含有低結晶性バナジウム硫化物。
  6. 請求項1~5のいずれか1項に記載のリン含有低結晶性バナジウム硫化物の製造方法であって、
    原料又は中間体として、バナジウム硫化物及びリン含有材料を含む出発物質を用い、メカニカルミリング処理に供する工程
    を備える、製造方法。
  7. 前記出発物質が、さらに、硫黄を含む、請求項6に記載の製造方法。
  8. 請求項1~5のいずれか1項に記載のリン含有低結晶性バナジウム硫化物を含有する、リチウムイオン二次電池用電極活物質。
  9. 請求項8に記載のリチウムイオン二次電池用電極活物質を含有する、リチウムイオン二次電池用電極。
  10. 請求項9に記載のリチウムイオン二次電池用電極を備える、リチウムイオン二次電池。
PCT/JP2020/032118 2019-08-30 2020-08-26 リン含有低結晶性バナジウム硫化物 WO2021039820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/638,591 US20220396496A1 (en) 2019-08-30 2020-08-26 Phosphorus-containing low crystallinity vanadium sulfide
JP2021542952A JP7285026B2 (ja) 2019-08-30 2020-08-26 リン含有低結晶性バナジウム硫化物
CN202080060522.4A CN114302859B (zh) 2019-08-30 2020-08-26 含磷低结晶性钒硫化物
EP20859506.6A EP4023602A4 (en) 2019-08-30 2020-08-26 LOW CRYSTALLINITY VANADIUM SULFIDE CONTAINING PHOSPHORUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-158922 2019-08-30
JP2019158922 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039820A1 true WO2021039820A1 (ja) 2021-03-04

Family

ID=74684007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032118 WO2021039820A1 (ja) 2019-08-30 2020-08-26 リン含有低結晶性バナジウム硫化物

Country Status (5)

Country Link
US (1) US20220396496A1 (ja)
EP (1) EP4023602A4 (ja)
JP (1) JP7285026B2 (ja)
CN (1) CN114302859B (ja)
WO (1) WO2021039820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022196761A1 (ja) * 2021-03-19 2022-09-22
WO2023166790A1 (ja) * 2022-03-03 2023-09-07 国立研究開発法人産業技術総合研究所 バナジウム含有リチウム硫化物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273217A (ja) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd 固体電解質、その製造方法及び全固体二次電池
WO2016080443A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 リチウム-鉄-リン-硫黄-炭素複合体及びその製造方法
JP2018537813A (ja) * 2015-11-09 2018-12-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 全固体リチウム再充電可能セル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069138B2 (en) * 2014-04-24 2018-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Vanadium oxysulfide based cathode materials for rechargeable battery
JP6176761B2 (ja) * 2016-08-02 2017-08-09 株式会社 東北テクノアーチ バナジウム固体塩電池
CN108923031A (zh) * 2018-07-11 2018-11-30 中国科学院宁波材料技术与工程研究所 一种过渡金属硫化物复合电极材料及其制备方法和全固态锂电池
CN109950538A (zh) * 2019-04-15 2019-06-28 北京航空航天大学 一种锌离子电池用的钒基正极材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273217A (ja) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd 固体電解質、その製造方法及び全固体二次電池
WO2016080443A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 リチウム-鉄-リン-硫黄-炭素複合体及びその製造方法
JP2018537813A (ja) * 2015-11-09 2018-12-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 全固体リチウム再充電可能セル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023602A4
X. XU ET AL., J. MATER. CHEM. A, vol. 2, 2014, pages 10847 - 10853

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022196761A1 (ja) * 2021-03-19 2022-09-22
WO2022196761A1 (ja) * 2021-03-19 2022-09-22 国立研究開発法人産業技術総合研究所 非水二次電池用電解液及びそれを用いた非水二次電池
JP7475753B2 (ja) 2021-03-19 2024-04-30 国立研究開発法人産業技術総合研究所 非水二次電池用電解液及びそれを用いた非水二次電池
WO2023166790A1 (ja) * 2022-03-03 2023-09-07 国立研究開発法人産業技術総合研究所 バナジウム含有リチウム硫化物

Also Published As

Publication number Publication date
JPWO2021039820A1 (ja) 2021-03-04
CN114302859B (zh) 2024-03-01
JP7285026B2 (ja) 2023-06-01
EP4023602A4 (en) 2023-09-27
CN114302859A (zh) 2022-04-08
US20220396496A1 (en) 2022-12-15
EP4023602A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP5235282B2 (ja) 非水電解質二次電池用正極活物質及び電池
JP6867713B2 (ja) 低結晶性バナジウム硫化物
KR101727806B1 (ko) 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
WO2016147564A1 (ja) 非水電解質二次電池
JP2015531143A (ja) ドープニッケル酸化合物
US10347910B2 (en) Nano silicon material, method for producing same, and negative electrode of secondary battery
WO2010104137A1 (ja) リチウムボレート系化合物の製造方法
KR20150118540A (ko) 리튬 이온 이차 전지용 부극재, 리튬 이온 이차 전지용 부극, 리튬 이온 이차 전지 및 리튬 이온 이차 전지용 부극재의 제조 방법
KR20190035655A (ko) 고체 전해질 재료 및 전고체 리튬 전지
JP2015525730A (ja) ドープされたニッケル酸塩化合物
US10164255B2 (en) Silicon material and negative electrode of secondary battery
Wang et al. Effects of different carbon sources on the electrochemical properties of Li4Ti5O12/C composites
JP7350817B2 (ja) リチウムイオン電池用アノード材料並びにその製造方法及び使用方法
WO2021039820A1 (ja) リン含有低結晶性バナジウム硫化物
WO2022102682A1 (ja) 非水二次電池用電解液及びそれを用いた非水二次電池、並びに非水二次電池の放電方法
JP6681211B2 (ja) 正極活物質の製造方法、正極材料の製造方法、正極の製造方法およびリチウムイオン電池の製造方法
Li et al. Hydrothermal-assisted synthesis of Li2FeSiO4/C composites as cathode materials for lithium-ion batteries
WO2018069957A1 (ja) 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池
Xu et al. Preparation and electrochemical performance of nano-LiNi0. 05Mn1. 95O4 cathode materials by a low-temperature molten-salt combustion method
JP2013077517A (ja) 二次電池用活物質及び二次電池用活物質用電極、並びに、それを用いた二次電池
CN114616695A (zh) Lmo阴极成分
US10217990B2 (en) Silicon material and negative electrode of secondary battery
JP5598684B2 (ja) 非水電解質二次電池用正極活物質、正極及び電池
JP2018152315A (ja) 負極活物質、負極、非水電解質蓄電素子、及び負極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020859506

Country of ref document: EP

Effective date: 20220330