WO2021039308A1 - 電池の製造方法及び電池 - Google Patents

電池の製造方法及び電池 Download PDF

Info

Publication number
WO2021039308A1
WO2021039308A1 PCT/JP2020/029802 JP2020029802W WO2021039308A1 WO 2021039308 A1 WO2021039308 A1 WO 2021039308A1 JP 2020029802 W JP2020029802 W JP 2020029802W WO 2021039308 A1 WO2021039308 A1 WO 2021039308A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
heating
base material
battery
electrode
Prior art date
Application number
PCT/JP2020/029802
Other languages
English (en)
French (fr)
Inventor
松永 正文
Original Assignee
エムテックスマート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムテックスマート株式会社 filed Critical エムテックスマート株式会社
Priority to CN202080057497.4A priority Critical patent/CN114223069B/zh
Priority to US17/635,520 priority patent/US20220344629A1/en
Publication of WO2021039308A1 publication Critical patent/WO2021039308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a battery by using a coating method that eliminates the need for a mask for coating a material for a battery on a substrate or does not place importance on the mask, and more specifically, mainly a liquid such as a slurry.
  • the present invention relates to a method of manufacturing a battery in which particles do not scatter outside a desired coating pattern or the performance is not affected when a slurry for electrodes or the like is used as a mist or a two-fluid spray is performed using a compressed gas and applied to a substrate.
  • the secondary battery is a storage battery that charges and discharges, and includes, for example, a lithium ion secondary battery, a lithium ion polymer battery, an all-solid-state battery, a semi-solid battery, a metal-air battery, and the like, which are typical of next-generation secondary batteries.
  • the material and shape of the base material are not particularly limited as long as they are base materials for fuel cells and secondary batteries.
  • metal foils such as aluminum, copper, and stainless steel, or current collection of positive and negative electrodes of a polymer conductive film.
  • examples thereof include a body, a separator, an electrolyte polymer for a semi-solid battery, an all-solid electrolyte layer, an electrode layer containing an active material formed on a current collector, and an electrolyte layer laminated on the electrode layer.
  • the base material may be an electrolyte membrane or a gas diffusion layer.
  • the material to be applied may be positive or negative electrode slurry containing active material, electrolyte polymer solution, electrolyte slurry, etc. When applied by slot nozzle, no mask is required even when pattern is applied, especially in terms of productivity.
  • the slot nozzle in the present invention can be applied by flowing a compressed gas to at least one side of the opening through which the slurry of the head flows and assisting with the compressed gas, or airless at a low pressure such as 0.2 to 0.5 MPa.
  • a microcurtain coat that uses a single or multiple nozzles to wrap and apply a spray pattern at the location of the liquid film before spraying the liquid with a spray nozzle to form spray particles. It also includes a coating method using a mist ejection nozzle in which slurry particles (mist) are generated in the slit opening or upstream of the slit to eject mist from the slit opening.
  • a melt-blown spray nozzle head in which a plurality of spray nozzles are arranged in one row or a plurality of rows on the spray head to fiberize or atomize the melt or liquid with a compressed gas, and the spray angle of the nozzle is a narrow angle of 20 degrees or less.
  • the present invention can also be applied to the production of capacitors such as electric double layer capacitors and multilayer ceramic capacitors (MLCCs) called supercapacitors. It can also be applied to all-solid-state batteries that utilize the structure of MLCCs.
  • an active material slurry for a positive electrode or a negative electrode has been continuously applied or continuously applied to a current collector for a lithium ion secondary battery with a slot nozzle and dried.
  • the slurry is mainly composed of active material particles for a positive electrode, for example, a ternary system and a binder such as vinylidene fluoride (PVDF) and a solvent, and in the case of a positive electrode, carbon nanofibers or single-walled carbon nanotubes as a conductive auxiliary agent or Graphene was preferably used.
  • PVDF vinylidene fluoride
  • the negative electrode was formed by adding only carbon as an active material or silicon or silicon oxide (SiOx) to the negative electrode, adding a binder and a solvent to form a slurry, and similarly applying an intermittent pattern or continuous coating and drying to form an electrode.
  • a rubber-based binder was used as the binder for the negative electrode, and water was often used as the solvent.
  • a slot nozzle is used to form an electrode of a fuel cell, when the back roll facing the slot nozzle head is heated, the vicinity of the tip of the slot nozzle dries, and an attempt is made to cool the back roll to prevent it.
  • Patent Document 1 is a method of creating a cathode of a lithium ion secondary battery by a slot die (nozzle) or the like.
  • Patent Document 2 is a method of producing an electrode slurry on an electrolyte membrane for a fuel cell by a roll-to-roll method using a slot die (nozzle).
  • active material particles active material particles, electrolyte particles, and if necessary, conductive auxiliary agents such as carbon and carbon nanofibers are added to form a slurry, and a spray or slot nozzle is used as a base for a current collector. It was applied to the material.
  • the binder becomes non-uniform residual coal when fired, it was ideal to add the minimum amount of binder.
  • the polymer electrolyte is gelled to make it fluid, mixed with the active material, and applied to the current collector or electrolyte polymer or separator, and between the electrolyte polymer and the current collector.
  • the electrodes of a lithium ion secondary battery can be dried by applying a slurry consisting of an electrode active material, a conductive auxiliary agent and a binder to a current collector to form bipolar electrodes, and an all-solid-state battery can be used.
  • a slurry consisting of electrode particles, a conductive auxiliary material, a binder, and a solvent is applied to a current collector and heated to form an electrode, and then a liquid or gel-like electrolyte is injected between the electrode particles and dried to form a solid electrolyte film. Can be done.
  • the slot nozzle is effective because it can increase the production speed, but the "ON roll" that is set facing the heating adsorption roll or the heating roll has the following problems.
  • a solvent of water or N-heptane that dissolves or disperses PVDF or a rubber-based binder which is the above-mentioned binder, alone or in combination with an organic solvent that can dissolve a binder such as normal methylpyrrolidone (NMP) well.
  • NMP normal methylpyrrolidone
  • the evaporated component of the solvent of the slurry such as water or alcohol condenses on the tip of the slot nozzle which is not heated due to the temperature difference, and the condensed solvent adheres to the coating surface of the slurry, or the intermittent coating is completed. Even after that, the tail was pulled and a uniform pattern could not be formed, which had an adverse effect.
  • there is a method of heating the device including the nozzle but when it is heated, the nozzle tip of the slot nozzle tends to dry, and the nozzle opening tends to become skinned and the slurry discharge tends to become unstable. ..
  • Japanese Patent Application Laid-Open No. 2010-149275 invented by the present inventors has such a problem. It was an epoch-making method that could solve the problem and reduce the roundness of the heated adsorption roll at the application temperature to 5 micrometers or less. However, since the roundness changes every time the temperature of the roll is changed, it is necessary to polish it. Not only the productivity was reduced due to the interruption of the work, but also the polishing work by a special device was required each time, resulting in high cost.
  • Patent Document 2 the roll that adsorbs the electrolyte membrane is cooled, the electrode ink is applied to the electrolyte membrane with a slit nozzle, and the roll is rotated to move the electrode ink on the electrolyte membrane adsorbed on the cooling roll with hot air in a subsequent step.
  • a method of heating with infrared rays or the like has been proposed. However, when this method is applied, it takes time to heat after application, so when a low-viscosity slurry is applied, movement and surface flow occur due to the difference in precipitation speed due to the difference in specific gravity of the slurry particles on the coated surface until drying. There was a problem of quality deterioration.
  • the present invention has been made to solve such a problem, and is to improve the highest quality and productivity at a low cost.
  • heating adsorption rolls and heating rolls do not pursue roundness in order to reduce costs.
  • the slurry applied to the substrate is rapidly dried to form a uniform coating film. Since no emphasis is placed on the roundness of heat adsorption rolls, etc., the manufacturing cost is reduced to the utmost limit.
  • the straightness of the tip of the slot nozzle should be 5 microns or less and even 2 microns or less by polishing with a high-precision polishing device at room temperature.
  • the slot nozzle is highly accurate at room temperature, so use the slot nozzle at room temperature so that the heat of the heating adsorption roll or heating roll has no or almost negligible effect. Is. Small diameter rolls can be easily polished to room temperature within ⁇ 1.5 micrometers in the industry.
  • the air assist slot nozzle and mist ejection slit nozzle that support the application of compressed gas, or the multi-nozzle type melt-blown spray nozzle head of the two-fluid spray that atomizes with compressed gas are heated by the flow of gas and heated by the suction drum. Since it is less susceptible to heat from small-diameter rolls, it can be applied on-roll on drums. Further, this on-roll method is suitable for forming electrodes on the electrolyte membrane and the gas diffusion layer of the fuel cell because the solvent is instantaneously volatilized and the electrolyte membrane is not damaged.
  • the present invention has been made to solve the above-mentioned problems, and utilizes a small-diameter roll having a high roundness that is not heated to form a large-diameter heating adsorption roll or a heating roll having a diameter of 200 to 1000 mm or more.
  • the slot nozzle is installed on the ON roll or OFF roll of the unheated small diameter roll so that the slurry can be continuously or pattern coated while maintaining the distance between the base material and the tip of the slot nozzle with high accuracy. Since the small-diameter roll may have a simple shape, it can be heated because the roundness can be maintained with high accuracy even when heated.
  • the present invention can be applied by using a heating adsorption belt, an air assist slot nozzle that uses a compressed gas that can separate the head and the base material on the heating belt, a mist ejection slit nozzle, a melt blown type spray nozzle head, and the like. , Can be dried instantly.
  • An object of the present invention is to form a high-quality fuel cell electrode, a secondary battery electrode, and a high-performance fuel cell, a secondary battery, and an all-solid-state battery, which are laminated to form an electrolyte layer such as an all-solid-state battery or a polymer lithium battery. It is to produce next-generation secondary batteries including batteries and air batteries at high speed and provide them in large quantities.
  • a high-performance secondary battery, fuel cell, etc. are manufactured by instantly volatilizing a solvent on a roll, a heating belt, a heating adsorption belt, etc. to form a high-performance electrode layer, etc., and laminating an electrolyte layer.
  • the movement of the base material may be continuous or intermittent.
  • a slot nozzle or air assist slot nozzle to base it at the start or end of application. This can be achieved by stopping the material, moving the nozzle away from the substrate at the end of coating, and moving the nozzle closer to the substrate at the start of coating.
  • the substrate is set on a heating table or a heating adsorption table instead of a heating transfer device such as a heating adsorption roll of the substrate, and the substrate and an air assist slot nozzle, which is a coating machine, and a mist.
  • the electrode slurry can be applied by selecting from the ejection slit nozzle and the melt blown type spray nozzle and moving them relative to each other to form a desired electrode pattern.
  • the present invention is a method of continuously or intermittently moving a long base material for a battery, applying an electrode slurry to the base material with a slot nozzle to form an electrode, and manufacturing the battery. It is a heating and moving means that heats and moves the applied base material, and has a step of providing a heat-adsorption roll to which adsorption of the base material is added, and a diameter smaller than that of the heat-adsorption roll in the vicinity of the heat-adsorption roll upstream of the heat-adsorption roll. And the process of providing at least one roll of Provided is a method for manufacturing a battery, which comprises a step of applying an electrode slurry by holding a slot nozzle between the small diameter roll and the contact of the base material with the heat adsorption roll.
  • the heating transfer means of the base material is selected from the heat adsorption roll, the heating roll, the heating belt, and the moving means of the base material of the heating adsorption belt, and 5 to 150 Newtons at the place where the base material is removed from the moving means.
  • a method for manufacturing a battery which is characterized by moving while applying tension.
  • the present invention provides a method for manufacturing a battery, which comprises applying a tension of 5 to 150 Newtons to the base material before and after the small diameter roll, and applying the electrode slurry on the off-roll before and after the small diameter roll.
  • the present invention provides a method for manufacturing a battery, wherein the slot nozzle is an air assist slot nozzle or a mist ejection slit nozzle, and the distance between the base material and the nozzle head is set to 0 to 30 mm.
  • the battery is a secondary battery or a fuel cell
  • at least one base material heating transfer means is selected from a heating adsorption roll, a heating roll, a heating belt, and a heating adsorption belt, and an air assist slot nozzle or a compressed gas is used.
  • the feature is that the melt blown type spray nozzle head using the accompanying mist ejection nozzle or the air curtain by the compressed gas is moved relative to the heating moving means, and the electrode slurry is applied to the base material moved by the heating moving means.
  • the roundness of the heating adsorption roll or the heating roll is ⁇ 50 micrometers or less, and the electrode slurry is applied on the off-roll immediately before the base material comes into contact with the heating adsorption roll or the heating roll.
  • a method for manufacturing a characteristic battery is provided.
  • the battery is a secondary battery
  • the base material is selected from a current collector, an electrolyte membrane, a separator, an electrode layer forming current collector, and an electrode layer / electrolyte layer forming current collector
  • the electrode slurry is an electrode slurry.
  • the present invention provides a method for manufacturing a battery, wherein the secondary battery is an all-solid-state battery or a semi-solid-state battery.
  • the present invention is a method for producing a battery, wherein the temperature of the slot nozzle or slurry is set to be equal to or lower than the boiling point of the solvent contained in the slurry, and the temperature of the heated adsorption roll is 30 ° C. or higher higher than the temperature of the slot nozzle or slurry. I will provide a.
  • the slurry of the present invention provides a method for manufacturing a battery, which is characterized in that it is handled at room temperature.
  • the present invention is a method for manufacturing a battery by continuously or intermittently moving a long base material for a battery and applying an electrode slurry to the base material in combination with a compressed gas to form an electrode.
  • a heating transfer means of at least one base material is selected from a heating adsorption roll, a heating roll, a heating belt, and a heating adsorption belt, and an air assist slot nozzle or a mist ejection with a compressed gas is ejected.
  • a battery characterized in that a melt-blown spray nozzle head using a nozzle or an air curtain with a compressed gas is moved relative to the heating moving means, and an electrode slurry is applied to a base material moved by the heating moving means.
  • the present invention is a method in which a base material for a battery is set on a heating table or a heating and adsorption table, and an electrode slurry is applied to the base material with a coating machine using a compressed gas to form a square electrode to manufacture a battery.
  • the base material is a melt-blown spray nozzle head in which the battery is a secondary battery or a fuel cell, and the coating machine is an air assist slot nozzle, a mist ejection nozzle with a compressed gas, or an air curtain with a compressed gas.
  • a gel polymer, a dry polymer, or the like can be used for a semi-solid battery, and a sulfide type, an oxide type, or the like can be used for the all solid state battery.
  • a slurry such as an electrode is applied to a base material such as a current collector with a slot nozzle, an air assist slot nozzle, a mist ejection slit nozzle, or a melt blown type spray nozzle head. It can be moved to a heat-adsorption roll or the like or applied on a heat-adsorption roll or the like and instantly dried at least by touch. Since 99% or more of the solvent amount can be volatilized instantly after wetting the substrate, for example, within 3 seconds, the desired coating distribution can be maintained, the adhesion between the substrate and the electrode can be improved, and the interfacial resistance can be lowered. It is ideal because it can be done.
  • mist ejection slit nozzle and the melt blown type spray nozzle head can be used, so that the nozzle head consisting of the active material, the electrolyte, the conductive auxiliary agent, etc. is separately independent.
  • Mist-like (including spray particle state, ultrasonic waves, bubbling, etc.) to make a slurry prepared by using or mixing one type of slurry or at least two types of materials with mechanochemicals. Can be applied as well.
  • the spray method or the pulsed spray method belonging to the spray can be applied to the method of ejecting in the form of mist
  • the slurry composed of the active material particles, the slurry composed of the electrolyte, and the conductive auxiliary agent are used in order or in any order according to the flow method of the base material.
  • Each head of the slurry or the like can be arranged in a desired order or in any order, and a desired amount of each can be applied as a thin film or dispersed and laminated to form a desired mixed state. Since the method of applying particles can form fine irregularities, the surface area of electrodes and the like can be increased, which leads to improvement in battery performance.
  • the melt blown spray nozzle is a nozzle in which a plurality of nozzles are arranged in one or more rows on one head, and a liquid such as a slurry or a molten resin is sprayed on a wide base material by a compressed gas such as pressurized air. Point to.
  • the present invention is not limited to a single nozzle head as described above, and a plurality of heads can be arranged in a plurality of rows in the moving direction of the base material and the traverse direction of the heads and laminated as a thin film.
  • a plurality of heads can be arranged in a plurality of rows in the moving direction of the base material and the traverse direction of the heads and laminated as a thin film.
  • the amount of electrodes in one layer per square centimeter can be adjusted to 0.01 to 0.3 milligrams, which is an extremely small amount of laminated weight. Effective for high-performance materials to which a small amount is added. Therefore, in the present invention, for example, 2 to 30 layers of thin films can be laminated.
  • the coating amount per layer can be reduced by combining with a heating adsorption drum, etc., but in order to further reduce the coating amount per layer, the solid content of the slurry or solution should be 10% or less by weight, for example 3% or less. You can even do that. It is extremely difficult to apply such a low solid content and low viscosity material to a pattern such as a rectangle by the slot nozzle method, but the air assist slot nozzle, mist ejection slit nozzle, and melt blown type spray head of the present invention should be used. Can achieve the purpose.
  • sharp coating is applied by providing an air curtain means using compressed gas at at least one side of the spray pattern end (the end of the pattern at the end of a plurality of spray patterns) of the mist ejection slit nozzle or the melt blown type nozzle head. Lines can be formed. Air curtain means can also be provided at the ends of the spray patterns on both sides.
  • the spray angle of each nozzle of the melt-blown spray head is 20 degrees or less, preferably 15 degrees or less, and the distance between the base material and the nozzle is 70 mm or less, preferably 40 mm or less, so that the scattering of particles is extremely small.
  • a pattern can be formed.
  • a better maskless electrode pattern can be formed in combination with the above-mentioned air curtain means using compressed gas.
  • This method is also effective for forming electrode patterns on the electrolyte membrane of fuel cells.
  • One or more nozzles using an airless spray nozzle for example, spraying at a low pressure of about 0.2 to 0.5 MPa and applying using the part of the liquid film before becoming particles
  • This method is particularly effective for forming electrodes of a fuel cell.
  • the micro curtain coat can also be applied on the ON roll, but it is important to level the electrode slurry on the substrate and then dry it in order to improve the coating film distribution, and turn it off immediately before the heating roll, etc. It is preferable to apply on a roll.
  • the flow rate distribution at the moment of application of the micro curtain coat becomes a fishtail pattern with many ends of the spray, and the solvent volatilizes instantly on the heating roll, so the pattern is set as it is. Therefore, by applying multiple patterns by pitch feed or the like, the surface area can be increased if the aesthetics are not pursued, and the electrode performance can be improved. In particular, if it is applied to the electrode formation of a fuel cell, the mask can be completely eliminated in the traverse direction, which is effective.
  • the merit of making the solid content concentration as described above is that the thinner the thin film is and the more the material is laminated, the more uniform the coating amount per unit area becomes even if the desired amount of the material is very small. By laminating, an ideal mixed state of a plurality of materials can be created.
  • a microporous breathable base material for example, a heat-resistant breathable plastic film such as dust-free paper or PVDF.
  • a heating adsorption drum is heated at 50 to 200 ° C. through them, and suction is performed with a commercially available inexpensive vacuum pump having a vacuum degree of about -60 kPa to heat the substrate. Since it has good conductivity, it can be temporarily dried quickly. Since the purpose of the breathable base material is not to damage the coated surface, it is economical to wrap it around a heat adsorption drum.
  • a mask in addition to the above-mentioned air curtain means, a mask can be laminated on a current collector or the like as a base material. Adhesives are scattered in a porous shape using gravure rolls or the like on both sides other than the electrode forming portion of the base material, and a masking base material hollowed out to the electrode size is attached and moved to move the slot nozzle and spray. It can be used regardless of the method to form an accurate electrode pattern.
  • the masking base material is particularly effective for a mist ejection slit nozzle for atomizing a slurry, a melt blown spray method, and the like.
  • an alumina porous ceramic cylindrical molded body having good thermal conductivity can be used, and many holes having a diameter of 0.1 to 1 mm are formed in a cylinder such as stainless steel at a pitch of 1 to 3 mm, for example, in a staggered pattern.
  • a cylinder such as stainless steel
  • Innumerable drilling can usually be done with a laser, electron beam, or the like.
  • dust-free paper or porous film such as micrometer order is laminated on the base material and transported, or a heat adsorption drum.
  • a plurality of layers can be wound, or a plurality of breathable base materials are prepared and fine ones are laminated in order from a coarse one, so that a heating adsorption drum can be manufactured at low cost, which is economical.
  • a breathable base material on the order of micrometer or nanometer has the same effect as a heating adsorption drum on the order of micrometer or nanometer, so the cost performance is outstanding in terms of performance.
  • they are not limited to singular or plural, and can be unwound together with the base material and used for winding.
  • an electrolyte film of 10 ⁇ m or less of a fuel cell, a slurry for direct electrodes or the like is laminated as a thin film by a slot nozzle or the like as necessary. It is possible to manufacture batteries such as fuel cells and secondary batteries by forming electrodes and electrolyte layers that are stable in quality.
  • high-quality electrodes and electrolyte layers can be formed, and by extension, batteries such as secondary batteries such as high-performance all-solid-state batteries and fuel cells can be manufactured.
  • FIG. 5 is a schematic cross-sectional view of the arrangement of a heating (adsorption) roll, a small diameter roll, a base material, and a slot nozzle according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view relating to a combination of a heating (adsorption) roll, a small diameter roll, a base material and a slot nozzle according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view regarding the arrangement of a heating (adsorption) roll, a base material, a small diameter roll, a slot nozzle, etc., and a moving direction of the breathable base material, etc. according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an inverted base material and other components for forming a second electrode according to an embodiment of the present invention. It is a schematic cross-sectional view of the moving direction of the base material etc. of the application edition of the second electrode formation of the embodiment of this invention.
  • FIG. 5-2 is a schematic view in which a melt-blown spray head is applied while traversing at right angles to the traveling direction of the base material on the heating (adsorption) roll according to the embodiment of the present invention. It is a schematic cross-sectional view which electrode formed on both sides of the base material which concerns on embodiment of this invention. It is a schematic sectional drawing of the air assist slot nozzle which concerns on embodiment of this invention.
  • a small-diameter roll 4 having a diameter smaller than that of the heat-adsorption drum is provided upstream of the heat-adsorption drum 1, and the base material 2 unwound by the unwinding device 5 passes between the small-diameter roll 4 and the heat-adsorption drum 1 via the nip roll 10.
  • An electrode slurry or the like (not shown) is applied on the OFF roll by the slot nozzle 3 and wound by the downstream winding device 6.
  • a micrometer-order breathable substrate (not shown) can be wound in one or more layers on the heat adsorption drum. Electrodes may be formed on the opposite side of the base material.
  • the application to the base material by the slot nozzle 3 may be an ON roll on the small diameter roll 4 or an OFF roll before and after the small diameter roll up to the heat adsorption roll.
  • the OFF roll it is desirable that a tension of 5 to 150 Newton is applied to the base material.
  • the open / close valve mechanism in the slot nozzle can be clean-cut by using a sackback type generally used in the industry (not shown), a rectangular or square electrode pattern can be formed. Further, when it is desired to provide a plurality of patterns orthogonal to the moving direction, it is possible to assemble shims formed to the desired pattern dimensions.
  • FIG. 2 is a diagram in which a plurality of small diameter rolls (14, 14') are installed in the configuration of FIG.
  • the slot nozzle 13 may be arranged on the small diameter rolls 14, 14', or on the front and rear, OFF rolls. Further, the small diameter roll may be heated.
  • FIG. 3 shows an ON roll on the small diameter roll 34, and the electrode slurry is applied to the base material 32 by the slot nozzle 33 to form the electrode pattern 205.
  • the protective base material 38 is laminated on the unwinding base material 32 and the electrode 205 by the protective base material unwinding device 39 on the electrode 205 dried on the heat adsorption roll 31, and is wound up as a composite by the winding device 36.
  • the protective base material may be a breathable base material, and the material, type, and shape are not limited, but the cost is the lowest, and the electrode may be selected from those that are not transferred or those that are difficult to transfer. It can be applied using a slot nozzle on a heated small-diameter roll with good roundness. Air assist slot nozzles, mist ejection slit nozzles, and melt blown sprays are effective on heated small-diameter rolls, and they can also be applied on heated adsorption rolls.
  • the back sheet 165 is peeled off upstream of the base material 42 on which the first electrode is formed and wound by the back sheet winding device 102.
  • An electrode slurry is applied to detect the position where the first electrode is formed on the opposite surface with a detection sensor and to form the second electrode or the same electrode with the slot nozzle 43.
  • the breathable base material 138 that protects the first electrode and moves on the heat adsorption drum is wound by the breathable base material winding device 101.
  • the base material on which the first and second electrodes are formed is taken up by the take-up device 46 together with the new protective base material 148.
  • the protective base material may be a breathable base material, but a base material that does not affect the electrode surface and has a low cost can be selected.
  • FIG. 5 is a schematic cross-sectional view in which electrodes are formed by a spray method instead of a slot nozzle. Except for the spray, the configuration can be almost the same as that shown in FIG.
  • An air assist slot nozzle coating method in which the electrode slurry is used as a mist and is applied together with the compressed gas along the electrode ink flowing out from the mist ejection slit nozzle or the slot nozzle is preferable.
  • the coating method using the melt blown type spray nozzle head 203 including the narrow angle spray group using the air curtain means using the compressed gas can eliminate the need for a mask.
  • a mask having a desired pattern shape should be installed.
  • the base material may be an electrolyte membrane for a fuel cell or a separator for a lithium ion battery. Further, this method is not limited to the formation of the second electrode, and the electrode or the electrolyte layer can be formed on only one side of the base material.
  • FIG. 5-2 is a diagram of a pattern being applied to the base material on the heating drum (roll) 51 of FIG. 5 by the melt blown type spray nozzle head 203 while traversing orthogonally to the traveling direction of the base material.
  • the total coating pattern width can be widened.
  • FIG. 6 is a cross-sectional view in which a first electrode 305 and a second electrode 305'are formed on both sides of the base material 302, and a protective base material 348 is laminated on the second electrode. It is suitable for fuel cells in which the base material is an electrolyte membrane and the positive and negative electrodes are formed.
  • the second electrode may be an electrode having the same pole as the first electrode.
  • FIG. 7 is a schematic cross-sectional view of the air assist slot nozzle (AAS).
  • the electrode slurry 770 passes through the inside of the AAS as a liquid film and is discharged from the tip of the head of the AAS.
  • the liquid film is assisted by the compressed gas flowing out from both sides of the head and applied to the base material 702 to become an electrode.
  • a sharp edge of the electrode pattern 705 can be formed by adjusting the ON / OFF timing of the compressed gas with respect to the ON / OFF of the electrode slurry.
  • the outflow of compressed gas may be continuous or intermittent.
  • the slurry can be pushed by the force of the compressed gas when the surface of the base material is uneven.
  • the tip of the nozzle can be moistened and the build-up of solid matter can be prevented.
  • FIG. 8 is a schematic cross-sectional view of the mist ejection slit nozzle 803.
  • the electrode 805 can be formed by applying the electrode mist 880, which has become mist, to the base material 802 while moving the mist ejection nozzle 803 and the base material 802 relative to each other.
  • the mist can collide ultrasonic waves, bubblers, or spray particles upstream of the slit nozzle with the liquid surface or the like at a close distance to atomize them and move them inside the slit nozzle with carrier gas.
  • the electrode slurry can be sprayed with a compressed gas in a slit nozzle having a wide slit groove width to form spray particles, which can be ejected from the opening of the slit nozzle.
  • the slit groove width 890 extends to a desired length in the base material width direction orthogonal to the moving direction of the base material 802 to form a slit opening.
  • the slit groove width 890 may be 1 to 30 mm in the moving direction relative to the base material, and the slit length may be longer than the slit groove, for example, 50 to 1500 mm.
  • a slit nozzle having a slit length of 1000 mm may be used, and the traveling direction of the base material and the slit nozzle may be orthogonal or substantially orthogonal to each other.
  • the 100 mm narrow slit nozzle can be traversed orthogonally to the substrate to apply a 1000 mm x 100 mm pattern.
  • the slit groove width can be set to 5 mm or less with respect to the moving direction of the base material to maintain the sharpness and film thickness distribution of the edges of the pattern at the start and end of coating. Further, if the thickness is 10 mm or more, the same effect as thin film lamination is obtained, so that it is suitable for a continuous coating method. Needless to say, it is better to arrange a plurality of mist ejection slit nozzles in a plurality of rows in the substrate moving direction.
  • a plurality of spray nozzles having a narrow angle of a melt blown spray nozzle head are arranged in a row so that adjacent spray patterns 903 interfere with each other, and two independent opening / closing mechanisms upstream of the adjacent spray nozzles are pulsed.
  • the timing is staggered so that the spray flow does not interfere in the air, and finally it is possible to recoat.
  • the electrode 905 can be formed by allowing a fine compressed gas to flow down from the air curtain nozzle 990 at the very end of the spray pattern at both ends so that the spray particles do not come out.
  • FIG. 9-2 the arrangement of a plurality of nozzles of the melt blown type spray nozzle head is arranged in two rows, and the same effect can be obtained.
  • FIG. 10 shows a compressed gas air curtain nozzle so that particles of the spray flow 1100 from a plurality of spray nozzles 1003 arranged in a row on the melt blown type spray nozzle head and the spray flow particles at both ends sprayed on the base material 1002 do not scatter to the outside. It is a figure which flows down from 1200 and forms an air curtain.
  • the base material is a fuel cell electrolyte membrane
  • the melt blown spray nozzle head can be traversed orthogonal to the traveling direction of the electrolyte membrane to form electrodes having a width between the air curtains at both ends without a mask.
  • the spraying is performed in a pulsed manner, and the pitch can be moved so that the spray patterns overlap to obtain a uniform distribution.
  • Multiple spray nozzles can be arranged in 2 to 5 rows to increase uniformity, and traverse speed can be increased to increase productivity.
  • the present invention is particularly effective for next-generation secondary batteries such as all-solid-state batteries and semi-solid-state batteries among secondary batteries, but can be applied to a wider range. It is effective for forming electrodes of supercapacitors. It is effective for forming electrodes of fuel cells. Furthermore, it is effective for products in which a coating agent containing a functional material, which is a roll-to-roll method of applying a liquid or a melt to a long base material, or an adhesive / adhesive is applied. Applications in different fields other than wallpaper and labels for building materials, for example, resist coating in the electronics field, coating in the flat panel display field, coating on beam pharmaceuticals such as new delivery systems, etc. Effective for a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 全固体電池、半固体電池を含む二次電池や燃料電池の生産性と品質を高くする。 【解決手段】 加熱吸着ロールの上流に小径ロールを設け、前記小径ロール上またはOFFロール上でスロットノズルを用いて電極スラリーを塗布し、加熱吸着ロールで瞬時に溶媒を蒸発させて電極を形成する。

Description

電池の製造方法及び電池
 本発明は電池向け材料の基材への塗布にマスクを不要にする、あるいはマスクに重きを置かない塗布方法を用いて電池を製造する方法に係わり、より具体的には主にスラリーなどの液体の液膜で長尺の電池用基材、例えば燃料電池や二次電池用基材に電極用スラリーや電解質材料等を塗布する業界でスロットダイ、スリットダイ、スロットノズル等と呼ばれるヘッドによる塗布方法により製造した燃料電池や二次電池等の電池に係る。或いは電極用スラリーなどをミストにしたり圧縮気体を用いて二流体スプレイし基材に塗布するとき所望する塗布パターン外に粒子が飛び散らないか性能に影響しないレベルにして電池を製造する方法に係わる。二次電池は充放電する蓄電池であって、例えばリチウムイオン二次電池、リチウムイオンポリマー電池、次世代二次電池の代表格の全固体電池、半固体電池、金属空気電池等を含む。
基材の材質、形状は特に限定せず燃料電池や二次電池用基材であれば良く、例えばアルミニューム、銅、ステンレススチールなどの金属製箔、あるいはポリマー導電性フィルムの正極負極の集電体、セパレーター、半固体電池用電解質ポリマー、全固体電解質層、集電体に形成した活物質を含む電極層、更に電極層上に積層された電解質層などがあげられる。燃料電池の場合の基材は電解質膜やガス拡散層などがあげられる。塗布する材料は二次電池では活物質を含む正極または負極用電極スラリー、電解質ポリマー溶液、電解質スラリーなどで良く、スロットノズルにより塗布するとパターン塗布する場合でもマスクは不要で、生産性の面で特に効果的である。
また本発明でのスロットノズルは少なくともヘッドのスラリーが流出する開口部に対し少なくとも片側に圧縮気体を流して圧縮気体でアシストしながら塗布する方法や、低圧例えば0.2乃至0.5MPa程度の液圧でエアレススプレイノズルで液体をスプレイしスプレイ粒子になる前の液膜の箇所で単数または複数のノズルを使用してスプレイパターンをラップさせながら塗布するマイクロカーテンコートによる塗布を含む。またスリットの開口部内で、またはスリットの上流でスラリーの粒子(ミスト)を発生させてスリット開口部からミストを噴出して塗布するミスト噴出ノズルによる塗布方法も含む。更にはスプレイヘッドに一列または複数列に複数のスプレイノズルを配置し溶融体や液体を圧縮気体で繊維化あるいは粒子化するメルトブローン式スプレイノズルヘッドであってノズルのスプレイ角度が20度以下の狭い角度のスプレイノズルによる塗布も含む。
また、本発明はスーパーキャパシタと呼ばれる電気二重層コンデンサや積層セラミックコンデンサ(MLCC)などのコンデンサ製造にも応用できる。またMLCCの構造を利用した全固体電池にも応用できる。
 従来、リチウムイオン二次電池用集電体に正極或いは負極電極用活物質スラリーをスロットノズルで間欠のパターンまたは連続塗布し乾燥していた。一般的に前記スラリーは主に正極用には活物質粒子例えば三元系とフッ化ビニリデン(PVDF)などのバインダーと溶媒からなり、正極の場合導電助剤のカーボンナノファイバーや単層カーボンナノチューブあるいはグラフェンが好ましく用いられていた。一方負極は活物質としてカーボンのみまたはそれにシリコンや酸化シリコン(SiOx)を加えて同じくバインダーと溶媒を加えてスラリーにして同じく間欠のパターンまたは連続塗布し乾燥させて電極を形成していた。
負極のバインダーはゴム系バインダーが用いられ溶媒は水が多く用いられていた。一方燃料電池の電極形成にスロットノズルを使用する場合スロットノズルヘッドと対峙したバックロールを加熱するとスロットノズルの先端付近が乾燥するのでそれを防ぐためバックロールを冷却する試みがなされている。
 特許文献1はリチウムイオン二次電池のカソードをスロットダイ(ノズル)などにより作成する方法である。
 特許文献2は燃料電池用電解質膜に電極用スラリーをスロットダイ(ノズル)によりロール・ツー・ロール(Roll to Roll)方式で製造する方法である。
 一方全固体電池の正極電極形成は活物質粒子と電解質粒子と必要により導電助剤のカーボンやカーボンナノファイバーなどを付加し溶媒を加えてスラリーにしてスプレイやスロットノズルなどで集電体などの基材に塗布していた。またバインダーは焼成した際に不均一な残炭となることから最低限のバインダーを加えることが理想であった。また半固体電池(Semi solid Batteries)の場合はポリマー電解質をゲル状にして流動性を持たせ活物質と混合して集電体または電解質ポリマーまたはセパレーターに塗布し電解質ポリマーと集電体の間に電極が位置するように前記集電体、電解質ポリマー、セパレーターのいずれかまたは両方に塗布し電極を介在させたら良い。
更に本発明では、リチウムイオン二次電池の電極を電極活物質と導電助剤とバインダーからなるスラリーを集電体に塗布して乾燥させ両極の電極を形成することができるし、全固体電池で集電体に電極粒子と導電助材とバインダーと溶媒からなるスラリーを塗布し加熱して電極形成したのち、液状またはゲル状電解質を電極粒子間に注入して乾燥し電解質固体膜を形成させることができる。
 スロットノズルは生産スピードを上げられるために効果的であるが加熱吸着ロールや加熱ロールと対峙してセットする「ONロール」では以下の問題があった。前記のバインダーであるPVDFやゴム系バインダーを溶解あるいは分散する水やN-ヘプタンの溶媒を単独で、あるいはノルマルメチルピロリドン(NMP)などのバインダーを良く溶解できる有機溶剤と混合して使用する場合、塗工の際のバックロールとしての加熱吸着ロールまたは加熱ロールの熱がスロットノズル先端に伝導し、特に塗布休止時スロットノズルの先端内の溶媒が揮発していた。また燃料電池の電極形成では水やアルコールなどのスラリーの溶媒の蒸発分が温度差で加温しないスロットノズルの先端に結露して、結露した溶媒がスラリーの塗布面に付着したり、間欠塗布終了後も尾を引いて均一なパターン形成ができないなどして悪影響を与えていた。
それを防ぐためノズルを含めた装置を加熱する方法があるが加熱するとスロットノズルのノズル先端が乾燥しやすくなり、ノズル開口部に皮張りが発生しスラリーの吐出が不安定になる傾向にあった。
スロットノズルの開口部全体的に皮張が発生するのは論外であるが、ごく微量部分的に皮張りしても業界用語でストリークと呼ばれるスジが発生し致命的な欠陥になっていた。
溶媒が水の場合、皮張りしたバインダーは水で再溶解しない課題があった。
また室温で真円度を数ミクロン以下に研磨装置で研磨した吸着ロールであっても加熱すると複雑な構造故ロールは大きくたわみ変形して真円度が極めて悪かったため加熱吸着ロールのONロール上でスロットノズルにより薄膜で塗布するのは極めて難しかった。
前述のごとく加熱吸着ロールのような複雑な内部構造のロールを加熱すると大きく変形するが、そのようなロールであっても本発明者らにより発明された特開2010-149275はそのような問題を解決しアプリケーション温度の加熱吸着ロールの真円度を5マイクロメートル以下にできる画期的方法であった。しかしロールの温度を変更するたびに真円度が変化するため研磨をする必要があった。作業を中断するための生産性低下ばかりでなくその都度特殊装置による研磨作業が必要で高いコストが発生していた。
加熱吸着ロールが変形すると、液膜を介して基材と接触するスリットノズルやスロットノズルあるいはスロットダイと業界で呼ばれる方法で行うとノズル先端と基材との距離が変化し距離が離れ過ぎる箇所が発生する課題があった。そのような現象が起きると特にウェットで例えば20マイクロメートル以下の比較的薄膜で塗布するとノズル先端と基材の距離が離れた個所では大きなうろこ状のポーラスの塗布面になり均一な塗布面を得ることは極めて困難であった。
特許文献2では電解質膜を吸着するロールを冷却して電極インクを電解質膜にスリットノズルで塗布し、ロールを回転移動して冷却ロールに吸着された電解質膜上の電極インクを後工程で熱風や赤外線などで加熱する方法が提案されている。 
しかしこの方法を応用すると塗布後、加熱するまで時間がかかるため低粘度のスラリーを塗布すると乾燥までの間に塗面でスラリーの粒子の比重差による沈殿スピードの違いによる移動や表面の流れが生じ品質低下する課題があった。
特表2019-507469 特開2015-15258
 本発明はこのような課題を解決するためになされたもので、低コストでありながら最高の品質と、生産性を高めることである。詳細には以下を満足することである。つまり加熱吸着ロールや加熱ロールはコスト低減のため真円度を追求しない。基材に塗布されたスラリーは急速に乾燥させて均一な塗膜とする。加熱吸着ロールなどの真円度に重点を置かないため、製造コストを極限まで下げる。一方スロットノズル先端の真直度は室温での高精度研磨装置で研磨することにより5ミクロン以下更には2ミクロン以内にすること。スロットノズルの室温で高精度にしてもコストは高くないのは業界の常識であるのでスロットノズルを室温で使用して加熱吸着ロールまたは加熱ロールの熱の影響が皆無またはほとんど無視できるレベルにすることである。
小径ロールは業界では室温の研磨で真円度を±1.5マイクロメートル以内にすることが容易にできる。
また圧縮気体を塗布時のサポートとするエアアシストスロットノズルやミスト噴出スリットノズル或いは圧縮気体で微粒子化する二流体スプレイのマルチノズルタイプのメルトブローン式スプレイノズルヘッドは気体の流れで加熱吸着ドラムや加熱した小径ロールなどからの熱の影響を受けにくくなるのでドラム上などのオンロールでの塗布も可能である。
またこのオンロール方法は瞬間的に溶媒を揮発させ電解質膜にダメージを与えないので燃料電池の電解質膜やガス拡散層への電極形成にも好適である。
 本発明は前述の課題を解決するためになされたもので、加熱しない真円度の高い小径ロールを活用して直径が200乃至1000ミリメートルのあるいはそれより更に大きい大径加熱吸着ロールまたは加熱ロールと組み合わせ、加熱していない小径ロールのONロールまたはOFFロール上にスロットノズルを設置して基材とスロットノズル先端の距離を高精度に保持しながらスラリーを連続またはパターンコーティングできるようにする。小径ロールは単純形状でよいので加熱しても真円度を精度良く保持できるので加熱することができる。本発明は加熱吸着ベルトや加熱ベルト上でヘッドと基材の距離を離すことができる圧縮気体を使用するエアアシストスロットノズル、ミスト噴出スリットノズル、メルトブローン式スプレイノズルヘッドなどは使用して塗布ができ、瞬時に乾燥させることができる。本発明の目的は高品質の燃料電池電極形成、二次電池電極形成、更には全固体電池やポリマーリチウム電池等の電解質層を形成するに当たり積層し高性能な燃料電池、二次電池、全固体電池や空気電池を含む次世代二次電池を高速生産し大量に提供することである。
より具体的にはロール・ツー・ロール(Roll to Roll)の二次電池用基材を加熱吸着ロールまたは加熱ロールに移動する直前にスロットノズルで電極用スラリー等を塗布し、加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルト等の上で溶媒を瞬時に揮発させ高性能の電極層等を形成し、電解質層を積層したりして高性能な二次電池や燃料電池等を製造する。尚基材の移動は連続的でも間欠的でも良い。良好な電極パターンを所望し塗布開始時または終了時のパターンの美しさを求める場合で、粘度の特に低いスラリーを塗布する場合はスロットノズルまたはエアアシストスロットノズルを用いて塗布開始時や終了時に基材を停止し、塗布終了時はノズルを基材から離す方向に移動させ、塗布開始時はノズルを基材に近づける様に移動することで達成できる。また基材の移動方向と直交してメルトブローン式スプレイノズルヘッドやミスト噴出スリットノズルなどをトラバースして塗布する場合は間欠的に加熱ロールなどを移動して加熱ロール等の停止時に塗布することが望ましく、粒子にして塗布する場合はONロール上でもよい。もちろんのこと枚葉の基材には、基材の加熱吸着ロールなどの加熱移動装置でなく加熱テーブルや加熱吸着テーブルに基材をセットして基材と塗布機であるエアアシストスロットノズル、ミスト噴出スリットノズル、メルトブローン式スプレイノズルから選択して相対移動をさせて電極スラリーを塗布し所望する電極パターンを形成できる。
 本発明は電池用の長尺の基材を連続的または間欠的に移動して基材に電極用スラリーをスロットノズルで塗布し電極を形成し電池を製造する方法であって、電極用スラリーを塗布した基材を加熱し移動する加熱移動手段であり、基材の吸着を付加した加熱吸着ロールを設ける工程と、前記加熱吸着ロールの上流に加熱吸着ロールに近接して前記加熱吸着ロールより小径の少なくとも一つのロールを設ける工程と、
前記小径ロール上と加熱吸着ロールに前記基材が接するまでとの間でスロットノズルをもって電極用スラリーを塗布する工程とからなることを特徴とする電池の製造方法を提供する。
 本発明は前記基材の加熱移動手段が加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルトの基材の移動手段から選択され、前記基材が前記移動手段を外れた箇所で5乃至150ニュートンの張力をかけながら移動することを特徴とする電池の製造方法を提供する。
 本発明は前記小径ロールの前後の基材に5乃至150ニュートンの張力をかけ、前記小径ロールの前後のオフロール上で電極スラリーを塗布することを特徴とする電池の製造方法を提供する。
 本発明は前記スロットノズルがエアアシストスロットノズルまたはミスト噴出スリットノズルであって基材とノズルヘッドの距離を0乃至30ミリメートルに設定することを特徴とする電池の製造方法を提供する。
 本発明は電池が二次電池または燃料電池であって、加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルトから少なくとも一つの基材の加熱移動手段を選択し、エアアシストスロットノズルまたは圧縮気体を伴うミスト噴出ノズルまたは圧縮気体によるエアカーテンを併用したメルトブローン式スプレイノズルヘッドを前記加熱移動手段と対峙して相対移動して前記加熱移動手段で移動する基材に電極スラリーを塗布することを特徴とする電池の製造方法を提供する。
 本発明は前記加熱吸着ロールまたは加熱ロールの真円度が±50マイクロメートル以下であって、前記加熱吸着ロールまたは加熱ロールに基材が接触する直前のオフロール上で電極スラリーを塗布することを特徴とする電池の製造方法を提供する。
 本発明は電池が二次電池であって前記基材が集電体、電解質膜、セパレーター、電極層形成集電体、電極層・電解質層形成集電体から選択され、前記電極スラリーが電極スラリー、電解質スラリー、電解質溶液から選択されることを特徴とする電池の製造方法を提供する。
 本発明は前記二次電池が全固体電池または半固体電池であることを特徴とする電池の製造方法を提供する。
 本発明は前記スロットノズルまたはスラリーの温度がスラリーに含有される溶媒の沸点以下とし、前記加熱吸着ロールの温度が前記スロットノズルまたはスラリーの温度より30℃以上高いことを特徴とする電池の製造方法を提供する。
 本発明の前記スラリーは室温でハンドリングすることを特徴とする電池の製造方法を提供する。
 本発明は電池用の長尺の基材を連続的または間欠的に移動して基材に電極用スラリーを圧縮気体と併用して塗布し電極を形成し電池を製造する方法であって、前記電池が二次電池または燃料電池であって、加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルトから少なくとも一つの基材の加熱移動手段を選択し、エアアシストスロットノズルまたは圧縮気体を伴うミスト噴出ノズルまたは圧縮気体によるエアカーテンを併用したメルトブローン式スプレイノズルヘッドを前記加熱移動手段と対峙して相対移動して前記加熱移動手段で移動する基材に電極スラリーを塗布することを特徴とする電池の製造方法を提供する。
 本発明は加熱テーブルまたは加熱吸着テーブルに電池用基材をセットし、前記基材に電極用スラリーを圧縮気体を併用した塗布機で塗布し四角形の電極を形成し電池を製造する方法であって、前記電池が二次電池または燃料電池であって、前記塗布機がエアアシストスロットノズルまたは圧縮気体を伴うミスト噴出ノズルまたは圧縮気体によるエアカーテンを併用したメルトブローン式スプレイノズルヘッドであって前記基材と相対移動して基材に四角形の電極を形成するに当たり、前記四角形の4辺の内少なくとも2辺はマスクを用いずに電極スラリーを塗布して電極を形成することを特徴とする電池の製造方法を提供する。
 本発明での前記電解質は半固体電池向けではゲルポリマーやドライポリマーなどを、全固体電池では硫化物系、酸化物系などを使用することが出来る。
 本発明の二次電池等の電極製造方法によれば基材例えば集電体などに電極などのスラリーをスロットノズル、エアアシストスロットノズル、ミスト噴出スリットノズル、メルトブローン式スプレイノズルヘッドで塗布し、瞬間的に加熱吸着ロール等まで移動させ或いは加熱吸着ロール等上で塗布し、瞬時に少なくとも指触乾燥させることができる。基材を濡らした後瞬時に、例えば3秒以内に溶媒量の99パーセント以上を揮発することができるので、所望する塗布分布を維持し、基材と電極の密着性を高め、界面抵抗を低くできるので理想的である。
 また本発明ではスロットノズル方式で塗布する方法のみに限らず、ミスト噴出スリットノズルやメルトブローン式スプレイノズルヘッドを使用できるので、活物質と電解質と導電助剤等からなる材料を別々に独立したノズルヘッドを用いて、あるいはそれらを混合した1種類のスラリー或いは少なくとも2種類以上の材料をメカノケミカル混合して作成したスラリーをミスト状(スプレイ粒子状態を含み超音波などやバブリングなどで煙霧体にすることも含む)にして塗布できる。ミスト状にして噴出する方法はスプレイ法あるいはスプレイに属するパルス的スプレイ法を応用できるので、基材の流れ方法に順番にあるいは順不同に活物質粒子からなるスラリー、電解質からなるスラリー、導電助剤からなるスラリー等の各ヘッドを所望する順番あるいは順不同に配置し、それぞれ所望する量を薄膜で或いは分散塗布し積層して所望する混合状態を形成できる。粒子にして塗布する方法は微細な凹凸を形成できるので電極などの表面積を広くできるので電池の性能アップにつながる。さらにパルス的に塗布することでパルス状のパターンの少し大きな凹凸と前記微細な凹凸の組み合わせになるのでより効果的である。またスロットノズルとミスト噴出スリットノズルとの組み合わせで積層でき、それらとまたはそれらの一つの方式とメルトブローン式スプレイノズルと組み合わせスプレイあるいはパルス的スプレイを行うことができる。尚メルトブローン方式スプレイノズルとは一つのヘッドに複数の噴出口(ノズル)が1列或いは複数列配置して広幅基材にスラリー等の液体や溶融樹脂を加圧エア等の圧縮気体によりスプレイするものを指す。
 更に本発明では前述のように単一のノズルヘッドに限定するものでなく複数のヘッドを基材の移動方向やヘッドのトラバース方向に複数列配置し薄膜で積層出来る。特にエアアシストスロットノズルやミスト噴出スリットノズルあるいはメルトブローン式ノズルヘッドを用いることにより平方センチメートル当たりの1層の電極量を0.01~0.3ミリグラムと極めて少量の積層重量を調整できるので導電助剤や少量付加する高機能材料に効果的である。
そのため本発明では例えば2~30層の薄膜積層もできる。加熱吸着ドラムなどとの組み合わせで1層当たりの塗布量を少なくできるが、更に1層当たりの塗布量を少なくするにはスラリーや溶液の固形分量を重量比で10%以下例えば3%以下にすることさえできる。このような低固形分、低粘度材料を特に長方形などのパターン塗布するにはスロットノズル方式では極めて難しいが、本発明のエアアシストスロットノズルやミスト噴出スリットノズル更にはメルトブローン式スプレイヘッドを使用することで目的を達成できる。更に本発明ではミスト噴出スリットノズルやメルトブローン方式ノズルヘッドの少なくとも片側のスプレイパターン端(複数のスプレイパターンの一番端のパターンの最端部)に圧縮気体によるエアカーテン手段を設けることでシャープな塗布ラインを形成できる。両側のスプレイパターン端にエアカーテン手段を設けることもできる。メルトブローン式スプレイヘッドの各ノズルのスプレイ角度は20度以下好ましくは15度以下にかつ、基材とノズルの距離を70ミリメートル以下、好ましくは40ミリメートル以下にすることとで粒子の飛散が極めて少ない電極パターンを形成できる。前述の圧縮気体によるエアカーテン手段との併用でより良好なマスク無しの電極パターンを形成できる。この工法は燃料電池の電解質膜などへの電極パターン形成にも効果的である。エアレススプレイノズルを使用して例えば0.2乃至0.5MPa程度の低圧でスプレイして粒子になる前の液膜の箇所を使用して塗布するマイクロカーテンコート方式を使用して単数または複数のノズルでスプレイパターンがラップするように塗り重ねることによりマスクを必要としない方法も含まれ、この方法は特に燃料電池の電極形成に効果的である。マイクロカーテンコートはONロール上でも塗布することができるが基材上で電極スラリーを少しでもレベリングさせた後乾燥させることが塗膜分布を良くする為には肝要で、加熱ロール等の直前のOFFロール上で塗布することが好ましい。マイクロカーテンコートの塗布瞬間の流量分布はスプレイの両端が多いフィッシュテイルパターンになり、加熱ロール上では溶媒が瞬時に揮発するため、そのままのパターンでセットされる。そのためピッチ送り等で幾重にもパターンを塗り重ねことにより、美観を追求しないなら表面積を広くできるので電極性能を向上させることができる。特に燃料電池の電極形成に応用すればマスクはトラバース方向に関しては皆無にできるので効果的である。
 固形分濃度を上記のようにするメリットはより薄膜にして積層すればするほど所望するごく微量の材料であっても単位面積当たりの塗布量がより均一になるので単一材料だけでなく、交互積層することで複数の材料の理想的な混合状態を作り出すことができる。
 さらに本発明では例えばスラリーなどを塗布した基材の反対面に同一または別の材料のコートを行う場合、マイクロポーラスの通気性基材、例えば無塵紙やPVDFなどの耐熱通気性プラスチックフィルムに重ねて移動して塗布し、加熱ではそれらを介して例えば加熱吸着ドラムを50乃至200℃で加熱し、例えば市販の安価なマイナス60kPa程度の真空度の真空ポンプで吸引して行うと基材への熱伝導が良いのですばやく仮乾燥させることができる。通気性基材は塗布した面を傷つけないことを目的とするので加熱吸着ドラムに巻き付けて使用すると経済的である。また所望する電極パターンを形成するには前記のエアカーテン手段以外に、基材である集電体等にマスクをラミネートして使用することができる。前記基材の電極形成部以外の特に両サイドにグラビアロールなどを使用して粘着剤をポーラス状に点在させて、電極サイズにくり抜かれたマスキング基材を貼り付けて移動させスロットノズル、スプレイ法に限らず使用して正確な電極パターンを形成することができる。マスキング基材はスラリーを粒子化するミスト噴出スリットノズルやメルトブローンスプレイ法などに特に効果的である。
 加熱吸着ロールは例えば熱伝導の良いアルミナのポーラスセラミックの円筒成形体を使用でき、ステンレススチールなどの円筒に1乃至3mmのピッチで例えば千鳥に、0.1乃至1mmの直径の多くの孔を形成して製造することが出来る。無数の孔明けは通常レーザーや電子ビームなどで行うことができる。大きい孔や、粗の孔数であってさえも吸着分布をより均一にするため、ドラムの表面に無塵紙やマイクロメートルオーダーなどのポーラスフィルムなどを基材にラミネートして搬送したり加熱吸着ドラムに巻きつけて固定して使用できる。巻き付ける場合、例えば複数層巻きができ、あるいは複数の通気性基材を用意して粗めのものから順に微細なものを積層することで安価に加熱吸着ドラムを製作できるので経済的である。またマイクロメートルやナノメートルオーダーの通気性基材を使用するとマイクロやナノメートルオーダーの加熱吸着ドラムと同等の効果があるので性能面からしてコストパフォーマンスが抜群である。あるいはそれらは単数複数に限らず基材と一緒に巻き出し、巻き取りで使用することもできる。
 本発明は将来想定外の極薄膜で変形しやすく扱いづらい基材、例えば燃料電池の10マイクロメートル以下の電解質膜になっても直接電極用スラリーなどをスロットノズル等により薄膜で、必要により積層して品質的に安定した電極や電解質層などを形成し燃料電池や二次電池等の電池を製造することができる。
 上記のように本発明によれば高品質の電極や電解質層を形成でき、ひいては高性能な全固体電池などの二次電池等の電池や燃料電池を製造できる。
本発明の実施の形態に係る加熱(吸着)ロールと小径ロールと基材とスロットノズルの配置略断面図である。 本発明の実施の形態に係る、加熱(吸着)ロール、小径ロール、基材とスロットノズルの組み合わせに関する略断面図である。 本発明の実施の形態に係る加熱(吸着)ロール、基材、小径ロール、スロットノズルなどの配置と通気性基材等の移動方向に関する略断面図である。 本発明の実施の形態に係る第二の電極形成のための反転した基材その他の構成物に関する略断面図である。 本発明の実施の形態の第二の電極形成の応用編の基材等の移動方向の略断面図である。〔図5-2〕本発明の実施の形態の加熱(吸着)ロール上の基材の進行方向と直交してメルトブローン式スプレイヘッドをトラバースしながら塗布している概略図である。 本発明の実施の形態に関する基材の両面に電極形成した略断面図である 本発明の実施の形態に関するエアアシストスロットノズルの略断面図である。 本発明の実施の形態に関するミスト噴出スリットノズルによる基材へのパターンコートの略断面図である。 本発明の実施の形態に係わる圧縮気体によるエアカーテン手段を備えたメルトブローン式スプレイノズルヘッドによるパターンコートの概略図である。 本発明の実施の形態に関するエアカーテン手段を備えたメルトブローン式スプレイノズルヘッドからのスプレイの断面図である。
 以下、図面を参照して本発明の好適な実施形態について説明する。なお、以下の実施形態は発明の理解を容易にするための一例にすぎず本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加、置換、変形等を施すことを排除するものではない。
 図面は本発明の好適な実施の形態を概略的に示している。
 図1において加熱吸着ドラム1の上流に加熱吸着ドラムより小径の小径ロール4を設け、巻き出し装置5で巻き出された基材2はニップロール10を経由し小径ロール4と加熱吸着ドラム1間のOFFロール上でスロットノズル3で図示していない電極スラリーなどを塗布し下流の巻取り装置6で巻き取る。加熱吸着ドラムには図示していないマイクロメートルオーダーの通気性基材を1重または複数重ね巻きすることができる。基材には反対側に電極が形成されていても良い。またスロットノズル3での基材への塗布は小径ロール4上のONロールでも良く、小径ロールの前後であって加熱吸着ロールまでのOFFロールでも良い。理想的には加熱吸着ドラムぎりぎりのOFFロール上で行うと塗布とほぼ同時に加熱吸着が始まるので乾燥の面からも理想的である。特にOFFロールで行う際は基材に5乃至150ニュートンの張力がかけられているのが望ましい。スロットノズル内の開閉バルブ機構は図示されていない業界で一般的に使用されるサックバックタイプにすることによりクリーンカットできるので長方形や正方形の電極パターンを形成できる。また移動方向に直交して複数のパターンを設けたい場合は所望するパターン寸法に形成したシムを組み付けると
可能である。
 図2は図1の構成に小径ロール(14,14´)を複数設置した図である。スロットノズル13の配置は小径ロール14,14´上のONロールでも良く前後の、OFFロールでもよい。また小径ロールは加熱しても良い。
 図3は小径ロール34上のONロールでスロットノズル33により基材32に電極スラリーを塗布し電極パターン205を形成している。加熱吸着ロール31上で乾燥した電極205に保護基材38を保護基材巻き出し装置39で巻き出し基材32、電極205に積層して複合体として巻き取り装置36で巻き取っている。保護基材は通気性基材でも良く、材質、種類、形状を限定しないがコスト的に一番安く、電極が転写されないものあるいは転写しにくいものから選択したら良い。加熱した真円度の良い小径ロール上でスロットノズルを用いて塗布することができる。加熱した小径ロール上ではエアアシストスロットノズル或いはミスト噴出スリットノズルやメルトブローン式スプレイが効果的であり、それらでは加熱吸着ロール上で塗布することもできる。
 図4は第一の電極が形成された基材42の上流でバックシート165が剥離されバックシート巻き取り装置102で巻き取る。反対面に第一の電極が形成されている位置を検知センサーで検知しスロットノズル43で第二の電極または同一の電極を形成するため電極用スラリーが塗布される。第一の電極を保護して加熱吸着ドラム上を移動した通気性基材138は通気性基材巻取り装置101で巻き取られる。第一と第二の電極が形成された基材は新たな保護基材148と一緒に巻き取り装置46で巻き取られる。保護基材は通気性基材でも良いが電極面に影響がなくコストが低いものを選択することができる。
 図5は電極形成をスロットノズルの代わりにスプレイ方式で行っている略断面図である。スプレイ以外は図4とほぼ同じ構成にすることもできる。電極スラリーをミストにしたミスト噴出スリットノズルやスロットノズルから流出する電極インクに沿わせた圧縮気体と一緒に塗布するエアアシストスロットノズル塗布方式が好適である。あるいは圧縮気体によるエアカーテン手段を併用した狭角スプレイ群からなるメルトブローン式スプレイノズルヘッド203を使用した塗布方法はマスクを不要にすることができる。しかしそれ以外の一般的なスプレイはスプレイ粒子の飛散が大きいため所望するパターン形状のマスクを設置すべきである。基材は燃料電池用電解質膜で良く、リチウムイオン電池用セパレーターでも良い。またこの工法は第二の電極形成に限定するものでなく基材の片面だけに電極あるいは電解質層を形成できる。
 図5-2は図5の加熱ドラム(ロール)51上の基材に基材の進行方向と直交してトラバースしながらメルトブローン式スプレイノズルヘッド203により塗布しつつあるパターンの図である。スプレイヘッド203のスプレイノズル数を増やすことでトータルの塗布パターン幅を広くできる。
 図6は基材302の両サイドに第一の電極305と第二の電極305´が形成され第二の電極に保護基材348が積層されている断面図である。基材が電解質膜で正極、負極が形成される燃料電池に向いている。二次電池で幾重にも集電体と電極を積層する場合は第二の電極は第一の電極と同じ極の電極で良い。
 図7はエアアシストスロットノズル(AAS)の略断面図である。電極スラリー770は液膜のままAASの内部を通過してAASのヘッド先端から吐出される。同時にヘッドの両サイドから流出する圧縮ガスで液膜はアシストされ基材702に塗布され電極となる。特に間欠塗布して四角形のパターンを形成するとき電極スラリーのON/OFFに対して圧縮ガスのON/OFFタイミングを調整する工夫をすることでシャープな電極パターン705のエッジを形成できる。圧縮ガスの流出は連続でも間欠でも良い。基材表面に凹凸があるとき圧縮ガスの力でスラリーを押し込むことができるので特に効果的である。圧縮ガスに溶媒微粒子を混入させることでノズル先端を潤し、固形物のビルドアップを防ぐこともできる。
 図8はミスト噴出スリットノズル803の略断面図である。ミスト噴出ノズル803と基材802を相対移動させながらミストになった電極ミスト880が基材802に塗布されることで電極805を形成できる。ミストはスリットノズル上流で超音波やバブラー或いはスプレイ粒子を至近距離で液面等に衝突させて微粒化しキャリヤガスでスリットノズル内部に移動させることができる。
あるいはスリット溝幅の広いスリットノズル内で電極スラリーを圧縮ガスでスプレイしスプレイ粒子にしてスリットノズルの開口から噴出できる。スリットノズルはスリット溝幅890が基材802の移動方向と直交した基材幅方向に所望する長さに長く延びてスリット開口部が形成される。尚、スリット溝幅890は基材と相対移動する移動方向に1乃至30ミリメートルにすれば良く、スリットの長さはスリット溝より長く例えば50乃至1500ミリメートルにすることができる。例えば塗布幅が1000ミリメートルの基材に塗布する場合はスリット長が1000ミリメートルのスリットノズルを使用すればよく、基材の進行方向とスリットノズルは直交または略直交すればよい。狭幅の例えば100ミリメートルのスリット長のノズルを使用する場合は、基材と直交して100ミリメートル狭幅スリットノズルをトラバースして1000ミリメートル x 100ミリメートルのパターン塗布をすることができる。
間欠のパターン塗工の場合、前記スリット溝幅は基材の移動方向に対し、5ミリメートル以下にすることにより塗布始め、塗布終了のパターンの端部のシャープさと膜厚分布を維持できる。また10ミリメートル以上にすると薄膜積層と同じ効果になるので連続的に塗工する方式に向いている。勿論複数のミスト噴出スリットノズルを基材移動方向に複数列配置するとより良いことは言うまでも無い。
 図9はメルトブローン式スプレイノズルヘッドの狭い角度の複数のスプレイノズルを隣り合うスプレイパターン903が干渉するように一列に配置し、隣り合うスプレイノズルの上流の独立した二つの開閉機構のパルス的にスプレイ
タイミングをずらして空中でスプレイ流が干渉しないようにしながら最終的には塗り重ねができる様にする。更に両端のスプレイパターンの最端部ぎりぎりの箇所にエアカーテンノズル990から細く圧縮気体を流下させてスプレイ粒子が外側出さないようにして電極905を形成できる。
図9-2はメルトブローン式スプレイノズルヘッドの複数のノズルの配置を二列にしたもので同じ効果が得られる。
 図10はメルトブローン式スプレイノズルヘッドに一列に配列した複数のスプレイノズル1003からのスプレイ流1100と基材1002にスプレイした最両端のスプレイ流の粒子が外部に飛散しないように圧縮気体をエアカーテンノズル1200から流下させエアカーテン形成する図である。基材が燃料電池電解質膜の場合、電解質膜の進行方向と直交してメルトブローン式スプレイノズルヘッドをトラバースして両端のエアカーテン間の幅の電極をマスク無しで形成できる。スプレイはパルス的に行い、スプレイパターン間が重なるようにピッチ移動して均一な分布を得ることができる。複数のスプレイノズルを2列乃至5列にして均一さを高めたり、トラバーススピードを上げて生産性を高めることができる。
 本発明は二次電池の中でも特に全固体電池や半固体電池の次世代二次電池に効果的であるが更に広範囲に適用できる。スーパーキャパシタの電極形成に効果的である。燃料電池の電極形成に効果的である。更には長尺の基材に液体や溶融体をロールto ロール方式で塗布する機能性材料を含むコーティング剤や接着剤・粘着剤を塗布した製品に効果的である。建材等の壁紙やラベルなど以外の異分野のアプリケーション例えばエレクトロニクス分野のレジストコーティング、フラットパネルディスプレイ分野のコーティング、ニューデリバリーシステムなどのはり医薬品などへのコーティング広範囲のアプリケーションに効果的である。
1,11,31,41,51             加熱(加熱吸着)ドラム
2,12,32,42,302,702,802,902    基材
3,13,33,43,             スロットノズル
4,14,14´,34,34´,44       小径ローラー
5,25,35,45,55         基材巻き出し装置
6,26,36,46,56         基材巻き取り装置
7,17                 集電体・電極
10,20,30,40,50          ニップロール
38,138,148,248,348      電極保護基材(通気性基材)
39,49,59            電極保護基材巻き出し装置 
101,201             電極保護基材巻き取り装置                      
102,202               バックシート巻き取り装置
203                  スプレイ塗布ヘッド(メルトブローン式スプレイノズルヘッド)
205、705,805,905         電極
305               第一の電極
305´              第二の電極
703               エアアシストスロットノズル
770               電極スラリー
780、1300            圧縮ガスライン
803               ミスト噴出スリットノズル 
880               電極ミスト
903               スプレイ塗布パターン
990、1200            エアカーテンノズル
1003                スプレイノズル
1100                  スプレイ流
1500                  エアカーテン

Claims (10)

  1.  電池用の長尺の基材を連続的または間欠的に移動して基材に電極用スラリーをスロットノズルで塗布し電極を形成し電池を製造する方法であって、電極用スラリーを塗布した基材を加熱し移動する加熱移動手段であり、基材の吸着を付加した加熱吸着ロールを設ける工程と、前記加熱吸着ロールの上流に加熱吸着ロールに近接して前記加熱吸着ロールより小径の少なくとも一つのロールを設ける工程と、前記小径ロール上と加熱吸着ロールに前記基材が接するまでとの間でスロットノズルをもって電極用スラリーを塗布する工程とからなることを特徴とする電池の製造方法。
  2.  前記加熱移動手段が加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルトの基材の移動手段から選択され、前記基材が前記移動手段を外れた箇所で5乃至150ニュートンの張力をかけながら移動することを特徴とする請求項1の電池の製造方法。
  3.  前記小径ロールの前後の基材に5乃至150ニュートンの張力をかけ、前記小径ロールの前後のオフロール上で電極スラリーを塗布することを特徴とする請求項1乃至3の電池の製造方法。
  4.  前記スロットノズルがエアアシストスロットノズルまたはミスト噴出スリットノズルであって基材とノズルヘッドの距離を0乃至30ミリメートルに設定することを特徴とする請求項1の電池の製造方法。
  5.  電池が二次電池または燃料電池であって、加熱吸着ロール、加熱ロール、加熱ベルト、加熱吸着ベルトから少なくとも一つの基材の加熱移動手段を選択し、エアアシストスロットノズルまたは圧縮気体を伴うミスト噴出ノズルまたは圧縮気体によるエアカーテンを併用したメルトブローン式スプレイノズルヘッドを前記加熱移動手段と対峙して相対移動して前記加熱移動手段で移動する基材に電極スラリーを塗布することを特徴とする電池の製造方法。
  6.  前記加熱吸着ロールまたは加熱ロールの真円度が±50マイクロメートル以下であって、前記加熱吸着ロールまたは加熱ロールに基材が接触する直前のオフロール上で電極インクを塗布することを特徴とする請求項1乃至4の電池の製造方法。
  7.  前記基材が集電体、電解質膜、セパレーター、電極層形成集電体、電極層・電解質層形成集電体から選択され、前記電極スラリーが電極スラリー、電解質スラリー、電解質溶液から選択されることを特徴とする請求項1乃至6の電池の製造方法。
  8.  前記二次電池が全固体電池または半固体電池であることを特徴とする請求項7の電池の製造方法。
  9.  前記スロットノズルまたはスラリーの温度がスラリーに含有される溶媒の沸点以下とし、前記加熱吸着ロールの温度が前記スロットノズルまたはスラリーの温度より30℃以上高いことを特徴とする請求項1乃至8の電池の製造方法。
  10.  前記スラリーは室温でハンドリングすることを特徴とする請求項9の電池の製造方法。
PCT/JP2020/029802 2019-08-23 2020-08-04 電池の製造方法及び電池 WO2021039308A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080057497.4A CN114223069B (zh) 2019-08-23 2020-08-04 电池的制造方法
US17/635,520 US20220344629A1 (en) 2019-08-23 2020-08-04 Method for producing battery, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153156A JP7395127B2 (ja) 2019-08-23 2019-08-23 電池の製造方法及び電池
JP2019-153156 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039308A1 true WO2021039308A1 (ja) 2021-03-04

Family

ID=74675992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029802 WO2021039308A1 (ja) 2019-08-23 2020-08-04 電池の製造方法及び電池

Country Status (4)

Country Link
US (1) US20220344629A1 (ja)
JP (2) JP7395127B2 (ja)
CN (1) CN114223069B (ja)
WO (1) WO2021039308A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230068715A1 (en) * 2021-08-27 2023-03-02 GM Global Technology Operations LLC Application of porosity-controlled lithium metal coating
CN116692551A (zh) * 2022-02-28 2023-09-05 宁德时代新能源科技股份有限公司 料带转向机构、烘干装置和极片制造设备
CN114914404A (zh) * 2022-05-16 2022-08-16 上海联净自动化科技有限公司 干法电极生产方法以及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070863A (ja) * 1999-07-02 2001-03-21 Toyota Motor Corp 液体塗布装置およびこれに用いる回転部材とその製造方法
JP2004351413A (ja) * 2003-05-01 2004-12-16 Nordson Corp 液体の塗布及び乾燥方法
JP2014139896A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 蓄電装置の製造装置および製造方法
JP2019149256A (ja) * 2018-02-26 2019-09-05 エムテックスマート株式会社 燃料電池の膜電極アッセンブリーの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219B2 (ja) * 1987-11-16 1996-01-10 ノードソン株式会社 ノズル等の皮張り防止方法
JP3334144B2 (ja) * 1991-11-01 2002-10-15 ソニー株式会社 電池電極製造装置
JP4737924B2 (ja) 2003-08-11 2011-08-03 ノードソン コーポレーション 燃料電池用電解質膜、電解質膜複合体、電解質膜複合体のロールストックを製造する方法、燃料電池用電解質膜・電極アセンブリーを製造する方法、及び燃料電池を製造する方法
JP4857548B2 (ja) 2004-11-17 2012-01-18 パナソニック株式会社 二次電池用電極ペーストの塗布方法および二次電池用電極ペーストの塗布乾燥装置
US9685655B2 (en) 2013-03-15 2017-06-20 Applied Materials, Inc. Complex showerhead coating apparatus with electrospray for lithium ion battery
JP6290039B2 (ja) 2013-10-21 2018-03-07 東芝三菱電機産業システム株式会社 活物質製造装置、電池製造システム、フィラー製造装置および樹脂フィルム製造システム
JP6903910B2 (ja) 2016-12-21 2021-07-14 エムテックスマート株式会社 燃料電池の製造方法、膜・電極アッセンブリー、燃料電池
JP2018125247A (ja) 2017-02-03 2018-08-09 エムテックスマート株式会社 Pefc型燃料電池の膜・電極アッセンブリーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070863A (ja) * 1999-07-02 2001-03-21 Toyota Motor Corp 液体塗布装置およびこれに用いる回転部材とその製造方法
JP2004351413A (ja) * 2003-05-01 2004-12-16 Nordson Corp 液体の塗布及び乾燥方法
JP2014139896A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 蓄電装置の製造装置および製造方法
JP2019149256A (ja) * 2018-02-26 2019-09-05 エムテックスマート株式会社 燃料電池の膜電極アッセンブリーの製造方法

Also Published As

Publication number Publication date
CN114223069A (zh) 2022-03-22
CN114223069B (zh) 2024-09-27
JP2023175697A (ja) 2023-12-12
JP7395127B2 (ja) 2023-12-11
US20220344629A1 (en) 2022-10-27
JP2021034227A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021039308A1 (ja) 電池の製造方法及び電池
CN110249465B (zh) Pefc型燃料电池的膜-电极组件的制造方法
JP6984848B2 (ja) 燃料電池の膜電極アッセンブリーの製造方法
WO2020162284A1 (ja) 全固体電池の製造方法
JP5831228B2 (ja) 塗布方法
WO2010147108A1 (ja) 塗布方法、有機エレクトロルミネッセンス素子
CN110100341B (zh) Pefc型燃料电池的电极形成方法和燃料电池
JP2021034227A5 (ja)
CN111033849B (zh) 燃料电池的制造方法和燃料电池
JP2023074174A (ja) 燃料電池の製造方法、膜電極アッセンブリーの製造方法、膜電極アッセンブリー、膜電極アッセンブリーと通気性基材の複合体、燃料電池
JP7075087B2 (ja) 燃料電池の製造方法
WO2024214718A1 (ja) 流体の噴出方法または塗布方法、二次電池または全固体電池の製造方法、太陽電池の製造方法、ノズル組立体
JP7215697B2 (ja) 燃料電池の製造装置
WO2023042765A1 (ja) 電池の電極形成方法、膜電極アッセンブリーの製造方法、膜電極アッセンブリー、燃料電池または水電解水素発生装置
JP2012213677A (ja) 機能性膜形成システムおよび機能性膜形成方法
JP2022178501A (ja) 膜電極アッセンブリーの製造方法、膜電極アッセンブリーと通気性基材の積層体の製造方法、膜電極アッセンブリーと通気性基材の積層体、燃料電池の製造方法、燃料電池
WO2022049974A1 (ja) 塗布方法、燃料電池の製造方法または燃料電池、2次電池の製造方法または2次電池、全固体電池の製造方法または全固体電池
JP2023093904A (ja) 燃料電池の製造方法および燃料電池
WO2022054673A2 (ja) 塗布方法、燃料電池の製造方法または燃料電池、2次電池の製造方法または2次電池、全固体電池の製造方法または全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857437

Country of ref document: EP

Kind code of ref document: A1