WO2021038695A1 - 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 - Google Patents
光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 Download PDFInfo
- Publication number
- WO2021038695A1 WO2021038695A1 PCT/JP2019/033368 JP2019033368W WO2021038695A1 WO 2021038695 A1 WO2021038695 A1 WO 2021038695A1 JP 2019033368 W JP2019033368 W JP 2019033368W WO 2021038695 A1 WO2021038695 A1 WO 2021038695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traffic accident
- optical fiber
- road
- vibration
- vibration pattern
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/015—Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/017—Detecting movement of traffic to be counted or controlled identifying vehicles
- G08G1/0175—Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/02—Detecting movement of traffic to be counted or controlled using treadles built into the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/04—Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
Definitions
- This disclosure relates to an optical fiber sensing system, a road monitoring method, and an optical fiber sensing device.
- Patent Document 1 an impact sensor is fixed to a guardrail or the like on a road, and when the level of an electric signal output from the impact sensor is equal to or higher than a threshold level, an accident detection signal indicating that a traffic accident has occurred is generated. It is disclosed to do.
- Patent Document 2 discloses that an optical fiber is laid on the surface of an underground power cable or the like to continuously detect whether or not a physical phenomenon has occurred in the optical fiber.
- Patent Document 1 can only detect whether or not a traffic accident has occurred on a road. Further, the technique described in Patent Document 2 can only detect whether or not a physical phenomenon has occurred. Therefore, all of the techniques described in Patent Documents 1 and 2 have a problem that the situation of a traffic accident occurring on a road cannot be grasped.
- an object of the present disclosure is to provide an optical fiber sensing system, a road monitoring method, and an optical fiber sensing device capable of solving the above-mentioned problems and grasping the situation of a traffic accident occurring on a road.
- the optical fiber sensing system is An optical fiber installed along the road to detect vibration, From the optical signal received from the optical fiber, a detection unit that detects the vibration pattern of vibration caused by a traffic accident occurring on the road, and An estimation unit that estimates the situation of the traffic accident based on the vibration pattern, To be equipped.
- the road monitoring method is An optical fiber installed along the road detects vibration, A detection step for detecting a vibration pattern of vibration caused by a traffic accident occurring on the road from an optical signal received from the optical fiber, and a detection step. An estimation step for estimating the situation of the traffic accident based on the vibration pattern, and including.
- the optical fiber sensing device is A detection unit that detects the vibration pattern of vibration caused by a traffic accident that occurred on the road from an optical signal that is provided along the road and is received from an optical fiber that detects vibration.
- An estimation unit that estimates the situation of the traffic accident based on the vibration pattern, To be equipped.
- an optical fiber sensing system a road monitoring method, and an optical fiber sensing device that can grasp the situation of a traffic accident that has occurred on a road.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the first embodiment to estimate the situation of a traffic accident occurring on a road.
- FIG. 5 is a diagram showing an example in which the estimation unit according to the first embodiment estimates the situation of a traffic accident occurring on a road by using pattern matching.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the first embodiment to estimate the situation of a traffic accident occurring on a road.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the first embodiment to estimate the situation of a traffic accident occurring on a road.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the first embodiment to estimate the situation of a traffic accident occurring on a road.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the first embodiment to estimate the situation of a traffic accident occurring on a road.
- FIG. 5 is a diagram showing an example of a method in which the estimation unit according to the first embodiment estimates the situation of a traffic accident occurring on a road. It is a flow chart which shows the operation example of the optical fiber sensing system which concerns on Embodiment 1.
- FIG. 1 shows the operation example of the optical fiber sensing system which concerns on Embodiment 1.
- FIG. 5 is a diagram showing an example of vibration data used by the estimation unit according to the second embodiment to estimate the situation of a traffic accident occurring on a road.
- the optical fiber sensing system includes an optical fiber 10A (first optical fiber), an optical fiber 10B (second optical fiber), and an optical fiber sensing device 20. There is. Further, the optical fiber sensing device 20 includes a detection unit 21 and an estimation unit 22.
- Optical fibers 10A and 10B are laid on the road R. Specifically, the optical fiber 10A is buried in the vicinity of the road R, and the optical fiber 10B is overhead-wired along the road R. Although the optical fiber 10B is overhead-wired by the utility pole T in FIG. 1, it may be overhead-wired by other means such as a steel tower. Further, the optical fibers 10A and 10B may be realized by existing unused communication optical fibers (so-called dark fibers). Further, if the optical fibers 10A and 10B use a frequency different from the frequency used for communication in the existing communication optical fiber in use, it is realized by the existing communication optical fiber in use. May be done. Further, the optical fibers 10A and 10B may be laid on the road R in the form of an optical fiber cable configured by covering the optical fiber.
- the detection unit 21 incidents pulsed light (incident light) on the optical fiber 10A. Further, the detection unit 21 receives the reflected light or scattered light generated when the pulsed light is transmitted through the optical fiber 10A as return light (optical signal) via the optical fiber 10A. Similarly, the detection unit 21 incidents the pulsed light on the optical fiber 10B and receives the return light from the optical fiber 10B.
- the vibration When an impact is generated on the road R, the vibration is transmitted to the optical fiber 10A buried under the road R, affects the return light transmitted by the optical fiber 10A, and propagates air as sound. Therefore, it is transmitted to the optical fiber 10B which is overhead-wired along the road R, and affects the return light transmitted by the optical fiber 10B. Therefore, the optical fibers 10A and 10B can detect the vibration generated on the road R and the sound caused by the vibration.
- the impact generated on the road R propagates as vibrations through the ground and sounds through the air, but since the optical fiber 10A can easily detect the vibrations propagating on the ground, the vibrations are mainly detected. Further, since the optical fiber 10B can easily detect the sound propagating in the air, the detection is centered on the sound.
- the optical fiber 10A is not limited to this, and it is also possible to detect the vibration generated when the vehicle normally travels on the road R.
- the vibration generated on the road R has a unique vibration pattern in which the strength of the vibration, the vibration position, the transition of the fluctuation of the frequency, etc. differ depending on the event that caused the vibration.
- the vibration pattern of vibration caused by a traffic accident occurring on the road R is a pattern peculiar to the traffic accident.
- the following can be considered as the situation of a traffic accident.
- -Number of vehicles that have had a traffic accident-Type of vehicle that has had a traffic accident for example, automobiles, motorcycles, etc.
- Types of traffic accidents for example, spin accidents, rollover accidents, collision accidents, etc.
- Property damage for example, damage to traffic lights
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident that occurred on the road R from the return light received from the optical fibers 10A and 10B.
- the optical fiber 10A detects the vibration directly transmitted to the road R. Therefore, the detection unit 21 detects, for example, a vibration pattern of vibration caused by a traffic accident from the return light received from the optical fiber 10A.
- the optical fiber 10B detects vibration as a sound transmitted from the road R via air. Therefore, the detection unit 21 detects, for example, a vibration pattern of vibration caused by a traffic accident from the return light received from the optical fiber 10B.
- the estimation unit 22 estimates the situation of a traffic accident that occurred on the road R based on the vibration pattern of the vibration caused by the traffic accident detected by the detection unit 21. At this time, as described above, the vibration pattern of the vibration detected by the detection unit 21 becomes a pattern peculiar to a traffic accident. Therefore, the estimation unit 22 estimates the situation of a traffic accident by analyzing the dynamic change of the vibration pattern of the vibration detected by the detection unit 21.
- the return light received from the optical fibers 10A and 10B may be analyzed in real time to estimate the situation of a traffic accident, or the return light received from the optical fibers 10A and 10B may be estimated.
- the vibration data obtained by converting the light or its return light may be temporarily held, and then the return light or the vibration data may be read out and analyzed to estimate the situation of a traffic accident.
- the estimation unit 22 estimates the time of occurrence of the traffic accident based on the time when the return light in which the vibration pattern caused by the traffic accident is detected from the optical fibers 10A and 10B is received by the detection unit 21. You may.
- the estimation unit 22 detects the time when the detection unit 21 incidents the pulsed light on the optical fibers 10A and 10B and the return light from the optical fibers 10A and 10B in which the vibration pattern caused by the traffic accident is detected.
- the position where the traffic accident occurs may be estimated based on the time difference from the time received in.
- the estimation unit 22 can measure the distances of the optical fibers 10A and 10B from the detection unit 21 to the position where the traffic accident occurs based on the above time difference.
- the estimation unit 22 uses the correspondence table for traffic. It is possible to estimate the location (point) where the accident occurred.
- the estimation unit 22 will explain a specific method for estimating the situation of a traffic accident that occurred on the road R.
- the detection unit 21 converts the return light received from the optical fiber 10B into vibration data as shown in FIG. 2, for example.
- the vibration data shown in FIG. 2 is vibration data of vibration detected by the optical fiber 10B at a certain position on the road R, and the horizontal axis represents time and the vertical axis represents sound intensity.
- the estimation unit 22 estimates the situation of a traffic accident based on the vibration data as shown in FIG. At this time, for example, the estimation unit 22 uses pattern matching. Specifically, the estimation unit 22 holds in advance vibration data according to the situation of a traffic accident as teacher data. The teacher data may be learned by the estimation unit 22 by machine learning or the like. Then, as shown in FIG. 3, the estimation unit 22 compares the vibration pattern of the vibration data converted by the detection unit 21 with the vibration pattern of the plurality of teacher data held in advance. When the estimation unit 22 matches the vibration pattern of any of the teacher data, the estimation unit 22 determines that the vibration data converted by the detection unit 21 is the vibration data generated in the traffic accident situation corresponding to the matched teacher data. To do. In the example shown in FIG. 3, the vibration data converted by the detection unit 21 has a vibration pattern that substantially matches the vibration data when a collision accident occurs. Therefore, the estimation unit 22 determines that a collision accident has occurred.
- the detection unit 21 converts the return light received from the optical fiber 10A into vibration data as shown in FIGS. 4 and 5, for example.
- the vibration data shown in FIGS. 4 and 5 is vibration data of vibration detected by the optical fiber 10A on the road R where two-way traffic is performed, and the horizontal axis is the distance of the optical fiber 10A from the detection unit 21 and the vertical axis is the vertical axis. However, it shows the passage of time. Further, the vertical axis becomes older data as it goes in the positive direction.
- the vibration of the vehicle traveling on the road R is detected by the optical fiber 10A, it is represented by a line that the vehicle is traveling.
- the fact that one vehicle is traveling over time is represented by a single diagonal line.
- the absolute value of the slope of the line represents the traveling speed of the vehicle. The smaller the absolute value of the slope of the line, the faster the running speed of the vehicle.
- the positive / negative of the slope of the line indicates the traveling direction of the vehicle. For example, when a positively inclined line represents a vehicle traveling in lane A, a negatively inclined line represents a vehicle traveling in lane B which is the opposite lane of lane A.
- the estimation unit 22 estimates the situation of a traffic accident based on the vibration data as shown in FIGS. 4 and 5.
- the line L1 has a negative slope, while the line L2 has a positive slope. This means that the vehicle represented by the line L1 is traveling in the opposite lane to the lane in which the vehicle represented by the line L2 is traveling. At this time, both vehicles continue to travel even after passing the position P1 where the distances of the optical fibers 10A from the detection unit 21 are the same. Therefore, in the example of FIG. 4, the estimation unit 22 determines that a traffic accident such as a collision does not occur and the vehicles are passing each other normally.
- the vehicle represented by the line L1 is traveling in the opposite lane to the lane in which the vehicle represented by the line L2 is traveling.
- both vehicles suddenly stop running without decelerating at the position P1 where the distances of the optical fibers 10A from the detection unit 21 are the same. Therefore, the estimation unit 22 determines that a head-on collision accident has occurred in the example of FIG.
- the estimation unit 22 estimates the situation of the traffic accident based on the vibration data as shown in FIGS. 4 and 5 by using the same pattern matching as the above-mentioned method A. You may.
- the detection unit 21 converts the return light received from the optical fiber 10A into vibration data as shown in FIGS. 6 and 7, for example.
- the vibration data shown in FIGS. 6 and 7 focuses on a specific vehicle traveling on the road R, and shows the vibration data of the vehicle detected by the optical fiber 10A in chronological order.
- the estimation unit 22 estimates the situation of a traffic accident based on the vibration data as shown in FIGS. 6 and 7.
- the estimation unit 22 determines that a complicated form of collision accident such as a collision or a rollover of a plurality of vehicles has occurred.
- the estimation unit 22 may determine the number of vehicles in which a collision accident has occurred based on the number of peaks in the vibration data. In the example of FIG. 7, since three peaks P1 to P3 have occurred, the estimation unit 22 determines that if the collision of the peaks P1 is a collision between vehicles, a collision accident by at least four vehicles has occurred. To do.
- the estimation unit 22 estimates the situation of a traffic accident based on the vibration data as shown in FIGS. 6 and 7 by using the same pattern matching as in the above method A. Is also good.
- the above-mentioned methods A to C are examples of estimating the type of traffic accident (for example, single accident, multiple collision accident, etc.), the number of vehicles in which the traffic accident has occurred, and the like.
- the estimation unit 22 analyzes the vibration pattern, and the type of vehicle (for example, automobile, motorcycle, etc.) that caused the traffic accident, property damage (for example, damage to the traffic light, etc.), etc. May be estimated.
- the estimation unit 22 may estimate the situation of a traffic accident by using the above-mentioned methods A to C in combination with each other.
- the above-mentioned method B and method C detect the vibration directly transmitted to the road R
- the above-mentioned method A detects the vibration as the sound transmitted from the road R via the air. Therefore, for example, the estimation unit 22 analyzes the collision sound of the above-mentioned method A, determines that a dull collision sound other than the collision sound between metals is generated, and detects the time and position by the above-mentioned method C. If the impact and the sudden deceleration position of the vehicle match, it is judged that there is a possibility of personal injury when the vehicle collides with a person.
- a neural network that inputs vibration data representing a time change of amplitude as shown in FIGS. 6 and 7 is NN # 1, and the spectrum after the vibration data is subjected to Fourier conversion is shown.
- NN # 2 be the input NN
- NN # 3 be the input NN after the vibration data is Wavelet-converted
- NN # 4 be the NN representing the fusion weight of NN # 1 to NN # 3.
- the estimation unit 22 comprehensively determines the three types of information of NN # 1 to NN # 3 and estimates whether or not a traffic accident has occurred.
- the optical fibers 10A and 10B detect the vibration generated on the road R (step S11).
- the vibration detected by the optical fibers 10A and 10B affects the return light transmitted through the optical fibers 10A and 10B.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident occurring on the road R from the return light received from the optical fibers 10A and 10B (step S12).
- the estimation unit 22 estimates the time of occurrence of the traffic accident based on the time when the return light in which the vibration pattern caused by the traffic accident is detected is received from the optical fibers 10A and 10B. Further, the estimation unit 22 has a time difference between the time when the pulsed light is incident on the optical fibers 10A and 10B and the time when the return light is received from the optical fibers 10A and 10B in which the vibration pattern caused by the traffic accident is detected. Based on the above, the position where the traffic accident occurs is estimated (step S13).
- the estimation unit 22 determines the type of traffic accident (for example, as the situation of the traffic accident occurring on the road R) based on the vibration pattern of the vibration caused by the traffic accident occurring on the road R detected by the detection unit 21. , Single accident, multiple collision accident, etc.), the number of vehicles that have caused a traffic accident, etc. are estimated (step S14).
- the optical fibers 10A and 10B detect the vibration generated on the road R.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident generated on the road R from the return light received from the optical fibers 10A and 10B.
- the estimation unit 22 estimates the situation of a traffic accident that occurred on the road R based on the vibration pattern. As a result, it is possible not only to grasp whether or not a traffic accident has occurred on the road R, but also to grasp the situation of the traffic accident that has occurred on the road R.
- the optical fibers 10A and 10B can detect vibration at any place where the optical fibers 10A and 10B are laid. Therefore, it is possible to detect the occurrence of a traffic accident and grasp the situation of the traffic accident at any of the places where the optical fibers 10A and 10B are laid.
- the optical fibers 10A and 10B may be realized by existing optical fibers for communication. In this case, since it is not necessary to newly install the optical fibers 10A and 10B, the optical fiber sensing system can be constructed at low cost.
- the estimation unit 22 causes the traffic accident based on the time when the return light in which the vibration pattern caused by the traffic accident is detected is received from the optical fibers 10A and 10B. You may estimate the time. In this case, since the exact time of occurrence of the traffic accident can be grasped, it is possible to specify the display status of the traffic light at the time of occurrence of the traffic accident. As a result, even if the parties involved in the traffic accident perjury the manifestation situation, it can be determined to be perjury.
- the vibration data of the vibration detected by the optical fiber 10A and the vibration data of the vibration detected by the optical fiber 10B as sound in order to estimate the situation of the traffic accident occurring on the road R. And, but it is not limited to this.
- the detection unit 21 may convert the return light received from the optical fibers 10A and 10B into temperature data, and the estimation unit 22 may further use the temperature data to estimate the situation of a traffic accident. By using the temperature data, the estimation unit 22 can determine, for example, that the road R is frozen.
- the estimation unit 22 can determine, for example, that a fire or an explosion has occurred on the road R by using the temperature data in combination with the vibration data. Therefore, for example, when the estimation unit 22 estimates a collision accident using vibration data, the collision accident is caused by freezing of the road R or a fire or explosion occurring on the road R by further using the temperature data. It can be judged that it occurred.
- the optical fiber sensing system according to the second embodiment has the same configuration itself as the first embodiment described above, but extends the functions of the detection unit 21 and the estimation unit 22.
- the vibration pattern of the vibration generated on the road R also differs depending on the traveling state of the vehicle on the road R (for example, traveling direction, traveling speed, number of traveling vehicles, inter-vehicle distance, presence / absence of traffic jam, presence / absence of dangerous driving, etc.). .. Vibration caused by the running state of the vehicle can be detected particularly by the optical fiber 10A embedded under the road R.
- the situation of a traffic accident is estimated by using not only the vibration pattern of the vibration caused by the traffic accident occurring on the road R but also the vibration pattern of the vibration caused by the running state of the vehicle on the road R. It is something to do.
- the estimation unit 22 can specify the time and position of the traffic accident that occurred on the road R. Therefore, the detection unit 21 receives the return light received from the optical fiber 10A at the time of occurrence of the traffic accident or at least before or after the occurrence of the traffic accident, and the detection unit 21 of the vehicle near the position where the traffic accident occurs on the road R. Further detect the vibration pattern of vibration caused by the running condition.
- the estimation unit 22 uses the road R at one of the vibration pattern of the vibration caused by the traffic accident that occurred on the road R detected by the detection unit 21 and the time, before, or after the occurrence of the traffic accident.
- the situation of the traffic accident that occurred on the road R is estimated based on the vibration pattern of the vibration caused by the running state of the vehicle near the position where the above traffic accident occurred.
- the vibration pattern of the vibration detected by the detection unit 21 includes a pattern peculiar to the traffic accident and also includes a peculiar pattern according to the traveling state of the vehicle on the road R. Therefore, the estimation unit 22 estimates the situation of a traffic accident by analyzing the dynamic change of the vibration pattern of the vibration detected by the detection unit 21.
- the return light received from the optical fibers 10A and 10B or the vibration data obtained by converting the return light is temporarily held, and then the return light or the vibration data is read out and analyzed to cause a traffic accident. The situation shall be estimated.
- FIG. 10 shows the traveling state of the vehicle on the road R. Since the vibration caused by the traveling state of the vehicle is detected particularly by the optical fiber 10A, the optical fiber 10B is not shown in the upper figure of FIG. 10.
- the optical fiber 10A detects the vibration generated on the road R when the traveling state is as shown in the upper figure of FIG. 10, and the vibration affects the return light.
- the detection unit 21 receives the return light from the optical fiber 10A.
- the detection unit 21 converts the return light received from the optical fiber 10A into vibration data as shown in the lower figure of FIG. 10, for example.
- the estimation unit 22 estimates the situation of a traffic accident based on the vibration data as shown in the lower figure of FIG.
- the horizontal axis and the vertical axis of the vibration data shown in the lower figure of FIG. 10 are the same as those shown in FIGS. 4 and 5. Therefore, even in the vibration data shown in the lower figure of FIG. 10, that one vehicle is traveling on the road R with the passage of time is represented by one diagonal line.
- the absolute value of the slope of the line represents the traveling speed of the vehicle, and the positive / negative of the inclination of the line represents the traveling direction of the vehicle.
- the distance G in the horizontal axis direction of the line represents the distance between vehicles, and the shorter the distance G, the shorter the distance between vehicles.
- the plurality of lines In the vibration data shown in the lower figure of FIG. 10, in the vicinity of the center, the plurality of lines have a negative slope and a large absolute value, and the distance G between the lines is also short. This means that a plurality of vehicles are traveling in the same traveling direction, but the traveling speed is slow and the inter-vehicle distance is short. Therefore, it is considered that traffic congestion has occurred. On the other hand, it is considered that there is no congestion except near the center. In the example of the lower figure of FIG. 10, no traffic accident has occurred.
- the vibration data shown in FIG. 11 is vibration data of vibration detected by the optical fiber 10A on the road R where two-way traffic is performed.
- the four vehicles represented by the lines L1 to L4 are traveling in the same traveling direction, but the traveling speed is slow and the inter-vehicle distance is short. Therefore, it is considered that traffic congestion has occurred.
- the vehicle represented by the line L5 is traveling in the opposite lane to the lane in which the four vehicles represented by the lines L1 to L4 are traveling. Further, the vehicle represented by the line L5 has stopped traveling at the position P1 where it is considered that the traffic jam has occurred. Therefore, in the example of FIG. 11, the estimation unit 22 determines that a traffic accident has occurred in which a vehicle collides head-on from the opposite lane in a row of vehicles in which congestion has occurred.
- the estimation unit 22 utilizes the same pattern matching as the method A described in the above-described first embodiment based on the vibration data as shown in the lower figure of FIG. 10 and FIG. , You may estimate the situation of the traffic accident.
- the estimation unit 22 includes, for example, the presence / absence of a vehicle in dangerous driving (for example, tilting driving, meandering driving, reverse driving, etc.) and the presence / absence of a vehicle in which sudden braking is applied. May be estimated.
- the estimation unit 22 can determine that if there is a vehicle having a different traveling direction on the road R where one-sided traffic is performed, that vehicle is driving in the reverse direction.
- the estimation unit 22 can determine that if there is a vehicle whose traveling speed has decreased to a threshold value or more, that vehicle is suddenly braking.
- the estimation unit 22 estimates that traffic congestion has occurred after the occurrence of the traffic accident and that there is a vehicle that has escaped from the position where the traffic accident occurred by using the vibration data after the occurrence of the traffic accident. can do.
- the optical fibers 10A and 10B detect the vibration generated on the road R (step S21).
- the vibration detected by the optical fibers 10A and 10B affects the return light transmitted through the optical fibers 10A and 10B.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident generated on the road R from the return light received from the optical fibers 10A and 10B (step S22).
- the estimation unit 22 estimates the occurrence time of the traffic accident based on the time when the return light in which the vibration pattern caused by the traffic accident is detected is received from the optical fibers 10A and 10B. Further, the estimation unit 22 has a time difference between the time when the pulsed light is incident on the optical fibers 10A and 10B and the time when the return light is received from the optical fibers 10A and 10B in which the vibration pattern caused by the traffic accident is detected. Based on the above, the position where the traffic accident occurs is estimated (step S23).
- the detection unit 21 is a vehicle near the position where the traffic accident occurred on the road R from the return light received from the optical fiber 10A at the time of the occurrence of the traffic accident or at least before or after the occurrence of the traffic accident.
- the vibration pattern of the vibration caused by the traveling state of is detected (step S24).
- the estimation unit 22 determines that the vibration pattern of the vibration caused by the traffic accident occurring on the road R detected by the detection unit 21 and the vibration pattern at the time of occurrence of the traffic accident or at least before or after the occurrence of the traffic accident.
- the following is estimated based on the vibration pattern of the vibration caused by the running state of the vehicle near the position where the traffic accident occurs on the road R (step S25).
- Driving conditions of vehicles near the location of the traffic accident on the road R for example, the presence or absence of traffic congestion
- Driving conditions of a specific vehicle on road R for example, tilting driving, meandering driving, reverse driving, etc.
- -Status of traffic accidents that occurred on road R for example, types of traffic accidents, number of vehicles that caused traffic accidents, etc.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident occurring on the road R from the return light received from the optical fibers 10A and 10B, and also detects the vibration pattern. From the return light received from the optical fiber 10A at the time of the occurrence of the traffic accident or at least before or after the occurrence of the traffic accident, the vibration caused by the running condition of the vehicle near the position where the traffic accident occurred on the road R Detect vibration patterns.
- the estimation unit 22 estimates the situation of a traffic accident that occurred on the road R based on those vibration patterns. As a result, the situation of the traffic accident that occurred on the road R can be grasped in more detail. Other effects are the same as those in the first embodiment described above.
- the estimation unit 22 may further use the temperature data to estimate the situation of the traffic accident, as in the first embodiment described above.
- the optical fiber sensing system according to the third embodiment is different from the first embodiment described above in that the camera 30 is added. Although only one camera 30 is provided in FIG. 13, a plurality of cameras 30 may be provided.
- the camera 30 is a camera that captures the road R, and is realized by, for example, a fixed camera, a PTZ (Pan Tilt Zoom) camera, or the like.
- the estimation unit 22 defines the installation position of the camera 30 (distance of the optical fibers 10A and 10B from the detection unit 21, latitude and longitude of the installation position of the camera 30, etc.) and the position where the camera 30 can be photographed (latitude and longitude, etc.). Holds camera information indicating such as. Further, as described above, the estimation unit 22 can estimate the occurrence time and the occurrence position (distance of the optical fibers 10A and 10B from the detection unit 21) of the traffic accident that occurred on the road R.
- the estimation unit 22 estimates the time and position of the traffic accident. Then, the estimation unit 22 acquires a camera image near the position where the traffic accident occurs at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident from the camera images taken by the camera 30. However, in order to acquire a camera image near the position where the traffic accident occurs, it is necessary to convert the position where the traffic accident occurs to the position on the camera image.
- the estimation unit 22 holds in advance a correspondence table for associating the distances of the optical fibers 10A and 10B from the detection unit 21 with the camera coordinates, and even if the above-mentioned position conversion is performed using this correspondence table. good. Further, the estimation unit 22 may acquire the above-mentioned camera image from each of the plurality of cameras 30 as long as the vicinity of the position where the traffic accident occurs can be photographed by the plurality of cameras 30.
- the estimation unit 22 determines the traffic generated on the road R based on the vibration pattern of the vibration caused by the traffic accident generated on the road R detected by the detection unit 21 and the camera image acquired above. Estimate the situation of the accident.
- the estimation unit 22 estimates a collision accident or the like based on a vibration pattern of vibration caused by a traffic accident.
- the estimation unit 22 further identifies the number of the vehicle in which the collision accident or the like has occurred based on the camera image, or the occurrence of the traffic accident at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident.
- the situation of the position can be estimated.
- the situation of the position where a traffic accident occurs estimated based on the camera image is, for example, a vehicle that is driving dangerously (for example, driving ignoring traffic signs such as tilting driving, meandering driving, reverse driving, and temporary stop). Whether or not there is a vehicle, whether or not there is a vehicle driving aside or dozing, whether or not there is a traffic jam, etc.
- the return light received from the optical fibers 10A and 10B or the vibration data obtained by converting the return light and the camera image taken by the camera 30 are temporarily held, and then returned.
- the situation of the traffic accident shall be estimated by reading and analyzing the light or vibration data and the camera image.
- the estimation unit 22 may estimate the situation of the traffic accident occurring on the road R by using the NN as in the method D of the first embodiment described above. This method will be described with reference to FIG.
- NN # 1 is input as vibration data of a specific vehicle traveling on the road R and vibration data representing the correlation between the time and position of the amplitude is input, and a camera image of the road R is input.
- NN # 2 be NN
- NN # 3 be NN representing the fusion weight of NN # 1 to NN # 2.
- the estimation unit 22 comprehensively determines two types of information, NN # 1 and NN # 2, and estimates whether or not a traffic accident has occurred. For example, even if the estimation unit 22 estimates that a traffic accident has occurred based on the information of NN # 1 detected by the optical fiber 10A, if the information of NN # 2 does not show the car in the camera image, it determines that the estimation is erroneous. To do. As described above, the camera image can also be used as auxiliary information for estimating the presence or absence of a traffic accident.
- the optical fibers 10A and 10B detect the vibration generated on the road R (step S31).
- the vibration detected by the optical fibers 10A and 10B affects the return light transmitted through the optical fibers 10A and 10B.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident generated on the road R from the return light received from the optical fibers 10A and 10B (step S32).
- the estimation unit 22 estimates the occurrence time of the traffic accident based on the time when the return light in which the vibration pattern caused by the traffic accident is detected is received from the optical fibers 10A and 10B. Further, the estimation unit 22 has a time difference between the time when the pulsed light is incident on the optical fibers 10A and 10B and the time when the return light is received from the optical fibers 10A and 10B in which the vibration pattern caused by the traffic accident is detected. Based on the above, the position where the traffic accident occurs is estimated (step S33).
- the estimation unit 22 acquires a camera image near the position where the traffic accident occurs at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident from the camera images taken by the camera 30 (step). S34).
- the estimation unit 22 determines the vibration pattern of the vibration caused by the traffic accident that occurred on the road R detected by the detection unit 21, and the traffic accident at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident.
- the situation of the traffic accident that occurred on the road R is estimated based on the camera image near the position where the above occurs (step S35).
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident occurring on the road R from the return light received from the optical fibers 10A and 10B.
- the estimation unit 22 acquires a camera image near the position where the traffic accident occurs at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident from the camera images taken by the camera 30. Then, the estimation unit 22 estimates the situation of the traffic accident that occurred on the road R based on the vibration patterns and the camera images. As a result, the situation of the traffic accident that occurred on the road R can be grasped in more detail.
- Other effects are the same as those in the first embodiment described above.
- the estimation unit 22 may acquire a camera image in the vicinity of the occurrence position after the occurrence of the traffic accident as follows. For example, when a traffic accident occurs, the estimation unit 22 controls the angle (azimuth angle, elevation angle), zoom magnification, etc. of the camera 30 so as to photograph the vicinity of the position where the traffic accident occurs, and then photographs with the camera 30. Acquire the camera image. At this time, a process of converting the position where the traffic accident occurs to the position on the camera image is required, and this position conversion may be performed by the method using the corresponding table described above.
- the present embodiment 3 has been described as having a configuration in which a function is added to the above-described first embodiment.
- the present embodiment 3 has the above-described embodiment.
- a configuration in which a function is added to the second form may be used.
- the estimation unit 22 has the vibration pattern of the vibration caused by the traffic accident that occurred on the road R detected by the detection unit 21, and the road at the time of the occurrence of the traffic accident or at least one before or after the occurrence of the traffic accident.
- the situation of the traffic accident may be estimated based on the vibration pattern of the vibration caused by the running state of the vehicle near the position where the traffic accident occurs on R and the above-mentioned camera image.
- the optical fiber sensing device 20 may further include a prediction unit 23.
- the prediction unit 23 analyzes the traveling state of the vehicle on the road R and predicts the occurrence of a traffic accident. For example, the prediction unit 23 may predict that a traffic accident will occur when a vehicle that is driving in a tilted manner, a vehicle whose traveling speed is faster than a threshold value or a vehicle that is slower than a surrounding vehicle is detected.
- the prediction unit 23 may analyze statistical data of the traveling state of the vehicle on the road R to identify a place where a traffic accident is likely to occur. For example, the prediction unit 23 may specify a place where the vehicle often suddenly brakes as a place where a traffic accident is likely to occur.
- the optical fiber sensing device 20 may further include a notification unit 24 as shown in FIG.
- the notification unit 24 When a traffic accident occurs on the road R, the notification unit 24 notifies that the traffic accident has occurred and also notifies the situation of the traffic accident estimated by the estimation unit 22. For example, if the road R is a general road, the notification unit 24 notifies the police and the fire department, and if the road R is a highway, the notification unit 24 notifies the highway management company. Further, this notification may be an acoustic output of the corresponding message or a display output.
- the notification unit 24 may determine the degree of urgency according to the situation of the traffic accident, and may change the notification destination and the content of the notification according to the determined degree of urgency. For example, the notification unit 24 may increase the degree of urgency when a person is screaming or when the number of vehicles in which a traffic accident has occurred is large. Further, as shown in Table 1, the notification unit 24 holds in advance a correspondence table in which the urgency is associated with the notification destination and the notification content, and uses the correspondence table to respond to the urgency. You may specify the notification destination and notification content. In the example of Table 1, the larger the value, the higher the urgency, and when the urgency becomes higher, the police are requested to increase the number of police cars.
- optical fiber sensing device 20 may be configured to include both the prediction unit 23 shown in FIG. 16 and the notification unit 24 shown in FIG. Further, the optical fiber sensing device 20 may be configured to be connected to the camera 30 shown in FIG.
- the optical fiber sensing device 20 is provided with a plurality of components (detection unit 21, estimation unit 22, prediction unit 23, and notification unit 24). However, it is not limited to this.
- the components provided in the optical fiber sensing device 20 are not limited to being provided in one device, and may be distributed in a plurality of devices.
- the optical fiber sensing system shown in FIG. 18 includes an optical fiber 10 and an optical fiber sensing device 20. Further, the optical fiber sensing device 20 includes a detection unit 21 and an estimation unit 22.
- the optical fiber 10 is provided along the road R and detects vibration.
- the optical fiber 10 may be provided in the vicinity of the road R or may be laid on the road R. Further, the optical fiber 10 may be buried under the road R or may be overhead-wired.
- the detection unit 21 incidents pulsed light on the optical fiber 10 and receives reflected light or scattered light generated as the pulsed light is transmitted through the optical fiber 10 as return light via the optical fiber 10. .. Further, the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident generated on the road R from the optical signal received from the optical fiber 10.
- the estimation unit 22 estimates the situation of a traffic accident that occurred on the road R based on the vibration pattern of the vibration caused by the traffic accident detected by the detection unit 21.
- the optical fiber 10 detects the vibration generated on the road R (step S41).
- the vibration detected by the optical fiber 10 affects the return light transmitted through the optical fiber 10.
- the detection unit 21 detects the vibration pattern of the vibration caused by the traffic accident occurring on the road R from the return light received from the optical fiber 10 (step S42). After that, the estimation unit 22 estimates the situation of the traffic accident occurring on the road R based on the vibration pattern of the vibration caused by the traffic accident occurring on the road R detected by the detection unit 21 (step S43).
- the computer 40 includes a processor 401, a memory 402, a storage 403, an input / output interface (input / output I / F) 404, a communication interface (communication I / F) 405, and the like.
- the processor 401, the memory 402, the storage 403, the input / output interface 404, and the communication interface 405 are connected by a data transmission line for transmitting and receiving data to and from each other.
- the processor 401 is, for example, an arithmetic processing unit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
- the memory 402 is, for example, a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
- the storage 403 is, for example, a storage device such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a memory card. Further, the storage 403 may be a memory such as a RAM or a ROM.
- the storage 403 stores a program that realizes the functions of the components (detection unit 21 and estimation unit 22) included in the optical fiber sensing device 20. By executing each of these programs, the processor 401 realizes the functions of the components included in the optical fiber sensing device 20. Here, when executing each of the above programs, the processor 401 may read these programs onto the memory 402 and then execute the programs, or may execute the programs without reading them onto the memory 402. The memory 402 and the storage 403 also play a role of storing information and data held by the components included in the optical fiber sensing device 20.
- Non-temporary computer-readable media include various types of tangible storage media.
- Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Compact Disc-ROMs), CDs. -R (CD-Recordable), CD-R / W (CD-ReWritable), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM.
- the program also includes.
- the computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- the input / output interface 404 is connected to a display device 4041, an input device 4042, a sound output device 4043, and the like.
- the display device 4041 is a device that displays a screen corresponding to drawing data processed by the processor 401, such as an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube) display, and a monitor.
- the input device 4042 is a device that receives an operator's operation input, and is, for example, a keyboard, a mouse, a touch sensor, and the like.
- the display device 4041 and the input device 4042 may be integrated and realized as a touch panel.
- the sound output device 4043 is a device such as a speaker that acoustically outputs sound corresponding to acoustic data processed by the processor 401.
- the communication interface 405 sends and receives data to and from an external device.
- the communication interface 405 communicates with an external device via a wired communication path or a wireless communication path.
- Appendix 1 An optical fiber installed along the road to detect vibration, From the optical signal received from the optical fiber, a detection unit that detects the vibration pattern of vibration caused by a traffic accident occurring on the road, and An estimation unit that estimates the situation of the traffic accident based on the vibration pattern, An optical fiber sensing system.
- Appendix 2 The estimation unit estimates the time of occurrence of the traffic accident based on the time when the optical signal in which the vibration pattern is detected is received from the optical fiber.
- the optical fiber sensing system according to Appendix 1.
- Appendix 3 The detection unit receives the optical signal with respect to the incident light incident on the optical fiber, and receives the optical signal.
- the estimation unit determines the traffic accident based on the time difference between the time when the incident light is incident on the optical fiber and the time when the optical signal in which the vibration pattern is detected is received from the optical fiber. Estimate the position of occurrence of The optical fiber sensing system according to Appendix 2. (Appendix 4) The vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road at the time of occurrence or before the occurrence of the traffic accident. The estimation unit estimates the situation of the traffic accident based on the vibration pattern.
- the optical fiber sensing system according to Appendix 3.
- the vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road after the occurrence of the traffic accident.
- the estimation unit estimates the situation of the traffic accident based on the vibration pattern.
- the optical fiber sensing system according to Appendix 3 or 4. (Appendix 6) Further equipped with a camera to shoot the road The estimation unit From the camera images taken by the camera, a camera image near the position where the traffic accident occurred on the road at the time of the occurrence of the traffic accident, before, or after the occurrence of the traffic accident is acquired. , The situation of the traffic accident is estimated based on the vibration pattern and the acquired camera image.
- the optical fiber sensing system according to Appendix 3.
- the optical fiber sensing system according to Appendix 4 or 5.
- the optical fiber is The first optical fiber buried under the road and A second optical fiber that is overhead wired along the road, The optical fiber sensing system according to any one of Appendix 1 to 7, comprising the above.
- Appendix 9 It is a road monitoring method using an optical fiber sensing system.
- An optical fiber installed along the road detects vibration, A detection step for detecting a vibration pattern of vibration caused by a traffic accident occurring on the road from an optical signal received from the optical fiber, and a detection step.
- the time of occurrence of the traffic accident is estimated based on the time when the optical signal in which the vibration pattern is detected is received from the optical fiber.
- the road monitoring method described in Appendix 9. (Appendix 11)
- the detection step the optical signal for the incident light incident on the optical fiber is received, and the light signal is received.
- the traffic accident is based on the time difference between the time when the incident light is incident on the optical fiber and the time when the optical signal in which the vibration pattern is detected is received from the optical fiber.
- Estimate the position of occurrence of The road monitoring method according to Appendix 10.
- the vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road at the time of occurrence or before the occurrence of the traffic accident.
- the situation of the traffic accident is estimated based on the vibration pattern.
- the vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road after the occurrence of the traffic accident.
- the situation of the traffic accident is estimated based on the vibration pattern.
- the road monitoring method according to Appendix 11 or 12.
- Appendix 14 In the estimation step, From the camera images taken by the camera that photographs the road, a camera near the position where the traffic accident occurs on the road at the time of the occurrence of the traffic accident, before, or after the occurrence of the traffic accident. Get the image, The situation of the traffic accident is estimated based on the vibration pattern and the acquired camera image.
- a detection unit that detects the vibration pattern of vibration caused by a traffic accident that occurred on the road from an optical signal that is provided along the road and is received from an optical fiber that detects vibration.
- An estimation unit that estimates the situation of the traffic accident based on the vibration pattern,
- the estimation unit estimates the time of occurrence of the traffic accident based on the time when the optical signal in which the vibration pattern is detected is received from the optical fiber.
- the optical fiber sensing device according to Appendix 17.
- the detection unit receives the optical signal with respect to the incident light incident on the optical fiber, and receives the optical signal.
- the estimation unit determines the traffic accident based on the time difference between the time when the incident light is incident on the optical fiber and the time when the optical signal in which the vibration pattern is detected is received from the optical fiber. Estimate the position of occurrence of The optical fiber sensing device according to Appendix 18. (Appendix 20)
- the vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road at the time of occurrence or before the occurrence of the traffic accident.
- the estimation unit estimates the situation of the traffic accident based on the vibration pattern.
- the optical fiber sensing device according to Appendix 19.
- the vibration pattern further includes a vibration pattern of vibration caused by a running state of a vehicle near the position where the traffic accident occurs on the road after the occurrence of the traffic accident.
- the estimation unit estimates the situation of the traffic accident based on the vibration pattern.
- the optical fiber sensing device according to Appendix 19 or 20.
- the estimation unit From the camera images taken by the camera that photographs the road, a camera near the position where the traffic accident occurs on the road at the time of the occurrence of the traffic accident, before, or after the occurrence of the traffic accident. Get the image, The situation of the traffic accident is estimated based on the vibration pattern and the acquired camera image.
- the optical fiber sensing device according to Appendix 19.
- the estimation unit From the camera images taken by the camera that photographs the road, a camera near the position where the traffic accident occurs on the road at the time of the occurrence of the traffic accident, before, or after the occurrence of the traffic accident. Get the image, The situation of the traffic accident is estimated based on the vibration pattern and the acquired camera image.
- the optical fiber sensing device according to Appendix 20 or 21.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
本開示に係る光ファイバセンシングシステムは、道路Rに沿って設けられ、振動を検出する光ファイバ(10)と、光ファイバ(10)から受信された光信号から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する検出部(21)と、振動パターンに基づいて、交通事故の状況を推定する推定部(22)と、を備える。
Description
本開示は、光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器に関する。
近年、道路の状況を監視するシステムが提案されている。
例えば、特許文献1には、道路のガードレール等に衝撃センサを固定し、衝撃センサから出力される電気信号のレベルが閾値レベル以上である場合に、交通事故が発生した旨の事故検知信号を発生することが開示されている。
例えば、特許文献1には、道路のガードレール等に衝撃センサを固定し、衝撃センサから出力される電気信号のレベルが閾値レベル以上である場合に、交通事故が発生した旨の事故検知信号を発生することが開示されている。
また、特許文献2には、地中電力ケーブルの表面等に光ファイバを敷設し、光ファイバに物理現象が発生したか否かを連続的に検出することが開示されている。
しかし、特許文献1に記載の技術は、道路で交通事故が発生したか否かを検出することしかできない。また、特許文献2に記載の技術も、物理現象が発生したか否かを検出することしかできない。
そのため、特許文献1,2に記載の技術はいずれも、道路で発生した交通事故の状況については把握することができないという課題がある。
そのため、特許文献1,2に記載の技術はいずれも、道路で発生した交通事故の状況については把握することができないという課題がある。
そこで本開示の目的は、上述した課題を解決し、道路で発生した交通事故の状況を把握することができる光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器を提供することにある。
一態様による光ファイバセンシングシステムは、
道路に沿って設けられ、振動を検出する光ファイバと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える。
道路に沿って設けられ、振動を検出する光ファイバと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える。
一態様による道路監視方法は、
道路に沿って設けられた光ファイバが、振動を検出するステップと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出ステップと、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定ステップと、
を含む。
道路に沿って設けられた光ファイバが、振動を検出するステップと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出ステップと、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定ステップと、
を含む。
一態様による光ファイバセンシング機器は、
道路に沿って設けられ、振動を検出する光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える。
道路に沿って設けられ、振動を検出する光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える。
上述した態様によれば、道路で発生した交通事故の状況を把握できる光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器を提供できるという効果が得られる。
以下、図面を参照して本開示の実施の形態について説明する。なお、以下の記載及び図面は、説明の明確化のため、適宜、省略及び簡略化がなされている。また、以下の各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
<実施の形態1>
まず、図1を参照して、本実施の形態1に係る光ファイバセンシングシステムの構成例について説明する。
まず、図1を参照して、本実施の形態1に係る光ファイバセンシングシステムの構成例について説明する。
図1に示されるように、本実施の形態1に係る光ファイバセンシングシステムは、光ファイバ10A(第1光ファイバ)、光ファイバ10B(第2光ファイバ)、及び光ファイバセンシング機器20を備えている。また、光ファイバセンシング機器20は、検出部21及び推定部22を備えている。
光ファイバ10A,10Bは、道路Rに敷設されている。詳細には、光ファイバ10Aは、道路Rの近傍に埋設され、光ファイバ10Bは、道路Rに沿って架空配線されている。なお、図1においては、光ファイバ10Bは、電柱Tにより架空配線されているが、鉄塔等の他の手段により架空配線されても良い。また、光ファイバ10A,10Bは、既存の未使用の通信用光ファイバ(いわゆる、ダークファイバ)で実現されても良い。また、光ファイバ10A,10Bは、既存の使用中の通信用光ファイバで通信用に使用している周波数とは異なる周波数を使用することとすれば、既存の使用中の通信用光ファイバで実現されても良い。また、光ファイバ10A,10Bは、光ファイバを被覆して構成される光ファイバケーブルの態様で、道路Rに敷設されても良い。
検出部21は、光ファイバ10Aにパルス光(入射光)を入射する。また、検出部21は、パルス光が光ファイバ10Aを伝送されることに伴い発生した反射光や散乱光を、光ファイバ10Aを経由して、戻り光(光信号)として受信する。同様に、検出部21は、光ファイバ10Bにパルス光を入射し、光ファイバ10Bから戻り光を受信する。
道路Rで衝撃が発生すると、その振動は、道路Rの下に埋設されている光ファイバ10Aに伝達され、光ファイバ10Aにより伝送される戻り光に影響を及ぼすと共に、音としても空気を伝搬して、道路Rに沿って架空配線されている光ファイバ10Bに伝達され、光ファイバ10Bにより伝送される戻り光に影響を及ぼす。そのため、光ファイバ10A,10Bは、道路Rで発生した振動やそれに起因する音を検出することが可能である。
このように、道路Rで発生した衝撃は地面を介する振動、及び空気を介する音として伝搬するが、光ファイバ10Aは、地面を伝搬する振動を検出し易いため、その振動を中心に検出を行い、また、光ファイバ10Bは、空気を伝搬する音を検出し易いため、音を中心に検出を行う。
なお、前期説明では事故などの衝撃による振動の検出について記載したが、特に光ファイバ10Aはそれに留まらず、車両が道路Rを通常走行する際に発生する振動についても検出可能である。
ここで、道路Rで発生した振動は、その振動の要因となった事象に応じて、振動の強弱、振動位置、振動数の変動の推移等が異なる固有の振動パターンを有している。例えば、道路Rで発生した交通事故に起因する振動の振動パターンは、その交通事故に固有のパターンとなる。
そのため、道路Rで発生した交通事故に起因する振動の振動パターンの動的変化を分析することにより、道路Rで交通事故が発生したことを検出するだけでなく、道路Rで発生した交通事故の状況についても推定することが可能となる。
交通事故の状況としては、例えば、以下が考えられる。
・交通事故を発生した車両の台数
・交通事故を発生した車両の種別(例えば、自動車、バイク等)
・交通事故の種類(例えば、スピン事故、横転事故、衝突事故等)
・物損(例えば、信号機の破損等)
・交通事故を発生した車両の台数
・交通事故を発生した車両の種別(例えば、自動車、バイク等)
・交通事故の種類(例えば、スピン事故、横転事故、衝突事故等)
・物損(例えば、信号機の破損等)
そこで、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する。ここで、光ファイバ10Aは、道路Rに直接伝わる振動を検出する。そのため、検出部21は、光ファイバ10Aから受信された戻り光からは、例えば、交通事故に起因する振動の振動パターンを検出する。一方、光ファイバ10Bは、道路Rから空気を介して伝わる音として振動を検出する。そのため、検出部21は、光ファイバ10Bから受信された戻り光からは、例えば、交通事故に起因する振動の振動パターンを検出する。
推定部22は、検出部21により検出された交通事故に起因する振動の振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する。このとき、上述のように、検出部21により検出された振動の振動パターンは、交通事故に固有のパターンとなる。そのため、推定部22は、検出部21により検出された振動の振動パターンの動的変化を分析することにより、交通事故の状況を推定する。
なお、本実施の形態1においては、光ファイバ10A,10Bから受信された戻り光をリアルタイムに分析して、交通事故の状況を推定しても良いし、光ファイバ10A,10Bから受信された戻り光又はその戻り光を変換した振動データを一旦保持し、その後、戻り光又は振動データを読み出し分析して、交通事故の状況を推定しても良い。
また、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が、検出部21で受信された時刻に基づいて、その交通事故の発生時刻を推定しても良い。
また、推定部22は、検出部21が光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が、検出部21で受信された時刻と、の時間差に基づいて、交通事故の発生位置(検出部21からの光ファイバ10A,10Bの距離)を推定しても良い。詳細には、推定部22は、上記の時間差に基づいて、検出部21から交通事故の発生位置までの光ファイバ10A,10Bの距離を測定することが可能である。このとき、推定部22は、光ファイバ10A,10Bの距離と、その距離に相当する位置(地点)と、を対応付けた対応テーブルを予め保持しておけば、その対応テーブルを用いて、交通事故の発生位置(地点)を推定することが可能となる。
続いて以下では、推定部22において、道路Rで発生した交通事故の状況を推定する具体的な方法について説明する。
(A)方法A
まず、図2及び図3を参照して、道路Rで発生した交通事故の状況を推定する方法Aについて説明する。
まず、図2及び図3を参照して、道路Rで発生した交通事故の状況を推定する方法Aについて説明する。
検出部21は、光ファイバ10Bから受信された戻り光を、例えば、図2に示されるような振動データに変換する。図2に示される振動データは、道路Rのある位置で光ファイバ10Bが検出した振動の振動データであり、横軸が時間、縦軸が音強度を示している。
推定部22は、図2に示されるような振動データに基づいて、交通事故の状況を推定する。このとき、例えば、推定部22は、パターンマッチングを利用する。詳細には、推定部22は、交通事故の状況に応じた振動データを教師データとして予め保持しておく。なお、この教師データは、推定部22が機械学習等により学習したものでも良い。そして、推定部22は、図3に示されるように、検出部21により変換された振動データが有する振動パターンを、予め保持している複数の教師データが有する振動パターンとそれぞれ比較する。推定部22は、いずれかの教師データが有する振動パターンに適合する場合、検出部21により変換された振動データは、適合した教師データに対応する交通事故の状況で発生した振動データであると判断する。図3に示される例では、検出部21により変換された振動データは、衝突事故が発生したときの振動データと振動パターンが略一致している。そのため、推定部22は、衝突事故が発生したと判断する。
(B)方法B
続いて、図4及び図5を参照して、道路Rで発生した交通事故の状況を推定する方法Bについて説明する。
検出部21は、光ファイバ10Aから受信された戻り光を、例えば、図4及び図5に示されるような振動データに変換する。図4及び図5に示される振動データは、対面通行が行われる道路Rで光ファイバ10Aが検出した振動の振動データであり、横軸が、検出部21からの光ファイバ10Aの距離、縦軸が、時間経過を示している。また、縦軸は、正方向に向かうほど、古いデータとなる。
続いて、図4及び図5を参照して、道路Rで発生した交通事故の状況を推定する方法Bについて説明する。
検出部21は、光ファイバ10Aから受信された戻り光を、例えば、図4及び図5に示されるような振動データに変換する。図4及び図5に示される振動データは、対面通行が行われる道路Rで光ファイバ10Aが検出した振動の振動データであり、横軸が、検出部21からの光ファイバ10Aの距離、縦軸が、時間経過を示している。また、縦軸は、正方向に向かうほど、古いデータとなる。
図4及び図5に示される振動データにおいては、道路Rを走行している車両の振動を光ファイバ10Aで検出すると、車両が走行していることが線で表される。例えば、1台の車両が時間経過に従って走行していることは、斜めに1本の線で表される。ここで、線の傾きの絶対値は、車両の走行速度を表している。線の傾きの絶対値が小さいほど、車両の走行速度が速いことを意味している。また、線の傾きの正負は、車両の走行方向を表している。例えば、正の傾きの線が車線Aを走行する車両を表している場合、負の傾きの線は、車線Aの反対車線となる車線Bを走行する車両を表している。
推定部22は、図4及び図5に示されるような振動データに基づいて、交通事故の状況を推定する。
図4の例では、線L1は傾きが負であるのに対して、線L2は傾きが正である。このことは、線L1で表される車両は、線L2で表される車両が走行している車線の反対車線を走行していることを意味している。このとき、両車両は、検出部21からの光ファイバ10Aの距離が一致する位置P1を過ぎても、走行を継続している。そのため、推定部22は、図4の例では、衝突など交通事故は発生せず、車両が正常にすれ違っていると判断する。
一方、図5の例でも、図4と同様に、線L1で表される車両は、線L2で表される車両が走行している車線の反対車線を走行している。しかし、両車両は、検出部21からの光ファイバ10Aの距離が一致する位置P1において、減速することなく突然走行を停止している。そのため、推定部22は、図5の例では、正面衝突事故が発生したと判断する。
なお、本方法Bにおいても、推定部22は、図4及び図5に示されるような振動データに基づいて、上述した方法Aと同様のパターンマッチングを利用して、交通事故の状況を推定しても良い。
(C)方法C
続いて、図6及び図7を参照して、道路Rで発生した交通事故の状況を推定する方法Cについて説明する。
検出部21は、光ファイバ10Aから受信された戻り光を、例えば、図6及び図7に示されるような振動データに変換する。図6及び図7に示される振動データは、道路Rを走行する特定の車両に着目し、光ファイバ10Aが検出したその車両の振動データを時系列的に示している。
続いて、図6及び図7を参照して、道路Rで発生した交通事故の状況を推定する方法Cについて説明する。
検出部21は、光ファイバ10Aから受信された戻り光を、例えば、図6及び図7に示されるような振動データに変換する。図6及び図7に示される振動データは、道路Rを走行する特定の車両に着目し、光ファイバ10Aが検出したその車両の振動データを時系列的に示している。
推定部22は、図6及び図7に示されるような振動データに基づいて、交通事故の状況を推定する。
図6及び図7の例では、いずれも、振動データにおいて、交通事故に固有の大きなピークP1が発生している。
ただし、図6の例では、1回のピークP1が発生したのみで、振動が収束している。このことから、交通事故を発生した車両は、何某かに一度衝突して停止したと考えられる。そのため、推定部22は、比較的単純な形態の事故が発生したと判断する。
ただし、図6の例では、1回のピークP1が発生したのみで、振動が収束している。このことから、交通事故を発生した車両は、何某かに一度衝突して停止したと考えられる。そのため、推定部22は、比較的単純な形態の事故が発生したと判断する。
一方、図7の例では、ピークP1が発生した後、さらに、ピークP2,P3という比較的大きなピークが連続して発生している。このことから、交通事故を発生した車両は、他の車両等にも衝突し、もしくは横転するなどして、そのときの振動がピークP2,P3として発生していると考えられる。そのため、推定部22は、複数台の車両の衝突や横転などの、複雑な形態の衝突事故が発生したと判断する。なお、推定部22は、振動データにおけるピークの数に基づいて、衝突事故を発生した車両の台数を判断しても良い。図7の例では、3つのピークP1~P3が発生しているため、推定部22は、ピークP1の衝突が車両同士の衝突であれば、少なくとも4台の車両による衝突事故が発生したと判断する。
なお、本方法Cにおいても、推定部22は、図6及び図7に示されるような振動データに基づいて、上述方法Aと同様のパターンマッチングを利用して、交通事故の状況を推定しても良い。
ここで、上述した方法A~方法Cは、交通事故の種類(例えば、単独事故、多重衝突事故等)、交通事故を発生した車両の台数等を推定する例であった。ただし、これらの例には限定されず、推定部22は、振動パターンを分析し、交通事故を発生した車両の種別(例えば、自動車、バイク等)、物損(例えば、信号機の破損等)等を推定しても良い。
また、推定部22は、上述した方法A~方法Cを、互いに組み合わせて用いて、交通事故の状況を推定しても良い。ここで、上述した方法B及び方法Cでは、道路Rに直接伝わる振動を検出するのに対し、上述した方法Aでは、道路Rから空気を介して伝わる音としても振動を検出する。そこで、例えば、推定部22は、上述した方法Aの衝突音を分析して、金属同士の衝突音でない鈍い衝突音が発生していると判断し、その時刻や位置と上述した方法Cで検出した衝撃や車両の急減速位置が合致する場合は、車両が人に衝突した人身事故の可能性があると判断する。
(D)方法D
続いて、図8を参照して、道路Rで発生した交通事故の状況を推定する方法Dについて説明する。
続いて、図8を参照して、道路Rで発生した交通事故の状況を推定する方法Dについて説明する。
図8において、図6及び図7に示されるような振幅の時間変化を表す振動データを入力とするニューラルネットワーク(NN:Neural Network)をNN#1、この振動データをFourier変換した後のスペクトルを入力とするNNをNN#2、この振動データをWavelet変換した後のスペクトルを入力とするNNをNN#3、NN#1~NN#3の融合重みを表すNNをNN#4とする。
推定部22は、NN#1~NN#3の3種の情報を総合的に判断して、交通事故の発生の有無を推定する。
推定部22は、NN#1~NN#3の3種の情報を総合的に判断して、交通事故の発生の有無を推定する。
続いて、図9を参照して、本実施の形態1に係る光ファイバセンシングシステムの動作例について説明する。
図9に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS11)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
図9に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS11)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
続いて、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する(ステップS12)。
続いて、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定する。さらに、推定部22は、光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻と、の時間差に基づいて、その交通事故の発生位置を推定する(ステップS13)。
その後、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンに基づいて、道路Rで発生した交通事故の状況として、交通事故の種類(例えば、単独事故、多重衝突事故等)、交通事故を発生した車両の台数等を推定する(ステップS14)。
上述したように本実施の形態1によれば、光ファイバ10A,10Bは、道路Rで発生した振動を検出する。検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する。推定部22は、その振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する。これにより、道路Rで交通事故が発生したか否かを把握できるだけでなく、道路Rで発生した交通事故の状況についても把握することができる。
また、例えば、交差点にマイクやカメラを配置すれば、マイクで集音された衝撃音やカメラで撮影されたカメラ画像から交通事故を検出できる可能性がある。しかし、この方法で交通事故を検出できるのは、マイクやカメラを配置した交差点のみとなる。
これに対して、本実施の形態1によれば、光ファイバ10A,10Bは、光ファイバ10A,10Bが敷設されたいずれの箇所においても振動を検出することができる。そのため、光ファイバ10A,10Bが敷設されたいずれの箇所においても、交通事故の発生を検出し、その交通事故の状況を把握することができる。
また、本実施の形態1によれば、光ファイバ10A,10Bは、既存の通信用光ファイバで実現されても良い。この場合、光ファイバ10A,10Bを新たに設置する必要がないため、光ファイバセンシングシステムを低コストで構築することができる。
また、本実施の形態1によれば、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定しても良い。この場合、交通事故の正確な発生時刻を把握できるため、交通事故の発生時刻における信号機の現示状況を特定することができる。これにより、交通事故の当事者が現示状況を偽証しても、偽証であると判断できる。
なお、本実施の形態1によれば、道路Rで発生した交通事故の状況を推定するために、光ファイバ10Aが検出した振動の振動データと、光ファイバ10Bが音として検出した振動の振動データと、を用いていたが、これには限定されない。道路Rに温度変化があった場合、その温度変化も光ファイバ10A,10Bにより伝送される戻り光に影響を与えるから、光ファイバ10A,10Bは、道路Rの温度も検出可能である。そのため、検出部21は、光ファイバ10A,10Bから受信された戻り光を、温度データに変換し、推定部22は、その温度データをさらに用いて、交通事故の状況を推定しても良い。推定部22は、温度データを用いることにより、例えば、道路Rが凍結していることを判断できる。また、推定部22は、温度データを、振動データと組み合わせて用いることにより、例えば、道路Rに火災や爆発が発生したことを判断できる。そのため、推定部22は、例えば、振動データを用いて衝突事故を推定した場合、さらに温度データを用いることにより、その衝突事故が、道路Rの凍結や、道路Rに発生した火災や爆発に起因して発生したと判断できる。
<実施の形態2>
本実施の形態2に係る光ファイバセンシングシステムは、構成自体は上述した実施の形態1と同様であるが、検出部21及び推定部22の機能を拡張している。
本実施の形態2に係る光ファイバセンシングシステムは、構成自体は上述した実施の形態1と同様であるが、検出部21及び推定部22の機能を拡張している。
道路Rで発生した振動の振動パターンは、道路R上の車両の走行状態(例えば、走行方向、走行速度、走行台数、車間距離、渋滞の有無、危険運転の有無等)によっても異なるパターンとなる。車両の走行状態に起因する振動は、特に、道路Rの下に埋設されている光ファイバ10Aによって検出することが可能である。
本実施の形態2は、道路Rで発生した交通事故に起因する振動の振動パターンだけでなく、道路R上の車両の走行状態に起因する振動の振動パターンも用いて、交通事故の状況を推定するものである。
推定部22は、上述のように、道路Rで発生した交通事故の発生時刻及び発生位置を特定することが可能である。
そこで、検出部21は、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、光ファイバ10Aから受信された戻り光から、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに検出する。
そこで、検出部21は、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、光ファイバ10Aから受信された戻り光から、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに検出する。
推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンと、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンと、に基づいて、道路Rで発生した交通事故の状況を推定する。このとき、上述のように、検出部21により検出された振動の振動パターンは、交通事故に固有のパターンを含むと共に、道路R上の車両の走行状態に応じた固有のパターンを含む。そのため、推定部22は、検出部21により検出された振動の振動パターンの動的変化を分析することにより、交通事故の状況を推定する。
なお、本実施の形態2においては、光ファイバ10A,10Bから受信された戻り光又はその戻り光を変換した振動データを一旦保持し、その後、戻り光又は振動データを読み出し分析して、交通事故の状況を推定するものとする。
続いて以下では、図10及び図11を参照して、推定部22において、道路Rで発生した交通事故の状況を推定する具体的な方法について説明する。
図10の上図は、道路R上の車両の走行状態を示している。車両の走行状態に起因する振動は、特に光ファイバ10Aで検出されるため、図10の上図では、光ファイバ10Bの図示が省略されている。
図10の上図は、道路R上の車両の走行状態を示している。車両の走行状態に起因する振動は、特に光ファイバ10Aで検出されるため、図10の上図では、光ファイバ10Bの図示が省略されている。
光ファイバ10Aは、図10の上図のような走行状態であるときに道路Rで発生した振動を検出し、その振動が戻り光に影響を与える。検出部21は、光ファイバ10Aから、その戻り光を受信する。検出部21は、光ファイバ10Aから受信された戻り光を、例えば、図10の下図に示されるような振動データに変換する。
推定部22は、図10の下図に示されるような振動データに基づいて、交通事故の状況を推定する。
図10の下図に示される振動データの横軸及び縦軸は、図4及び図5に示したものと同様である。そのため、図10の下図に示される振動データにおいても、1台の車両が道路Rを時間経過に従って走行していることは、斜めに1本の線で表される。また、線の傾きの絶対値は、車両の走行速度を表し、線の傾きの正負は、車両の走行方向を表している。また、線の横軸方向の間隔Gは、車両同士の車間距離を表しており、間隔Gが短いほど、車間距離が短くなることを意味している。
図10の下図に示される振動データの横軸及び縦軸は、図4及び図5に示したものと同様である。そのため、図10の下図に示される振動データにおいても、1台の車両が道路Rを時間経過に従って走行していることは、斜めに1本の線で表される。また、線の傾きの絶対値は、車両の走行速度を表し、線の傾きの正負は、車両の走行方向を表している。また、線の横軸方向の間隔Gは、車両同士の車間距離を表しており、間隔Gが短いほど、車間距離が短くなることを意味している。
図10の下図に示される振動データにおいて、中央付近では、複数本の線は、傾きが負で絶対値が大きく、線同士の間隔Gも短くなっている。このことは、複数台の車両が、それぞれ同じ走行方向に走行しているが、走行速度が遅く、車間距離も短いことを意味している。そのため、渋滞が発生していると考えられる。その一方、中央付近以外では、渋滞が発生していないと考えられる。なお、図10の下図の例では、交通事故は発生していない。
続いて、図10の下図と同様の方法で変換された図11の振動データについて説明する。図11に示される振動データは、対面通行が行われる道路Rで光ファイバ10Aが検出した振動の振動データである。
図11の例では、線L1~線L4で表される4台の車両は、それぞれ同じ走行方向に走行しているが、走行速度が遅く、車間距離も短い。そのため、渋滞が発生していると考えられる。その一方、線L5で表される車両は、線L1~線L4で表される4台の車両が走行している車線の反対車線を走行している。また、線L5で表される車両は、渋滞が発生していると考えられる位置P1において、走行を停止している。そのため、推定部22は、図11の例では、渋滞が発生している車両の列に、反対車線から車両が正面衝突した交通事故が発生したと判断する。
なお、本方法においては、推定部22は、図10の下図及び図11に示されるような振動データに基づいて、上述した実施の形態1で説明した方法Aと同様のパターンマッチングを利用して、交通事故の状況を推定しても良い。
ここで、上述した方法では、図10の下図及び図11に示されるような振動データに基づいて、道路R上に渋滞が発生していることを推定していた。ただし、この例には限定されず、推定部22は、例えば、危険運転(例えば、あおり運転、蛇行運転、逆走運転等)をしている車両の有無や、急ブレーキをかけた車両の有無を推定しても良い。例えば、推定部22は、片側通行が行われている道路Rにおいて、走行方向が異なる車両があれば、その車両は逆走運転をしていると判断できる。また、推定部22は、閾値以上の走行速度で走行しているにもかかわらず、前の車両との車間距離が短い状態が継続している車両があれば、その車両はあおり運転をしていると判断できる。また、推定部22は、走行速度が閾値以上に減速した車両があれば、その車両は急ブレーキをかけていると判断できる。
また、推定部22は、交通事故の発生後の振動データを用いることにより、交通事故の発生後に渋滞が発生していることや、交通事故の発生位置から逃亡した車両が存在することなども推定することができる。
続いて、図12を参照して、本実施の形態2に係る光ファイバセンシングシステムの動作例について説明する。
図12に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS21)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
図12に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS21)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
続いて、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する(ステップS22)。
続いて、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定する。さらに、推定部22は、光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻と、の時間差に基づいて、その交通事故の発生位置を推定する(ステップS23)。
続いて、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定する。さらに、推定部22は、光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻と、の時間差に基づいて、その交通事故の発生位置を推定する(ステップS23)。
続いて、検出部21は、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、光ファイバ10Aから受信された戻り光から、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンを検出する(ステップS24)。
その後、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンと、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンと、に基づいて、以下を推定する(ステップS25)。
・道路R上の交通事故の発生位置付近の車両の走行状況(例えば、渋滞の有無等)
・道路R上の特定の車両の走行状況(例えば、あおり運転、蛇行運転、逆走運転等)
・道路Rで発生した交通事故の状況(例えば、交通事故の種類、交通事故を発生した車両の台数等)
・道路R上の交通事故の発生位置付近の車両の走行状況(例えば、渋滞の有無等)
・道路R上の特定の車両の走行状況(例えば、あおり運転、蛇行運転、逆走運転等)
・道路Rで発生した交通事故の状況(例えば、交通事故の種類、交通事故を発生した車両の台数等)
上述したように本実施の形態2によれば、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出すると共に、交通事故の発生時点又は発生前又は発生後の少なくとの一つにおける、光ファイバ10Aから受信された戻り光から、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンを検出する。推定部22は、それらの振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する。これにより、道路Rで発生した交通事故の状況をさらに詳細に把握することができる。その他の効果は、上述した実施の形態1と同様である。
なお、本実施の形態2においても、上述した実施の形態1と同様に、推定部22は、温度データをさらに用いて、交通事故の状況を推定しても良い。
<実施の形態3>
続いて、図13を参照して、本実施の形態3に係る光ファイバセンシングシステムの構成例について説明する。なお、以下の説明では、本実施の形態3を、上述した実施の形態1に機能を追加した構成であるものとして説明するが、本実施の形態3は、上述した実施の形態2に機能を追加した構成としても良いことは言うまでもない。
続いて、図13を参照して、本実施の形態3に係る光ファイバセンシングシステムの構成例について説明する。なお、以下の説明では、本実施の形態3を、上述した実施の形態1に機能を追加した構成であるものとして説明するが、本実施の形態3は、上述した実施の形態2に機能を追加した構成としても良いことは言うまでもない。
図13に示されるように、本実施の形態3に係る光ファイバセンシングシステムは、上述した実施の形態1と比較して、カメラ30が追加されている点が異なる。なお、図13においては、カメラ30が1台だけ設けられているが、カメラ30は複数台設けても良い。
カメラ30は、道路Rを撮影するカメラであり、例えば、固定カメラ、PTZ(Pan Tilt Zoom)カメラ等で実現される。
推定部22は、カメラ30の設置位置(検出部21からの光ファイバ10A,10Bの距離、カメラ30の設置位置の緯度経度等)、カメラ30の撮影可能エリアを規定する位置(緯度経度等)等を示すカメラ情報を保持する。また、推定部22は、上述のように、道路Rで発生した交通事故の発生時刻及び発生位置(検出部21からの光ファイバ10A,10Bの距離)を推定することが可能である。
そのため、推定部22は、道路R上のカメラ30の撮影可能エリア内で交通事故が発生した場合、交通事故の発生時刻及び発生位置を推定する。そして、推定部22は、カメラ30により撮影されたカメラ画像の中から、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける交通事故の発生位置付近のカメラ画像を取得する。ただし、交通事故の発生位置付近のカメラ画像を取得するには、交通事故の発生位置を、カメラ画像上の位置に変換する処理が必要となる。そのため、推定部22は、例えば、検出部21からの光ファイバ10A,10Bの距離とカメラ座標とを対応づける対応テーブルを予め保持し、この対応テーブルを用いて、上述した位置変換をしても良い。また、推定部22は、交通事故の発生位置付近を複数台のカメラ30で撮影可能であれば、複数台のカメラ30の各々から上述したカメラ画像を取得しても良い。
そして、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンと、上記で取得されたカメラ画像と、に基づいて、道路Rで発生した交通事故の状況を推定する。
例えば、推定部22は、交通事故に起因する振動の振動パターンに基づいて、衝突事故等を推定したとする。この場合、さらに、推定部22は、カメラ画像に基づいて、衝突事故等を発生した車両のナンバーを特定したり、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける交通事故の発生位置の状況を推定したりすることができる。カメラ画像に基づき推定される交通事故の発生位置の状況は、例えば、危険運転(例えば、あおり運転、蛇行運転、逆走運転、一時停止等の交通標識を無視した運転等)をしている車両の有無、わき見運転や居眠り運転をしている車両の有無、渋滞の有無等である。
なお、本実施の形態3においては、光ファイバ10A,10Bから受信された戻り光又はその戻り光を変換した振動データと、カメラ30により撮影されたカメラ画像と、を一旦保持し、その後、戻り光又は振動データとカメラ画像とを読み出し分析して、交通事故の状況を推定するものとする。
また、本実施の形態3においては、推定部22は、上述した実施の形態1の方法Dのように、NNを用いて、道路Rで発生した交通事故の状況を推定しても良い。図14を参照して、この方法を説明する。
図14において、道路Rを走行する特定の車両の振動データであって振幅の時間と位置との相関を表す振動データを入力とするNNをNN#1、道路Rを撮影したカメラ画像を入力とするNNをNN#2、NN#1~NN#2の融合重みを表すNNをNN#3とする。
推定部22は、NN#1~NN#2の2種の情報を総合的に判断して、交通事故の発生の有無を推定する。例えば、推定部22は、光ファイバ10Aで検知したNN#1の情報で交通事故が発生したと推定しても、NN#2の情報ではカメラ画像に車が写っていなければ、誤推定と判断する。このように、カメラ画像は、交通事故の発生の有無を推定するための補助的な情報としても利用可能である。
続いて、図15を参照して、本実施の形態3に係る光ファイバセンシングシステムの動作例について説明する。
図15に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS31)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
図15に示されるように、光ファイバ10A,10Bは、道路Rで発生した振動を検出する(ステップS31)。光ファイバ10A,10Bで検出された振動は、光ファイバ10A,10Bを伝送される戻り光に影響を与える。
続いて、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する(ステップS32)。
続いて、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定する。さらに、推定部22は、光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻と、の時間差に基づいて、その交通事故の発生位置を推定する(ステップS33)。
続いて、推定部22は、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻に基づいて、その交通事故の発生時刻を推定する。さらに、推定部22は、光ファイバ10A,10Bにパルス光を入射した時刻と、光ファイバ10A,10Bから、交通事故に起因する振動パターンが検出された戻り光が受信された時刻と、の時間差に基づいて、その交通事故の発生位置を推定する(ステップS33)。
続いて、推定部22は、カメラ30により撮影されたカメラ画像の中から、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける交通事故の発生位置付近のカメラ画像を取得する(ステップS34)。
その後、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンと、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける、交通事故の発生位置付近のカメラ画像と、に基づいて、道路Rで発生した交通事故の状況を推定する(ステップS35)。
上述したように本実施の形態3によれば、検出部21は、光ファイバ10A,10Bから受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する。推定部22は、カメラ30により撮影されたカメラ画像の中から、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける交通事故の発生位置付近のカメラ画像を取得する。そして、推定部22は、それらの振動パターン及びカメラ画像に基づいて、道路Rで発生した交通事故の状況を推定する。これにより、道路Rで発生した交通事故の状況をさらに詳細に把握することができる。その他の効果は、上述した実施の形態1と同様である。
なお、推定部22は、交通事故の発生後の発生位置付近のカメラ画像を以下のように取得しても良い。例えば、推定部22は、交通事故が発生した場合、交通事故の発生位置付近を撮影するように、カメラ30の角度(方位角、仰角)、ズーム倍率等を制御し、以降にカメラ30により撮影されたカメラ画像を取得する。このとき、交通事故の発生位置を、カメラ画像上の位置に変換する処理が必要となるが、この位置変換は、上述した対応テーブルを用いた方法で行えば良い。
また、以上の説明では、本実施の形態3を、上述した実施の形態1に機能を追加した構成であるものとして説明したが、上述したように、本実施の形態3は、上述した実施の形態2に機能を追加した構成としても良い。この場合、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンと、交通事故の発生時点又は発生前又は発生後の少なくとも一つにおける、道路R上の交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンと、上述したカメラ画像と、に基づいて、交通事故の状況を推定すれば良い。
<他の実施の形態>
なお、光ファイバセンシング機器20は、図16に示されるように、予測部23をさらに備えていても良い。
予測部23は、道路R上の車両の走行状態を分析して、交通事故の発生を予測する。例えば、予測部23は、あおり運転をしている車両や、走行速度が周囲の車両に比べて閾値以上に速い車両や遅い車両を検出した場合、交通事故が発生すると予測しても良い。
なお、光ファイバセンシング機器20は、図16に示されるように、予測部23をさらに備えていても良い。
予測部23は、道路R上の車両の走行状態を分析して、交通事故の発生を予測する。例えば、予測部23は、あおり運転をしている車両や、走行速度が周囲の車両に比べて閾値以上に速い車両や遅い車両を検出した場合、交通事故が発生すると予測しても良い。
また、予測部23は、道路R上の車両の走行状態の統計データを分析して、交通事故が発生し易い箇所を特定しても良い。例えば、予測部23は、車両が急ブレーキをかけることが多い箇所を、交通事故が発生し易い箇所と特定しても良い。
また、光ファイバセンシング機器20は、図17に示されるように、通知部24をさらに備えていても良い。
通知部24は、道路R上で交通事故が発生した場合、交通事故が発生したことを通知すると共に、推定部22が推定した交通事故の状況を通知する。例えば、通知部24は、道路Rが一般道であれば、警察や消防に通知を行い、道路Rが高速道路であれば、高速道路の管理会社に通知を行う。また、この通知は、該当するメッセージを音響出力するものでも良いし、表示出力するものでも良い。
通知部24は、道路R上で交通事故が発生した場合、交通事故が発生したことを通知すると共に、推定部22が推定した交通事故の状況を通知する。例えば、通知部24は、道路Rが一般道であれば、警察や消防に通知を行い、道路Rが高速道路であれば、高速道路の管理会社に通知を行う。また、この通知は、該当するメッセージを音響出力するものでも良いし、表示出力するものでも良い。
また、通知部24は、交通事故の状況に応じて緊急度を決定し、決定した緊急度に応じて通知先や通知内容を変更しても良い。例えば、通知部24は、人が悲鳴を上げている場合や、交通事故を発生した車両の台数が多い場合は、緊急度を高くすれば良い。また、通知部24は、表1に示されるように、緊急度と、通知先や通知内容と、を対応付けた対応テーブルを予め保持しておき、その対応テーブルを用いて、緊急度に応じた通知先や通知内容を特定しても良い。表1の例では、緊急度は、数値が大きいほど、緊急度が高いことを示しており、緊急度が高くなると、警察に対してパトカーの数を増やすよう要請する。
また、光ファイバセンシング機器20は、図16に示される予測部23及び図17に示される通知部24の両方を備える構成であっても良い。また、光ファイバセンシング機器20は、図13に示されるカメラ30に接続される構成であっても良い。
また、図1、図13、図16、及び図17の例では、光ファイバセンシング機器20に複数の構成要素(検出部21、推定部22、予測部23、及び通知部24)が設けられているが、これには限定されない。光ファイバセンシング機器20に設けられていた構成要素は、1つの装置に設けることには限定されず、複数の装置に分散して設けられていても良い。
<実施の形態の概念>
続いて、図18を参照して、上述の実施の形態を概念的に示した光ファイバセンシングシステムの構成について説明する。
続いて、図18を参照して、上述の実施の形態を概念的に示した光ファイバセンシングシステムの構成について説明する。
図18に示される光ファイバセンシングシステムは、光ファイバ10及び光ファイバセンシング機器20を備えている。また、光ファイバセンシング機器20は、検出部21及び推定部22を備えている。
光ファイバ10は、道路Rに沿って設けられ、振動を検出する。例えば、光ファイバ10は、道路Rの近傍に設けられても良いし、道路Rに敷設されても良い。また、光ファイバ10は、道路Rの下に埋設されても良いし、架空配線されても良い。
検出部21は、光ファイバ10にパルス光を入射し、パルス光が光ファイバ10を伝送されることに伴い発生した反射光や散乱光を、光ファイバ10を経由して、戻り光として受信する。また、検出部21は、光ファイバ10から受信された光信号から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する。
推定部22は、検出部21により検出された交通事故に起因する振動の振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する。
続いて、図19を参照して、図18に示される光ファイバセンシングシステムの動作例について説明する。
図19に示されるように、光ファイバ10は、道路Rで発生した振動を検出する(ステップS41)。光ファイバ10で検出された振動は、光ファイバ10を伝送される戻り光に影響を与える。
図19に示されるように、光ファイバ10は、道路Rで発生した振動を検出する(ステップS41)。光ファイバ10で検出された振動は、光ファイバ10を伝送される戻り光に影響を与える。
続いて、検出部21は、光ファイバ10から受信された戻り光から、道路Rで発生した交通事故に起因する振動の振動パターンを検出する(ステップS42)。
その後、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する(ステップS43)。
その後、推定部22は、検出部21により検出された、道路Rで発生した交通事故に起因する振動の振動パターンに基づいて、道路Rで発生した交通事故の状況を推定する(ステップS43)。
以上の動作により、道路Rで交通事故が発生したか否かを把握できるだけでなく、道路Rで発生した交通事故の状況についても把握することができる。
<光ファイバセンシング機器のハードウェア構成>
続いて以下では、図20を参照して、光ファイバセンシング機器20を実現するコンピュータ40のハードウェア構成例について説明する。ここでは、上述した実施の形態1の構成の光ファイバセンシング機器20を実現する場合を例に挙げて説明する。
続いて以下では、図20を参照して、光ファイバセンシング機器20を実現するコンピュータ40のハードウェア構成例について説明する。ここでは、上述した実施の形態1の構成の光ファイバセンシング機器20を実現する場合を例に挙げて説明する。
図20に示されるように、コンピュータ40は、プロセッサ401、メモリ402、ストレージ403、入出力インタフェース(入出力I/F)404、及び通信インタフェース(通信I/F)405等を備える。プロセッサ401、メモリ402、ストレージ403、入出力インタフェース404、及び通信インタフェース405は、相互にデータを送受信するためのデータ伝送路で接続されている。
プロセッサ401は、例えばCPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の演算処理装置である。メモリ402は、例えばRAM(Random Access Memory)やROM(Read Only Memory)等のメモリである。ストレージ403は、例えばHDD(Hard Disk Drive)、SSD(Solid State Drive)、またはメモリカード等の記憶装置である。また、ストレージ403は、RAMやROM等のメモリであっても良い。
ストレージ403は、光ファイバセンシング機器20が備える構成要素(検出部21及び推定部22)の機能を実現するプログラムを記憶している。プロセッサ401は、これら各プログラムを実行することで、光ファイバセンシング機器20が備える構成要素の機能をそれぞれ実現する。ここで、プロセッサ401は、上記各プログラムを実行する際、これらのプログラムをメモリ402上に読み出してから実行しても良いし、メモリ402上に読み出さずに実行しても良い。また、メモリ402やストレージ403は、光ファイバセンシング機器20が備える構成要素が保持する情報やデータを記憶する役割も果たす。
また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータ(コンピュータ40を含む)に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Compact Disc-ROM)、CD-R(CD-Recordable)、CD-R/W(CD-ReWritable)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAMを含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されても良い。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
入出力インタフェース404は、表示装置4041、入力装置4042、音出力装置4043等と接続される。表示装置4041は、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)ディスプレイ、モニターのような、プロセッサ401により処理された描画データに対応する画面を表示する装置である。入力装置4042は、オペレータの操作入力を受け付ける装置であり、例えば、キーボード、マウス、及びタッチセンサ等である。表示装置4041及び入力装置4042は一体化され、タッチパネルとして実現されていても良い。音出力装置4043は、スピーカのような、プロセッサ401により処理された音響データに対応する音を音響出力する装置である。
通信インタフェース405は、外部の装置との間でデータを送受信する。例えば、通信インタフェース405は、有線通信路または無線通信路を介して外部装置と通信する。
以上、実施の形態を参照して本開示を説明したが、本開示は上述した実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
例えば、上述した実施の形態は、一部又は全部を相互に組み合わせて用いても良い。
例えば、上述した実施の形態は、一部又は全部を相互に組み合わせて用いても良い。
また、上記の実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
道路に沿って設けられ、振動を検出する光ファイバと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシングシステム。
(付記2)
前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記1に記載の光ファイバセンシングシステム。
(付記3)
前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記2に記載の光ファイバセンシングシステム。
(付記4)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記3に記載の光ファイバセンシングシステム。
(付記5)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記3又は4に記載の光ファイバセンシングシステム。
(付記6)
前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記3に記載の光ファイバセンシングシステム。
(付記7)
前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記4又は5に記載の光ファイバセンシングシステム。
(付記8)
前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、付記1から7のいずれか1項に記載の光ファイバセンシングシステム。
(付記9)
光ファイバセンシングシステムによる道路監視方法であって、
道路に沿って設けられた光ファイバが、振動を検出するステップと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出ステップと、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定ステップと、
を含む、道路監視方法。
(付記10)
前記推定ステップでは、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記9に記載の道路監視方法。
(付記11)
前記検出ステップでは、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定ステップでは、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記10に記載の道路監視方法。
(付記12)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記11に記載の道路監視方法。
(付記13)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記11又は12に記載の道路監視方法。
(付記14)
前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記11に記載の道路監視方法。
(付記15)
前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記12又は13に記載の道路監視方法。
(付記16)
前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、付記9から15のいずれか1項に記載の道路監視方法。
(付記17)
道路に沿って設けられ、振動を検出する光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシング機器。
(付記18)
前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記17に記載の光ファイバセンシング機器。
(付記19)
前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記18に記載の光ファイバセンシング機器。
(付記20)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記19に記載の光ファイバセンシング機器。
(付記21)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記19又は20に記載の光ファイバセンシング機器。
(付記22)
前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記19に記載の光ファイバセンシング機器。
(付記23)
前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記20又は21に記載の光ファイバセンシング機器。
(付記1)
道路に沿って設けられ、振動を検出する光ファイバと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシングシステム。
(付記2)
前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記1に記載の光ファイバセンシングシステム。
(付記3)
前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記2に記載の光ファイバセンシングシステム。
(付記4)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記3に記載の光ファイバセンシングシステム。
(付記5)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記3又は4に記載の光ファイバセンシングシステム。
(付記6)
前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記3に記載の光ファイバセンシングシステム。
(付記7)
前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記4又は5に記載の光ファイバセンシングシステム。
(付記8)
前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、付記1から7のいずれか1項に記載の光ファイバセンシングシステム。
(付記9)
光ファイバセンシングシステムによる道路監視方法であって、
道路に沿って設けられた光ファイバが、振動を検出するステップと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出ステップと、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定ステップと、
を含む、道路監視方法。
(付記10)
前記推定ステップでは、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記9に記載の道路監視方法。
(付記11)
前記検出ステップでは、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定ステップでは、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記10に記載の道路監視方法。
(付記12)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記11に記載の道路監視方法。
(付記13)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記11又は12に記載の道路監視方法。
(付記14)
前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記11に記載の道路監視方法。
(付記15)
前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記12又は13に記載の道路監視方法。
(付記16)
前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、付記9から15のいずれか1項に記載の道路監視方法。
(付記17)
道路に沿って設けられ、振動を検出する光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシング機器。
(付記18)
前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
付記17に記載の光ファイバセンシング機器。
(付記19)
前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
付記18に記載の光ファイバセンシング機器。
(付記20)
前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記19に記載の光ファイバセンシング機器。
(付記21)
前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
付記19又は20に記載の光ファイバセンシング機器。
(付記22)
前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記19に記載の光ファイバセンシング機器。
(付記23)
前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
付記20又は21に記載の光ファイバセンシング機器。
10,10A,10B 光ファイバ
20 光ファイバセンシング機器
21 検出部
22 推定部
23 予測部
24 通知部
30 カメラ
40 コンピュータ
401 プロセッサ
402 メモリ
403 ストレージ
404 入出力インタフェース
4041 表示装置
4042 入力装置
4043 音出力装置
405 通信インタフェース
R 道路
T 電柱
20 光ファイバセンシング機器
21 検出部
22 推定部
23 予測部
24 通知部
30 カメラ
40 コンピュータ
401 プロセッサ
402 メモリ
403 ストレージ
404 入出力インタフェース
4041 表示装置
4042 入力装置
4043 音出力装置
405 通信インタフェース
R 道路
T 電柱
Claims (23)
- 道路に沿って設けられ、振動を検出する光ファイバと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシングシステム。 - 前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
請求項1に記載の光ファイバセンシングシステム。 - 前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
請求項2に記載の光ファイバセンシングシステム。 - 前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項3に記載の光ファイバセンシングシステム。 - 前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項3又は4に記載の光ファイバセンシングシステム。 - 前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項3に記載の光ファイバセンシングシステム。 - 前記道路を撮影するカメラをさらに備え、
前記推定部は、
前記カメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項4又は5に記載の光ファイバセンシングシステム。 - 前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、請求項1から7のいずれか1項に記載の光ファイバセンシングシステム。 - 光ファイバセンシングシステムによる道路監視方法であって、
道路に沿って設けられた光ファイバが、振動を検出するステップと、
前記光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出ステップと、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定ステップと、
を含む、道路監視方法。 - 前記推定ステップでは、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
請求項9に記載の道路監視方法。 - 前記検出ステップでは、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定ステップでは、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
請求項10に記載の道路監視方法。 - 前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項11に記載の道路監視方法。 - 前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定ステップでは、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項11又は12に記載の道路監視方法。 - 前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項11に記載の道路監視方法。 - 前記推定ステップでは、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項12又は13に記載の道路監視方法。 - 前記光ファイバは、
前記道路の下に埋設される第1光ファイバと、
前記道路に沿って、架空配線される第2光ファイバと、
を含む、請求項9から15のいずれか1項に記載の道路監視方法。 - 道路に沿って設けられ、振動を検出する光ファイバから受信された光信号から、前記道路で発生した交通事故に起因する振動の振動パターンを検出する検出部と、
前記振動パターンに基づいて、前記交通事故の状況を推定する推定部と、
を備える、光ファイバセンシング機器。 - 前記推定部は、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻に基づいて、前記交通事故の発生時刻を推定する、
請求項17に記載の光ファイバセンシング機器。 - 前記検出部は、前記光ファイバに入射された入射光に対する前記光信号を受信し、
前記推定部は、前記光ファイバに前記入射光が入射された時刻と、前記光ファイバから、前記振動パターンが検出された前記光信号が受信された時刻と、の時間差に基づいて、前記交通事故の発生位置を推定する、
請求項18に記載の光ファイバセンシング機器。 - 前記振動パターンは、前記交通事故の発生時点又は発生前における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項19に記載の光ファイバセンシング機器。 - 前記振動パターンは、前記交通事故の発生後における、前記道路上の前記交通事故の発生位置付近の車両の走行状態に起因する振動の振動パターンをさらに含み、
前記推定部は、前記振動パターンに基づいて、前記交通事故の状況を推定する、
請求項19又は20に記載の光ファイバセンシング機器。 - 前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項19に記載の光ファイバセンシング機器。 - 前記推定部は、
前記道路を撮影するカメラにより撮影されたカメラ画像の中から、前記交通事故の発生時点、又は、発生前、又は、発生後の少なくとも一つにおける前記道路上の前記交通事故の発生位置付近のカメラ画像を取得し、
前記振動パターンと、前記取得されたカメラ画像と、に基づいて、前記交通事故の状況を推定する、
請求項20又は21に記載の光ファイバセンシング機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/635,533 US20220327923A1 (en) | 2019-08-26 | 2019-08-26 | Optical fiber sensing system, road monitoring method, and optical fiber sensing device |
PCT/JP2019/033368 WO2021038695A1 (ja) | 2019-08-26 | 2019-08-26 | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 |
JP2021541820A JP7188604B2 (ja) | 2019-08-26 | 2019-08-26 | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 |
JP2022190950A JP7332020B2 (ja) | 2019-08-26 | 2022-11-30 | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/033368 WO2021038695A1 (ja) | 2019-08-26 | 2019-08-26 | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021038695A1 true WO2021038695A1 (ja) | 2021-03-04 |
Family
ID=74685367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033368 WO2021038695A1 (ja) | 2019-08-26 | 2019-08-26 | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220327923A1 (ja) |
JP (2) | JP7188604B2 (ja) |
WO (1) | WO2021038695A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022185922A1 (ja) * | 2021-03-04 | 2022-09-09 | 日本電気株式会社 | 交通監視装置、交通監視システム、交通監視方法及びプログラム |
WO2022215246A1 (ja) * | 2021-04-09 | 2022-10-13 | 日本電気株式会社 | 道路監視システム、道路監視装置、道路監視方法、及び非一時的なコンピュータ可読媒体 |
WO2023053179A1 (ja) * | 2021-09-28 | 2023-04-06 | 日本電気株式会社 | 光ファイバセンシングシステム、光ファイバセンシング機器、及び道路監視方法 |
WO2024201664A1 (ja) * | 2023-03-27 | 2024-10-03 | 日本電気株式会社 | 監視システム、監視装置、及び監視方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021152824A1 (ja) * | 2020-01-31 | 2021-08-05 | 日本電気株式会社 | 車両監視システム、車両監視方法、及び車両監視装置 |
CN113838300A (zh) * | 2021-09-26 | 2021-12-24 | 武汉理工大学 | 一种高速公路突发事故无盲区实时监测与报警系统 |
WO2024176278A1 (ja) * | 2023-02-20 | 2024-08-29 | 日本電信電話株式会社 | 道路の振動を解析する装置及び方法 |
WO2024176277A1 (ja) * | 2023-02-20 | 2024-08-29 | 日本電信電話株式会社 | 道路の振動を解析する装置及び方法 |
CN117858318B (zh) * | 2024-03-08 | 2024-05-07 | 四川九通智路科技有限公司 | 一种公路隧道灯光调节方法及调节系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1069594A (ja) * | 1996-08-28 | 1998-03-10 | Toyota Motor Corp | 車両事故検出装置 |
JP2004252520A (ja) * | 2003-02-18 | 2004-09-09 | Sumitomo Electric Ind Ltd | 道路監視システム |
JP2009075000A (ja) * | 2007-09-21 | 2009-04-09 | Furukawa Electric Co Ltd:The | 光ファイバによる振動・衝撃位置検知装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104700624B (zh) * | 2015-03-16 | 2017-07-07 | 电子科技大学 | 基于相敏光时域反射仪的车流量在线监测系统的监测方法 |
GB201519202D0 (en) | 2015-10-30 | 2015-12-16 | Optasense Holdings Ltd | Monitoring traffic flow |
CN107591002B (zh) * | 2017-09-21 | 2020-06-02 | 电子科技大学 | 一种基于分布式光纤的高速公路交通参数实时估计方法 |
EP3892963A4 (en) * | 2018-12-03 | 2022-01-26 | NEC Corporation | ROAD MONITORING SYSTEM, ROAD MONITORING DEVICE, ROAD MONITORING METHOD AND NON-TEMPORARY COMPUTER READABLE MEDIUM |
JP7464281B2 (ja) * | 2019-02-06 | 2024-04-09 | 日本電気株式会社 | 光ファイバセンシングシステム、監視装置、監視方法、及びプログラム |
-
2019
- 2019-08-26 US US17/635,533 patent/US20220327923A1/en not_active Abandoned
- 2019-08-26 WO PCT/JP2019/033368 patent/WO2021038695A1/ja active Application Filing
- 2019-08-26 JP JP2021541820A patent/JP7188604B2/ja active Active
-
2022
- 2022-11-30 JP JP2022190950A patent/JP7332020B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1069594A (ja) * | 1996-08-28 | 1998-03-10 | Toyota Motor Corp | 車両事故検出装置 |
JP2004252520A (ja) * | 2003-02-18 | 2004-09-09 | Sumitomo Electric Ind Ltd | 道路監視システム |
JP2009075000A (ja) * | 2007-09-21 | 2009-04-09 | Furukawa Electric Co Ltd:The | 光ファイバによる振動・衝撃位置検知装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022185922A1 (ja) * | 2021-03-04 | 2022-09-09 | 日本電気株式会社 | 交通監視装置、交通監視システム、交通監視方法及びプログラム |
WO2022215246A1 (ja) * | 2021-04-09 | 2022-10-13 | 日本電気株式会社 | 道路監視システム、道路監視装置、道路監視方法、及び非一時的なコンピュータ可読媒体 |
WO2023053179A1 (ja) * | 2021-09-28 | 2023-04-06 | 日本電気株式会社 | 光ファイバセンシングシステム、光ファイバセンシング機器、及び道路監視方法 |
WO2024201664A1 (ja) * | 2023-03-27 | 2024-10-03 | 日本電気株式会社 | 監視システム、監視装置、及び監視方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2023014212A (ja) | 2023-01-26 |
JPWO2021038695A1 (ja) | 2021-03-04 |
JP7332020B2 (ja) | 2023-08-23 |
US20220327923A1 (en) | 2022-10-13 |
JP7188604B2 (ja) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021038695A1 (ja) | 光ファイバセンシングシステム、道路監視方法、及び光ファイバセンシング機器 | |
JP2023184539A (ja) | 道路監視システム、道路監視装置、道路監視方法、及びプログラム | |
KR20190115040A (ko) | 운전 거동 결정 방법, 디바이스, 장비 및 저장 매체 | |
US20180114445A1 (en) | Method of providing sound tracking information, sound tracking apparatus for vehicles, and vehicle having the same | |
EP3227874A1 (en) | Driving determination device and detection device | |
US20120245758A1 (en) | Driving behavior detecting method and apparatus | |
JP4858761B2 (ja) | 衝突危険性判定システム及び警告システム | |
JP5627531B2 (ja) | 運転支援装置 | |
JP2011191849A (ja) | 安全運転促進システム | |
KR20060116756A (ko) | 사각지역 불법주정차 검지방법 및 그 시스템 | |
KR102534960B1 (ko) | 자율주행 차량들을 위한 행렬들의 검출 및 그에 대한 대응 | |
JP2022084726A (ja) | 運転支援装置、方法及びプログラム | |
KR101266015B1 (ko) | 승강장 안전선 및 선로 감시 시스템 | |
JP2008135070A (ja) | 道路交通管制システム | |
JP2007286857A (ja) | 事故監視システム | |
WO2018168083A1 (ja) | 事故抑制装置、事故抑制方法、および事故抑制プログラム | |
JP7424394B2 (ja) | 車両監視システム、車両監視方法、及び車両監視装置 | |
CN116453375A (zh) | 城市道路危险数据监控管理方法、装置、电子设备及介质 | |
WO2022124429A1 (ko) | 사고 판단 알고리즘 적용 실시간 긴급구난체계 (e-call) 플랫폼 | |
CN114530057A (zh) | 一种车辆预警方法、装置、车辆及存储介质 | |
WO2016088375A1 (en) | Driving determination device and detection device | |
KR102027313B1 (ko) | 지능형 다차로 영상분석 시스템 | |
JP4128962B2 (ja) | 道路交通管制システム | |
KR101971262B1 (ko) | 통행 예측을 기반으로 한 사고 관리 방법 및 시스템 | |
WO2023053179A1 (ja) | 光ファイバセンシングシステム、光ファイバセンシング機器、及び道路監視方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19943613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021541820 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19943613 Country of ref document: EP Kind code of ref document: A1 |