WO2021037249A1 - 液控单向阀 - Google Patents
液控单向阀 Download PDFInfo
- Publication number
- WO2021037249A1 WO2021037249A1 PCT/CN2020/112282 CN2020112282W WO2021037249A1 WO 2021037249 A1 WO2021037249 A1 WO 2021037249A1 CN 2020112282 W CN2020112282 W CN 2020112282W WO 2021037249 A1 WO2021037249 A1 WO 2021037249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- valve
- cavity
- hydraulic control
- valve seat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/027—Check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/36—Valve members
- F16K1/38—Valve members of conical shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/42—Valve seats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K1/00—Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
- F16K1/32—Details
- F16K1/34—Cutting-off parts, e.g. valve members, seats
- F16K1/46—Attachment of sealing rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
- F16K15/06—Check valves with guided rigid valve members with guided stems
- F16K15/063—Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
Definitions
- the invention relates to the technical field of valves, in particular to a hydraulically controlled one-way valve .
- the hydraulic valve in the electro-hydraulic control system is the basic component of the electro-hydraulic control system. By controlling the hydraulic valve, the orderly movement of each cylinder of the hydraulic support can be realized.
- the product quality of the hydraulic valve directly affects the efficiency of coal mining.
- the unloading shock is a problem that needs to be solved urgently during the use of the hydraulic control check valve.
- the unloading shock causes the valve stem and valve core inside the hydraulic valve to be violently impacted, which causes great damage to the hydraulic valve. Affect the life of the hydraulic valve, and easily cause safety production accidents.
- two-stage unloading or differential pressure balancing structure is mainly used to reduce the unloading impact of hydraulic valves.
- two-stage unloading involves a two-stage sealing structure, which is not only complicated in structure and difficult to maintain on site, and any failure of the first-stage seal will cause system failure and poor safety; differential pressure balance
- the composition of the structure is complex, the field operation is difficult, and the differential balance structure is a non-insertion type, which is not conducive to later maintenance, and there is a problem of poor back pressure safety.
- the present invention provides a hydraulic control check valve to solve the problems in the prior art. On the basis of reducing the impact of unloading, the sealing effect is guaranteed, the structure of the hydraulic control check valve is optimized, the difficulty of maintenance is reduced, and the safety is increased. .
- the hydraulically controlled one-way valve provided by the present invention includes a threaded sleeve, which is sequentially provided with a first accommodating cavity and a second accommodating cavity that are communicated in the axial direction, and the inner diameter of the first accommodating cavity is smaller than the first accommodating cavity.
- the inner diameter of the second accommodating cavity, the first accommodating cavity and the second accommodating cavity define a limit surface at the junction, the outer wall of the screw sleeve is provided with an outflow hole, the outflow hole and the first
- the two accommodating chambers are connected; a valve stem, the valve stem is provided with a communication hole extending through the valve stem along the axial direction, and the valve stem includes a sliding section, a buffer section, and an abutting section in sequence along the axial direction;
- the sliding section seals and slides in the first accommodating cavity; the valve seat, the valve seat is fixed in the second accommodating cavity; the valve core, the valve core is fixedly sleeved in the buffer section, the The outlet hole is located on the sliding path of the valve core; when the valve core slides to abut on the valve seat, the valve core sealingly abuts against the valve seat; the fastening spring, the The fastening spring is sleeved on the buffer section and the two ends of the fastening spring respectively abut on the limit
- the second accommodating cavity includes an outflow cavity and a limiting cavity
- the inner diameter of the outflow cavity is smaller than the inner diameter of the limiting cavity
- the outflow cavity and the limiting cavity are defined at a boundary Out of the positioning surface
- the outflow hole is opened in the outflow cavity
- the valve seat is fixed in the limiting cavity and abuts against the positioning surface.
- the hydraulic control check valve further includes a limit sleeve fixedly installed in the limit cavity, and the limit sleeve abuts against a surface of the valve seat facing away from the valve core;
- One end of the control piston with a clamping hole passes through the inner hole of the limiting sleeve and the valve seat in sequence.
- the outer surface of the limiting sleeve in the axial direction is too tightly fitted with the inner wall of the limiting cavity.
- the clamping hole includes a threaded hole and a flow hole, and the flow hole communicates between the threaded hole and the throttle hole; an axial outer surface of the abutment section is provided with The external thread is screwed in the threaded hole.
- the shape of the end of the flow hole away from the threaded hole is a tapered hole, and the throttle hole communicates with the tip of the tapered hole.
- the number of the throttle holes is multiple, and the multiple throttle holes are evenly arranged along the circumferential direction of the control piston.
- the outer surface of the sliding section is provided with an annular first sealing groove, a first sealing ring is arranged in the first sealing groove, and the sliding section is sealed and arranged in the first sealing groove through the first sealing ring.
- first sealing groove is annular in the first sealing groove
- first sealing ring is arranged in the first sealing groove
- the sliding section is sealed and arranged in the first sealing groove through the first sealing ring.
- annular second sealing groove is provided on the inner wall of the valve core, a second sealing ring is arranged in the second sealing groove, and the valve core is sealingly sleeved on the valve through the second sealing ring.
- the buffer section On the buffer section.
- the valve core includes a first inclined surface, the first inclined surface is disposed facing the valve seat, the valve seat is provided with a second inclined surface, the second inclined surface is disposed facing the valve core, the When the valve core slides to abut on the valve seat, the first inclined surface and the second inclined surface are sealed and abutted.
- the valve core sleeved on the valve stem in the initial position, the valve core sleeved on the valve stem is pushed to the position where it seals and abuts on the valve seat due to the effect of the back pressure of the liquid return and the resetting effect of the tightening spring. , Separate the lock cavity P from the incoming liquid cavity A.
- the incoming liquid comes from the liquid chamber A, and the incoming liquid pressure overcomes the back pressure of the liquid return and the reset function of the tightening spring to push the valve core to slide away from the valve seat.
- the valve core and the valve seat are separated, and the incoming liquid Flow from the liquid chamber A to the lock chamber P.
- the hydraulic control check valve in this embodiment realizes the opening and sealing of the primary valve core, which increases the reliability of the sealing compared to the opening and sealing of the secondary valve core in the prior art. It optimizes the structure of the hydraulic control check valve and reduces the difficulty of maintenance.
- the locking chamber P is connected with the hydraulic cylinder, and the pressure at the locking chamber P is relatively high.
- the control chamber K enters the liquid, the incoming hydraulic pressure overcomes the pressure at the locking chamber P, and the valve core and the valve stem are driven toward Sliding away from the valve seat, the valve core is separated from the valve seat, and the valve core and the valve seat are in a large flow open state.
- the large flow open state significantly reduces the impact of the system back pressure on the hydraulic control check valve.
- open state, and hydraulic control unloading, the orifice, the clamping hole, and the communicating hole are always in a connected state, which realizes the balance of the back pressure at the first accommodating cavity and increases the back pressure of the system safety.
- Figure 1 is a schematic structural diagram of a hydraulically controlled check valve provided by an alternative embodiment of the present invention.
- Fig. 2 is a schematic diagram of the structure of the incoming and outgoing liquid of the hydraulic control check valve provided by an alternative embodiment of the present invention.
- Fig. 3 is a schematic structural diagram of a control piston provided by an alternative embodiment of the present invention.
- Fig. 4 is a schematic structural diagram of a threaded sleeve provided by an alternative embodiment of the present invention.
- Fig. 5 is a schematic structural diagram of a valve stem provided by an alternative embodiment of the present invention.
- Fig. 6 is a schematic structural diagram of a valve core provided by an alternative embodiment of the present invention.
- Fig. 7 is a schematic structural diagram of a valve seat provided by an alternative embodiment of the present invention.
- Fig. 1 is a schematic structural diagram of a hydraulically controlled check valve provided by an alternative embodiment of the present invention
- Fig. 2 is a schematic structural diagram of incoming and outgoing liquid from a hydraulically controlled check valve provided by an alternative embodiment of the present invention
- Fig. 3 is a schematic diagram of the present invention
- Fig. 4 is a schematic structural diagram of a screw sleeve provided by an alternative embodiment of the present invention.
- Fig. 5 is a schematic structural diagram of a valve stem provided by an alternative embodiment of the present invention.
- Fig. 6 is A schematic structural diagram of a valve core provided in an alternative embodiment of the present invention.
- FIG. 1 is a schematic structural diagram of a hydraulically controlled check valve provided by an alternative embodiment of the present invention
- Fig. 2 is a schematic structural diagram of incoming and outgoing liquid from a hydraulically controlled check valve provided by an alternative embodiment of the present invention
- Fig. 3 is a schematic diagram of
- FIGS. 1 to 7 are schematic structural diagram of a valve seat provided in an alternative embodiment of the present invention.
- the present invention provides a hydraulically controlled one-way valve, which includes a screw sleeve 1, a valve stem 2, a valve seat 4, a valve core 3, a fastening spring 6, and a control piston 7.
- the threaded sleeve 1 is sequentially provided with a first accommodating cavity 11 and a second accommodating cavity which are connected in the axial direction, and the inner diameter of the first accommodating cavity 11 is smaller than that of the second accommodating cavity
- the first accommodating cavity 11 and the second accommodating cavity define a limit surface 13 at the junction, and an outflow hole 14 is opened on the outer wall of the screw sleeve 1, and the outflow hole 14 is connected to the
- the second accommodating cavity is in communication;
- the valve stem 2 is provided with a communication hole 21 extending through the valve stem 2 in the axial direction, and the valve stem 2 includes a sliding section 22, a buffer section 23, and a resisting section in sequence along the axial direction.
- the control piston 7 is provided with a clamping hole 72, the abutment section 24 is clamped in the clamping hole 72, and the control piston 7 is also provided with a throttle hole 71 on the outer surface along the axial direction , The throttle hole 71, the clamping hole 72, and the communication hole 21 are in communication.
- the valve core 3 sleeved on the valve stem 2 is pushed toward the sealing abutment
- the position connected to the valve seat 4 isolates the lock chamber P shown in FIG. 2 from the incoming liquid chamber A.
- the incoming liquid comes from the liquid chamber A, and the incoming liquid pressure overcomes the back pressure of the liquid return and the reset function of the tightening spring 6 to push the valve core 3 to slide away from the valve seat 4, the valve core 3 and the valve seat 4
- the phases are separated, and the incoming liquid flows from the liquid chamber A to the locked chamber P.
- the hydraulic control check valve in this embodiment realizes the opening and sealing of the primary valve core, which increases the reliability of the sealing compared with the opening and sealing of the secondary valve core in the prior art.
- the large flow open state significantly reduces the system back pressure on the hydraulic control unit.
- the impact of the valve In the above-mentioned initial position, open state, and hydraulic control unloading, the throttle hole 71, the clamping hole 72, and the communicating hole 21 are always in a connected state, which realizes the back pressure balance at the first accommodating cavity 11 and increases The back pressure safety of the system.
- the second accommodating cavity includes an outflow cavity 15 and a limiting cavity 16.
- the inner diameter of the outflow cavity 15 is smaller than the inner diameter of the limiting cavity 16, and the outflow cavity 15 and the limiting cavity
- the cavity 16 defines a positioning surface 17 at the junction, the outlet hole 14 is opened in the outlet cavity 15, and the valve seat 4 is fixed in the limiting cavity 16 and abuts against the positioning surface 17.
- the positioning surface 17 in this embodiment can limit the valve seat 4 along the axial direction of the screw sleeve 1, which increases the structural stability of the valve seat 4 in the limit cavity 16. In the open state, the incoming liquid pushes the valve core 3 abutting on the valve seat 4 to enter the outflow chamber 15 with a short path and quick response.
- the hydraulic control check valve further includes a limit sleeve 5 fixedly installed in the limit cavity 16, and the limit sleeve 5 and the valve seat 4 face away from the The surface of the valve core 3 abuts; the end of the control piston 7 with a clamping hole 72 sequentially passes through the inner hole of the limiting sleeve 5 and the valve seat 4.
- the limit sleeve 5 is installed in the screw sleeve 1 and integrated with the screw sleeve 1 to ensure the consistency and reliability of the connection during installation and debugging.
- the outer surface of the limiting sleeve 5 in the axial direction is too tightly fitted with the inner wall of the limiting cavity 16.
- the limit sleeve 5 can be directly pressed into the limit cavity 16.
- the compression fit has the characteristics of stable connection, and the operation is simple and reliable compared with the threaded connection.
- the clamping hole 72 includes a threaded hole 73 and a flow hole 74, and the flow hole 74 is connected between the threaded hole 73 and the throttle hole 71;
- the outer surface of the connecting section 24 in the axial direction is provided with an external thread, and the external thread is screwed in the threaded hole 73.
- the control piston 7 is an important force that pushes the valve stem 2 to slide in the axial direction. Through the locking effect of the thread, the stability of the axial connection between the control piston 7 and the valve stem 2 can be increased.
- the present application also sets the sealing diameter of the valve core 3 and the valve seat 4 to be equal to or similar to the outer diameter of the control piston 7 to reduce the hydraulic imbalance force during the large flow pressure relief opening process, and improve the reliability of the sealing. Performance, dynamic stability and service life.
- the end of the flow hole 74 away from the threaded hole 73 has a shape of a tapered hole, and the throttle hole 71 communicates with the tip of the tapered hole.
- the tapered hole in this embodiment can quickly drain the liquid to the first accommodating cavity 11 to achieve hydraulic balance.
- the number of the throttle holes 71 is multiple, and the multiple throttle holes 71 are evenly arranged along the circumferential direction of the control piston 7.
- the multiple orifices 71 in this embodiment can increase the incoming liquid channel, and reduce the influence of the back pressure on the dynamic balance of the control piston 7 during the large flow pressure relief opening process.
- the outer surface of the sliding section 22 is provided with an annular first sealing groove 25, a first sealing ring 26 is provided in the first sealing groove 25, and the sliding section 22 passes through the first sealing groove 25.
- the sealing ring 26 is sealed and arranged in the first accommodating cavity 11.
- the first sealing ring 26 in this embodiment seals and isolates the first accommodating cavity 11 and the second accommodating cavity, which improves the stability of the operation of the hydraulic control check valve.
- valve core 3 is provided with an annular second sealing groove 31, a second sealing ring 32 is provided in the second sealing groove 31, and the valve core 3 passes through the second sealing ring 32.
- the sealing sleeve is arranged on the buffer section 23. Similarly, in this embodiment, when the valve core 3 abuts on the valve seat 4, the future fluid can be isolated from the outflow cavity 15 to ensure the sealing effect of the valve core 3.
- the valve core 3 includes a first inclined surface 33, the first inclined surface 33 is disposed facing the valve seat 4, and the valve seat 4 is provided with a second inclined surface 41, and the second inclined surface
- the inclined surface 41 is disposed toward the valve core 3, and when the valve core 3 slides to abut on the valve seat 4, the first inclined surface 33 and the second inclined surface 41 are in sealing contact with each other.
- the first inclined surface 33 is sealed and attached to the second inclined surface 41 to achieve the sealing effect of the valve core 3 and the valve seat 4 at the abutment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Check Valves (AREA)
- Multiple-Way Valves (AREA)
Abstract
一种液控单向阀,其包括:螺套(1)、阀杆(2)、阀座(4)、阀芯(3)、紧固弹簧(6)以及控制活塞(7),螺套(1)开设有相连通的第一容纳腔(11)和第二容纳腔,第一容纳腔(11)与第二容纳腔在交界处限定出限位面(13),螺套(1)的外壁上开设有出流孔(14),阀杆(2)沿轴向开设有贯通阀杆(2)的连通孔(21),阀杆(2)沿轴向依次包括滑移段(22)、缓冲段(23)以及抵接段(24);滑移段(22)在第一容纳腔(11)内密封滑移;阀座(4)固定在第二容纳腔内;阀芯(3)固定套设在缓冲段(23);阀芯(3)与阀座(4)密封抵接;紧固弹簧(6)套设在缓冲段(23);控制活塞(7)上开设有卡接孔(72),控制活塞(7)上沿轴向的外侧面还开设有节流孔(71),节流孔(71)、卡接孔(72)以及连通孔(21)相连通。该液控单向阀在减轻卸载冲击的基础上,保证密封效果,优化了液控单向阀的结构,降低了维护的难度,增加了安全性。
Description
本发明涉及阀门技术领域,尤其涉及一种液控单向阀
。
电液控制系统中的液压阀是电液控制系统中的基础元件,通过控制液压阀可实现液压支架各油缸有序动作,液压阀的产品质量直接影响采煤效率。
现有技术中,卸载冲击是液控单向阀在使用过程中亟需解决的问题,卸载冲击使液压阀内部的阀杆和阀芯等部件受到剧烈冲撞,对液压阀的伤害极大,不仅影响液压阀的寿命,还容易引发安全生产事故。目前主要采用二级卸载或者差动式的压力平衡结构以减轻液压阀受到的卸载冲击。发明人在实现发明创造的过程中发现,采用二级卸载涉及到两级密封结构,不仅结构复杂,现场维护困难,且任何一级密封失效均会造成系统失效,安全性差;差动式压力平衡结构的组成复杂,现场操作困难,而且差动式平衡结构为非插装式,不利于后期的维护,且存在背压安全性差的问题。
因此,有必要解决上述技术问题。
发明内容
本发明提供一种液控单向阀,以解决现有技术中存在的问题,在减轻卸载冲击的基础上,保证密封效果,优化液控单向阀的结构,降低维护的难度,增加安全性。
本发明提供的液控单向阀,包括:螺套,所述螺套沿轴向依次开设有相连通的第一容纳腔和第二容纳腔,所述第一容纳腔的内径小于所述第二容纳腔的内径,所述第一容纳腔与所述第二容纳腔在交界处限定出限位面,所述螺套的外壁上开设有出流孔,所述出流孔与所述第二容纳腔相连通;阀杆,所述阀杆沿轴向开设有贯通所述阀杆的连通孔,所述 阀杆沿轴向依次包括滑移段、缓冲段、以及抵接段;所述滑移段在所述第一容纳腔内密封滑移;阀座,所述阀座固定在所述第二容纳腔内;阀芯,所述阀芯固定套设在所述缓冲段,所述出流孔位于所述阀芯的滑移路径上;所述阀芯滑移至抵接在所述阀座上时,所述阀芯与所述阀座密封抵接;紧固弹簧,所述紧固弹簧套设在所述缓冲段且所述紧固弹簧的两端分别一一对应地抵接在所述限位面与所述阀芯上;控制活塞,所述控制活塞上开设有卡接孔,所述抵接段卡接在所述卡接孔内,所述控制活塞上沿轴向的外侧面还开设有节流孔,所述节流孔、所述卡接孔、以及所述连通孔相连通。
可选地,所述第二容纳腔包括出流腔和限位腔,所述出流腔的内径小于所述限位腔的内径,所述出流腔和所述限位腔在交界处限定出定位面,所述出流孔开设在所述出流腔,所述阀座固定在所述限位腔内且抵接在所述定位面。
可选地,所述液控单向阀还包括固定安装在所述限位腔中的限位套,所述限位套与所述阀座上背向所述阀芯的表面相抵接;所述控制活塞上开设有卡接孔的一端依次穿设过所述限位套和所述阀座的内孔。
可选地,所述限位套沿轴向的外表面与所述限位腔的内壁过紧配合。
可选地,所述卡接孔包括螺纹孔和过流孔,所述过流孔连通在所述螺纹孔与所述节流孔之间;所述抵接段沿轴向的外表面设置有外螺纹,所述外螺纹螺接在所述螺纹孔中。
可选地,所述过流孔上远离所述螺纹孔的一端的形状为锥形孔,所述节流孔与所述锥形孔的尖端相连通。
可选地,所述节流孔的数量为多个,多个所述节流孔沿着所述控制活塞的周向均匀排布。
可选地,所述滑移段的外表面开设有环形的第一密封槽,所述第一密封槽内设置有第一密封圈,所述滑移段通过所述第一密封圈密封设置在所述第一容纳腔内。
可选地,所述阀芯的内壁上开设有环形的第二密封槽,所述第二密封槽内设置有第二密封圈,所述阀芯通过所述第二密封圈密封套设在所 述缓冲段上。
可选地,所述阀芯包括第一斜面,所述第一斜面朝向所述阀座设置,所述阀座上设置有第二斜面,所述第二斜面朝向所述阀芯设置,所述阀芯滑移至抵接在所述阀座上时,所述第一斜面与所述第二斜面密封贴合。
本发明提供的液控单向阀,在初始位置下,由于回液背压的作用和紧固弹簧的复位作用,阀杆上套设的阀芯被推向密封抵接在阀座上的位置,将闭锁腔P和来液腔A相隔离。在开启状态下,来液腔A来液,来液压力克服了回液背压和紧固弹簧的复位作用推动阀芯朝远离阀座的方向滑移,阀芯与阀座相分离,来液从来液腔A流动至闭锁腔P。在上述初始位置和开启状态下,本实施例中的液控单向阀实现了一级阀芯开启和密封,相比于现有技术中的二级阀芯开启和密封,增加了密封的可靠性,优化了液控单向阀的结构,降低维护的难度。液控卸荷时,闭锁腔P与液压缸连通,闭锁腔P处的压力较大,此时控制腔K进液,来液压力克服闭锁腔P处的压力,驱动阀芯与阀杆同时朝远离阀座的方向滑移,阀芯与阀座相分离,阀芯与阀座之间处于大流量开启状态,大流量开启状态显著降低了系统背压对液控单向阀的冲击作用。在上述初始位置、开启状态、以及液控卸荷时,节流孔、卡接孔、以及连通孔始终处于连通的状态,实现了第一容纳腔处的背压平衡,增加了系统的背压安全性。
下面将通过附图详细描述本发明中优选实施例,以助于理解本发明的目的和优点,其中:
图1为本发明可选实施例提供的液控单向阀的结构示意图。
图2为本发明可选实施例提供的液控单向阀来液和出液的结构示意图。
图3为本发明可选实施例提供的控制活塞的结构示意图。
图4为本发明可选实施例提供的螺套的结构示意图。
图5为本发明可选实施例提供的阀杆的结构示意图。
图6为本发明可选实施例提供的阀芯的结构示意图。
图7为本发明可选实施例提供的阀座的结构示意图。
在本说明书中提到或者可能提到的上、下、左、右、前、后、正面、背面、顶部、底部等方位用语是相对于各附图中所示的构造进行定义的,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。
图1为本发明可选实施例提供的液控单向阀的结构示意图,图2为本发明可选实施例提供的液控单向阀来液和出液的结构示意图,图3为本发明可选实施例提供的控制活塞的结构示意图,图4为本发明可选实施例提供的螺套的结构示意图,图5为本发明可选实施例提供的阀杆的结构示意图,图6为本发明可选实施例提供的阀芯的结构示意图,图7为本发明可选实施例提供的阀座的结构示意图。如图1至图7所示,本发明提供了一种液控单向阀,包括:螺套1、阀杆2、阀座4、阀芯3、紧固弹簧6、以及控制活塞7。
请同时参照图1至图7,所述螺套1沿轴向依次开设有相连通的第一容纳腔11和第二容纳腔,所述第一容纳腔11的内径小于所述第二容纳腔的内径,所述第一容纳腔11与所述第二容纳腔在交界处限定出限位面13,所述螺套1的外壁上开设有出流孔14,所述出流孔14与所述第二容纳腔相连通;所述阀杆2沿轴向开设有贯通所述阀杆2的连通孔21,所述阀杆2沿轴向依次包括滑移段22、缓冲段23、以及抵接段24;所述滑移段22在所述第一容纳腔11内密封滑移;所述阀座4固定在所述第二容纳腔内;所述阀芯3固定套设在所述缓冲段23,所述出流孔14位于所述阀芯3的滑移路径上;所述阀芯3滑移至抵接在所述阀座4上时,所述阀芯3与所述阀座4密封抵接;所述紧固弹簧6套设在所述缓冲段23且所述紧固弹簧6的两端分别一一对应地抵接在所述限位面13与所述阀 芯3上;所述控制活塞7上开设有卡接孔72,所述抵接段24卡接在所述卡接孔72内,所述控制活塞7上沿轴向的外侧面还开设有节流孔71,所述节流孔71、所述卡接孔72、以及所述连通孔21相连通。
本发明可选实施例提供的液控单向阀,在初始位置下,由于回液背压的作用和紧固弹簧6的复位作用,阀杆2上套设的阀芯3被推向密封抵接在阀座4上的位置,将图2示出的闭锁腔P和来液腔A相隔离。在开启状态下,来液腔A来液,来液压力克服了回液背压和紧固弹簧6的复位作用推动阀芯3朝远离阀座4的方向滑移,阀芯3与阀座4相分离,来液从来液腔A流动至闭锁腔P。在上述初始位置和开启状态下,本实施例中的液控单向阀实现了一级阀芯开启和密封,相比于现有技术中的二级阀芯开启和密封,增加了密封的可靠性,优化了液控单向阀的结构,降低维护的难度。液控卸荷时,闭锁腔P与液压缸连通,闭锁腔P处的压力较大,此时控制腔K进液,来液压力克服闭锁腔P处的压力,驱动阀芯3与阀杆2同时朝远离阀座4的方向滑移,阀芯3与阀座4相分离,阀芯3与阀座4之间处于大流量开启状态,大流量开启状态显著降低了系统背压对液控单向阀的冲击作用。在上述初始位置、开启状态、以及液控卸荷时,节流孔71、卡接孔72、以及连通孔21始终处于连通的状态,实现了第一容纳腔11处的背压平衡,增加了系统的背压安全性。
可选地,所述第二容纳腔包括出流腔15和限位腔16,所述出流腔15的内径小于所述限位腔16的内径,所述出流腔15和所述限位腔16在交界处限定出定位面17,所述出流孔14开设在所述出流腔15,所述阀座4固定在所述限位腔16内且抵接在所述定位面17。本实施例中的定位面17可以沿着螺套1的轴向对阀座4进行限位,增加了阀座4设置在限位腔16内的结构稳定性。开启状态下,来液将抵接在阀座4上的阀芯3推开即可进入出流腔15,路径短,响应快。
作为一个可选的实施过程,所述液控单向阀还包括固定安装在所述限位腔16中的限位套5,所述限位套5与所述阀座4上背向所述阀芯3的表面相抵接;所述控制活塞7上开设有卡接孔72的一端依次穿设过所述限位套5和所述阀座4的内孔。限位套5安装在螺套1内后与螺套1 整体插装,保证了安装及调试过程中连接的一致性和可靠性。
较佳地,所述限位套5沿轴向的外表面与所述限位腔16的内壁过紧配合。在安装时直接将限位套5压紧进限位腔16内即可,采用压紧配合具有连接稳固的特点,相比于螺纹连接,操作简单可靠。
作为一个可选地实施过程,所述卡接孔72包括螺纹孔73和过流孔74,所述过流孔74连通在所述螺纹孔73与所述节流孔71之间;所述抵接段24沿轴向的外表面设置有外螺纹,所述外螺纹螺接在所述螺纹孔73中。控制活塞7是推动阀杆2沿轴向进行滑移的重要作用力,通过螺纹的锁紧效果,可以增加控制活塞7与阀杆2在轴向连接的稳定性。
在上述实施例的基础上,本申请还通过设置阀芯3与阀座4的密封直径与控制活塞7外径相等或者近似以降低大流量泄压开启过程中液压不平衡作用力,提高密封可靠性、动态稳定性和使用寿命。
较佳地,所述过流孔74上远离所述螺纹孔73的一端的形状为锥形孔,所述节流孔71与所述锥形孔的尖端相连通。本实施例中的锥形孔可以将来液快速引流至第一容纳腔11,实现液压平衡。
作为一个可选地实施过程,所述节流孔71的数量为多个,多个所述节流孔71沿着所述控制活塞7的周向均匀排布。本实施例中的多个节流孔71可以增加来液通道,在大流量泄压开启过程中降低背压对控制活塞7动态平衡的影响。
较佳地,所述滑移段22的外表面开设有环形的第一密封槽25,所述第一密封槽25内设置有第一密封圈26,所述滑移段22通过所述第一密封圈26密封设置在所述第一容纳腔11内。本实施例中的第一密封圈26将第一容纳腔11与第二容纳腔密封隔离,提高了液控单向阀运行的平稳性。
进一步地,所述阀芯3的内壁上开设有环形的第二密封槽31,所述第二密封槽31内设置有第二密封圈32,所述阀芯3通过所述第二密封圈32密封套设在所述缓冲段23上。同样的,本实施例可以在阀芯3抵接在阀座4上时,将来液与出流腔15隔离开,保证阀芯3的密封效果。
在上述实施例的基础上,所述阀芯3包括第一斜面33,所述第一斜 面33朝向所述阀座4设置,所述阀座4上设置有第二斜面41,所述第二斜面41朝向所述阀芯3设置,所述阀芯3滑移至抵接在所述阀座4上时,所述第一斜面33与所述第二斜面41密封贴合。本实施例中通过第一斜面33密封贴合在第二斜面41上,实现阀芯3与阀座4在抵接处的密封效果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种液控单向阀,其特征在于,包括:螺套,所述螺套沿轴向依次开设有相连通的第一容纳腔和第二容纳腔,所述第一容纳腔的内径小于所述第二容纳腔的内径,所述第一容纳腔与所述第二容纳腔在交界处限定出限位面,所述螺套的外壁上开设有出流孔,所述出流孔与所述第二容纳腔相连通;阀杆,所述阀杆沿轴向开设有贯通所述阀杆的连通孔,所述阀杆沿轴向依次包括滑移段、缓冲段、以及抵接段;所述滑移段在所述第一容纳腔内密封滑移;阀座,所述阀座固定在所述第二容纳腔内;阀芯,所述阀芯固定套设在所述缓冲段,所述出流孔位于所述阀芯的滑移路径上;所述阀芯滑移至抵接在所述阀座上时,所述阀芯与所述阀座密封抵接;紧固弹簧,所述紧固弹簧套设在所述缓冲段且所述紧固弹簧的两端分别一一对应地抵接在所述限位面与所述阀芯上;控制活塞,所述控制活塞上开设有卡接孔,所述抵接段卡接在所述卡接孔内,所述控制活塞上沿轴向的外侧面还开设有节流孔,所述节流孔、所述卡接孔、以及所述连通孔相连通。
- 根据权利要求1所述的液控单向阀,其特征在于,所述第二容纳腔包括出流腔和限位腔,所述出流腔的内径小于所述限位腔的内径,所述出流腔和所述限位腔在交界处限定出定位面,所述出流孔开设在所述出流腔,所述阀座固定在所述限位腔内且抵接在所述定位面。
- 根据权利要求2所述的液控单向阀,其特征在于,所述液控单向阀还包括固定安装在所述限位腔中的限位套,所述限位套与所述阀座上背向所述阀芯的表面相抵接;所述控制活塞上开设有卡接孔的一端依次穿设过所述限位套和所述阀座的内孔。
- 根据权利要求3所述的液控单向阀,其特征在于,所述限位套沿轴向的外表面与所述限位腔的内壁过紧配合。
- 根据权利要求1-4任意一项所述的液控单向阀,其特征在于,所 述卡接孔包括螺纹孔和过流孔,所述过流孔连通在所述螺纹孔与所述节流孔之间;所述抵接段沿轴向的外表面设置有外螺纹,所述外螺纹螺接在所述螺纹孔中。
- 根据权利要求5所述的液控单向阀,其特征在于,所述过流孔上远离所述螺纹孔的一端的形状为锥形孔,所述节流孔与所述锥形孔的尖端相连通。
- 根据权利要求6所述的液控单向阀,其特征在于,所述节流孔的数量为多个,多个所述节流孔沿着所述控制活塞的周向均匀排布。
- 根据权利要求6-7任意一项所述的液控单向阀,其特征在于,所述滑移段的外表面开设有环形的第一密封槽,所述第一密封槽内设置有第一密封圈,所述滑移段通过所述第一密封圈密封设置在所述第一容纳腔内。
- 根据权利要求8所述的液控单向阀,其特征在于,所述阀芯的内壁上开设有环形的第二密封槽,所述第二密封槽内设置有第二密封圈,所述阀芯通过所述第二密封圈密封套设在所述缓冲段上。
- 根据权利要求9所述的液控单向阀,其特征在于,所述阀芯包括第一斜面,所述第一斜面朝向所述阀座设置,所述阀座上设置有第二斜面,所述第二斜面朝向所述阀芯设置,所述阀芯滑移至抵接在所述阀座上时,所述第一斜面与所述第二斜面密封贴合。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910810089.0A CN110529445B (zh) | 2019-08-29 | 2019-08-29 | 液控单向阀 |
CN201910810089.0 | 2019-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021037249A1 true WO2021037249A1 (zh) | 2021-03-04 |
Family
ID=68665146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112282 WO2021037249A1 (zh) | 2019-08-29 | 2020-08-28 | 液控单向阀 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110529445B (zh) |
WO (1) | WO2021037249A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113404736A (zh) * | 2021-08-03 | 2021-09-17 | 上海羿弓氢能科技有限公司 | 一种负载敏感溢流阀 |
CN113428216A (zh) * | 2021-06-07 | 2021-09-24 | 东科克诺尔商用车制动技术有限公司 | 一种分体式自动行程卸荷阀 |
CN113653836A (zh) * | 2021-08-20 | 2021-11-16 | 德帕姆(杭州)泵业科技有限公司 | 一种单向阀结构及工作可靠的往复泵 |
CN115475416A (zh) * | 2022-09-13 | 2022-12-16 | 山东同齐医学科技有限公司 | 富血小板血浆制备机构 |
CN117469226A (zh) * | 2023-11-15 | 2024-01-30 | 山东万通液压股份有限公司 | 一种液压缸用单向阀 |
CN117570077A (zh) * | 2024-01-16 | 2024-02-20 | 无锡煤矿机械股份有限公司 | 一种卸载阀 |
CN118407952A (zh) * | 2024-07-04 | 2024-07-30 | 济南隆利液压装置有限责任公司 | 一种单向阀及具有单向阀的液压控制装置 |
CN118564653A (zh) * | 2024-08-02 | 2024-08-30 | 贵州轮胎股份有限公司 | 一种硫化机的流体密封装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110529445B (zh) * | 2019-08-29 | 2020-11-17 | 北京天地玛珂电液控制系统有限公司 | 液控单向阀 |
CN112413148A (zh) * | 2020-12-05 | 2021-02-26 | 左成林 | 一种液控单向阀 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2564754Y (zh) * | 2002-08-21 | 2003-08-06 | 北京天地玛珂电液控制系统有限公司 | 一种液控单向阀 |
CN201943719U (zh) * | 2011-03-03 | 2011-08-24 | 江南矿业集团有限公司 | 一种液控单向阀 |
CN103291343A (zh) * | 2013-06-25 | 2013-09-11 | 丰隆液压有限公司 | 一种悬移支架用插装式液控单向阀 |
CN204419223U (zh) * | 2015-01-13 | 2015-06-24 | 丰隆液压有限公司 | 一种低卸载冲击液控单向阀 |
CN107587888A (zh) * | 2017-08-02 | 2018-01-16 | 北京煤科天玛自动化科技有限公司 | 一种具有泄液回收功能的液控单向阀 |
CN107676117A (zh) * | 2017-09-22 | 2018-02-09 | 鸿大智能机械有限公司 | 液控单向阀 |
JP6559108B2 (ja) * | 2016-09-14 | 2019-08-14 | 株式会社Taiyo | 切り替え弁装置 |
CN110529445A (zh) * | 2019-08-29 | 2019-12-03 | 北京天地玛珂电液控制系统有限公司 | 液控单向阀 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2571089Y2 (ja) * | 1993-05-07 | 1998-05-13 | エスエムシー株式会社 | 切換弁 |
CN105275485A (zh) * | 2014-07-16 | 2016-01-27 | 巨隆集团芜湖兴隆液压有限公司 | 一种中流量液控单向阀 |
CN204267804U (zh) * | 2014-11-25 | 2015-04-15 | 浙江众博矿业机械有限公司 | 液控单向阀 |
CN204267803U (zh) * | 2014-11-25 | 2015-04-15 | 浙江众博矿业机械有限公司 | 液控单向阀 |
CN106402074A (zh) * | 2016-10-26 | 2017-02-15 | 华东矿用设备有限公司 | 一种液压系统用液控单向阀 |
CN109236773A (zh) * | 2018-09-25 | 2019-01-18 | 华东矿用设备有限公司 | 一种大流量液控单向阀 |
-
2019
- 2019-08-29 CN CN201910810089.0A patent/CN110529445B/zh active Active
-
2020
- 2020-08-28 WO PCT/CN2020/112282 patent/WO2021037249A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2564754Y (zh) * | 2002-08-21 | 2003-08-06 | 北京天地玛珂电液控制系统有限公司 | 一种液控单向阀 |
CN201943719U (zh) * | 2011-03-03 | 2011-08-24 | 江南矿业集团有限公司 | 一种液控单向阀 |
CN103291343A (zh) * | 2013-06-25 | 2013-09-11 | 丰隆液压有限公司 | 一种悬移支架用插装式液控单向阀 |
CN204419223U (zh) * | 2015-01-13 | 2015-06-24 | 丰隆液压有限公司 | 一种低卸载冲击液控单向阀 |
JP6559108B2 (ja) * | 2016-09-14 | 2019-08-14 | 株式会社Taiyo | 切り替え弁装置 |
CN107587888A (zh) * | 2017-08-02 | 2018-01-16 | 北京煤科天玛自动化科技有限公司 | 一种具有泄液回收功能的液控单向阀 |
CN107676117A (zh) * | 2017-09-22 | 2018-02-09 | 鸿大智能机械有限公司 | 液控单向阀 |
CN110529445A (zh) * | 2019-08-29 | 2019-12-03 | 北京天地玛珂电液控制系统有限公司 | 液控单向阀 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113428216A (zh) * | 2021-06-07 | 2021-09-24 | 东科克诺尔商用车制动技术有限公司 | 一种分体式自动行程卸荷阀 |
CN113404736A (zh) * | 2021-08-03 | 2021-09-17 | 上海羿弓氢能科技有限公司 | 一种负载敏感溢流阀 |
CN113653836A (zh) * | 2021-08-20 | 2021-11-16 | 德帕姆(杭州)泵业科技有限公司 | 一种单向阀结构及工作可靠的往复泵 |
CN115475416A (zh) * | 2022-09-13 | 2022-12-16 | 山东同齐医学科技有限公司 | 富血小板血浆制备机构 |
CN115475416B (zh) * | 2022-09-13 | 2024-05-31 | 山东同齐医学科技有限公司 | 富血小板血浆制备机构 |
CN117469226A (zh) * | 2023-11-15 | 2024-01-30 | 山东万通液压股份有限公司 | 一种液压缸用单向阀 |
CN117570077A (zh) * | 2024-01-16 | 2024-02-20 | 无锡煤矿机械股份有限公司 | 一种卸载阀 |
CN117570077B (zh) * | 2024-01-16 | 2024-03-19 | 无锡煤矿机械股份有限公司 | 一种卸载阀 |
CN118407952A (zh) * | 2024-07-04 | 2024-07-30 | 济南隆利液压装置有限责任公司 | 一种单向阀及具有单向阀的液压控制装置 |
CN118564653A (zh) * | 2024-08-02 | 2024-08-30 | 贵州轮胎股份有限公司 | 一种硫化机的流体密封装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110529445A (zh) | 2019-12-03 |
CN110529445B (zh) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021037249A1 (zh) | 液控单向阀 | |
US5873561A (en) | Two-port cartridge seat valve | |
US2655935A (en) | Pressure relief valve assembly | |
US7357152B2 (en) | Releasable non-return valve | |
CN101504088B (zh) | 多功能通用型平衡阀 | |
CN107191653B (zh) | 一种水击泄放阀 | |
US5409040A (en) | Springless pilot operated sequence valve | |
CN201753790U (zh) | 一种多路阀用安全阀 | |
CN101275685B (zh) | 乳化液介质大流量安全阀 | |
GB2367879A (en) | A hydraulically operated directional control valve | |
CN109026889B (zh) | 缓冲溢流阀 | |
CN103291679A (zh) | 一种低滞环溢流阀 | |
CN211778714U (zh) | 一种双缸缓冲器 | |
CN105422537B (zh) | 一种增压溢流阀 | |
CN109058208B (zh) | 一种缓冲溢流阀 | |
CN218440002U (zh) | 一种先导式无泄漏安全压力阀 | |
CN109236779B (zh) | 液控单向阀及泄压总成 | |
CN218670771U (zh) | 一种开启压力可调的单向阀 | |
US2703217A (en) | Balanced plunger controlled check valve | |
CN201714748U (zh) | 多路阀用安全阀 | |
CN108506560B (zh) | 一种优先阀及其先导阀 | |
RU2781393C1 (ru) | Гидравлический регулирующий однопутевой клапан | |
WO2015074170A1 (zh) | 压力补偿阀 | |
CN101430014A (zh) | 一种叠加式单向节流阀 | |
CN113090792A (zh) | 一种调压卸荷阀 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857801 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857801 Country of ref document: EP Kind code of ref document: A1 |