WO2021036607A1 - 一种反激变换器及电子设备 - Google Patents

一种反激变换器及电子设备 Download PDF

Info

Publication number
WO2021036607A1
WO2021036607A1 PCT/CN2020/103872 CN2020103872W WO2021036607A1 WO 2021036607 A1 WO2021036607 A1 WO 2021036607A1 CN 2020103872 W CN2020103872 W CN 2020103872W WO 2021036607 A1 WO2021036607 A1 WO 2021036607A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
electrode
secondary winding
diode
flyback converter
Prior art date
Application number
PCT/CN2020/103872
Other languages
English (en)
French (fr)
Inventor
腾云亮
王晨
邵金呈
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20857579.5A priority Critical patent/EP3965280A4/en
Publication of WO2021036607A1 publication Critical patent/WO2021036607A1/zh
Priority to US17/556,223 priority patent/US20220115956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the field of electronic science and technology, in particular to a flyback converter and electronic equipment.
  • Flyback converter is a common electronic device, which relies on the internal transformer to realize the function of voltage (current) conversion, such as DC-DC converter, DC-AC converter, AC-DC converter, etc. All functional converters can be implemented by flyback converters.
  • the transformer of the flyback converter mainly includes a primary winding and a secondary winding.
  • the primary winding can receive the electric energy input to the flyback converter and convert the received electric energy into magnetic field potential energy. Due to the magnetic coupling between the primary winding and the secondary winding, the magnetic field potential energy converted by the primary winding can be transferred from the primary winding to the secondary winding, and the secondary winding is converted into electrical energy output, thereby realizing the primary winding to the secondary winding Power transfer.
  • leakage inductance and parasitic capacitance there are leakage inductance and parasitic capacitance in the primary winding and secondary winding of the transformer.
  • the loss caused by the leakage inductance and parasitic capacitance can be equivalent to the parasitic parameters of the transformer. Because the leakage inductance and parasitic capacitance are not conducive to improving the performance of the transformer, how to reduce the parasitic parameters of the transformer remains to be further studied.
  • the present application provides a flyback converter and electronic equipment, which is convenient to reduce the parasitic parameters of the transformer in the flyback converter, thereby helping to improve the energy conversion efficiency of the flyback converter.
  • an embodiment of the present application provides a flyback converter, which mainly includes: a first output terminal, a second output terminal, a primary winding, a first secondary winding module, and a second secondary winding module.
  • the first secondary winding module mainly includes a first output capacitor, a first secondary winding and a first diode. The first end of the first secondary winding is coupled with the cathode of the first diode.
  • the anode of the pole tube is coupled with the second electrode of the first output capacitor, and the second end of the first secondary winding is respectively coupled with the first electrode and the first output terminal of the first output capacitor;
  • the second secondary winding module mainly includes The second output capacitor, the second secondary winding, and the second diode and/or the third diode, wherein the first electrode of the second output capacitor is coupled with the second electrode of the first output capacitor, and the second output
  • the second electrode of the capacitor is coupled to the second output terminal, the anode of the second diode is coupled to the second end of the second secondary winding, and the cathode of the second diode is coupled to the first electrode of the second output capacitor.
  • the anode of the three diodes is coupled with the second electrode of the second output capacitor, and the cathode of the third diode is coupled with the first end of the second secondary winding; the primary winding is respectively connected to the first secondary winding and the second secondary winding.
  • the winding is magnetically coupled; the first output terminal is used for coupling with the positive pole of the first load circuit, and the second output terminal is used for coupling with the negative pole of the first load circuit.
  • the first output capacitor in the first secondary winding module and the second output capacitor in the second secondary winding module are connected in series between the first output terminal and the second output terminal, the first The output voltages of the secondary winding and the second secondary winding can be accumulated, so the two secondary windings can actually be equivalent to one large secondary winding.
  • the embodiment of the present application adopts the first secondary winding and the second secondary winding to output in series, which can reduce the number of turns of a single secondary winding.
  • the embodiment of the application is beneficial to reduce the leakage inductance and parasitic capacitance in the secondary winding when other parameters are fixed.
  • the first diode in the first winding module not only helps to reduce the leakage current inside the secondary winding module, but also helps to reduce the leakage current between the first secondary winding and the first electrode of the second output capacitor. This further reduces the leakage inductance and parasitic capacitance loss of the secondary winding while preventing the introduction of other losses, thereby helping to ensure that the embodiment of the present application can reduce the parasitic parameters of the transformer as a whole.
  • the flyback converter further includes a first input terminal, a second input terminal, a control module, and a switching transistor; the first end of the primary winding is coupled to the first input terminal, and the second end of the primary winding Coupled with the first electrode of the switching transistor, the second electrode of the switching transistor is coupled with the second input terminal, and the control electrode of the switching transistor is coupled with the control module; the first input terminal and the second input terminal are respectively used to connect to the positive pole of the external power supply And negative coupling; the control module can control the switching transistor to turn on the transmission path between the external power supply and the primary winding at the first time point, and control the switching transistor to disconnect the external power supply from the primary winding at the second time point after the first time point Transmission path between windings.
  • the first diode is the body diode of the first transistor
  • the control electrode of the first transistor is coupled to the control module
  • the first electrode of the first transistor is connected to the first secondary winding of the first transistor.
  • Terminal coupling, the second electrode of the transistor is coupled with the second electrode of the first output capacitor; the control module can also turn on the first transistor at a third time point, where the third time point is no earlier than the second time point.
  • the body diode of the first transistor is used as the first transistor, and the control module turns on the first transistor at the third time point, so that the electric energy output by the secondary winding can be transmitted through the channel inside the first transistor.
  • the loss caused by the channel of the first transistor is smaller than the loss of a conventional diode, so the embodiments of the present application are beneficial to further improve the energy utilization efficiency of the flyback converter.
  • the second diode is the body diode of the second transistor, the control electrode of the second transistor is coupled to the control module, and the first electrode of the second transistor is connected to the first electrode of the second output capacitor. Coupled, the second electrode of the second transistor is coupled with the second end of the second secondary winding; the control module is also used to: turn on the second transistor at the fourth time point, and the fourth time point is no earlier than the second time point
  • the third diode is the body diode of the third transistor, the control electrode of the third transistor is coupled to the control module, the first electrode of the third transistor is coupled to the second electrode of the second output capacitor, and the third The second electrode of the transistor is coupled with the first end of the second secondary winding; the control module may also turn on the third transistor at the fourth time point.
  • the controller may also obtain the current value of the excitation current passing through the primary winding; after the current value of the excitation current is reduced to the current threshold, it is determined that the current time point is the second time point.
  • the flyback converter further includes a detection resistor; one end of the detection resistor is coupled to the second electrode of the switching transistor, and the other end of the detection resistor is coupled to the second input terminal; the control module is also connected to the second input terminal of the detection resistor. Both ends are coupled; the control module can obtain the voltage value of the resistance voltage of the detection resistance; according to the resistance value of the detection resistance and the voltage value of the resistance voltage of the detection resistance, the current value of the charging current through the detection resistance is calculated.
  • the flyback converter further includes at least one third secondary winding module located between the first secondary winding module and the second secondary winding module, wherein each third secondary winding
  • the modules all include a third secondary winding, a fourth diode, and a third output capacitor; the first output capacitor, the third output capacitor and the second output capacitor of at least one third secondary winding module are connected in series in sequence, and for each The third secondary winding module: the third secondary winding is magnetically coupled to the primary winding, the first end of the third secondary winding is coupled to the cathode of the fourth diode, and the second end of the third secondary winding is coupled to the third output
  • the first electrode of the capacitor is coupled; the anode of the fourth diode is coupled to the second electrode of the third output capacitor, the first electrode of the third output capacitor is coupled to the second electrode of the first output capacitor, or the third output capacitor’s
  • the first electrode is coupled with the second electrode of the third output capacitor in another third secondary winding module; the second electrode of the third output capacitor is coupled with
  • Increasing the number of secondary windings is conducive to further reducing the number of turns of a single secondary winding, which is conducive to further reducing the parasitic parameters of the transformer in the flyback converter.
  • the third secondary winding module further includes a fifth diode, the anode of the fifth diode is coupled to the second end of the third secondary winding, and the cathode of the fifth diode is coupled to the second end of the third secondary winding.
  • the first electrode of the third output capacitor is coupled.
  • the provision of two diodes in the third secondary winding module can reduce the reverse bias voltage of a single diode during the charging of the primary winding, thereby reducing the electrical performance requirements of a single diode, thereby helping to reduce the cost of the flyback converter. And/or, improve the reliability of the flyback converter.
  • the flyback converter further includes a third output terminal, a fourth output terminal, an auxiliary winding, an auxiliary diode, and an auxiliary capacitor; the anode of the auxiliary diode is coupled to the second end of the auxiliary winding, and the auxiliary diode
  • the cathode is coupled with the first electrode of the auxiliary capacitor, the first end of the auxiliary winding is coupled with the second electrode of the auxiliary capacitor, the first electrode of the auxiliary capacitor is coupled with the third output terminal, and the second electrode of the auxiliary capacitor is coupled with the fourth output terminal
  • the auxiliary winding is magnetically coupled to the primary winding; or, the anode of the auxiliary diode is coupled to the second electrode of the auxiliary capacitor, the cathode of the auxiliary diode is coupled to the first end of the auxiliary winding, and the second end of the auxiliary winding is coupled to the first end of the auxiliary capacitor.
  • Electrode coupling the first electrode of the auxiliary capacitor is coupled with the third output terminal, the second electrode of the auxiliary capacitor is coupled with the fourth output terminal, and the auxiliary winding is magnetically coupled with the primary winding; the third output terminal is used to connect to the second load circuit The positive pole is coupled, and the fourth output terminal is used for coupling with the negative pole of the second load circuit.
  • an embodiment of the present application provides an electronic device, including a power supply circuit, a first load circuit, and the flyback converter provided in any one of the above-mentioned first aspects.
  • the power supply circuit is coupled with the primary winding of the flyback converter
  • the positive pole of the first load circuit is coupled with the first output terminal of the flyback converter
  • the negative pole of the first load circuit is coupled with the second output terminal of the flyback converter
  • the power circuit is used to input electric energy to the flyback converter
  • the flyback converter is used to transform the electric energy input from the power circuit, and provide the converted electric energy to the first load through the first output terminal and the second output terminal Circuit.
  • an embodiment of the present application provides an electronic device that includes a power supply circuit, a first load circuit, a second load circuit, and the third output terminal and a fourth output as provided in the first aspect above.
  • Flyback converter for terminals, auxiliary windings, auxiliary diodes and auxiliary capacitors.
  • the power supply circuit is coupled with the primary winding of the flyback converter, the positive pole of the first load circuit is coupled with the first output terminal of the flyback converter, and the negative pole of the first load circuit is coupled with the second output terminal of the flyback converter,
  • the positive pole of the second load circuit is coupled with the third output terminal of the flyback converter, and the negative pole of the second load circuit is coupled with the fourth output terminal of the flyback converter;
  • the power supply circuit is used to input electrical energy to the flyback converter;
  • Excitation converter used to transform the electric energy input from the power supply circuit, and provide part of the transformed electric energy to the first load circuit through the first output terminal and the second output terminal, and through the third output terminal and the fourth output terminal. The terminal provides another part of the converted electric energy to the second load circuit.
  • Figure 1 is a schematic diagram of the structure of an electronic device
  • Figure 2 is a schematic diagram of the structure of a flyback converter
  • Figure 3 is a schematic diagram of a periodic drive signal
  • FIG. 4 is one of the schematic structural diagrams of a flyback converter provided by an embodiment of the application.
  • FIG. 5 is the second schematic diagram of the structure of a flyback converter provided by an embodiment of this application.
  • FIG. 6 is the third schematic diagram of the structure of a flyback converter provided by an embodiment of this application.
  • FIG. 7 is the fourth structural diagram of a flyback converter provided by an embodiment of this application.
  • coupling in the embodiments of this application refers to the energy transfer relationship.
  • the coupling of A and B means that energy can be transferred between A and B.
  • energy can be transferred between A and B.
  • electric energy can be transferred between A and B
  • magnetic field potential energy etc.
  • the magnetic field potential energy can be transferred between A and B
  • it is reflected in the circuit connection relationship, that is, mutual inductance can occur between A and B, so that the magnetic field potential energy can be transferred from A to B.
  • magnetic coupling specifically refers to the scenario where A and B can transfer magnetic field potential energy to each other.
  • DC-DC (DC/DC) converters DC-AC (DC/AC) converters
  • AC-DC (AC/DC) converters AC-DC converters and other converters can realize different forms of voltage (or current) conversion.
  • any converter with any function can be realized by a flyback converter.
  • the DC/DC converter can be called a flyback DC/DC converter.
  • the flyback converter is a converter architecture, which is widely used in low-power power supplies because of its high power density and the ability to support multiple outputs.
  • FIG. 1 it is a schematic structural diagram of an electronic device equipped with a flyback converter.
  • the electronic device mainly includes a flyback converter 100, a power supply circuit 200, and a load circuit 300.
  • One end of the flyback converter 100 is connected to the power supply circuit. 200 is coupled, and the other end of the flyback converter 100 is coupled with the load circuit 300.
  • the power supply circuit 200 may include a battery of an electronic device, or may also include a peripheral circuit of the battery, which is not limited in the embodiment of the present application.
  • the power supply circuit 200 can input electrical energy to the flyback converter 100.
  • the flyback converter 100 can receive the electric energy input by the power circuit 200 and transform the electric energy input by the power circuit 200.
  • the electrical energy input by the power supply circuit 200 can be expressed as a certain current value and/or voltage value.
  • the power supply circuit 200 can use a voltage of 5V, a current of 2A, and input electrical energy to the flyback converter for 10s.
  • the energy value of the input electric energy is 1000J.
  • the electric energy input by the power supply circuit 200 can also be expressed as an input voltage of 5V, and/or an input current of 2A.
  • the energy value of the electrical energy input by the flyback converter 100 is equal to the energy value of the electrical energy received by the flyback converter, but
  • the voltage value of the output voltage of the converter 100 may be different from the voltage value of the input voltage, that is, voltage transformation, and at the same time, the current value of the output current of the flyback converter 100 may also be different from the current value of the input current, that is, transformation.
  • the energy value of the electric energy received by the flyback converter 100 is 1000J. In an ideal situation, the energy value output by the flyback converter 100 can also be 1000J.
  • the voltage of the output voltage of the flyback converter 100 The value can be converted to 2V, the current value of the output current can be converted to 2.5A, and the electric energy is output to the load circuit 300 for 20s.
  • the electrical energy converted by the flyback converter 100 can be used as the output electrical energy of the flyback converter 100 and provided to the load circuit 300.
  • the output voltage and output current of the output electrical energy can meet the rated working conditions of the load circuit 300, so that the load circuit 300 can Complete normal work based on the received output power.
  • the flyback converter 100 shown in FIG. 2 exemplarily shows a schematic structural diagram of a flyback converter.
  • the flyback converter 100 mainly includes a control module 101, a primary winding 102, a secondary winding 103, a rectifier diode 104, an input terminal 105, and an input terminal. 106, an output terminal 107, an output terminal 108, an input capacitor 109, and an output capacitor 110.
  • the two can form a transformer.
  • the end with the same name of the primary winding 102 may be shown as the black dot on the primary winding 102 in FIG. 2, and the end with the different name of the primary winding 102 may be the other end of the two ends of the primary winding 102 except for the end with the same name.
  • the representation of the same-named end and the different-named end of the secondary winding 103 is similar to that of the same-named end and the different-named end of the primary winding 102, and will not be repeated here.
  • the end of the same name and the end of the different name are only to indicate the direction relationship of the coil winding between the primary winding and the secondary winding.
  • the end of the same name and the end of the different name can be interchanged.
  • the ends of the primary winding 102 and the secondary winding 103 with different names in FIG. 2 can also be used as ends with the same name
  • the ends with the same name of the primary winding 102 and the secondary winding 103 can also be used as ends of the same name.
  • the embodiment of the present application takes the same-named end and the different-named end shown in FIG. 2 as an example for description. It should be pointed out that the specific division of the same-named end and the different-named end does not affect the specific implementation of the embodiment of the present application. The application embodiment will not go into details here.
  • the end of the same name of the primary winding 102 is coupled to the input terminal 105, and the end of the same name of the primary winding 102 is coupled to the input terminal 106.
  • the input terminal 105 can be coupled to the positive pole of the power supply circuit 200, and the input terminal 106 can be coupled to the power supply.
  • the negative pole of the circuit 200 is coupled.
  • the different-name terminal of the primary winding 102 is also coupled with the first electrode of the switching transistor 111, the control electrode of the switching transistor 111 is coupled with the control module 101, and the second electrode of the switching transistor 111 is coupled with the input terminal 106. In a possible implementation manner, as shown in FIG.
  • the second electrode of the switching transistor 111 may also be grounded, so that the voltage value of the second electrode is stabilized at 0V, and thus the overall voltage of the primary winding side can be kept stable.
  • the end of the same name of the secondary winding 103 is coupled to the output terminal 108
  • the end of the same name of the secondary winding 103 is coupled to the anode of the rectifier diode 104
  • the cathode of the rectifier diode 104 is coupled to the output terminal 107.
  • the output terminal 107 is used to connect to the positive pole of the load circuit 300
  • the output terminal 108 is used to connect to the negative pole of the load circuit 300.
  • the control module 101 may specifically be a processor, and the control module 101 may generate a periodic driving signal, so that the switching transistor 111 may be periodically turned on or off by the driving signal.
  • the periodic driving signal may be as shown in FIG. 3.
  • a transition period T is included between the time point t1 and the time point t3.
  • the driving signal is at a high level.
  • the driving signal is at a low level.
  • the specific implementation of the control module 101 can refer to the prior art, which will not be repeated here.
  • the switching transistor 111 in FIG. 2 is an N-channel metal oxide semiconductor (NMOS) transistor
  • NMOS N-channel metal oxide semiconductor
  • the control module 101 can turn on the switching transistor 111 from time t1 to time t2, and can turn off the switching transistor 111 from time t2 to time t3.
  • the switching transistor 111 is turned on, so that the power supply circuit 200, the primary winding 102, and the switching transistor 111 form a loop.
  • the input current provided by the power supply circuit 200 flows from the positive pole of the power supply circuit 200 and passes through the input
  • the terminal 105 inputs the flyback converter.
  • the input current flows through the primary winding 102 and the switching transistor 111 in sequence, flows out from the input terminal 106 and returns to the negative electrode of the power supply circuit 200.
  • the primary winding 102 can store the electrical energy input by the power supply circuit 200.
  • the voltage difference between the two ends of the primary winding 102 can also be understood as the primary winding 102 will receive Electric energy is converted into magnetic field potential energy, so the input current flowing through the primary winding can also be called excitation current, excitation current, etc.
  • the voltage drop at the secondary winding 103 also gradually increases.
  • the ratio between the voltage drop of the primary winding 102 and the voltage drop of the secondary winding 103 is equal to the ratio between the number of turns of the primary winding and the number of turns of the secondary winding.
  • the rectifier diode 104 is turned off, so that the electric energy stored in the primary winding 102 cannot be transferred to the secondary winding 103, which in turn causes the voltage drop of the primary winding 102 and the voltage drop of the secondary winding 103 to continue to increase.
  • the flyback converter 100 may also include an input capacitor 109.
  • the first electrode of the input capacitor 109 is coupled to the end of the primary winding 102 with the same name, and the second electrode of the input capacitor 109 has the same name as the primary winding 102. End coupling.
  • the input capacitor 109 can filter the input current provided by the power supply circuit 200, filter out high-frequency noise signals therein, and make the input current provided to the primary winding 102 more stable.
  • the switching transistor 111 is turned off, and the primary winding 102 stops receiving the electric energy provided by the power supply circuit 200.
  • the anode voltage of the rectifier diode 104 is higher than the cathode voltage, and the rectifier diode 104 is turned on.
  • the primary winding 102 discharges to the secondary winding 103, which can also be understood as that the secondary winding 103 further converts the magnetic field potential energy converted by the primary winding 102 into electrical energy.
  • the flyback converter 100 may further include an output capacitor 110.
  • the first electrode of the output capacitor 110 is coupled with the cathode of the rectifier diode 104, and the second electrode of the output capacitor 110 is coupled with the end of the secondary winding 103 with the same name. From time t2 to time t3, the secondary winding 103 provides part of the converted electric energy as output electric energy to the load circuit 300 through the output terminal 107 and the output terminal 108, and the other part of the electric energy is stored in the output capacitor 110. During the charging of the primary winding 102 in the next cycle, the output capacitor 110 can continue to provide output power to the load circuit 300, so that the flyback converter 100 can continue to provide power to the load circuit 300.
  • control module 101 and the switching transistor 111 in the flyback converter 100 are mainly used to provide periodic input power to the primary winding 102.
  • the flyback converter 100 may not include the switching transistor 111 and the control module 101.
  • the primary winding 102 The synonymous end of can be directly connected to the input terminal 106.
  • both the primary winding 102 and the secondary winding 103 have leakage inductance and parasitic capacitance.
  • the leakage inductance and parasitic capacitance will cause the secondary winding 103 to output a leakage inductance current, thereby causing additional loss and reducing the energy conversion efficiency of the flyback converter.
  • the loss caused by leakage inductance and parasitic capacitance can be equivalent to the parasitic parameters of the transformer formed by the primary winding 102 and the secondary winding 103.
  • the larger the parasitic parameters of the transformer the greater the loss caused by the leakage inductance and parasitic capacitance.
  • the smaller the parasitic parameters of the transformer the smaller the loss caused by the leakage inductance and parasitic capacitance.
  • the embodiment of the present application provides a flyback converter which is different from FIG. 2.
  • the embodiment of the present application divides the secondary winding 103 into a plurality of small secondary windings, so that the parasitic parameters of the transformer in the flyback converter can be reduced.
  • the provided flyback converter can have higher energy conversion efficiency.
  • flyback converter has a variety of possible implementation structures, which are not listed in this application, but these flyback converters can all be used in this application.
  • Fig. 4 exemplarily shows a schematic structural diagram of a flyback converter provided by an embodiment of the present application.
  • the structure of the primary winding side is similar to that of FIG. 2, and details are not repeated here.
  • the secondary winding module 1 includes a secondary winding 1031, a diode 1041 and an output capacitor 1101.
  • the opposite ends of the secondary winding 1031 are respectively coupled to the first electrode of the output capacitor 1101 and the output terminal 107, the same end of the secondary winding 1031 is coupled to the cathode of the diode 1041, and the anode of the diode 1041 is coupled to the second electrode of the output capacitor 1101 .
  • the secondary winding module 2 includes an output capacitor 1102, a secondary winding 1032, and a diode 1042.
  • the first electrode of the output capacitor 1102 is coupled with the second electrode of the output capacitor 1101, and the second electrode of the output capacitor 1102 is coupled with the output terminal 108.
  • the embodiment of the present application does not limit the specific coupling mode of the diode 1042 in the secondary winding module 2. That is, all coupling modes that can realize the rectification function of the diode 1042 can be included in the implementation of this application. In the example.
  • the anode of the diode 1042 is coupled to the opposite end of the secondary winding 1032, the cathode of the diode 1042 is coupled to the first electrode of the output capacitor 1102, and the secondary The end of the winding 1032 with the same name is coupled with the second electrode of the output capacitor 1102.
  • the anode of the diode 1042 is coupled to the second electrode of the output capacitor 1102
  • the cathode of the diode 1042 is coupled to the end of the same name of the secondary winding 1032
  • the opposite end of the secondary winding 1032 is coupled to the output capacitor 1102.
  • the structure of the secondary winding module 2 is similar to that of the secondary winding module 1 in this implementation.
  • the secondary winding module 2 includes two diodes 1042 (diode 1042a and diode 1042b) at the same time, wherein the anode of the diode 1042a is coupled with the alias end of the secondary winding 1032, and the cathode of the diode 1042a It is coupled with the first electrode of the output capacitor 1102, the anode of the diode 1042b is coupled with the second electrode of the output capacitor 1102, and the cathode of the diode 1042b is coupled with the end of the secondary winding 1032 with the same name.
  • both the secondary winding 1031 and the secondary winding 1032 are magnetically coupled with the primary winding 102.
  • the flyback converter 100 shown in FIG. 4 will be further described.
  • the primary winding 102 is charged. During this period, the input current flows from the same-named end of the primary winding 102 to the different-named end of the primary winding 102.
  • the direction of the input current can be as shown by the arrow in Figure 4.
  • the primary The end of the winding 102 with the same name is at a high potential, and the end with a different name of the primary winding 102 is at a low potential.
  • "+" is used to indicate a high potential
  • "-" to indicate a low potential.
  • the end of the same name of the secondary winding 1031 is at a high potential, and the opposite end of the secondary winding 1031 is at a low potential.
  • the end of the same name of the secondary winding 1032 is at a high potential, and the opposite end of the secondary winding 1032 is at a low potential.
  • the primary winding 102, the secondary winding 1031 and the secondary winding 1032 have the same number of turns, as shown in Figure 4, at a certain point in time during t1 to t2, the primary winding 102, the secondary winding
  • the voltage drop of the winding 1031 and the secondary winding 1032 are both 80V.
  • the output voltage of the output capacitor 1101 and the output capacitor are both 50V, and the flyback converter 100 can provide the load circuit 300 with an output voltage of 100V.
  • the voltage of the output terminal 108 is 0V, and the voltage of the output terminal 107 is 100V.
  • the voltage of each node on the secondary winding side can be as shown in FIG. 4, the voltage of the same-named terminal of the secondary winding 1032 is 0V, the voltage of the different-named terminal of the secondary winding 1032 is -80V, and the first of the output capacitor 1102
  • the voltage of the electrode is 50V
  • the voltage of the second electrode of the output capacitor 1102 is 0V.
  • the voltage of the homonymous terminal of the secondary winding 1031 is 180V
  • the voltage of the synonymous terminal of the secondary winding 1031 is 100V
  • the voltage of the first electrode of the output capacitor 1101 is 100V
  • the voltage of the second electrode of the output capacitor 1101 is 50V.
  • the flyback converter 100 shown in FIG. 2 and FIG. 4 it can be seen that the sum of the voltage drop of the two secondary windings in FIG. 4 is 160V, and the ratio of the voltage drop of the primary winding 102 is 2:1.
  • the ratio of the secondary winding 103 to the primary winding 102 in Figure 2 needs to reach 2:1, that is, the number of turns of the secondary winding 103 is twice the number of turns of the secondary winding 1031 (the same principle applies to the secondary winding 1032, No longer).
  • the loss caused by the parasitic capacitance and leakage inductance in the secondary winding is proportional to the square of the number of turns of the secondary winding, when other parameters are fixed, the loss caused by the secondary winding 103 is approximately equal to that caused by the secondary winding 1031 The loss caused by the secondary winding 103 is about twice the total loss caused by the secondary winding 1031 and the secondary winding 1032. It can be seen that the application divides the secondary winding 103 into a secondary winding 1031 and a secondary winding 1032, and outputs the output voltage of the flyback converter 100 through two output capacitors connected in series, so that under the same output voltage, The loss on the secondary winding side is reduced to half of the loss on the secondary winding side in FIG. 2, so it is beneficial to reduce the parasitic parameters of the transformer in the flyback converter 100.
  • the diode 1041 not only helps to reduce the leakage current inside the secondary winding module 1, but also helps to reduce the leakage current between the secondary winding 1031 and the output capacitor 1102, thereby reducing the parasitic parameters of the transformer through multiple small windings. , To prevent the introduction of other losses, so as to ensure that the embodiments of the present application are beneficial to reduce the parasitic parameters of the transformer as a whole.
  • both the secondary winding 1031 and the secondary winding 1032 can output electric energy.
  • the diode 1041 and the diode 1042 are turned on, and the voltage output by the secondary winding 1031 and the secondary winding 1032 is superimposed, so that The output voltage of the flyback converter 100 is the sum of the voltage output by the secondary winding 1031 and the voltage output by the secondary winding 1032. That is to say, although there are two secondary windings-secondary winding 1031 and secondary winding 1032 in the embodiment of this application, the secondary winding 1031 and secondary winding 1032 actually function as a secondary winding (secondary winding 103 ), and the primary winding 102 constitutes a transformer.
  • Fig. 5 exemplarily shows another flyback converter provided by an embodiment of the present application.
  • the primary winding side of the flyback converter 100 in FIG. 5 is similar to that shown in FIG. 4, which will not be repeated here.
  • the secondary winding side of the flyback converter 100 shown in FIG. 5 includes a secondary winding module 3 in addition to the secondary winding module 1 and the secondary winding module 2.
  • the secondary winding module 3 includes a secondary winding 1033, a diode 1053, and an output capacitor 1103. Among them, the output capacitor 1101, the output capacitor 1103, and the output capacitor 1102 are serially connected in series, and the secondary winding 1033 is magnetically coupled with the primary winding 102.
  • the end of the same name of the secondary winding 1033 is coupled to the cathode of the diode 1053, the end of the same name of the secondary winding 1033 is coupled to the first electrode of the output capacitor 1103, and the anode of the diode 1053 is coupled to the first electrode of the output capacitor 1103.
  • Two electrodes are coupled, and the second electrode of the output capacitor 1103 is coupled with the first electrode of the output capacitor 1102.
  • the number of turns of a single secondary winding can be reduced under the same output voltage, so that the parasitic parameters of the transformer in the flyback converter can be further reduced.
  • the total loss on the secondary winding side in Fig. 5 is about 1/3 of the loss on the secondary winding side in Fig. 2.
  • the diode 1041 is not only beneficial for reducing the leakage current inside the secondary winding module 1, but also beneficial for reducing the leakage current between the end of the same name of the secondary winding 1031 and the output capacitor 1103.
  • the diode 1053 not only helps to reduce the leakage current inside the secondary winding module 3, but also helps to reduce the leakage current between the homonymous end of the secondary winding 1033 and the output capacitor 1102, so as to ensure that it is beneficial to reduce the flyback converter as a whole. Parasitic parameters of the transformer.
  • the secondary winding module 3 may further include a diode 1043.
  • the diode 1043 is arranged between the synonymous end of the secondary winding 1033 and the first electrode of the output capacitor 1103, wherein the anode of the diode 1043 is coupled to the synonymous end of the secondary winding 1033, and the cathode of the diode 1043 is connected to the first electrode of the output capacitor 1103.
  • One electrode coupling During the charging period of the primary winding 102, the diode in the secondary winding module needs to bear a higher reverse bias voltage. For example, the diode 1041 in FIG. 4 needs to bear a reverse bias voltage of 130V, so the performance requirements of the diode 1041 are higher.
  • adding a diode 1043 to the secondary winding module 3 can reduce the reverse bias voltage borne by the diode 1053, thereby reducing the performance requirements of the diode 1053, thereby helping to reduce the cost of the flyback converter 100, or It is beneficial to improve the reliability of the flyback converter 100.
  • a diode with a rectification function can also be provided between the different-named end of the secondary winding 1031 and the output capacitor 1101 to reduce the reverse bias voltage of the diode 1041.
  • a diode with a rectification function can also be provided between the end of the same name of the secondary winding 1032 and the output capacitor 1102 to reduce the reverse bias voltage of the diode 1042. This application will not list them one by one.
  • FIG. 5 only exemplarily shows a scenario of one secondary winding module 3.
  • the flyback converter 100 may include multiple secondary winding modules 3 to further reduce Parasitic parameters of the transformer in the flyback converter 100.
  • the output capacitor 1101 and the output capacitor 1103 and the output capacitor 1102 of the multiple secondary winding modules 3 are connected in series in sequence.
  • Each secondary winding module 3 has the same internal structure, which will not be repeated here.
  • the flyback converter 100 includes two secondary winding modules 3—a secondary winding module 3A and a secondary winding module 3B.
  • the first electrode of the output capacitor 1103A in the secondary winding module 3A is coupled with the second electrode of the output capacitor 1101 in the secondary winding module 1
  • the second electrode of the output capacitor 1103A is coupled with the output capacitor 1103B in the secondary winding module 3B.
  • the first electrode of the output capacitor 1103B is coupled with the first electrode of the output capacitor 1102 in the secondary winding module 2.
  • the flyback converter 100 includes three secondary winding modules 3—a secondary winding module 3A, a secondary winding module 3B, and a secondary winding module 3C.
  • the first electrode of the output capacitor 1103A in the secondary winding module 3A is coupled with the second electrode of the output capacitor 1101 in the secondary winding module 1
  • the second electrode of the output capacitor 1103A is coupled with the output capacitor 1103B in the secondary winding module 3B.
  • the second electrode of the output capacitor 1103B is coupled with the first electrode of the output capacitor 1103C in the secondary winding module 3C
  • the second electrode of the output capacitor 1103C is coupled with the first electrode of the output capacitor 1102 in the secondary winding module 2 Electrode coupling.
  • any secondary winding module includes at least one diode, and the at least one diode is turned off during the charging period of the primary winding 102 and turned on during the discharging period of the primary winding 102.
  • the body diode in the transistor can be used as the diode in the secondary winding module.
  • the diode 1041 in the secondary winding module 1 is the body diode of the transistor T1.
  • the second electrode of the transistor T1 is coupled with the second electrode of the output capacitor 1101
  • the first electrode of the transistor T1 is coupled with the end of the secondary winding 1031 with the same name
  • the control electrode of the transistor T1 is coupled with the control module.
  • the control module 101 keeps the transistor T1 off. After the time point t2 or the time point t2, the control module 101 controls the transistor T1 to be turned on, and the secondary winding 1031 can output electric energy through the transistor T1.
  • the body diode in the transistor T1 is used as the diode in the secondary winding module, and the transistor T1 is turned on during the period when the secondary winding is outputting electric energy, so that the electric energy output by the secondary winding can be transmitted through the channel of the transistor T1, and
  • the channel of the transistor T1 has a small loss of electric energy, so it is beneficial to improve the energy conversion efficiency of the flyback converter 100 as a whole.
  • diodes in other secondary winding modules can also be realized by body diodes in transistors.
  • the diode 1042 in the secondary winding module 2 may be the body diode of the transistor T2.
  • the control module 101 may also control the transistor T2 to be turned on at the second time point or after the second time point. The embodiments of the present application will not enumerate them one by one.
  • the control module 101 can control the switching transistor 111 through the periodic driving signal as shown in FIG. 3.
  • the control module 101 can detect the current value of the excitation current, and after the current value of the excitation current drops to the current threshold, determine the current time point as the time point t2, which can also be understood as After the current value drops to the current threshold value, charging of the primary winding 102 is stopped.
  • the flyback converter 100 may further include a detection resistor R, one end of the detection resistor R is coupled with the second electrode of the switching transistor 111, and the other of the detection resistor R One end is coupled with the input terminal 106, and the control module 101 is also coupled with both ends of the detection resistor R.
  • the control module 101 can also be coupled to one end of the detection resistor R through a wire, and the control module 101 can be coupled to the other end of the detection resistor R through an internal ground circuit.
  • the resistance value of the detection resistor R can be preset in the control module 101.
  • the control module 101 can detect the voltage drop of the resistor R, and obtain the current value of the excitation current flowing through the primary winding 102 by detecting the voltage drop of the resistor R and the resistance value of the detection resistor R, and then the current value of the excitation current flowing through the primary winding 102 can be obtained according to the excitation current
  • the current value of and the preset current threshold determine whether the current time point is the time point t2.
  • the flyback converter 100 can provide output power for multiple load circuits.
  • the flyback converter 100 can also be a load circuit 200 (not shown in FIG. 1 ) Provide output power.
  • the flyback converter 100 may also include an auxiliary winding side.
  • the flyback converter 100 may also include an auxiliary winding 112 and an output terminal 114.
  • the anode of the auxiliary diode 115 is coupled to the opposite end of the auxiliary winding 112
  • the cathode of the auxiliary diode 115 is coupled to the first electrode of the auxiliary capacitor 116
  • the end of the same name of the auxiliary winding 112 is coupled to the second electrode of the auxiliary capacitor 116.
  • the auxiliary capacitor The first electrode of 116 is coupled with the output terminal 114
  • the second electrode of the auxiliary capacitor 116 is coupled with the output terminal 113
  • the auxiliary winding 112 is magnetically coupled with the primary winding 102.
  • the output terminal 114 may be coupled with the positive pole of the load circuit 200, and the output terminal 113 may be coupled with the negative pole of the load circuit 200.
  • the flyback converter 100 can provide output power to the load circuit 200 through the output terminal 114 and the output terminal 113.
  • the auxiliary winding side can also adopt the following structure:
  • the anode of the auxiliary diode 115 is coupled with the second electrode of the auxiliary capacitor 116, the cathode of the auxiliary diode 115 is coupled with the end of the auxiliary winding with the same name, the different end of the auxiliary winding 112 is coupled with the first electrode of the auxiliary capacitor 116, and the second electrode of the auxiliary capacitor 116 One electrode is coupled with the output terminal 114, the second electrode of the auxiliary capacitor 116 is coupled with the output terminal 113, and the auxiliary winding 112 is magnetically coupled with the primary winding 102.
  • auxiliary winding side where the auxiliary winding is located is similar to the above-mentioned secondary winding side. Therefore, the specific implementation of the auxiliary winding side can not only be applied to the structure of the secondary winding side shown in FIG. 2 but also be applicable to FIGS. 4 to 4 to The structure of the secondary winding side shown in FIG. 6 will not be repeated in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种反激变换器及电子设备,反激变换器的第一次级绕组模块中第一次级绕组的第二端分别与第一输出电容的第一电极和第一输出端子耦合,第一端与第一二极管的阴极耦合,第一二极管的阳极与第一输出电容的第二电极耦合;第二次级绕组模块中第二输出电容的第一电极与第一输出电容的第二电极耦合,第二电极与第二输出端子耦合,第二二极管的阳极与第二次级绕组的第二端耦合,阴极与第二输出电容的第一电极耦合,第三二极管的阳极与第二输出电容的第二电极耦合,阴极与第二次级绕组的第一端耦合;初级绕组分别与上述两个次级绕组磁耦合;第一输出端子用于与第一负载电路的正极耦合,第二输出端子用于与第一负载电路的负极耦合。

Description

一种反激变换器及电子设备
相关申请的交叉引用
本申请要求在2019年08月23日提交中国专利局、申请号为201910783891.5、申请名称为“一种反激变换器及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子科学技术领域,尤其涉及一种反激变换器及电子设备。
背景技术
反激变换器是一种常见的电子器件,其依赖于内部的变压器,可以实现电压(电流)变换功能,例如直流-直流变换器、直流-交流变换器、交流-直流变换器等多种不同功能的变换器皆可以采用反激变换器实现。具体来说,反激变换器的变压器主要包括初级绕组和次级绕组。在反激变换器工作过程中,初级绕组可以接收输入反激变换器的电能,将接收到的电能转换为磁场势能。由于初级绕组和次级绕组之间存在磁耦合,因此初级绕组转换来的磁场势能可以从初级绕组传递至次级绕组,并由次级绕组转换为电能输出,从而实现了初级绕组到次级绕组的电能传递。
然而,变压器的初级绕组和次级绕组中存在有漏感和寄生电容,一般漏感和寄生电容所造成的损耗可以等效为变压器的寄生参数。由于漏感和寄生电容不利于提高变压器的性能,因此如何降低变压器的寄生参数还有待进一步研究。
发明内容
有鉴于此,本申请提供一种反激变换器及电子设备,便于降低反激变换器中变压器的寄生参数,从而有利于提高反激变换器的能量转换效率。
第一方面,本申请实施例提供一种反激变换器,主要包括:第一输出端子、第二输出端子、初级绕组、第一次级绕组模块和第二次级绕组模块。第一次级绕组模块中主要包括第一输出电容、第一次级绕组和第一二极管,其中,第一次级绕组的第一端与第一二极管的阴极耦合,第一二极管的阳极与第一输出电容的第二电极耦合,第一次级绕组的第二端分别与第一输出电容的第一电极和第一输出端子耦合;第二次级绕组模块中主要包括第二输出电容、第二次级绕组,以及第二二极管和/或第三二极管,其中,第二输出电容的第一电极与第一输出电容的第二电极耦合,第二输出电容的第二电极与第二输出端子耦合,第二二极管的阳极与第二次级绕组的第二端耦合,第二二极管的阴极与第二输出电容的第一电极耦合,第三二极管的阳极与第二输出电容的第二电极耦合,第三二极管的阴极与第二次级绕组的第一端耦合;初级绕组分别与第一次级绕组和第二次级绕组磁耦合;第一输出端子用于与第一负载电路的正极耦合,第二输出端子用于与第一负载电路的负极耦合。
在本申请实施例中,由于第一次级绕组模块中的第一输出电容和第二次级绕组模块中的第二输出电容在第一输出端子和第二输出端子之间串联,使得第一次级绕组和第二次级 绕组的输出电压可以累加,因此两个次级绕组实际上可以等效于一个大的次级绕组。而在相同的输出电压的情况下,本申请实施例采用第一次级绕组和第二次级绕组串联输出可以降低单个次级绕组的匝数。由于次级绕组中寄生电容和漏感所造成的损耗与次级绕组匝数的平方成正比,因此在其它参数固定的情况下,本申请实施例有利于降低次级绕组中漏感和寄生电容所造成的损耗。同时,第一绕组模块中的第一二极管不仅有利于降低次级绕组模块内部的漏电流,也有利于降低第一次级绕组与第二输出电容的第一电极之间的漏电流,进而使得在降低次级绕组的漏感和寄生电容的损耗的同时,防止引入其它损耗,从而有利于保证本申请实施例可以从整体上降低变压器的寄生参数。
在一种可能的实现方式中,反激变换器还包括第一输入端子、第二输入端子、控制模块和开关晶体管;初级绕组的第一端与第一输入端子耦合,初级绕组的第二端与开关晶体管的第一电极耦合,开关晶体管的第二电极与第二输入端子耦合,开关晶体管的控制电极与控制模块耦合;第一输入端子和第二输入端子,分别用于与外接电源的正极和负极耦合;控制模块可以在第一时间点,控制开关晶体管导通外接电源与初级绕组之间的传输路径,在第一时间点之后的第二时间点,控制开关晶体管断开外接电源与初级绕组之间的传输路径。
在一种可能的实现方式中,第一二极管为第一晶体管中的体二极管,第一晶体管的控制电极与控制模块耦合,第一晶体管的第一电极与第一次级绕组的第一端耦合,晶体管的第二电极与第一输出电容的第二电极耦合;控制模块还可以在第三时间点导通第一晶体管,其中,第三时间点不早于第二时间点。
采用第一晶体管的体二极管作为第一晶体管,且控制模块在第三时间点导通第一晶体管,使得次级绕组输出的电能可以通过第一晶体管内部的沟道传输。第一晶体管的沟道带来的损耗小于常规二极管的损耗,因此本申请实施例有利于进一步提高反激变换器的能量利用效率。
在一种可能的实现方式中,第二二极管为第二晶体管中的体二极管,第二晶体管的控制电极与控制模块耦合,第二晶体管的第一电极与第二输出电容的第一电极耦合,第二晶体管的第二电极与第二次级绕组的第二端耦合;控制模块,还用于:在第四时间点导通第二晶体管,第四时间点不早于第二时间点;和/或,第三二极管为第三晶体管中的体二极管,第三晶体管的控制电极与控制模块耦合,第三晶体管的第一电极与第二输出电容的第二电极耦合,第三晶体管的第二电极与第二次级绕组的第一端耦合;控制模块还可以在第四时间点导通第三晶体管。
在一种可能的实现方式中,控制器还可以获取经过初级绕组的励磁电流的电流值;在励磁电流的电流值降低至电流阈值后,确定当前时间点为第二时间点。
在一种可能的实现方式中,反激变换器还包括检测电阻;检测电阻的一端与开关晶体管的第二电极耦合,检测电阻的另一端与第二输入端子耦合;控制模块还与检测电阻的两端耦合;控制模块可以获取检测电阻的电阻电压的电压值;根据检测电阻的阻值和检测电阻的电阻电压的电压值,计算得到经过检测电阻的充电电流的电流值。
在一种可能的实现方式中,反激变换器还包括位于第一次级绕组模块和第二次级绕组模块之间的至少一个第三次级绕组模块,其中,每个第三次级绕组模块皆包括第三次级绕组、第四二极管和第三输出电容;第一输出电容、至少一个第三次级绕组模块的第三输出电容和第二输出电容依次串联,且对于每个第三次级绕组模块:第三次级绕组与初级绕组 磁耦合,第三次级绕组的第一端与第四二极管的阴极耦合,第三次级绕组的第二端与第三输出电容的第一电极耦合;第四二极管的阳极与第三输出电容的第二电极耦合,第三输出电容的第一电极与第一输出电容的第二电极耦合,或者第三输出电容的第一电极与另一个第三次级绕组模块中第三输出电容的第二电极耦合;第三输出电容的第二电极与第二输出电容的第一电极耦合,或者第三输出电容的第二电极与另一个第三次级绕组模块中第三输出电容的第一电极耦合。
增加次级绕组的数量,有利于进一步降低单个次级绕组的匝数,从而有利于进一步降低反激变换器中变压器的寄生参数。
在一种可能的实现方式中,第三次级绕组模块还包括第五二极管,第五二极管的阳极与第三次级绕组的第二端耦合,第五二极管的阴极与第三输出电容的第一电极耦合。
在第三次级绕组模块中设置两个二极管,可以降低在初级绕组充电期间,单个二极管的反偏电压,进而可以降低对单个二极管电学性能的要求,从而有利于降低反激变换器的成本,和/或,提高反激变换器的可靠性。
在一种可能的实现方式中,反激变换器还包括第三输出端子、第四输出端子、辅助绕组、辅助二极管和辅助电容;辅助二极管的阳极与辅助绕组的第二端耦合,辅助二极管的阴极与辅助电容的第一电极耦合,辅助绕组的第一端与辅助电容的第二电极耦合,辅助电容的第一电极与第三输出端子耦合,辅助电容的第二电极与第四输出端子耦合,且辅助绕组与初级绕组磁耦合;或者,辅助二极管的阳极与辅助电容的第二电极耦合,辅助二极管的阴极与辅助绕组的第一端耦合,辅助绕组的第二端与辅助电容的第一电极耦合,辅助电容的第一电极与第三输出端子耦合,辅助电容的第二电极与第四输出端子耦合,且辅助绕组与初级绕组磁耦合;第三输出端子用于与第二负载电路的正极耦合,第四输出端子用于与第二负载电路的负极耦合。
第二方面,本申请实施例提供一种电子设备,包括电源电路、第一负载电路和如上述第一方面中任一项拖提供的反激变换器。其中,电源电路与反激变换器的初级绕组耦合,第一负载电路的正极与反激变换器的第一输出端子耦合,第一负载电路的负极与反激变换器的第二输出端子耦合;电源电路,用于向反激变换器输入电能;反激变换器,用于对电源电路输入的电能进行变换,并通过第一输出端子和第二输出端子将变换后的电能提供给第一负载电路。
第三方面,本申请实施例提供一种电子设备,该电子设备包括电源电路、第一负载电路、第二负载电路和如上述第一方面所提供的、还包括第三输出端子、第四输出端子、辅助绕组、辅助二极管和辅助电容的反激变换器。其中,电源电路与反激变换器的初级绕组耦合,第一负载电路的正极与反激变换器的第一输出端子耦合,第一负载电路的负极与反激变换器的第二输出端子耦合,第二负载电路的正极与反激变换器的第三输出端子耦合,第二负载电路的负极与反激变换器的第四输出端子耦合;电源电路,用于向反激变换器输入电能;反激变换器,用于对电源电路输入的电能进行变换,并通过第一输出端子和第二输出端子将变换后的部分电能提供给第一负载电路,以及,通过第三输出端子和第四输出端子将变换后的另一部分电能提供给第二负载电路。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种电子设备结构示意图;
图2为一种反激变换器结构示意图;
图3为一种周期性驱动信号示意图;
图4为本申请实施例提供的一种反激变换器结构示意图之一;
图5为本申请实施例提供的一种反激变换器结构示意图之二;
图6为本申请实施例提供的一种反激变换器结构示意图之三;
图7为本申请实施例提供的一种反激变换器结构示意图之四。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。应理解,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“耦合”指的是能量传递关系,例如,A与B耦合,指的是A与B之间能够传递能量,其中,能量的具体形式存在多种可能,例如电能、磁场势能等。在A与B之间能够传递电能时,反应在电路连接关系上,便是A与B之间可以直接电连接,也可以通过其它导体或电路元件间接电连接。在A与B之间能够传递磁场势能时,反应在电路连接关系上,便是A与B之间可以发生互感,使得磁场势能可以从A传递至B,有鉴于此,本申请实施例中,以“磁耦合”特指A与B之间可以互相传递磁场势能的场景。
目前,大多数电子设备中都安装有变换器,以实现电子设备内部的电压(或电流)变换。例如,直流-直流(DC/DC)变换器、直流-交流(DC/AC)变换器、交流-直流(AC/DC)变换器等变换器,可以分别实现不同形式的电压(或电流)变换。
一般来说,任一功能的变换器皆可以采用反激变换器实现,例如,采用反激变换器作为DC/DC变换器时,该DC/DC变换器可以称为反激DC/DC变换器。具体来说,反激变换器是一种变换器架构,因其具有较高的功率密度,能够支持多路输出而被广泛应用于小功率电源。
如图1所示,为一种安装有反激变换器的电子设备结构示意图,该电子设备主要包括反激变换器100、电源电路200和负载电路300,反激变换器100的一端与电源电路200耦合,反激变换器100的另一端与负载电路300耦合。其中,电源电路200可以包括电子设备的电池,或者还可以包括电池的外围电路,本申请实施例对此并不多作限制。电源电路200可以为反激变换器100输入电能。
在电子设备工作过程中,反激变换器100可以接收电源电路200输入的电能,并对电源电路200输入的电能进行变换。具体来说,电源电路200输入的电能可以表述为一定的电流值和/或电压值,例如,电源电路200可以采用5V的电压,2A的电流,并持续10s向反激变换器输入电能,则输入的电能的能量值为1000J。在此情况下,电源电路200输入的电能也可以表述为5V的输入电压,和/或,2A的输入电流。
在不考虑反激变换器100损耗的理想情况下,经反激变换器100变换后,反激变换器100输入的电能的能量值与反激变换器接收的电能的能量值相等,但反激变换器100的输出电压的电压值可以不同于输入电压的电压值,即变压,同时,反激变换器100的输出电流的电流值也可以不同于输入电流的电流值,即变流。例如,上例中反激变换器100接收到的电能的能量值为1000J,在理想情况下,反激变换器100输出的能量值也可以为1000J,但反激变换器100的输出电压的电压值可以变换为2V,输出电流的电流值可以变换为2.5A,并持续20s向负载电路300输出电能。经反激变换器100变换后的电能可以作为反激变换器100的输出电能提供给负载电路300,该输出电能的输出电压和输出电流可以符合负载电路300的额定工作条件,使得负载电路300能够基于接收到的输出电能完成正常工作。
接下来,本申请实施例将以图2所示的反激变换器100为例,对反激变换器100的工作原理作进一步说明。图2示例性示出了一种反激变换器结构示意图,图2中,反激变换器100主要包括控制模块101、初级绕组102、次级绕组103、整流二极管104、输入端子105、输入端子106、输出端子107、输出端子108、输入电容109和输出电容110。
其中,初级绕组102和次级绕组103之间存在磁耦合,二者可以构成一变压器。具体来说,初级绕组102的同名端可以如图2中初级绕组102上的黑点所示,初级绕组102的异名端可以为初级绕组102的两端中除同名端之外的另一端。次级绕组103的同名端和异名端的表示方式与初级绕组102的同名端和异名端的表示方式类似,对此不再赘述。
可以理解,同名端和异名端仅为了表明初级绕组与次级绕组之间线圈缠绕的方向关系,在具体实现过程中,同名端和异名端可以互换。具体来说,图2中初级绕组102和次级绕组103的异名端也可以作为同名端,而初级绕组102和次级绕组103的同名端也可以作为异名端。为了便于表述,本申请实施例以图2所示的同名端和异名端为例进行说明,需要指出的是,同名端与异名端的具体划分并不影响本申请实施例的具体实现,本申请实施例对此不再多作赘述。
在初级绕组侧,初级绕组102的同名端与输入端子105耦合,初级绕组102的异名端与输入端子106耦合,其中,输入端子105可以与电源电路200的正极耦合,输入端子106可以与电源电路200的负极耦合。初级绕组102的异名端还与开关晶体管111的第一电极耦合,开关晶体管111的控制电极与控制模块101耦合,开关晶体管111的第二电极与输入端子106耦合。在一种可能的实现方式中,如图2所示,开关晶体管111的第二电极还可以接地,使得第二电极的电压值稳定在0V,进而可以保持初级绕组侧整体的电压稳定。在次级绕组侧,次级绕组103的同名端与输出端子108耦合,次级绕组103的异名端与整流二极管104的阳极耦合,整流二极管104的阴极与输出端子107耦合。其中,输出端子107用于连接负载电路300的正极,输出端子108用于连接负载电路300的负极。
在反激变换器100中,控制模块101具体可以为处理器,控制模块101可以产生周期性的驱动信号,从而可以通过驱动信号周期性导通或断开开关晶体管111。示例性的,该周期性的驱动信号可以如图3所示。图3中,时间点t1与时间点t3之间包括了一个变换周期T。在时间点t1与时间点t2期间,驱动信号为高电平。在时间点t2与时间点t3期间,驱动信号为低电平。控制模块101的具体实现可以参考现有技术,对此不再赘述。
假设图2中开关晶体管111为N沟道金属氧化物半导体(negative channel metal oxide semiconductor,NMOS)晶体管,高电平的驱动信号可以导通开关晶体管111,低电平的驱动信号可以断开开关晶体管111。基于图3所示的驱动信号,则控制模块101在时间点t1 至时间点t2期间可以导通开关晶体管111,在时间点t2至时间点t3期间可以断开开关晶体管111。
在时间点t1至时间点t2期间,开关晶体管111导通,使得电源电路200、初级绕组102、开关晶体管111构成回路,电源电路200所提供的输入电流从电源电路200的正极流出,并经输入端子105输入反激变换器。输入电流依次流经初级绕组102和开关晶体管111后,从输入端子106流出并返回至电源电路200的负极。在此过程中,初级绕组102可以存储电源电路200输入的电能,初级绕组102两端的电压差值,也即初级绕组102的压降逐渐升高,也可以理解为,初级绕组102将接收到的电能转化为磁场势能,因此流经初级绕组的输入电流也可以称为励磁电流、激磁电流等。
由于初级绕组102和次级绕组103之间磁耦合,次级绕组103处的压降也逐渐升压。在理想情况下,初级绕组102的压降与次级绕组103的压降之间的比值,等于初级绕组的匝数与次级绕组的匝数之间的比值。但是在此期间,整流二极管104截止,使得初级绕组102存储的电能无法传递至次级绕组103,进而使得初级绕组102的压降和次级绕组103的压降持续升高。
此外,如图2所示,反激变换器100还可以包括输入电容109,输入电容109的第一电极与初级绕组102的同名端耦合,输入电容109的第二电极与初级绕组102的异名端耦合。输入电容109可以对电源电路200提供的输入电流进行滤波,滤除其中高频噪声信号,使提供给初级绕组102的输入电流更为稳定。
在时间点t2至时间点t3期间,开关晶体管111断开,初级绕组102停止接收电源电路200提供的电能。在此情况下,整流二极管104的阳极电压高于阴极电压,整流二极管104导通。初级绕组102向次级绕组103放电,也可以理解为,次级绕组103将初级绕组102转化来的磁场势能进一步转化为电能。如图2所示,反激变换器100还可以包括输出电容110。输出电容110的第一电极与整流二极管104的阴极耦合,输出电容110的第二电极与次级绕组103的同名端耦合。在时间点t2至时间点t3期间,次级绕组103通过输出端子107和输出端子108,将转换后的部分电能作为输出电能提供给负载电路300,另一部分电能存储于输出电容110。在下一个周期内初级绕组102充电期间,输出电容110可以继续为负载电路300提供输出电能,从而使得反激变换器100能够持续为负载电路300提供电能。
可以理解,反激变换器100中控制模块101和开关晶体管111主要用于为初级绕组102提供周期性的输入电能。在一种可能的实现方式中,若电源电路200本身便具备周期性输入电能的功能,则反激变换器100中也可以不包括开关晶体管111和控制模块101,在此情况下,初级绕组102的异名端可以直接与输入端子106连接。
以上从理想情况下介绍了反激变换器100的工作原理。然而在实际实现结构中,无论是初级绕组102,还是次级绕组103,其中都存在漏感和寄生电容。在时间点t1至时间点t2期间,漏感和寄生电容会导致次级绕组103输出漏感电流,从而造成额外的损耗,使得反激变换器的能量转换效率降低。一般,漏感和寄生电容所导致的损耗可以等效为初级绕组102和次级绕组103所构成的变压器的寄生参数,变压器的寄生参数越大,说明漏感和寄生电容所导致的损耗越大,反之,变压器的寄生参数越小,说明漏感和寄生电容所导致的损耗越小。
为了进一步降低变压器的寄生参数,从而提高反激变换器的能量转换效率,本申请实 施例提供了一种有别于图2的反激变换器。相较于图2所示的反激变换器,本申请实施例将次级绕组103分为多个小次级绕组,从而可以降低反激变换器中变压器的寄生参数,因此本申请实施例所提供的反激变换器可以具有更高的能量转换效率。接下来,通过以下实施例对本申请实施例所提供的反激变换器作进一步说明。
需要指出的是,以下实施例仅为一种可能的具体示例。在实际应用中,反激变换器具有多种可能的实现结构,本申请对此并不一一列举,但这些反激变换器皆可以使用于本申请。
实施例一
图4示例性示出了本申请实施例提供的一种反激变换器结构示意图。如图4所示,本申请实施例所提供的反激变换器100中,初级绕组侧的结构与图2类似,对此不再赘述。
在次级绕组侧存在两个次级绕组模块—次级绕组模块1和次级绕组模块2。其中,次级绕组模块1包括次级绕组1031、二极管1041和输出电容1101。次级绕组1031的异名端分别与输出电容1101的第一电极和输出端子107耦合,次级绕组1031的同名端与二极管1041的阴极耦合,二极管1041的阳极与输出电容1101的第二电极耦合。
次级绕组模块2包括输出电容1102、次级绕组1032,二极管1042,其中,输出电容1102的第一电极与输出电容1101的第二电极耦合,输出电容1102的第二电极与输出端子108耦合。需要指出的是,本申请实施例对二极管1042在次级绕组模块2中的具体耦合方式并不多作限制,也就是说,所有可以实现二极管1042整流功能的耦合方式皆可包括于本申请实施例中。
示例性的,在一种可能的实现方式中,如图4所示,二极管1042的阳极与次级绕组1032的异名端耦合,二极管1042的阴极与输出电容1102的第一电极耦合,次级绕组1032的同名端与输出电容1102的第二电极耦合。在另一种可能的实现方式中,二极管1042的阳极与输出电容1102的第二电极耦合,二极管1042的阴极与次级绕组1032的同名端耦合,次级绕组1032的异名端与输出电容1102的第一电极耦合,该实现方式中次级绕组模块2的结构与次级绕组模块1类似。在又一种可能的实现方式中,次级绕组模块2同时包括两个二极管1042(二极管1042a和二极管1042b),其中,二极管1042a的阳极与次级绕组1032的异名端耦合,二极管1042a的阴极与输出电容1102的第一电极耦合,二极管1042b的阳极与输出电容1102的第二电极耦合,二极管1042b的阴极与次级绕组1032的同名端耦合。
在本申请实施例中,次级绕组1031和次级绕组1032皆与初级绕组102磁耦合。示例性的,以图3所示的驱动信号为例,对图4所示的反激变换器100作进一步说明。
在时间点t1至时间点t2期间,初级绕组102充电,期间输入电流由初级绕组102的同名端流向初级绕组102的异名端,输入电流的方向可以如图4中箭头所示,此时初级绕组102的同名端为高电势,初级绕组102的异名端为低电势,图4中分别使用“+”表示高电势,“-”表示低电势。相应的,次级绕组1031的同名端为高电势,次级绕组1031的异名端为低电势。次级绕组1032的同名端为高电势,次级绕组1032的异名端为低电势。
以一具体场景为例:假设初级绕组102、次级绕组1031和次级绕组1032的线圈匝数相同,如图4所示,在t1至t2期间的某一时间点,初级绕组102、次级绕组1031和次级绕组1032的压降皆为80V。此时,输出电容1101和输出电容所输出的电压皆为50V,反 激变换器100可以为负载电路300提供100V的输出电压。输出端子108的电压为0V,输出端子107的电压为100V。
在此情况下,次级绕组侧各个节点的电压可以如图4所示,次级绕组1032的同名端的电压为0V,次级绕组1032的异名端的电压为-80V,输出电容1102的第一电极的电压为50V,输出电容1102的第二电极的电压为0V。次级绕组1031的同名端的电压为180V,次级绕组1031的异名端的电压为100V,输出电容1101的第一电极的电压为100V,输出电容1101的第二电极的电压为50V。
对比图2和图4所示的反激变换器100可见,图4中两个次级绕组的压降之和为160V,与初级绕组102的压降的比值为2:1,若要达到相同的比值,则图2中次级绕组103与初级绕组102的比值需要达到2:1,也即次级绕组103的匝数是次级绕组1031匝数的两倍(次级绕组1032同理,不再赘述)。由于次级绕组中寄生电容和漏感所造成的损耗与次级绕组匝数的平方成正比,因此在其它参数固定的情况下,次级绕组103所造成的损耗约等于次级绕组1031所造成的损耗的四倍,次级绕组103所造成的损耗约为次级绕组1031和次级绕组1032所造成的总损耗的两倍。可见,本申请将次级绕组103分为次级绕组1031和次级绕组1032,并通过两个串联的输出电容输出反激变换器100的输出电压,使得在相同的输出电压的情况下,可以将次级绕组侧的损耗降为图2中次级绕组侧的损耗的一半,因此有利于降低反激变换器100中变压器的寄生参数。
此外,由图4中各个节点的电压可见,次级绕组1031的同名端的电压高于输出电容1102的第一电极的电压。然而,由于二极管1041设置于次级绕组1031的同名端和输出电容1102的第一电极之间,且此时二极管1041两极的电压反偏,二极管1041截止,使得次级绕组1031无法向输出电容1102放电。可见,二极管1041不仅有利于降低次级绕组模块1内部的漏电流,也有利于降低次级绕组1031与输出电容1102之间的漏电流,进而使得在通过多个小绕组降低变压器寄生参数的同时,防止引入其它损耗,从而可以保证本申请实施例有利于从整体上降低变压器的寄生参数。
在时间点t2至时间点t3期间,次级绕组1031和次级绕组1032皆可以输出电能,此时二极管1041和二极管1042导通,次级绕组1031和次级绕组1032所输出的电压叠加,使得反激变换器100的输出电压为次级绕组1031所输出的电压和次级绕组1032所输出的电压之和。也就是说,本申请实施例中虽然存在两个次级绕组—次级绕组1031和次级绕组1032,但次级绕组1031和次级绕组1032实际上起到了一个次级绕组(次级绕组103)的功能,与初级绕组102构成了变压器。
实施例二
图5示例性示出了本申请实施例提供的另一种反激变换器。图5中反激变换器100的初级绕组侧与图4所示类似,对此不再赘述。
图5所示反激变换器100的次级绕组侧,除了包括次级绕组模块1和次级绕组模块2之外,还包括次级绕组模块3。次级绕组模块3包括次级绕组1033、二极管1053和输出电容1103。其中,输出电容1101、输出电容1103和输出电容1102依次串联,且次级绕组1033与初级绕组102磁耦合。在次级绕组模块3中,次级绕组1033的同名端与二极管1053的阴极耦合,次级绕组1033的异名端与输出电容1103的第一电极耦合,二极管1053的阳极与输出电容1103的第二电极耦合,输出电容1103的第二电极与输出电容1102的第一电 极耦合。
通过增加次级绕组的数量,可以在相同的输出电压的情况下,降低单个次级绕组的匝数,从而可以进一步降低反激变换器中变压器的寄生参数。例如,在相同的输出电压的情况下,图5中次级绕组侧的总的损耗约为图2中次级绕组侧的损耗的1/3。而且,二极管1041既有利于降低次级绕组模块1内部的漏电流,也有利于降低次级绕组1031的同名端与输出电容1103之间的漏电流。二极管1053既有利于降低次级绕组模块3内部的漏电流,也有利于降低次级绕组1033的同名端与输出电容1102之间的漏电流,以保证可以从整体上有利于降低反激变换器中变压器的寄生参数。
在一种可能的实现方式中,如图5所示,次级绕组模块3还可以包括二极管1043。二极管1043设置于次级绕组1033的异名端与输出电容1103的第一电极之间,其中,二极管1043的阳极与次级绕组1033的异名端耦合,二极管1043的阴极与输出电容1103的第一电极耦合。在初级绕组102充电期间,次级绕组模块中的二极管需要承担较高的反偏电压,例如图4中二极管1041便需要承担130V的反偏电压,因此对二极管1041的性能要求较高。二极管1053同理。有鉴于此,在次级绕组模块3中增加二极管1043,可以降低二极管1053所承担的反偏电压,从而可以降低对二极管1053的性能要求,进而有利于降低反激变换器100的成本,或者有利于提高反激变换器100的可靠性。
可以理解,在次级绕组模块1中,次级绕组1031的异名端与输出电容1101之间也可以设置具备整流功能的二极管,以降低二极管1041的反偏电压。在次级绕组模块2中,次级绕组1032的同名端与输出电容1102之间也可以设置具备整流功能的二极管,以降低二极管1042的反偏电压。本申请对此不再一一列举。
需要指出的是,图5仅示例性示出了一个次级绕组模块3的场景,在另一种可能的实现方式中,反激变换器100可以包括多个次级绕组模块3,以进一步降低反激变换器100中变压器的寄生参数。在此情况下,输出电容1101、多个次级绕组模块3中输出电容1103和输出电容1102依次串联。每个次级绕组模块3具有相同的内部结构,对此不再赘述。
示例性的,例如反激变换器100包括两个次级绕组模块3—次级绕组模块3A和次级绕组模块3B。其中,次级绕组模块3A中的输出电容1103A的第一电极与次级绕组模块1中输出电容1101的第二电极耦合,输出电容1103A的第二电极与次级绕组模块3B中的输出电容1103B的第一电极耦合,输出电容1103B的第二电极与次级绕组模块2中输出电容1102的第一电极耦合。
又例如,反激变换器100包括三个次级绕组模块3—次级绕组模块3A、次级绕组模块3B和次级绕组模块3C。其中,次级绕组模块3A中的输出电容1103A的第一电极与次级绕组模块1中输出电容1101的第二电极耦合,输出电容1103A的第二电极与次级绕组模块3B中的输出电容1103B的第一电极耦合,输出电容1103B的第二电极与次级绕组模块3C中的输出电容1103C的第一电极耦合,输出电容1103C的第二电极与次级绕组模块2中输出电容1102的第一电极耦合。
其它数量的次级绕组模块3的具体实现方式可以以此类推,本申请实施例对此不再一一列举。
实施例三
如前所述,任一次级绕组模块皆包括至少一个二极管,该至少一个二极管在初级绕组 102充电期间截止,在初级绕组102放电期间导通。在一种可能的实现方式中,可以采用晶体管中的体二极管作为次级绕组模块中的二极管。
如图6所示,次级绕组模块1中二极管1041为晶体管T1的体二极管。具体来说,晶体管T1的第二电极与输出电容1101的第二电极耦合,晶体管T1的第一电极与次级绕组1031的同名端耦合,晶体管T1的控制电极与控制模块耦合。请参考图3所示的驱动信号,在时间点t1至时间点t2期间,控制模块101保持晶体管T1断开。在时间点t2或时间点t2之后,控制模块101控制晶体管T1导通,次级绕组1031可以通过晶体管T1输出电能。
可以理解,由于在二极管导通时,二极管两端存在一定压降,通常为0.7V。因此会对经过二极管的电能产生一定损耗。有鉴于此,采用晶体管T1中的体二极管作为次级绕组模块中的二极管,并在次级绕组输出电能期间导通晶体管T1,使得次级绕组输出的电能可以经过晶体管T1的沟道传输,而晶体管T1的沟道对电能的损耗较小,因此有利于从整体上提高反激变换器100的能量转换效率。
基于相同的构思,其它次级绕组模块中的二极管也可以由晶体管中的体二极管实现。例如图6中,次级绕组模块2中二极管1042便可以为晶体管T2的体二极管。控制模块101还可以在第二时间点或第二时间点之后,控制晶体管T2导通。本申请实施例对此不再一一列举。
实施例四
如前所述,控制模块101可以通过如图3所示的周期性的驱动信号,控制开关晶体管111。一般来说,在时间点t1至时间点t2期间,初级绕组102的压降逐渐增大,流经初级绕组102的励磁电流(输入电流)逐渐降低。在一种可能的实现方式中,控制模块101可以检测励磁电流的电流值,在励磁电流的电流值降低至电流阈值后,确定当前时间点为时间点t2,也可以理解为,在励磁电流的电流值降低至电流阈值后,停止初级绕组102充电。
有鉴于此,如图6所示,本申请实施例所提供的反激变换器100中还可以包括检测电阻R,检测电阻R的一端与开关晶体管111的第二电极耦合,检测电阻R的另一端与输入端子106耦合,控制模块101还与检测电阻R的两端耦合。在输入端子106接地的情况下,控制模块101也可以通过导线与检测电阻R的一端耦合,控制模块101可以通过内部的接地电路实现与检测电阻R的另一端耦合。
控制模块101内部可以预先设置有检测电阻R的阻值。在初级绕组102充电期间,控制模块101可以检测电阻R的压降,通过检测电阻R的压降和检测电阻R的阻值得到流经初级绕组102的励磁电流的电流值,进而可以根据励磁电流的电流值以及预设的电流阈值确定当前时间点是否为时间点t2。
实施例五
可以理解,在电子设备中往往存在有多个负载电路,反激变换器100可以为多个负载电路提供输出电能,例如,反激变换器100还可以为负载电路200(图1中未示出)提供输出电能。
有鉴于此,如图7所示,在一种可能的实现方式中,反激变换器100还可以包括辅助绕组侧,具体来说,反激变换器100还可以包括辅助绕组112、输出端子114、输出端子113、辅助二极管115和辅助电容116。其中,辅助二极管115的阳极与辅助绕组112的异 名端耦合,辅助二极管115的阴极与辅助电容116的第一电极耦合,辅助绕组112的同名端与辅助电容116的第二电极耦合,辅助电容116的第一电极与输出端子114耦合,辅助电容116的第二电极与输出端子113耦合,且辅助绕组112与初级绕组102磁耦合。
在电子设备中,输出端子114可以与负载电路200的正极耦合,输出端子113可以与负载电路200的负极耦合。反激变换器100可以通过输出端子114和输出端子113,为负载电路200提供输出电能。
在图7所示的反激变换器100中,辅助绕组侧中只包括一个辅助绕组,在此情况下,辅助二极管115仅需要实现辅助绕组112与辅助电容116之间的整流功能。因此,辅助绕组侧还可以采用如下结构:
辅助二极管115的阳极与辅助电容116的第二电极耦合,辅助二极管115的阴极与辅助绕组的同名端耦合,辅助绕组112的异名端与辅助电容116的第一电极耦合,辅助电容116的第一电极与输出端子114耦合,辅助电容116的第二电极与输出端子113耦合,且辅助绕组112与初级绕组102磁耦合。
可以理解,辅助绕组所在的辅助绕组侧的功能类似与上述次级绕组侧,因此,辅助绕组侧的具体实现不仅可以适用图2所示的次级绕组侧的结构,也可以适用于图4至图6所示的次级绕组侧的结构,本申请实施例对此不再赘述。
以上,对本申请实施例所提供的反激变换器及电子设备进行了详细介绍。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种反激变换器,其特征在于,包括:第一输出端子、第二输出端子、初级绕组、第一次级绕组模块和第二次级绕组模块;
    所述第一次级绕组模块包括第一输出电容、第一次级绕组和第一二极管,其中,所述第一次级绕组的第一端与所述第一二极管的阴极耦合,所述第一次级绕组的第二端分别与所述第一输出电容的第一电极和所述第一输出端子耦合,所述第一二极管的阳极与所述第一输出电容的第二电极耦合;
    所述第二次级绕组模块包括第二输出电容、第二次级绕组,以及第二二极管和/或第三二极管,其中,所述第二输出电容的第一电极与所述第一输出电容的第二电极耦合,所述第二输出电容的第二电极与所述第二输出端子耦合,所述第二二极管的阳极与所述第二次级绕组的第二端耦合,所述第二二极管的阴极与所述第二输出电容的第一电极耦合,所述第三二极管的阳极与所述第二输出电容的第二电极耦合,所述第三二极管的阴极与所述第二次级绕组的第一端耦合;
    所述初级绕组分别与所述第一次级绕组和所述第二次级绕组磁耦合;
    所述第一输出端子用于与第一负载电路的正极耦合,所述第二输出端子用于与所述第一负载电路的负极耦合。
  2. 根据权利要求1所述的反激变换器,其特征在于,所述反激变换器还包括第一输入端子、第二输入端子、控制模块和开关晶体管;
    所述初级绕组的第一端与所述第一输入端子耦合,所述初级绕组的第二端与所述开关晶体管的第一电极耦合,所述开关晶体管的第二电极与所述第二输入端子耦合,所述开关晶体管的控制电极与所述控制模块耦合;
    所述第一输入端子和所述第二输入端子,分别用于与外接电源的正极和负极耦合;
    所述控制模块,用于在第一时间点,控制所述开关晶体管导通所述外接电源与所述初级绕组之间的传输路径,在所述第一时间点之后的第二时间点,控制所述开关晶体管断开所述外接电源与所述初级绕组之间的传输路径。
  3. 根据权利要求2所述的反激变换器,其特征在于,所述第一二极管为第一晶体管中的体二极管,所述第一晶体管的控制电极与所述控制模块耦合,所述第一晶体管的第一电极与所述第一次级绕组的第一端耦合,所述晶体管的第二电极与所述第一输出电容的第二电极耦合;
    所述控制模块,还用于:在第三时间点导通所述第一晶体管,所述第三时间点不早于所述第二时间点。
  4. 根据权利要求2所述的反激变换器,其特征在于,所述第二二极管为第二晶体管中的体二极管,所述第二晶体管的控制电极与所述控制模块耦合,所述第二晶体管的第一电极与所述第二输出电容的第一电极耦合,所述第二晶体管的第二电极与所述第二次级绕组的第二端耦合;
    所述控制模块,还用于:在第四时间点导通所述第二晶体管,所述第四时间点不早于所述第二时间点;和/或,
    所述第三二极管为第三晶体管中的体二极管,所述第三晶体管的控制电极与所述控制模块耦合,所述第三晶体管的第一电极与所述第二输出电容的第二电极耦合,所述第三晶 体管的第二电极与所述第二次级绕组的第一端耦合;
    所述控制模块,还用于:在所述第四时间点导通所述第三晶体管。
  5. 根据权利要求3或4所述的反激变换器,其特征在于,所述控制器还用于:
    获取经过所述初级绕组的励磁电流的电流值;
    在所述励磁电流的电流值降低至电流阈值后,确定当前时间点为所述第二时间点。
  6. 根据权利要求5所述的反激变换器,其特征在于,所述反激变换器还包括检测电阻;
    所述检测电阻的一端与所述开关晶体管的第二电极耦合,所述检测电阻的另一端与所述第二输入端子耦合;所述控制模块还与所述检测电阻的两端耦合;
    所述控制模块具体用于:
    获取所述检测电阻的电阻电压的电压值;
    根据所述检测电阻的阻值和所述检测电阻的电阻电压的电压值,计算得到经过所述检测电阻的充电电流的电流值。
  7. 根据权利要求1至6中任一项所述的反激变换器,其特征在于,所述反激变换器还包括位于所述第一次级绕组模块和所述第二次级绕组模块之间的至少一个第三次级绕组模块,其中,每个第三次级绕组模块皆包括第三次级绕组、第四二极管和第三输出电容;
    所述第一输出电容、所述至少一个第三次级绕组模块的第三输出电容和所述第二输出电容依次串联,且对于每个第三次级绕组模块:
    所述第三次级绕组与所述初级绕组磁耦合,所述第三次级绕组的第一端与所述第四二极管的阴极耦合,所述第三次级绕组的第二端与所述第三输出电容的第一电极耦合;
    所述第四二极管的阳极与所述第三输出电容的第二电极耦合,所述第三输出电容的第一电极与所述第一输出电容的第二电极耦合,或者所述第三输出电容的第一电极与另一个第三次级绕组模块中第三输出电容的第二电极耦合;
    所述第三输出电容的第二电极与所述第二输出电容的第一电极耦合,或者所述第三输出电容的第二电极与另一个第三次级绕组模块中第三输出电容的第一电极耦合。
  8. 根据权利要求7所述的反激变换器,其特征在于,所述第三次级绕组模块还包括第五二极管,所述第五二极管的阳极与所述第三次级绕组的第二端耦合,所述第五二极管的阴极与所述第三输出电容的第一电极耦合。
  9. 根据权利要求1至8中任一项所述的反激变换器,其特征在于,所述反激变换器还包括第三输出端子、第四输出端子、辅助绕组、辅助二极管和辅助电容;
    所述辅助二极管的阳极与所述辅助绕组的第二端耦合,所述辅助二极管的阴极与所述辅助电容的第一电极耦合,所述辅助绕组的第一端与所述辅助电容的第二电极耦合,所述辅助电容的第一电极与所述第三输出端子耦合,所述辅助电容的第二电极与所述第四输出端子耦合,且所述辅助绕组与所述初级绕组磁耦合;或者,
    所述辅助二极管的阳极与所述辅助电容的第二电极耦合,所述辅助二极管的阴极与所述辅助绕组的第一端耦合,所述辅助绕组的第二端与所述辅助电容的第一电极耦合,所述辅助电容的第一电极与所述第三输出端子耦合,所述辅助电容的第二电极与所述第四输出端子耦合,且所述辅助绕组与所述初级绕组磁耦合;
    所述第三输出端子用于与第二负载电路的正极耦合,所述第四输出端子用于与所述第二负载电路的负极耦合。
  10. 一种电子设备,其特征在于,包括电源电路、第一负载电路和如权利要求1至8中任一项所述的反激变换器;
    其中,所述电源电路与所述反激变换器的初级绕组耦合,所述第一负载电路的正极与所述反激变换器的第一输出端子耦合,所述第一负载电路的负极与所述反激变换器的第二输出端子耦合;
    所述电源电路,用于向所述反激变换器输入电能;
    所述反激变换器,用于对所述电源电路输入的电能进行变换,并通过所述第一输出端子和所述第二输出端子将变换后的电能提供给所述第一负载电路。
  11. 一种电子设备,其特征在于,包括电源电路、第一负载电路、第二负载电路和如权利要求9所述的反激变换器;
    其中,所述电源电路与所述反激变换器的初级绕组耦合,所述第一负载电路的正极与所述反激变换器的第一输出端子耦合,所述第一负载电路的负极与所述反激变换器的第二输出端子耦合,所述第二负载电路的正极与所述反激变换器的第三输出端子耦合,所述第二负载电路的负极与所述反激变换器的第四输出端子耦合;
    所述电源电路,用于向所述反激变换器输入电能;
    所述反激变换器,用于对所述电源电路输入的电能进行变换,并通过所述第一输出端子和所述第二输出端子将变换后的部分电能提供给所述第一负载电路,以及,通过所述第三输出端子和所述第四输出端子将变换后的另一部分电能提供给所述第二负载电路。
PCT/CN2020/103872 2019-08-23 2020-07-23 一种反激变换器及电子设备 WO2021036607A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20857579.5A EP3965280A4 (en) 2019-08-23 2020-07-23 REVERSE CONVERTER AND ELECTRONIC DEVICE
US17/556,223 US20220115956A1 (en) 2019-08-23 2021-12-20 Flyback converter and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910783891.5 2019-08-23
CN201910783891.5A CN110690824A (zh) 2019-08-23 2019-08-23 一种反激变换器及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/556,223 Continuation US20220115956A1 (en) 2019-08-23 2021-12-20 Flyback converter and electronic device

Publications (1)

Publication Number Publication Date
WO2021036607A1 true WO2021036607A1 (zh) 2021-03-04

Family

ID=69108449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103872 WO2021036607A1 (zh) 2019-08-23 2020-07-23 一种反激变换器及电子设备

Country Status (4)

Country Link
US (1) US20220115956A1 (zh)
EP (1) EP3965280A4 (zh)
CN (1) CN110690824A (zh)
WO (1) WO2021036607A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690824A (zh) * 2019-08-23 2020-01-14 华为数字技术(苏州)有限公司 一种反激变换器及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040125621A1 (en) * 2002-12-30 2004-07-01 Ta-Yung Yang Synchronous rectifier of flyback power converter
CN102480232A (zh) * 2010-11-30 2012-05-30 永济新时速电机电器有限责任公司 单端反激开关电源及其控制装置
CN103001500A (zh) * 2012-12-25 2013-03-27 南京航空航天大学 用于快速跟踪参考的反激型多电平输出直流电源
CN105375791A (zh) * 2015-11-20 2016-03-02 吴江华能电子有限公司 一种反激变换器输出高电压的电路结构
CN205960984U (zh) * 2016-06-21 2017-02-15 陕西科技大学 一种三相逆变器专用反激式开关电源
CN109274273A (zh) * 2018-10-24 2019-01-25 苏州汇川联合动力系统有限公司 多路输出反激变换器、电机驱动器及新能源汽车
CN110690824A (zh) * 2019-08-23 2020-01-14 华为数字技术(苏州)有限公司 一种反激变换器及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193536B2 (ja) * 2003-03-24 2008-12-10 横河電機株式会社 スイッチング電源
US7924579B2 (en) * 2008-02-05 2011-04-12 Cisco Technology, Inc. Fly-forward converter power supply
US9124190B2 (en) * 2010-09-02 2015-09-01 Telefonaktiebolaget L M Ericsson (Publ) Isolated switched mode power supply
CN103229403B (zh) * 2010-12-02 2015-11-25 株式会社村田制作所 开关电源电路
CN102891608B (zh) * 2011-07-21 2016-03-30 山特电子(深圳)有限公司 一种高效率低成本正反激dc-dc变换器拓扑
CN104135157B (zh) * 2014-07-07 2017-03-29 中国电子科技集团公司第四十一研究所 一种高压电源功率变换电路
CN104158400A (zh) * 2014-07-18 2014-11-19 江苏博纬新能源科技有限公司 一种模块化高压供电电路
US9621055B2 (en) * 2014-09-01 2017-04-11 Leadtrend Technology Corp. Controller with leakage current protection of a diode and operation method thereof
CN204559415U (zh) * 2015-05-11 2015-08-12 浙江连成环保科技有限公司 高频高压电源分包整流装置
CN105048823B (zh) * 2015-09-17 2018-05-29 航天长峰朝阳电源有限公司 一种多绕组串联反激式超高电压输出宽范围可调电源模块
CN206962707U (zh) * 2017-06-19 2018-02-02 浙江大学 一种用于同步整流功率变换器的动态补偿控制电路
EP3572846B1 (en) * 2018-05-22 2024-02-21 Iris Instruments High power transformer and transmitter for geophysical measurements
CN109713930B (zh) * 2018-11-11 2021-01-19 安杰特(深圳)智能安全技术有限公司 一种电击器高压脉冲电源
WO2021026866A1 (en) * 2019-08-15 2021-02-18 Tridonic Gmbh & Co Kg Output load identification method and the apparatus incorporating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040125621A1 (en) * 2002-12-30 2004-07-01 Ta-Yung Yang Synchronous rectifier of flyback power converter
CN102480232A (zh) * 2010-11-30 2012-05-30 永济新时速电机电器有限责任公司 单端反激开关电源及其控制装置
CN103001500A (zh) * 2012-12-25 2013-03-27 南京航空航天大学 用于快速跟踪参考的反激型多电平输出直流电源
CN105375791A (zh) * 2015-11-20 2016-03-02 吴江华能电子有限公司 一种反激变换器输出高电压的电路结构
CN205960984U (zh) * 2016-06-21 2017-02-15 陕西科技大学 一种三相逆变器专用反激式开关电源
CN109274273A (zh) * 2018-10-24 2019-01-25 苏州汇川联合动力系统有限公司 多路输出反激变换器、电机驱动器及新能源汽车
CN110690824A (zh) * 2019-08-23 2020-01-14 华为数字技术(苏州)有限公司 一种反激变换器及电子设备

Also Published As

Publication number Publication date
US20220115956A1 (en) 2022-04-14
CN110690824A (zh) 2020-01-14
EP3965280A1 (en) 2022-03-09
EP3965280A4 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
CN101826810A (zh) 一种用于开关电源的同步整流电路
US8854837B2 (en) Boost converter for reducing voltage stress
WO2022121890A1 (zh) 一种供电系统及太阳能光伏逆变器
WO2020134672A1 (zh) 一种acf变换器、电压变换方法及电子设备
CN105915060B (zh) 具有副边绕组磁复位功能的正激变换电路及其复位方法
WO2021093667A1 (zh) 一种正反激式开关电源电路
JP2007336794A (ja) 半ブリッジ共振変換器
US20240113631A1 (en) Control Method of ZVS Flyback Using Transformer Auxiliary Winding
CN109980901B (zh) 一种宽输入范围电源模块的辅助供电电路
WO2021036607A1 (zh) 一种反激变换器及电子设备
WO2023231633A1 (zh) 一种填谷电路的驱动电路、电源模组和电子设备
WO2023226896A1 (zh) 电源模组的控制电路、电源模组及电子设备
CN110912409B (zh) 一种正反激式开关电源电路
US11831238B2 (en) Power conversion system
KR20120010636A (ko) 부스트 컨버터
TWI750016B (zh) 返馳式轉換器及其控制方法
US11652420B2 (en) Isolated converter with high boost ratio
CN210490731U (zh) 一种高升压比直流转换装置
US10917088B1 (en) Power conversion device
WO2021097763A1 (zh) 整流器、逆变器及无线充电设备
KR20220028818A (ko) 자기구동 동기 스위치를 이용한 비절연 고전압 출력 dc-dc 컨버터
WO2022237382A1 (zh) 谐振变换器和电源适配器
CN100388602C (zh) 一种低输出纹波低器件应力的直流-直流电源变换器
CN115037165B (zh) 一种推挽型双向变换器拓扑结构及其调制方法
CN220732579U (zh) 功率因数校正电路和开关变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020857579

Country of ref document: EP

Effective date: 20211202

NENP Non-entry into the national phase

Ref country code: DE