WO2022237382A1 - 谐振变换器和电源适配器 - Google Patents

谐振变换器和电源适配器 Download PDF

Info

Publication number
WO2022237382A1
WO2022237382A1 PCT/CN2022/084713 CN2022084713W WO2022237382A1 WO 2022237382 A1 WO2022237382 A1 WO 2022237382A1 CN 2022084713 W CN2022084713 W CN 2022084713W WO 2022237382 A1 WO2022237382 A1 WO 2022237382A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
secondary winding
charging
resonant converter
pole
Prior art date
Application number
PCT/CN2022/084713
Other languages
English (en)
French (fr)
Inventor
郭红光
张晨松
李建国
田晨
张加亮
张锦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022237382A1 publication Critical patent/WO2022237382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/068Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode mounted on a transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of resonant converters, in particular to a resonant converter and a power adapter.
  • the main components of the LLC resonant converter include winding transformers.
  • the volume of the winding transformer is large, which is not conducive to the development of the LLC resonant converter beyond a smaller volume. Therefore, how to reduce the volume of the winding transformer, and then reduce the volume of the LLC resonant converter has become an urgent technical problem to be solved.
  • a resonant converter includes a winding transformer and a bootstrap circuit;
  • the winding transformer includes a primary winding and a secondary winding;
  • the bootstrap circuit is connected to the secondary winding, and the bootstrap circuit includes a first charging and discharging circuit;
  • the first charging and discharging circuit in the bootstrap circuit forms a charging circuit with the secondary winding to charge the first charging and discharging circuit
  • the bootstrap circuit forms a path for the secondary winding and the first charging and discharging circuit to output the voltage to the output terminal of the resonant converter, so as to output the discharge of the first charging and discharging circuit to the output terminal. voltage and the output voltage of the secondary winding.
  • the above-mentioned bootstrap circuit further includes a second charging and discharging circuit
  • the second charging and discharging circuit in the bootstrap circuit forms a charging circuit with the secondary winding to charge the second charging and discharging circuit
  • the bootstrap circuit forms a path for the second charging and discharging circuit to output voltage to the output terminal, so as to output the discharging voltage of the second charging and discharging circuit to the output terminal.
  • the bootstrap circuit further includes a first rectifier and a second rectifier; the first end of the first charging and discharging circuit is connected to the first pole of the first rectifier, and the second end of the first rectifier The pole is connected to the output terminal; the first pole of the second rectifier is grounded, the second pole of the second rectifier is connected to the first pole of the first rectifier; the terminal with the same name of the secondary winding is connected to the second pole of the first charge and discharge circuit terminal connection, the opposite end of the secondary winding is grounded;
  • the first rectifier is used to turn off the negative half cycle of the output voltage of the secondary winding, and is turned on during the positive half cycle of the output voltage of the secondary winding; the second rectifier is used to turn on the output voltage of the secondary winding
  • the negative half cycle of the waveform is turned on, and the output voltage of the secondary winding is turned off in the positive half cycle of the waveform.
  • the first rectifier and the second rectifier are diodes
  • the first pole of the first rectifier and the first pole of the second rectifier are the anodes of the diode
  • the second pole of the first rectifier tube and the second pole of the second rectifier tube are the cathodes of the diodes.
  • the first rectifier and the second rectifier are switch tubes
  • the first pole of the first rectifier and the first pole of the second rectifier are the source poles of the switch tube;
  • the second pole of the first rectifier tube and the second pole of the second rectifier tube are the drains of the switch tube.
  • the secondary winding includes n sub-secondary windings with the same number of turns, and there are n bootstrap circuits, where n is a positive integer greater than 1.
  • the n bootstrap circuits and the n sub-secondary windings One-to-one connection;
  • the first charging and discharging circuit in the correspondingly connected bootstrap circuit and the sub-secondary winding form a charging circuit to charge the first charging and discharging circuit
  • the correspondingly connected bootstrap circuit forms a path for the sub-secondary winding and the first charging and discharging circuit to output the voltage to the output terminal, so as to output the voltage of the first charging and discharging circuit to the output terminal. discharge voltage and the output voltage of the sub-secondary winding.
  • each booster circuit further includes a third rectifier tube and a fourth rectifier tube; in each booster circuit, the first end of the first charging and discharging circuit is connected to the first pole of the third rectifier tube, and the third rectifier tube is connected to the first end of the third rectifier tube.
  • the second pole of the rectifier is connected to the output terminal, the first pole of the fourth rectifier is grounded, the second pole of the fourth rectifier is connected to the first pole of the third rectifier;
  • the second end of the charging and discharging circuit is connected, and the opposite end of the sub-secondary winding is grounded;
  • the third rectifier is used to turn off the negative half cycle of the output voltage of the sub-secondary winding, and to conduct on the positive half cycle of the output voltage of the sub-secondary winding; the fourth rectifier is used to turn on the sub-secondary winding.
  • the negative half cycle of the waveform of the output voltage is turned on, and the positive half cycle of the output voltage of the sub-secondary winding is turned off.
  • the first charging and discharging circuit includes: a first capacitor; or,
  • the above-mentioned first charging and discharging circuit includes: a plurality of first capacitors connected in parallel; or,
  • the above-mentioned first charging and discharging circuit includes: a first capacitor and a first resistor connected in series; or,
  • the above-mentioned first charging and discharging circuit includes: a first capacitor and a first inductor connected in series.
  • both the third rectifier and the fourth rectifier are diodes
  • the first pole of the third rectifier and the first pole of the fourth rectifier are the anodes of the diode
  • the second pole of the third rectifier and the second pole of the fourth rectifier are diode cathodes.
  • both the third rectifier and the fourth rectifier are switch tubes
  • the first pole of the third rectifier and the source of the switch tube The first pole of the fourth rectifier;
  • the second pole of the third rectifier and the second pole of the fourth rectifier are the drains of the switch tube.
  • the switch transistor is a MOS transistor or a GaN transistor.
  • the first end of the second charging and discharging circuit is connected to the output end of the resonant converter, and the second end of the second charging and discharging circuit is grounded.
  • the second charging and discharging circuit includes: a second capacitor; or,
  • the second charging and discharging circuit includes: a plurality of second capacitors connected in parallel; or,
  • the second charging and discharging circuit includes: a second capacitor and a second resistor connected in series; or,
  • the second charging and discharging circuit includes: a second capacitor and a second inductor connected in series.
  • a power adapter in a second aspect, includes the above-mentioned resonant converter
  • the resonant converter includes a winding transformer and a bootstrap circuit
  • the winding transformer includes a primary winding and a secondary winding
  • the bootstrap circuit is connected to the secondary winding
  • the bootstrap circuit includes a first charging and discharging circuit
  • the first charging and discharging circuit in the bootstrap circuit forms a charging circuit with the secondary winding to charge the first charging and discharging circuit; when the waveform of the output voltage of the secondary winding is in the positive half cycle
  • the bootstrap circuit forms a path through which the secondary winding and the first charging and discharging circuit output voltage to the output terminal of the resonant converter, so as to output the discharging voltage of the first charging and discharging circuit and the output voltage of the secondary winding to the output terminal.
  • the effect of doubling the output voltage of the resonant transformer compared with the output voltage of the secondary winding is realized through the bootstrap circuit, so when the output voltage of the resonant converter remains unchanged, the secondary winding can be reduced.
  • the voltage of the side winding if the number of turns of the primary winding remains unchanged, the number of turns of the secondary winding can be reduced, that is, the turns ratio between the primary winding and the secondary winding of the winding transformer can be increased.
  • the turn ratio between the primary winding and the secondary winding increases, which can reduce the cross-sectional area of the magnetic core, thereby reducing the volume of the winding transformer, so that the resonant converter can exceed Smaller size development.
  • FIG. 1 is one of the structural schematic diagrams of a resonant converter in an embodiment
  • Fig. 2 is the second structural diagram of the resonant converter in an embodiment
  • Fig. 3 is the third structural schematic diagram of the resonant converter in an embodiment
  • Fig. 4 is a fourth structural schematic diagram of a resonant converter in an embodiment
  • Fig. 5 is a schematic diagram of a traditional structure in an embodiment
  • Fig. 6 is the fifth schematic diagram of the structure of the resonant converter in an embodiment
  • Fig. 7 is the sixth schematic diagram of the structure of the resonant converter in an embodiment
  • Fig. 8 is the seventh structural diagram of the resonant converter in an embodiment
  • Fig. 9 is an eighth structural schematic diagram of a resonant converter in an embodiment
  • Fig. 10 is a ninth structural schematic diagram of a resonant converter in an embodiment
  • Fig. 11 is a tenth structural schematic diagram of a resonant converter in an embodiment
  • Fig. 12 is the eleventh schematic diagram of the structure of the resonant converter in an embodiment
  • Figure 13 is one of the waveform diagrams of circuit simulation in an embodiment
  • Fig. 14 is the twelveth structural schematic diagram of the resonant converter in an embodiment
  • Fig. 15 is the thirteenth structural schematic diagram of the resonant converter in an embodiment
  • Fig. 16 is a fourteenth structural schematic diagram of a resonant converter in an embodiment
  • Fig. 17 is the second waveform diagram of circuit simulation in an embodiment.
  • the main components of the LLC resonant converter include winding transformers.
  • the volume of the winding transformer is large, which is not conducive to the development of the LLC resonant converter beyond a smaller volume. Since the volume of the winding transformer is related to the cross-sectional area of the magnetic core, and under the condition that the output power of the resonant converter remains unchanged, the larger the turn ratio of the winding transformer, the smaller the cross-sectional area of the magnetic core. Therefore, based on this principle, the embodiment of the present application proposes a technical idea of increasing the turn ratio of the winding transformer to reduce the cross-sectional area of the magnetic core, and discloses the following implementation schemes according to the technical idea.
  • the resonant converter includes a winding transformer 10 and a bootstrap circuit 20; the winding transformer 10 includes a primary winding 101 and a secondary winding 102; The secondary winding 102 is connected, and the bootstrap circuit 20 includes a first charging and discharging circuit 201; when the waveform of the output voltage of the secondary winding 102 is in the negative half cycle, the first charging and discharging circuit 201 in the bootstrap circuit 20 and the secondary winding 102 form a The charging circuit is used to charge the first charging and discharging circuit 201; when the waveform of the output voltage of the secondary winding 102 is in the positive half cycle, the bootstrap circuit 20 forms the output terminal Vo of the secondary winding 102 and the first charging and discharging circuit 201 to the resonant converter.
  • the path of the output voltage is used to output the discharge voltage of the first charging and discharging circuit 201 and the output voltage of the secondary winding 102 to the output terminal Vo
  • the resonant converter includes a winding transformer 10
  • the winding transformer 10 includes a primary winding 101 and a secondary winding 102 .
  • the output voltage of the secondary winding can be calculated according to the input voltage of the primary winding and the turn ratio between the primary winding and the secondary winding.
  • the turn ratio between the primary winding 101 and the secondary winding 102 is 10:1, assuming that the input voltage of the primary winding 101 is 10V, the output voltage of the secondary winding 102 is 1V.
  • the resonant converter further includes a bootstrap circuit 20 connected to the secondary winding 102 of the winding transformer 10 , and the bootstrap circuit 20 includes a first charging and discharging circuit 201 .
  • the waveform of the output voltage of the secondary winding 102 is a square wave.
  • the first charging and discharging circuit 201 in the bootstrap circuit 20 and the secondary winding 102 form a charging loop, and the first charging and discharging circuit 201 is charged by the output voltage of the secondary winding 102
  • the bootstrap circuit 20 forms a path for the secondary winding 102 and the first charging and discharging circuit 201 to output the voltage to the output terminal Vo of the resonant converter, and outputs the first output voltage to the output terminal Vo.
  • the discharge voltage of the charging and discharging circuit 201 and the output voltage of the secondary winding 102 are examples of the voltage of the secondary winding 102 .
  • the output voltage of the secondary winding 102 is V1
  • the discharge voltage of the first charge-discharge circuit is also V1
  • the output voltage of the resonant converter is usually the output voltage of the secondary winding of the winding transformer.
  • the output voltage of the resonant converter is twice the output voltage of the secondary winding. Therefore, in the case of the same output voltage of the resonant transformer, the embodiment of the present application can reduce the output voltage of the secondary winding compared with the conventional structure. If the number of turns of the primary winding remains unchanged, the number of turns of the secondary winding can be reduced, thus increasing the turns ratio between the primary winding and the secondary winding of the winding transformer. In the case of constant output power, increasing the turn ratio can reduce the cross-sectional area of the magnetic core, thereby reducing the volume of the winding transformer.
  • the turn ratio between the primary winding and the secondary winding is 10:1
  • the output voltage of the secondary winding is 1V
  • the output voltage of the resonant converter is also 1V.
  • the output voltage of the secondary winding can be 0.5V, so the turn ratio of the primary winding to the secondary winding is 20:1.
  • the resonant converter includes a winding transformer and a bootstrap circuit; when the waveform of the output voltage of the secondary winding is in the negative half cycle, the first charging and discharging circuit in the bootstrap circuit forms a charging circuit with the secondary winding to provide the first The charging and discharging circuit charges; when the waveform of the output voltage of the secondary winding is in the positive half cycle, the bootstrap circuit forms a path for the secondary winding and the first charging and discharging circuit to output the voltage to the output terminal of the resonant converter, so as to output the first The discharge voltage of the charge and discharge circuit and the output voltage of the secondary winding.
  • the effect of doubling the output voltage of the resonant transformer compared with the output voltage of the secondary winding is realized through the bootstrap circuit, so when the output voltage of the resonant converter remains unchanged, the secondary winding can be reduced.
  • the voltage of the side winding if the number of turns of the primary winding remains unchanged, the number of turns of the secondary winding can be reduced, that is, the turns ratio between the primary winding and the secondary winding of the winding transformer can be increased.
  • the turn ratio between the primary winding and the secondary winding increases, which can reduce the cross-sectional area of the magnetic core, thereby reducing the volume of the winding transformer, so that the resonant converter can exceed Smaller size development.
  • the bootstrap circuit 20 also includes a second charging and discharging circuit 202; 202 forms a charging circuit with the secondary winding 102 to charge the second charging and discharging circuit 202; when the waveform of the output voltage of the secondary winding 102 is in the negative half cycle, the bootstrap circuit 20 forms the second charging and discharging circuit 202 to output voltage to the output terminal Vo path to output the discharge voltage of the second charging and discharging circuit 202 to the output terminal Vo.
  • the bootstrap circuit 20 when the waveform of the output voltage of the secondary winding 102 is in the positive half cycle, the bootstrap circuit 20 also charges the second charging and discharging circuit 202 when outputting a voltage to the output terminal Vo of the resonant converter. In this way, in the negative half cycle of the output voltage waveform of the secondary winding 102, when the bootstrap circuit 20 charges the first charge-discharge circuit 201, the second charge-discharge circuit 202 can be discharged, so that the bootstrap circuit 20 can contribute to the resonant converter.
  • the output terminal Vo outputs the discharge voltage of the second charging circuit 202 .
  • the second charging and discharging circuit in the bootstrap circuit when the waveform of the output voltage of the secondary winding is in the positive half cycle, the second charging and discharging circuit in the bootstrap circuit is charged, and when the waveform of the output voltage of the secondary winding is in the negative half cycle, the second charging and discharging circuit can be used.
  • the circuit is used to provide the output voltage of the resonant converter, so that the resonant converter can maintain a stable voltage output.
  • the bootstrap circuit 20 further includes a first rectifier 203 and a second rectifier 204; connected, the second pole of the first rectifier tube 203 is connected to the output terminal Vo; the first pole of the second rectifier tube 204 is grounded Gnd, and the second pole of the second rectifier tube 204 is connected to the first pole of the first rectifier tube 203;
  • the same-named end of the secondary winding 102 is connected to the second end of the first charge-discharge circuit 201, and the opposite-named end of the secondary winding 102 is grounded Gnd; the first rectifier tube 203 is used for negative waveform of the output voltage of the secondary winding 102.
  • the half cycle is turned off, and the positive half cycle of the output voltage of the secondary winding 102 is turned on; The positive half cycle of the waveform is turned off.
  • one end of the second charging and discharging circuit is connected to the output end of the resonant converter, and the other end is grounded.
  • the first rectifier 203 in the negative half cycle of the output voltage waveform of the secondary winding 102 , the first rectifier 203 is turned off, and the second rectifier 204 is turned on.
  • the secondary winding 102 , the first charging and discharging circuit 201 and the second rectifier tube 204 form a charging loop to charge the first charging and discharging circuit 201 .
  • the first rectifier 203 is turned on, the second rectifier 204 is turned off, and the bootstrap circuit 20 outputs the discharge of the first charge-discharge circuit 201 to the output terminal Vo of the resonant converter. voltage and the output voltage of the secondary winding 102. While outputting the voltage, the bootstrap circuit 20 also charges the second charging and discharging circuit 202 .
  • the first rectifier 203 is turned off, and the second rectifier 204 is turned on.
  • the secondary winding 102 , the first charging and discharging circuit 201 and the second rectifier tube 204 form a charging loop to charge the first charging and discharging circuit 201 .
  • the output voltage of the resonant converter is provided by the second charging and discharging circuit 202 .
  • the first rectifier 203 is turned on, the second rectifier 204 is turned off, and the bootstrap circuit 20 outputs the voltage of the first charge-discharge circuit 201 to the output terminal Vo of the resonant converter again. discharge voltage and the output voltage of the secondary winding 102 .
  • the bootstrap circuit 20 also charges the second charging and discharging circuit 202 .
  • the resonant converter can maintain a stable output voltage.
  • the first charging and discharging circuit is charged when the waveform of the output voltage of the secondary winding is in the negative half cycle;
  • the discharge voltage of the discharge circuit and the output voltage of the secondary winding realize the effect of doubling the output voltage of the resonant converter compared with the output voltage of the secondary winding. Therefore, the number of turns of the secondary winding can be reduced and the winding
  • the turn ratio between the primary winding and the secondary winding of the transformer can reduce the cross-sectional area of the magnetic core and reduce the volume of the winding transformer, so that the resonant converter can be developed with a smaller volume.
  • both the first rectifier tube 203 and the second rectifier tube 204 are diodes; the first pole of the first rectifier tube 203 and the first pole of the second rectifier tube 204 are the anode of the diode; the first pole of the first rectifier tube 203 The second pole and the second pole of the second rectifier tube 204 are the cathode of the diode.
  • the first rectifier 203 is a diode D1
  • the second rectifier is a diode D2 .
  • the reverse withstand voltage of the diode D1' is the sum of the voltages of the two capacitors, and the voltage of each capacitor is Vout, Then the reverse withstand voltage of the diode D1' is 2Vout.
  • the reverse withstand voltage of the diode D1 is the output voltage Vout of the resonant converter. It can be seen that the structure of the embodiment of the present application can reduce the reverse withstand voltage of the rectifier.
  • both the first rectifier tube 203 and the second rectifier tube 204 are switch tubes; the first pole of the first rectifier tube 203 and the first pole of the second rectifier tube 204 are the source of the switch tube; the first rectifier tube The second pole of the tube 203 and the second pole of the second rectifier tube 204 are the drain of the switching tube.
  • the first rectifier tube 203 is a switch tube Q1
  • the second rectifier tube is a switch tube Q2 .
  • the control electrode of the switch tube can be connected to the power supply terminal or the high-level terminal, and can also receive a control signal, and be turned on or off according to the control signal.
  • both the diode and the switch tube can be turned on or off according to the output voltage of the secondary winding. Moreover, by adopting the structure of the embodiment of the present application, the reverse withstand voltage of the rectifier can be reduced, thereby improving the reliability of the circuit.
  • the bootstrap circuit 20 outputs the discharge voltage of the first charging and discharging circuit 201 and the output voltage of the secondary winding 102 to the output terminal Vo of the resonant converter, which increases the current stress on the output path.
  • the embodiment of the present application proposes a parallel connection of secondary windings.
  • the secondary winding 102 includes n sub-secondary windings 1021 with the same number of turns, and there are n bootstrap circuits 20, where n is a positive integer greater than 1.
  • each bootstrap circuit includes a first charging and discharging circuit 201; when the waveform of the output voltage of the sub-secondary winding 1021 is in the negative half cycle, the first charging and discharging circuit 201 in the correspondingly connected bootstrap circuit 20 and The sub-secondary winding 1021 forms a charging circuit to charge the first charge-discharge circuit 201; when the waveform of the output voltage of the sub-secondary winding 1021 is in the positive half cycle, the correspondingly connected bootstrap circuit 20 forms the sub-secondary winding 1021 and the first charging circuit 201.
  • the discharging circuit 201 outputs a voltage path to the output terminal Vo, so as to output the discharging voltage of the first charging and discharging circuit 201 and the output voltage of the sub-secondary winding 1021 to the output terminal Vo.
  • the secondary winding 102 includes n sub-secondary windings 1021 with the same number of turns. Therefore, the output voltages of each sub-secondary winding 1021 are equal.
  • n bootstrap circuits 20 There are n bootstrap circuits 20, and the n bootstrap circuits 20 are connected to the n sub-secondary windings 1021 in one-to-one correspondence. In this way, the n bootstrap circuits are connected in parallel.
  • the first charging and discharging circuit 201 in the correspondingly connected bootstrap circuit 20 and the sub-secondary winding 1021 form a charging loop to charge the first charging and discharging circuit 201;
  • the correspondingly connected bootstrap circuit 20 outputs the discharge voltage of the first charge-discharge circuit 201 and the output voltage of the sub-secondary winding 1021 to the output terminal Vo of the resonant converter.
  • the output voltages of each sub-secondary winding 1021 are equal, the voltages charged by each booster circuit to the first charging and discharging circuit 201 are equal, and the discharge voltage of the first charging and discharging circuit 201 output to the output terminal Vo and the sub-secondary winding 1021 The output voltages are equal.
  • the total current output to the output terminal Vo of the resonant converter is the sum of the output currents of the n bootstrap circuits. If there is only one bootstrap circuit, as shown in Figure 3, the current on the bootstrap circuit is the total current; if there are two bootstrap circuits, as shown in Figure 7, the current on each bootstrap circuit is half of the total current. It can be seen that the current stress can be reduced by adopting the scheme of parallel secondary winding.
  • the secondary winding includes n sub-secondary windings with the same number of turns, and there are n bootstrap circuits, and the n bootstrap circuits are connected to the n sub-secondary windings in one-to-one correspondence; at the output of the sub-secondary windings
  • the first charging and discharging circuit in the correspondingly connected bootstrap circuit forms a charging circuit with the sub-secondary winding to charge the first charging and discharging circuit; when the waveform of the output voltage of the sub-secondary winding is in the positive half cycle
  • the correspondingly connected bootstrap circuit forms a path for the sub-secondary winding and the output voltage of the first charging and discharging circuit to the output terminal, so as to output the discharging voltage of the first charging and discharging circuit and the output voltage of the sub-secondary winding to the output terminal.
  • the current stress on each bootstrap circuit is smaller than the total current, so the current stress on each bootstrap circuit can
  • each booster circuit further includes a third rectifier tube 205 and a fourth rectifier tube 206; 205, the second pole of the third rectifier 205 is connected to the output terminal Vo, the first pole of the fourth rectifier 206 is grounded Gnd, the second pole of the fourth rectifier 206 is connected to the third rectifier 205
  • the first pole is connected; the same-named end of the sub-secondary winding 1021 is connected to the second end of the first charge-discharge circuit 201, and the opposite-named end of the sub-secondary winding 1021 is grounded Gnd;
  • the third rectifier tube 205 is used for the sub-secondary side
  • the negative half cycle of the output voltage of the winding 1021 is turned off, and the positive half cycle of the output voltage of the sub-secondary winding 1021 is turned on; the fourth rectifier tube 206 is used to conduct the negative half cycle of the output voltage of the sub-secondary winding 1021 is turned on, and the sub-secondary winding 1021 is turned off
  • each bootstrap circuit includes a third rectifier 205 and a fourth rectifier 206 .
  • the end with the same name of the sub-secondary winding 1021 is connected to the second end of the first charge-discharge circuit 201, the first end of the first charge-discharge circuit 201 is connected to the first pole of the third rectifier tube 205, and the first end of the third rectifier tube 205 The two poles are connected to the output terminal Vo of the resonant converter.
  • the opposite end of the sub-secondary winding 1021 is grounded to Gnd, the first pole of the fourth rectifier 206 is also grounded to Gnd, and the second pole of the fourth rectifier 206 is connected to the first pole of the third rectifier 205 .
  • the third rectifier 205 is turned off, and the fourth rectifier 206 is turned on.
  • the sub-secondary winding 1021 , the first charging and discharging circuit 201 and the fourth rectifier tube 206 form a charging loop to charge the first charging and discharging circuit 201 .
  • the third rectifier 205 is turned on, the fourth rectifier 206 is turned off, and the discharge voltage of the first charge-discharge circuit 201 and the sub- The output voltage of the secondary winding 1021.
  • the bootstrap circuit 20 also charges the second charging and discharging circuit 202 .
  • the third rectifier 205 is turned off, and the fourth rectifier 206 is turned on.
  • the sub-secondary winding 1021 , the first charge-discharge circuit 201 and the fourth rectifier tube 206 form a charging loop to charge the first charge-discharge circuit 201 .
  • the output voltage of the resonant converter is provided by the second charging and discharging circuit 202 .
  • the third rectifier 205 is turned on, the fourth rectifier 206 is turned off, and the bootstrap circuit 20 outputs the first charge and discharge circuit 201 to the output terminal Vo of the resonant converter again.
  • the bootstrap circuit 20 also charges the second charging and discharging circuit 202 .
  • the resonant converter can maintain a stable voltage output.
  • the first charging and discharging circuit in the correspondingly connected bootstrap circuit and the sub-secondary winding form a charging circuit to charge the first charging and discharging circuit;
  • the correspondingly connected bootstrap circuit forms a path for the sub-secondary winding and the first charging and discharging circuit to output voltage to the output terminal, so as to output the discharge voltage of the first charging and discharging circuit to the output terminal.
  • the voltage and the output voltage of the sub-secondary winding achieve the effect of doubling the output voltage of the resonant converter compared with the output voltage of the sub-secondary winding. Therefore, the number of turns of the secondary winding can be reduced, and the turn ratio between the primary winding and the secondary winding of the winding transformer can be increased, thereby reducing the cross-sectional area of the magnetic core and reducing the volume of the winding transformer, so that the resonant converter can Going beyond smaller volumes.
  • the first charging and discharging circuit 201 includes: a first capacitor C1, as shown in FIG. 9 ; or,
  • the first charging and discharging circuit 201 includes: a plurality of first capacitors connected in parallel, as shown in FIG. 10 ; or,
  • the first charging and discharging circuit 201 includes: a first capacitor and a first resistor connected in series; or,
  • the first charging and discharging circuit 201 includes: a first capacitor and a first inductor connected in series.
  • the capacitance value of each first capacitor C1 can be 30uf.
  • the capacitance value of each first capacitor C1 can be reduced by connecting the first capacitor C1 in parallel, thereby reducing the volume of the first capacitor C1 and reducing the difficulty of implementing the bootstrap circuit.
  • both the third rectifier tube 205 and the fourth rectifier tube 206 are diodes; the first pole of the third rectifier tube 205 and the first pole of the fourth rectifier tube 206 are the anode of the diode; the third rectifier tube 205 The second pole and the second pole of the fourth rectifier tube 206 are the cathode of the diode.
  • the third rectifier 205 is a diode D3
  • the fourth rectifier 206 is a diode D4 .
  • both the third rectifier tube 205 and the fourth rectifier tube 206 are switch tubes; the first pole of the third rectifier tube 205 and the first pole of the fourth rectifier tube 206 are the source of the switch tube; the third rectifier tube The second pole of the tube 205 and the second pole of the fourth rectifier tube 206 are the drain of the switching tube.
  • the third rectifier tube 205 is a switch tube Q3
  • the fourth rectifier tube 206 is a switch tube Q4 .
  • the control electrode of the switch tube can be connected to the power supply terminal or the high-level terminal, and can also receive a control signal, and be turned on or off according to the control signal. This embodiment of the present application does not limit it.
  • the switch transistor is a MOS transistor or a GaN transistor.
  • GaN tubes may be used for the switch tubes, thereby reducing switching losses and conduction losses of the switch tubes and improving reliability.
  • the first terminal of the second charging and discharging circuit 202 is connected to the output terminal Vo of the resonant converter, and the second terminal of the second charging and discharging circuit 202 is grounded Gnd.
  • the third rectifier 205 is turned off, and the fourth rectifier 206 is turned on.
  • the sub-secondary winding 1021 , the first charging and discharging circuit 201 and the fourth rectifier tube 206 form a charging loop to charge the first charging and discharging circuit 201 .
  • the third rectifier 205 is turned on, the fourth rectifier 206 is turned off, and the discharge voltage of the first charge-discharge circuit 201 and the sub- The output voltage of the secondary winding 1021.
  • the bootstrap circuit 20 charges the second charging and discharging circuit 202 .
  • the third rectifier 205 is turned off, and the fourth rectifier 206 is turned on.
  • the sub-secondary winding 1021 , the first charge-discharge circuit 201 and the fourth rectifier tube 206 form a charging loop to charge the first charge-discharge circuit 201 .
  • the output voltage discharged by the second charging and discharging circuit 202 is output to the output terminal Vo of the resonant converter.
  • the third rectifier 205 is turned on, the fourth rectifier 206 is turned off, and the bootstrap circuit outputs the voltage of the first charging and discharging circuit 201 to the output terminal Vo of the resonant converter again.
  • the discharge voltage and the output voltage of the sub-secondary winding 1021 At the same time, the bootstrap circuit 20 charges the second charging and discharging circuit 202 again.
  • the horizontal axis is time and the vertical axis is voltage
  • the waveform of the output voltage of the sub-secondary winding 1021 is a
  • the waveform of the voltage of node J1 in Figure 12 is b
  • the waveform of the output voltage of the resonant converter is c.
  • the switch Q3 In the positive half cycle of the output voltage waveform of the sub-secondary winding 1021, the switch Q3 is turned on, the switch Q4 is turned off, and the voltage of the node J is the sum of the discharge voltage of the first capacitor C1 and the output voltage of the sub-secondary winding 1021, That is, when waveform a is 20V, waveform b is 40V, and waveform c of the output voltage of the resonant converter is also 40V.
  • the switch tube Q3 In the negative half cycle of the output voltage waveform of the sub-secondary winding 1021, the switch tube Q3 is turned off, the switch tube Q4 is turned on, and the voltage is provided by the second charge and discharge circuit 202, that is, when the waveform a is -20V, the waveform b is 0V , the waveform c of the output voltage of the resonant converter is still 40V.
  • the second charging and discharging circuit includes: a second capacitor, as shown in FIG. 14 ; or,
  • the second charging and discharging circuit includes: a plurality of second capacitors connected in parallel, as shown in FIG. 15 ; or,
  • the second charging and discharging circuit includes: a second capacitor and a second resistor connected in series; or,
  • the second charging and discharging circuit includes: a second capacitor and a second inductor connected in series.
  • each second capacitor C2 does not limit the number of second capacitors C2 connected in parallel.
  • the capacitance value of each second capacitor C2 can be 2.2uf.
  • the waveform is shown in Figure 17, the horizontal axis is time, and the vertical axis is voltage; the waveform of the output voltage of the sub-secondary winding 1021 is a, and the fluctuation of the voltage of node J2 in Figure 16 is b , the waveform of the output voltage of the resonant converter is c.
  • the third rectifier 205 is turned on, the fourth rectifier 206 is turned off, and the voltage of the node J2 is the discharge voltage of the first charge-discharge circuit 201 and the sub-secondary winding 1021
  • the third rectifier tube 205 is turned off, the fourth rectifier tube 206 is turned on, and the voltage is provided by the second charge and discharge circuit 202, that is, at the stage where the waveform a is -20V, Waveform b is 0V, and waveform c of the output voltage of the resonant converter is still 40V.
  • An embodiment of the present application further provides a power adapter, which includes the above-mentioned resonant converter.
  • the resonant converter includes a winding transformer and a bootstrap circuit; when the waveform of the output voltage of the secondary winding is in the negative half cycle, the first charge-discharge circuit in the bootstrap circuit forms a charging circuit with the secondary winding to charge the first charge-discharge circuit; When the waveform of the output voltage of the secondary winding is in the positive half cycle, the bootstrap circuit forms a path for the secondary winding and the first charging and discharging circuit to output the voltage to the output terminal of the resonant converter, so as to output the discharge of the first charging and discharging circuit to the output terminal. voltage and the output voltage of the secondary winding.
  • the bootstrap circuit achieves the effect of doubling the output voltage of the resonant transformer compared with the output voltage of the secondary winding by charging and storing energy, so the gap between the primary winding and the secondary winding of the winding transformer can be increased.
  • Turn ratio thereby reducing the cross-sectional area of the magnetic core, reducing the volume of the winding transformer, so that the resonant converter can be developed beyond a smaller volume, and finally the volume of the power adapter can be reduced, thereby expanding the application range of the power adapter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及一种谐振变换器和电源适配器。谐振变换器包括绕组变压器和自举电路;绕组变压器包括原边绕组和副边绕组;自举电路与副边绕组连接,自举电路包括第一充放电电路。采用本申请实施例的谐振变换器,能够增大绕组变压器的匝比,减小磁芯横截面积,减小绕组变压器的体积,使谐振变换器可以超着更小体积发展。

Description

谐振变换器和电源适配器
相关申请的交叉引用
本申请要求于2021年05月13日提交中国专利局,申请号为2021105209988,申请名称为“谐振变换器和电源适配器”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本申请涉及谐振变换器技术领域,特别是涉及一种谐振变换器和电源适配器。
背景技术
随着开关电源的发展,软开关技术得到了广泛的发展和应用,目前已研究出了不少高效率的电路拓扑,比如谐振型的软开关拓扑和PWM型的软开关拓扑。其中,采用谐振型的软开关拓扑的LLC谐振变换器因具有开关损耗小、适用于高功率密度设计等优点,获得了更多的关注。尤其是在电源适配器中,常采用LLC谐振变换器。
目前,LLC谐振变换器的主要器件包括绕组变压器。其中,绕组变压器的体积较大,不利于LLC谐振变换器超着更小体积发展。因此,如何减小绕组变压器的体积,进而减小LLC谐振变换器的体积成为了亟待解决的技术问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够减小绕组变压器的体积,进而减小谐振变换器的体积的谐振变换器和电源适配器。
一种谐振变换器,该谐振变换器包括绕组变压器和自举电路;绕组变压器包括原边绕组和副边绕组;自举电路与副边绕组连接,自举电路包括第一充放电电路;
在副边绕组的输出电压的波形负半周时,自举电路中的第一充放电电路与副边绕组形成充电回路,以为第一充放电电路充电;
在副边绕组的输出电压的波形正半周时,自举电路形成副边绕组和第一充放电电路向谐振变换器的输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及副边绕组的输出电压。
在其中一个实施例中,上述自举电路还包括第二充放电电路;
在副边绕组的输出电压的波形正半周时,自举电路中的第二充放电电路与副边绕组形成充电回路,以为第二充放电电路充电;
在副边绕组的输出电压的波形负半周时,自举电路形成第二充放电电路向输出端输出电压的通路,以向输出端输出第二充放电电路的放电电压。
在其中一个实施例中,上述自举电路还包括第一整流管和第二整流管;第一充放电电路的第一端与第一整流管的第一极连接,第一整流管的第二极与输出端连接;第二整流管的第一极接地,第二整流管的第二极与第一整流管的第一极连接;副边绕组的同名端与第一充放电电路的第二端连接,副边绕组的异名端接地;
第一整流管,用于在副边绕组的输出电压的波形负半周关断,在副边绕组的输出电压的波形正半周导通;第二整流管,用于在副边绕组的输出电压的波形负半周导通,在副边绕组的输出电压的波形正半周关断。
在其中一个实施例中,第一整流管和第二整流管为二极管;
第一整流管的第一极和第二整流管的第一极为二极管的阳极;
第一整流管的第二极和第二整流管的第二极为二极管的阴极。
在其中一个实施例中,第一整流管和第二整流管为开关管;
第一整流管的第一极和第二整流管的第一极为开关管的源极;
第一整流管的第二极和第二整流管的第二极为开关管的漏极。
在其中一个实施例中,上述副边绕组包括n个匝数相同的子副边绕组,上述自举电路为n个,n为大于1的正整数,n个自举电路与n个子副边绕组一一对应连接;
在子副边绕组的输出电压的波形负半周时,对应连接的自举电路中的第一充放电电路与子副边绕组形成充电回路,以为第一充放电电路充电;
在子副边绕组的输出电压的波形正半周时,对应连接的自举电路形成子副边绕组和第一充放电电路向输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及子副边绕组的输出电压。
在其中一个实施例中,各自举电路还包括第三整流管和第四整流管;在各自举电路中,第一充放电电路的第一端与第三整流管的第一极连接,第三整流管的第二极与输出端连接,第四整流管的第一极接地,第四整流管的第二极与第三整流管的第一极连接;子副边绕组的同名端与第一充放电电路的第二端连接,子副边绕组的异名端接地;
第三整流管,用于在子副边绕组的输出电压的波形负半周关断,在子副边绕组的输出电压的波形正半周导通;第四整流管,用于在子副边绕组的输出电压的波形负半周导通,在子副边绕组的输出电压的波形正半周关断。
在其中一个实施例中,上述第一充放电电路包括:第一电容;或者,
上述第一充放电电路包括:并联的多个第一电容;或者,
上述第一充放电电路包括:相互串联的第一电容以及第一电阻;或者,
上述第一充放电电路包括:相互串联的第一电容以及第一电感。
在其中一个实施例中,第三整流管和第四整流管均为二极管;
第三整流管的第一极和第四整流管的第一极为二极管的阳极;
第三整流管的第二极和第四整流管的第二极为二极管的阴极。
在其中一个实施例中,第三整流管和第四整流管均为开关管;
第三整流管的第一极和第四整流管的第一极为开关管的源极;
第三整流管的第二极和第四整流管的第二极为开关管的漏极。
在其中一个实施例中,开关管为MOS管或GaN管。
在其中一个实施例中,上述第二充放电电路的第一端与谐振变换器的输出端连接,第二充放电电路的第二端接地。
在其中一个实施例中,上述第二充放电电路包括:第二电容;或者,
第二充放电电路包括:并联的多个第二电容;或者,
第二充放电电路包括:相互串联的第二电容以及第二电阻;或者,
第二充放电电路包括:相互串联的第二电容以及第二电感。
第二方面,提供了一种电源适配器,该电源适配器包括如上述谐振变换器
上述谐振变换器和电源适配器,谐振变换器包括绕组变压器和自举电路,绕组变压器包括原边绕组和副边绕组,自举电路与副边绕组连接,自举电路包括第一充放电电路,在副边绕组的输出电压的波形负半周时,自举电路中的第一充放电电路与副边绕组形成充电回路,以为第一充放电电路充电;在副边绕组的输出电压的波形正半周时,自举电路形成副边绕组和第一充放电电路向谐振变换器的输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及副边绕组的输出电压。在本申请实施例中,通过自举电路实现了谐振变压器的输出电压与副边绕组的输出电压相比翻倍的效果,因此在谐振变换器的输出电压不变的情况下,可以减小副边绕组的电压,若原边绕组的匝数不变,则可以减少副边绕组的匝数,即增大绕组变压器原边绕组与副边绕组之间的匝比。这样,在输出功率相同的情况下,原边绕组与副边绕组之间的匝比增大,就可以减小磁芯横截面积,从而减小绕组变压器的体积,使谐振变换器可以超着更小体积发展。
附图说明
图1为一个实施例中谐振变换器的结构示意图之一;
图2为一个实施例中谐振变换器的结构示意图之二;
图3为一个实施例中谐振变换器的结构示意图之三;
图4为一个实施例中谐振变换器的结构示意图之四;
图5为一个实施例中传统结构的示意图;
图6为一个实施例中谐振变换器的结构示意图之五;
图7为一个实施例中谐振变换器的结构示意图之六;
图8为一个实施例中谐振变换器的结构示意图之七;
图9为一个实施例中谐振变换器的结构示意图之八;
图10为一个实施例中谐振变换器的结构示意图之九;
图11为一个实施例中谐振变换器的结构示意图之十;
图12为一个实施例中谐振变换器的结构示意图之十一;
图13为一个实施例中电路仿真的波形图之一;
图14为一个实施例中谐振变换器的结构示意图之十二;
图15为一个实施例中谐振变换器的结构示意图之十三;
图16为一个实施例中谐振变换器的结构示意图之十四;
图17为一个实施例中电路仿真的波形图之二。
具体实施例方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
目前,LLC谐振变换器的主要器件包括绕组变压器。其中,绕组变压器的体积较大,不利于LLC谐振变换器超着更小体积发展。由于绕组变压器的体积与磁芯横截面积相关,并且,在保证谐振变换器的输出功率不变的情况下,绕组变压器的匝比越大,磁芯横截面积越小。因此,本申请实施例根据这一原理,提出了增大绕组变压器的匝比来减小磁芯横截面积的技术构思,并根据该技术构思公开了如下实施方案。
本申请实施例提供了一种谐振变换器,如图1所示,谐振变换器包括绕组变压器10和自举电路20;绕组变压器10包括原边绕组101和副边绕组102;自举电路20与副边绕组102连接,自举电路20包括第一充放电电路201;在副边绕组102的输出电压的波形负半周时,自举电路20中的第一充放电电路201与副边绕组102形成充电回路,以为第一充放电电路201充电;在副边绕组102的输出电压的波形正半周时,自举电路20形成副边绕组102和第一充放电电路201向谐振变换器的输出端Vo输出电压的通路,以向输出端Vo输出第一充放电电路201的放电电压以及副边绕组102的输出电压。
本申请实施例中,谐振变换器包括绕组变压器10,绕组变压器10包括原边绕组101和副边绕组102。在实际应用中,副边绕组的输出电压可以根据原边绕组的输入电压和原边绕组与副边绕组之间的匝比计算出。例如,原边绕组101与副边绕组102之间的匝比为10:1,假设原边绕组101的输入电压为10V,则副边绕组102的输出电压为1V。
谐振变换器还包括自举电路20,自举电路20与绕组变压器10的副边绕组102连接,并且,自举电路20包括第一充放电电路201。在实际应用中,副边绕组102的输出电压的波形为方波。在副边绕组102的输出电压的波形负半周,自举电路20中的第一充放电电路201与副边绕组102形成充电回路,利用副边绕组102的输出电压对第一充放电电路201充电;在副边绕组102的输出电压的波形正半周,自举电路20形成副边绕组102和第一充放电电路201向谐振变换器的输出端Vo输出电压的通路,向输出端Vo输出第一充放电电路201的放电电压以及副边绕组的102输出电压。
例如,副边绕组102的输出电压为V1,则利用副边绕组102对第一充放电电路202 充电后,第一充放电电路的放电电压也是V1,那么自举电路20向谐振变换器的输出端Vo输出第一充放电电路201的放电电压V1以及副边绕组102的输出电压V1,就是向谐振变换器的输出端Vo输出Vout=2V1。
在谐振变换器的传统结构中,谐振变换器的输出电压通常为绕组变压器副边绕组的输出电压。而本申请实施例中,谐振变换器的输出电压是副边绕组的输出电压的二倍。因此在谐振变压器的输出电压相同的情况下,本申请实施例与传统结构相比,可以降低副边绕组的输出电压。若原边绕组的匝数不变,则可以减少副边绕组的匝数,这样就增大了绕组变压器原边绕组与副边绕组之间的匝比。在输出功率不变的情况下,增大匝比可以减小磁芯横截面积,进而减小绕组变压器的体积。
举个匝数的例子,假设原边绕组的输入电压为10V,在传统结构中,原边绕组与副边绕组之间的匝比为10:1,则副边绕组的输出电压为1V,相应的,谐振变换器的输出电压也为1V。而在本申请中实施例中,如果保证谐振变换器的输出电压仍为1V,则副边绕组的输出电压可以为0.5V,这样,原边绕组与副边绕组的匝比就是20:1。可见,本申请实施例中的结构与传统结构相比,可以增大原边绕组与副边绕组之间的匝比。
上述实施例中,谐振变换器包括绕组变压器和自举电路;在副边绕组的输出电压的波形负半周时,自举电路中的第一充放电电路与副边绕组形成充电回路,以为第一充放电电路充电;在副边绕组的输出电压的波形正半周时,自举电路形成副边绕组和第一充放电电路向谐振变换器的输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及副边绕组的输出电压。在本申请实施例中,通过自举电路实现了谐振变压器的输出电压与副边绕组的输出电压相比翻倍的效果,因此在谐振变换器的输出电压不变的情况下,可以减小副边绕组的电压,若原边绕组的匝数不变,则可以减少副边绕组的匝数,即增大绕组变压器原边绕组与副边绕组之间的匝比。这样,在输出功率相同的情况下,原边绕组与副边绕组之间的匝比增大,就可以减小磁芯横截面积,从而减小绕组变压器的体积,使谐振变换器可以超着更小体积发展。
在一个实施例中,如图2所示,自举电路20还包括第二充放电电路202;在副边绕组102的输出电压的波形正半周时,自举电路20中的第二充放电电路202与副边绕组102形成充电回路,以为第二充放电电路202充电;在副边绕组102的输出电压的波形负半周时,自举电路20形成第二充放电电路202向输出端Vo输出电压的通路,以向输出端Vo输出第二充放电电路202的放电电压。
本申请实施例中,在副边绕组102的输出电压的波形正半周时,自举电路20在向谐振变换器的输出端Vo输出电压时,还对第二充放电电路202充电。这样,在副边绕组102的输出电压的波形负半周,自举电路20对第一充放电电路201充电时,可以使第二充放电电路202放电,从而使自举电路20向谐振变换器的输出端Vo输出第二充电电路202的放电电压。
上述实施例中,在副边绕组的输出电压的波形正半周时,自举电路中的第二充放电电路被充电,在副边绕组的输出电压的波形负半周时,可以由第二充放电电路来提供谐振变换器的输出电压,从而使谐振变换器可以保持稳定的电压输出。
在一个实施例中,如图3所示,自举电路20还包括第一整流管203和第二整流管204;第一充放电电路201的第一端与第一整流管203的第一极连接,第一整流管203的第二极与输出端Vo连接;第二整流管204的第一极接地Gnd,第二整流管204的第二极与第一整流管203的第一极连接;副边绕组102的同名端与第一充放电电路201的第二端连接,副边绕组102的异名端接地Gnd;第一整流管203,用于在副边绕组102的输出电压的波形负半周关断,在副边绕组102的输出电压的波形正半周导通;第二整流管204,用于在副边绕组102的输出电压的波形负半周导通,在副边绕组102的输出电压的波形正半周关断。
在本申请的可选实施例中,第二充放电电路的一端与谐振变换器的输出端连接,另一端接地。
本申请实施例中,在副边绕组102的输出电压的波形负半周,第一整流管203关断,第二整流管204导通。副边绕组102、第一充放电电路201和第二整流管204形成充电回路,对第一充放电电路201充电。在副边绕组102的输出电压的波形正半周,第一整流管203导通,第二整流管204关断,自举电路20向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及副边绕组102的输出电压。在电压输出的同时,自举电路20还对第二充放电电路202充电。
接着,在副边绕组102的输出电压的波形负半周,第一整流管203关断,第二整流管204导通。副边绕组102、第一充放电电路201和第二整流管204又形成充电回路,对第一充放电电路201充电。同时,由第二充放电电路202放电提供谐振变换器的输出电压。在副边绕组102的输出电压的波形正半周,第一整流管203导通,第二整流管204关断,自举电路20再次向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及副边绕组102的输出电压。同时,自举电路20还对第二充放电电路202充电。
按照上述规律,谐振变换器可以保持电压的稳定输出。
上述实施例中,在副边绕组的输出电压的波形负半周时,对第一充放电电路充电;在副边绕组的输出电压的波形正半周时,向谐振变换器的输出端输出第一充放电电路的放电电压以及副边绕组的输出电压,实现了谐振变换器的输出电压与副边绕组的输出电压相比翻倍的效果,因此,可以减小副边绕组的匝数,增大绕组变压器原边绕组与副边绕组之间的匝比,从而减小磁芯横截面积,减小绕组变压器的体积,使得谐振变换器可以超着更小体积发展。
在一个实施例中,第一整流管203和第二整流管204均为二极管;第一整流管203的 第一极和第二整流管204的第一极为二极管的阳极;第一整流管203的第二极和第二整流管204的第二极为二极管的阴极。
如图4所示,第一整流管203为二极管D1,第二整流管为二极管D2。如果谐振变换器的输出电压为Vout,在谐振变换器的传统结构中,如图5所示,二极管D1’的反向耐压为两个电容的电压之和,每个电容的电压为Vout,则二极管D1’的反向耐压为2Vout。而在本申请实施例的结构中,如图4所示,二极管D1的反向耐压就是谐振变换器的输出电压Vout,可见,本申请实施例的结构可以降低整流管的反向耐压。
在一个实施例中,第一整流管203和第二整流管204均为开关管;第一整流管203的第一极和第二整流管204的第一极为开关管的源极;第一整流管203的第二极和第二整流管204的第二极为开关管的漏极。
如图6所示,第一整流管203为开关管Q1,第二整流管为开关管Q2。在实际应用中,开关管的控制极可以与电源端或者高电平端连接,也可以接收控制信号,根据控制信号导通或关断。
在上述实施例中,二极管和开关管均可以根据副边绕组的输出电压导通或者关断。并且,采用本申请实施例的结构,可以降低整流管的反向耐压,从而提高电路的可靠性。
自举电路20向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及副边绕组102的输出电压,增加了输出通路上的电流应力。为了降低该电流应力,本申请实施例提出了并联副边绕组的方案。如图7所示,副边绕组102包括n个匝数相同的子副边绕组1021,自举电路20为n个,n为大于1的正整数,n个自举电路20与n个子副边绕组1021一一对应连接;各自举电路均包括第一充放电电路201;在子副边绕组1021的输出电压的波形负半周时,对应连接的自举电路20中的第一充放电电路201与子副边绕组1021形成充电回路,以为第一充放电电路201充电;在子副边绕组1021的输出电压的波形正半周时,对应连接的自举电路20形成子副边绕组1021和第一充放电电路201向输出端Vo输出电压的通路,以向输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。
本申请实施例中,副边绕组102包括n个匝数相同的子副边绕组1021,因此,每个子副边绕组1021的输出电压相等。
自举电路20为n个,n个自举电路20与n个子副边绕组1021一一对应连接,这样,n个自举电路是并联关系。
在子副边绕组1021的输出电压的波形负半周时,对应连接的自举电路20中的第一充放电电路201与子副边绕组1021形成充电回路,为第一充放电电路201充电;在子副边绕组1021的输出电压的波形正半周时,对应连接的自举电路20向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。由于每个子副边绕组1021的输出电压相等,因此,各自举电路对第一充放电电路201充电的电压相等, 向输出端Vo输出的第一充放电电路201的放电电压以及子副边绕组1021的输出电压相等。同时,向谐振变换器的输出端Vo输出的总电流为n个自举电路的输出电流之和。若只有一个自举电路,如图3所示,自举电路上的电流为总电流;若有两个自举电路,如图7所示,则各自举电路上的电流为总电流的一半。可见,采用并联副边绕组的方案,可以降低电流应力。
上述实施例中,副边绕组包括n个匝数相同的子副边绕组,自举电路为n个,n个自举电路与n个子副边绕组一一对应连接;在子副边绕组的输出电压的波形负半周时,对应连接的自举电路中的第一充放电电路与子副边绕组形成充电回路,以为第一充放电电路充电;在子副边绕组的输出电压的波形正半周时,对应连接的自举电路形成子副边绕组和第一充放电电路向输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及子副边绕组的输出电压。各自举电路上的电流应力小于总电流,因此可以降低各自举电路上的电流应力。
在一个实施例中,如图8所示,各自举电路还包括第三整流管205和第四整流管206;在各自举电路中,第一充放电电路201的第一端与第三整流管205的第一极连接,第三整流管205的第二极与输出端Vo连接,第四整流管206的第一极接地Gnd,第四整流管206的第二极与第三整流管205的第一极连接;子副边绕组1021的同名端与第一充放电电路201的第二端连接,子副边绕组1021的异名端接地Gnd;第三整流管205,用于在子副边绕组1021的输出电压的波形负半周关断,在子副边绕组1021的输出电压的波形正半周导通;第四整流管206,用于在子副边绕组1021的输出电压的波形负半周导通,在子副边绕组1021的输出电压的波形正半周关断。
本申请实施例中,每个自举电路均包括第三整流管205和第四整流管206。子副边绕组1021的同名端与第一充放电电路201的第二端连接,第一充放电电路201的第一端与第三整流管205的第一极连接,第三整流管205的第二极与谐振变换器的输出端Vo连接。子副边绕组1021的异名端接地Gnd,第四整流管206的第一极也接地Gnd,第四整流管206的第二极与第三整流管205的第一极连接。
在子副边绕组1021的输出电压的波形负半周,第三整流管205关断,第四整流管206导通。子副边绕组1021、第一充放电电路201和第四整流管206形成充电回路,对第一充放电电路201充电。在子副边绕组1021的输出电压的波形正半周,第三整流管205导通,第四整流管206关断,向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。同时,自举电路20还对第二充放电电路202充电。
接着,在子副边绕组1021的输出电压的波形负半周时,第三整流管205关断,第四整流管206导通。子副边绕组1021、第一充放电电路201和第四整流管206又形成充电回路,对第一充放电电路201充电。同时,由第二充放电电路202提供谐振变换器的输出电压。在子副边绕组1021的输出电压的波形正半周,第三整流管205导通,第四整流管 206关断,自举电路20再次向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。同时,自举电路20还对第二充放电电路202充电。
按照上述规律,谐振变换器可以保持稳定的电压输出。
上述实施例中,在子副边绕组的输出电压的波形负半周时,对应连接的自举电路中的第一充放电电路与子副边绕组形成充电回路,以为第一充放电电路充电;在子副边绕组的输出电压的波形正半周时,对应连接的自举电路形成子副边绕组和第一充放电电路向输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及子副边绕组的输出电压,实现了谐振变换器的输出电压与子副边绕组的输出电压相比翻倍的效果。因此,可以减小副边绕组的匝数,增大绕组变压器原边绕组与副边绕组之间的匝比,从而减小磁芯横截面积,减小绕组变压器的体积,使得谐振变换器可以超着更小体积发展。
在一个实施例中,第一充放电电路201包括:第一电容C1,如图9所示;或者,
第一充放电电路201包括:并联的多个第一电容,如图10所示;或者,
第一充放电电路201包括:相互串联的第一电容以及第一电阻;或者,
第一充放电电路201包括:相互串联的第一电容以及第一电感。
在实际应用中,每个第一电容C1的电容值可以采用30uf。本申请实施例中,通过并联第一电容C1可以减小每个第一电容C1的电容值,从而减小第一电容C1的体积,降低自举电路的实现难度。
在一个实施例中,第三整流管205和第四整流管206均为二极管;第三整流管205的第一极和第四整流管206的第一极为二极管的阳极;第三整流管205的第二极和第四整流管206的第二极为二极管的阴极。
如图11所示,第三整流管205为二极管D3,第四整流管206为二极管D4。
在一个实施例中,第三整流管205和第四整流管206均为开关管;第三整流管205的第一极和第四整流管206的第一极为开关管的源极;第三整流管205的第二极和第四整流管206的第二极为开关管的漏极。
如图12所示,第三整流管205为开关管Q3,第四整流管206为开关管Q4。开关管的控制极可以与电源端或者高电平端连接,也可以接收控制信号,根据控制信号导通或关断。本申请实施例对此不做限定。
在一个实施例中,开关管为MOS管或GaN管。
在实际应用中,开关管可以采用GaN管,从而减少开关管的开关损耗和导通损耗,提高可靠性。
在一个实施例中,如图12所示,第二充放电电路202的第一端与谐振变换器的输出端Vo连接,第二充放电电路202的第二端接地Gnd。
本申请实施例中,对于各自举电路,在子副边绕组1021的输出电压的波形负半周,第三整流管205关断,第四整流管206导通。子副边绕组1021、第一充放电电路201和第四整流管206形成充电回路,对第一充放电电路201充电。在子副边绕组1021的输出电压的波形正半周,第三整流管205导通,第四整流管206关断,向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。同时,自举电路20对第二充放电电路202充电。
接着,在子副边绕组1021的输出电压的波形负半周,第三整流管205关断,第四整流管206导通。子副边绕组1021、第一充放电电路201和第四整流管206又形成充电回路,对第一充放电电路201充电。同时,向谐振变换器的输出端Vo输出第二充放电电路202放电的输出电压。在子副边绕组1021的输出电压的波形正半周,第三整流管205导通,第四整流管206关断,自举电路再次向谐振变换器的输出端Vo输出第一充放电电路201的放电电压以及子副边绕组1021的输出电压。同时,自举电路20再次对第二充放电电路202充电。
在对谐振变换器进行电路仿真时,如图13所示,横轴为时间、纵轴为电压,子副边绕组1021的输出电压的波形为a,图12中节点J1的电压的波形为b,谐振变换器的输出电压的波形为c。在子副边绕组1021的输出电压的波形正半周,开关管Q3导通,开关管Q4关断,节点J的电压是第一电容C1的放电电压与子副边绕组1021的输出电压之和,即在波形a为20V的阶段,波形b为40V,谐振变换器的输出电压的波形c也为40V。在子副边绕组1021的输出电压的波形负半周,开关管Q3关断,开关管Q4导通,由第二充放电电路202提供电压,即在波形a为-20V的阶段,波形b为0V,谐振变换器的输出电压的波形c仍为40V。
在一个实施例中,在其中一个实施例中,上述第二充放电电路包括:第二电容,如图14所示;或者,
第二充放电电路包括:并联的多个第二电容,如图15所示;或者,
第二充放电电路包括:相互串联的第二电容以及第二电阻;或者,
第二充放电电路包括:相互串联的第二电容以及第二电感。
本申请实施例对并联的第二电容C2的数量不做限定。在实际应用中,每个第二电容C2的电容值可以采用2.2uf。在图16所示的电路中,波形如图17所示,横轴为时间,纵轴为电压;子副边绕组1021的输出电压的波形为a,图16中节点J2的电压的波动为b,谐振变换器的输出电压的波形为c。在子副边绕组1021的输出电压的波形正半周,第三整流管205导通,第四整流管206关断,节点J2的电压是第一充放电电路201的放电电压与子副边绕组1021的输出电压之和,即在波形a为20V的阶段,波形b为40V,谐振变换器的输出电压的波形c也为40V。在子副边绕组1021的输出电压的波形负半周,第三整流管205关断,第四整流管206导通,由第二充放电电路202提供电压,即在波形a为 -20V的阶段,波形b为0V,谐振变换器的输出电压的波形c仍为40V。
本申请实施例还提供一种电源适配器,该电源适配器包括如上述的谐振变换器。
谐振变换器包括绕组变压器和自举电路;在副边绕组的输出电压的波形负半周时,自举电路中的第一充放电电路与副边绕组形成充电回路,以为第一充放电电路充电;在副边绕组的输出电压的波形正半周时,自举电路形成副边绕组和第一充放电电路向谐振变换器的输出端输出电压的通路,以向输出端输出第一充放电电路的放电电压以及副边绕组的输出电压。在本申请实施例中,自举电路通过充电储能实现了谐振变压器的输出电压与副边绕组的输出电压相比翻倍的效果,因此可以增大绕组变压器原边绕组与副边绕组之间的匝比,从而减小磁芯横截面积,减小绕组变压器的体积,使得谐振变换器可以超着更小体积发展,最终可以减小电源适配器的体积,从而扩展电源适配器的应用范围。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种谐振变换器,其中,所述谐振变换器包括绕组变压器和自举电路;所述绕组变压器包括原边绕组和副边绕组;所述自举电路与所述副边绕组连接,所述自举电路包括第一充放电电路;
    在所述副边绕组的输出电压的波形负半周时,所述自举电路中的所述第一充放电电路与所述副边绕组形成充电回路,以为所述第一充放电电路充电;
    在所述副边绕组的输出电压的波形正半周时,所述自举电路形成所述副边绕组和所述第一充放电电路向所述谐振变换器的输出端输出电压的通路,以向所述输出端输出所述第一充放电电路的放电电压以及所述副边绕组的输出电压。
  2. 根据权利要求1所述的谐振变换器,其中,所述自举电路还包括第二充放电电路;
    在所述副边绕组的输出电压的波形正半周时,所述自举电路中的所述第二充放电电路与所述副边绕组形成充电回路,以为所述第二充放电电路充电;
    在所述副边绕组的输出电压的波形负半周时,所述自举电路形成所述第二充放电电路向所述输出端输出电压的通路,以向所述输出端输出所述第二充放电电路的放电电压。
  3. 根据权利要求2所述的谐振变换器,其中,所述自举电路还包括第一整流管和第二整流管;所述第一充放电电路的第一端与所述第一整流管的第一极连接,所述第一整流管的第二极与所述输出端连接;所述第二整流管的第一极接地,所述第二整流管的第二极与所述第一整流管的第一极连接;所述副边绕组的同名端与所述第一充放电电路的第二端连接,所述副边绕组的异名端接地;
    所述第一整流管,用于在所述副边绕组的输出电压的波形负半周关断,在所述副边绕组的输出电压的波形正半周导通;所述第二整流管,用于在所述副边绕组的输出电压的波形负半周导通,在所述副边绕组的输出电压的波形正半周关断。
  4. 根据权利要求3所述的谐振变换器,其中,所述第一整流管和所述第二整流管均为二极管;
    所述第一整流管的第一极和所述第二整流管的第一极为二极管的阳极;
    所述第一整流管的第二极和所述第二整流管的第二极为二极管的阴极。
  5. 根据权利要求3所述的谐振变换器,其中,所述第一整流管和所述第二整流管均为开关管;
    所述第一整流管的第一极和所述第二整流管的第一极为开关管的源极;
    所述第一整流管的第二极和所述第二整流管的第二极为开关管的漏极。
  6. 根据权利要求2所述的谐振变换器,其中,所述副边绕组包括n个匝数相同的子副边绕组,所述自举电路为n个,n为大于1的正整数,所述n个自举电路与所述n个子副边绕组一一对应连接;
    在子副边绕组的输出电压的波形负半周时,对应连接的自举电路中的所述第一充放电电路与子副边绕组形成充电回路,以为所述第一充放电电路充电;
    在子副边绕组的输出电压的波形正半周时,对应连接的自举电路形成子副边绕组和所述第一充放电电路向所述输出端输出电压的通路,以向所述输出端输出所述第一充放电电路的放电电压以及子副边绕组的输出电压。
  7. 根据权利要求6所述的谐振变换器,其中,各所述自举电路还包括第三整流管和第四整流管;在各所述自举电路中,所述第一充放电电路的第一端与所述第三整流管的第一极连接,所述第三整流管的第二极与所述输出端连接,所述第四整流管的第一极接地,所述第四整流管的第二极与所述第三整流管的第一极连接;所述子副边绕组的同名端与所述第一充放电电路的第二端连接,所述子副边绕组的异名端接地;
    所述第三整流管,用于在所述子副边绕组的输出电压的波形负半周关断,在所述子副边绕组的输出电压的波形正半周导通;所述第四整流管,用于在所述子副边绕组的输出电压的波形负半周导通,在所述子副边绕组的输出电压的波形正半周关断。
  8. 根据权利要求3或7所述的谐振变换器,其中,所述第一充放电电路包括:第一电容。
  9. 根据权利要求3或7所述的谐振变换器,其中,所述第一充放电电路包括:并联的多个第一电容。
  10. 根据权利要求3或7所述的谐振变换器,其中,所述第一充放电电路包括:相互串联的第一电容以及第一电阻。
  11. 根据权利要求3或7所述的谐振变换器,其中,所述第一充放电电路包括:相互串联的第一电容以及第一电感。
  12. 根据权利要求7所述的谐振变换器,其中,所述第三整流管和所述第四整流管均为二极管;
    所述第三整流管的第一极和所述第四整流管的第一极为二极管的阳极;
    所述第三整流管的第二极和所述第四整流管的第二极为二极管的阴极。
  13. 根据权利要求7所述的谐振变换器,其中,所述第三整流管和所述第四整流管均为开关管;
    所述第三整流管的第一极和所述第四整流管的第一极为开关管的源极;
    所述第三整流管的第二极和所述第四整流管的第二极为开关管的漏极。
  14. 根据权利要求6或13所述的谐振变换器,其中,所述开关管为MOS管或GaN管。
  15. 根据权利要求2所述的谐振变换器,其中,所述第二充放电电路的第一端与所述谐振变换器的输出端连接,所述第二充放电电路的第二端接地。
  16. 根据权利要求15所述的谐振变换器,其中,所述第二充放电电路包括:第二电容。
  17. 根据权利要求15所述的谐振变换器,其中,所述第二充放电电路包括:并联的多个第二电容。
  18. 根据权利要求15所述的谐振变换器,其中,所述第二充放电电路包括:相互串联的第二电容以及第二电阻。
  19. 根据权利要求15所述的谐振变换器,其中,所述第二充放电电路包括:相互串联的第二电容以及第二电感。
  20. 一种电源适配器,其中,所述电源适配器包括如权利要求1-13任一项所述谐振变换器。
PCT/CN2022/084713 2021-05-13 2022-04-01 谐振变换器和电源适配器 WO2022237382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110520998.8A CN115347810A (zh) 2021-05-13 2021-05-13 谐振变换器和电源适配器
CN202110520998.8 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022237382A1 true WO2022237382A1 (zh) 2022-11-17

Family

ID=83947197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084713 WO2022237382A1 (zh) 2021-05-13 2022-04-01 谐振变换器和电源适配器

Country Status (2)

Country Link
CN (1) CN115347810A (zh)
WO (1) WO2022237382A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128868A (en) * 1977-03-30 1978-12-05 Rca Corporation D-C converter using pulsed resonant circuit
CN1875667A (zh) * 2003-11-06 2006-12-06 胜美达集团株式会社 高压放电灯点灯装置
CN103780086A (zh) * 2014-01-23 2014-05-07 江苏杰瑞科技集团有限责任公司 基于耦合电感倍压结构的双输出母线型高增益变换器
CN110212756A (zh) * 2019-07-03 2019-09-06 山西工程技术学院 一种低成本直流电压倍升器及实现方法
CN110932557A (zh) * 2019-11-29 2020-03-27 山东科技大学 一种基于倍压整流电路的高增益准谐振dc-dc变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128868A (en) * 1977-03-30 1978-12-05 Rca Corporation D-C converter using pulsed resonant circuit
CN1875667A (zh) * 2003-11-06 2006-12-06 胜美达集团株式会社 高压放电灯点灯装置
CN103780086A (zh) * 2014-01-23 2014-05-07 江苏杰瑞科技集团有限责任公司 基于耦合电感倍压结构的双输出母线型高增益变换器
CN110212756A (zh) * 2019-07-03 2019-09-06 山西工程技术学院 一种低成本直流电压倍升器及实现方法
CN110932557A (zh) * 2019-11-29 2020-03-27 山东科技大学 一种基于倍压整流电路的高增益准谐振dc-dc变换器

Also Published As

Publication number Publication date
CN115347810A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN111969847B (zh) 交错非隔离开关电容网络高增益软开关变换器及其控制方法
EP3163735A1 (en) Switching power supply unit
CN115189571A (zh) 一种基于耦合电感的高增益变换器及其控制方法
TWI764795B (zh) 返馳式電源轉換器與其中之切換式電容轉換電路
WO2022237382A1 (zh) 谐振变换器和电源适配器
JP2013027242A (ja) スイッチング電源
Lu et al. Single-switch high step-up converter with coupled-inductor and built-in transformer
CN115333379A (zh) 一种应用于电力产品的串联双反激转换器
WO2021036607A1 (zh) 一种反激变换器及电子设备
CN217087767U (zh) 一种超高增益dc/dc升压变换器
CN210490731U (zh) 一种高升压比直流转换装置
CN105827110B (zh) 一种三绕组耦合电感倍压式单开关管升压直流变换器
US20170310221A1 (en) Isolated step-up converter
CN108964473A (zh) 一种高效率高压电源变换电路
TWI543513B (zh) 諧振轉換器
US11081968B2 (en) Isolated boost converter
TWI439034B (zh) Zero voltage switching power converter
JP2003259644A (ja) スイッチングコンバータ回路
Heidari et al. Single-switch single-magnetic core high step-up converter with continuous input current and reduced voltage stress for photovoltaic applications
Chen et al. An interleaved ZVS forward converter with series input parallel output structure
US9673716B2 (en) Resonant converter with three switches
Zhao et al. Interleaved high step-up converter with coupled inductor and blocking capacitor
Xia et al. A novel push-pull forward converter for high reliability and high input voltage applications
Lu et al. A soft-switching dual-phase-shift controlled full-bridge converter with voltage-doubler for wide voltage range applications
RU2802595C1 (ru) Однотактный преобразователь постоянного напряжения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806352

Country of ref document: EP

Kind code of ref document: A1