WO2021035690A1 - 农业植保无人机的机载喷头结构、喷洒系统及无人机 - Google Patents

农业植保无人机的机载喷头结构、喷洒系统及无人机 Download PDF

Info

Publication number
WO2021035690A1
WO2021035690A1 PCT/CN2019/103725 CN2019103725W WO2021035690A1 WO 2021035690 A1 WO2021035690 A1 WO 2021035690A1 CN 2019103725 W CN2019103725 W CN 2019103725W WO 2021035690 A1 WO2021035690 A1 WO 2021035690A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving part
control
iron core
passage
static iron
Prior art date
Application number
PCT/CN2019/103725
Other languages
English (en)
French (fr)
Inventor
李博
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/103725 priority Critical patent/WO2021035690A1/zh
Priority to CN201980032052.8A priority patent/CN112218724A/zh
Publication of WO2021035690A1 publication Critical patent/WO2021035690A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3033Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head
    • B05B1/304Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the control being effected by relative coaxial longitudinal movement of the controlling element and the spray head the controlling element being a lift valve
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides

Definitions

  • the invention relates to the technical field of machinery, and in particular to an airborne nozzle structure, a spraying system and the drone of an agricultural plant protection drone.
  • a plant protection drone is a kind of equipment that is widely used in agricultural and forestry plant protection operations.
  • the plant protection drone can replace people to achieve spraying operations, and can spray medicines, seeds, powders, etc.
  • Most of the spraying systems on the existing plant protection drones use springs to compress the pressure-maintaining valves.
  • the rigidity is used. Spring pressure holding valve to seal.
  • the exhaust capacity of the water pump on the existing plant protection drones is not enough to open the pressure holding valve.
  • the spray system needs to manually open the pressure holding valve for exhaust before each use.
  • multiple pressure-retaining valves need to be opened during the exhaust operation, the entire operation is very complicated, and the exhaust process takes a long time.
  • the present invention is proposed in order to provide an airborne sprinkler head structure, spray system and unmanned aerial vehicle for agricultural plant protection drones that solve the above-mentioned problems.
  • an airborne sprinkler structure of an agricultural plant protection drone including:
  • the valve body has an inlet and an outlet
  • An electromagnet is arranged in the valve body, the electromagnet includes a static iron core, and the static iron core is provided with a first passage communicating with the inlet;
  • the moving part is movably arranged in the valve body, and the moving part is provided with a second passage communicating with the first passage;
  • the inlet, the first channel, the second channel, and the outlet form a passage
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state
  • a spraying system including:
  • An airborne sprinkler structure the airborne sprinkler structure includes:
  • the valve body has an inlet and an outlet, and the inlet and the outlet are respectively connected to the pump and the spray device;
  • An electromagnet is arranged in the valve body, the electromagnet includes a static iron core, and the static iron core is provided with a first passage communicating with the inlet;
  • the moving part is movably arranged in the valve body, and the moving part is provided with a second passage communicating with the first passage;
  • the inlet, the first channel, the second channel, and the outlet form a passage
  • the moving part When the electromagnet is in the first state, the moving part is moved to the first position, and the passage is disconnected; when the electromagnet is in the second state, the moving part is moved to the second position, and the passage is connected ;
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state
  • an unmanned aerial vehicle including: an unmanned aerial vehicle body and a spraying system arranged on the unmanned aerial vehicle body;
  • the spraying system includes:
  • An airborne sprinkler structure the airborne sprinkler structure includes:
  • the valve body has an inlet and an outlet, and the inlet and the outlet are respectively connected to the pump and the spray device;
  • An electromagnet is arranged in the valve body, the electromagnet includes a static iron core, and the static iron core is provided with a first passage communicating with the inlet;
  • the moving part is movably arranged in the valve body, and the moving part is provided with a second passage communicating with the first passage;
  • the inlet, the first channel, the second channel, and the outlet form a passage
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state
  • an airborne sprinkler head structure including:
  • the valve body has an inlet and an outlet
  • An electromagnet is arranged in the valve body, the electromagnet includes a static iron core, and the static iron core is provided with a first passage communicating with the inlet;
  • the moving part is movably arranged in the valve body, and a second passage communicating with the first passage is provided on the moving part; wherein, one end of the moving part facing the static iron core has a radially extending And/or on the side wall of the moving part, there is at least one first passage in the axial direction, and the first passage located on the side wall at least penetrates the moving part The end facing one end of the static iron core; or the first channel located at the end and located on the side wall communicates;
  • the inlet, the first channel, the second channel, and the outlet form a passage
  • the static iron core adsorbs the moving part, the moving part is away from the outlet, and the passage is in communication;
  • an airborne sprinkler head structure including:
  • the valve body has an inlet and an outlet
  • An electromagnet is arranged in the valve body, the electromagnet includes a static iron core, and the static iron core is provided with a first passage communicating with the inlet;
  • the moving part is movably arranged in the valve body, and a second passage communicating with the first passage is provided on the moving part; wherein, one end of the moving part facing away from the static iron core has a radial direction At least one of the first passages extending; and/or on the side wall of the moving member, there is at least one of the first passages along the axial direction, and the first passage on the side wall at least penetrates the moving part
  • the end portion of one end of the piece facing away from the static iron core; or the end portion and the first channel located on the side wall communicate with each other;
  • the inlet, the first channel, the second channel, and the outlet form a passage
  • the static iron core adsorbs the moving part, the moving part blocks the first passage, and the passage is disconnected;
  • the technical solution provided by the embodiment of the present invention can solve the manual exhaust problem encountered in the use process of the spraying system of the agricultural plant protection drone.
  • the state of the electromagnet is controlled by the circuit, thereby controlling the on-off of the passage in the airborne nozzle structure, so as to realize the automatic exhaust and spraying of the airborne nozzle structure.
  • the problem of manual exhaust can be completely solved by controlling the state of the electromagnet, and the inconvenience caused by manual exhaust can be eliminated.
  • FIG. 1 is a schematic cross-sectional structure diagram of an airborne sprinkler head structure provided by an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a cross-sectional structure of an airborne sprinkler head structure provided by an embodiment of the present invention
  • FIG. 3 is an exploded structure diagram of an airborne sprinkler head structure provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of an airborne sprinkler head structure provided by an embodiment of the present invention.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance or implicitly indicating that The number of technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • the spray system on the plant protection drone needs to manually open the pressure holding valve to exhaust before each use.
  • the spray system with multiple nozzles it is necessary to open multiple nozzles during the exhaust operation.
  • the entire operation of the pressure holding valve is very complicated, and the exhaust process takes a long time.
  • the medicament will be brought out during the venting process, and these medicaments are easy to be splashed on people's hands, and it is easy to cause people to be poisoned.
  • the present invention provides an airborne sprinkler structure, spraying system and unmanned aerial vehicle for agricultural plant protection drones, which can realize automatic exhaust and spraying of the airborne sprinkler structure, completely solve the problem of manual exhaust, and eliminate manual Inconvenience caused by exhaust.
  • FIG. 1 is a schematic cross-sectional structure diagram of an airborne sprinkler structure provided by an embodiment of the present invention
  • FIG. 2 is a perspective schematic view of a cross-sectional structure of an airborne nozzle structure provided by an embodiment of the present invention
  • FIG. The exploded structure diagram of the nozzle carrier structure is shown in conjunction with Figures 1 to 3.
  • an airborne sprinkler structure of an agricultural plant protection drone which includes a valve body 10, an electromagnet 20, and a moving part 30.
  • the valve body 10 has an inlet 11 and an outlet 12.
  • the electromagnet 20 is arranged in the valve body 10, and the electromagnet 20 includes a static iron core 21, and the static iron core 21 is provided with a first passage 211 communicating with the inlet 11.
  • the moving part 30 is movably arranged in the valve body 10, and the moving part 30 is provided with a second passage 31 communicating with the first passage 211.
  • the inlet 11, the first channel 211, the second channel 31 and the outlet 12 form a passage.
  • the moving member 30 moves to the first position under the action of the magnetic field of the electromagnet 20, and the path is disconnected.
  • the moving member 30 moves to the second position under the action of the magnetic field of the electromagnet 20, and the passage is connected.
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state.
  • the valve body 10 is made of non-magnetic materials, such as plastic materials, rubber materials, etc.
  • the electromagnet 20 and the moving part 30 are both arranged in the valve body 10, and the valve body 10 is an internal component. Provide protection.
  • the valve body 10 has an energization interface, and the electromagnet 20 is connected to the circuit outside the airborne nozzle structure through the energization interface, so as to change the state of the electromagnet 20 under the control of the circuit.
  • the moving part 30 includes, but is not limited to, made of magnetic materials, such as iron, nickel, cobalt, and alloys thereof.
  • the movable member 30 switches between the first position and the second position, so as to realize the switching between the opening and the opening of the passage.
  • the first position of the movable member 30 is also different.
  • the second position of the movable member 30 when the electromagnet 20 is in the second state is also different.
  • the first state is the power-off state
  • the second state is the power-on state
  • the end of the movable member 30 facing away from the static iron core 21 is a plugging head.
  • the electromagnet 20 When the electromagnet 20 is in the first state, the electromagnet 20 is powered off. At this time, the static iron core 21 does not have magnetism, and the moving part 30 is not connected to the static iron core 21. At this time, the moving part 30 is in the first position. The plugging head of the moving part 30 is sealed at the outlet 12 of the valve body 10 to close the outlet 12 of the valve body 10, thereby disconnecting the passage.
  • the electromagnet 20 When the electromagnet 20 is in the second state, the electromagnet 20 is energized. At this time, the static iron core 21 is magnetic, and the moving part 30 is connected to the static iron core 21. At this time, the moving part 30 is in the second position. The plugging head of the moving part 30 opens the outlet 12 of the valve body 10, thereby connecting the passage.
  • the end of the movable member 30 facing the static iron core 21 is the plugging head.
  • the electromagnet 20 When the electromagnet 20 is in the first state, the electromagnet 20 is energized. At this time, the static iron core 21 is magnetic, and the moving part 30 is connected to the static iron core 21. At this time, the moving part 30 is in the first position. The plugging head of the moving part 30 is sealed at the outlet 12 of the first channel 211 of the static iron core 21 to seal the outlet 12 of the first channel 211 of the static iron core 21, thereby disconnecting the passage.
  • the electromagnet 20 When the electromagnet 20 is in the second state, the electromagnet 20 is powered off. At this time, the static iron core 21 does not have magnetism, and the moving part 30 is separated from the static iron core 21. At this time, the moving part 30 is in the second position. The plugging head of the moving part 30 opens the outlet 12 of the first channel 211 of the static iron core 21, thereby connecting the passage.
  • the way to move away from the static iron core 21 includes, but is not limited to, the provision of an elastic resetting part 40.
  • the moving part 30 is placed on the electromagnet 20 through the elastic resetting part 40.
  • An achievable way is to continue to refer to Figs. 1 to 3, an accommodating cavity is provided in the valve body 10, and the movable member 30 is movably arranged in the accommodating cavity.
  • An elastic reset member 40 is provided in the accommodating cavity, and the elastic reset member 40 is respectively connected with the valve body 10 and the moving member 30.
  • the elastic return member 40 includes, but is not limited to, a spring, an elastic sheet, and the like.
  • the spring can be sleeved on the moving part 30 and the elastic pieces can be arranged on both sides of the moving part 30.
  • the above-mentioned arrangement of the elastic reset member 40 and the shape of the moving member 30 are only exemplary embodiments, and the embodiments of the present invention are not limited to the above-mentioned embodiments. Those skilled in the art can design other similar designs according to actual conditions. The structure that can realize the corresponding function is not limited here, and will not be repeated one by one.
  • the structure of the airborne sprinkler head includes but is not limited to being applicable to agricultural plant protection drones, pesticide spraying vehicles, greening sprinklers, greening spraying equipment and other equipment, which can solve the problem of spraying system in use.
  • the state of the electromagnet 20 is controlled by the circuit, thereby controlling the on-off of the passage in the airborne nozzle structure, so as to realize the automatic exhaust and spraying of the airborne nozzle structure. By controlling the state of the electromagnet 20, the problem of manual exhaust can be completely solved, and the inconvenience caused by manual exhaust can be eliminated.
  • the moving part 30 By energizing the electromagnet 20 to generate a magnetic field, the moving part 30 is forced to move, thereby realizing the disconnection and communication of the passage.
  • the principle is simple and the structural reliability is high. A higher degree of automation is the development trend of the industry.
  • the airborne nozzle structure provided by the embodiment of the present invention greatly simplifies the manual operation required by the user, and improves Improve the user experience.
  • the passage is located inside the valve body 10, so that while simplifying the passage structure, the heat generated by the electromagnet 20 when the electromagnet 20 is energized when the medium passes through the valve body 10 can improve the heat dissipation effect of the electromagnet 20.
  • an achievable way of the electromagnet 20 is that in addition to the static iron core 21, the electromagnet 20 also includes: a coil bobbin 22, a coil 23, and a magnet Yoke shell 24.
  • the coil bobbin 22 provides support for the coil 23.
  • the yoke shell 24 can prevent the magnetic field generated after the coil 23 is energized from being discharged, and affect other components, and at the same time prevent external components with a magnetic field from affecting the coil 23 and the static iron core 21.
  • the implementation of the coil bobbin 22, the coil 23 and the yoke shell 24 includes that the coil bobbin 22 has a through-type inner cavity, the static iron core 21 is sleeved in the inner cavity of the coil bobbin 22, and the coil 23 is wound on the coil bobbin On the outer surface of 22, the yoke shell 24 is wrapped around the outer surface of the coil 23, and the yoke shell 24 is provided with a through hole communicating with the passage.
  • the coil bobbin 22 includes, but is not limited to, a cylindrical structure, the diameter of the inner cavity of which matches the outer diameter of the static iron core 21, and the “matching” here means that the inside of the coil bobbin 22
  • the diameter of the cavity may be slightly larger or slightly smaller than the outer diameter of the static iron core 21.
  • the stationary iron core 21 can be connected in the inner cavity of the coil bobbin 22 by bonding, welding, or the like.
  • the static iron core 21 can be squeezed into the inner cavity of the coil bobbin 22, and the coil bobbin 22 and the static iron core 21 are interference-connected to ensure the connection strength , The static iron core 21 and the coil bobbin 22 are then connected by bonding, welding, or the like.
  • the through-type inner cavity of the coil frame 22 and the through hole communicating with the passage on the yoke shell 24 can ensure the smooth passage of the passage.
  • the heat generated by the energization of the coil 23 can be taken away, and the heat dissipation effect of the electromagnet 20 can be improved. .
  • the coil bobbin 22 is provided with a limit plate 221 at opposite ends of the coil bobbin 22, and the coil 23 is arranged between the two limit plates 221.
  • the limit plates 221 at opposite ends of the coil bobbin 22 can limit the coil 23 along the axial direction of the coil 23 and prevent the coil 23 from moving on the coil bobbin 22.
  • the yoke shell 24 includes a first yoke 241 and a second yoke 242.
  • the first yoke 241 and the second yoke 242 form a yoke shell 24 to protect the inner coil 23, the static iron core 21, and the coil frame 22.
  • a specific implementation of the first magnetic yoke 241 and the second magnetic yoke 242 is that the first magnetic yoke 241 has an installation cavity, the coil bobbin 22 and the coil 23 are arranged in the installation cavity, and a through hole is provided at the bottom of the installation cavity.
  • the second magnetic yoke 242 is connected to the first magnetic yoke 241 and covers the installation cavity, and the second magnetic yoke 242 is provided with a through hole.
  • the coil 23, the static iron core 21 and the coil frame 22 can be assembled as a whole, and then they can be installed in the first yoke 241 as a whole, and then the second yoke 242 can be installed on the first yoke 241 , The installation cavity of the first yoke 241 is covered by the second yoke 242.
  • first magnetic yoke 241 and the second magnetic yoke 242 One way of connecting the first magnetic yoke 241 and the second magnetic yoke 242 is that the first magnetic yoke 241 has a plurality of connecting ears at the opening of the installation cavity, and the second magnetic yoke 242 is provided at positions corresponding to the plurality of connecting ears. There are a plurality of connecting holes, and the first magnetic yoke 241 is inserted into the plurality of connecting holes through a plurality of connecting ears so as to be connected with the second magnetic yoke 242.
  • the connection manner of the first magnetic yoke 241 and the second magnetic yoke 242 may also be through bonding, welding, fastener connection, buckle connection, etc., which is not specifically limited here.
  • the first magnetic yoke 241 can be a split structure, including a first bottom plate and a first side wall.
  • the first bottom plate can be implemented in the same manner as the second yoke 242.
  • the first side wall has a first opening at one end.
  • the bottom plate is provided with a through hole on the first bottom plate.
  • the connection mode of the first bottom plate and the first side wall can refer to the connection mode of the first magnetic yoke 241 and the second magnetic yoke 242, which is not specifically limited here.
  • the length of the coil bobbin 22 is greater than the length of the static iron core 21, and the part greater than the static iron core 21 is the moving cavity. Part or all of the moving part 30 is located in the moving cavity.
  • the length of the coil bobbin 22 can be greater or less than the length of the static iron core 21.
  • the moving part 30 is partly or completely located in the moving cavity. At this time, the moving part 30 is completely or partly also enclosed by the coil 23.
  • the coil 23 is energized to generate a magnetic field
  • the moving part 30 is located in the moving cavity.
  • Magnetism is also generated correspondingly, and the end of the moving part 30 facing the static iron core 21 and the end of the static iron core 21 facing the moving part 30 are just opposite of magnetism, so that the moving part 30 and the static iron core 21 are magnetically connected, and the connection strength is relatively high.
  • the magnetic force is greater when only the static iron core 21 has magnetism. After the power is turned on, the response of the cut or connection of the passage is more rapid, and the response of the airborne nozzle structure is more sensitive.
  • the valve body 10 further includes a valve sleeve 50.
  • One aspect of setting the valve sleeve 50 is to provide a moving space for the moving part 30 and to provide a guiding function for the movement of the moving part 30.
  • one implementation manner of the valve sleeve 50 is that the valve sleeve 50 has an inner cavity, the valve sleeve 50 is connected to the electromagnet 20, and the inner cavity of the valve sleeve 50 is an accommodating cavity.
  • the inner cavity of the valve sleeve 50 is a through-type inner cavity, one end of the inner cavity is open to connect with the electromagnet 20, and the other end is open to communicate with the outlet 12 of the valve sleeve 50.
  • the space between the openings at both ends is an accommodating cavity, and the moving part 30 is arranged in the accommodating cavity.
  • the moving part 30 is partially located in the accommodating cavity and partially located in the moving cavity. Or when the moving part 30 moves in the first position and the second position, it moves in the moving cavity and the accommodating cavity. If there is an elastic reset member 40, the elastic reset member 40 is located in the inner cavity of the valve sleeve 50.
  • the material of the valve sleeve 50 includes, but is not limited to, plastic materials or rubber materials.
  • the connection between the valve sleeve 50 and the electromagnet 20 includes threaded connection, clamping connection, interference connection and the like.
  • a sealing ring is also provided between the valve sleeve 50 and the electromagnet 20.
  • the valve sleeve 50 partially extends into the coil bobbin 22 and is sleeved on the outside of the static iron core 21.
  • the part of the valve sleeve 50 located outside the coil bobbin 22 is an accommodating cavity.
  • the valve sleeve 50 is sleeved on the outside of the static iron core 21, which can isolate the static iron core 21 from the coil 23.
  • the medium When the medium is introduced into the first channel 211 of the static iron core 21, the medium flows directly from the first channel 211 After passing through the valve sleeve 50, it is discharged from the outlet 12 of the valve body 10.
  • the valve sleeve 50 can prevent the medium from flowing into the yoke shell 24 from the first channel 211, and prevent the coil 23 from contacting the medium and causing the coil 23 to be energized and damaged.
  • a limit boss is provided on the outer wall of the valve sleeve 50, and the valve sleeve 50 can be partially clamped outside the coil bobbin 22 through the limit boss, thereby restricting the extension of the valve sleeve 50 Enter the distance to limit the connection position of the valve sleeve 50.
  • the valve body 10 In addition to restricting the connection position of the valve sleeve 50 by the limiting boss, it can also be restricted by setting the size of the valve body 10. Specifically, the diameter of the part of the valve sleeve 50 outside the coil bobbin 22 is larger than the diameter of the coil bobbin 22.
  • the plugging head of the movable member 30 can be set correspondingly by setting the position of the second channel 31.
  • the end of the moving part 30 facing the static iron core 21 has the second channel 31, and the end of the moving part 30 facing away from the static iron core 21 functions to cut off the passage, that is, the plugging head.
  • an achievable way is that one end of the moving member 30 facing the static iron core 21 has at least one second channel 31 extending in the radial direction.
  • the second channel 31 may penetrate through the moving piece 30 toward the end of the stationary iron core 21 along the radial direction of the moving piece 30, or may pass through the moving piece 30 toward the end of the stationary iron core 21, so that the medium can pass from the moving piece 30.
  • the end toward the static iron core 21 flows toward the side wall of the moving part 30.
  • the static iron core 21 adsorbs the moving part 30, the second passage 31 of the moving part 30 communicates with the first passage 211, and the blocking head of the moving part 30 is far away from the outlet 12 of the valve body 10.
  • the medium in the channel 211 can flow through the side wall of the moving part 30 along the second channel 31 and then be discharged from the outlet 12 of the valve body 10.
  • the static iron core 21 loses its magnetism, the static iron core 21 is separated from the moving part 30, the moving part 30 moves to the outlet 12 of the valve body 10, and the outlet 12 of the valve body 10 is blocked, and the passage is broken. On, the medium in the first channel 211 stops flowing at this time.
  • the side wall of the moving part 30 has at least one second channel 31 along the axial direction, and the second channel 31 on the side wall penetrates at least one end of the moving part 30 toward the static iron core 21 The end.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, the second passage 31 of the moving part 30 communicates with the first passage 211, and the blocking head of the moving part 30 is far away from the outlet 12 of the valve body 10.
  • the medium in the channel 211 can flow out along the second channel 31 and then discharged from the outlet 12 of the valve body 10.
  • the second channel 31 located at the end and located on the side wall is connected.
  • the second channel 31 at the end and on the side wall makes the flow of the medium in the channel smoother.
  • the radial dimension of the moving part 30 matches the outer radial dimension of the static iron core 21 to prevent the moving part 30 from entering and blocking the first passage 211.
  • the end of the moving part 30 facing away from the static iron core 21 is provided with a gasket 32.
  • the gasket 32 can be made of plastic material, rubber material or silicone material, and the gasket 32 has a certain elasticity, so as to play a good sealing effect. Under the action of the spring, the gasket 32 seals the outlet 12 of the valve body 10. The spring can effectively ensure that the gasket 32 at the end of the moving part 30 can compress the outlet 12 of the valve body 10, thereby realizing and replacing the original protection. The leak-proof function of the pressure valve.
  • the moving part 30 has a sealing groove at one end facing away from the static iron core 21, and the sealing gasket 32 is arranged in the sealing groove.
  • the sealing pad 32 and the sealing groove can be connected by bonding, interference fit connection, or snap connection.
  • the airborne sprinkler structure in the embodiment of the present invention includes two working conditions, exhaust and spray.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 is subjected to electromagnetic force to overcome the spring force and move towards the static iron core 21 until it is attracted to the static iron core 21. At this time, the end of the moving part 30 facing away from the static iron core 21 is away from the outlet 12 of the valve body 10, the first passage 211 of the static iron core 21 and the second passage 31 of the moving part 30 are connected, and the entire passage is connected.
  • the gas in the pipeline and the water pump enters the passage from the inlet 11 of the valve body 10, flows through the first channel 211 of the static iron core 21, and takes away the heat generated by the coil 23 when it flows through the inside of the static iron core 21. The gas then passes through the second passage 31 of the moving part 30, flows through the outlet 12 of the valve body 10 and is discharged, thereby completing the exhaust process.
  • the airborne sprinkler structure includes, but is not limited to, when it can be applied to agricultural plant protection machines.
  • the agricultural plant protection machines can complete the entire exhaust process during the flight, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland. The problem of manual recovery of liquid medicine.
  • the spraying operation can be carried out.
  • the electromagnet 20 needs to be continuously energized to ensure the continuous attraction of the static iron core 21 and the moving part 30.
  • a small current can generate enough electromagnetic force to overcome the force of the spring, and to ensure that the static iron core 21 and the moving part 30 continue to attract Together.
  • the energizing current can be reduced through circuit control, and the power consumption and power consumption of the coil 23 can be reduced while ensuring that the static iron core 21 and the moving part 30 are attracted. fever.
  • the pressure holding valve at the sprinkler end is always open during the entire exhaust and spraying process, or the pressure holding valve can be directly removed to save the parts of the spray system.
  • the plugging head of the movable member 30 can be set correspondingly by setting the position of the second channel 31.
  • the end of the moving part 30 facing away from the static iron core 21 has the second channel 31, and the end of the moving part 30 facing the static iron core 21 functions to cut off the passage, that is, the plugging head.
  • an achievable way is that one end of the moving member 30 facing away from the static iron core 21 has at least one second channel 31 extending in the radial direction.
  • the second channel 31 can pass through the end of the moving part 30 facing away from the static iron core 21 along the radial direction of the moving part 30, or one end can pass through the end of the moving part 30 facing away from the static iron core 21, so that the medium can move from The side wall of the member 30 moves to the end of the moving member facing away from the static iron core 21.
  • the static iron core 21 adsorbs the moving part 30, and the end of the moving part 30 facing the static iron core 21 is connected to the static iron core 21, and the first channel of the static iron core 21 is blocked by the end of the moving part 30 211, thereby cutting off the passage, and the medium in the first channel 211 stops flowing at this time.
  • the static iron core 21 loses its magnetism, the static iron core 21 is separated from the moving part 30, and the moving part 30 moves to the outlet 12 of the valve body 10. At this time, the medium flows out from the first channel 211, and then The side wall of the moving part 30 moves to the end of the moving part facing away from the static iron core 21, and the medium can enter the outlet 12 of the valve body 10 through the second passage 31 and be discharged.
  • the side wall of the moving part 30 has at least one second channel 31 along the axial direction, and the second channel 31 located on the side wall at least penetrates the moving part 30 facing away from the static iron core 21 One end of the end.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, and the moving part 30 blocks the first passage 211, and the passage is disconnected at this time.
  • the electromagnet 20 is powered off, the moving part 30 is separated from the static iron core 21, and the second channel 31 of the moving part 30 communicates with the first channel 211. At this time, the medium in the first channel 211 can flow out along the second channel 31 , And then discharged from the outlet 12 of the valve body 10.
  • the second channel 31 located at the end and located on the side wall is connected.
  • the second channel 31 at the end and on the side wall makes the flow of the medium in the channel smoother.
  • the radial dimension of the moving part 30 matches the outer radial dimension of the static iron core 21 to prevent the moving part 30 from entering and blocking the first passage 211.
  • the end of the moving part 30 facing the static iron core 21 is provided with a gasket 32.
  • the gasket 32 can be made of plastic material, rubber material or silicone material, and the gasket 32 has a certain elasticity, so as to play a good sealing effect. Under the action of the spring, the gasket 32 seals the outlet 12 of the valve body 10. The spring can effectively ensure that the gasket 32 at the end of the moving part 30 can compress the outlet 12 of the valve body 10, thereby realizing and replacing the original protection. The leak-proof function of the pressure valve.
  • the moving part 30 has a sealing groove at one end facing the static iron core 21, and the sealing gasket 32 is arranged in the sealing groove.
  • the sealing pad 32 and the sealing groove can be connected by bonding, interference fit connection, or snap connection.
  • the airborne sprinkler structure in the embodiment of the present invention includes two working conditions, exhaust and spray.
  • the electromagnet 20 When exhausting, the electromagnet 20 is powered off, the static iron core 21 has no magnetism, and the moving part 30 is moved away from the static iron core 21 under the action of the spring. At this time, the end of the moving part 30 facing the static iron core 21 is away from the static iron core 21, the first passage 211 of the static iron core 21 and the second passage 31 of the moving part 30 are connected, and the entire passage is connected.
  • the gas in the pipeline and the water pump enters the passage from the inlet 11 of the valve body 10, flows through the first channel 211 of the static iron core 21, and takes away the heat generated by the coil 23 when it flows through the inside of the static iron core 21.
  • the gas then passes through the second passage 31 of the moving part 30, flows through the outlet 12 of the valve body 10 and is discharged, thereby completing the exhaust process.
  • the airborne sprinkler structure includes, but is not limited to, when it can be applied to agricultural plant protection machines.
  • the agricultural plant protection machines can complete the entire exhaust process during the flight, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland. The problem of manual recovery of liquid medicine.
  • the spraying operation can be carried out.
  • the electromagnet 20 needs to be continuously powered off to ensure that the static iron core 21 and the moving part 30 are kept away from each other.
  • the pressure holding valve at the sprinkler end is always open during the entire exhaust and spraying process, or the pressure holding valve can be directly removed to save the parts of the spray system.
  • the electromagnet 20 When charging or debugging equipment is needed, and the path needs to be disconnected, the electromagnet 20 is energized. At this time, the static iron core 21 generates magnetism, and the moving part 30 is subjected to the electromagnetic force to overcome the spring force to the static state under the action of the electromagnetic field. The iron core 21 moves until it engages with the static iron core 21. At this time, the end of the moving part 30 facing the static iron core 21 blocks the first channel 211, the first channel 211 of the static iron core 21 and the second channel 31 of the moving part 30 are disconnected, and the entire passage is disconnected.
  • the airborne nozzle structure is also Including: a first joint 60 and a second joint 61.
  • the first joint 60 is connected to the inlet 11 of the valve body 10, and the second joint 61 is connected to the outlet 12 of the valve body 10.
  • Both the first joint 60 and the second joint 61 include at least one channel to communicate with the passage.
  • the onboard sprinkler structure can be easily connected to the water pump and sprinkler head.
  • different control modes of the airborne spray head structure are realized.
  • the first joint 60 has a channel to which a water pump can be connected.
  • the second joint 61 has two channels, which can connect two shower heads. In this way, the one-in-two-out mode of the airborne sprinkler structure can be realized, and the two sprinklers can be exhausted and sprayed at the same time by connecting the passage in the valve body 10.
  • first connector 60 can also have two channels, three channels, multiple channels, etc.
  • second connector 61 can also have one channel, three channels, multiple channels, etc., the first connector 60 and the second connector 61
  • the number of channels can be set according to actual application requirements, and is not specifically limited in the embodiment of the present invention, and will not be repeated here.
  • the second joint 61 is connected to the valve sleeve 50, and the connection mode of the second joint 61 and the valve sleeve 50 can be bonding, clamping, threaded connection, interference connection, etc., to ensure the first The tightness between the second joint 61 and the valve sleeve 50, and a sealing ring is provided between the second joint 61 and the valve sleeve 50.
  • the airborne spray head structure further includes: an on-off valve 70.
  • the switch valve 70 may be a manual valve or an electric valve.
  • the switch valve 70 is used for emergencies, for example, when the moving part 30 cannot be engaged with the static iron core 21, and the passage cannot be cut off or connected, the moving part 30 can be driven to move toward the static iron core 21 through the switch valve 70 , Thereby opening or cutting off the path.
  • This working condition is a temporary emergency plan.
  • the on-off valve 70 can be directly connected to the valve body 10, and when the airborne spray head structure is provided with a second connector 61, the on-off valve 70 can be connected to the second connector 61. Taking the second joint 61 on the airborne sprinkler structure as an example, the method of setting the switch valve 70 will be described below.
  • the on-off valve 70 can be implemented in a variety of ways.
  • One achievable manner is that the on-off valve 70 includes a jack 71, a control assembly 72, and a sealing diaphragm 73.
  • the second joint 61 also has a control connection part 611, the control connection part 611 has a control channel passing through the control connection part 611, and the control channel communicates with the channels and passages of the second joint 61.
  • the top rod 71 is movably arranged in the control channel.
  • the sealing membrane 73 covers the opening of the control channel.
  • the control assembly 72 is connected to the control connecting portion 611, and the ejector rod 71 can be driven to move in the control channel through the sealing diaphragm 73, and the movable member 30 can be driven to move when the ejector rod 71 moves.
  • an elastic resetting member 40 is provided in the accommodating cavity, and the elastic resetting member 40 is a spring as an example.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized, and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 cannot overcome the spring force to move to the static iron core 21 under the action of the electromagnetic field, and the moving part 30 and the static iron core cannot be realized. 21 pull together. At this time, although the electromagnet 20 is in the energized state, the end of the moving part 30 facing away from the static iron core 21 cannot be far from the outlet 12 of the valve body 10, the entire passage is always in a disconnected state, and the onboard nozzle structure cannot work normally.
  • the moving member 30 can be driven to move to the static iron core 21 through the on-off valve 70 to open the passage.
  • the specific operation is as follows.
  • the sealing diaphragm 73 is driven to move in the direction of the static iron core 21 through the control assembly 72, the sealing diaphragm 73 drives the ejector rod 71 to move in the direction of the static iron core 21 in the control channel, and the ejector rod 71 drives the moving part when it moves. 30 moves toward the stationary iron core 21, thereby opening the passage.
  • one implementation of the sealing membrane 73 is that the thickness of the peripheral edge of the sealing membrane 73 is smaller than the thickness of the middle position.
  • the peripheral edge of the sealing diaphragm 73 is relatively thin, which can facilitate the control assembly 72 to squeeze the sealing diaphragm 73 at the opening of the control channel.
  • the middle part of the sealing diaphragm 73 is thick, which can facilitate the sealing diaphragm 73 to effectively seal the opening of the control channel.
  • the ejector pin 71 can be implemented in the following ways:
  • One implementation is that there is a gap between the top rod 71 and the side wall of the control channel. After the top rod 71 enters the passage, the medium in the passage can enter the second joint 61 through the gap between the top rod 71 and the side wall of the control channel, thereby being discharged from the passage of the second joint 61.
  • the side wall of the top rod 71 has a plurality of guide grooves along the axial direction. After the ejector rod 71 enters the passage, the medium in the passage can enter the second joint 61 through the guide groove on the ejector rod 71, and then be discharged from the channel of the second joint 61.
  • the top rod 71 is provided with a plurality of Support arm. By reading a support arm, the contact area between the top rod 71 and the moving part 30 can be increased, thereby improving the stability of the contact between the top rod 71 and the moving part 30.
  • the top rod 71 has a sealing block at one end away from the moving part 30, and the diameter of the sealing block matches the diameter of the control channel.
  • the double sealing of the sealing block and the sealing diaphragm 73 can effectively prevent the medium from flowing out of the control channel.
  • the restriction of the sealing block can prevent the ejector rod 71 from moving radially in the control channel, so that the ejector rod 71 only moves along the extension direction of the control channel.
  • a control assembly 72 can be implemented in that the control assembly 72 includes a valve seat 721 and a control rod 722.
  • the valve seat 721 is connected to the control connection portion 611, and the valve seat 721 has a control cavity extending in the direction of the extension line of the control channel.
  • the control rod 722 and the valve seat 721 are movably connected. When the control rod 722 moves along the extension direction of the control cavity, the control rod 722 can drive the top rod 71 to move through the sealing diaphragm 73.
  • the manner in which the valve seat 721 is connected to the control connection portion 611 includes, but is not limited to, screw connection, snap connection, and the like.
  • an operating part is provided on the outer surface of the valve seat 721.
  • the implementation of the operating part includes, but is not limited to, operating ears provided on opposite ends of the outer surface of the valve seat 721.
  • the valve seat 721 can be manually installed through the operating ears, so that the valve seat can be realized without tools. Quick installation of the 721.
  • the movement mode of the control rod 722 can be manual movement or electric movement. If it is moved electrically, the control assembly 72 further includes a drive motor, and the drive shaft of the drive motor applies a driving force to the control rod 722 to complete the movement of the control rod 722.
  • manual movement is taken as an example for introduction.
  • connection between the control rod 722 and the valve seat 721 can be realized in a variety of ways.
  • the control rod 722 is also provided with a rod cap, the rod cap is provided with a limit hole, and the valve seat 721 is far away from the control connection part.
  • One end of the 611 is provided with a limit post, the control rod 722 is sleeved on the limit post through the limit hole, and the control rod 722 extends into the control cavity.
  • the control rod 722 When in use, the user can operate the control rod 722 through the rod cap.
  • the arrangement of the rod cap is only an implementation of the control rod 722, and in some embodiments of the present invention, the control rod 722 can also achieve its function without a rod cap.
  • control rod 722 may be provided with a rod cap, or may not be provided with a rod cap.
  • arrangement of the rod caps also includes other forms, which will not be repeated here.
  • the side wall of the control cavity has at least two installation slides along the extension direction of the control cavity, and the side wall of the control cavity has at least two control slides along the radial direction of the control cavity.
  • Each control slide is connected to an installation slide.
  • the control rod 722 includes a rod body and at least two protrusions arranged on the rod body.
  • the protrusions can enter the control cavity along the installation slideway, and enter the control slideway at the connection between the installation slideway and the control slideway, and the protrusions slide along the control slideway.
  • the rod is driven to move along the extension direction of the control cavity.
  • the control rod 722 can enter the control cavity through the installation slide, and the bump can enter the control slide along the installation slide. At the same time, the control rod 722 can be removed from the valve seat 721 by installing the slideway.
  • the rod body rotates accordingly. Because the two ends of the control slide have a height difference, the bump moves along the extension direction of the control cavity when moving from one end of the control slide to the other end. , The convex block will move a certain distance accordingly, that is, the rod body moves a certain distance along the extension direction of the control cavity, and the rod body can drive the top rod 71 to move when the rod body moves.
  • an elastic resetting member 40 is provided in the accommodating cavity, and the elastic resetting member 40 is a spring as an example.
  • the bump on the control rod 722 is located at an end of the control slideway away from the top rod 71.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized, and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 cannot overcome the spring force to move to the static iron core 21 under the action of the electromagnetic field, and the moving part 30 and the static iron core cannot be realized. 21 pull together.
  • the electromagnet 20 is in the energized state, the end of the moving part 30 facing away from the static iron core 21 cannot be far from the outlet 12 of the valve body 10, the entire passage is always in a disconnected state, and the onboard nozzle structure cannot work normally.
  • the control rod 722 in the switch valve 70 can be rotated.
  • the convex block moves along one end of the control slideway and gradually moves to the end of the control slideway close to the top rod 71.
  • the convex The block will move correspondingly along the extension direction of the control cavity, and when the convex block moves, the rod body is driven to move.
  • the rod body moves along the extension direction of the control cavity, it drives the sealing diaphragm 73 to move in the direction of the static iron core 21, and the sealing diaphragm 73 gradually drives the ejector rod 71 to move in the direction of the static iron core 21.
  • the top rod 71 drives the moving part 30 to be completely away from the outlet 12 of the valve body 10, and the passage is connected.
  • the embodiment 12 improves the control chute on the basis of the embodiment 11.
  • the end of the control slideway connected to the installation slideway has a first limit slot
  • the end of the control slideway away from the installation slideway has a second limit slot along the control cavity
  • the rod body When the convex block moves along the control slide, the rod body performs a corresponding rotation action, and each position of the control slide is on the same rotating surface, and there is no height difference along the extension direction of the control cavity. Therefore, when the convex block moves in the control slide, along the extension direction of the control cavity, the convex block does not move a certain distance accordingly. There is a height difference between the first limit slot and the second limit slot. Therefore, when moving to the first limit slot or the second limit slot at both ends, the bump will move a certain distance accordingly, that is, the rod body moves along the control The extending direction of the cavity moves a certain distance, and the rod body can drive the top rod 71 to move when it moves.
  • an elastic resetting member 40 is provided in the accommodating cavity, and the elastic resetting member 40 is a spring as an example.
  • the bump on the control rod 722 is located in the first limiting slot of the control slideway away from the top rod 71.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized, and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 cannot overcome the spring force to move to the static iron core 21 under the action of the electromagnetic field, and the moving part 30 and the static iron core cannot be realized. 21 pull together.
  • the electromagnet 20 is in the energized state, the end of the moving part 30 facing away from the static iron core 21 cannot be far from the outlet 12 of the valve body 10, the entire passage is always in a disconnected state, and the onboard nozzle structure cannot work normally.
  • the control rod 722 in the switch valve 70 can be rotated.
  • the protrusion will enter the control slide from the first limit slot.
  • the protrusion will move along the control cavity.
  • the direction of extension will not move accordingly.
  • the convex block enters the second limiting groove, the convex block will correspondingly move along the extension direction of the control cavity, and the movement of the convex block will drive the rod to move.
  • the rod body moves along the extension direction of the control cavity, it drives the sealing diaphragm 73 to move in the direction of the static iron core 21, and the sealing diaphragm 73 gradually drives the ejector rod 71 to move in the direction of the static iron core 21.
  • the top rod 71 drives the moving member 30 to completely move away from the outlet 12 of the valve body 10, and the passage is connected.
  • an elastic member 74 is further provided in the control cavity.
  • the elastic member 74 is connected to the control rod 722 and the valve seat 721 respectively.
  • the elastic member 74 provides a force for the control rod 722.
  • the elastic member 74 includes but is not limited to a spring.
  • An achievable way is that an abutment portion is provided in the control cavity, the spring is sleeved on the control rod 722, and the two ends are respectively abutted on the abutment portion and the protrusion.
  • the bump and the control slide can be interference-connected. Furthermore, in order to prevent the protrusion from entering the installation slideway from the control slideway when the bump rotates, in the embodiment of the present invention, an anti-drop part is provided between at least one control slideway and the installation slideway.
  • the installation slideway and the control slideway are separated into the installation area and the control area by the anti-dropping component, and the bump will cause obstacles when contacting the anti-dropping part, and the user needs to increase the force to break through this obstacle.
  • the user is rotating the control lever 722, and suddenly feels difficult to rotate, it means that the bump has touched the anti-falling part, and reminds the user to rotate more strongly, the bump will enter the installation slide.
  • control slide can be implemented in a variety of ways, for example, it may be a slot-shaped structure, or the control slide penetrates the side wall of the control cavity.
  • Embodiment 13 is proposed, and Embodiment 13 is to improve the movement mode of the control rod 722.
  • the side wall of the control cavity is provided with internal threads
  • the control rod 722 is provided with external threads that cooperate with the internal threads.
  • the control rod 722 is connected with the internal threads through the external threads and can be moved along the control cavity. ⁇ axial movement.
  • the threaded connection of the control rod 722 and the valve seat 721 can be realized by the internal thread on the side wall of the control cavity and the external thread on the control rod 722, and the external thread can also be understood as being provided on the rod body.
  • control cavity can be rotated in and out of the control cavity, so that the control rod 722 moves a corresponding distance along the extension direction of the control cavity, that is, the rod body of the control rod 722 moves a certain distance along the extension direction of the control cavity.
  • the top rod 71 can be driven to move.
  • an elastic resetting member 40 is provided in the accommodating cavity, and the elastic resetting member 40 is a spring as an example.
  • the bump on the control rod 722 is located at an end of the control slideway away from the top rod 71.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized, and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 cannot overcome the spring force to move to the static iron core 21 under the action of the electromagnetic field, and the moving part 30 and the static iron core cannot be realized. 21 pull together.
  • the electromagnet 20 is in the energized state, the end of the moving part 30 facing away from the static iron core 21 cannot be far from the outlet 12 of the valve body 10, the entire passage is always in a disconnected state, and the onboard nozzle structure cannot work normally.
  • control rod 722 in the switch valve 70 can be rotated.
  • the control rod 722 rotates, the internal thread on the side wall of the control cavity and the external thread on the control rod 722 are engaged with each other, following the thread texture, the control rod
  • the rod body of 722 can move along the extension direction of the control cavity, driving the sealing diaphragm 73 to move in the direction of the static iron core 21, and the sealing diaphragm 73 gradually drives the ejector rod 71 to move in the direction of the static iron core 21, thereby driving the ejector rod 71
  • the moving part 30 is far away from the outlet 12 of the valve body 10, and the passage is connected.
  • a limit part is provided on the internal thread and/or the external thread.
  • the embodiment 14 is proposed, and the embodiment 14 is to improve the control method of the control lever 722.
  • the control rod 722 includes a rod body and at least two protrusions arranged on the rod body, At least two protrusions are located between the first protrusion and the second protrusion and can move back and forth, and an elastic member 74 is arranged between the at least two protrusions and the first protrusion or the second protrusion.
  • the control rod 722 in the foregoing embodiment is all rotating when moving. In the embodiment 14, the movement of the control rod 722 is realized by pressing.
  • the elastic member 74 can be a tension spring or a compression spring.
  • a pressing force is applied to the control rod 722, and the pressing force can make the control rod 722 move a corresponding distance along the extension direction of the control cavity. That is, the rod body of the control rod 722 moves a certain distance along the extension direction of the control cavity.
  • the top rod 71 can be driven to move.
  • an elastic resetting member 40 is provided in the accommodating cavity, the elastic resetting member 40 is a spring, and the first boss is a boss away from the top cover as an example.
  • the protrusion on the control rod 722 is located on the first protrusion of the control slide that is away from the top rod 71 under the action of the elastic member 74.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized, and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 cannot overcome the spring force to move to the static iron core 21 under the action of the electromagnetic field, and the moving part 30 and the static iron core cannot be realized. 21 pull together.
  • the electromagnet 20 is in the energized state, the end of the moving part 30 facing away from the static iron core 21 cannot be far from the outlet 12 of the valve body 10, the entire passage is always in a disconnected state, and the onboard nozzle structure cannot work normally.
  • a pressing force can be applied to the control rod 722, and the pressing force can make the control rod 722 move a corresponding distance along the extension direction of the control cavity, that is, the rod body of the control rod 722 can move along the extension direction of the control cavity to drive
  • the sealing diaphragm 73 moves in the direction of the static iron core 21, and the sealing diaphragm 73 gradually drives the ejector rod 71 to move in the direction of the static iron core 21, so that the ejector rod 71 drives the moving part 30 away from the outlet 12 of the valve body 10, and the passage is connected.
  • a locking portion is provided on the first protrusion or the second protrusion.
  • One implementation of the locking part is a card slot.
  • an embodiment of the present invention also provides a spraying system, including a pump, a spraying device, and an onboard spray head structure.
  • the airborne sprinkler head structure can be realized by any one of the airborne sprinkler head structures in the above-mentioned embodiments 1 to 4.
  • the spray system includes: a pump, a spray device, and an on-board spray head structure.
  • the airborne nozzle structure includes: a valve body 10, an electromagnet 20 and a moving part 30.
  • the valve body 10 has an inlet 11 and an outlet 12, and the inlet 11 and the outlet 12 are respectively connected with a pump and a spray device.
  • the electromagnet 20 is arranged in the valve body 10, and the electromagnet 20 includes a static iron core 21, and the static iron core 21 is provided with a first passage 211 communicating with the inlet 11.
  • the moving part 30 is movably arranged in the valve body 10, and the moving part 30 is provided with a second passage 31 communicating with the first passage 211. Among them, the inlet 11, the first channel 211, the second channel 31 and the outlet 12 form a passage.
  • the moving part 30 moves to the first position under the action of the magnetic field of the electromagnet 20, and the path is disconnected; when the electromagnet 20 is in the second state, the moving part moves under the action of the magnetic field of the electromagnet 20 To the second position, the passage is connected.
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state.
  • the technical solutions provided by the embodiments of the present invention include, but are not limited to, spraying systems that can be used on agricultural plant protection drones, pesticide spraying vehicles, greening sprinklers, greening spraying equipment, etc., which can solve the problems encountered by the spraying system during use.
  • the manual exhaust problem The state of the electromagnet 20 is controlled by the circuit, thereby controlling the on-off of the passage in the airborne nozzle structure, so as to realize the automatic exhaust and spraying of the airborne nozzle structure. By controlling the state of the electromagnet 20, the problem of manual exhaust can be completely solved, and the inconvenience caused by manual exhaust can be eliminated.
  • the moving part 30 By energizing the electromagnet 20 to generate a magnetic field, the moving part 30 is forced to move, thereby realizing the disconnection and communication of the passage.
  • the principle is simple and the structural reliability is high. A higher degree of automation is a trend in the development of the industry.
  • the spray system provided by the embodiment of the present invention greatly simplifies the manual operation that users need to perform. Tests have found that using the spray system provided by the embodiment of the present invention to perform exhaust is equivalent to the original manual opening of the pressure holding valve for exhaust. The exhaust speed is equivalent, but the entire operation process is greatly simplified, and the user experience is improved.
  • the passage is located inside the valve body 10, so that while simplifying the passage structure, the heat generated by the electromagnet 20 when the electromagnet 20 is energized when the medium passes through the valve body 10 can improve the heat dissipation effect of the electromagnet 20.
  • the structure of the on-board sprinkler in the embodiment of the present invention can be independent of the sprinkler system, and it is convenient to disassemble and replace.
  • an embodiment of the present invention also provides an unmanned aerial vehicle, including: an unmanned aerial vehicle body and a spraying system provided on the unmanned aerial vehicle body.
  • the spraying system can be realized by Embodiment 15 above, and the airborne sprinkler structure in the spraying system can be realized by any one of Embodiments 1 to 14.
  • the unmanned aerial vehicle includes: the unmanned aerial vehicle body and a spraying system arranged on the unmanned aerial vehicle body.
  • the spray system includes: pump; spray device and airborne sprinkler structure.
  • the airborne nozzle structure includes: a valve body 10, an electromagnet 20 and a moving part 30.
  • the valve body 10 has an inlet 11 and an outlet 12, and the inlet 11 and the outlet 12 are respectively connected with a pump and a spray device.
  • the electromagnet 20 is arranged in the valve body 10, and the electromagnet 20 includes a static iron core 21, and the static iron core 21 is provided with a first passage 211 communicating with the inlet 11.
  • the moving part 30 is movably arranged in the valve body 10, and the moving part 30 is provided with a second passage 31 communicating with the first passage 211. Among them, the inlet 11, the first channel 211, the second channel 31 and the outlet 12 form a passage.
  • the moving member 30 moves to the first position under the action of the magnetic field of the electromagnet 20, and the path is disconnected.
  • the moving member 30 moves to the second position under the action of the magnetic field of the electromagnet 20, and the passage is connected.
  • the first state is one of the power-off state and the power-on state
  • the second state is the other state of the power-off state and the power-on state.
  • Embodiment 16 The technical solutions of the related spraying system and airborne sprinkler structure described in Embodiment 16 and the technical solutions described in Embodiments 1 to 15 can be referred to each other for reference, and will not be repeated here.
  • the drone body is also provided with a controller and a control switch coupled with the controller.
  • the control switch is coupled to the electromagnet 20, and the controller controls the working state of the electromagnet 20 through the control switch.
  • the controller can facilitate the user to control the electromagnet 20 in the airborne nozzle structure.
  • the number of electromagnets 20 that can be controlled by the controller is not limited. One controller can control the working status of multiple electromagnets 20, thus Improve the exhaust efficiency of the airborne nozzle structure.
  • embodiment 18 is proposed.
  • the user can directly control the electromagnet 20 through the controller on the drone, but this method requires the drone to stop on the ground. , The user can operate it, which is very troublesome and the work efficiency is high. At the same time, the liquid medicine in the exhaust process will cause waste.
  • the control method of the controller is improved.
  • the controller is coupled with the pump, and the controller controls the working state of the electromagnet 20 by controlling the switch according to the working state of the pump.
  • the controller can monitor the working status of the pump. If the pump is started, it indicates that it needs to be exhausted or sprayed. At this time, the controller can control the electromagnet 20 to open the passage, so that the gas in the pump and the pipeline can be discharged, and the gas can be discharged. Afterwards, spraying operations can be carried out.
  • This control process can be completed during the flight of the UAV, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland, and the problem of manual liquid recovery is solved.
  • the controller can control the electromagnet 20 to disconnect the passage.
  • the drone further includes a ground control terminal, the ground control terminal is coupled to the controller, and the controller receives the control signal of the ground control terminal. And according to the control signal, the working state of the electromagnet 20 is controlled through the control switch.
  • the ground control terminal can remotely send a control signal to the controller, so that the controller controls the working state of the electromagnet 20 through the control switch according to the control signal. The user can control the drone's controller on the ground through the ground control terminal, without the drone being parked on the ground.
  • the user can send a control signal to open the path through the ground control terminal.
  • the controller controls the switch to control the electromagnet 20 to open the path according to the control signal.
  • the gas in the pump and pipeline is discharged, and the spraying operation can be carried out after the gas is discharged.
  • This control process is completed during the flight of the UAV, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland, and the problem of manual liquid recovery is solved.
  • the user can send a control signal for disconnecting the passage to the controller through the ground control terminal.
  • the controller controls the switch to control the electromagnet 20 to disconnect the passage according to the control signal.
  • an embodiment of the present invention also provides an airborne spray head structure, which includes a valve body 10, an electromagnet 20 and a moving part 30.
  • the valve body 10 has an inlet 11 and an outlet 12.
  • the electromagnet 20 is arranged in the valve body 10, and the electromagnet 20 includes a static iron core 21, and the static iron core 21 is provided with a first passage 211 communicating with the inlet 11.
  • the moving part 30 is movably arranged in the valve body 10, and a second passage 31 communicating with the first passage 211 is provided on the moving part 30; wherein, one end of the moving part 30 facing the static iron core 21 has at least one extending in the radial direction.
  • the first channel 211; and/or the side wall of the moving part 30 has at least one first channel 211 along the axial direction, and the first channel 211 located on the side wall penetrates at least one end of the moving part 30 toward the static iron core 21 The end; or at the end and the first channel 211 on the side wall communicates.
  • the inlet 11, the first channel 211, the second channel 31 and the outlet 12 form a passage.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, and the moving part 30 is moved away from the outlet 12 under the action of the magnetic field of the electromagnet 20, and the passage is connected.
  • the electromagnet 20 When the electromagnet 20 is de-energized, the static iron core 21 loses its magnetism, the moving part 30 blocks the outlet 12, and the passage is disconnected.
  • the end of the moving part 30 facing the static iron core 21 has the second channel 31, and the end of the moving part 30 facing away from the static iron core 21 functions to cut off the passage, that is, the plugging head.
  • an achievable way is that one end of the moving member 30 facing the static iron core 21 has at least one second channel 31 extending in the radial direction.
  • the second channel 31 may penetrate through the moving piece 30 toward the end of the stationary iron core 21 along the radial direction of the moving piece 30, or may pass through the moving piece 30 toward the end of the stationary iron core 21, so that the medium can pass from the moving piece 30.
  • the end toward the static iron core 21 flows toward the side wall of the moving part 30.
  • the static iron core 21 adsorbs the moving part 30, the second passage 31 of the moving part 30 communicates with the first passage 211, and the blocking head of the moving part 30 is far away from the outlet 12 of the valve body 10.
  • the medium in the channel 211 can flow through the side wall of the moving part 30 along the second channel 31 and then be discharged from the outlet 12 of the valve body 10.
  • the static iron core 21 loses its magnetism, the static iron core 21 is separated from the moving part 30, the moving part 30 moves to the outlet 12 of the valve body 10, and the outlet 12 of the valve body 10 is blocked, and the passage is broken. On, the medium in the first channel 211 stops flowing at this time.
  • the side wall of the moving part 30 has at least one second channel 31 along the axial direction, and the second channel 31 on the side wall penetrates at least one end of the moving part 30 toward the static iron core 21 The end.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, the second passage 31 of the moving part 30 communicates with the first passage 211, and the blocking head of the moving part 30 is far away from the outlet 12 of the valve body 10.
  • the medium in the channel 211 can flow out along the second channel 31 and then discharged from the outlet 12 of the valve body 10.
  • the second channel 31 located at the end and located on the side wall is connected.
  • the second channel 31 at the end and on the side wall makes the flow of the medium in the channel smoother.
  • the radial dimension of the moving part 30 matches the outer radial dimension of the static iron core 21 to prevent the moving part 30 from entering and blocking the first passage 211.
  • the end of the moving part 30 facing away from the static iron core 21 is provided with a gasket 32.
  • the gasket 32 can be made of plastic material, rubber material or silicone material, and the gasket 32 has a certain elasticity, so as to play a good sealing effect. Under the action of the spring, the gasket 32 seals the outlet 12 of the valve body 10. The spring can effectively ensure that the gasket 32 at the end of the moving part 30 can compress the outlet 12 of the valve body 10, thereby realizing and replacing the original protection. The leak-proof function of the pressure valve.
  • the moving part 30 has a sealing groove at one end facing away from the static iron core 21, and the sealing gasket 32 is arranged in the sealing groove.
  • the sealing pad 32 and the sealing groove can be connected by bonding, interference fit connection, or snap connection.
  • the airborne sprinkler structure in the embodiment of the present invention includes two working conditions, exhaust and spray.
  • the electromagnet 20 When exhausting, the electromagnet 20 is energized and the static iron core 21 generates magnetism. Under the action of the electromagnetic field, the moving part 30 is subjected to electromagnetic force to overcome the spring force and move towards the static iron core 21 until it is attracted to the static iron core 21. At this time, the end of the moving part 30 facing away from the static iron core 21 is away from the outlet 12 of the valve body 10, the first passage 211 of the static iron core 21 and the second passage 31 of the moving part 30 are connected, and the entire passage is connected.
  • the gas in the pipeline and the water pump enters the passage from the inlet 11 of the valve body 10, flows through the first channel 211 of the static iron core 21, and takes away the heat generated by the coil 23 when it flows through the inside of the static iron core 21. The gas then passes through the second passage 31 of the moving part 30, flows through the outlet 12 of the valve body 10 and is discharged, thereby completing the exhaust process.
  • the airborne sprinkler structure includes, but is not limited to, when it can be applied to agricultural plant protection machines.
  • the agricultural plant protection machines can complete the entire exhaust process during the flight, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland. The problem of manual recovery of liquid medicine.
  • the spraying operation can be carried out.
  • the electromagnet 20 needs to be continuously energized to ensure the continuous attraction of the static iron core 21 and the moving part 30.
  • a small current can generate enough electromagnetic force to overcome the force of the spring, and to ensure that the static iron core 21 and the moving part 30 continue to attract Together.
  • the energizing current can be reduced through circuit control, and the power consumption and power consumption of the coil 23 can be reduced while ensuring that the static iron core 21 and the moving part 30 are attracted. fever.
  • the pressure holding valve at the sprinkler end is always open during the entire exhaust and spraying process, or the pressure holding valve can be directly removed to save the parts of the spray system.
  • Embodiment 20 and the technical solutions described in Embodiments 1 to 15 can be referred to each other for reference, and will not be repeated here.
  • an embodiment of the present invention also provides an airborne spray head structure, which includes a valve body 10, an electromagnet 20 and a moving part 30.
  • the valve body 10 has an inlet 11 and an outlet 12.
  • the electromagnet 20 is arranged in the valve body 10, and the electromagnet 20 includes a static iron core 21, and the static iron core 21 is provided with a first passage 211 communicating with the inlet 11.
  • the moving part 30 is movably arranged in the valve body 10, and a second passage 31 communicating with the first passage 211 is provided on the moving part 30; wherein, one end of the moving part 30 facing away from the static iron core 21 has at least one end extending in the radial direction.
  • the end of one end; or the first channel 211 at the end and on the side wall communicates with each other.
  • the inlet 11, the first channel 211, the second channel 31 and the outlet 12 form a passage.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, and the moving part 30 blocks the first channel 211 under the action of the magnetic field of the electromagnet 20, and the passage is disconnected.
  • the electromagnet 20 When the electromagnet 20 is de-energized, the static iron core 21 disappears magnetically, the moving part 30 is far away from the static iron core 21, and the passage is connected.
  • the end of the moving part 30 facing away from the static iron core 21 has the second channel 31, and the end of the moving part 30 facing the static iron core 21 functions to cut off the passage, which is a plugging head.
  • an achievable way is that one end of the moving member 30 facing away from the static iron core 21 has at least one second channel 31 extending in the radial direction.
  • the second channel 31 can pass through the end of the moving part 30 facing away from the static iron core 21 along the radial direction of the moving part 30, or one end can pass through the end of the moving part 30 facing away from the static iron core 21, so that the medium can move from The side wall of the member 30 moves to the end of the moving member facing away from the static iron core 21.
  • the static iron core 21 adsorbs the moving part 30, and the end of the moving part 30 facing the static iron core 21 is connected to the static iron core 21, and the first channel of the static iron core 21 is blocked by the end of the moving part 30 211, thereby cutting off the passage, and the medium in the first channel 211 stops flowing at this time.
  • the static iron core 21 loses its magnetism, the static iron core 21 is separated from the moving part 30, and the moving part 30 moves to the outlet 12 of the valve body 10. At this time, the medium flows out from the first passage 211, and then The side wall of the moving part 30 moves to the end of the moving part facing away from the static iron core 21, and the medium can enter the outlet 12 of the valve body 10 through the second passage 31 and be discharged.
  • the side wall of the moving part 30 has at least one second channel 31 along the axial direction, and the second channel 31 located on the side wall at least penetrates the moving part 30 facing away from the static iron core 21 One end of the end.
  • the electromagnet 20 When the electromagnet 20 is energized, the static iron core 21 adsorbs the moving part 30, and the moving part 30 blocks the first passage 211, and the passage is disconnected at this time.
  • the electromagnet 20 is powered off, the moving part 30 is separated from the static iron core 21, and the second channel 31 of the moving part 30 communicates with the first channel 211. At this time, the medium in the first channel 211 can flow out along the second channel 31 , And then discharged from the outlet 12 of the valve body 10.
  • the above two methods can be implemented individually or in combination.
  • the second channel 31 at the end and the side wall are connected.
  • the second channel 31 at the end and on the side wall makes the flow of the medium in the channel smoother.
  • the radial dimension of the moving part 30 matches the outer radial dimension of the static iron core 21 to prevent the moving part 30 from entering and blocking the first passage 211.
  • the end of the moving part 30 facing the static iron core 21 is provided with a gasket 32.
  • the gasket 32 can be made of plastic material, rubber material or silicone material, and the gasket 32 has a certain elasticity, so as to play a good sealing effect. Under the action of the spring, the gasket 32 seals the outlet 12 of the valve body 10. The spring can effectively ensure that the gasket 32 at the end of the moving part 30 can compress the outlet 12 of the valve body 10, thereby realizing and replacing the original protection. The leak-proof function of the pressure valve.
  • the moving part 30 has a sealing groove at one end facing the static iron core 21, and the sealing gasket 32 is arranged in the sealing groove.
  • the sealing pad 32 and the sealing groove can be connected by bonding, interference fit connection, or snap connection.
  • the airborne sprinkler structure in the embodiment of the present invention includes two working conditions, exhaust and spray.
  • the electromagnet 20 When exhausting, the electromagnet 20 is powered off, the static iron core 21 has no magnetism, and the moving part 30 is moved away from the static iron core 21 under the action of the spring. At this time, the end of the moving part 30 facing the static iron core 21 is away from the static iron core 21, the first passage 211 of the static iron core 21 and the second passage 31 of the moving part 30 are connected, and the entire passage is connected.
  • the gas in the pipeline and the water pump enters the passage from the inlet 11 of the valve body 10, flows through the first channel 211 of the static iron core 21, and takes away the heat generated by the coil 23 when it flows through the inside of the static iron core 21.
  • the gas then passes through the second passage 31 of the moving part 30, flows through the outlet 12 of the valve body 10 and is discharged, thereby completing the exhaust process.
  • the airborne sprinkler structure includes, but is not limited to, when it can be applied to agricultural plant protection machines.
  • the agricultural plant protection machines can complete the entire exhaust process during the flight, so that the liquid medicine brought out during the exhaust process can be sprayed directly onto the farmland. The problem of manual recovery of liquid medicine.
  • the spraying operation can be carried out.
  • the electromagnet 20 needs to be continuously powered off to ensure that the static iron core 21 and the moving part 30 are kept away from each other.
  • the pressure holding valve at the sprinkler end is always open during the entire exhaust and spraying process, or the pressure holding valve can be directly removed to save the parts of the spray system.
  • the electromagnet 20 When charging or debugging equipment is needed, and the path needs to be disconnected, the electromagnet 20 is energized. At this time, the static iron core 21 generates magnetism, and the moving part 30 is subjected to the electromagnetic force to overcome the spring force to the static state under the action of the electromagnetic field. The iron core 21 moves until it engages with the static iron core 21. At this time, the end of the moving part 30 facing the static iron core 21 blocks the first channel 211, the first channel 211 of the static iron core 21 and the second channel 31 of the moving part 30 are disconnected, and the entire passage is disconnected.
  • Embodiment 21 and the technical solutions described in Embodiments 1 to 15 can be referred to each other for reference, and will not be repeated here.
  • the airborne sprinkler structure includes but is not limited to being used for agricultural plant protection drones, pesticide spraying vehicles, greening sprinklers, and greening spraying equipment, etc.
  • the state of the electromagnet is controlled by the circuit, thereby controlling the on-off of the passage in the airborne nozzle structure, so as to realize the automatic exhaust and spraying of the airborne nozzle structure.
  • the problem of manual exhaust can be completely solved by controlling the state of the electromagnet, and the inconvenience caused by manual exhaust can be eliminated.
  • the moving part By energizing the electromagnet to generate a magnetic field, the moving part is forced to move, so as to realize the disconnection and connection of the passage.
  • the principle is simple and the structural reliability is high. A higher degree of automation is the development trend of the industry.
  • the airborne nozzle structure provided by the embodiment of the present invention greatly simplifies the manual operation required by the user, and improves Improve the user experience.
  • the passage is located inside the valve body, which simplifies the structure of the passage. When the medium passes through the valve body, it can take away the heat generated by the electromagnet when the electromagnet is energized, thereby improving the heat dissipation effect of the electromagnet.
  • the onboard sprinkler structure can be controlled such as one in and two out, one in and multiple out, multiple in and one out, and multiple in and out.
  • the on-board sprinkler structure has an on-off valve.
  • the on-off valve can push the moving part through the on-off valve to open the passage when the static iron core and moving parts cannot be sucked in and the passage cannot be opened.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

农业植保无人机的机载喷头结构,包括:阀体(10),具有入口(11)及出口(12);电磁铁(20),设置在阀体(10)内,包含静铁芯(21),静铁芯(21)上设有与入口(11)连通的第一通道(211);移动件(30),可移动设置在阀体(10)内,移动件(30)上设有与第一通道(211)连通的第二通道(31);入口(11)、第一通道(211)、第二通道(31)及出口(12)形成通路。

Description

农业植保无人机的机载喷头结构、喷洒系统及无人机 技术领域
本发明涉及机械技术领域,尤其涉及农业植保无人机的机载喷头结构、喷洒系统及无人机。
背景技术
随着科学技术的不断发展,很多工作通过机器设备代替了人工作业。例如,植保无人机就是一种被广泛在农林植物保护作业的设备。通过植保无人机可代替人来实现喷洒作业,可以喷洒药剂、种子、粉剂等。现有的植保无人机上的喷洒系统中大多应用弹簧压紧保压阀,为保证水泵端关闭后喷头能够及时响应停喷,以及保证停喷后的防漏滴效果,使用了刚度较大的弹簧保压阀来进行密封。
但是,现有的植保无人机上的水泵的排气能力不足以顶开保压阀,从而导致喷洒系统在每次使用前都需要进行手动打开保压阀的操作来进行排气,对于具备多个喷头的喷洒系统,排气操作时就需要打开多个保压阀,整个操作十分复杂,且排气过程时间长。
发明内容
鉴于上述问题,提出了本发明,以便提供一种解决上述问题的农业植保无人机的机载喷头结构、喷洒系统及无人机。
在本发明的一个实施例中,提供了一种农业植保无人机的机载喷头结构,包括:
阀体,具有入口及出口;
电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;
所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
在本发明的一个实施例中,还提供了一种喷洒系统,包括:
泵机;
喷淋装置;
机载喷头结构,所述机载喷头结构包括:
阀体,具有入口及出口,所述入口及所述出口分别与所述泵机及所述喷淋装置连接;
电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
在本发明的一个实施例中,还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的喷洒系统;
所述喷洒系统包括:
泵机;
喷淋装置;
机载喷头结构,所述机载喷头结构包括:
阀体,具有入口及出口,所述入口及所述出口分别与所述泵机及所述喷淋装置连接;
电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;
所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
在本发明的一个实施例中,还提供了一种机载喷头结构,包括:
阀体,具有入口及出口;
电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;其中,所述移动件朝向所述静铁芯的一端具有沿径向延伸的至少一个所述第一通道;和/或所述移动件的侧壁上,沿轴向方向具有至少一个所述第一通道,位于侧壁上的所述第一通道至少贯通所述移动件朝向所述静铁芯的一端的端部;或者位于端部及位于侧壁上的所述第一通道连通;
其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
所述电磁铁通电状态下,所述静铁芯吸附所述移动件,所述移动件远离 所述出口,所述通路连通;
所述电磁铁断电状态下,所述静铁芯磁性消失,所述移动件封堵所述出口,所述通路断开。
在本发明的一个实施例中,还提供了一种机载喷头结构,包括:
阀体,具有入口及出口;
电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;其中,所述移动件背向所述静铁芯的一端具有沿径向延伸的至少一个所述第一通道;和/或所述移动件的侧壁上,沿轴向方向具有至少一个所述第一通道,位于侧壁上的所述第一通道至少贯通所述移动件背向所述静铁芯的一端的端部;或者位于端部及位于侧壁上的所述第一通道连通;
其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
所述电磁铁通电状态下,所述静铁芯吸附所述移动件,所述移动件封堵所述第一通道,所述通路断开;
所述电磁铁断电状态下,所述静铁芯磁性消失,所述移动件远离所述静铁芯,所述通路连通。
本发明实施例提供的技术方案,可解决农业植保无人机的喷洒系统在使用过程中遇到的手动排气问题。通过电路控制电磁铁的状态,从而控制机载喷头结构内的通路的通断,从而实现机载喷头结构自动排气及喷淋。通过控制电磁铁状态的方式可以完全解决手动排气的问题,消除手动排气带来的不便。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的机载喷头结构的剖面结构示意图;
图2为本发明一实施例提供的机载喷头结构的剖面结构立体示意图;
图3为本发明一实施例提供的机载喷头结构的分解结构示意图;
图4为本发明一实施例提供的机载喷头结构的立体结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
现有技术中,植保无人机上的喷洒系统在每次使用前都需要进行手动打开保压阀的操作来进行排气,对于具备多个喷头的喷洒系统,排气操作时就需要打开多个保压阀,整个操作十分复杂,且排气过程时间长。同时,手动排气时,排气过程中会带出药剂,这些药剂很容易喷溅到人手上,容易造成人员中毒的情况发生。
针对上述问题,本发明提供一种农业植保无人机的机载喷头结构、喷洒系统及无人机,可实现机载喷头结构自动排气及喷淋,完全解决手动排气的问题,消除手动排气带来的不便。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
图1为本发明一实施例提供的机载喷头结构的剖面结构示意图,图2为本发明一实施例提供的机载喷头结构的剖面结构立体示意图,图3为本发明一实施例提供的机载喷头结构的分解结构示意图,结合图1至3中所示。
在本发明的一个实施例中,提供了一种农业植保无人机的机载喷头结构,包括:阀体10、电磁铁20及移动件30。
其中,阀体10具有入口11及出口12。电磁铁20设置在阀体10内,电磁铁20包含静铁芯21,静铁芯21上设有与入口11连通的第一通道211。移动件30可移动设置在阀体10内,移动件30上设置有与第一通道211连通的第二通道31。其中,入口11、第一通道211、第二通道31及出口12,形成通路。
电磁铁20处于第一状态时,移动件30在电磁铁20的磁场作用下移动至第一位置,通路断开。电磁铁20处于第二状态时,移动件30在电磁铁20的磁场作用下移动至第二位置,通路连通。第一状态为断电状态和通电状态中的一个状态,第二状态为断电状态和通电状态中的另一个状态。在电磁铁20处于断电状态时,移动件30在电磁铁20的磁场作用下自动移动。
在本发明实施例中,阀体10通过不导磁的材料制成,例如塑胶材料、橡胶材料等,电磁铁20及移动件30均设置在阀体10内,阀体10为其内部的部件提供保护。阀体10上具有通电接口,电磁铁20通过通电接口与机载喷头结构外部的电路连接,以在电路的控制下改变电磁铁20的状态。
静铁芯21的一种可实现方式是静铁芯21为筒状结构,筒状结构的贯通腔即为第一通道211,静铁芯21配置为在电磁铁20通电状态下具有磁性。移动件30包括但不限于为通过亲磁材料制成,例如,铁、镍、钴及其合金等。
电磁铁20在第一状态和第二状态转换时,移动件30在第一位置和第二位置间转换,从而实现通路断开和开启的转换。具体地,根据移动件30的用于切断通路的封堵头的位置不同,电磁铁20在第一状态时,移动件30所处的第一位置也不相同。相应地,根据移动件30的用于切断通路的封堵头的位置不同,电磁铁20在第二状态时,移动件30所处的第二位置也不相同。
举例来说,以第一状态为断电状态,第二状态为通电状态,移动件30背向静铁芯21的一端为封堵头。
电磁铁20处于第一状态时,电磁铁20断电,此时静铁芯21不具有磁性,移动件30与静铁芯21未连接,此时,移动件30处于第一位置。移动件30的封堵头封堵在阀体10的出口12处,将阀体10的出口12封闭,从而将通路断开。
电磁铁20处于第二状态时,电磁铁20通电,此时静铁芯21具有磁性,移动件30与静铁芯21连接,此时,移动件30处于第二位置。移动件30的封堵头打开阀体10的出口12,从而将通路连通。
再举例来说,以第一状态为通电状态,第二状态为断电状态,移动件30朝向静铁芯21的一端为封堵头。
电磁铁20处于第一状态时,电磁铁20通电,此时静铁芯21具有磁性,移动件30与静铁芯21连接,此时,移动件30处于第一位置。移动件30的封堵头封堵在静铁芯21的第一通道211的出口12处,将静铁芯21的第一通道211的出口12密封,从而将通路断开。
电磁铁20处于第二状态时,电磁铁20断电,此时静铁芯21不具有磁性,移动件30与静铁芯21分离,此时,移动件30处于第二位置。移动件30的封堵头打开静铁芯21的第一通道211的出口12,从而将通路连通。
需要说明的是,上述举例说明的仅是本发明实施例中的一些可实现的实现方式,并不是全部的实现方式,此处并不构成本发明实施例的不当限定。
上述两个示例中,移动件30在电磁铁20断电状态时,远离静铁芯21的方式包括但不限与为设置弹性复位件40,通过弹性复位件40使得移动件30在电磁铁20断电状态时,远离静铁芯21。一种可实现的方式是,继续参见图1至3,阀体10内设置有容置腔,移动件30可移动设置在容置腔内。在容置腔内设有弹性复位件40,弹性复位件40分别与阀体10及移动件30连接。在电磁铁20通电状态下,静铁芯21吸附移动件30,此时弹性复位件40发生形变。当电磁铁20断电状态下,静铁芯21失去对于移动件30的磁性吸附力,在弹性复位件40的弹力作用下,移动件30移动至电磁铁20断电时相应的位置。本发明实施例中,弹性复位件40包括但不限于为弹簧、弹片等。例如,弹簧可套接在移动件30上,弹片可设置在移动件30的两侧。
当然,上述的弹性复位件40的设置方式及移动件30的形状仅是示意性的实施例,本发明实施例中并不限于上述的实施例,本领域技术人员可以根 据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
本发明实施例提供的技术方案,机载喷头结构包括但不限于为可用于农业植保无人机、农药喷洒车、绿化洒水车以及绿化喷洒设备等等设备上,可解决喷洒系统在使用过程中遇到的手动排气问题。通过电路控制电磁铁20的状态,从而控制机载喷头结构内的通路的通断,从而实现机载喷头结构自动排气及喷淋。通过控制电磁铁20状态的方式可以完全解决手动排气的问题,消除手动排气带来的不便。
通过给电磁铁20通电产生磁场使得移动件30受力产生运动,从而实现通路的断开及连通,其原理简单、结构可靠性高。更高的自动化程度是行业发展的趋势,本发明实施例提供的机载喷头结构相较于原始的手动开启保压阀排气的结构形式,极大的简化了用户需要进行手动的操作,提升了用户的使用体验。另外,通路位于阀体10内部,简化通路结构的同时,介质从阀体10内部通过时可以带走电磁铁20通电产生的热量,提升电磁铁20的散热效果。
实施例2
在实施例1的基础上,继续参见图1至3,电磁铁20的一种可实现的方式是,电磁铁20除了包括静铁芯21之外,还包括:线圈骨架22、线圈23及磁轭壳24。其中,线圈骨架22为线圈23提供支撑。磁轭壳24可防止线圈23通电后产生的磁场外放,影响其他部件,同时也防止外部具有磁场的部件影响线圈23及静铁芯21。具体地,线圈骨架22、线圈23及磁轭壳24的实现方式包括,线圈骨架22具有贯通式的内腔,静铁芯21套接在线圈骨架22的内腔内,线圈23缠绕在线圈骨架22外表面,磁轭壳24包裹在线圈23外表面,且磁轭壳24上设置有与通路连通的通孔。
本发明实施例中,线圈骨架22包括但不限于为筒状结构,其内腔的直径与静铁芯21的外径相匹配,此处的“相匹配”表示的是,线圈骨架22的内腔的直径可以略大于或略小于静铁芯21的外径。线圈骨架22的内腔的直径略大于静铁芯21的外径时,静铁芯21可通过粘接、焊接等方式连接在线圈骨架22的内腔内。线圈骨架22的内腔的直径略小于静铁芯21的外径时,静 铁芯21可挤进线圈骨架22的内腔内,线圈骨架22与静铁芯21过盈连接,为确保连接强度,静铁芯21与线圈骨架22之间再通过粘接、焊接等方式连接。
线圈骨架22的贯通式的内腔及磁轭壳24上的与通路连通的通孔可确保通路的畅通,介质从通路通过时可以带走线圈23通电产生的热量,提升电磁铁20的散热效果。
进一步地,为防止线圈23在线圈骨架22上发生移动,本发明实施例中,线圈骨架22的相对的两端分别设置有限位板221,线圈23设置在两个限位板221之间。通过线圈骨架22的相对的两端的限位板221,可沿着线圈23固件的轴向方向上,对线圈23起到限位作用,防止线圈23在线圈骨架22上发生移动。
实施例3
在实施例2的基础上,继续参见图1至3,磁轭壳24包括:第一磁轭241及第二磁轭242。第一磁轭241及第二磁轭242组成磁轭壳24,以对内部的线圈23、静铁芯21及线圈骨架22形成保护。第一磁轭241及第二磁轭242的一种具体实现方式为,第一磁轭241具有安装腔,线圈骨架22及线圈23设置在安装腔内,安装腔的底部设置有一通孔。第二磁轭242与第一磁轭241连接并封盖安装腔,第二磁轭242上设置有一通孔。
在安装时,可先将线圈23、静铁芯21及线圈骨架22组成整体后,再将他们整体安装在第一磁轭241内,再将第二磁轭242安装在第一磁轭241上,通过第二磁轭242封盖第一磁轭241的安装腔。
一种第一磁轭241及第二磁轭242的连接方式是,第一磁轭241在安装腔的开口处具有多个连接耳,第二磁轭242上与多个连接耳相应位置处设置有多个连接孔,第一磁轭241通过多个连接耳插入多个连接孔内,以便与第二磁轭242连接。当然,第一磁轭241与第二磁轭242的连接方式还可以是通过粘接、焊接、紧固件连接、卡扣连接等,此处不做具体限定。
相应地,第一磁轭241可为分体结构,包括第一底板及第一侧壁,第一底板的实现方式可与第二磁轭242相同,第一侧壁一端开口处设置有第一底板,第一底板上设置有一通孔。第一底板及第一侧壁的连接方式可参考第一 磁轭241与第二磁轭242的连接方式,此处不做具体限定。
实施例4
在实施例2或实施例3的基础上,继续参见图1至3,线圈骨架22的长度大于静铁芯21的长度,大于静铁芯21的部分为移动腔。移动件30部分或全部位于移动腔内。在实施例2或实施例3中,线圈骨架22的长度可以大于或小于静铁芯21的长度,在线圈23通电时,线圈23产生的磁场仅使得静铁芯21产生磁性,从而使得静铁芯21与移动件30磁性连接。
在实施例4中,移动件30部分或全部位于移动腔内,此时移动件30全部或部分也在线圈23的包围之内,当线圈23通电产生磁场后,位于移动腔内的移动件30也相应产生磁性,且移动件30朝向静铁芯21的一端与静铁芯21朝向移动件30的一端,磁性刚好相反,从而使得移动件30与静铁芯21磁性连接,且连接强度相较于仅静铁芯21具有磁性时磁性力更大。使得通电后,通路的切断或连通的反应更迅速,使得机载喷头结构的响应更灵敏。
实施例5
在实施例1至3中的任一实施例的基础上,继续参见图1至3,阀体10还包括阀套50。设置阀套50的一方面的作用是为移动件30提供移动空间,为移动件30的移动提供导向作用。具体地,阀套50的一种实现方式是,阀套50具有内腔,阀套50与电磁铁20连接,阀套50的内腔为容置腔。
阀套50的内腔为贯通式的内腔,内腔的一端开口与电磁铁20连接,另一端开与阀套50的出口12连通。两端开口之间的空间为容置腔,移动件30设置在容置腔内。在线圈骨架22具有移动腔时,移动件30部分位于容置腔内,部分位于移动腔内。或者移动件30在第一位置和第二位置移动时,在移动腔及容置腔内移动。若具有弹性复位件40是,弹性复位件40位于阀套50的内腔内。
阀套50的制作材料包括但不限于为塑胶材料或橡胶材料等材质,阀套50与电磁铁20的连接方式包括螺纹连接、卡接、过盈连接等方式。为确保阀套50与电磁铁20连接处的密封性,阀套50及电磁铁20之间还设有密封圈。
实施例6
在实施例5的基础上,继续参见图1至3,阀套50部分伸入线圈骨架22内,并套接在静铁芯21外侧。阀套50位于线圈骨架22外部的部分为容置腔。阀套50套接在静铁芯21的外侧,可以将静铁芯21与线圈23固件隔绝开,在静铁芯21的第一通道211内通入介质时,介质直接从第一通道211流经阀套50,再从阀体10的出口12排出。通过阀套50可防止介质从的第一通道211流入磁轭壳24内,避免线圈23接触介质导致线圈23通电损毁。
进一步地,为限制阀套50的连接位置,阀套50的外壁上设有限位凸台,通过限位凸台可将阀套50部分卡在线圈骨架22的外部,从而限制阀套50的伸入距离,限制阀套50的连接位置。
除了通过限位凸台限制阀套50的连接位置外,还可以通过设置阀体10的尺寸进行限制,具体地,阀套50位于线圈骨架22外部的部分的直径大于线圈骨架22的直径。
实施例7
在实施例1至6中的任一实施例的基础上,继续参见图1至3,本发明实施例中,可通过设置第二通道31的位置相应地设置移动件30的封堵头。在实施例7中,移动件30朝向静铁芯21的一端具有第二通道31,那么移动件30背向静铁芯21的一端即起到切断通路的作用,即为封堵头。
具体地,一种可实现的方式是,移动件30朝向静铁芯21的一端具有沿径向延伸的至少一个第二通道31。第二通道31可沿着移动件30的径向方向两端贯穿移动件30朝向静铁芯21的一端,也可以一端贯穿移动件30朝向静铁芯21的一端,使得介质能够从移动件30朝向静铁芯21的一端流向移动件30的侧壁。
在电磁铁20通电时,静铁芯21吸附移动件30,移动件30的第二通道31与第一通道211连通,移动件30的封堵头远离阀体10的出口12,此时第一通道211内的介质可沿着第二通道31流经移动件30的侧壁,进而从阀体10的出口12排出。
在电磁铁20断电时,静铁芯21失去磁性,静铁芯21与移动件30分离,移动件30移向阀体10的出口12,并对阀体10的出口12封堵,通道断开, 此时第一通道211内的介质停止流动。
另一种可实现的方式是,移动件30的侧壁上,沿轴向方向具有至少一个第二通道31,位于侧壁上的第二通道31至少贯通移动件30朝向静铁芯21的一端的端部。在电磁铁20通电时,静铁芯21吸附移动件30,移动件30的第二通道31与第一通道211连通,移动件30的封堵头远离阀体10的出口12,此时第一通道211内的介质可沿着第二通道31流出,进而从阀体10的出口12排出。
上述的两种方式可以单独实现,也可以组合在一起实现,在组合在一起实现是,还可以有一优选方案,即位于端部及位于侧壁上的第二通道31连通。通过位于端部及位于侧壁上的第二通道31使得位于通路内的介质流动更顺畅。
需要说明的是,上述的实施例中,移动件30径向的尺寸与静铁芯21外径向的尺寸相匹配,防止移动件30进入并堵塞第一通道211。
为进一步保证移动件30背向静铁芯21的一端对阀体10的出口12的密封性,本发明实施例中,移动件30背向静铁芯21的一端设置有密封垫32。密封垫32可通过塑胶材料、橡胶材料或硅胶材料制成,密封垫32具有一定弹性,从而起到很好密封作用。在弹簧的作用下,密封垫32对阀体10的出口12进行密封,弹簧可有效保证移动件30的端部的密封垫32可以压紧阀体10的出口12,从而实现并代替原有保压阀防漏滴的功能。
更进一步地,为更好地将密封垫32设置在移动件30上,本发明实施例中,移动件30背向静铁芯21的一端具有密封槽,密封垫32设置在密封槽内。密封垫32与密封槽之间可通过粘接、过盈配合连接或卡接等方式实现连接。
下面通过使用场景介绍机载喷头结构如何工作,以容置腔内设有弹性复位件40,弹性复位件40为弹簧,阀体10的入口11与水泵连接为例。
本发明实施例中的机载喷头结构使用时包括两种工况,排气和喷洒。
进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用克服弹簧力向静铁芯21运动,直至与静铁芯21吸合。此时移动件30的背向静铁芯21的一端远离阀体10的出口12,静铁芯21的第一通道211及移动件30的第二通道31连通,整个通路连通。管路和水泵中的气体从阀体10的入口11进入通路,流经静铁芯21的第一通道 211,流经静铁芯21的内部时带走线圈23通电产生的热量。气体再通过移动件30的第二通道31,流经阀体10的出口12排出,从而完成排气流程。
机载喷头结构包括但不限于可应用在农业植保机上时,农业植保机可以在飞行过程中完成整个排气过程,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
进行喷洒时,在排气完成之后,可进行喷洒作业。喷洒过程中需要保证通路持续连通状态,即电磁铁20需要持续通电以保证静铁芯21和移动件30的持续吸合。根据电磁力的产生原理,静铁芯21和移动件30在距离十分接近时很小的电流就可以产生足够的电磁力来克服弹簧的作用力,保证静铁芯21和移动件30的持续吸合。因此,在喷洒过程中,电磁铁20通电完成动静铁芯21的吸合后可以通过电路控制降低通电电流,在保证静铁芯21和移动件30吸合的情况下减少线圈23的功耗和发热。
若喷洒系统的喷头端设置有保压阀,在整个排气和喷洒过程中喷头端的保压阀一直处于打开状态,或者可将保压阀直接去掉,节省喷洒系统的部件。
实施例8
在实施例1至6中的任一实施例的基础上,继续参见图1至3,本发明实施例中,可通过设置第二通道31的位置相应地设置移动件30的封堵头。在实施例8中,移动件30背向静铁芯21的一端具有第二通道31,那么移动件30朝向静铁芯21的一端即起到切断通路的作用,即为封堵头。
具体地,一种可实现的方式是,移动件30背向静铁芯21的一端具有沿径向延伸的至少一个第二通道31。第二通道31可沿着移动件30的径向方向两端贯穿移动件30背向静铁芯21的一端,也可以一端贯穿移动件30背向静铁芯21的一端,使得介质能够从移动件30的侧壁移流向动件背向静铁芯21的一端。
在电磁铁20通电时,静铁芯21吸附移动件30,移动件30朝向静铁芯21的一端与静铁芯21连接,通过移动件30的端部封堵静铁芯21的第一通道211,从而切断通路,此时第一通道211内的介质停止流动。
在电磁铁20断电时,静铁芯21失去磁性,静铁芯21与移动件30分离,移动件30移向阀体10的出口12,此时,介质从第一通道211内流出,再经 移动件30的侧壁移流向动件背向静铁芯21的一端,介质可通过第二通道31进入阀体10的出口12排出。
另一种可实现的方式是,移动件30的侧壁上,沿轴向方向具有至少一个第二通道31,位于侧壁上的第二通道31至少贯通移动件30背向静铁芯21的一端的端部。在电磁铁20通电时,静铁芯21吸附移动件30,移动件30封堵住第一通道211,此时通路断开。在电磁铁20断电时,移动件30与静铁芯21分离,移动件30的第二通道31与第一通道211连通,此时第一通道211内的介质可沿着第二通道31流出,进而从阀体10的出口12排出。
上述的两种方式可以单独实现,也可以组合在一起实现,在组合在一起实现是,还可以有一优选方案,即位于端部及位于侧壁上的第二通道31连通。通过位于端部及位于侧壁上的第二通道31使得位于通路内的介质流动更顺畅。
需要说明的是,上述的实施例中,移动件30径向的尺寸与静铁芯21外径向的尺寸相匹配,防止移动件30进入并堵塞第一通道211。
为进一步保证移动件30朝向静铁芯21的一端对阀体10的出口12的密封性,本发明实施例中,移动件30朝向静铁芯21的一端设置有密封垫32。密封垫32可通过塑胶材料、橡胶材料或硅胶材料制成,密封垫32具有一定弹性,从而起到很好密封作用。在弹簧的作用下,密封垫32对阀体10的出口12进行密封,弹簧可有效保证移动件30的端部的密封垫32可以压紧阀体10的出口12,从而实现并代替原有保压阀防漏滴的功能。
更进一步地,为更好地将密封垫32设置在移动件30上,本发明实施例中,移动件30朝向静铁芯21的一端具有密封槽,密封垫32设置在密封槽内。密封垫32与密封槽之间可通过粘接、过盈配合连接或卡接等方式实现连接。
下面通过使用场景介绍机载喷头结构如何工作,以容置腔内设有弹性复位件40,弹性复位件40为弹簧,阀体10的入口11与水泵连接为例。
本发明实施例中的机载喷头结构使用时包括两种工况,排气和喷洒。
进行排气时,电磁铁20断电,静铁芯21没有磁性,移动件30在弹簧的作用下,远离静铁芯21。此时移动件30的朝向静铁芯21的一端远离静铁芯21,静铁芯21的第一通道211及移动件30的第二通道31连通,整个通路连通。管路和水泵中的气体从阀体10的入口11进入通路,流经静铁芯21的第 一通道211,流经静铁芯21的内部时带走线圈23通电产生的热量。气体再通过移动件30的第二通道31,流经阀体10的出口12排出,从而完成排气流程。
机载喷头结构包括但不限于可应用在农业植保机上时,农业植保机可以在飞行过程中完成整个排气过程,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
进行喷洒时,在排气完成之后,可进行喷洒作业。喷洒过程中需要保证通路持续连通状态,即电磁铁20需要持续断电以保证静铁芯21和移动件30的持续远离。
若喷洒系统的喷头端设置有保压阀,在整个排气和喷洒过程中喷头端的保压阀一直处于打开状态,或者可将保压阀直接去掉,节省喷洒系统的部件。
当需要装药或调试设备时,需要通路断开时,则将电磁铁20通电,此时,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用克服弹簧力向静铁芯21运动,直至与静铁芯21吸合。此时移动件30的朝向静铁芯21的一端封堵第一通道211,静铁芯21的第一通道211及移动件30的第二通道31断开,整个通路断开。
实施例9
在实施例1至8中的任一实施例的基础上,继续参见图1至4,为更好地实现机载喷头结构与其他不部件进行连接,本发明实施例中,机载喷头结构还包括:第一接头60及第二接头61。其中,第一接头60与阀体10的入口11连接,第二接头61与阀体10的出口12连接,第一接头60及第二接头61均包括至少一路通道与通路连通。通过第一接头60及第二接头61,可将机载喷头结构很方便与水泵、喷淋头连接。同时通过设置第一接头60及第二接头61的通道的数量,实现机载喷头结构的不同的控制模式。
举例来说,第一接头60具有一路通道,可连接水泵。第二接头61具有两路通道,可连接两个喷淋头。这样可实现机载喷头结构的一进两出的模式,通过连通阀体10内的通路可实现两个喷淋头同时排气及喷洒作业。
当然,第一接头60也可具有两路通道、三路通道及多路通道等,第二接头61也可具有一路通道、三路通道及多路通道等,第一接头60及第二接头 61具有通道的数量可根据实际应用需求进行设置,本发明实施例中不做具体限定,此处不再一一赘述。
机载喷头结构具有阀套50时,第二接头61与阀套50连接,第二接头61与阀套50的连接方式可为粘接、卡接、螺纹连接、过盈连接等,为保证第二接头61与阀套50之间的密封性,第二接头61与阀套50之间设置有密封圈。
实施例10
在实施例1至9中的任一实施例的基础上,继续参见图1至4,机载喷头结构中的电磁铁20如果出现损坏就会导致无法切断或连通通路的情况,或者由于其他原因导致移动件30无法移动的情况出现时,就会影响机载喷头结构的排气及喷洒作业。为解决上述问题,本发明实施例中,机载喷头结构还包括:开关阀70。开关阀70可为手动阀或者是电动阀。开关阀70用于突发情况发生,例如,移动件30无法与静铁芯21吸合,通路无法切断或连通的情况出现时,通过开关阀70可驱动移动件30向静铁芯21方向移动,从而打开或切断通路。该工况属于临时应急方案。在机载喷头结构上没有设置第二接头61时,开关阀70可直接与阀体10连接,在机载喷头结构上设有第二接头61时,开关阀70可与第二接头61连接。下面以机载喷头结构上设有第二接头61为例,介绍开关阀70的设置方式。
开关阀70的实现方式包括多种,一种可实现的方式是,开关阀70包括顶杆71、控制组件72及密封膜片73。第二接头61还具有控制连接部611,控制连接部611具有贯通控制连接部611的控制通道,控制通道与第二接头61的各通道及通路连通。
顶杆71可移动设置在控制通道内。密封膜片73覆盖在控制通道的开口处。控制组件72与控制连接部611连接,可通过密封膜片73驱动顶杆71在控制通道内移动,顶杆71移动时可驱动移动件30移动。
以移动件30朝向静铁芯21的一端具有第二通道31,容置腔内设有弹性复位件40,弹性复位件40为弹簧为例。
进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用无法克服弹簧力向静铁芯21运动,无法实现移动 件30与静铁芯21吸合。此时,虽然电磁铁20在通电状态下,但是移动件30的背向静铁芯21的一端无法远离阀体10的出口12,整个通路始终处于断开状态,机载喷头结构无法正常工作。
此时,可通过开关阀70驱动移动件30向静铁芯21移动,以打开通路。具体操作如下,通过控制组件72带动密封膜片73向静铁芯21所在方向移动,密封膜片73驱动顶杆71在控制通道内向静铁芯21所在方向移动,顶杆71移动时带动移动件30向静铁芯21所移动,从而打开通路。根据电磁力的产生原理,静铁芯21和移动件30在距离十分接近时很小的电流就可以产生足够的电磁力来克服弹簧的作用力,保证静铁芯21和移动件30的持续吸合。因此,当顶杆71带动移动件30至移动件30与静铁芯21连接时,静铁芯21和移动件30可通过磁力连接。
本发明实施例中,密封膜片73的一种实现方式是,密封膜片73为四周边缘的厚度小于中部位置的厚度。密封膜片73的四周边缘较薄,可方便控制组件72将密封膜片73挤压在控制通道的开口处。密封膜片73的中部较厚,可方便密封膜片73对控制通道的开口进行有效密封。
为保证顶杆71进入通路后,保证通路的畅通,顶杆71的实现方式包括如下几种:
一种实现方式是,顶杆71与控制通道的侧壁之间具有间隙。顶杆71进入通路后,通路内的介质可通过顶杆71与控制通道的侧壁之间的间隙进入第二接头61,从而从第二接头61的通道内排出。
另一种可实现的方式是,顶杆71的侧壁上,沿轴向方向具有多个导流槽。顶杆71进入通路后,通路内的介质可通过顶杆71上的导流槽进入第二接头61,从而从第二接头61的通道内排出。
上述的两种方式可以单独实现,也可以组合在一起实现,此处不做具体限定。
进一步地,为提高顶杆71与移动件30之间的接触的稳定性,在顶杆71与控制通道的侧壁之间具有间隙时,顶杆71朝向移动件30的一端上设置有多个支撑臂。通过读个支撑臂可增大顶杆71与移动件30之间的接触面积,从而提高了顶杆71与移动件30之间的接触的稳定性。
进一步地,为防止介质从控制通道内流出,顶杆71远离移动件30的一 端具有密封块,密封块的直径与控制通道的直径匹配。通过密封块与密封膜片73的双重密封,可有效防止介质从控制通道内流出。同时,通过密封块的限定,可防止顶杆71在控制通道发生径向移动,使得顶杆71仅沿着控制通道的延伸方向移动。
实施例11
在实施例10的基础上,继续参见图1至3,本发明实施例中,一种控制组件72的可实现方式是,控制组件72包括阀座721以及控制杆722。阀座721与控制连接部611连接,阀座721内具有沿控制通道延长线方向延伸的控制腔。控制杆722与阀座721可移动连接。控制杆722沿控制腔延伸方向移动时,控制杆722可通过密封膜片73带动顶杆71移动。
阀座721与控制连接部611连接的方式包括但不限于为螺旋连接、卡接等。为便于阀座721的安装,阀座721的外表面上设置有操作部。操作部的实现方式包括但不限于为在阀座721的外表面的相对两端设的操作耳,通过操作耳可对阀座721手动进行安装,以便在没有工具的情况下也能实现阀座721的快速安装。
控制杆722的移动方式可以是手动移动和电动移动,若电动移动时,控制组件72还包括驱动电机,通过驱动电机的驱动轴给控制杆722施加驱动力,以完成控制杆722的移动。
本实施例中以手动移动方式为例进行介绍。
控制杆722与阀座721的连接方式可通过多种方式实现,例如参见图1至3中,控制杆722上还设置有杆帽,杆帽上设置有限位孔,阀座721远离控制连接部611的一端设置有限位柱,控制杆722通过限位孔套接在限位柱上,控制杆722伸入控制腔内。使用时,使用者可通过杆帽对控制杆722进行操作。当然,可以理解的是,杆帽的设置仅为控制杆722的一种实现方式,在本发明的一些实施例中,控制杆722上不设置杆帽也可以实现其功能。以上或以下实施例中,所述的控制杆722上均可设置有杆帽,或者不设置杆帽。杆帽的设置方式除图1至3中所示的方式外,还包括其他形式,此处不再一一赘述。
在一种可实现的方式中,控制腔的侧壁上,沿控制腔的延伸方向具有至 少两个安装滑道,控制腔的侧壁上,沿控制腔的径向方向具有至少两个控制滑道,每个控制滑道与一个安装滑道贯通。沿控制腔的延伸方向,控制滑道与安装滑道连接的一端与控制滑道远离安装滑道的一端之间具有高度差。
控制杆722包括杆体及设置在杆体上的至少两个凸块,凸块可沿安装滑道进入控制腔,并在安装滑道与控制滑道的连通处进入控制滑道,凸块沿控制滑道移动时,带动杆体沿着控制腔的延伸方向移动。
控制杆722可通过安装滑道进入控制腔内,凸块沿着安装滑道可进入控制滑道。同时,通过安装滑道也可实现从阀座721上拆卸控制杆722。
凸块沿控制滑道移动时,杆体做相应旋转的动作,由于控制滑道的两端具有高度差,凸块从控制滑道的一端移动到另一端的过程中,沿着控制腔的延伸方向,凸块会相应移动一定距离,即杆体沿着控制腔的延伸方向移动一定距离,杆体在移动时可带动顶杆71移动。
以移动件30朝向静铁芯21的一端具有第二通道31,容置腔内设有弹性复位件40,弹性复位件40为弹簧为例。
在初始状态时,控制杆722上的凸块位于控制滑道的远离顶杆71的一端。进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用无法克服弹簧力向静铁芯21运动,无法实现移动件30与静铁芯21吸合。此时,虽然电磁铁20在通电状态下,但是移动件30的背向静铁芯21的一端无法远离阀体10的出口12,整个通路始终处于断开状态,机载喷头结构无法正常工作。
此时,可通过旋转开关阀70中的控制杆722,控制杆722在旋转时,凸块沿着控制滑道一端,逐渐向控制滑道靠近顶杆71的一端移动,在移动过程中,凸块沿着控制腔的延伸方向会相应移动,凸块移动时带动杆体移动。杆体沿着控制腔的延伸方向移动时,带动密封膜片73向静铁芯21所在方向移动,密封膜片73逐渐带动顶杆71向静铁芯21的方向移动。当凸块移动到控制滑道靠近顶杆71的一端时,顶杆71带动移动件30完全远离阀体10的出口12,通路连通。
实施例12
在实施例11的基础上,提出实施例12,实施例12在实施例11的基础 上对控制滑道进行改进。继续参见图1至3,在本发明实施例中,控制滑道与安装滑道连接的一端具有第一限位槽,控制滑道远离安装滑道的一端具有第二限位槽,沿控制腔的延伸方向,第一限位槽与第二限位槽之间具有高度差。凸块沿控制滑道进入第一限位槽或第二限位槽时,带动杆体沿着控制腔的延伸方向移动。
凸块沿控制滑道移动时,杆体做相应旋转的动作,控制滑道的各位置均处于同一旋转面上,沿控制腔的延伸方向,没有高度差。因此凸块在控制滑道内移动时,沿着控制腔的延伸方向,凸块不会相应移动一定距离。第一限位槽与第二限位槽之间具有高度差,因此,当移动到两端的第一限位槽或第二限位槽时,凸块会相应移动一定距离,即杆体沿着控制腔的延伸方向移动一定距离,杆体在移动时可带动顶杆71移动。
以移动件30朝向静铁芯21的一端具有第二通道31,容置腔内设有弹性复位件40,弹性复位件40为弹簧为例。
在初始状态时,控制杆722上的凸块位于控制滑道的远离顶杆71的第一限位槽内。进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用无法克服弹簧力向静铁芯21运动,无法实现移动件30与静铁芯21吸合。此时,虽然电磁铁20在通电状态下,但是移动件30的背向静铁芯21的一端无法远离阀体10的出口12,整个通路始终处于断开状态,机载喷头结构无法正常工作。
此时,可通过旋转开关阀70中的控制杆722,控制杆722在旋转时,凸块从第一限位槽出来进入控制滑道,沿着控制滑道移动时,凸块沿着控制腔的延伸方向不会相应移动。当凸块进入第二限位槽时,凸块沿着控制腔的延伸方向会相应移动,凸块移动时带动杆体移动。杆体沿着控制腔的延伸方向移动时,带动密封膜片73向静铁芯21所在方向移动,密封膜片73逐渐带动顶杆71向静铁芯21的方向移动。当凸块移动到进入第二限位槽时,顶杆71带动移动件30完全远离阀体10的出口12,通路连通。
为了更好实现凸块在第一限位槽和第二限位槽之间转换,本发明实施例中,控制腔内还设有弹性件74。弹性件74分别与控制杆722及阀座721连接,凸块沿控制滑道移动并进入第一限位槽或第二限位槽时,弹性件74为控制杆722提供作用力。
弹性件74包括但不限于为弹簧。一种可实现的方式是,控制腔内设置有抵接部,弹簧套接在控制杆722上,两端分别抵接在抵接部及凸块上。
为防止凸块旋转时从控制滑道进入安装滑道,凸块与控制滑道之间可过盈连接。更进一步地,为防止凸块旋转时从控制滑道进入安装滑道,本发明实施例中,至少一个控制滑道与安装滑道之间设置有防脱部。通过防脱部件安装滑道和控制滑道分隔成安装区域和控制区域,凸块在接触防脱部时会造成阻碍,使用者需要加大施力才能突破此阻碍。当使用者在旋转控制杆722是,突然感到旋转吃力,那么说明凸块已触碰到防脱部,提醒使用者再加大力度旋转的话,凸块会进入安装滑道。
在本发明的一些实施例中,控制滑道的实现方式包括多种,例如可为槽状结构,或者控制滑道贯穿控制腔的侧壁。
实施例13
在实施例10至12中的任一实施例的基础上,提出实施例13,实施例13在于对控制杆722的移动方式进行改进。本发明实施例中,控制腔的侧壁上设有内螺纹,控制杆722上设置有与内螺纹配合使用的外螺纹,控制杆722通过外螺纹与内螺纹连接,并可在沿着控制腔的轴向移动。通过控制腔的侧壁上的内螺纹及控制杆722上的外螺纹可实现控制杆722及阀座721的螺纹连接,外螺纹也可以理解为是设置在杆体上的。
控制杆722在转动过程中,可实现旋进旋出控制腔,从而控制杆722沿着控制腔的延伸方向移动相应距离,即控制杆722的杆体沿着控制腔的延伸方向移动一定距离,杆体在移动时可带动顶杆71移动。
以移动件30朝向静铁芯21的一端具有第二通道31,容置腔内设有弹性复位件40,弹性复位件40为弹簧为例。
在初始状态时,控制杆722上的凸块位于控制滑道的远离顶杆71的一端。进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用无法克服弹簧力向静铁芯21运动,无法实现移动件30与静铁芯21吸合。此时,虽然电磁铁20在通电状态下,但是移动件30的背向静铁芯21的一端无法远离阀体10的出口12,整个通路始终处于断开状态,机载喷头结构无法正常工作。
此时,可通过旋转开关阀70中的控制杆722,控制杆722在旋转时,控制腔的侧壁上的内螺纹及控制杆722上的外螺纹相互啮合,沿着螺纹的纹理,控制杆722的杆体可沿着控制腔的延伸方向移动,带动密封膜片73向静铁芯21所在方向移动,密封膜片73逐渐带动顶杆71向静铁芯21的方向移动,从而顶杆71带动移动件30远离阀体10的出口12,通路连通。
为了限定控制杆722的旋进距离,在内螺纹和/或外螺纹上设置有限位部,当控制杆722旋动至限位部的位置时,不能在进行旋转,即不能再沿着控制腔的延伸方向移动。
实施例14
在实施例10至13中的任一实施例的基础上,提出实施例14,实施例14在于对控制杆722的控制方式进行改进。本发明实施例中,沿控制腔的轴向方向,控制腔的侧壁上环设有第一凸台和第二凸台,控制杆722包括杆体及设置在杆体上的至少两个凸块,至少两个凸块位于第一凸台和第二凸台之间并可往复移动,至少两个凸块与第一凸台或第二凸台之间设置弹性件74。上述实施例中的控制杆722在进行移动时,均为旋转式的,实施例14中,为通过按压方式实现控制杆722的移动。弹性件74可为拉力弹簧或压力弹簧。
向控制杆722施加按压力,通过按压力的作用可使得控制杆722沿着控制腔的延伸方向移动相应距离,即控制杆722的杆体沿着控制腔的延伸方向移动一定距离,杆体在移动时可带动顶杆71移动。
以移动件30朝向静铁芯21的一端具有第二通道31,容置腔内设有弹性复位件40,弹性复位件40为弹簧,第一凸台为远离顶盖的凸台为例。
在初始状态时,控制杆722上的凸块在弹性件74的作用下位于控制滑道的远离顶杆71的第一凸台。进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用无法克服弹簧力向静铁芯21运动,无法实现移动件30与静铁芯21吸合。此时,虽然电磁铁20在通电状态下,但是移动件30的背向静铁芯21的一端无法远离阀体10的出口12,整个通路始终处于断开状态,机载喷头结构无法正常工作。
此时,可向控制杆722施加按压力,通过按压力的作用可使得控制杆722沿着控制腔的延伸方向移动相应距离,即控制杆722的杆体可沿着控制腔的 延伸方向移动,带动密封膜片73向静铁芯21所在方向移动,密封膜片73逐渐带动顶杆71向静铁芯21的方向移动,从而顶杆71带动移动件30远离阀体10的出口12,通路连通。
相应地,为了将凸块锁定在第一凸台或第二凸台上,在第一凸台或第二凸台上设置有锁定部。锁定部的一种实现方式是卡槽,在凸块移动至与第一凸台或第二凸台上时,旋转控制杆722使得凸块进入卡槽内,通过卡槽将凸块锁定在当前位置。解锁时,向相反的方向旋动控制杆722,施加按压力可带动控制杆722沿着控制腔的延伸方向移动。
实施例15
在实施例1至14中的任一实施例的基础上,相应地,本发明实施例还提供了一种喷洒系统,包括:泵机,喷淋装置及机载喷头结构。机载喷头结构可通过上述实施例1至4中的任一种机载喷头结构实现。
具体地,喷洒系统包括:泵机,喷淋装置及机载喷头结构。机载喷头结构包括:阀体10、电磁铁20及移动件30。其中,阀体10具有入口11及出口12,入口11及出口12分别与泵机及喷淋装置连接。电磁铁20设置在阀体10内,电磁铁20包含静铁芯21,静铁芯21上设有与入口11连通的第一通道211。移动件30可移动设置在阀体10内,移动件30上设置有与第一通道211连通的第二通道31。其中,入口11、第一通道211、第二通道31及出口12,形成通路。
电磁铁20处于第一状态时,移动件30在电磁铁20的磁场作用下移动至第一位置,通路断开;电磁铁20处于第二状态时,移动在电磁铁20的磁场作用下件移动至第二位置,通路连通。第一状态为断电状态和通电状态中的一个状态,第二状态为断电状态和通电状态中的另一个状态。在电磁铁20处于断电状态时,移动件30在电磁铁20的磁场作用下自动移动。
本发明实施例提供的技术方案,喷洒系统包括但不限于为可用于农业植保无人机、农药喷洒车、绿化洒水车以及绿化喷洒设备等等设备上,可解决喷洒系统在使用过程中遇到的手动排气问题。通过电路控制电磁铁20的状态,从而控制机载喷头结构内的通路的通断,从而实现机载喷头结构自动排气及喷淋。通过控制电磁铁20状态的方式可以完全解决手动排气的问题,消除手 动排气带来的不便。
通过给电磁铁20通电产生磁场使得移动件30受力产生运动,从而实现通路的断开及连通,其原理简单、结构可靠性高。更高的自动化程度是行业发展的趋势,本发明实施例提供的喷淋系统相较于原始的手动开启保压阀排气的结构形式,极大的简化了用户需要进行手动的操作,实际的测试发现利用本发明实施例提供的喷淋系统进行排气与原有的手动开启保压阀进行排气,排气速度相当,但整个操作流程得到了极大的简化,使用体验得到提升。另外,通路位于阀体10内部,简化通路结构的同时,介质从阀体10内部通过时可以带走电磁铁20通电产生的热量,提升电磁铁20的散热效果。而且,本发明实施例中的机载喷头结构可独立于喷洒系统,拆装和更换方便。
实施例16
在实施例1至15中的任一实施例的基础上,相应地,本发明实施例还提供了一种无人机,包括:无人机本体及设置在无人机本体上的喷洒系统。喷洒系统可通过上述实施例15实现,喷洒系统中的机载喷头结构可通过实施例1至14中的任一项实施例实现。
具体地,无人机,包括:无人机本体及设置在无人机本体上的喷洒系统。
喷洒系统包括:泵机;喷淋装置及机载喷头结构。机载喷头结构包括:阀体10、电磁铁20及移动件30。其中,阀体10具有入口11及出口12,入口11及出口12分别与泵机及喷淋装置连接。电磁铁20设置在阀体10内,电磁铁20包含静铁芯21,静铁芯21上设有与入口11连通的第一通道211。移动件30可移动设置在阀体10内,移动件30上设置有与第一通道211连通的第二通道31。其中,入口11、第一通道211、第二通道31及出口12,形成通路。
电磁铁20处于第一状态时,移动件30在电磁铁20的磁场作用下移动至第一位置,通路断开。电磁铁20处于第二状态时,移动件30在电磁铁20的磁场作用下移动至第二位置,通路连通。第一状态为断电状态和通电状态中的一个状态,第二状态为断电状态和通电状态中的另一个状态。在电磁铁20处于断电状态时,移动件30在电磁铁20的磁场作用下自动移动。
实施例16中所记载的相关喷洒系统及机载喷头结构的技术方案与实施 例1至15中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
实施例17
在实施例16的基础上,为方便在无人机上实现对机载喷头结构的控制,本发明实施例中,无人机本体上还设有控制器以及与控制器耦接的控制开关。控制开关与电磁铁20耦接,控制器通过控制开关控制电磁铁20的工作状态。通过控制器可方便使用者对机载喷头结构中的电磁铁20进行控制,控制器可控制的电磁铁20的数量不做限定,通过一个控制器可控制多个电磁铁20的工作状态,从而提高机载喷头结构的排气效率。
实施例18
在实施例17的基础上,提出实施例18,在实施例17中,使用者可直接通过无人机上的控制器对电磁铁20进行控制,但是这种方式需要无人机停在地面上时,使用者才能对其进行操作,非常麻烦,工作效率高。同时这样在排气过程中的药液会造成浪费。
为解决上述问题,在实施例18中,对控制器的控制方式进行改进。具体地,控制器与泵机耦接,控制器根据泵机的工作状态,通过控制开关控制电磁铁20的工作状态。控制器可监控泵机的工作状态,如果泵机启动,说明需要进行排气或喷洒作业,此时控制器可控制电磁铁20将通路打开,以便泵机及管路内的气体排出,气体排出后继而可进行喷洒作业。这个控制过程可以在无人机飞行过程中完成,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
如果泵机停止工作,说明排气或喷洒作业完成,此时控制器可控制电磁铁20将通路断开。
实施例19
在实施例17或实施例18的基础上,提出实施例19,本发明实施例中,无人机还包括地面控制端,地面控制端与控制器耦接,控制器接收地面控制端的控制信号,并根据控制信号通过控制开关控制电磁铁20的工作状态。地 面控制端可远程向控制器发送控制信号,从而控制器根据控制信号通过控制开关控制电磁铁20的工作状态。使用者可在地面上通过地面控制端控制无人机的上的控制器,无需无人机停在地面上。
举例来说,无人机在农田上方飞行,此时使用者可通过地面控制端向控制器发送开启通路的控制信号,此时控制器根据控制信号,控制开关控制电磁铁20将通路打开,以便泵机及管路内的气体排出,气体排出后继而可进行喷洒作业。这个控制过程在无人机飞行过程中完成,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
当喷洒作业完成后,使用者可通过地面控制端向控制器发送断开通路的控制信号,此时控制器根据控制信号,控制开关控制电磁铁20将通路断开。
实施例20
参见图1至4,本发明实施例还提供了一种机载喷头结构,包括:阀体10、电磁铁20及移动件30。其中,阀体10具有入口11及出口12。电磁铁20设置在阀体10内,电磁铁20包含静铁芯21,静铁芯21上设有与入口11连通的第一通道211。移动件30可移动设置在阀体10内,移动件30上设置有与第一通道211连通的第二通道31;其中,移动件30朝向静铁芯21的一端具有沿径向延伸的至少一个第一通道211;和/或移动件30的侧壁上,沿轴向方向具有至少一个第一通道211,位于侧壁上的第一通道211至少贯通移动件30朝向静铁芯21的一端的端部;或者位于端部及位于侧壁上的第一通道211连通。
其中,入口11、第一通道211、第二通道31及出口12,形成通路。电磁铁20通电状态下,静铁芯21吸附移动件30,移动件30在电磁铁20的磁场作用下远离出口12,通路连通。电磁铁20断电状态下,静铁芯21磁性消失,移动件30封堵出口12,通路断开。
在本发明实施例中,移动件30朝向静铁芯21的一端具有第二通道31,那么移动件30背向静铁芯21的一端即起到切断通路的作用,即为封堵头。
具体地,一种可实现的方式是,移动件30朝向静铁芯21的一端具有沿径向延伸的至少一个第二通道31。第二通道31可沿着移动件30的径向方向两端贯穿移动件30朝向静铁芯21的一端,也可以一端贯穿移动件30朝向静 铁芯21的一端,使得介质能够从移动件30朝向静铁芯21的一端流向移动件30的侧壁。
在电磁铁20通电时,静铁芯21吸附移动件30,移动件30的第二通道31与第一通道211连通,移动件30的封堵头远离阀体10的出口12,此时第一通道211内的介质可沿着第二通道31流经移动件30的侧壁,进而从阀体10的出口12排出。
在电磁铁20断电时,静铁芯21失去磁性,静铁芯21与移动件30分离,移动件30移向阀体10的出口12,并对阀体10的出口12封堵,通道断开,此时第一通道211内的介质停止流动。
另一种可实现的方式是,移动件30的侧壁上,沿轴向方向具有至少一个第二通道31,位于侧壁上的第二通道31至少贯通移动件30朝向静铁芯21的一端的端部。在电磁铁20通电时,静铁芯21吸附移动件30,移动件30的第二通道31与第一通道211连通,移动件30的封堵头远离阀体10的出口12,此时第一通道211内的介质可沿着第二通道31流出,进而从阀体10的出口12排出。
上述的两种方式可以单独实现,也可以组合在一起实现,在组合在一起实现是,还可以有一优选方案,即位于端部及位于侧壁上的第二通道31连通。通过位于端部及位于侧壁上的第二通道31使得位于通路内的介质流动更顺畅。
需要说明的是,上述的实施例中,移动件30径向的尺寸与静铁芯21外径向的尺寸相匹配,防止移动件30进入并堵塞第一通道211。
为进一步保证移动件30背向静铁芯21的一端对阀体10的出口12的密封性,本发明实施例中,移动件30背向静铁芯21的一端设置有密封垫32。密封垫32可通过塑胶材料、橡胶材料或硅胶材料制成,密封垫32具有一定弹性,从而起到很好密封作用。在弹簧的作用下,密封垫32对阀体10的出口12进行密封,弹簧可有效保证移动件30的端部的密封垫32可以压紧阀体10的出口12,从而实现并代替原有保压阀防漏滴的功能。
更进一步地,为更好地将密封垫32设置在移动件30上,本发明实施例中,移动件30背向静铁芯21的一端具有密封槽,密封垫32设置在密封槽内。密封垫32与密封槽之间可通过粘接、过盈配合连接或卡接等方式实现连接。
下面通过使用场景介绍机载喷头结构如何工作,以容置腔内设有弹性复位件40,弹性复位件40为弹簧,阀体10的入口11与水泵连接为例。
本发明实施例中的机载喷头结构使用时包括两种工况,排气和喷洒。
进行排气时,电磁铁20通电,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用克服弹簧力向静铁芯21运动,直至与静铁芯21吸合。此时移动件30的背向静铁芯21的一端远离阀体10的出口12,静铁芯21的第一通道211及移动件30的第二通道31连通,整个通路连通。管路和水泵中的气体从阀体10的入口11进入通路,流经静铁芯21的第一通道211,流经静铁芯21的内部时带走线圈23通电产生的热量。气体再通过移动件30的第二通道31,流经阀体10的出口12排出,从而完成排气流程。
机载喷头结构包括但不限于可应用在农业植保机上时,农业植保机可以在飞行过程中完成整个排气过程,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
进行喷洒时,在排气完成之后,可进行喷洒作业。喷洒过程中需要保证通路持续连通状态,即电磁铁20需要持续通电以保证静铁芯21和移动件30的持续吸合。根据电磁力的产生原理,静铁芯21和移动件30在距离十分接近时很小的电流就可以产生足够的电磁力来克服弹簧的作用力,保证静铁芯21和移动件30的持续吸合。因此,在喷洒过程中,电磁铁20通电完成动静铁芯21的吸合后可以通过电路控制降低通电电流,在保证静铁芯21和移动件30吸合的情况下减少线圈23的功耗和发热。
若喷洒系统的喷头端设置有保压阀,在整个排气和喷洒过程中喷头端的保压阀一直处于打开状态,或者可将保压阀直接去掉,节省喷洒系统的部件。
实施例20中所记载的技术方案与实施例1至15中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
实施例21
参见图1至4,本发明实施例还提供了一种机载喷头结构,包括:阀体10、电磁铁20及移动件30。其中,阀体10具有入口11及出口12。电磁铁20设置在阀体10内,电磁铁20包含静铁芯21,静铁芯21上设有与入口11连通的第一通道211。移动件30可移动设置在阀体10内,移动件30上设置 有与第一通道211连通的第二通道31;其中,移动件30背向静铁芯21的一端具有沿径向延伸的至少一个第一通道211;和/或移动件30的侧壁上,沿轴向方向具有至少一个第一通道211,位于侧壁上的第一通道211至少贯通移动件30背向静铁芯21的一端的端部;或者位于端部及位于侧壁上的第一通道211连通。
其中,入口11、第一通道211、第二通道31及出口12,形成通路。电磁铁20通电状态下,静铁芯21吸附移动件30,移动件30在电磁铁20的磁场作用下封堵第一通道211,通路断开。电磁铁20断电状态下,静铁芯21磁性消失,移动件30远离静铁芯21,通路连通。
在本发明实施例中,移动件30背向静铁芯21的一端具有第二通道31,那么移动件30朝向静铁芯21的一端即起到切断通路的作用,即为封堵头。
具体地,一种可实现的方式是,移动件30背向静铁芯21的一端具有沿径向延伸的至少一个第二通道31。第二通道31可沿着移动件30的径向方向两端贯穿移动件30背向静铁芯21的一端,也可以一端贯穿移动件30背向静铁芯21的一端,使得介质能够从移动件30的侧壁移流向动件背向静铁芯21的一端。
在电磁铁20通电时,静铁芯21吸附移动件30,移动件30朝向静铁芯21的一端与静铁芯21连接,通过移动件30的端部封堵静铁芯21的第一通道211,从而切断通路,此时第一通道211内的介质停止流动。
在电磁铁20断电时,静铁芯21失去磁性,静铁芯21与移动件30分离,移动件30移向阀体10的出口12,此时,介质从第一通道211内流出,再经移动件30的侧壁移流向动件背向静铁芯21的一端,介质可通过第二通道31进入阀体10的出口12排出。
另一种可实现的方式是,移动件30的侧壁上,沿轴向方向具有至少一个第二通道31,位于侧壁上的第二通道31至少贯通移动件30背向静铁芯21的一端的端部。在电磁铁20通电时,静铁芯21吸附移动件30,移动件30封堵住第一通道211,此时通路断开。在电磁铁20断电时,移动件30与静铁芯21分离,移动件30的第二通道31与第一通道211连通,此时第一通道211内的介质可沿着第二通道31流出,进而从阀体10的出口12排出。
上述的两种方式可以单独实现,也可以组合在一起实现,在组合在一起 实现是,还可以有一优选方案,即位于端部及位于侧壁上的第二通道31连通。通过位于端部及位于侧壁上的第二通道31使得位于通路内的介质流动更顺畅。
需要说明的是,上述的实施例中,移动件30径向的尺寸与静铁芯21外径向的尺寸相匹配,防止移动件30进入并堵塞第一通道211。
为进一步保证移动件30朝向静铁芯21的一端对阀体10的出口12的密封性,本发明实施例中,移动件30朝向静铁芯21的一端设置有密封垫32。密封垫32可通过塑胶材料、橡胶材料或硅胶材料制成,密封垫32具有一定弹性,从而起到很好密封作用。在弹簧的作用下,密封垫32对阀体10的出口12进行密封,弹簧可有效保证移动件30的端部的密封垫32可以压紧阀体10的出口12,从而实现并代替原有保压阀防漏滴的功能。
更进一步地,为更好地将密封垫32设置在移动件30上,本发明实施例中,移动件30朝向静铁芯21的一端具有密封槽,密封垫32设置在密封槽内。密封垫32与密封槽之间可通过粘接、过盈配合连接或卡接等方式实现连接。
下面通过使用场景介绍机载喷头结构如何工作,以容置腔内设有弹性复位件40,弹性复位件40为弹簧,阀体10的入口11与水泵连接为例。
本发明实施例中的机载喷头结构使用时包括两种工况,排气和喷洒。
进行排气时,电磁铁20断电,静铁芯21没有磁性,移动件30在弹簧的作用下,远离静铁芯21。此时移动件30的朝向静铁芯21的一端远离静铁芯21,静铁芯21的第一通道211及移动件30的第二通道31连通,整个通路连通。管路和水泵中的气体从阀体10的入口11进入通路,流经静铁芯21的第一通道211,流经静铁芯21的内部时带走线圈23通电产生的热量。气体再通过移动件30的第二通道31,流经阀体10的出口12排出,从而完成排气流程。
机载喷头结构包括但不限于可应用在农业植保机上时,农业植保机可以在飞行过程中完成整个排气过程,从而排气过程中带出的药液可以直接喷洒到农田上方,同时解决了需要手工回收药液的问题。
进行喷洒时,在排气完成之后,可进行喷洒作业。喷洒过程中需要保证通路持续连通状态,即电磁铁20需要持续断电以保证静铁芯21和移动件30的持续远离。
若喷洒系统的喷头端设置有保压阀,在整个排气和喷洒过程中喷头端的保压阀一直处于打开状态,或者可将保压阀直接去掉,节省喷洒系统的部件。
当需要装药或调试设备时,需要通路断开时,则将电磁铁20通电,此时,静铁芯21产生磁性,移动件30在电磁场的作用下,受到电磁力作用克服弹簧力向静铁芯21运动,直至与静铁芯21吸合。此时移动件30的朝向静铁芯21的一端封堵第一通道211,静铁芯21的第一通道211及移动件30的第二通道31断开,整个通路断开。
实施例21中所记载的技术方案与实施例1至15中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
综上所示,本发明实施例提供的技术方案具有如下有益效果:一方面,机载喷头结构包括但不限于为可用于农业植保无人机、农药喷洒车、绿化洒水车以及绿化喷洒设备等等设备上,可解决喷洒系统在使用过程中遇到的手动排气问题。通过电路控制电磁铁的状态,从而控制机载喷头结构内的通路的通断,从而实现机载喷头结构自动排气及喷淋。通过控制电磁铁状态的方式可以完全解决手动排气的问题,消除手动排气带来的不便。
通过给电磁铁通电产生磁场使得移动件受力产生运动,从而实现通路的断开及连通,其原理简单、结构可靠性高。更高的自动化程度是行业发展的趋势,本发明实施例提供的机载喷头结构相较于原始的手动开启保压阀排气的结构形式,极大的简化了用户需要进行手动的操作,提升了用户的使用体验。另外,通路位于阀体内部,简化通路结构的同时,介质从阀体内部通过时可以带走电磁铁通电产生的热量,提升电磁铁的散热效果。
另一方面,通过调整第一接头及第二接头的通道的数量,可实现机载喷头结构的一进两出,一进多出,多进一出,多进多出等控制方式。
另一方面,机载喷头结构带有开关阀,通过开关阀可在静铁芯及移动件无法吸合,通路无法打开时,可以通过开关阀推动移动件,以便打开通路。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (37)

  1. 一种农业植保无人机的机载喷头结构,其特征在于,包括:
    阀体,具有入口及出口;
    电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
    移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
    其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
    所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;
    所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
    所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
  2. 根据权利要求1所述的机载喷头结构,其特征在于,所述阀体内设置有容置腔,所述移动件可移动设置在所述容置腔内;
    在所述容置腔内设有弹性复位件,所述弹性复位件分别与所述阀体及所述移动件连接。
  3. [根据细则91更正 16.09.2019]
    根据权利要求2所述的机载喷头结构,其特征在于,所述电磁铁还包括:
    线圈骨架,所述线圈骨架具有贯通式的内腔,所述静铁芯套接在所述线圈骨架的内腔内;
    线圈,所述线圈缠绕在所述线圈骨架外表面;
    磁轭壳,所述磁轭壳包裹在所述线圈外表面,且所述磁轭壳上设置有与所述通路连通的通孔。
  4. 根据权利要求3所述的机载喷头结构,其特征在于,所述线圈骨架的 相对的两端分别设置有限位板,所述线圈设置在两个所述限位板之间。
  5. 根据权利要求3所述的机载喷头结构,其特征在于,所述磁轭壳包括:
    第一磁轭,所述第一磁轭具有安装腔,所述线圈骨架及所述线圈设置在所述安装腔内,所述安装腔的底部设置有一所述通孔;
    第二磁轭,所述第二磁轭与所述第一磁轭连接并封盖所述安装腔,所述第二磁轭上设置有一所述通孔。
  6. 根据权利要求5所述的机载喷头结构,其特征在于,所述第一磁轭在所述安装腔的开口处具有多个连接耳;
    所述第二磁轭上与所述多个连接耳相应位置处设置有多个连接孔;
    所述第一磁轭通过所述多个连接耳插入所述多个连接孔内,以便与所述第二磁轭连接。
  7. 根据权利要求3所述的机载喷头结构,其特征在于,所述线圈骨架的长度大于所述静铁芯的长度,大于所述静铁芯的部分为移动腔;
    所述移动件部分或全部位于所述移动腔内。
  8. 根据权利要求3所述的机载喷头结构,其特征在于,所述阀体还包括阀套;
    所述阀套具有内腔,所述阀套与所述电磁铁连接,所述阀套的内腔为所述容置腔。
  9. 根据权利要求8所述的机载喷头结构,其特征在于,所述阀套部分伸入所述线圈骨架内,并套接在所述静铁芯外侧;
    所述阀套位于所述线圈骨架外部的部分为所述容置腔。
  10. 根据权利要求9所述的机载喷头结构,其特征在于,所述阀套位于所述线圈骨架外部的部分的直径大于所述线圈骨架的直径。
  11. 根据权利要求1所述的机载喷头结构,其特征在于,所述移动件朝向所述静铁芯的一端具有沿径向延伸的至少一个所述第二通道;和/或
    所述移动件的侧壁上,沿轴向方向具有至少一个所述第二通道,位于侧壁上的所述第二通道至少贯通所述移动件朝向所述静铁芯的一端的端部;或者
    位于端部及位于侧壁上的所述第二通道连通。
  12. 根据权利要求11所述的机载喷头结构,其特征在于,所述移动件背向所述静铁芯的一端设置有密封垫。
  13. 根据权利要求12所述的机载喷头结构,其特征在于,所述移动件背向所述静铁芯的一端具有密封槽,所述密封垫设置在所述密封槽内。
  14. 根据权利要求1所述的机载喷头结构,其特征在于,所述移动件背向所述静铁芯的一端具有沿径向延伸的至少一个所述第二通道;和/或
    所述移动件的侧壁上,沿轴向方向具有至少一个所述第二通道,位于侧壁上的所述第二通道至少贯通所述移动件背向所述静铁芯的一端的端部;或者
    位于端部及位于侧壁上的所述第二通道连通。
  15. 根据权利要求14所述的机载喷头结构,其特征在于,所述移动件朝向所述静铁芯的一端设置有密封垫。
  16. 根据权利要求15所述的机载喷头结构,其特征在于,所述移动件背向所述静铁芯的一端具有密封槽,所述密封垫设置在所述密封槽内。
  17. 根据权利要求1至16中任一项所述的机载喷头结构,其特征在于,还包括:
    第一接头,所述第一接头与所述阀体的所述入口连接;
    第二接头,所述第二接头与所述阀体的出口连接;
    所述第一接头及所述第二接头均包括至少一路通道与所述通路连通。
  18. 根据权利要求17所述的机载喷头结构,其特征在于,还包括:开关阀;
    所述开关阀包括顶杆、控制组件及密封膜片;
    所述第二接头还具有控制连接部,所述控制连接部具有贯通所述控制连接部的控制通道,所述控制通道与所述第二接头的各通道及所述通路连通;
    所述顶杆可移动设置在所述控制通道内;
    所述密封膜片覆盖在所述控制通道的开口处;
    所述控制组件与所述控制连接部连接,可通过所述密封膜片驱动所述顶 杆在所述控制通道内移动,所述顶杆移动时可驱动所述移动件移动。
  19. 根据权利要求18所述的机载喷头结构,其特征在于,所述顶杆与所述控制通道的侧壁之间具有间隙;或者
    所述顶杆的侧壁上,沿轴向方向具有多个导流槽。
  20. 根据权利要求19所述的机载喷头结构,其特征在于,所述顶杆与所述控制通道的侧壁之间具有间隙,所述顶杆朝向所述移动件的一端上设置有多个支撑臂。
  21. 根据权利要求19所述的机载喷头结构,其特征在于,所述顶杆远离所述移动件的一端具有密封块,所述密封块的直径与所述控制通道的直径匹配。
  22. 根据权利要求18所述的机载喷头结构,其特征在于,所述控制组件包括阀座以及控制杆;
    所述阀座与所述控制连接部连接,所述阀座内具有沿所述控制通道延长线方向延伸的控制腔;
    所述控制杆与所述阀座可移动连接;
    所述控制杆沿所述控制腔延伸方向移动时,所述控制杆可通过所述密封膜片带动所述顶杆移动。
  23. 根据权利要求22所述的机载喷头结构,其特征在于,所述控制腔的侧壁上,沿所述控制腔的延伸方向具有至少两个安装滑道;
    所述控制腔的侧壁上,沿所述控制腔的径向方向具有至少两个控制滑道,每个所述控制滑道与一个所述安装滑道贯通;
    沿所述控制腔的延伸方向,所述控制滑道与所述安装滑道连接的一端与所述控制滑道远离所述安装滑道的一端之间具有高度差;
    所述控制杆包括杆体及设置在所述杆体上的至少两个凸块,所述凸块可沿所述安装滑道进入所述控制腔,并在所述安装滑道与所述控制滑道的连通处进入所述控制滑道,所述凸块沿所述控制滑道移动时,带动所述杆体沿着所述控制腔的延伸方向移动。
  24. 根据权利要求23所述的机载喷头结构,其特征在于,所述控制滑道与所述安装滑道连接的一端具有第一限位槽;
    所述控制滑道远离所述安装滑道的一端具有第二限位槽;
    沿所述控制腔的延伸方向,所述第一限位槽与所述第二限位槽之间具有高度差;
    所述凸块沿所述控制滑道进入所述第一限位槽或第二限位槽时,带动所述杆体沿着所述控制腔的延伸方向移动。
  25. 根据权利要求24所述的机载喷头结构,其特征在于,所述控制腔内还设有弹性件;
    所述弹性件分别与所述控制杆及所述阀座连接,所述凸块沿所述控制滑道移动并进入所述第一限位槽或第二限位槽时,所述弹性件为所述控制杆提供作用力。
  26. 根据权利要求25所述的机载喷头结构,其特征在于,弹性件包括弹簧;
    所述控制腔内设置有抵接部,所述弹簧套接在所述控制杆上,两端分别抵接在所述抵接部及所述凸块上。
  27. 根据权利要求23所述的机载喷头结构,其特征在于,至少一个所述控制滑道与所述安装滑道之间设置有防脱部。
  28. 根据权利要求23所述的机载喷头结构,其特征在于,所述控制滑道贯穿所述控制腔的侧壁。
  29. 根据权利要求22所述的机载喷头结构,其特征在于,所述控制腔的侧壁上设有内螺纹;
    所述控制杆上设置有与所述内螺纹配合使用的外螺纹;
    所述控制杆通过所述外螺纹与所述内螺纹连接,并可在沿着所述控制腔的轴向移动。
  30. 根据权利要求22所述的机载喷头结构,其特征在于,沿所述控制腔的轴向方向,所述控制腔的侧壁上环设有第一凸台和第二凸台;
    所述控制杆包括杆体及设置在所述杆体上的至少两个凸块,至少两个所述凸块位于所述第一凸台和所述第二凸台之间并可往复移动,至少两个所述凸块与所述第一凸台或所述第二凸台之间设置弹性件。
  31. 根据权利要求22所述的机载喷头结构,其特征在于,所述阀座的外 表面上设置有操作部。
  32. 一种喷洒系统,其特征在于,包括:
    泵机;
    喷淋装置;
    机载喷头结构,所述机载喷头结构包括:
    阀体,具有入口及出口,所述入口及所述出口分别与所述泵机及所述喷淋装置连接;
    电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
    移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
    其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
    所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
    所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
  33. 一种无人机,其特征在于,包括:无人机本体及设置在所述无人机本体上的喷洒系统;
    所述喷洒系统包括:
    泵机;
    喷淋装置;
    机载喷头结构,所述机载喷头结构包括:
    阀体,具有入口及出口,所述入口及所述出口分别与所述泵机及所述喷淋装置连接;
    电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
    移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;
    其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
    所述电磁铁处于第一状态时,所述移动件移动至第一位置,所述通路断开;
    所述电磁铁处于第二状态时,所述移动件移动至第二位置,所述通路连通;
    所述第一状态为断电状态和通电状态中的一个状态,第二状态为所述断电状态和通电状态中的另一个状态;在所述电磁铁处于所述断电状态时,所述移动件在所述电磁铁的磁场作用下自动移动。
  34. 根据权利要求33所述的无人机,其特征在于,所述无人机本体上还设有控制器以及与所述控制器耦接的控制开关;
    所述控制开关与所述电磁铁耦接,所述控制器通过所述控制开关控制所述电磁铁的工作状态。
  35. 根据权利要求34所述的无人机,其特征在于,所述控制器与所述泵机耦接,所述控制器根据所述泵机的工作状态,通过所述控制开关控制所述电磁铁的工作状态;或者,
    所述无人机还包括地面控制端,所述地面控制端与所述控制器耦接,所述控制器接收所述地面控制端的控制信号,并根据所述控制信号通过所述控制开关控制所述电磁铁的工作状态。
  36. 一种机载喷头结构,其特征在于,包括:
    阀体,具有入口及出口;
    电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
    移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;其中,所述移动件朝向所述静铁芯的一端具有沿径向延 伸的至少一个所述第一通道;和/或所述移动件的侧壁上,沿轴向方向具有至少一个所述第一通道,位于侧壁上的所述第一通道至少贯通所述移动件朝向所述静铁芯的一端的端部;或者位于端部及位于侧壁上的所述第一通道连通;
    其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
    所述电磁铁通电状态下,所述静铁芯吸附所述移动件,所述移动件远离所述出口,所述通路连通;
    所述电磁铁断电状态下,所述静铁芯磁性消失,所述移动件封堵所述出口,所述通路断开。
  37. 一种机载喷头结构,其特征在于,包括:
    阀体,具有入口及出口;
    电磁铁,设置在所述阀体内,所述电磁铁包含静铁芯,所述静铁芯上设有与所述入口连通的第一通道;
    移动件,可移动设置在所述阀体内,所述移动件上设置有与所述第一通道连通的第二通道;其中,所述移动件背向所述静铁芯的一端具有沿径向延伸的至少一个所述第一通道;和/或所述移动件的侧壁上,沿轴向方向具有至少一个所述第一通道,位于侧壁上的所述第一通道至少贯通所述移动件背向所述静铁芯的一端的端部;或者位于端部及位于侧壁上的所述第一通道连通;
    其中,所述入口、所述第一通道、所述第二通道及所述出口,形成通路;
    所述电磁铁通电状态下,所述静铁芯吸附所述移动件,所述移动件封堵所述第一通道,所述通路断开;
    所述电磁铁断电状态下,所述静铁芯磁性消失,所述移动件远离所述静铁芯,所述通路连通。
PCT/CN2019/103725 2019-08-30 2019-08-30 农业植保无人机的机载喷头结构、喷洒系统及无人机 WO2021035690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103725 WO2021035690A1 (zh) 2019-08-30 2019-08-30 农业植保无人机的机载喷头结构、喷洒系统及无人机
CN201980032052.8A CN112218724A (zh) 2019-08-30 2019-08-30 农业植保无人机的机载喷头结构、喷洒系统及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103725 WO2021035690A1 (zh) 2019-08-30 2019-08-30 农业植保无人机的机载喷头结构、喷洒系统及无人机

Publications (1)

Publication Number Publication Date
WO2021035690A1 true WO2021035690A1 (zh) 2021-03-04

Family

ID=74058714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103725 WO2021035690A1 (zh) 2019-08-30 2019-08-30 农业植保无人机的机载喷头结构、喷洒系统及无人机

Country Status (2)

Country Link
CN (1) CN112218724A (zh)
WO (1) WO2021035690A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155921A (zh) * 1994-08-18 1997-07-30 美国西门子汽车公司 具有改进的衔铁撞击表面与被撞击的止挡表面间的平行度的燃料喷嘴
US6209806B1 (en) * 1999-01-11 2001-04-03 Siemens Automotive Corporation Pulsed air assist fuel injector
CN104633223A (zh) * 2013-11-11 2015-05-20 日本电产东测有限公司 电磁阀
CN206000643U (zh) * 2016-07-29 2017-03-08 东风商用车有限公司 一种直通式双通道燃气喷射阀
CN107933920A (zh) * 2017-10-19 2018-04-20 深圳市莲花百川科技有限公司 一种农用植保无人机
CN108364746A (zh) * 2018-04-18 2018-08-03 苏州耀德科电磁技术有限公司 直推式开关电磁铁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204985946U (zh) * 2015-09-25 2016-01-20 宁波开灵气动元件制造有限公司 一种新型先导膜片式常开电磁阀
CN105570473B (zh) * 2016-02-24 2017-10-31 湖北仁创科技有限公司 一种高压细水雾先导式非液力阻尼电磁分区阀
WO2018163155A1 (en) * 2017-03-05 2018-09-13 Clever Water Sprinkler Technologies Ltd. Rotary sprinkler for varying irrigation pattern
CN109823331B (zh) * 2019-01-28 2020-08-25 武汉理工大学 一种车辆电控气压制动系统用复合比例继动阀及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155921A (zh) * 1994-08-18 1997-07-30 美国西门子汽车公司 具有改进的衔铁撞击表面与被撞击的止挡表面间的平行度的燃料喷嘴
US6209806B1 (en) * 1999-01-11 2001-04-03 Siemens Automotive Corporation Pulsed air assist fuel injector
CN104633223A (zh) * 2013-11-11 2015-05-20 日本电产东测有限公司 电磁阀
CN206000643U (zh) * 2016-07-29 2017-03-08 东风商用车有限公司 一种直通式双通道燃气喷射阀
CN107933920A (zh) * 2017-10-19 2018-04-20 深圳市莲花百川科技有限公司 一种农用植保无人机
CN108364746A (zh) * 2018-04-18 2018-08-03 苏州耀德科电磁技术有限公司 直推式开关电磁铁

Also Published As

Publication number Publication date
CN112218724A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2021035690A1 (zh) 农业植保无人机的机载喷头结构、喷洒系统及无人机
CN110259954B (zh) 一体化直动式电磁阀
CN211175576U (zh) 电磁阀、机载喷洒系统及农业植保机
CN211160316U (zh) 农业植保无人机的机载喷头结构、喷洒系统及无人机
CN212960117U (zh) 一种用于植保无人机喷洒系统的电磁阀
WO2021087677A1 (zh) 电磁阀、机载喷洒系统及农业植保机
WO2021035747A1 (zh) 离心式喷头、喷洒系统及可移动平台
CN203686304U (zh) 电磁阀及具有该电磁阀的车辆
CN216478944U (zh) 电磁阀、喷洒系统以及可移动平台
CN210912886U (zh) 喷头结构、喷洒系统及无人机
CN112013118A (zh) 一种用于植保无人机的电磁阀、喷洒系统及排气方法
CN210739511U (zh) 一种用于控制流量的电磁阀及血压测量装置
CN114439988A (zh) 电磁阀
CN114542969A (zh) 高压瓶阀的电磁阀和高压瓶阀
CN112855960A (zh) 一种双阀芯电磁阀
CN213575831U (zh) 一种具有密封结构的微型电磁阀
CN219774955U (zh) 电磁阀、空气悬架和车辆
CN219841124U (zh) 电磁阀
EP4374902A1 (en) Tube assembly
CN220168712U (zh) 电磁阀、电磁阀组件及汽车
CN210397890U (zh) 大通径高速开关电磁阀
CN219176950U (zh) 电磁阀
CN218564407U (zh) 盘形高速开关阀
CN213685369U (zh) 一种电磁控制式隔离阀
CN219841123U (zh) 电磁阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943678

Country of ref document: EP

Kind code of ref document: A1