WO2021035614A1 - 驱动电路、驱动电路板与驱动器 - Google Patents

驱动电路、驱动电路板与驱动器 Download PDF

Info

Publication number
WO2021035614A1
WO2021035614A1 PCT/CN2019/103305 CN2019103305W WO2021035614A1 WO 2021035614 A1 WO2021035614 A1 WO 2021035614A1 CN 2019103305 W CN2019103305 W CN 2019103305W WO 2021035614 A1 WO2021035614 A1 WO 2021035614A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
drive
driving
driving circuit
filter
Prior art date
Application number
PCT/CN2019/103305
Other languages
English (en)
French (fr)
Inventor
黄睿
唐雨池
李�根
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/103305 priority Critical patent/WO2021035614A1/zh
Priority to CN201980034165.1A priority patent/CN112204866A/zh
Publication of WO2021035614A1 publication Critical patent/WO2021035614A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction

Definitions

  • the present invention relates to the field of driving technology, in particular to a driving circuit, a driving circuit board and a driver.
  • Ultrasonic motors are widely used in the driving field. Ultrasonic motors generally work through high-voltage drive signals provided by the motor driver.
  • the bridge circuit is a common circuit of a motor driver, please refer to the circuit structure shown in Figure 1.
  • a square wave signal with a 50% duty cycle is generally used as a drive signal, and an impedance matching network is formed by a matching transformer and a matching inductor to drive the ultrasonic motor.
  • the embodiment of the present invention provides a driving circuit, a driving circuit board and a driver, which are used to reduce the size of the motor driver and improve the application flexibility on the premise of providing a stable driving signal for the motor.
  • an embodiment of the present invention provides a driving circuit, including:
  • the first signal generator is configured to generate and output an initial signal, wherein the initial signal is used to form a first drive signal, and the first drive signal has at least one higher harmonic component that is lower than a preset threshold;
  • a signal drive circuit is connected to the first signal generator; the signal drive circuit is used to drive the initial signal and output the drive processed second drive signal to an external electric device.
  • an embodiment of the present invention provides a driving circuit board, including:
  • the driving circuit according to the first aspect is provided on the substrate.
  • an embodiment of the present invention provides a driver, which is characterized in that it includes:
  • the driving circuit according to the first aspect is arranged inside the housing.
  • the technical solution provided by the embodiment of the present invention generates and outputs an initial signal from a signal generator, and the initial signal can form a first drive signal, and the formed first drive signal has at least one kind of higher harmonic components lower than the preset Threshold, that is, the interference of at least one high-order harmonic component is eliminated in the first driving signal, and the waveform distortion is small.
  • the driving circuit can achieve high-order without using large-scale filtering equipment such as high-order filters. Harmonic components are filtered out to obtain a sine wave drive signal with lower distortion, which reduces the size of the drive circuit, and can reduce the introduced phase shift to a certain extent, reducing the impact on the open-loop characteristics of the motor.
  • Fig. 1 is a schematic structural diagram of a motor drive circuit in the prior art
  • FIG. 2 is a schematic structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the waveform of the first driving signal in the embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a driving circuit board provided by an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a driver provided by an embodiment of the present invention.
  • the specific scenario targeted by the embodiment of the present invention is: a scenario of driving an external electric device.
  • the embodiment of the present invention can drive an ultrasonic electric device.
  • the embodiment of the present invention does not particularly limit the specific type of the external electrical equipment, which may include, but is not limited to: a motor, a transducer, or a driving power source; wherein, the motor includes: an ultrasonic motor.
  • the present invention will be described in detail below, taking the electrical equipment as an ultrasonic motor as an example.
  • the ultrasonic motor is generally driven by a push-pull drive circuit or a bridge drive circuit.
  • These drive circuits use a square wave with a 50% duty cycle as input, and a 50% duty cycle square wave signal
  • the signal drives the ultrasonic motor.
  • the filter set in the drive circuit will further increase the size of the drive, which is not conducive to the development of miniaturization of the drive, and also increases the cost of the drive to a certain extent; and, the higher order The filter also produces a large additional phase shift, which deteriorates the open-loop characteristics of the ultrasonic motor driver.
  • the technical solution provided by the present invention aims to solve the above technical problems in the prior art, and proposes the following solution idea: the initial signal is processed to form a first driving signal that eliminates at least one kind of high-order harmonics. Therefore, the high-order The proportion of the harmonics is very low, which reduces the requirements for the filter in the drive signal, thereby reducing the size of the driver, and to a certain extent, reducing the extra phase shift produced by the high-order filter to obtain a better quality sine wave Drive signal.
  • the embodiment of the present invention provides a driving circuit, which can be used to drive an external electric device.
  • FIG. 2 shows a schematic structural diagram of a driving circuit provided by an embodiment of the present invention. As shown in FIG. 2, the driving circuit includes:
  • the first signal generator 100 is configured to generate and output an initial signal, where the initial signal is used to form a first drive signal, and the first drive signal has at least one higher harmonic component lower than a preset threshold ;
  • the signal drive circuit 200 is connected to the first signal generator 100; the signal drive circuit 200 is used to drive the initial signal and output the drive processed second drive signal to an external power source Equipment 300.
  • the preset threshold can be designed according to needs, and the components of higher harmonics are lower than the preset threshold, which means that the components of higher harmonics are lower, which is equivalent to filtering out the first driving signal.
  • This high-order harmonic component In this way, at least one high-order harmonic has been filtered out of the first drive signal. Therefore, in the process of driving the first drive signal, only a low-order filter with a smaller inductance and a smaller size is needed. Filter out other high-order harmonics with a small proportion. In some scenarios, a second drive signal with better waveform quality can be obtained without even using a filter. In this process, one reduces the size of the drive circuit, and the other reduces the extra phase shift introduced by the filter to a certain extent.
  • the initial signal may specifically be a rectangular wave signal, or may be a square wave signal.
  • the initial signal may be a rectangular wave signal with a high level of 1 and a low level of 0; or, the initial signal may also be a rectangular wave signal with a high level of 0 and a low level of -1.
  • the number of initial signals may be at least one. In general, it can be two columns of rectangular wave signals. At this time, the initial signals of the two columns can be the same or different. The two columns of initial signals can be differentially processed to obtain a symmetrical rectangular wave signal as shown in Figure 3.
  • the symmetrical rectangular wave signal means that the pulse width of the positive pulse width and the pulse width of the negative pulse width are the same, which will be described in detail later.
  • one column of initial signals can be rectangular waves with a high level of 1, and a low level of 0, and the other columns can be rectangular waves with a high level of 0 and low level of -1.
  • Signal; for example, the two columns of initial signals can both be rectangular wave signals with a high level of 1, and a low level of 0; for another example, the two columns of initial signals can both have a high level of 0 and a low level of -1 Rectangular wave signal.
  • FIG. 3 shows the first driving signal.
  • the abscissa of the waveform diagram of the first driving signal is time t, and the ordinate is voltage u;
  • the abscissa of the waveform diagram after frequency domain conversion of the first driving signal is ⁇ /T (positive pulse width and The ratio of the period, or the ratio of the negative pulse width to the period), the ordinate is the harmonic component.
  • the abscissa of the waveform diagram can also be defined as 2 ⁇ /T (the ratio of the sum of the positive and negative pulse width to the period), or other suitable values, which are not limited herein.
  • the sine wave signal is composed of a fundamental wave and higher harmonics.
  • the generated first drive signal is a completely symmetrical rectangular wave
  • the symmetrical rectangular wave is an even function at this time, and the corresponding ,
  • High-order harmonics include the third harmonic, the fifth harmonic, the seventh harmonic, and the ninth harmonic or higher odd-numbered harmonics.
  • the generated first driving signal is an imperfectly symmetrical rectangular wave.
  • the high-order harmonics in the sine wave signal include not only the third harmonic, the fifth harmonic, the seventh harmonic, and the ninth harmonic.
  • the fundamental component is the largest, but the components of the third, fifth, seventh, and ninth harmonics usually also reach the maximum.
  • the high-order harmonics carried in the signal are very rich. Therefore, the waveform distortion of the second driving signal obtained by driving a square wave signal with a 50% duty cycle in the prior art is also very severe. terrible. This is also the reason why a high-order filter needs to be designed when a square wave signal with a 50% duty cycle is used to drive external electric equipment such as an ultrasonic motor in the prior art.
  • ⁇ /T is in the range of 0.3 to 0.36 (which can be regarded as the duty cycle of 0.3 to 0.36)
  • the third and ninth harmonic components of the driving signal are lower (below the preset threshold ), it can even reach 0, and the fifth and seventh harmonics also avoid the maximum value. If the first drive signal of the drive circuit is within this range, the third and ninth harmonics can be removed as much as possible.
  • the influence of the wave, which contains only the fifth and seventh harmonics and above, can be filtered out only by the transformer output leakage inductance or the filter inductance with a small series inductance.
  • the ratio of the positive pulse width to the period of the first driving signal ranges from 0.3 to 0.36, and/or the negative pulse width of the first driving signal is more than the period
  • the range of the ratio is 0.3 to 0.36.
  • the first drive signal within this range has basically eliminated the third harmonic and the ninth harmonic components, and the filtering requirements and size requirements of the drive circuit are relatively small.
  • the duty cycle of the initial signal (the ratio of the positive pulse width to the period or the ratio of the negative pulse width to the period) ranges from 0.3 to 0.36.
  • the duty cycle of a signal can also be defined as the ratio of the sum of the pulse width of the positive pulse width and the negative pulse width to the period, that is, the positive pulse width and the negative pulse width are added first to obtain the positive pulse width and the negative pulse width.
  • the sum of the negative pulse width is compared with the period to obtain the ratio of the sum of the positive and negative pulse width to the period.
  • the range of the ratio of the sum of the positive and negative pulse width to the period corresponds to the range of 0.6 to 0.72.
  • the duty cycle of the signal can be set according to needs. This embodiment is only an exemplary description and is not limited herein.
  • the value of ⁇ /T (or simply referred to as the duty cycle) can be customized according to needs.
  • the value of ⁇ /T can be 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36 or other intermediate values (for example, 0.355, not exhaustive).
  • the fifth harmonic in the driving signal The component of is low, or even zero, and the symmetrical rectangular wave signal in this range can also be used as the first drive signal. At this time, it is equivalent to the first drive signal that eliminates the influence of the fifth harmonic component.
  • the duty cycle of the initial signal (the ratio of the positive pulse width to the period or the ratio of the negative pulse width to the period) ranges around 0.4.
  • the component of the seventh harmonic in the driving signal is low, or even zero, and it can also be in this
  • the symmetrical rectangular wave signal within the range is used as the first driving signal.
  • the first driving signal is equivalent to eliminating the influence of the seventh harmonic component.
  • the duty cycle of the initial signal is also about 0.28.
  • the embodiment of the present invention fundamentally reduces the impact of high-order harmonics on external electrical equipment such as ultrasonic motors from the perspective of the input signal of the drive circuit.
  • external electrical equipment such as ultrasonic motors
  • the implementation of the present invention For example, weakening the energy of at least one of the higher harmonics from the signal perspective can radically simplify the filter design for higher harmonics, which is conducive to reducing the space occupied by this part of the filter design on the drive circuit, and fundamentally reduce The impact of high-order harmonic distortion on external electrical equipment.
  • the embodiment of the present invention has no particular limitation on the circuit type of the signal driving circuit, which may include, but is not limited to: a bridge circuit or a push-pull circuit.
  • the signal driving circuit may be a bridge circuit.
  • FIG. 4 shows a schematic structural diagram of the signal driving circuit 200.
  • the signal driving circuit 200 includes:
  • the first half bridge power module 211 is configured to perform power amplification on the initial signal in the first column;
  • the second half-bridge power module 212 is configured to amplify the power of the initial signal in the second column;
  • the first voltage amplifying component 220 is connected to the first half-bridge power module 211 and the second half-bridge power module 212, and is configured to perform differential processing on the two columns of the initial signals after the power amplification to obtain the The first driving signal; is also used to transform the first driving signal, and output the second driving signal to the external electric device 300;
  • the first voltage amplifying component 220 has leakage inductance.
  • the first voltage amplifying component 200 directly outputs the second driving signal to the external electric equipment, and the input of the first half-bridge power module 211 and the second half-bridge power module 212 is the first signal generator 100
  • the output initial signal, the initial signal forms a first driving signal on the primary winding side (left side) of the first voltage amplifying component 220.
  • the first voltage amplifying component 220 can be implemented by a matching transformer. That is, the first driving signal is formed on the left side of the matching transformer, that is, the symmetrical rectangular wave signal shown in FIG. 3, and the power of the first driving signal is amplified by the matching transformer, so as to obtain a sine wave signal with a good waveform. That is, the second drive signal.
  • the first driving signal has filtered out at least one high-order harmonic component, and there may be other high-order harmonic components in the first driving signal, in order to output a sine wave signal with a good waveform to external electrical equipment, . It is also necessary to filter out other high-order harmonic components in the first drive signal.
  • a matching transformer with a certain leakage inductance can be used to achieve power amplification.
  • the leakage inductance of the matching voltage transformer can be used as the filter inductance to filter out other high-order harmonic components in the first driving signal.
  • a common matching transformer without leakage inductance can also be used to achieve power amplification.
  • the signal driving circuit may also include but is not limited to: a first filter component, where the first filter component is used to filter out high-order harmonic components.
  • the signal driving circuit 200 includes:
  • the first half bridge power module 211 is configured to perform power amplification on the initial signal in the first column;
  • the second half-bridge power module 212 is configured to perform power amplification on the initial signal of another column
  • the first voltage amplifying component 220 is connected to the first half-bridge power module 211 and the second half-bridge power module 212, and is configured to perform differential processing on the initial signal after the power amplification to obtain the first driver Signal; also used to transform the first drive signal and output a third drive signal;
  • the first filter 232 is configured to filter out high-order harmonic components in the third driving signal to obtain the second driving signal, and output the second driving signal to the external electrical equipment 300.
  • the first filter 232 may specifically be a filter inductor or a low-pass filter.
  • Figures 5 and 6 show two design methods when the first filter 232 is a filter inductor. It can be understood that if the first filter 232 is a low-pass filter, the circuit structure of the driving circuit is also as shown in FIG. 5 or FIG. 6, and will not be described in detail.
  • the first filter 232 is connected between the first voltage amplifying component 220 and the external electrical equipment 300, specifically, the first filter 232 is connected Between the first output terminal of the first voltage amplifying component 220 and the external electric device 300.
  • Figure 6 shows another way of designing the first filter. As shown in FIG. 6, the first filter 232 is connected in parallel to both ends of the external electric device 300.
  • the initial signal is processed and differentiated on the primary winding side (left side) of the first voltage amplifying component 220 to form a symmetrical rectangular wave as shown in Figure 3, that is The first driving signal; afterwards, it is amplified by the voltage of the first voltage amplifying component 220 and filtered by the second filter 232 to obtain a sine wave signal with a good waveform, that is, the second driving signal. Therefore, the external electric device can use the second driving signal to drive work.
  • the first voltage amplifying component 220 can be implemented by a matching transformer with a certain leakage inductance, or a common matching transformer without leakage inductance. Wherein, if the first voltage amplifying component 220 has a certain leakage inductance, the first voltage amplifying component 220 can be used to filter out the high-order harmonic components in the driving signal. At this time, the first filter 232 can be used to cancel the external power consumption. The capacitive reactance of the device 300 can reduce the heat generation of the external electrical device 300.
  • the embodiment of the present invention also provides another design method. Please refer to FIG. 7, still taking the input of the two columns of initial signals as an example, the signal driving circuit 200 includes:
  • the first half bridge power module 211 is configured to perform power amplification on the initial signal in the first column;
  • the second half-bridge power module 212 is configured to amplify the power of the initial signal in the second column;
  • the second filter 233 connected to the first half-bridge power module 211, is used to filter out high-order harmonic components in the initial signal after the power amplification;
  • the first voltage amplifying component 220 is connected to the second filter 233 and the second half-bridge power module 212, and is used to differentially form the first driving signal, and to perform processing on the first driving signal. Transform the voltage, and output the second driving signal to the external electric device 300.
  • the initial signal is to filter out at least one high-order harmonic component, and before the two columns of initial signals are differentially processed on the left side of the first voltage amplifying component 220, they are further passed through the second filter.
  • the filter filters out other high-order harmonic components.
  • the two columns of initial signals are differentially processed on the left side of the first voltage amplifying component 220, and the first drive signal obtained is a sine wave signal with high-order harmonic components filtered out.
  • the second driving signal is obtained and output to the external electric device 300. It can be understood that the second drive signal is the boosted first drive signal and is also a sine wave signal.
  • the second filter 233 is also used to filter out high-order harmonic components. Based on the difference in the setting position, the first filter 232 is used to filter out the high-order harmonic components in the first drive signal. , And the second filter 233 is used to filter out high-order harmonic components in the original signal.
  • the second filter 233 may also be a filter inductor or a low-pass filter.
  • FIG. 7 schematically shows the second filter 233 as a filter inductor.
  • the second filter The filter 233 can also be replaced with a low-pass filter.
  • a DC blocking capacitor 231 may also be designed in the signal driving circuit 200.
  • a DC blocking capacitor 231 is connected between the second half-bridge power module 212 and the first voltage amplifying component 220, and is used to absorb the DC in the initial signal after the power amplification. Weight. That is, the DC blocking capacitor 231 is connected between the output terminal of the half-bridge power module 212 and the second input terminal of the first voltage amplifying component 220. The DC blocking capacitor can filter out the DC component in the driving signal and reduce the influence of the DC component on the second driving signal.
  • the embodiment of the present invention can realize the driving of external electric equipment through the bridge circuit, and directly weaken the influence of the high and low harmonics on the driving signal from the signal perspective. Influence, can reduce the hardware complexity and hardware volume of the drive circuit to a certain extent.
  • the signal driving circuit may be a push-pull circuit.
  • FIG. 8 shows a schematic structural diagram of the signal driving circuit 200.
  • the signal driving circuit 200 includes:
  • a first switch tube 240, a driving end of the first switch tube 240 is used to receive the initial signal sent by the first signal generator 100, and a first output terminal of the first switch tube 240 is grounded;
  • a second switch tube 250, the driving end of the second switch tube 250 is used to receive the initial signal sent by the first signal generator 100, and the first output terminal of the second switch tube 250 is grounded;
  • the second voltage amplifying component 260, the first input terminal and the second input terminal of the second voltage amplifying component 260 are respectively connected to the second output terminal of the first switch tube 240 and the second output terminal of the second switch tube 250
  • the second output terminal, the third input terminal of the second voltage amplifying component 260 is connected to a voltage source (can be regarded as a center tap); the output terminal of the second voltage amplifying component 260 is connected to the external electric device 300;
  • the second voltage amplifying component 260 is used for outputting the first driving signal on the secondary winding of the second voltage amplifying component 260.
  • the second voltage amplifying component 260 can be embodied as a matching transformer with a center tap.
  • the matching transformer with a center tap includes two windings: a push-pull topology winding with a center tap, and The secondary output winding coupled to it.
  • the first switch tube 240 and the second switch tube 250 may be MOS tubes, and their types may include, but are not limited to: NMOS or PMOS. The first switch tube and the second switch tube are designed back to back.
  • the push-pull signal driving circuit 200 due to the initial signal output by the first signal generator 100, a first driving signal that has filtered at least one kind of higher harmonics can be formed, and the first driving signal is at the second voltage.
  • the secondary winding side of the amplifying component 260 generates the first drive signal.
  • the harmonic characteristics are better than those of the existing push-pull signal drive circuit using 50% duty cycle.
  • the size of the motor driver improves application flexibility.
  • the second voltage amplifying component 260 has leakage inductance. Then, the leakage inductance of the second voltage amplifying component 260 can be used as a filter inductance to filter out other high-order harmonic components in the first driving signal. Therefore, the output first driving signal is filtered out of other high-order harmonics, and further, the first driving signal is the same as the second driving signal, and the first driving signal output by the second voltage amplifying component 260 can be directly output to the external power supply. Equipment 300.
  • embodiments of the present invention further provide other forms of push-pull signal driving circuits.
  • the signal driving circuit 200 in addition to the aforementioned first switching tube 240, second switching tube 250, and second voltage amplifying component 260, the signal driving circuit 200 also includes:
  • the signal adjustment component 270, the first input end and the second input end of the signal adjustment component 210 are respectively connected to the driving end of the first switching tube 240 and the driving end of the second switching tube 250, and the signal adjustment The output terminal of the component 270 is coupled with the second voltage amplifying component 260; the signal adjustment component 270 is used to provide a 0-level output for the first driving signal when the signal adjustment component 270 is short-circuited.
  • the second voltage amplifying component 260 has leakage inductance, and the leakage inductance of the second voltage amplifying component can be used to filter out other high-order harmonic components. Then, the second voltage amplifying component 260 can directly output a sine wave signal with a good waveform, that is, the first driving signal shown in FIG. 9 is the same as the second driving signal.
  • the signal adjustment component 270 includes:
  • the first logic AND gate module 271, the first input terminal and the second input terminal of the first logic AND gate module 271 are respectively connected to the driving terminal of the first switching tube 240 and the driving terminal of the second switching tube 250 Terminal, the first logic AND gate module 271 is used to turn on when the first switch tube 240 and the second switch tube 250 are disconnected;
  • the third switch tube 272 the driving end of the third switch tube 271 is connected to the output terminal of the first logic AND module 271, and the first output terminal of the third switch tube 272 is grounded; the third switch The tube 271 is configured to be turned on when the first logic AND gate module 271 is turned on;
  • the fourth switch tube 273, the driving end of the fourth switch tube 273 is connected to the output terminal of the first logic AND gate module 271, and the first output terminal of the fourth switch tube 273 is grounded; the fourth switch The tube 273 is used to turn on when the first logic AND gate module 271 is turned on;
  • the winding 274 is connected between the second output terminal of the third switch tube 272 and the second output terminal of the fourth switch tube 273, and is coupled to the second voltage amplifying component 260.
  • the signal driving circuit 200 shown in FIG. 9 includes three windings: a push-pull topology winding with a center tap, and a secondary output winding coupled to it. And, the independent winding 274 in the signal adjustment component 270.
  • the winding 274 is connected between the first switching tube 240 and the second switching tube 250 and can be coupled with the secondary output winding. In this way, when the winding 274 is short-circuited, the secondary output winding can output a voltage of 0V. Wherein, when the first switching tube 240 and the second switching tube 250 are turned on, the winding 274 is short-circuited. At this time, the secondary output winding can output a 0V level.
  • the design shown in FIG. 9 enables the second voltage amplifying component 260 to have the ability to output three level steps, which is beneficial to improve the harmonic characteristics of the driving signal and output a sine wave with good harmonic characteristics to the external electrical equipment 300 Signal (second drive signal).
  • the second voltage amplifying component 260 can be implemented by using a matching transformer with a certain leakage inductance. As shown in FIG. 8 or FIG. 9, the initial signal can be used to form the first driving signal, and the first driving signal has at least one higher order.
  • the harmonic component is lower than the preset threshold, and the leakage inductance of the second voltage amplifying component 260 is added to filter out other high-order harmonic components. There is no need to design additional filtering components, which saves the hardware structure of the drive circuit.
  • the third filter can be a filter inductor or a low-pass filter.
  • the signal driving circuit 200 may further include:
  • the third filter 280 is configured to filter out high-order harmonic components in the first driving signal to obtain the second driving signal, and output the second driving signal to the external electric device 300.
  • the third filter 280 is connected between the second voltage amplifying component 260 and the external electrical equipment 300; or, as shown in FIG. 11, the third filter 280 is connected in parallel to both ends of the external electrical equipment 300.
  • the third filter 280 is connected between the first output terminal of the second voltage amplifying component 260 and the external electric device 300.
  • the secondary winding side of the second voltage amplifying component 260 outputs the first driving signal.
  • the first driving signal has filtered out at least one high-order harmonic component. After that, it passes through the third filter 280 to further filter out other high-frequency components. Therefore, the symmetrical rectangular wave signal (first driving signal) shown in FIG. 3 is processed into a sine wave signal with a better waveform, which is the second driving signal. In this way, the external power-consuming device 300 can use a sine wave signal to drive work.
  • Figure 11 shows another design of the third filter.
  • the third filter 280 is connected in parallel to both ends of the external electric device 300.
  • the first driving signal formed according to the initial signal has been filtered out of the third harmonic component and the ninth harmonic component
  • the third filter 280 connected in parallel to both sides of the external electrical equipment 300 can be easily filtered.
  • the second driving signal that is finally input to the external electrical equipment 300 is a sine wave signal with a good waveform.
  • the second voltage amplifying component 260 can be implemented by a matching transformer with a certain leakage inductance, or a common matching transformer without leakage inductance. Wherein, if the second voltage amplifying component 260 has a certain leakage inductance, the leakage inductance of the second voltage amplifying component 260 can be used to filter out the high-order harmonic components in the driving signal. At this time, the third filter 280 can be used to offset The capacitive reactance of the external electrical equipment 300 can reduce the heat generation of the external electrical equipment 300.
  • the following describes the speed regulation mode of the drive circuit provided by the embodiment of the present invention.
  • the so-called speed regulation is mainly to adjust the amplitude of the sine wave signal.
  • the driving circuit may also include but not limited to the following components:
  • the second signal generator 400 is used to generate and output a speed control signal, and the speed control signal is used to adjust the speed of the driving signal;
  • the speed control component 500 is connected between the first signal generator 100 and the signal driving circuit 200, and is connected to the second signal generator 400, and is used for adjusting the initial signal according to the speed control signal.
  • the signal is used for speed regulation.
  • first signal generator and the second signal generator may be different signal generators.
  • the first signal generator and the second signal generator may also be the same signal generator, for example, Figures 4 to 11 show this situation.
  • the driving circuit includes only one first signal generator 100.
  • the first signal generator 100 can be used to generate and output a modulation signal in addition to generating and outputting an initial signal.
  • Speed signal can be generated.
  • the signal generator can generate three signals: two initial signals for generating the first drive signal, and one speed control signal.
  • the speed control signal involved in the embodiment of the present invention may include, but is not limited to: a pulse width modulation (PWM) signal or a pulse frequency modulation (PFW) signal.
  • PWM pulse width modulation
  • PFW pulse frequency modulation
  • the frequency of the speed control signal is much higher than the first drive signal, and the amplitude of the fundamental wave in the symmetrical rectangular wave is adjusted by changing the duty ratio of the speed control signal to achieve speed control.
  • FIGS. 4 to 11 also show the case of the speed control assembly 500.
  • a second logic AND gate module 510 is provided between the first signal generator 100 and the first half-bridge power module 211, and the second logic AND gate module 510 is provided between the first signal generator 100 and the second half-bridge power module 211.
  • a third logical AND gate module 520 is provided between the modules 212.
  • the second logic AND gate module 510 can receive the initial signal output by the first signal generator 100, and can receive the speed control signal output by the second signal generator, and use the speed control signal
  • the initial signal is speed-regulated and chopped, that is, the voltage value is adjusted by controlling the conduction ratio of the initial signal, and then the speed-regulated initial signal is input to the first half-bridge power module 211 and the second half-bridge power module 212.
  • a second logic AND gate module 510 is provided between the first signal generator 100 and the first switch tube 240, and between the first signal generator 100 and the second switch tube 250, A third logical AND gate module 520 is provided.
  • the second logic AND gate module 510 can receive the initial signal output by the first signal generator 100, and can receive the speed control signal output by the second signal generator, and use the speed control signal The initial signal is speed-regulated and chopped, and the speed-regulated initial signal is input to the driving end of the first switch tube 240.
  • the speed regulation is achieved by second-time chopping the initial signal from which at least one kind of higher harmonics is eliminated, without the need for an auxiliary voltage regulating circuit, which is conducive to the miniaturization of the circuit, and the linearity is better. , Is conducive to reducing noise.
  • This speed regulation method will not destroy the high-order harmonic characteristics of the drive signal, and the amplitude of the sine wave can be adjusted without destroying the distortion of the output sine wave signal.
  • the technical solutions provided by the embodiments of the present invention can achieve high-fidelity sine wave output without the use of high-order filters, and the use of secondary Chopping technology, under the premise of not destroying the harmonic characteristics of the symmetrical rectangular wave of higher harmonics, realizes the adjustment of the amplitude of the fundamental wave component, making the hardware size of the driving circuit smaller, driving noise lower, and speed regulation performance Excellent.
  • the embodiment of the present invention further provides a driving circuit board.
  • the driver circuit board includes:
  • the drive circuit described in any one of the foregoing implementation manners is disposed on the substrate.
  • inventions further provides a driver.
  • Figure 14 which includes:
  • the drive circuit described in any one of the foregoing implementation manners is arranged inside the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种驱动电路、驱动电路板与驱动器。其中,驱动电路包括第一信号发生器(100)与信号驱动电路(200),第一信号发生器(100)用于生成并输出初始信号,而初始信号用于形成第一驱动信号,所述第一驱动信号具备至少一种高次谐波的分量低于预设阈值;信号驱动电路(200),连接于所述第一信号发生器,用于对所述初始信号进行驱动处理,并将所述驱动处理后的第二驱动信号输出至外部用电设备(300)。本发明所提供的技术方案能够在为电机提供稳定驱动信号的前提下,降低电机驱动器的尺寸,提高了应用灵活性。

Description

驱动电路、驱动电路板与驱动器 技术领域
本发明涉及驱动技术领域,尤其涉及一种驱动电路、驱动电路板与驱动器。
背景技术
超声波电机广泛应用于驱动领域,超声波电机一般通过电机驱动器提供的高压驱动信号进行工作。
目前,桥式电路作为一种电机驱动器的常用电路,请参考图1所示电路结构。在如图1所示的桥式电路中,一般采用50%占空比的方波信号作为驱动信号,并以匹配变压器和匹配电感构成阻抗匹配网络实现超声波电机驱动。
但是,如图1所示的电路结构,当桥式电路以50%的占空比工作时,由于存在丰富的高次谐波分量的干扰,会导致调制后输出的正弦波具备较大的波形畸变,从而,为了获取失真度较低的正弦波驱动信号,则必须采用阶数较高的滤波器对驱动信号进行滤波,这将导致驱动电路的尺寸大大增加,同时,高阶滤波器将导致较大的额外相移,也在一定程度上恶化了超声波电机的开环特性。如何在为电机提供稳定驱动信号的前提下,进一步缩减电机驱动器的尺寸,实现驱动器的小型化是本领域重点关注的技术问题。
发明内容
本发明实施例提供了一种驱动电路、驱动电路板与驱动器,用以在为电机提供稳定驱动信号的前提下,降低电机驱动器的尺寸,提高应用灵活性。
第一方面,本发明实施例提供了一种驱动电路,包括:
第一信号发生器,用于生成并输出初始信号,其中,所述初始信号用于形成第一驱动信号,所述第一驱动信号具备至少一种高次谐波的分量低于预设阈值;
信号驱动电路,连接于所述第一信号发生器;所述信号驱动电路用于对所述初始信号进行驱动处理,并将所述驱动处理后的第二驱动信号输出至外 部用电设备。
第二方面,本发明实施例提供了一种驱动电路板,包括:
基板;
如第一方面所述的驱动电路,设置于所述基板上。
第三方面,本发明实施例提供了一种驱动器,其特征在于,包括:
壳体;
如第一方面所述的驱动电路,设置于所述壳体内部。
本发明实施例提供的技术方案,从信号发生器生成并输出初始信号,而初始信号能够形成第一驱动信号,形成的第一驱动信号中具备至少一种高次谐波的分量低于预设阈值,也即第一驱动信号中消除了至少一种高次谐波分量的干扰,波形畸变较小,基于此,驱动电路无需采用高阶滤波器等尺寸较大的滤波设备即可实现高次谐波分量的滤除,从而得到一个失真度较低的正弦波驱动信号,降低了驱动电路的尺寸,且能够在一定程度上降低引入的相移,降低了对电机开环特性的影响。
附图说明
图1为现有技术中一种电机驱动电路的结构示意图;
图2为本发明实施例所提供的一种驱动电路的结构示意图;
图3为本发明实施例中第一驱动信号的波形示意图;
图4为本发明实施例所提供的另一种驱动电路的结构示意图;
图5为本发明实施例所提供的另一种驱动电路的结构示意图;
图6为本发明实施例所提供的另一种驱动电路的结构示意图;
图7为本发明实施例所提供的另一种驱动电路的结构示意图;
图8为本发明实施例所提供的另一种驱动电路的结构示意图;
图9为本发明实施例所提供的另一种驱动电路的结构示意图;
图10为本发明实施例所提供的另一种驱动电路的结构示意图;
图11为本发明实施例所提供的另一种驱动电路的结构示意图;
图12为本发明实施例所提供的另一种驱动电路的结构示意图;
图13为本发明实施例所提供的一种驱动电路板的结构示意图;
图14为本发明实施例所提供的一种驱动器的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本发明实施例所针对的具体场景为:对外部用电设备进行驱动的场景。具体地,本发明实施例可以对超声波用电设备进行驱动。当然,本发明实施例对外部用电设备的具体类型无特别限定,其可以包括但不限于:电机、换能器或驱动电源;其中,所述电机包括:超声波电机。为了便于理解,以下,以用电设备为超声波电机为例,对本发明进行具体说明。
现有技术中,一般通过推挽式驱动电路或桥式驱动电路实现对超声波电机的驱动,这些驱动电路采用50%占空比的方波作为输入,而50%占空比的方波信号中具备较高比重的高次谐波,因此,需要针对各个高次谐波分别设计滤波器件,以尽可能滤除各高次谐波,才能得到波形质量较高的正弦波信号,并利用正弦波信号驱动超声波电机。但是,在实际的实现场景中,驱动电路中设置的滤波器会进一步增大驱动器的尺寸,不利于驱动器的小型化发展,也在一定程度上增加了驱动器的成本;并且,阶数较高的滤波器也会产生较大的额外相移,恶化超声波电机驱动器的开环特性。
本发明提供的技术方案,旨在解决现有技术的如上技术问题,并提出如下解决思路:对初始信号进行处理以形成消除了至少一种高次谐波的第一驱动信号,因此,高次谐波的比重非常低,这就降低了对驱动信号中滤波器的要求,从而降低驱动器的尺寸,且能够在一定程度上降低高阶滤波器产生的额外相移,得到质量较好的正弦波驱动信号。
下面以具体地实施例对本发明的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
本发明实施例提供了一种驱动电路,该驱动电路可用于驱动外部用电设 备。
图2示出了本发明实施例提供的一种驱动电路的结构示意图,如图2所示,该驱动电路包括:
第一信号发生器100,用于生成并输出初始信号,其中,所述初始信号用于形成第一驱动信号,所述第一驱动信号具备至少一种高次谐波的分量低于预设阈值;
信号驱动电路200,连接于所述第一信号发生器100;所述信号驱动电路200用于对所述初始信号进行驱动处理,并将所述驱动处理后的第二驱动信号输出至外部用电设备300。
本发明实施例中,预设阈值可以根据需要设计,而高次谐波的分量低于预设阈值,是指高次谐波的分量较低,这就相当于第一驱动信后中滤除了这种高次谐波的分量。如此,第一驱动信号中已经滤除了至少一种高次谐波,因此,在对第一驱动信号进行驱动处理过程中,只需要采用较小感量、较小尺寸的低阶滤波器就能对其他比重较小的高次谐波进行滤除,一些场景下甚至无需采用滤波器,即可得到波形质量较好的第二驱动信号。在此过程中,一则降低了驱动电路的尺寸,二则能够在一定程度上降低滤波器引入的额外相移。
本发明实施例中,初始信号可以具体为矩形波信号,或者,可以成为方波信号。例如,初始信号可以为高电平为1,低电平为0的矩形波信号;或者,初始信号也可以为高电平为0,低电平为-1的矩形波信号。而且,本发明实施例中,初始信号的数目可以为至少一个。一般情况下,可以为两列矩形波信号,此时,两列初始信号可以相同或不同,这两列初始信号进行差分处理即可得到如图3所示的对称矩形波信号,具体地,该对称矩形波信号是指正脉宽的脉冲宽度、负脉宽的脉冲宽度相同,后续详述。例如,两列初始信号中,一列初始信号可以为高电平为1,低电平为0的矩形波信号,另一列初始信号可以为高电平为0,低电平为-1的矩形波信号;又例如,两列初始信号均可以为高电平为1,低电平为0的矩形波信号;又例如,两列初始信号均可以为高电平为0,低电平为-1的矩形波信号。
在一种实施例中,针对任一初始信号,若该方波的信号周期为T,正负脉宽均为τ,那么,该初始信号可以形成第一驱动信号,图3示出了第一驱 动信号的波形示意图,以及当对该第一驱动信号进行频域转换之后,其在频域上基波和各个谐波分量的示意图。其中,该第一驱动信号的波形示意图的横坐标为时间t,纵坐标为电压u;在对该第一驱动信号进行频域转换之后的波形示意图的横坐标为τ/T(正脉宽与周期的比值,或者负脉宽与周期的比值),纵坐标为谐波分量。可以理解,也可以定义波形示意图的横坐标为2τ/T(正负脉宽之和与周期的比值),或者其他合适的数值,在此不作限定。
在一种实施例中,正弦波信号由基波和高次谐波构成,具体地,当生成的第一驱动信号为完全对称的矩形波时,此时该对称矩形波为偶函数,对应的,高次谐波包括三次谐波、五次谐波、七次谐波和九次谐波或更高次的奇数次谐波。在其他实施例中,生成的第一驱动信号为不完全对称的矩形波,此时,该正弦波信号中的高次谐波不仅包括三次谐波、五次谐波、七次谐波和九次谐波以及更高次的奇数次谐波,同时还包括二次谐波、四次谐波、或更高次的偶数次谐波。
例如,当τ/T为0.5的时候,如图3所示,基波分量最大,但三次谐波、五次谐波、七次谐波、九次谐波的分量通常也都达到了最大。换言之,这种情况下,信号中携带的高次谐波是非常丰富的,因此,现有技术中以50%占空比的方波信号进行驱动处理得到的第二驱动信号的波形畸变也是非常恶劣的。这也是现有技术中采用50%占空比的方波信号进行超声波电机等外部用电设备进行驱动时,需要设计高阶滤波器的原因。
反而,当τ/T的范围在0.3~0.36的时候(可视为占空比为0.3~0.36的时候),该驱动信号的三次谐波和九次谐波分量较低(低于预设阈值),甚至能达到0,而五次谐波与七次谐波也避开了最大值,若该驱动电路的第一驱动信号在该范围内,能够尽可能地去除三次谐波和九次谐波的影响,其中包含的高次谐波分量只有五次和七次及其以上谐波,仅凭变压器输出漏感或者串联感量较小的滤波电感就能足以滤除。
因此,在一种可能的设计中,所述第一驱动信号的正向脉宽与周期的比值的范围为0.3~0.36,和/或,所述第一驱动信号的负向脉宽与周期的比值的范围为0.3~0.36。在该范围内的第一驱动信号都基本上已经消除了三次谐波和九次谐波的分量,对驱动电路的滤波要求、尺寸要求等均较小。这种场景 中,初始信号的占空比(正向脉宽与周期的比值或者负向脉宽与周期的比值)范围也在0.3~0.36范围内。可以理解,信号的占空比也可以定义为正向脉宽和负向脉宽的脉宽之和与周期的比值,也就是说,正向脉宽与负向脉宽先相加,得到正负脉宽之和,再与周期进行相比,得到正负脉宽之和与周期的比值,此时,正负脉宽之和与周期的比值的范围对应的,在0.6~0.72范围内。可以根据需要,对信号的占空比进行设定,本实施例仅为示例性说明,在此不作限定。
进一步地,实际场景中,τ/T的值(或简称为占空比)可以根据需要自定义设计。例如,τ/T的值可以取0.30、0.31、0.32、0.33、0.34、0.35、0.36或其他中间数值(例如0.355,不作穷举)。
另一种可能的设计中,当τ/T的范围为0.4左右(具体区间可以自定义设计,例如,可以为0.38~0.42,此处仅为示例性说明)时,驱动信号中五次谐波的分量较低,甚至为零,也可将处于该范围内的对称矩形波信号作为第一驱动信号,此时,相当于第一驱动信号消除了五次谐波分量的影响。类似的,此时,初始信号的占空比(正向脉宽与周期的比值或者负向脉宽与周期的比值)范围也在0.4左右。
另一种可能的设计中,当τ/T的范围为0.28左右(同上,具体区间可自定义设计)时,驱动信号中七次谐波的分量较低,甚至为零,也可将处于该范围内的对称矩形波信号作为第一驱动信号,此时,相当于第一驱动信号消除了七次谐波分量的影响。类似的,此时,初始信号的占空比(正向脉宽与周期的比值或者负向脉宽与周期的比值)范围也在0.28左右。
总之,本发明实施例通过对驱动电路的输入信号的角度出发,从根本上降低高次谐波对超声波电机等外部用电设备的影响。相较于现有技术中,以固定的占空比为50%的方波信号进行驱动的方案,并通过设计对高次谐波抑制能力更好的硬件滤波装置的方案相比,本发明实施例从信号的角度削弱其中至少一种高次谐波的能量,能够从根本上简化针对高次谐波的滤波设计,有利于缩减这部分滤波设计对驱动电路的空间占用,并且从根本上降低了高次谐波畸变对外部用电设备的影响。
以下,对图2所示的驱动电路中信号驱动电路的设计进行具体说明,同时佐证本方案对缩减滤波硬件方面的效果。
需要说明的是,本发明实施例对于信号驱动电路的电路类型无特别限定,其可以包括但不限于:桥式电路或者推挽式电路。
在一种实施例中,信号驱动电路可以为桥式电路。
此时,图4示出了该信号驱动电路200的结构示意图,如图4所示,以输入两列初始信号为例,该信号驱动电路200,包括:
第一半桥功率模块211,用于对第一列所述初始信号进行功率放大;
第二半桥功率模块212,用于对第二列所述初始信号进行功率放大;
第一电压放大组件220,连接于所述第一半桥功率模块211与所述第二半桥功率模块212,用于对所述功率放大后的两列所述初始信号进行差分处理,得到所述第一驱动信号;还用于对所述第一驱动信号进行变压处理,并输出所述第二驱动信号至外部用电设备300;
其中,第一电压放大组件220具备漏感。
如图4所示,第一电压放大组件200直接输出第二驱动信号至外部用电设备,而第一半桥功率模块211和第二半桥功率模块212的输入则为第一信号发生器100输出的初始信号,初始信号在第一电压放大组件220的初级绕组侧(左侧)形成第一驱动信号。如图4所示,第一电压放大组件220可以通过匹配变压器来实现。也就是,在匹配变压器左侧形成第一驱动信号,也即如图3所示的对称矩形波信号,并利用匹配变压器实现对第一驱动信号的功率放大,从而得到波形良好的正弦波信号,也即第二驱动信号。
由于第一驱动信号已经滤除了至少一种高次谐波分量,而第一驱动信号中还可能存在其他高次谐波分量,因此,为了向外部用电设备输出波形良好的正弦波信号,因此,还需要对第一驱动信号中的其他高次谐波分量进行滤除。此时,如图4所示,可以采用具备一定漏感的匹配变压器来实现功率放大。此时,可以将匹配电压器的漏感作为滤波电感,以滤除第一驱动信号中的其他的高次谐波分量。此时,无需在如图4所示的信号驱动电路中额外设计其他滤波组件,有利于降低信号驱动电路的硬件复杂度。
除图4所示的设计之外,本发明实施例中,还可以采用普通的不具备漏感的匹配变压器来实现功率放大。
此时,该信号驱动电路,还可以包括但不限于:第一滤波组件,其中,第一滤波组件用于滤除高次谐波分量。具体而言,可以参考图5和图6,仍 以输入两列所述初始信号为例,该信号驱动电路200包括:
第一半桥功率模块211,用于对第一列所述初始信号进行功率放大;
第二半桥功率模块212,用于对另一列所述初始信号进行功率放大;
第一电压放大组件220,连接于所述第一半桥功率模块211与所述第二半桥功率模块212,用于对所述功率放大后的初始信号进行差分处理,得到所述第一驱动信号;还用于对所述第一驱动信号进行变压处理,并输出第三驱动信号;
第一滤波器232,用于滤除所述第三驱动信号中的高次谐波分量,得到所述第二驱动信号,并输出所述第二驱动信号至所述外部用电设备300。
本发明实施例中,第一滤波器232可以具体为滤波电感或者低通滤波器。图5和图6示出了第一滤波器232为滤波电感时的两种设计方式。可以理解,若第一滤波器232为低通滤波器,该驱动电路的电路结构也如图5或图6所示,不作赘述。
如图5所示的一种可能的设计中,所述第一滤波器232连接于所述第一电压放大组件220与所述外部用电设备300之间,具体的,第一滤波器232连接于第一电压放大组件220的第一输出端与外部用电设备300之间。
或者,
图6示出了另一种第一滤波器的设计方式。如图6所示,所述第一滤波器232并联于所述外部用电设备300的两端。
在如图5或图6所示的设计中,初始信号经过处理,并在第一电压放大组件220的初级绕组侧(左侧)进行差分,形成如图3所示的对称矩形波,也即第一驱动信号;之后,再经过第一电压放大组件220的电压放大,并经过第二滤波器232的滤波处理,可以得到波形良好的正弦波信号,也即第二驱动信号。从而,外部用电设备可以利用该第二驱动信号驱动工作。
需要说明的是,在如图5或图6所示的驱动电路中,第一电压放大组件220可以采用具备一定漏感的匹配变压器实现,也可以采用不具备漏感的普通匹配变压器。其中,若第一电压放大组件220具备一定漏感,则可以通过第一电压放大组件220来滤除驱动信号中的高次谐波分量,此时,第一滤波器232可用于抵消外部用电设备300的容抗,以减轻外部用电设备300的发热情况。
除图4~图6所示的设计之外,本发明实施例还提供了另外一种设计方式。请参考图7,仍以输入两列所述初始信号为例,该信号驱动电路200,包括:
第一半桥功率模块211,用于对第一列所述初始信号进行功率放大;
第二半桥功率模块212,用于对第二列所述初始信号进行功率放大;
第二滤波器233,连接于所述第一半桥功率模块211,用于滤除所述功率放大后的初始信号中的高次谐波分量;
第一电压放大组件220,连接于所述第二滤波器233与所述第二半桥功率模块212,用于差分形成所述第一驱动信号,以及,用于对所述第一驱动信号进行变压处理,并输出所述第二驱动信号至所述外部用电设备300。
在图7所示的场景中,初始信号即为滤除了至少一种高次谐波分量,并在两列初始信号在第一电压放大组件220左侧进行差分处理之前,还进一步通过第二滤波器滤除了其他的高次谐波分量,如此,两列初始信号在第一电压放大组件220左侧进行差分处理,得到的第一驱动信号即为滤除了高次谐波分量的正弦波信号,之后,经过第一电压放大组件220进行电压放大后,得到第二驱动信号,并输出给外部用电设备300。可以理解,第二驱动信号即为升压后的第一驱动信号,也为正弦波信号。
与第一滤波器232类似,第二滤波器233也用于滤除高次谐波分量,基于设置位置的不同,第一滤波器232用于滤除第一驱动信号中的高次谐波分量,而第二滤波器233则用于滤除初始信号中的高次谐波分量。
以及,本发明实施例中,第二滤波器233也可以为滤波电感或者低通滤波器,图7是以第二滤波器233为滤波电感而示意性示出的,实际场景中,第二滤波器233也可以替换为低通滤波器。
除此之外的另外的实施例中,如图4~图7所示,该信号驱动电路200中还可以设计隔直电容231。如图4~图7所示,隔直电容231连接于所述第二半桥功率模块212与所述第一电压放大组件220之间,用于吸收所述功率放大后的初始信号中的直流分量。也即,隔直电容231连接于半桥功率模块212的输出端第一电压放大组件220的第二输入端之间。隔直电容能够滤除驱动信号中的直流分量,降低直流分量对第二驱动信号的影响。
综上,通过如图4~图7所示的设计,本发明实施例能够通过桥式电路实现对外部用电设备的驱动,并且,由于直接从信号的角度削弱了高低谐波对 驱动信号的影响,能够在一定程度上降低驱动电路的硬件复杂度和硬件体积。
在一种实施例中,信号驱动电路可以为推挽式电路。
此时,图8示出了该信号驱动电路200的结构示意图,如图8所示,该信号驱动电路200,包括:
第一开关管240,所述第一开关管240的驱动端用于接收所述第一信号发生器100发送的所述初始信号,所述第一开关管240的第一输出端接地;
第二开关管250,所述第二开关管250的驱动端用于接收所述第一信号发生器100发送的所述初始信号,所述第二开关管250的第一输出端接地;
第二电压放大组件260,所述第二电压放大组件260的第一输入端、第二输入端分别连接于所述第一开关管240的第二输出端、所述第二开关管250的第二输出端,所述第二电压放大组件260的第三输入端连接电压源(可视为中心抽头);所述第二电压放大组件260的输出端连接至所述外部用电设备300;所述第二电压放大组件260用于在所述第二电压放大组件260的次级绕组输出所述第一驱动信号。
如图8所示,该第二电压放大组件260可以具体表现为具备中心抽头的匹配变压器,此时,该具备中心抽头的匹配变压器包括两个绕组:一个带中心抽头的推挽拓扑绕组,以及与之耦合的次级输出绕组。而第一开关管240与第二开关管250可以为MOS管,其类型可以包括但不限于:NMOS或PMOS。第一开关管与第二开关管背对背设计。
在该推挽式信号驱动电路200中,由于第一信号发生器100输出的初始信号,可以形成已经滤除了至少一种高次谐波的第一驱动信号,该第一驱动信号在第二电压放大组件260的次级绕组侧生成第一驱动信号,谐波特性优于现有的采用50%占空比的推挽式信号驱动电路,也同样在为电机提供稳定驱动信号的前提下,降低电机驱动器的尺寸,提高应用灵活性。
如图8所示,第二电压放大组件260具备漏感,那么,可以利用第二电压放大组件260的漏感作为滤波电感,以滤除第一驱动信号中的其他的高次谐波分量,从而,输出的第一驱动信号即滤除了其他高次谐波,进而,第一驱动信号与第二驱动信号相同,可直接将第二电压放大组件260输出的第一驱动信号输出至外部用电设备300。
除此之外,本发明实施例还进一步提供了其他形式的推挽式信号驱动电路。
请参考图9,在该信号驱动电路200中,除包括前述提及的第一开关管240、第二开关管250与第二电压放大组件260之外,该信号驱动电路200,还包括:
信号调整组件270,所述信号调整组件210的第一输入端、第二输入端分别连接于所述第一开关管240的驱动端、所述第二开关管250的驱动端,所述信号调整组件270的输出端与所述第二电压放大组件260相耦合;所述信号调整组件270用于在所述信号调整组件270短路时为所述第一驱动信号提供0电平输出。
需要说明的是,正是由于信号调整组件270的调整,使如图9所示的推挽电路能够输出0电平,从而,才能够使得第二电压放大组件260的次级绕组侧(右侧)输出如图3所示的、具备三个电平台阶的对称谐波信号。从而,也只需要结构简单的滤波结构就可以滤除其他高次谐波,得到波形良好的正弦波信号。
如图9所示的驱动电路中,第二电压放大组件260具备漏感,则可用第二电压放大组件的漏感来滤除其他高次谐波分量。那么,第二电压放大组件260可直接输出波形良好的正弦波信号,也即,图9中所示的第一驱动信号与第二驱动信号相同。
如图9所示,所述信号调整组件270,包括:
第一逻辑与门模块271,所述第一逻辑与门模块271的第一输入端、第二输入端分别连接于所述第一开关管240的驱动端、所述第二开关管250的驱动端,所述第一逻辑与门模块271用于在所述第一开关管240、所述第二开关管250断开时导通;
第三开关管272,所述第三开关管271的驱动端连接于所述第一逻辑与门模块271的输出端,所述第三开关管272的第一输出端接地;所述第三开关管271用于在所述第一逻辑与门模块271导通时导通;
第四开关管273,所述第四开关管273的驱动端连接于所述第一逻辑与门模块271的输出端,所述第四开关管273的第一输出端接地;所述第四开关管273用于在所述第一逻辑与门模块271导通时导通;
绕组274,连接于所述第三开关管272的第二输出端与所述第四开关管273的第二输出端之间,并与所述第二电压放大组件260相耦合。
此时,相较于图8所示的推挽式电路,图9所示信号驱动电路200中共包含三个绕组:一个带中心抽头的推挽拓扑绕组,与之相耦合的次级输出绕组,以及,信号调整组件270中的独立的绕组274。该绕组274连接于第一开关管240和第二开关管250之间,且能够与次级输出绕组相耦合。如此,在该绕组274短路时,次级输出绕组可以输出0V电压。其中,当第一开关管240和第二开关管250导通时,绕组274短路,此时,次级输出绕组可以输出0V电平。此外需要说明的是,由于第一开关管240和第二开关管250的导通,与第三开关管272和第四开关管273的导通之间,留有一定切换死区,因此,实际电路中有相应死区电路。
如图9所示的设计,使得第二电压放大组件260具备了输出三个电平台阶的能力,有利于提高驱动信号的谐波特性,向外部用电设备300输出谐波特性良好的正弦波信号(第二驱动信号)。
此外,与桥式信号驱动电路类似,除需要实现对第一驱动信号的驱动处理之外,还需要滤除驱动信号中的其他高次谐波。
类似的,第二电压放大组件260可以采用具备一定漏感的匹配变压器实现,如图8或图9所示,初始信号可用于形成第一驱动信号,而第一驱动信号具备至少一种高次谐波的分量低于预设阈值,再加上第二电压放大组件260的漏感来滤除其他高次谐波的分量,无需再额外设计其他滤波组件,更加节约驱动电路的硬件结构。
除此之外,还可以利用不具备漏感的匹配变压器来实现。此时,还需要在信号驱动电路中设计第三滤波器,以滤除其他的高次谐波分量。其中,第三滤波器可以为滤波电感或低通滤波器。
此时,可以参考图10和图11,如图10或图11所示,该信号驱动电路200中还可以包括:
第三滤波器280,用于滤除所述第一驱动信号中的高次谐波分量,得到所述第二驱动信号,并输出所述第二驱动信号至所述外部用电设备300。
其中,如图10所示,所述第三滤波器280连接于所述第二电压放大组件260与所述外部用电设备300之间;或者,如图11所示,所述第三滤波器280 并联于所述外部用电设备300两端。
如图10所示,具体的,第三滤波器280连接于第二电压放大组件260的第一输出端与外部用电设备300之间。第二电压放大组件260的次级绕组侧输出第一驱动信号,第一驱动信号已经滤除了至少一种高次谐波分量,之后,再通过第三滤波器280,就能够进一步滤除其他高次谐波的分量,从而,将如图3所示的对称矩形波信号(第一驱动信号)处理为波形较好的正弦波信号,即为第二驱动信号。如此,外部用电设备300可以利用正弦波信号来驱动工作。
图11示出了另一种第三滤波器的设计方式。如图11所示,所述第三滤波器280并联于所述外部用电设备300的两端。例如,若根据初始信号形成的第一驱动信号已经滤除了三次谐波分量和九次谐波分量,那么,再通过并联于外部用电设备300两侧的第三滤波器280,即可轻松滤除五次谐波分量和七次谐波分量,使得最终输入外部用电设备300的第二驱动信号为波形良好的正弦波信号。
在如图10或图11所示的驱动电路中,第二电压放大组件260可以采用具备一定漏感的匹配变压器实现,也可以采用不具备漏感的普通匹配变压器。其中,若第二电压放大组件260具备一定漏感,则可以通过第二电压放大组件260的漏感来滤除驱动信号中的高次谐波分量,此时,第三滤波器280可用于抵消外部用电设备300的容抗,以减轻外部用电设备300的发热情况。
以下对本发明实施例所提供的驱动电路的调速方式进行说明。其中,所谓调速主要是对正弦波信号的幅度进行调节。
请参考图12,本发明实施例中,该驱动电路中还可以包括但不限于如下器件:
第二信号发生器400,用于生成并输出调速信号,所述调速信号用于对驱动信号进行调速;
调速组件500,连接于所述第一信号发生器100与所述信号驱动电路200之间,并与所述第二信号发生器400相连接,用于根据所述调速信号对所述初始信号进行调速。
其中,第一信号发生器与所述第二信号发生器可以为不同的信号发生器。
或者,第一信号发生器与所述第二信号发生器也可以为同一信号发生器,例如,图4~图11示出了这种情况。如图4~图11所示,驱动电路中仅包含一个第一信号发生器100,此时,该第一信号发生器100除可用于生成并输出初始信号之外,还可用于生成并输出调速信号。在具体实现场景中,若外部用电设备300需要多相驱动信号,则信号发生器可生成三路信号:两路用于生成第一驱动信号的初始信号,一路调速信号。
本发明实施例所涉及到的调速信号可以包括但不限于:脉冲宽度调制(Pulse Width Modulation,PWM)信号或者脉冲频率调制(Pulse Frequency Modulation,PFW)信号。具体的,调速信号的频率远高于第一驱动信号,通过改变调速信号的占空比,来调节对称矩形波中基波的幅度,来实现调速。
示例性的,以第一信号发生器与所述第二信号发生器也可以为同一信号发生器的情况为例,图4~图11也示出了调速组件500的情况。
如图4~图7所示,在第一信号发生器100与第一半桥功率模块211之间,设置有第二逻辑与门模块510,在第一信号发生器100与第二半桥功率模块212之间,设置有第三逻辑与门模块520。以第二逻辑与门模块510为例,第二逻辑与门模块510可以接收第一信号发生器100输出的初始信号,并可以接收第二信号发生器输出的调速信号,并利用调速信号对初始信号进行调速斩波,即通过控制初始信号的导通比来调节电压值,再将调速后的初始信号输入至第一半桥功率模块211和第二半桥功率模块212中。
如图8~图11所示,在第一信号发生器100与第一开关管240之间设置有第二逻辑与门模块510,在第一信号发生器100与第二开关管250之间,设置有第三逻辑与门模块520。以第二逻辑与门模块510为例,第二逻辑与门模块510可以接收第一信号发生器100输出的初始信号,并可以接收第二信号发生器输出的调速信号,并利用调速信号对初始信号进行调速斩波,并将调速后的初始信号输入至第一开关管240的驱动端。
如此,本发明实施例中,通过对消除了至少一种高次谐波的初始信号进行二次斩波的方式实现调速,无需辅助调压电路,有利于电路小型化,且线性度较好,有利于降低噪声。这种调速方式不会破坏驱动信号的高次谐波特性,在不破坏输出正弦波信号失真度的前提下可以对正弦波的幅度进行调节。
综上所述,相较于现有技术,本发明实施例所提供的技术方案,能够在 不借助高阶数的滤波器的情况下就能实现高保真的正弦波输出,并且,采用二次斩波技术,在不破坏高次谐波的对称矩形波的谐波特性的前提下,实现对基波分量幅度的调节,使得驱动电路的硬件尺寸更小,驱动噪声更低,且调速性能优异。
此外,本发明实施例还进一步提供了一种驱动电路板。请参考图13,该驱动电路板包括:
基板;
前述任一实现方式所述的驱动电路,设置于所述基板上。
此外,本发明实施例还进一步提供了一种驱动器。请参考图14,包括:
壳体;
前述任一实现方式所述的驱动电路,设置于所述壳体内部。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种驱动电路,其特征在于,包括:
    第一信号发生器,用于生成并输出初始信号,其中,所述初始信号用于形成第一驱动信号,所述第一驱动信号具备至少一种高次谐波的分量低于预设阈值;
    信号驱动电路,连接于所述第一信号发生器;所述信号驱动电路用于对所述初始信号进行驱动处理,并将所述驱动处理后的第二驱动信号输出至外部用电设备。
  2. 根据权利要求1所述的驱动电路,其特征在于,所述第一驱动信号的正向脉宽与周期的比值的范围为0.3~0.36,和/或,所述第一驱动信号的负向脉宽与周期的比值的范围为0.3~0.36。
  3. 根据权利要求1所述的驱动电路,其特征在于,所述信号驱动电路,包括:
    第一半桥功率模块,用于对所述初始信号进行功率放大;
    第二半桥功率模块,用于对所述初始信号进行功率放大;
    第一电压放大组件,连接于所述第一半桥功率模块与所述第二半桥功率模块,用于对所述功率放大后的所述初始信号进行差分处理,得到所述第一驱动信号;还用于对所述第一驱动信号进行变压处理,并输出所述第二驱动信号至所述外部用电设备;
    其中,所述第一电压放大组件具备漏感。
  4. 根据权利要求1所述的驱动电路,其特征在于,所述信号驱动电路,包括:
    第一半桥功率模块,用于对一列所述初始信号进行功率放大;
    第二半桥功率模块,用于对所述初始信号进行功率放大;
    第一电压放大组件,连接于所述第一半桥功率模块与所述第二半桥功率模块,用于对所述功率放大后的初始信号进行差分处理,得到所述第一驱动信号;还用于对所述第一驱动信号进行变压处理,并输出第三驱动信号;
    第一滤波器,用于滤除所述第三驱动信号中的高次谐波分量,得到所述第二驱动信号,并输出所述第二驱动信号至所述外部用电设备。
  5. 根据权利要求4所述的驱动电路,其特征在于,
    所述第一滤波器连接于所述第一电压放大组件与所述外部用电设备之间;或者,
    所述第一滤波器并联于所述外部用电设备两端。
  6. 根据权利要求4所述的驱动电路,其特征在于,所述第一滤波器为滤波电感或低通滤波器。
  7. 根据权利要求1所述的驱动电路,其特征在于,所述信号驱动电路,包括:
    第一半桥功率模块,用于对所述初始信号进行功率放大;
    第二半桥功率模块,用于对所述初始信号进行功率放大;
    第二滤波器,连接于所述第一半桥功率模块,用于滤除所述功率放大后的初始信号中的高次谐波分量;
    第一电压放大组件,连接于所述第二滤波器与所述第二半桥功率模块,用于差分形成所述第一驱动信号,以及,用于对所述第一驱动信号进行变压处理,并输出所述第二驱动信号至所述外部用电设备。
  8. 根据权利要求7所述的驱动电路,其特征在于,所述第二滤波器为滤波电感或低通滤波器。
  9. 根据权利要求3-8任一项所述的驱动电路,其特征在于,所述信号驱动电路,还包括:
    隔直电容,连接于所述第二半桥功率模块与所述第一电压放大组件之间,用于吸收所述功率放大后的初始信号中的直流分量。
  10. 根据权利要求1所述的驱动电路,其特征在于,所述信号驱动电路,包括:
    第一开关管,所述第一开关管的驱动端用于接收所述第一信号发生器发送的所述初始信号,所述第一开关管的第一输出端接地;
    第二开关管,所述第二开关管的驱动端用于接收所述第一信号发生器发送的所述初始信号,所述第二开关管的第一输出端接地;
    第二电压放大组件,连接于所述第一开关管的第二输出端、所述第二开关管的第二输出端、电压源,以及连接于所述外部用电设备,用于在所述第二电压放大组件的次级绕组输出所述第一驱动信号;
    信号调整组件,所述信号调整组件的第一输入端、第二输入端分别连接于所述第一开关管的驱动端、所述第二开关管的驱动端,所述信号调整组件的输出端与所述第二电压放大组件相耦合;所述信号调整组件用于在所述信号调整组件短路时为所述第一驱动信号提供0电平输出。
  11. 根据权利要求10所述的驱动电路,其特征在于,所述第二电压放大组件具备漏感,所述第一驱动信号与所述第二驱动信号相同。
  12. 根据权利要求10所述的驱动电路,其特征在于,所述信号驱动电路,还包括:
    第三滤波器,用于滤除所述第一驱动信号中的高次谐波分量,得到所述第二驱动信号,并输出所述第二驱动信号至所述外部用电设备;
    其中,所述第三滤波器连接于所述第二电压放大组件与所述外部用电设备之间;或者,所述第三滤波器并联于所述外部用电设备两端。
  13. 根据权利要求12所述的驱动电路,其特征在于,所述第三滤波器为滤波电感或低通滤波器。
  14. 根据权利要求10-13任一项所述的驱动电路,其特征在于,所述信号调整组件,包括:
    第一逻辑与门模块,所述第一逻辑与门模块的第一输入端、第二输入端分别连接于所述第一开关管的驱动端、所述第二开关管的驱动端,所述第一逻辑与门模块用于在所述第一开关管、所述第二开关管断开时导通;
    第三开关管,所述第三开关管的驱动端连接于所述第一逻辑与门模块的输出端,所述第三开关管的第一输出端接地;所述第三开关管用于在所述第一逻辑与门模块导通时导通;
    第四开关管,所述第四开关管的驱动端连接于所述第一逻辑与门模块的输出端,所述第四开关管的第一输出端接地;所述第四开关管用于在所述第一逻辑与门模块导通时导通;
    绕组,连接于所述第三开关管的第二输出端与所述第四开关管的第二输出端之间,并与所述第二电压放大组件相耦合。
  15. 根据权利要求1或2所述的驱动电路,其特征在于,所述驱动电路,还包括:
    第二信号发生器,用于生成并输出调速信号,所述调速信号用于对驱动信号进行调速;
    调速组件,连接于所述第一信号发生器与所述信号驱动电路之间,并与所述第二信号发生器相连接,用于根据所述调速信号对所述初始信号进行调速。
  16. 根据权利要求15所述的驱动电路,其特征在于,所述调速信号包括:脉冲宽度调制PWM信号或者脉冲频率调制PFW信号。
  17. 根据权利要求15所述的驱动电路,其特征在于,所述第一信号发生器与所述第二信号发生器为同一信号发生器。
  18. 根据权利要求1所述的驱动电路,其特征在于,所述外部用电设备包括:电机、环能器或驱动电源;其中,所述电机包括:超声波电机。
  19. 一种驱动电路板,其特征在于,包括:
    基板;
    权利要求1-18任一项所述的驱动电路,设置于所述基板上。
  20. 一种驱动器,其特征在于,包括:
    壳体;
    权利要求1-18任一项所述的驱动电路,设置于所述壳体内部。
PCT/CN2019/103305 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器 WO2021035614A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103305 WO2021035614A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器
CN201980034165.1A CN112204866A (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103305 WO2021035614A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Publications (1)

Publication Number Publication Date
WO2021035614A1 true WO2021035614A1 (zh) 2021-03-04

Family

ID=74004552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103305 WO2021035614A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Country Status (2)

Country Link
CN (1) CN112204866A (zh)
WO (1) WO2021035614A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361000B (zh) * 2022-10-18 2023-01-24 北京国械堂科技发展有限责任公司 一种向人体施加电场的装置及电场治疗仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628388A1 (en) * 2003-05-29 2006-02-22 Tamura Corporation Piezoelectric transformer drive method and drive circuit
CN101421912A (zh) * 2006-04-11 2009-04-29 柯尼卡美能达精密光学株式会社 驱动装置
CN108390238A (zh) * 2018-01-29 2018-08-10 雄安华讯方舟科技有限公司 太赫兹驱动装置
CN208754179U (zh) * 2018-09-05 2019-04-16 上海晶丰明源半导体股份有限公司 低通滤波器、开关控制电路、驱动系统及芯片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498967B2 (ja) * 2005-04-01 2010-07-07 株式会社日本自動車部品総合研究所 スイッチング装置
TWI339008B (en) * 2007-12-05 2011-03-11 Ite Tech Inc Class-d amplifier and multi-level output signal generated method thereof
CN102291064A (zh) * 2011-08-31 2011-12-21 东南大学 开关磁阻电机驱动系统的快速斩波电路及方法
CN102969928B (zh) * 2012-10-25 2014-11-12 中国科学院电工研究所 谐振型变流器的输出功率调节方法
EP3096437B1 (en) * 2014-01-08 2020-11-04 LG Innotek Co., Ltd. Wireless power transfer device and wireless power transfer method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628388A1 (en) * 2003-05-29 2006-02-22 Tamura Corporation Piezoelectric transformer drive method and drive circuit
CN101421912A (zh) * 2006-04-11 2009-04-29 柯尼卡美能达精密光学株式会社 驱动装置
CN108390238A (zh) * 2018-01-29 2018-08-10 雄安华讯方舟科技有限公司 太赫兹驱动装置
CN208754179U (zh) * 2018-09-05 2019-04-16 上海晶丰明源半导体股份有限公司 低通滤波器、开关控制电路、驱动系统及芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU HUA, WU WEN-CAI, PAN SONG JIAN, LEI: "Study on driving circuit of multi degree of freedom ultrasonic motor", ELECTRIC MACHINES AND CONTROL, vol. 18, no. 12, 15 December 2014 (2014-12-15), pages 44 - 49+56, XP055787004, ISSN: 1007-449X, DOI: 10.15938/j.emc.2014.12.007 *

Also Published As

Publication number Publication date
CN112204866A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP6640177B2 (ja) 絶縁型dc/dcコンバータ
CN100477505C (zh) 无滤波电路d类功率放大器
CN100571021C (zh) 无滤波电路的d类功率放大器
US7221216B2 (en) Self-oscillating switching amplifier
US7501889B2 (en) Method and apparatus for implementing soft switching in a class D amplifier
CN102710225B (zh) 多电平d类放大器
US7161428B2 (en) Method and apparatus for extending the bandwidth of a Class D amplifier circuit
JP2009044705A (ja) 静電型スピーカの駆動装置
CN104702221A (zh) 脉冲宽度调制音频功率放大器
WO2021035614A1 (zh) 驱动电路、驱动电路板与驱动器
TW201320595A (zh) 切換系統、用以控制電流路由器的方法與切換系統的控制方法以及對映方法
US10084345B2 (en) Resonant wireless power driver with adjustable power output
WO2023155600A1 (zh) 共模电压动态调制电路、方法和d类音频功率放大器
CN101385237B (zh) 用于在d类放大器中实现软开关的方法和装置
JP2007336743A (ja) インバータ装置
CN201860297U (zh) 一种d类音频功放系统
US9496829B2 (en) Amplifier arrangement comprising a low-pass filter device
CN204465463U (zh) 脉冲宽度调制音频功率放大器
US20050264354A1 (en) Method and Apparatus for Reducing Ripple in Class D Amplifiers
JP5283060B2 (ja) 増幅器
CN111464176A (zh) 一种对称与非对称隔离式驱动信号传输电路
WO2015097811A1 (ja) 共振型電力伝送装置
CN111884607B (zh) 全桥d类放大电路、级联功率模块及大功率射频电源
WO2015063915A1 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
WO2021035616A1 (zh) 驱动电路、驱动电路板与驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943693

Country of ref document: EP

Kind code of ref document: A1