WO2021035616A1 - 驱动电路、驱动电路板与驱动器 - Google Patents

驱动电路、驱动电路板与驱动器 Download PDF

Info

Publication number
WO2021035616A1
WO2021035616A1 PCT/CN2019/103311 CN2019103311W WO2021035616A1 WO 2021035616 A1 WO2021035616 A1 WO 2021035616A1 CN 2019103311 W CN2019103311 W CN 2019103311W WO 2021035616 A1 WO2021035616 A1 WO 2021035616A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
driving
drive
driving circuit
switch
Prior art date
Application number
PCT/CN2019/103311
Other languages
English (en)
French (fr)
Inventor
黄睿
唐雨池
李�根
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/103311 priority Critical patent/WO2021035616A1/zh
Priority to CN201980034339.4A priority patent/CN112204864A/zh
Publication of WO2021035616A1 publication Critical patent/WO2021035616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods

Definitions

  • the present invention relates to the field of driving technology, in particular to a driving circuit, a driving circuit board and a driver.
  • Ultrasonic motors are widely used in the driving field. Ultrasonic motors generally work through high-voltage drive signals provided by the motor driver.
  • the resonant booster circuit is a common circuit of a motor driver, and its principle is that the capacitor and the inductance are excited by the resonant frequency power supply in the form of parallel or series.
  • Fig. 1 shows a schematic diagram of a resonant booster circuit in the prior art.
  • an inductor L, an ultrasonic motor capacitor C, and a power source E form a resonant circuit, and the switching tubes K and The diode D and the capacitor C are connected in parallel between the inductor L and the power source E.
  • the switch tube K is disconnected, the inductance L in the LC series circuit releases energy to the ultrasonic motor capacitor C, and the ultrasonic motor capacitor C absorbs the inductive energy, so that the ultrasonic motor is excited by the voltage source.
  • the diode and the switch tube in the driving scheme need to have a certain current withstand and a higher withstand voltage at the same time, and the size of such a semiconductor device is usually very large. Therefore, how to further reduce the size of the motor driver on the premise of providing a stable driving signal for the motor is a technical issue that is focused on in this field.
  • the embodiment of the present invention provides a driving circuit, a driving circuit board and a driver, which are used to reduce the size of the motor driver and improve the application flexibility on the premise of providing a stable driving signal for the motor.
  • an embodiment of the present invention provides a driving circuit, including: a coupled inductor and a driving switch;
  • the coupled inductor includes: a first winding and a second winding, the inductance of the first winding is smaller than the inductance of the second winding, the first end of the first winding is a power connection end, and the second winding The first end of the winding is the motor connection end;
  • the driving switch includes: a driving signal input terminal and a driving signal output terminal, the driving signal output terminal is connected to the coupling inductor; the driving switch is used to provide a driving voltage for an external electric device through the coupling inductor.
  • an embodiment of the present invention provides a driving circuit board, including:
  • the driving circuit according to the first aspect is provided on the substrate.
  • an embodiment of the present invention provides a driver, including:
  • the driving circuit according to the first aspect is arranged inside the housing.
  • an embodiment of the present invention provides a driving method of a driving circuit, including:
  • the drive signal is transmitted from the second winding on the motor side in the coupled inductor to the motor, and the second resistor has a relatively large inductance.
  • a large amount of the second winding can withstand larger currents. Therefore, devices such as switching tubes and coupled inductors do not need to use large-sized devices with high voltage and high current withstand capabilities, which can greatly reduce the size of the device, thereby reducing the drive circuit
  • the overall size of the drive circuit can improve the application scenarios of the drive circuit, and has a higher application flexibility.
  • Fig. 1 is a schematic structural diagram of a motor drive circuit in the prior art
  • FIG. 2 is a schematic structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another driving circuit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a driving circuit board provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a driver provided by an embodiment of the present invention.
  • the specific scenario targeted by the embodiment of the present invention is: a scenario of driving an external electric device.
  • the embodiment of the present invention does not specifically limit the specific type of the external electrical equipment, which may include, but is not limited to: a motor, a transducer, or a driving power source; wherein, the motor includes: an ultrasonic motor.
  • the present invention will be described in detail below, taking the electrical equipment as an ultrasonic motor as an example.
  • the technical solution provided by the present invention aims to solve the above technical problems in the prior art, and proposes the following solution: using external electrical equipment such as an ultrasonic motor and a coupled inductor to form a resonant circuit, and the resonant circuit can suppress high-order harmonics.
  • the coupled inductor does not need to bear a large current in the large inductance winding, which reduces the size of the driver.
  • the embodiment of the present invention provides a driving circuit, which can be used to drive an external electric device.
  • FIG. 2 shows a schematic structural diagram of a driving circuit provided by an embodiment of the present invention.
  • the driving circuit includes: a coupling inductor 210 and a driving switch 220;
  • the coupled inductor 210 includes a first winding 211 and a second winding 212.
  • the inductance of the first winding 211 is smaller than the inductance of the second winding 212, and the inductance of the first winding 211 is smaller than that of the second winding 212.
  • the first end is a power connection end, and the first end of the second winding 212 is a motor connection end;
  • the drive switch 220 includes: a drive signal input terminal and a drive signal output terminal, the drive signal output terminal is connected to the coupling inductor 210; the drive switch 220 is used to provide an external electric device 300 through the coupling inductor Drive voltage. Specifically, the driving switch 220 excites the coupling inductor, so that the coupling inductor generates a driving voltage that drives the external electric device 300 to work.
  • the driving signal generator is not shown in the driving circuit shown in FIG. 2.
  • the driving signal generator may be used to generate a driving signal and input it to the driving circuit, so that the driving circuit is resonantly boosted and then input to an external electric device. It can be understood that in the driving circuit shown in FIG. 2, the output terminal of the driving signal generator is connected to the driving signal input terminal of the driving switch 220.
  • the driving signal generator may be an independent signal generator, such as a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the driving signal generator may be a part of the driving circuit, or it may not belong to the driving circuit, and will not be described in detail.
  • the driving switch 220 may be an insulated gate field effect transistor (MOS tube).
  • MOS tube Specifically, the gate of the MOS transistor is the drive signal input terminal, the drain of the MOS transistor is the drive signal output terminal, and the source of the MOS transistor is grounded.
  • the MOS tube can have a higher current withstand capability in a smaller size, and has a lower on-resistance; moreover, the MOS tube is used as a switching device, and the switching tube loss is more double when working at high frequencies. Polar transistors are smaller.
  • the embodiment of the present invention has no particular limitation on the switch type of the drive switch 220.
  • either the aforementioned MOS transistor can be used as the drive switch 220, or other types of switch transistors can be used.
  • a zero voltage switch Zero Voltage Switch, ZVS
  • ZVS Zero Voltage Switch
  • the structure design of the coupled inductor 210 in the driving circuit shown in FIG. 2 will be described below. Specifically, it mainly relates to the design scheme of the first winding 211 and the second winding 212 included in the coupled inductor 210.
  • first winding 211 and the second winding 212 may have at least the following two relationships:
  • the first winding 211 is connected to the second winding 212;
  • the first winding 211 is coupled with the second winding 212.
  • connection end of the first winding 211 and the second winding 212 is the middle tap of the coupling inductor 210.
  • at least the following designs can be arranged between the first winding 211 and the second winding 212, and the drive switch 220:
  • FIG. 3 shows a schematic structural diagram of another driving circuit.
  • the second end of the first winding 211 is connected to the second end of the second winding 212 and the driving signal output end of the driving switch 220.
  • the driving signal output terminal of the driving switch 220 is connected to the middle tap of the coupling inductor 210.
  • the drive switch 220 is a MOS tube
  • the drain of the MOS tube is the driving signal output terminal, which is connected to the middle tap of the coupling inductor 210
  • the gate of the MOS tube is the driving signal input terminal, and the source of the MOS tube The pole is grounded.
  • the driving signal flows from the driving switch 220 into the second winding 212 in the coupling inductor 210, and finally flows into the external electrical equipment 300, because the inductance of the second winding 212 is much greater than that of the first winding.
  • the inductance of 211, the wire diameter used by the second winding 212 is also much smaller than the wire diameter of the first winding 211. In this way, the driving signal can excite the first winding 211, and a higher driving voltage is coupled to the second winding 212 side, thereby realizing the driving of the external electric device 300.
  • the equivalent inductance of the resonant circuit connected to the external electrical equipment 300 is approximately unchanged, and the large current only exists in the first winding 211 with a small inductance, and The second winding 212 with large inductance does not flow through.
  • the second winding 212 with large inductance only needs to withstand the rated input current of the driving signal, and the rated input current is usually very small.
  • the rated input current is tens of milliamperes to one or two hundred milliamperes.
  • the coupled inductor 210 can be a very small device, which greatly reduces the size of the driver.
  • FIG. 4 shows a schematic structural diagram of another driving circuit.
  • the first end of the first winding 211 is connected to the second end of the second winding 212 and the drive signal output end of the drive switch 220, and the second end of the first winding 211 Grounded.
  • the driving switch 220 is still taken as an example of a MOS tube, and the connection relationship is shown in FIG. 4.
  • the gate of the MOS tube is the driving signal input terminal
  • the drain is the driving signal output terminal, connected to the middle tap of the coupling inductor 210
  • the source terminal is the power connection terminal.
  • the first end of the first winding 211 is the middle tap of the coupled inductor 210. At this time, the first end of the first winding 211 is connected to the power supply through the drive switch 220. Therefore, the first end of the first winding 211 can be used as a power connection end.
  • the second winding 212 is a winding with a large inductance and a small current capacity. It is similar to the scene shown in FIG. 3, as shown in FIG. In the drive circuit shown in 4, when the drive switch 220 is in the on state and in the off state, the equivalent inductance of the resonant circuit connected to the external electrical equipment 300 is approximately unchanged, and the large current only exists in the second inductance of the small inductance. One winding 211 does not flow through the second winding 212 with large inductance.
  • the second winding 212 with large inductance only needs to withstand the rated input current of the drive signal, and the rated input current is usually tens of milliamps. To one or two hundred milliamps, which is very small. Therefore, the size of the coupled inductor 210 can be smaller.
  • FIG. 5 shows a schematic structural diagram of another driving circuit.
  • the second end of the first winding 211 is connected to the second end of the second winding 212 and grounded, and the first end of the first winding 211 is connected to the drive signal of the drive switch 220 The output terminal is connected.
  • the middle tap of the coupled inductor 210 is grounded, and the coupled inductor 210 is connected in series between the drive switch 220 and the external electrical device 300.
  • the driving switch 220 is still taken as an example of a MOS tube.
  • the gate of the MOS tube is the driving signal input terminal
  • the drain is the driving signal output terminal, which is connected to one end of the coupling inductor 210, that is, connected At one end of the first winding 211 away from the second winding 212, the source of the MOS transistor is the power connection end.
  • the first end of the first winding 211 may also be used as the power connection end.
  • the coupling inductor 210 is not provided with a center tap, the first winding 211 is coupled to the second winding 212, and the second end of the second winding 212 is grounded.
  • the first end of the second winding 212 is connected to the external electrical equipment 300; the first end of the first winding 211 is the power connection end, and the second end of the first winding 211 is connected to the drive signal output end of the drive switch 220 connection.
  • the gate of the MOS tube is the driving signal input terminal, and the drain is the driving signal output terminal, which is connected to the second end of the first winding 211 in the coupled inductor 210.
  • the source of the MOS tube is grounded.
  • the first winding 211 connected to the drive switch 220 has a smaller inductance and better current resistance, while the second winding connected to an external electrical device has a higher inductance but better current resistance. difference.
  • an inductive energy absorption device is also designed in the driving circuit.
  • the first end of the inductive energy absorbing device is connected to the second end of the first winding 211, the second end of the inductive energy absorbing device is grounded, and the inductive energy absorbing device is used to absorb the coupled inductance. 210 inductance.
  • the inductive energy absorption device involved in the embodiment of the present invention may include, but is not limited to, a capacitor.
  • absorbing capacitor for short.
  • Figures 3 to 6 also show this situation.
  • a absorbing capacitor 230 is designed in the driving circuit, and the absorbing capacitor 230 is connected between the source and drain of the driving switch 220. Specifically, the first end of the absorption capacitor 230 is connected to the drain of the drive switch 220 and the middle tap of the coupling inductor 210, and the second end of the absorption capacitor 230 is grounded.
  • a absorbing capacitor 230 is designed in the driving circuit, and the absorbing capacitor 230 is connected between the source and drain of the driving switch 220. Specifically, the first end of the absorption capacitor 230 is connected to the drain of the drive switch 220 and the middle tap of the coupling inductor 210, and the second end of the absorption capacitor 230 is connected to the source and power terminals of the switch tube.
  • a absorbing capacitor 230 is designed in the driving circuit, and the absorbing capacitor 230 is connected between the source and drain of the driving switch 220. Specifically, the first end of the absorption capacitor 230 is connected to the drain of the drive switch 220, the end of the first winding 211 of the coupling inductor 210 that is away from the second winding 212, and the second end of the absorption capacitor 230 is connected to the source of the switch tube. With the power terminal.
  • a absorbing capacitor 230 is designed in the driving circuit, and the absorbing capacitor 230 is connected between the source and drain of the driving switch 220. Specifically, the first end of the absorption capacitor 230 is connected to the drain of the drive switch 220 and the middle tap of the coupling inductor 210, and the second end of the absorption capacitor 230 is grounded.
  • the inductive energy absorbing device is used to absorb a certain amount of inductive energy to achieve soft switching of the drive switch 220.
  • the so-called soft switching of the drive switch 220 means that the inductive energy absorbing device (absorption capacitor 230) can be used to absorb part of the inductance in the coupled inductor and recover this part of the inductance in a non-destructive manner.
  • the inductive energy absorption device can make the drive switch 220 voltage drop to zero before turning on, and the current drop to zero before turning off, so that the drive switch can be eliminated.
  • the voltage and current overlap phenomenon occurs during the opening and closing process of 220, which can reduce the rate of change of the driving switch 220, and can effectively reduce or even eliminate the loss of the opening.
  • the resonance process also limits the rate of change of voltage and current, which helps reduce switching noise.
  • the inductance participating in the series resonance of the static capacitance of the external electrical equipment is composed of the mutual inductance between the second winding 212 and the first winding 211, and the inductance of the second winding.
  • the excitation voltage of the series resonant circuit is related to the aforementioned mutual inductance and the rate of change of magnetic flux with time. Specifically, the excitation voltage decreases as the aforementioned rate of change increases.
  • the power supply voltage is related to the inductance of the first winding 211 and the rate of change of magnetic flux over time, and the power supply voltage is equal to the product of the rate of change and the inductance of the first winding 211.
  • the product of the excitation voltage and the inductance of the first winding 211 is equal to the inverse of the product of the power supply voltage and the mutual inductance. It can be seen that a part of the energy of the power supply is stored in the coupled inductor 210, and the other part is involved in the series resonance excitation of the external electric device 300.
  • the drive switch 220 When the drive switch 220 is turned off, a half-wave sine will be excited on the absorption capacitor 230. At this time, in the driving circuit, the product of the sum of the mutual inductance and the inductance of the first winding 211 and the power supply voltage is equal to the product of the excitation voltage of the series resonance circuit and the inductance of the first winding 211.
  • the inductance of the first winding 211 determines the value of the excitation voltage, and in the embodiment of the present invention, the inductance of the first winding 211 is relatively small.
  • Much smaller than the inductance of the second winding 212, and much smaller than the mutual inductance coefficient of the first winding 211 and the second winding 212 thus, when the drive switch 220 is in the two states of on or off, one is applied to the drive circuit
  • the driving signal is approximately unchanged for the excitation voltage of the series resonant tank. Therefore, in the embodiment of the present invention, one driving switch 220 can realize excitation when the driving switch 220 is on or off, and output a sine wave with extremely small distortion.
  • the value of the inductive energy absorbing device is related to the self-inductance of the first winding 211 and the resonant frequency of the coupling inductor 210. It can be understood that when the value of the inductive energy absorbing device is appropriate, the inductive energy absorbing device is used to realize soft switching. The voltage on the inductive energy absorbing device is much smaller than the equivalent voltage for exciting series resonance. The effective voltage can be ignored.
  • the value range of the absorption capacitor 230 can be approximately determined by the resonance frequency and the self-inductance L1 of the first winding 211.
  • the value of the absorbing capacitor 230 is adjusted so that the gate driving waveform and the drain-source voltage waveform of the MOS transistor do not overlap as much as possible, so as to reduce the loss.
  • the loss of the switch tube is zero.
  • the withstand voltage of the drive switch 220 is small.
  • the internal resistance of the MOS tube with this withstand voltage level is usually smaller, and it is higher than the high voltage under the same withstand current.
  • the MOS tube package is much smaller.
  • a filter capacitor is further designed to filter out noise signals.
  • the drive circuit also includes:
  • a filter capacitor 240 The first end of the filter capacitor 240 is connected to the first end of the first winding 211, and the second end of the filter capacitor 240 is grounded. Further, the filter capacitor 240 is a decoupling capacitor, which is arranged on both sides of the power terminal to provide a stable power supply, while reducing the noise of the component coupled to the power terminal, so that the performance of the driving circuit is more stable.
  • the first end of the filter capacitor 240 is connected to the voltage source and the first end of the first winding 211, and the second end of the filter capacitor 240 is grounded.
  • the first end of the filter capacitor 240 is connected to the voltage source and the source of the driving switch 220.
  • the filter capacitor 240 is indirectly connected to the first end of the first winding 211 through the driving switch 220; and the filter capacitor 240 The second terminal is grounded.
  • the first terminal of the filter capacitor 240 is connected to the voltage source and the source of the driving switch 220.
  • the filter capacitor 240 is indirectly connected to the first terminal of the first winding 211 through the driving switch 220; and the filter capacitor 240 The second terminal is grounded.
  • the first end of the filter capacitor 240 is connected to the voltage source and the first end of the first winding 211, and the second end of the filter capacitor 240 is grounded.
  • the coupling inductance is excited by driving the switch 220, so that the coupling inductance generates a driving voltage that drives the external electrical equipment 300 to work, and a sine wave signal with lower distortion can be obtained.
  • the present invention is implemented
  • the MOS tube is used as the drive switch to realize zero-voltage soft switching, so that the loss of the MOS tube is lower.
  • the coupled inductor used in the present invention does not need to bear a large current in the high-inductance winding, and no other magnetic device (such as a transformer) is required except for the coupled inductor, so the size of the driver can be greatly reduced.
  • the switch tube used in the drive circuit does not need to have both high withstand voltage and high current withstand capabilities, so a low-voltage switch tube with a small package size can be used to reduce the size of the driver.
  • the drive circuit does not need to have both high withstand voltage and high current withstand diodes to achieve resonant boost, so the size of the driver can be reduced.
  • external electrical equipment such as ultrasonic motors and coupled inductors form a resonant loop, which has a strong ability to suppress high-order harmonics, so as to obtain a sine wave drive signal with lower distortion.
  • a filter device can also be provided to further suppress other high-order harmonics, which is not limited here.
  • the coupled inductor does not need to withstand high voltage and have high inductance at the same time, and the switch tube does not need to have both high withstand voltage and high current, and does not require high voltage and high current diodes and additional signal modulators.
  • the drive can also reduce costs on the basis of ensuring excellent characteristics.
  • the embodiment of the present invention further provides a driving circuit board.
  • the driver circuit board includes:
  • the drive circuit described in any one of the foregoing implementation manners is disposed on the substrate.
  • the embodiment of the present invention further provides a driver. Please refer to Figure 8, including:
  • the drive circuit described in any one of the foregoing implementation manners is arranged inside the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

一种驱动电路、驱动电路板与驱动器。本发明所提供的驱动电路包括:耦合电感(210)和驱动开关(220);其中,所述耦合电感(210)包括:第一绕组(211)和第二绕组(212),所述第一绕组(211)的电感量小于所述第二绕组(212)的电感量,所述第一绕组(211)的第一端为电源连接端,所述第二绕组(212)的第一端为电机连接端;所述驱动开关(220)包括:驱动信号输入端与驱动信号输出端,所述驱动信号输出端连接至所述耦合电感(210);所述驱动开关(220)用于通过所述耦合电感(210)为外部用电设备(300)提供驱动电压。本发明实施例所提供的技术方案,能够在为电机提供稳定驱动信号的前提下,降低电机驱动器的尺寸,提高应用灵活性。

Description

驱动电路、驱动电路板与驱动器 技术领域
本发明涉及驱动技术领域,尤其涉及一种驱动电路、驱动电路板与驱动器。
背景技术
超声波电机广泛应用于驱动领域,超声波电机一般通过电机驱动器提供的高压驱动信号进行工作。
目前,谐振升压电路作为一种电机驱动器的常用电路,其原理在于将电容和电感以并联或串联的形式被谐振频率电源激励。图1示出了现有技术中一种谐振升压电路的示意图,如图1所示,该谐振升压电路中,电感L、超声电机电容C与电源E构成一个谐振回路,开关管K和二极管D与电容C并联在电感L和电源E之间。当开关管K断开时,LC串联电路中的电感L向超声电机电容C释放能量,超声电机电容C吸收电感能量,使得超声电机被电压源激励。
如图1所示的现有的谐振升压电路中,由于不需要变压器,对谐振升压电路中各半导体器件的耐高电流能力、耐高压能力均有较高要求,这导致各半导体器件的尺寸较大,也就导致电机驱动器的尺寸较大,难以适用于对尺寸要求较高的场景。对电感的感量有较高要求,几百uH到几个mH量级,同时电感还需要承受较大的电流,这样的电感尺寸会比同等功率的变压器驱动方案的变压器还要大,这种驱动方案里面的二极管和开关管需要同时具有一定的耐流和较高的耐压,这样的半导体器件的尺寸通常会很大。因此,如何在为电机提供稳定驱动信号的前提下,进一步缩减电机驱动器的尺寸是本领域重点关注的技术问题。
发明内容
本发明实施例提供了一种驱动电路、驱动电路板与驱动器,用以在为电机提供稳定驱动信号的前提下,降低电机驱动器的尺寸,提高应用灵活性。
第一方面,本发明实施例提供了一种驱动电路,包括:耦合电感和驱动开关;
所述耦合电感包括:第一绕组和第二绕组,所述第一绕组的电感量小于所述第二绕组的电感量,所述第一绕组的第一端为电源连接端,所述第二绕组的第一端为电机连接端;
所述驱动开关包括:驱动信号输入端与驱动信号输出端,所述驱动信号输出端连接至所述耦合电感;所述驱动开关用于通过所述耦合电感为外部用电设备提供驱动电压。
第二方面,本发明实施例提供了一种驱动电路板,包括:
基板;
如第一方面所述的驱动电路,设置于所述基板上。
第三方面,本发明实施例提供了一种驱动器,包括:
壳体;
如第一方面所述的驱动电路,设置于所述壳体内部。
第四方面,本发明实施例提供了一种驱动电路的驱动方法,包括:
本发明实施例提供的技术方案,通过驱动开关与耦合电感的直接连接,驱动信号自耦合电感中靠近电机侧的第二绕组传递给电机,而第二电阻具备较大的电感量,该大感量的第二绕组可以承受较大电流,因此,开关管和耦合电感等器件无需采用具备高耐压及高耐流能力的大尺寸器件,这可以大幅降低器件的尺寸,从而,降低了驱动电路的整体尺寸,能够提高驱动电路的适用场景,具备较高的应用灵活性。
附图说明
图1为现有技术中一种电机驱动电路的结构示意图;
图2为本发明实施例提供的一种驱动电路的结构示意图;
图3为本发明实施例所提供的另一种驱动电路的结构示意图;
图4为本发明实施例所提供的另一种驱动电路的结构示意图;
图5为本发明实施例所提供的另一种驱动电路的结构示意图;
图6为本发明实施例所提供的另一种驱动电路的结构示意图;
图7为本发明实施例所提供的一种驱动电路板的结构示意图;
图8为本发明实施例所提供的一种驱动器的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本发明实施例所针对的具体场景为:对外部用电设备进行驱动的场景。本发明实施例对外部用电设备的具体类型无特别限定,其可以包括但不限于:电机、换能器或驱动电源;其中,所述电机包括:超声波电机。为了便于理解,以下,以用电设备为超声波电机为例,对本发明进行具体说明。
本发明提供的技术方案,旨在解决现有技术的如上技术问题,并提出如下解决思路:利用超声波电机等外部用电设备与耦合电感构成谐振回路,通过该谐振回路来抑制高次谐波,如此,耦合电感也无需在大感量绕组中承受较大电流,降低了驱动器的尺寸。
下面以具体地实施例对本发明的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
本发明实施例提供了一种驱动电路,该驱动电路可用于驱动外部用电设备。
图2示出了本发明实施例提供的一种驱动电路的结构示意图,如图2所示,该驱动电路包括:耦合电感210和驱动开关220;
如图2所示,所述耦合电感210包括:第一绕组211和第二绕组212,所述第一绕组211的电感量小于所述第二绕组212的电感量,所述第一绕组211的第一端为电源连接端,所述第二绕组212的第一端为电机连接端;
所述驱动开关220包括:驱动信号输入端与驱动信号输出端,所述驱动信号输出端连接至所述耦合电感210;所述驱动开关220用于通过所述耦合 电感为外部用电设备300提供驱动电压。具体地,所述驱动开关220通过激励所述耦合电感,从而使得耦合电感产生驱动外部用电设备300工作的驱动电压。
如图2所示的驱动电路中未示出驱动信号生成器。本发明实施例中,驱动信号生成器可以用于生成驱动信号,并输入该驱动电路,从而,由驱动电路谐振升压后输入至外部用电设备。可以理解,在如图2所示的驱动电路中,驱动信号生成器的输出端与驱动开关220的驱动信号输入端相连接。
在实际实现场景中,驱动信号生成器可以是一个独立的信号生成器,如微控制单元(Microcontroller Unit,MCU)。驱动信号生成器可以是该驱动电路的一部分,也可以不属于该驱动电路,不作赘述。
示例性的,该驱动开关220可以为绝缘栅极场效应管(MOS管)。具体的,所述MOS管的栅极为所述驱动信号输入端,所述MOS管的漏极为所述驱动信号输出端,所述MOS管的源极接地。这种设计中,MOS管能够在较小的尺寸下具备较高的耐流能力,且具备较低的导通电阻;而且,以MOS管作为开关器件,在高频下工作开关管损耗较双极型晶体管更小。
需要说明的是,本发明实施例对于驱动开关220的开关类型无特别限定,在实际实现场景中,既可以采用如前所述的MOS管作为驱动开关220,也可以采用其他类型的开关管。例如,还可以采用零电压开关(Zero Voltage Switch,ZVS)作为驱动开关220。
以下对图2所示的驱动电路中耦合电感210的结构设计进行说明。具体而言,主要涉及耦合电感210所包含的第一绕组211和第二绕组212的设计方案。
具体而言,第一绕组211与第二绕组212至少可以具备如下两种关系:
第一绕组211与所述第二绕组212连接;
或者,
第一绕组211与第二绕组212相耦合。
首先,对第一绕组211与第二绕组212连接的情况进行说明。
当第一绕组211与第二绕组212连接时,第一绕组211与第二绕组212的连接端为所述耦合电感210的中间抽头。此时,第一绕组211与第二绕组212、与驱动开关220之间至少可以有如下设计:
请参考图3,图3示出了另一种驱动电路的结构示意图。如图3所示,所述第一绕组211的第二端与所述第二绕组212的第二端、驱动开关220的所述驱动信号输出端连接。换言之,在如图3所示的设计中,驱动开关220的驱动信号输出端连接于耦合电感210的中间抽头处。
如图3所示,驱动开关220为MOS管,并且,该MOS管的漏极为驱动信号输出端,连接于耦合电感210的中间抽头处,MOS管的栅极为驱动信号输入端,MOS管的源极接地。
从而,在图3所示驱动电路中,驱动信号从驱动开关220流入耦合电感210中的第二绕组212,并最终流入外部用电设备300,由于第二绕组212的感量远大于第一绕组211的感量,第二绕组212所用的线径也远小于第一绕组211的线径。如此,驱动信号就可以激励第一绕组211,并在第二绕组212侧中耦合出一个较高的驱动电压,从而,实现对外部用电设备300的驱动。如此,就在驱动开关220处于导通状态和截止状态时,接入外部用电设备300的谐振回路的等效电感近似不变,同时大电流仅存在于小感量的第一绕组211,而不会流过大感量的第二绕组212,大感量的第二绕组212在本方案中仅需承受驱动信号的额定输入电流,而额定输入电流通常非常小,例如在一种实施方式中,额定输入电流为几十毫安到一两百毫安。
综上所述,本发明实施例中,所述耦合电感210可以为一个尺寸非常小的器件,大大减小驱动器的体积。
请参考图4,图4示出了另一种驱动电路的结构示意图。如图4所示,所述第一绕组211的第一端与所述第二绕组212的第二端、驱动开关220的所述驱动信号输出端连接,所述第一绕组211的第二端接地。
在这种实现场景中,仍以驱动开关220为MOS管为例,其连接关系如图4所示。该MOS管的栅极为驱动信号输入端,漏极为驱动信号输出端,连接于耦合电感210的中间抽头,源极为电源连接端。
需要注意的是,在如图4所示驱动电路中,第一绕组211的第一端为耦合电感210的中间抽头处,此时,第一绕组211的第一端通过驱动开关220连接至电源,因此,其第一绕组211的第一端可作为电源连接端。
由于第一绕组211为感量较小且耐流能力较大的绕组,第二绕组212为感量较大且耐流能力较小的绕组,与图3所示场景类似的是,在如图4所示 的驱动电路中,在驱动开关220处于导通状态和截止状态时,接入外部用电设备300的谐振回路的等效电感近似不变,同时大电流仅存在于小感量的第一绕组211,而不会流过大感量的第二绕组212,大感量的第二绕组212在本方案中仅需承受驱动信号的额定输入电流,而额定输入电流通常为几十毫安到一两百毫安,非常小。因此,耦合电感210的尺寸可以较小。
请参考图5,图5示出了另一种驱动电路的结构示意图。如图5所示,所述第一绕组211的第二端与所述第二绕组212的第二端连接且接地,所述第一绕组211的第一端与所述驱动开关220的驱动信号输出端连接。
也就是,耦合电感210的中间抽头接地,耦合电感210串联连接于驱动开关220与外部用电设备300之间。
此时,仍以驱动开关220为MOS管为例,如图5所示,该MOS管的栅极为驱动信号输入端,漏极为驱动信号输出端,连接于耦合电感210的一端,也就是,连接于第一绕组211的远离第二绕组212的一端,MOS管的源极为电源连接端。如此,也可以将第一绕组211的第一端作为电源连接端。
其次,对第一绕组211与第二绕组212相耦合的情况进行说明。图6示出了这种情况。
如图6所示,该驱动电路中,耦合电感210并未设置中间抽头,所述第一绕组211与所述第二绕组212相耦合,其中,所述第二绕组212的第二端接地,第二绕组212的第一端连接至外部用电设备300;所述第一绕组211的第一端为电源连接端,第一绕组211的第二端与驱动开关220的所述驱动信号输出端连接。
仍以驱动开关220为MOS管为例,如图6所示,该MOS管的栅极为驱动信号输入端,漏极为驱动信号输出端,连接于耦合电感210中第一绕组211的第二端,MOS管的源极接地。
如前所述,耦合电感210中,连接于驱动开关220的第一绕组211感量较小且耐流性能较好,而连接于外部用电设备的第二绕组感量较大但耐流较差。
除前述设计之外,本发明实施例中,还在驱动电路中设计了电感能量吸收装置。其中,所述电感能量吸收装置的第一端连接于所述第一绕组211的第二端,所述电感能量吸收装置的第二端接地,所述电感能量吸收装置用于 吸收所述耦合电感210的电感量。
其中,本发明实施例所涉及到的所述电感能量吸收装置可以包括但不限于:电容。后续简称为吸收电容。如图3~图6也示出了这种情况。
如图3所示,该驱动电路中设计有吸收电容230,吸收电容230连接于驱动开关220的源极与漏极之间。具体的,吸收电容230的第一端连接于驱动开关220的漏极、耦合电感210的中间抽头,吸收电容230的第二端接地。
如图4所示,该驱动电路中设计有吸收电容230,吸收电容230连接于驱动开关220的源极与漏极之间。具体的,吸收电容230的第一端连接于驱动开关220的漏极、耦合电感210的中间抽头,吸收电容230的第二端连接于开关管的源极与电源端。
如图5所示,该驱动电路中设计有吸收电容230,吸收电容230连接于驱动开关220的源极与漏极之间。具体的,吸收电容230的第一端连接于驱动开关220的漏极、耦合电感210中第一绕组211的远离第二绕组212的一端,吸收电容230的第二端连接于开关管的源极与电源端。
如图6所示,该驱动电路中设计有吸收电容230,吸收电容230连接于驱动开关220的源极与漏极之间。具体的,吸收电容230的第一端连接于驱动开关220的漏极、耦合电感210的中间抽头,吸收电容230的第二端接地。
需要说明的是,本发明实施例中,电感能量吸收装置用于吸收一定的电感能量实现驱动开关220的软开关。所谓实现驱动开关220的软开关,是指该电感能量吸收装置(吸收电容230)可用于吸收耦合电感中的部分感量,并以无损的形式对这部分感量进行回收。如此,在驱动开关220的开闭过程中,电感能量吸收装置的存在,能够使得驱动开关220在导通前电压先降到零,在断开前电流先降到零,这样就可以消除驱动开关220在开闭过程中产生电压与电流重叠现象的发生几率,这能够降低驱动开关220的变化率,能够有效降低甚至消除开该案损耗。同时,谐振过程也限制了电压与电流的变化率,有利于降低开关噪声。
本发明实施例中,除可以如图3~图6所示的那样,利用独立的外部电容器,也即吸收电容实现之外,还可以利用开关管自身的电容实现,此时,可以省略图3~图6所示的吸收电容230。
在如图3~图6所示的驱动电路中,当所述驱动开关两侧的电压为0时, 所述驱动开关导通。
基于此,在驱动开关220导通时,参与外部用电设备静态电容串联谐振的电感量由第二绕组212与第一绕组211之间的互感系数、第二绕组的感量构成,如此,激励串联谐振电路的激励电压与前述互感系数、磁通量随时间变化率相关,具体的,激励电压随着前述变化率的增大而降低。而电源电压则与第一绕组211的感量、磁通量随时间变化率相关,电源电压等于该变化率与第一绕组211的感量之积。从而,激励电压与第一绕组211的感量之积,与电源电压与互感系数之积的相反数相等。由此可知,电源的能量一部分存储在耦合电感210中,另一部分则参与外部用电设备300的串联谐振激励。
当驱动开关220断开时,将在吸收电容230上激励起一个半波正弦。此时,该驱动电路中,互感系数与第一绕组211的感量之和与电源电压之积,与串联谐振回路的激励电压与第一绕组211的感量之积相等。
由此可知,在驱动开关220处于导通或截止的两个状态下时,第一绕组211的感量是决定激励电压的值,而本发明实施例中,第一绕组211的感量较小,远小于第二绕组212的感量,也远小于第一绕组211与第二绕组212的互感系数,从而,在驱动开关220处于导通或截止的两个状态下,对该驱动电路施加一个驱动信号,对串联谐振回路的激励电压近似不变。因此,本发明实施例通过一个驱动开关220,就能够在驱动开关220处于导通或截止的两个状态下,均实现激励,并输出失真度极小的正弦波。
此外,本发明实施例中,所述电感能量吸收装置的取值关联于所述第一绕组211的自感系数和所述耦合电感210的谐振频率。可以理解,当电感能量吸收装置取值合适时,电感能量吸收装置用于实现软开关,电感能量吸收装置上的电压相对激励串联谐振的等效电压要小得多,在计算激励串联谐振的等效电压时可以忽略不计。
仍以图3~图6所示的吸收电容230为例,吸收电容230的取值范围可以近似由谐振频率和第一绕组211的自感系数L1确定。在一种实施例中,通过调整吸收电容230的值使MOS管栅极驱动波形和漏源电压波形尽可能没有重叠,以便减小损耗。优选地,通过调整吸收电容230的值,使得开关管的损耗为零。
这样,尽管驱动开关220处最大会有几安培的电流流过,损耗也只有导 通损耗,开关损耗接近0。这种情况下,对驱动开关220的耐压要求较小,例如,可以选择耐压40V左右MOS管即可,此时,这个耐压等级的MOS管内阻通常比较小,在相同耐流下比高压MOS管封装小得多。
除前述设计之外,本发明实施例中,还进一步设计了滤波电容,以滤除杂波信号。
如图3~图6所示,该驱动电路中,还包括:
滤波电容240,所述滤波电容240的第一端连接于所述第一绕组211的第一端,所述滤波电容240的第二端接地。进一步地,滤波电容240为去耦电容,设置在电源端两侧,用以提供稳定的电源,同时降低元件耦合到电源端的噪声,使得该驱动电路的性能更稳定。
具体的,如图3所示,滤波电容240的第一端与电压源、第一绕组211的第一端连接,滤波电容240的第二端接地。
如图4所示,滤波电容240的第一端与电压源、驱动开关220的源极连接,如此,滤波电容240通过驱动开关220与第一绕组211的第一端间接连接;而滤波电容240的第二端接地。
如图5所示,滤波电容240的第一端与电压源、驱动开关220的源极连接,如此,滤波电容240通过驱动开关220与第一绕组211的第一端间接连接;而滤波电容240的第二端接地。
如图6所示,滤波电容240的第一端与电压源、第一绕组211的第一端连接,滤波电容240的第二端接地。
本发明实施例中,通过驱动开关220通过激励所述耦合电感,从而使得耦合电感产生驱动外部用电设备300工作的驱动电压,能够获得失真度较低的正弦波信号,进一步地,本发明实施例采用MOS管作为驱动开关,实现了零电压软开关,从而使得MOS管的损耗较低。
综上所述,本发明中所用耦合电感无需在大感量绕组中承受较大电流,且除了耦合电感无需其他磁性器件(如变压器),所以可以大幅度降低驱动器尺寸。而且,驱动电路中所用开关管无需同时具备高耐压和高耐流的能力,所以可以使用封装尺寸很小的低压开关管进而降低驱动器尺寸。再则,驱动电路无需同时具备高耐压和高耐流的二极管即可实现谐振升压,所以可以降低驱动器尺寸。以及,通过超声波电机等外部用电设备与耦合电感是构成谐 振回路,对高次谐波抑制能力较强,从而获得失真度较低的正弦波驱动信号。进一步地,在其他实施例中,也可以通过设置滤波装置,对其他高次谐波进行进一步抑制,在此不作限定。
本发明实施例所提供的驱动电路中,耦合电感无需同时承受高电压和具备高感量,开关管无需同时具备高耐压和高耐流,又无需高压高耐流二极管与额外的信号调制器来降低驱动信号高次谐波,驱动器在确保优良的特性的基础上,还可以降低成本。
此外,本发明实施例还进一步提供了一种驱动电路板。请参考图7,该驱动电路板包括:
基板;
前述任一实现方式所述的驱动电路,设置于所述基板上。
此外,本发明实施例还进一步提供了一种驱动器。请参考图8,包括:
壳体;
前述任一实现方式所述的驱动电路,设置于所述壳体内部。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种驱动电路,其特征在于,包括:耦合电感和驱动开关;
    所述耦合电感包括:第一绕组和第二绕组,所述第一绕组的电感量小于所述第二绕组的电感量,所述第一绕组的第一端为电源连接端,所述第二绕组的第一端为电机连接端;
    所述驱动开关包括:驱动信号输入端与驱动信号输出端,所述驱动信号输出端连接至所述耦合电感;所述驱动开关用于通过所述耦合电感为外部用电设备提供驱动电压。
  2. 根据权利要求1所述的驱动电路,其特征在于,所述第一绕组与所述第二绕组连接,所述第一绕组与所述第二绕组的连接端为所述耦合电感的中间抽头。
  3. 根据权利要求2所述的驱动电路,其特征在于,所述第一绕组的第二端与所述第二绕组的第二端、所述驱动信号输出端连接。
  4. 根据权利要求2所述的驱动电路,其特征在于,所述第一绕组的第一端与所述第二绕组的第二端、所述驱动信号输出端连接,所述第一绕组的第二端接地。
  5. 根据权利要求2所述的驱动电路,其特征在于,所述第一绕组的第二端与所述第二绕组的第二端连接且接地,所述第一绕组的第一端与所述驱动信号输出端连接。
  6. 根据权利要求1所述的驱动电路,其特征在于,所述第一绕组与所述第二绕组相耦合,所述第二绕组的第二端接地,所述第一绕组的第二端与所述驱动信号输出端连接。
  7. 根据权利要求1-6任一项所述的驱动电路,其特征在于,当所述驱动开关两侧的电压为0时,所述驱动开关导通。
  8. 根据权利要求1-6任一项所述的驱动电路,其特征在于,所述驱动开关包括:绝缘栅极场效应MOS管;
    所述MOS管的栅极为所述驱动信号输入端,所述MOS管的漏极为所述驱动信号输出端,所述MOS管的源极接地。
  9. 根据权利要求1-6任一项所述的驱动电路,其特征在于,所述驱动电路,还包括:
    电感能量吸收装置,所述电感能量吸收装置的第一端连接于所述第一绕组的第二端,所述电感能量吸收装置的第二端接地,所述电感能量吸收装置用于吸收所述耦合电感的电感量。
  10. 根据权利要求9所述的驱动电路,其特征在于,所述电感能量吸收装置包括:电容。
  11. 根据权利要求9所述的驱动电路,其特征在于,所述电感能量吸收装置的取值关联于所述第一绕组的自感系数和所述耦合电感的谐振频率。
  12. 根据权利要求1-6任一项所述的驱动电路,其特征在于,所述驱动电路,还包括:
    滤波电容,所述滤波电容的第一端连接于所述第一绕组的第一端,所述滤波电容的第二端接地。
  13. 根据权利要求1-6任一项所述的驱动电路,其特征在于,所述外部用电设备包括:电机、环能器或驱动电源;其中,所述电机包括:超声波电机。
  14. 一种驱动电路板,其特征在于,包括:
    基板;
    如权利要求1-13任一项所述的驱动电路,设置于所述基板上。
  15. 一种驱动器,其特征在于,包括:
    壳体;
    如权利要求1-13任一项所述的驱动电路,设置于所述壳体内部。
PCT/CN2019/103311 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器 WO2021035616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103311 WO2021035616A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器
CN201980034339.4A CN112204864A (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103311 WO2021035616A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Publications (1)

Publication Number Publication Date
WO2021035616A1 true WO2021035616A1 (zh) 2021-03-04

Family

ID=74004609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103311 WO2021035616A1 (zh) 2019-08-29 2019-08-29 驱动电路、驱动电路板与驱动器

Country Status (2)

Country Link
CN (1) CN112204864A (zh)
WO (1) WO2021035616A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422764A2 (fr) * 2002-11-22 2004-05-26 Renault s.a.s. Dispositif de commande d'un actuateur piézo-électrique ultrasonore et procédé de mise en oeuvre
CN202068327U (zh) * 2011-05-19 2011-12-07 深圳市华星光电技术有限公司 升压变换器
CN102694483A (zh) * 2012-01-12 2012-09-26 河南科技大学 一种用于超声波电机的lc谐振驱动电路及其控制方法
CN203055409U (zh) * 2013-01-31 2013-07-10 青岛海信电器股份有限公司 Led背光驱动电路及液晶显示装置
CN105071693A (zh) * 2015-08-21 2015-11-18 西安空间无线电技术研究所 一种超声波电机驱动匹配电路及适应宽温范围的驱动方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE208121T1 (de) * 1997-07-22 2001-11-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungssystem mit einer dielektrisch behinderten entladungslampe und einer schaltungsanordnung zum erzeugen von impulsspannungsfolgen.
KR100609140B1 (ko) * 2004-12-23 2006-08-08 재단법인 포항산업과학연구원 승압 및 강압 기능을 갖는 직렬 공진형 dc/dc 컨버터및 상기 컨버터에서의 승압 및 강압 제어방법
JP4861040B2 (ja) * 2006-04-06 2012-01-25 株式会社日立製作所 単方向dc−dcコンバータ
US20150085534A1 (en) * 2013-09-20 2015-03-26 Alexander ABRAMOVITZ Regenerative and ramping acceleration (rara) snubbers for isolated and tapped-inductor converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422764A2 (fr) * 2002-11-22 2004-05-26 Renault s.a.s. Dispositif de commande d'un actuateur piézo-électrique ultrasonore et procédé de mise en oeuvre
CN202068327U (zh) * 2011-05-19 2011-12-07 深圳市华星光电技术有限公司 升压变换器
CN102694483A (zh) * 2012-01-12 2012-09-26 河南科技大学 一种用于超声波电机的lc谐振驱动电路及其控制方法
CN203055409U (zh) * 2013-01-31 2013-07-10 青岛海信电器股份有限公司 Led背光驱动电路及液晶显示装置
CN105071693A (zh) * 2015-08-21 2015-11-18 西安空间无线电技术研究所 一种超声波电机驱动匹配电路及适应宽温范围的驱动方法

Also Published As

Publication number Publication date
CN112204864A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
JP6640177B2 (ja) 絶縁型dc/dcコンバータ
US11587726B2 (en) Coupled inductor structure
JP2011050134A (ja) 共振型スイッチング電源装置
TWI533572B (zh) 用以減少功率轉換器電磁干擾的雙閘極驅動電路及控制方法
US20050073863A1 (en) Ripple-current reduction for transformers
US20070115055A1 (en) Method and apparatus for implementing soft switching in a class d amplifier
WO2016027374A1 (ja) 電力変換装置
US11581818B2 (en) DC voltage conversion circuit and power supply device
CN106026721A (zh) 一种采用SiC功率管的ZCS全桥变换器的栅驱动电路
CN108199579B (zh) 一种带耦合电感的高变比软开关dc-dc降压变换器
CN110212770A (zh) 软开关反激变换器
WO2021035616A1 (zh) 驱动电路、驱动电路板与驱动器
CN109861538A (zh) 一种在并联变压器原边串联共模电感的自动均流电路
JP2009507403A (ja) D級増幅器においてソフトスイッチングを行うための方法及び装置
TW200828768A (en) Inverter circuit
CN103825562B (zh) 场效应管功率放大器及系统
CN109448951A (zh) 一种固态脉冲调制器的去磁电路
CN108565987A (zh) 谐振式无线充电系统中的全桥逆变电路
TWI433443B (zh) 具磁重置之錯相順向式轉換裝置
CN209805663U (zh) 功率开关器件驱动电路及电力电子设备
WO2021035614A1 (zh) 驱动电路、驱动电路板与驱动器
KR101285295B1 (ko) 부스트 직류-직류 컨버터
JP2016158422A (ja) フォワード形dc−dcコンバータ回路
CN112532067B (zh) 双通道高增益串并联llc谐振变流器
CN107947616A (zh) 软开关功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943409

Country of ref document: EP

Kind code of ref document: A1