WO2021033712A1 - 飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 - Google Patents
飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 Download PDFInfo
- Publication number
- WO2021033712A1 WO2021033712A1 PCT/JP2020/031247 JP2020031247W WO2021033712A1 WO 2021033712 A1 WO2021033712 A1 WO 2021033712A1 JP 2020031247 W JP2020031247 W JP 2020031247W WO 2021033712 A1 WO2021033712 A1 WO 2021033712A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- beverage
- sulfur compound
- group
- carrier
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/42—Preservation of non-alcoholic beverages
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/70—Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/70—Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
- A23L2/80—Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
Definitions
- the present invention relates to a beverage sulfur compound removing agent, a beverage sulfur compound removing member using the beverage sulfur compound removing agent, a method for removing a sulfur compound from a beverage, and a method for producing a beverage from which the sulfur compound has been removed. ..
- off-flavour unpleasant aroma
- sulfur compounds such as polysulfides and thiols as a causative component of off-flavor contained in beverages
- polysulfides such as dimethyl trisulfide (DMTS)
- DMTS dimethyl trisulfide
- thiols are the main components of the sunlight odor generated by irradiation with sunlight or fluorescent lamps during long-term storage of beer.
- Patent Document 1 describes that an activated carbon is used to adsorb and remove a sulfur compound.
- Patent Document 2 reports that a sulfur compound, which is an off-flavour component, is removed by using a zeolite supporting silver.
- Patent Document 3 reports that sulfur compounds are removed by using silica on which gold nanoparticles are supported.
- an object of the present invention is to provide a sulfur compound remover for beverages, which has excellent removal selectivity of sulfur compounds contained in beverages, at low cost.
- the present inventors have found that a carrier on which a Michael receptor unit and / and a phosphine unit are immobilized in order to achieve the above object is excellent in removal selectivity of a sulfur compound contained in a beverage, and has reached the present invention. ..
- the present invention relates to an invention including the following [1] to [15].
- a beverage sulfur compound removing agent containing a carrier on which a Michael receptor unit and / and a phosphine unit are immobilized.
- the base material of the carrier is at least one selected from the group consisting of silicon-containing compounds, metal oxides, clays, synthetic polymers and natural polymers. Sulfur compound remover.
- [5] The beverage sulfur compound removing agent according to any one of [1] to [4], which comprises a carrier on which a Michael receptor unit is immobilized and a carrier on which a phosphine unit is immobilized.
- [6] A cartridge filled with the sulfur compound remover for beverages according to any one of [1] to [5].
- [7] A cartridge filled with the drinking sulfur compound removing agent of [5] in a two-stage system, wherein the drinking sulfur compound removing agent containing a carrier on which a phosphine unit is immobilized is filled in the first stage.
- a device for removing sulfur compounds for beverages which includes a raw material tank, a refining tank, a pump, a cartridge of [6] or [7], and a line tube, and includes a raw material tank, a pump, a cartridge, and a refining tank.
- a device for removing sulfur compounds for beverages which is connected by a line tube in the order of raw material tank, cartridge, pump, and refinement tank.
- a method for removing an sulfur compound from a beverage which comprises a step of passing the beverage through the cartridge of [6] or [7] and a step of decomposing and / or adsorbing the sulfur compound in the cartridge.
- a method of removing sulfur compounds from a beverage which comprises a step of passing the beverage through the cartridge of [6] or [7] and a step of decomposing and / or adsorbing the sulfur compound in the cartridge.
- a method for producing a beverage from which the sulfur compound has been removed wherein the step of passing the beverage through the cartridge of [6] or [7] and the step of decomposing and / or adsorbing the sulfur compound in the cartridge are performed.
- a method for removing a sulfur compound from a beverage which is a step of passing the beverage sulfur compound removing agent according to any one of [1] to [5] and the beverage, and in the beverage sulfur compound removing agent.
- a method for removing an sulfur compound from a beverage which comprises a step of decomposing and / and adsorbing the sulfur compound.
- a method for producing a beverage from which a sulfur compound has been removed which comprises a step of passing the beverage sulfur compound removing agent according to any one of [1] to [5] and the beverage, and a beverage sulfur compound removing agent.
- a method for producing a beverage from which the sulfur compound has been removed which comprises a step of decomposing and / and adsorbing the sulfur compound in the beverage.
- a method for removing a sulfur compound from a beverage in which the step of contacting the beverage sulfur compound removing member and the beverage in [11] and the decomposition or / and adsorption of the sulfur compound in the beverage sulfur compound removing member.
- a method of removing sulfur compounds from a beverage including the step of adsorbing.
- a method for producing a beverage from which the sulfur compound has been removed wherein the step of contacting the beverage sulfur compound removing member with the beverage according to [11] and the decomposition or / of the sulfur compound in the beverage sulfur compound removing member.
- a method for producing a beverage from which sulfur compounds have been removed which comprises a step of adsorbing and adsorbing.
- the present invention also relates to the following inventions.
- [1a] Use of a carrier or a mixture thereof on which a Michael acceptor unit and / and a phosphine unit are immobilized for removing a sulfur compound from a beverage.
- [2a] A method of using a carrier or a mixture thereof on which a Michael acceptor unit and / or a phosphine unit is immobilized for removing a sulfur compound from a beverage.
- [3a] Use of a carrier on which a Michael receptor unit and / and a phosphine unit are immobilized or a mixture thereof as a sulfur compound remover for beverages.
- [4a] A method for using a carrier on which a Michael receptor unit and / and a phosphine unit are immobilized or a mixture thereof as a sulfur compound remover for beverages.
- a sulfur compound removing agent for beverages which has excellent removal selectivity of sulfur compounds in beverages. Further, a cartridge using this sulfur compound removing agent for beverages or a beverage treated using a sulfur compound removing device for beverages provided with the cartridge is expected to have a good flavor.
- FIG. 1 is a diagram showing an example of a cartridge filled with a sulfur compound remover for beverages in a two-stage system.
- FIG. 2 is a diagram showing an example of a sulfur compound removing device for beverages.
- FIG. 3 is a diagram showing a further example of a sulfur compound removing device for beverages.
- Beverage sulfur compound remover is an agent that removes sulfur compounds that cause off-flavors, which are considered to be off-flavors and malodors in beverages, and immobilizes the Michael receptor unit and / and the phosphine unit. Includes the carrier.
- the carrier on which the Michael receptor unit is immobilized is a carrier containing a receptor site that binds to a thiol compound by a so-called Michael addition reaction in the field of organic chemical reaction, and the Michael receptor unit is an adsorbent for the thiol compound.
- a carrier on which the Michael receptor unit is immobilized is a carrier in which the Michael receptor unit-containing precursor reacts with the base material of the carrier and the Michael receptor unit is immobilized, or a precursor that forms the Michael receptor unit. (Hereinafter, also referred to as “Michael receptor unit forming body”) is a carrier on which the Michael receptor unit is immobilized by reacting with the base material of the carrier.
- the Michael receptor-containing precursor is composed of three sites: a Michael acceptor unit, a functional group capable of reacting with a carrier, and a linking group thereof.
- Examples of such a Michael receptor-containing precursor include compounds represented by the following general formula (1).
- M in formula (1) represents a Michael receptor unit.
- the Michael receptor unit is a chemical structural unit having a Michael reaction receptor in a so-called organic synthesis reaction.
- Specific examples of M in the formula (1) include the following skeletons.
- the bond with a broken line represents the bond with Z in the equation (1).
- the bond with a broken line in the equations (M4) and (M5) is the equation (M4) and the equation (M4).
- the group represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and may be the same as or different from each other.
- N in the formula (M5) is a methylene group having R 1 and R 2 groups (-CR 1 R).
- R 3 to R 5 groups in the formula (M3) represent hydrogen atoms, halogen atoms or alkyl groups having 1 to 6 carbon atoms, which are the same or different from each other.
- formula be (M6) represent a carboxylic acid group (COOH group) or (alkyl of 1 to 6 carbon atoms) ester group, the wavy line in the formula (M6), the arrangement of double bonds Indicates that it is cis or trance.
- alkyl group having 1 to 6 carbon atoms is a linear alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; a branched chain form having 3 to 6 carbon atoms such as an isopropyl group and an isobutyl group.
- Alkyl group Represents a cyclic alkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclopentyl group.
- the "(alkyl having 1 to 6 carbon atoms) ester group" in the R 6 group of the formula (M6) is, for example, a linear alkyl ester having 1 to 6 carbon atoms such as a methyl ester or an ethyl ester; an isopropyl ester.
- a branched chain alkyl ester having 3 to 6 carbon atoms such as isobutyl ester; represents a cyclic alkyl ester having 3 to 6 carbon atoms such as cyclopropyl ester and cyclopentyl ester.
- R 6 groups in the formula (M6) is an alkyl group having 1 to 6 carbon atoms, an alkylamino group, a 1 or 2 or more primary amino groups or secondary amino group such as an amino alkyl amino group an amino group substituted with an alkyl group containing, optionally substituted by the structure of the primary amino group (NH 2 group) or formula (M1).
- the formula (M6), with respect to R 7 groups may be the cis form of formula (M6-c) represented in the following, may be any of the transformer of the formula (M6-t) represented in the following , The cis form is preferable.
- formulas (M1) to (M6) from the viewpoint of reactivity with sulfur compounds, the formula (M1) and the formulas (M3-1), formulas (M4-1) and formulas (M6) represented below are preferable. -1), more preferably the formula (M1), and the formula (M3-1) represented below.
- the Michael receptor unit preferably contains a Michael receptor unit having a maleimide skeleton.
- Examples of the Michael receptor unit having such a maleimide skeleton include a group represented by the formula (M1).
- connecting group> Z in the formula (1) represents a group connecting M and X in the formula (1), and is a single bond or a divalent linking group.
- the divalent linking group include an alkylene group having 1 to 12 carbon atoms and the following groups.
- the alkyl group having 1 to 6 carbon atoms in R 8 of the above formula (Z3) is a linear alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; from 3 carbon atoms such as an isopropyl group and an isobutyl group.
- Branched chain alkyl group of 6; represents a cyclic alkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclopentyl group.
- the Z in the formula (1) is preferably an alkylene group having 1 to 12 carbon atoms, the formula (Z1) and the formula (Z4) from the viewpoint of reactivity with the sulfur compound and affinity for the beverage.
- X in formula (1) is a functional group capable of reacting with the substrate carrier, for example, hydroxyl group (OH group), a carboxylic acid group (COOH group), primary amino group (NH 2 group), azido group (N 3 group), an alkynyl group.
- the alkynyl group is a monovalent group having a triple bond in the molecular structure, which is linear or branched.
- the number of carbon atoms of the alkynyl group is preferably 2 to 20, more preferably 2 to 8, and particularly preferably 2 to 4.
- Specific examples of the alkynyl group include an ethynyl group and a propargyl group.
- the Michael receptor-containing precursor preferably has the following chemical structure.
- p in the formulas (1-1) and (1-3) represents the number of methylene groups (-CH 2- ) and is an integer from 1 to 6.
- m and l in the formula (1-4) are synonymous with the number of methylene groups described in the formulas (Z1) to (Z6), and are integers from 1 to 6).
- the Michael receptor-containing precursor is more preferably a compound represented by the following formula (1-1a), formula (1-2a), formula (1-3a) or formula (1-4a), and is particularly preferable. Is a compound represented by the following formula (1-1a) or formula (1-3a).
- the Michael receptor-containing precursor may be supported on the carrier in one kind or a combination of two or more kinds.
- Precursors that form the Michael acceptor unit include maleic anhydride, maleic acid, or fumaric acid.
- Maleic anhydride or maleic acid reacts with a primary amino group (-NH 2 ) to form a maleimide group represented by the above formula (M1), and forms a maleimide group with a secondary amino group (-NH-).
- a primary amino group (-NH 2 ) reacts with a primary amino group (-NH 2 ) to form a maleimide group represented by the above formula (M1), and forms a maleimide group with a secondary amino group (-NH-).
- M6-2 fumaric acid reacts with the primary amino group (-NH 2 ) to form the structure represented by the formula (M6-3) shown below, and reacts with the secondary amino group (-NH-).
- the structure represented by the following formula (M6-4) is formed.
- the bond with a broken line in the formula (M6-2) and the formula (M6-4) represents a bond to a group other than H to which the nitrogen atom of the secondary amino group is bonded.
- the structure represented by the formula (M6-2) corresponds to the structure represented by the formula (M6-1) in which the hydrogen atom is removed from the NH group.
- the structure represented by the formula (M6-3) is, R 6 group is a hydrogen atom, R 7 group is a carboxylic acid group, corresponding to the structure represented by the formula (M6-t).
- the structure represented by the formula (M6-4) corresponds to the structure represented by the formula (M6-3) obtained by removing the hydrogen atom from the NH group.
- the Michael receptor unit forming body may be one kind or a combination of two or more kinds.
- the carrier on which the phosphine unit is immobilized is a carrier on which the phosphine unit is immobilized, in which the precursor containing the phosphine unit and the base material of the carrier are reacted and bonded.
- the phosphine unit has a chemical structural site capable of decomposing a polysulfide compound as a sulfur compound into a thiol compound.
- the phosphine unit-containing precursor is composed of three sites: a phosphine-containing unit having trivalent phosphorus, a functional group capable of reacting with a carrier, and a linking group thereof.
- a phosphine unit-containing precursor include compounds represented by the following general formula (2).
- Q is a phosphine unit
- L is a single bond or divalent hydrocarbon group
- Y represents a functional group capable of reacting with the base material of the carrier.
- phosphine unit> Q in formula (2) represents a phosphine unit.
- the phosphine unit is a chemical structural site having a function of decomposing a polysulfide compound as a sulfur compound into a thiol compound.
- the Q in the formula (2) preferably includes the following skeleton.
- alkyl group having 1 to 6 carbon atoms in the above formula (Q1) is a linear alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; and 3 to 6 carbon atoms such as an isopropyl group and an isobutyl group.
- Branched chain alkyl group represents a cyclic alkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclopentyl group.
- the bond with a broken line represents the bond with L in the formula (2), n represents the number of methylene groups (-CH 2- ), and is 1 to 5.
- the formulas (P1-1) and (P3-1) are preferably represented below; more preferably represented below, from the viewpoint of reactivity with the sulfur compound. Equation (P1-1).
- the phosphine unit preferably contains a phosphine unit having at least one hydrocarbon group.
- a phosphine unit having at least one hydrocarbon group.
- Examples of such a phosphine unit include a group represented by the formula (Q1) in which one or both of R 9 and R 10 are alkyl groups having 1 to 6 carbon atoms.
- L in the formula (2) represents a group connecting Q and Y in the formula (2), and is a single bond or a divalent linking group.
- specific examples of the divalent linking group include an alkylene group having 1 to 12 carbon atoms and the following groups.
- the bond with a broken line represents the bond with Q in the equation (2)
- the bond with a wavy line represents the bond with Y in the equation (2).
- r and s in the formula (L6) represent the number of methylene groups and are integers from 1 to 6.
- t in the formula (L5) represents the number of oxy groups and is 0 or 1 in the formula (L3).
- R 11 in) represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- the alkyl group having 1 to 6 carbon atoms in R 11 of the above formula (L3) is a linear alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; from 3 carbon atoms such as an isopropyl group and an isobutyl group.
- Branched chain alkyl group of 6; represents a cyclic alkyl group having 3 to 6 carbon atoms such as a cyclopropyl group and a cyclopentyl group.
- L in the formula (2) is preferably an alkylene group having 1 to 12 carbon atoms, the formula (L1) and the formula (L4) from the viewpoint of reactivity with the sulfur compound and affinity for the beverage.
- Y in formula (2) is a functional group capable of reacting with the base material of the carrier, for example, a hydroxy group (OH group), a carboxylic acid group (COOH group), a primary amino group (NH 2 group), and the like. azido group (N 3 group), an alkynyl group.
- the alkynyl group is a monovalent group having a triple bond in the molecular structure, which is linear or branched.
- the number of carbon atoms of the alkynyl group is preferably 2 to 20, more preferably 2 to 8, and particularly preferably 2 to 4.
- Specific examples of the alkynyl group include an ethynyl group and a propargyl group.
- the phosphine-containing precursor preferably has the following chemical structure.
- R 9 and R 10 have the same meaning as those described in the above formula (Q1), and represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- Q in -2) represents the number of methylene groups (-CH 2- ) and is an integer from 1 to 6.
- R and s in the formulas (2-3) and (2-4) are the above formulas (-2). It is synonymous with the number of methylene groups (-CH 2- ) described in the formulas (L6) from L1), and is an integer from 1 to 6).
- the phosphine unit-containing precursor is more preferably a compound represented by the following formula (2-1a), formula (2-2a), formula (2-3a) or formula (2-4a); particularly preferably. It is a compound represented by the formula (2-2a) or the formula (2-3a) represented below.
- R 9 and R 10 have the same meaning as those described in the above formula (Q1), and indicate a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- the phosphine unit-containing precursor may be in the form of a salt such as an inorganic acid salt such as a hydrochloride or an organic acid salt such as an acetate.
- the phosphine-containing precursor may be supported on the carrier by one kind or a combination of two or more kinds.
- the carrier used in the sulfur compound removing agent for beverages refers to a carrier in which a Michael acceptor unit is immobilized on a substrate and / or a carrier in which a phosphine unit is immobilized on a substrate.
- immobilization means that the binding group contained in the base material of the carrier is chemically bonded to the Michael receptor unit and / or the phosphine unit. Therefore, in the sulfur compound remover for beverages, the Michael receptor unit and the phosphine unit are hardly physically shed.
- the base material of the carrier is not particularly limited as long as it has a linking group capable of immobilizing the Michael acceptor unit and / and the phosphine unit.
- the base material of the carrier includes, for example, a silicon-containing material which may be surface-modified, a metal oxide which may be surface-modified, a clay which may be surface-modified, a synthetic polymer which may be surface-modified, and the like. Examples include natural polymers that may be surface modified.
- the base material of the carrier may be one kind or a combination of two or more kinds.
- the silicon-containing material include silica and aluminosilicate (for example, silica alumina such as aluminum-containing mesoporous silica).
- the metal in the metal oxide include titanium, zirconium, iron, cobalt, aluminum, cerium, manganese, zinc, nickel, magnesium and tungsten.
- Examples of the clay include montmorillonite, clay containing montmorillonite (for example, bentonite, acid clay, activated clay), diatomaceous earth and the like.
- Examples of the synthetic polymer include polyvinylpyrrolidone and polystyrene.
- Examples of natural polymers include carbohydrates, proteins, and other natural polymers. Examples of carbohydrates include sugars, and examples include starch, agarose, sodium alginate, carrageenan, cellulose, and chitosan. Examples of the protein include collagen, gluten, ovalbumin and the like. Examples of other natural polymers include tannin (for example, persimmon tannin) and the like.
- the natural polymer may be in the form of flour, egg white, agar, gelatin, microfibrous cellulose.
- the surface modification is not particularly limited as long as the Michael receptor unit and / and the phosphine unit can be immobilized on the substrate.
- a carrier to a base material one or more primary amino groups such as an aminoalkyl group having 1 to 6 carbon atoms and an aminoalkylaminoalkyl group having 2 to 12 carbon atoms or a second Surface modification with an alkyl group containing a primary amino group or a hydroxyalkyl group having 1 to 6 carbon atoms can be mentioned.
- examples of the alkyl group containing one or more primary amino groups or secondary amino groups include an aminopropyl group, a 3- (2-aminoethylamino) -propyl group, and a hydrogen from a carbon atom of polyethyleneimine.
- examples thereof include a group from which an atom has been removed, a group from which a hydrogen atom has been removed from a carbon atom of polyvinylamine, and a group in which a hydrogen atom has been removed from a carbon atom of polypropylamine.
- the surface modification of the base material preferably has a large number of carbon atoms from the viewpoint of being more excellent in the removability of the sulfur compound.
- the base material of the carrier is preferably selected from the base materials of the carrier recognized by the Food Sanitation Law, the Liquor Tax Law, and the like.
- the base material of the carrier is more preferably, for example, silica, aluminosilicate, titania, zirconia, bentonite, activated clay, diatomaceous earth, montmorillonite, agar, agarose, gelatin, sodium alginate, carrageenan, microscopic, which may be surface-modified.
- Examples include fibrous cellulose, flour, gluten, egg white, tannin, chitosan, polyvinylpyrrolidone and polystyrene.
- silica or fine fibrous cellulose which may be surface-modified is more preferable, and silica and carbon which are not surface-modified are particularly preferable.
- the aminoalkyl group having 1 to 6 carbon atoms is preferably a linear aminoalkyl group such as an aminoethyl group or an aminopropyl group.
- the binding group contained in the base material of the carrier reacts with the Michael receptor-containing precursor, the Michael receptor-forming substance and / and the phosphine-containing precursor, and the carrier hardly loses the Michael receptor unit and / and the phosphine unit. It is not particularly limited as long as it can be fixed.
- the bonding group contained in the carrier include a hydroxyl group (OH group), a carboxylic acid group (COOH group), a primary amino group (NH 2 group), and a secondary amino group (-NH- group).
- the carrier has, for example, a hydroxyl group (OH group), a carboxylic acid group (COOH group), a primary amino group (NH 2 group), a secondary amino group (-NH- group), or the like as a binding group.
- OH group hydroxyl group
- COOH group carboxylic acid group
- NH 2 group a primary amino group
- -NH- group a secondary amino group
- the base material of the carrier and the binding group may have a linking group.
- Such a linking group is as described above in the formula (1).
- an aliphatic carbon atom such as an alkylene group or an alkyl group is bonded to the secondary amino group. Then, it can be appropriately set according to the type of the Michael receptor-containing precursor, the Michael receptor-forming substance and / or the phosphine-containing precursor.
- the linking group contained in the base material of the carrier is preferable from the viewpoint of reactivity with the Michael receptor-containing precursor and / and the phosphine-containing precursor.
- the component that reacts with the carrier is a Michael receptor-containing precursor and / or a Michael receptor-forming substance
- the Michael receptor is immobilized on the carrier, and / and the component that reacts with the carrier contains phosphine. If it is a precursor, a phosphine-containing unit is immobilized on the carrier.
- examples of the bonding group contained in the carrier include a primary amino group (NH 2 group) and a secondary amino group (-NH- group).
- the structure of the Michael receptor unit obtained when a Michael receptor forming body and a binding group which is a primary amino group (NH 2 group) or a secondary amino group (-NH- group) are used.
- the binding group contained in the carrier is a combination of a primary amino group (NH 2 group) and a secondary amino group (-NH- group)
- a carrier on which the unit is immobilized is obtained. In such a case, it can be obtained by using a substrate having an aminoalkyl group interrupted by one or more secondary amino groups.
- a commercially available product can be used as the carrier having a linking group capable of immobilizing the Michael receptor unit and / and the phosphine unit.
- the base material of the carrier that is not surface-modified is silica (having a Si—OH group), for example, by using a silane coupling agent (for example, aminopropyltrimethoxysilane), the Michael acceptor can be used.
- the unit and / and the phosphine unit can be immobilized on the substrate.
- a method of carrying such a carrier for example, the method described in JP-A-2010-538806 can be mentioned.
- the carrier may contain a linking group that has not reacted with the Michael receptor-containing precursor, the Michael receptor-forming substance and / or the phosphine-containing precursor.
- the number of reaction points (number of moles / g) with the Michael receptor-containing precursor, Michael receptor-forming substance and / and phosphine-containing precursor in the base material of the carrier is not particularly limited as long as it does not inhibit the reaction. It is preferably 0.03 to 3.0 mmol / g, more preferably 0.5 to 1.5 mmol / g.
- the number of reaction points is described, for example, in the case of a commercially available product. Products other than commercial products should be analyzed as appropriate.
- the average particle size of the base material of the carrier is preferably 10 to 5000 ⁇ m, particularly preferably 50 to 200 ⁇ m.
- the average particle size of the base material of the carrier is 50 ⁇ m or more, the handleability is excellent.
- the average particle size of the base material of the carrier is 200 ⁇ m or less, the contact area with the beverage increases, so that the efficiency of removing sulfur compounds increases.
- the average particle size can be measured with a laser diffraction / scattering type particle size distribution measuring device.
- the amount of immobilization (support amount) of the Michael receptor unit and / and the phosphine unit (Michael receptor-containing precursor, Michael receptor-forming substance, and phosphine-containing precursor) in the sulfur compound remover for beverages is a desired activity. (That is, the amount of the sulfur compound removed with respect to the weight of the drinking sulfur compound removing agent) is not particularly limited as long as the amount of the drinking sulfur compound removing agent can be obtained.
- the amount of the Michael receptor unit and the phosphine-containing unit immobilized in the drinking sulfur compound removing agent is preferably 0.01 to 1.0 mmol, more preferably 0.1 to 0.1 to 1 g of the drinking sulfur compound removing agent. It is 0.5 mmol.
- the immobilized amount when the unsaturated bond contributing to the Michael addition reaction in 1 mol of the Michael receptor unit is 1 mol, or when the trivalent phosphorus atom in 1 mol of the phosphine unit is 1 mol, the immobilized amount. Corresponds to the activity of the drinking sulfur compound remover.
- the Michael receptor-containing carrier and the phosphine-containing carrier may be used alone or in combination of two or more. That is, the sulfur compound remover for beverages can be a carrier on which a Michael receptor unit and / and a phosphine unit are immobilized, or a mixture thereof.
- the sulfur compound remover for beverages preferably contains a carrier on which a Michael acceptor unit is immobilized and a carrier on which a phosphine unit is immobilized.
- the carrier of the sulfur compound removing agent for beverages may be one in which both the Michael receptor unit and the phosphine unit are immobilized on the same carrier.
- Beverage sulfur compound removers are considered to be malodorous and unpleasant components contained in beverages through a process in which a phosphine unit decomposes a polysulfide compound in a beverage into a thiol compound and a Michael receptor unit adsorbs the thiol compound in the beverage. It is possible to selectively remove sulfur compounds that cause odors.
- "removal” means at least one of the removal of at least a part of the polysulfide compound contained in the beverage and the removal of at least a part of the thiol compound.
- Beverage sulfur compound removers remove sulfur compounds (polysulfides and / and thiols) that cause malodors and off-flavors, which are considered to be unpleasant components, contained in the beverages to be treated, while being high-grade. Since flavor components such as alcohols, fusels, and esters can be left in the beverage, excellent removal selectivity is expected.
- the method for producing a sulfur compound removing agent for beverages is represented by a carrier, a Michael receptor-containing precursor represented by the above formula (1), a Michael receptor forming product and / or the above formula (2).
- the reaction in this step is not particularly limited as long as it is a method for forming a chemical bond between the Michael receptor-containing precursor, the Michael receptor-forming substance and / or the phosphine-containing precursor and the carrier.
- Examples of the combination in which a chemical bond is formed between the Michael receptor-containing precursor and / and the phosphine-containing precursor and the carrier include a combination of an amino group on the carrier side and a hydroxyl group or a carboxyl group on the precursor side.
- the reaction by the combination of is preferable.
- a combination in which a chemical bond is formed between the Michael acceptor-forming substance and the carrier a combination of the Michael acceptor-forming substance and the nitrogen atom of the primary amino group or the secondary amino group in the carrier is used. Combinations can be mentioned.
- the number of chemical bonds formed between the Michael receptor-containing precursor and / and the phosphine-containing precursor and the carrier is at least 1, and the Michael receptor-containing precursor and / and the phosphine-containing precursor are formed. It increases with the number of functional groups that the body has that can react with the carrier. For example, if the phosphine unit is tris (2-carboxyethyl) phosphine and the functional group capable of reacting with the carrier is a carboxyl group, the number of chemical bonds between the phosphine unit and the carrier is 1, It can be 2 or 3.
- the number of Michael receptors formed by the Michael receptor former is at least 1, and can vary depending on the number of primary or secondary amino groups contained in the carrier.
- the carrier has a 3- (2-aminoethylamino) propyl group and the Michael acceptor form is maleic anhydride, then the number of Michael acceptors formed by the Michael acceptor former is 1 or A carrier of 2 or a mixture thereof can be obtained.
- the reaction between the carrier and the Michael receptor-containing precursor and / or the phosphine-containing precursor can be carried out in the presence of a condensing agent or a combination of a condensing agent and a condensation additive.
- a condensing agent By using the condensing agent, the reaction between the carrier and the Michael receptor-containing precursor and / or the phosphine-containing precursor can be efficiently promoted.
- Condensing agents include 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC / HCl), N, N'-dicyclohexylcarbodiimide, O- (benzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate (HBTU), O- (7-azabenzotriazole-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate Examples thereof include acid salt (HATU), ((((1-cyano-2-ethoxy-2-oxoethylidene) amino) oxy) -4-morpholinomethylene) dimethylammonium hexafluorophosphate (COMU).
- EDC / HCl 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
- condensation additives 3,4-dihydroxy-3-hydroxy-4-oxo-1,2,3-benzotriazine, 1-hydroxybenzotriazole (HOBt), N-hydroxysuccinimide, N-hydroxy-5- Examples thereof include norbornene-2,3-dicarboxyimide.
- the condensing agent and the condensing additive may be one kind or a combination of two or more kinds, respectively.
- the reaction between the carrier and the Michael receptor-containing precursor, Michael receptor-forming substance and / or phosphine-containing precursor can be carried out in the presence of a solvent.
- the solvent is preferably a solvent that dissolves the Michael acceptor unit and / and the phosphine unit, but disperses the carrier, from the viewpoint of promoting the reaction.
- examples of such a solvent include water; alcohol solvents such as methanol and ethanol; amide solvents such as N, N-dimethylformamide and N-methylpyrrolidone; cyclopentyl methyl ether, t-butyl methyl ether, tetrahydrofuran (THF) and the like.
- Acyclic or cyclic ether solvents comprising carboxylic acid solvents such as acetic acid and propionic acid; halogen solvents such as methylene chloride, and types of carriers, Michael acceptor units or Michael acceptor forms, and phosphine units. It can be selected as appropriate according to.
- the solvent may be one kind or a combination of two or more kinds. When the solvent is a combination of two or more kinds, the volume ratio may be arbitrary.
- the reaction between the carrier and the Michael receptor-containing precursor or / and phosphine-containing precursor is sodium hydroxide, potassium hydroxide, triethylamine, diisopropylethylamine, 2,2,6,6-tetramethylpiperidine, diaza. This can be done in the presence of a base such as bicycloundecene (DBU).
- DBU bicycloundecene
- the amount of the Michael receptor-containing precursor, Michael receptor-forming substance and / and phosphine-containing precursor used is the carrier and Michael receptor-containing precursor, Michael receptor-forming substance and / and in the above-mentioned drinking sulfur compound removing agent.
- the amount is preferably such that the content of the phosphine-containing precursor is reached.
- a sulfur compound remover can be produced.
- the amount of the condensing agent, the condensing additive, the solvent and the base used can be appropriately set within a range in which the desired sulfur compound removing agent for beverages can be obtained.
- the reaction temperature in the reaction between the Michael receptor-containing precursor and / and the phosphine-containing precursor and the carrier is not particularly limited, but is preferably 10 to 70 ° C, particularly preferably 20 to 50 ° C.
- the reaction time of the reaction between the Michael receptor-containing precursor, the Michael receptor-forming substance and / or the phosphine-containing precursor and the carrier is not particularly limited, but is preferably 0.5 to 24 hours.
- the reaction temperature in the reaction between the Michael receptor-forming body and the carrier is not particularly limited, but is preferably 10 to 120 ° C, particularly preferably 100 to 120 ° C.
- the reaction time in the reaction between the Michael receptor-forming substance and the carrier is not particularly limited, but is preferably 0.5 to 24 hours.
- the reaction step gives a reaction product containing a carrier on which the Michael acceptor unit and / and the phosphine unit are immobilized.
- the post-treatment in the purification step is a treatment for removing raw materials and the like remaining in the reaction product obtained in the reaction step.
- Examples of the post-treatment method in the purification step include rinsing and drying, and these can be combined and applied.
- the rinse is not particularly limited, but it is preferable to rinse the reaction product using the above-mentioned solvent.
- rinsing is performed using the above-mentioned solvent, unreacted Michael receptor-containing precursors, Michael receptor-forming substances and / and phosphine-containing precursors can be efficiently removed.
- the unreacted Michael receptor-containing precursor, Michael receptor-forming substance and / or phosphine-containing precursor adheres to the beverage sulfur compound remover within a range in which the desired beverage sulfur compound remover can be obtained. You may be doing it.
- the beverage sulfur compound remover may have an unreacted bonding group within a range in which a desired beverage sulfur compound remover can be obtained.
- Drying can be performed under normal pressure or reduced pressure.
- the drying temperature is not particularly limited, but is preferably 10 ° C to 70 ° C.
- the drying time is not particularly limited, but is preferably 30 minutes to 10 hours.
- Beverage sulfur compound removers can be used in methods for removing sulfur compounds from beverages. That is, a carrier or a mixture thereof on which a Michael receptor unit and / and a phosphine unit are immobilized can be used in a method for removing a sulfur compound from a beverage.
- the present invention is used as a carrier or mixture thereof on which the Michael receptor unit and / and the phosphine unit are immobilized as a sulfur compound remover for beverages; and the Michael receptor unit and / and the phosphine unit are immobilized. It also relates to a method of using the carrier or a mixture thereof as a sulfur compound removing agent for beverages.
- the present invention also uses a carrier or a mixture thereof on which a Michael receptor unit and / and a phosphine unit are immobilized to remove a sulfur compound from a beverage; and Michael to remove a sulfur compound from a beverage. It also relates to a method of using a carrier or a mixture thereof in which a receptor unit and / and a phosphine unit are immobilized.
- a method for removing a sulfur compound from a beverage using a drinking sulfur compound removing agent a step of passing the beverage through the drinking sulfur compound removing agent and a step of passing the beverage through the drinking sulfur compound removing agent and decomposing or / and Examples thereof include a method including a step of adsorbing.
- the method of passing the beverage through the sulfur compound remover for beverages is not particularly limited as long as the sulfur compound remover for beverages comes into contact with the beverage.
- Specific examples thereof include a method in which an arbitrary container is filled with a sulfur compound remover for beverages, the beverage is filled in the container, and the sulfur compound remover for beverages is brought into contact with the beverage.
- the sulfur compound is decomposed and / or adsorbed according to the compound contained in the beverage sulfur compound removing agent, and the sulfur compound contained in the beverage is removed.
- the sulfur compound remover for beverages is filtered after the step of decomposing and / or adsorbing the sulfur compound with the sulfur compound remover for beverages. It may include a post-treatment step of removing by.
- the shape of the sulfur compound remover for beverages is arbitrary as long as the sulfur compound remover for beverages and the beverage can come into contact with each other, and the shape of the base material of the carrier may be used as it is, or a plate shape.
- Granules, pellets, tablets and the like may be used in a form molded or formulated into any shape.
- the thickness of the plate shape is not particularly limited, and may be a film shape, a sheet shape, or a foil shape.
- the sulfur compound remover for beverages can be combined with additional members. As a result, it is possible to obtain a drinking sulfur compound removing member using a drinking sulfur compound removing agent.
- a beverage sulfur compound removing member using a beverage sulfur compound removing agent includes a drinking sulfur compound removing agent and a further member.
- the further member is not particularly limited, and is appropriately selected from materials usually used for manufacturing, refining, storing, transporting, etc. of beverages.
- the shape of the sulfur compound removing member for beverages is arbitrary, and examples thereof include powder, fibrous, hollow (cylindrical, container), and plate shapes, and the production, purification, storage, or transportation of beverages. It is appropriately selected according to the purpose such as.
- a member for removing a sulfur compound for beverages a woven fabric or a non-woven fabric impregnated with the sulfur compound remover for beverages, or a resin composition containing the sulfur compound remover for beverages is formed into a film or a plate.
- a molded product, a container filled with a sulfur compound remover for beverages, or a coating agent which is a resin composition containing a sulfur compound remover for beverages is applied to the inner wall of a pipe, the inner wall of a container, or a container member (for example, a stirring blade). ) Is coated.
- the sulfur compound removing member examples include a plate-shaped or tubular filter sheet (filter paper, filter plate), a cartridge (cartridge filter), a woven cloth filter, a non-woven fabric filter, a container, a stirring blade, a pipe, and the like. ..
- the cartridge using the sulfur compound removing agent for beverages is filled with the sulfur compound removing agent for beverages.
- the cartridge has a function of removing sulfur compounds from the beverage. Beverages that have passed through the cartridge are obtained as a product.
- the filling method of the sulfur compound remover adsorbent for beverages in the cartridge is not particularly limited and can be appropriately set according to the purpose.
- the cartridge may be one type or a combination of two or more types of cartridges. When two or more types of cartridges are combined, they may be installed in series or in parallel.
- the cartridge is a cartridge filled with a carrier containing a Michael receptor unit and a carrier containing a phosphine unit in a two-stage manner, and is used for a beverage containing a carrier in which the phosphine unit is immobilized in the first stage. It is preferable that the cartridge is filled with a sulfur compound removing agent adsorbent and is filled with a drinking sulfur compound removing agent adsorbent containing a carrier on which a Michael receptor unit is immobilized in the second stage.
- the first stage means an area through which the beverage first passes
- the second stage means an area through which the beverage that has passed through the first stage passes.
- FIG. 1 shows the preferred two-stage cartridge. 1 is a region filled with the first-stage remover, 2 is a region filled with the second-stage remover, and the arrow indicates the direction in which the beverage passes.
- the polysulfide compound is decomposed into a thiol compound and removed in the first stage, and the thiol compound (decomposed product of the polysulfide compound and the first stage) is in the second stage. Since the thiol compound) contained in the raw material beverage before passing through is adsorbed, the sulfur compound can be removed more efficiently.
- the beverage sulfur compound removal device including the cartridge includes a raw material tank, a refining tank, a pump, the above-mentioned cartridge, and a line tube, and includes a raw material tank, a pump, and the like.
- the cartridges and refinery tanks are connected in this order, or the raw material tanks, cartridges, pumps, and refinery tanks are connected in this order by line tubes.
- the raw material tank stores beverages before they come into contact with the cartridge.
- the pump delivers the beverage stored in the raw material tank to the cartridge.
- the refining tank stores beverages after contact with the cartridge.
- the line tube is a tube connecting the raw material tank, the pump, the cartridge, and the refining tank in the removing device, and the beverage passes through the line tube. Beverages are stored in raw material tanks after being manufactured. Then, by operating the pump, the beverage stored in the raw material tank is sent to the cartridge. The order of the pumps and cartridges is random. Beverages that have passed through the cartridge are stored as products in refining tanks.
- 3 is the raw material tank
- 4 is the pump
- 5 is the cartridge
- 6 is the refining tank
- 7, 8 and 9 are the line tubes
- the arrows at 7, 8 and 9 are the directions through which the beverage passes. Is shown.
- the removal device may be a one-pass type or a circulation type. That is, the beverage that has passed through the cartridge may be stored in the refining tank or returned to the raw material tank again.
- the removing device when the removing device is a one-pass type, the beverage that has passed through the cartridge passes through the line tube 8 and is stored in the purification tank 6 for drinking.
- the removing device is a circulation type, the beverage that has passed through the cartridge passes through the line tube 9, is returned to the raw material tank 1, and passes through the cartridge 5 again. Then, when the beverage reaches the desired content of the sulfur compound, it is stored in the purification tank 6 by the line tube 8.
- the filtration sheet is a member in which a sulfur compound remover for beverages is combined with materials such as paper, woven fabric, and non-woven fabric.
- the filter sheet is called a filter paper or a filter plate, depending on the form of the material to be combined.
- Specific examples of the filtration sheet include a filtration sheet containing a sulfur compound remover for beverages, hydrophobic fibers, and optionally hydrophilic fibers.
- hydrophobic fiber examples include polyolefin-based, polyester-based, and acrylic-based hydrophobic fibers, and hydrophobic and lipophilic fibers such as polyethylene fiber, polypropylene fiber, and polyester fiber are preferable.
- hydrophilic fiber examples include natural cellulose fiber, rayon fiber, polyvinyl alcohol fiber and the like. Natural cellulose fiber is preferable, and refined wood pulp such as refined linter pulp or bleached kraft pulp has an ⁇ -cellulose content of 90% or more. It is particularly preferable that it is a natural cellulose fiber.
- the fiber shape of the hydrophobic fiber or the hydrophilic fiber is not particularly limited, and can be appropriately selected depending on the properties of the obtained filtration sheet.
- the filtration sheet can be manufactured by a dry method or a wet method. From the viewpoint of uniformity of the properties of the filtration sheet and production efficiency, it is preferable to produce the filtration sheet by a wet method.
- a method for producing a filtration sheet by a wet method for example, a step of adding and dispersing hydrophilic fibers in a beater containing water, and after adjusting the beating degree to a predetermined degree by lowering the blade of the beater, a sulfur compound remover for beverages.
- a step of adding and mixing a step of adding pre-deflated hydrophobic fibers and mixing them to make a papermaking raw material, and a method of making paper using the papermaking raw material and drying it by a conventional method.
- Examples include methods involving steps.
- a papermaking dispersant such as a surfactant may be added in order to improve the dispersibility of the hydrophobic fibers.
- the content of the sulfur compound remover for beverages, the hydrophobic fiber and the hydrophilic fiber in the filter sheet is not particularly limited, and can be appropriately set according to the desired sulfur compound removal performance.
- the filtration sheet can be produced, for example, by the method described in Japanese Patent Application Laid-Open No. 3-42008.
- a coating agent containing a sulfur compound removing agent for beverages is used on the blade surface of the stirring blade used in a beverage manufacturing tank, and a coating containing a sulfur compound removing agent for beverages is provided, or the stirring blade is provided.
- examples thereof include those wrapped in a filtration sheet in which a beverage sulfur compound remover and a woven cloth or a non-woven fabric are combined.
- Examples of the piping include those having a coating agent containing a sulfur compound removing agent for beverages and a coating containing a sulfur compound removing agent for beverages on the inner wall of the piping used for the piping for producing beverages.
- the container examples include a container used for manufacturing a beverage or an inner wall of a container for a beverage provided with a coating agent containing a sulfur compound remover for beverages and a coating containing a sulfur compound remover for beverages. Further, by kneading a beverage container material (for example, resin or paper for a beverage container) with a beverage sulfur compound removing agent as an additive, the beverage container material can be imparted with sulfur compound removing property. it can.
- a beverage container material for example, resin or paper for a beverage container
- a plate-shaped removing member is attached to the lid of the beverage container in contact with the beverage, or a filtration hole is provided in the lid of the beverage container to store the sulfur compound removing agent for the beverage. It is also possible. By using such a lid, the beverage and the remover can come into contact during storage or transportation of the container.
- the sulfur compound removing member contains inorganic particles as fibers or resins as described in, for example, JP-A-2001-334120, JP-A-2009-39905, or JP-A-2011-56509. Alternatively, it may be produced by a method similar to the method of incorporating it into a resin film.
- Beverage sulfur compound removing members can be used in methods for removing sulfur compounds from beverages.
- Examples of the method for removing the sulfur compound from the beverage include a step of bringing the beverage into contact with the sulfur compound removing member and a step of decomposing and / or adsorbing the sulfur compound in the sulfur compound removing member.
- the method of bringing the beverage into contact with the sulfur compound removing member can be appropriately selected depending on the type of the sulfur compound removing member.
- the method for removing the sulfur compound from the beverage includes a step of passing the beverage through the cartridge described above and sulfur in the cartridge. Examples thereof include a step of decomposing and / and adsorbing the compound.
- the amount of the sulfur compound removing agent for beverages, the cartridge, the amount of the beverage to be passed through, and the like are as described above, including the preferred embodiment.
- the method for removing the sulfur compound from the beverage includes a step of passing the beverage through the filtration sheet and filtration.
- Examples thereof include a method including a step of decomposing and / and adsorbing the sulfur compound in the sheet.
- the amount of the sulfur compound removing agent for beverages, the filtration sheet, the amount of the beverage to be passed through, and the like are as described above, including the preferred embodiments.
- Beverage sulfur compound removers can be used in methods for producing beverages from which sulfur compounds have been removed.
- the method for producing a beverage from which the sulfur compound has been removed includes a step of passing the beverage through the beverage sulfur compound remover and a step of decomposing and / or adsorbing the sulfur compound in the beverage sulfur compound remover. Can be mentioned.
- the sulfur compound removing member for beverages can be used in a method for producing a beverage from which sulfur compounds have been removed.
- the method for producing a beverage from which the sulfur compound has been removed includes a step of bringing the beverage into contact with the beverage sulfur compound removing member and a step of decomposing and / or adsorbing the sulfur compound in the beverage sulfur compound removing member. The method can be mentioned.
- the beverage sulfur compound removing member is a cartridge filled with a beverage sulfur compound removing agent
- a step of passing the beverage through the cartridge is described.
- the method for producing a beverage from which the sulfur compound has been removed includes a step of passing the beverage through the filtration sheet described above. Examples thereof include a method including a step of decomposing and / or adsorbing the sulfur compound in the filtration sheet.
- Beverages to which the sulfur compound removing agent for beverages is applied include alcoholic beverages and non-alcoholic beverages.
- alcoholic beverages include alcoholic beverages such as distilled liquor, brewed liquor and mixed liquor.
- distilled liquor include whiskey, brandy, gin, vodka, tequila, rum, white liquor, arak, and shochu.
- brewed sake include sake, beer, wine, and Shaoxing wine.
- the mixed liquor include liqueur, plum wine, and fortified wine.
- non-alcoholic beverages include vegetable juice, fruit juice, coffee, black tea, Japanese tea, barley tea, Chinese tea, and carbonated beverages.
- the sulfur compound removed by the beverage sulfur compound removing agent is a component that causes an odor (off-flavour) that is considered to be a malodor or an unpleasant component in beverages, and examples thereof include polysulfide compounds and / and thiol compounds.
- examples of the polysulfide compound include dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS).
- a thiol compound is a compound having one or more mercapto groups (SH groups) in the molecule, and is, for example, hydrogen sulfide (rotten egg odor), methanethiol (methyl mercaptan: rotten onion odor or rotten cabbage odor).
- Ethanethiol ethyl mercaptan: Sawaan odor
- n-propyl mercaptan rotten onion odor
- allyl thiol rubber odor burnt odor
- Alkyl thiol with 1 to 4 carbon atoms furan-2-ylmethane thiol (flufuryl) Mercaptan), 1-mercapto-3-methyl-2-butene and the like.
- methanethiol methyl mercaptan
- ethanethiol ethyl mercaptan
- furan-2-ylmethanethiol flufuryl mercaptan
- Synthesis Example 1-1 Production of silica on which phosphine unit (phosphine unit-containing precursor: TCEP hydrochloride) is immobilized 1.90 g of triscarboxyethyl phosphine hydrochloride (TCEP / HCl) is added to N, N-dimethyl under a nitrogen atmosphere. It was dissolved in 260 mL of formamide (DMF), and 10.0 g of diamine silica (MSLB100N2 manufactured by DPS Co., Ltd.) was added.
- phosphine unit-containing precursor: TCEP hydrochloride triscarboxyethyl phosphine hydrochloride
- Synthesis Example 1-2 Production of silica on which phosphine unit (phosphine unit-containing precursor: TCEP hydrochloride) is immobilized Under a nitrogen atmosphere, 0.919 g of 1-hydroxybenzotriazole (HOBt) and triscarboxyethyl phosphine hydrochloride (TCEP) Add 0.574 g of? HCl) and 130 mL of nitrogen-bubbling tetrahydrofuran (THF) / water mixed solvent (50/50 (v / v)) and dissolve with stirring to make aminopropyl silica (manufactured by Fuji Silicia Chemical Co., Ltd.).
- phosphine unit-containing precursor: TCEP hydrochloride phosphine unit-containing precursor: TCEP hydrochloride
- Synthesis Example 1-3 Production of silica on which phosphine unit (phosphine unit-containing precursor: TCEP hydrochloride) is immobilized N-hydroxy to 10.0 g of aminopropyl silica (NH silica manufactured by Fuji Silysia Chemical Ltd.) under a nitrogen atmosphere. 0.25 g of succinimide, 50 mL of nitrogen bubbling distilled water, 0.57 g of triscarboxyethylphosphine hydrochloride (TCEP ⁇ HCl) and 0.22 g of triethylamine were added.
- phosphine unit-containing precursor: TCEP hydrochloride phosphine unit-containing precursor: TCEP hydrochloride
- Synthesis Example 2-2 Production of silica on which a Michael receptor unit (Michael receptor unit-containing precursor: 4-maleimide butyric acid) is immobilized Under a nitrogen atmosphere, 1.302 g of 1-hydroxybenzotriazole (HOBt), 4-maleimide Add 0.914 g of butyric acid and 120 mL of tetrahydrofuran (THF) / water mixed solvent (50/50 (v / v)) and dissolve with stirring to obtain 10.07 g of aminopropyl silica (NH silica manufactured by Fuji Silysia Chemical Ltd.) and diah. 1.528 g of zabicycloundecene (DBU) was added.
- a Michael receptor unit Michael receptor unit-containing precursor: 4-maleimide butyric acid
- Synthesis Example 2-3 Production of silica on which Michael receptor unit (Michael receptor unit-containing precursor: 4-maleimide butyric acid) is immobilized Aminopropyl silica (NH silica manufactured by Fuji Silysia Chemical Ltd.) 4-in 10.0 g 0.37 g of maleimide butyric acid, 0.25 g of N-hydroxysuccinimide, 50 mL of ethanol and 0.22 g of triethylamine were added. While stirring this suspension, 10 mL of ethanol in which 0.43 g of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC / HCl) was dissolved was added dropwise over 25 minutes.
- Michael receptor unit Michael receptor unit-containing precursor: 4-maleimide butyric acid
- Aminopropyl silica NH silica manufactured by Fuji Silysia Chemical Ltd.
- Example 1 Removal Selectivity of Polysulfide Compound (DMTS) by Silica with Immobilized Phosphine Unit
- DMTS Polysulfide Compound
- a Cartridge (SS-400-manufactured by Swagelok) filled with 0.048 g of silica with the phosphine unit immobilized in Synthesis Example 1-1. It is composed of 6-1 and SS-100-R-4 and filter paper (diameter 4 mm).
- the filling material was changed and a cartridge having the same composition was used) at 10 mg / mg /.
- Example 2 Removal selectivity of thiol compound (flufuryl mercaptan) with silica on which Michael acceptor unit is immobilized
- a cartridge filled with 0.065 g of silica on which Michael acceptor unit is immobilized obtained in Synthesis Example 2-1.
- the final 1.0 mL (flow 49-50 mL) was analyzed by GC to determine the concentration of thiol compounds in the solution flowing out of the cartridge.
- Example 3 Removal of polysulfide compound (DMTS) by silica on which phosphine unit is immobilized and silica on which Michael receptor unit is immobilized
- DMTS polysulfide compound
- the phosphine unit obtained in Synthesis Example 1-1 is immobilized on the first stage of a cartridge.
- a cartridge was prepared in which 0.056 g of the silica was filled and 0.048 g of the silica on which the Michael acceptor obtained in Synthesis Example 2-1 was immobilized was filled in the second stage of the cartridge.
- Example 5 Removal selectivity of thiol compound (flufuryl mercaptan) by silica on which Michael acceptor unit is immobilized
- Comparative Example 1 Removal Selectivity of Polysulfide Compound (DMTS) with Activated Carbon
- DMTS Polysulfide Compound
- a cartridge filled with 0.066 g of commercially available activated carbon Karl Insky Activated Carbon Special SE manufactured by Kawakita Chemical Co., Ltd.
- DMTS solution solvent EtOH / H 2
- 45 mL of O 16/84 (v / v)) was passed at a flow rate of 1.0 mL / min, and the final 1.0 m (flow rate 44) was used to check the concentration of the polysulfide compound in the solution flowing out of the cartridge.
- -45 mL) L was analyzed by GC.
- the residual ratio (%) of the thiol compound in Example 1 is the concentration of the thiol compound produced by decomposition of the polysulfide compound based on the concentration of the polysulfide compound (mg / L) in the solution before being passed through the cartridge. It was calculated and calculated from the concentration of the thiol compound in the solution flowing out of the cartridge.
- the beverage sulfur compound remover of the example is excellent in the removal selectivity of the sulfur compound in the beverage by the decomposition of the sulfur compound by the phosphine unit and / and the adsorption of the sulfur compound by the Michael receptor unit.
- the sulfur compound remover for beverages of the examples can be produced at low cost. From Examples 1 and 4, when the drinking sulfur compound removing agent contains a carrier on which the phosphine unit is immobilized, it decomposes the polysulfide compound which is a sulfur compound, while it is a delicious component in Example 1. Since it does not remove (decompose or adsorb) ethyl caproate, it was confirmed that it has excellent selectivity for removing sulfur compounds.
- the thiol compound produced by the decomposition of the polysulfide compound is less likely to cause a bad odor or an odor which is regarded as an unpleasant component than the polysulfide compound.
- the thiol compound which is a sulfur compound is adsorbed, while in Example 2, Since ethyl caproate, which is a delicious component, is not removed (decomposed or adsorbed), it was confirmed that the removal selectivity of the sulfur compound is excellent.
- Example 3 when the beverage sulfur compound removing agent treats the beverage in the order of the phosphine-containing carrier and the Michael receptor-containing carrier, it first decomposes the polysulfide compound and then contains the thiol compound produced by the decomposition. All thiol compounds in the beverage can be adsorbed more effectively. That is, it is considered that such a sulfur compound removing agent for beverages is more excellent in removing sulfur compounds.
- Synthesis Example 3 Production of Silica Immobilized with Michael Receptor Unit (Michael Receptor Unit Former: Maleic anhydride) Aminopropyl silica (NH silica manufactured by Fuji Silysia Chemical Ltd.) 10.0 g and maleic anhydride 3.20 g And 50 mL of acetic acid were added. The suspension was stirred at room temperature (20 ° C.) for 2 hours and then heated to reflux for 6 hours. The solvent was removed by filtration and rinsed with 100 mL of ethanol. The silica was dried under reduced pressure at 60 ° C. overnight to obtain silica on which the Michael receptor unit represented by the formula (M1) was immobilized.
- Michael Receptor Unit Michael Receptor Unit
- Synthesis Example 4 Production of silica on which a Michael receptor unit (Michael receptor unit former: maleic anhydride) is immobilized 3- (2-aminoethylamino) propyl silica (diamine silica manufactured by Fuji Silysia Chemical Ltd.) 10. To 0 g, 1.78 g of maleic anhydride and 50 mL of acetic acid were added. The suspension was stirred at room temperature (20 ° C.) for 1 hour and then heated to reflux for 3 hours. The solvent was removed by filtration and rinsed with ethanol. The product was dried under reduced pressure at 60 ° C. overnight to obtain silica on which the Michael receptor unit represented by the formula (M1) and / or the Michael receptor unit represented by the formula (M6-2) was immobilized.
- Example 6 Removal of thiol compound (flufuryl mercaptan) by silica on which Michael acceptor unit is immobilized Swagelok filled with 0.55 g of silica on which Michael acceptor unit is immobilized obtained in Synthesis Example 2-1. Composed of SS-810-6-2, SS-200-R-3 and filter paper (diameter 9 mm) manufactured by SS-810-6-2 and filter paper (diameter 9 mm). The filling was changed in the following examples, and a cartridge having the same configuration was used), 10 mg.
- solvent EtOH / H 2 O 16/84 (v / v)
- solvent EtOH / H 2 O 16/84 (v / v)
- the beverage sulfur compound remover of the example adsorbs thiol, which is a sulfur compound, when the carrier in which the Michael receptor unit is immobilized is contained. Moreover, the sulfur compound remover for beverages of Examples 5 and 6 can be produced at low cost.
- Example 9 Removal selectivity of polysulfide compound (DMTS) by silica on which phosphine unit is immobilized 0.50 g of silica on which phosphine unit is immobilized obtained in Synthesis Example 1-3 is celite (main component is diatomaceous earth).
- Example 10 Removal selectivity of thiol compound (flufuryl mercaptan) by silica on which Michael receptor unit is immobilized 0.5 g of silica on which Michael receptor unit is immobilized and 5.0 g of Celite obtained in Synthesis Example 2-3.
- Example 11 Removal selectivity of thiol compound (flufuryl mercaptan) with silica on which Michael acceptor unit is immobilized Performed from 0.5 g of silica and 5.0 g of Celite on which Michael acceptor unit is immobilized obtained in Synthesis Example 4.
- Comparative Example 2 Removal Selectivity of Polysulfide Compound (DMTS) with Activated Carbon
- a filtration sheet was prepared from 0.5 g of commercially available activated carbon (Kujaku Activated Carbon Special SE manufactured by Kawakita Chemical Co., Ltd.) and 5.0 g of Celite by the same method as in Example 9. did.
- a liquid flow volume of 20 to 100 mL was collected and analyzed by GC.
- a filtration sheet was prepared from 0.50 g of activated carbon and 5.0 g of Celite by the same method as in Example 9.
- a flow volume of 20 to 100 mL was collected and analyzed by GC.
- a liquid flow volume of 20 to 100 mL was collected and analyzed by GC.
- a filtration sheet was prepared from 5.0 g of Celite by the same method as described above.
- a flow volume of 20 to 100 mL was collected and analyzed by GC.
- the drinking sulfur compound removing agent of the example contains a carrier on which the phosphine unit is immobilized even in the form of a filtration sheet, the polysulfide which is a sulfur compound is adsorbed and the Michael receptor unit is formed. It was confirmed that when an immobilized carrier was included, it adsorbed thiol, which is a sulfur compound.
- Example 3 of Table 1 when the beverage sulfur compound removing agent treats the beverage in the order of the phosphine unit-containing carrier and the Michael receptor unit-containing carrier, the polysulfide compound is first decomposed and then generated by the above decomposition. Since all thiol compounds in the beverage containing the thiol compound can be more effectively adsorbed, even if the sulfur compound remover for the beverage is in the form of a filtration sheet, the phosphine unit and the Michael receptor unit are placed in this order. When treated, it can be considered that the polysulfide compound can be first decomposed, and then all the thiol compounds in the beverage containing the thiol compound produced by the decomposition can be more effectively adsorbed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本発明は、飲料に含まれる硫黄化合物の除去選択性に優れる、飲料用硫黄化合物除去剤を安価に提供するものであって、マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む、飲料用硫黄化合物除去剤、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、前記飲料用硫黄化合物除去剤を用いた、飲料から硫黄化合物を除去する方法、並びに、前記飲料用硫黄化合物除去剤を用いた、硫黄化合物が除去された飲料の製造方法に関する。
Description
本発明は、飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法に関する。
近年の食のグローバル化に伴い、食品の輸送又は貯蔵の長期化により不快な香り(オフフレーバー)成分の発生が食品本来の風味を損なうために問題となっている。また、風味を向上させた新製品の開発においてもオフフレーバー成分の積極的除去が期待されている。例えば、飲料に含まれるオフフレーバーの原因成分として、ポリスルフィド類やチオール類などの硫黄化合物があり、特に、ジメチルトリスルフィド(DMTS)等のポリスルフィド類は、清酒の劣化臭である老香の主要な成分として知られている(例えば、特許文献3参照)。また、チオール類は、ビールの長期保存中、日光や蛍光灯などを照射されることにより生じる日光臭の主要な成分である。
この飲料に含まれる不快な香りの原因となる硫黄化合物を低減する方法として、様々な方法が試みられている。例えば、特許文献1には、活性炭を用いて硫黄化合物を吸着除去することが記載されている。特許文献2には、銀を担持させたゼオライトを用いて、オフフレーバー成分である硫黄化合物を除去することが報告されている。また、特許文献3には、金ナノ粒子を担持させたシリカを用いて、硫黄化合物を除去することが報告されている。
しかしながら、特許文献1に開示された方法では、活性炭には吸着選択性がないため、硫黄化合物の他に、旨味成分等の飲料にとって有益な成分までも吸着してしまう問題がある。また、特許文献2及び3に開示された方法では、貴金属を使用するため、コストの問題がある。
そこで、本発明の目的は、飲料に含まれる硫黄化合物の除去選択性に優れる、飲料用硫黄化合物除去剤を安価に提供することにある。
本発明者らは、上記目的を達成するためにマイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体が、飲料に含まれる硫黄化合物の除去選択性に優れることを見出し、本発明に至った。
本発明は、以下の[1]~[15]を含む発明に関する。
[1]マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む、飲料用硫黄化合物除去剤。
[2]前記マイケル受容体ユニットは、マレイミド骨格を含む、[1]の飲料用硫黄化合物除去剤。
[3]前記ホスフィンユニットは、少なくとも1つの炭化水素基を含む、[1]又は[2]の飲料用硫黄化合物除去剤。
[4]前記担体の基材が、ケイ素含有化合物、金属酸化物、粘土、合成ポリマー及び天然ポリマーからなる群より選択される少なくとも一種である、[1]~[3]のいずれかの飲料用硫黄化合物除去剤。
[5]マイケル受容体ユニットを固定化した担体及びホスフィンユニットを固定化した担体を含む、[1]~[4]のいずれかの飲料用硫黄化合物除去剤。
[6][1]~[5]のいずれかの飲料用硫黄化合物除去剤を充填してなるカートリッジ。
[7][5]の飲料用硫黄化合物除去剤を2段式で充填するカートリッジであって、第1段目にホスフィンユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填し、第2段目にマイケル受容体ユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填してなる、カートリッジ。
[8]飲料用硫黄化合物除去装置であって、原料タンクと、精製タンクと、ポンプと、[6]又は[7]のカートリッジと、ラインチューブとを備え、原料タンク、ポンプ、カートリッジ、精製タンクの順番、又は原料タンク、カートリッジ、ポンプ、精製タンクの順番にラインチューブで連結されている、飲料用硫黄化合物除去装置。
[9]飲料から硫黄化合物を除去する方法であって、[6]又は[7]のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[10]硫黄化合物が除去された飲料の製造方法であって、[6]又は[7]のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
[11][1]~[5]のいずれかの飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材。
[12]飲料から硫黄化合物を除去する方法であって、[1]~[5]のいずれかの飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[13]硫黄化合物が除去された飲料の製造方法であって、[1]~[5]のいずれかの飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
[14]飲料から硫黄化合物を除去する方法であって、[11]の飲料用硫黄化合物除去部材と飲料とを接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[15]硫黄化合物が除去された飲料の製造方法であって、[11]の飲料用硫黄化合物除去部材と飲料とを接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
また、本発明は以下の発明にも関する。
[1a]飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の使用。
[2a]飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を使用する方法。
[3a]マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の、飲料用硫黄化合物除去剤としての使用。
[4a]マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の、飲料用硫黄化合物除去剤として使用する方法。
[1]マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む、飲料用硫黄化合物除去剤。
[2]前記マイケル受容体ユニットは、マレイミド骨格を含む、[1]の飲料用硫黄化合物除去剤。
[3]前記ホスフィンユニットは、少なくとも1つの炭化水素基を含む、[1]又は[2]の飲料用硫黄化合物除去剤。
[4]前記担体の基材が、ケイ素含有化合物、金属酸化物、粘土、合成ポリマー及び天然ポリマーからなる群より選択される少なくとも一種である、[1]~[3]のいずれかの飲料用硫黄化合物除去剤。
[5]マイケル受容体ユニットを固定化した担体及びホスフィンユニットを固定化した担体を含む、[1]~[4]のいずれかの飲料用硫黄化合物除去剤。
[6][1]~[5]のいずれかの飲料用硫黄化合物除去剤を充填してなるカートリッジ。
[7][5]の飲料用硫黄化合物除去剤を2段式で充填するカートリッジであって、第1段目にホスフィンユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填し、第2段目にマイケル受容体ユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填してなる、カートリッジ。
[8]飲料用硫黄化合物除去装置であって、原料タンクと、精製タンクと、ポンプと、[6]又は[7]のカートリッジと、ラインチューブとを備え、原料タンク、ポンプ、カートリッジ、精製タンクの順番、又は原料タンク、カートリッジ、ポンプ、精製タンクの順番にラインチューブで連結されている、飲料用硫黄化合物除去装置。
[9]飲料から硫黄化合物を除去する方法であって、[6]又は[7]のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[10]硫黄化合物が除去された飲料の製造方法であって、[6]又は[7]のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
[11][1]~[5]のいずれかの飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材。
[12]飲料から硫黄化合物を除去する方法であって、[1]~[5]のいずれかの飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[13]硫黄化合物が除去された飲料の製造方法であって、[1]~[5]のいずれかの飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
[14]飲料から硫黄化合物を除去する方法であって、[11]の飲料用硫黄化合物除去部材と飲料とを接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
[15]硫黄化合物が除去された飲料の製造方法であって、[11]の飲料用硫黄化合物除去部材と飲料とを接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
また、本発明は以下の発明にも関する。
[1a]飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の使用。
[2a]飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を使用する方法。
[3a]マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の、飲料用硫黄化合物除去剤としての使用。
[4a]マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の、飲料用硫黄化合物除去剤として使用する方法。
本発明によれば、飲料中の硫黄化合物の除去選択性に優れる、飲料用硫黄化合物除去剤を安価に提供することができる。さらに、この飲料用硫黄化合物除去剤を用いたカートリッジ又はこれを具備した飲料用硫黄化合物除去装置を用いて処理した飲料は、良好な風味が期待される。
[飲料用硫黄化合物除去剤]
飲料用硫黄化合物除去剤とは、飲料中の悪臭や不味成分とされる臭気(オフフレーバー)の原因となる硫黄化合物を除去する剤であり、マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む。
飲料用硫黄化合物除去剤とは、飲料中の悪臭や不味成分とされる臭気(オフフレーバー)の原因となる硫黄化合物を除去する剤であり、マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む。
≪マイケル受容体ユニットを固定化した担体≫
マイケル受容体ユニットを固定化した担体とは、有機化学反応の分野において、いわゆる、マイケル付加反応によりチオール化合物と結合する受容体部位を含有する担体であり、マイケル受容体ユニットはチオール化合物の吸着剤として機能する。マイケル受容体ユニットを固定化した担体は、マイケル受容体ユニット含有前駆体が担体の基材と反応し、マイケル受容体ユニットが固定化された担体であるか、マイケル受容体ユニットを形成する前駆体(以下、「マイケル受容体ユニット形成体」ともいう。)が担体の基材と反応し、マイケル受容体ユニットが固定化された担体である。
マイケル受容体ユニットを固定化した担体とは、有機化学反応の分野において、いわゆる、マイケル付加反応によりチオール化合物と結合する受容体部位を含有する担体であり、マイケル受容体ユニットはチオール化合物の吸着剤として機能する。マイケル受容体ユニットを固定化した担体は、マイケル受容体ユニット含有前駆体が担体の基材と反応し、マイケル受容体ユニットが固定化された担体であるか、マイケル受容体ユニットを形成する前駆体(以下、「マイケル受容体ユニット形成体」ともいう。)が担体の基材と反応し、マイケル受容体ユニットが固定化された担体である。
(マイケル受容体ユニット含有前駆体)
マイケル受容体含有前駆体は、マイケル受容体ユニット、担体と反応し得る官能基及びこれらの連結基の3つの部位から構成される。このようなマイケル受容体含有前駆体としては下記一般式(1)で示される化合物が挙げられる。
マイケル受容体含有前駆体は、マイケル受容体ユニット、担体と反応し得る官能基及びこれらの連結基の3つの部位から構成される。このようなマイケル受容体含有前駆体としては下記一般式(1)で示される化合物が挙げられる。
<式(1)中のM;マイケル受容体ユニット>
式(1)中のMはマイケル受容体ユニットを示す。マイケル受容体ユニットとは、いわゆる有機合成反応におけるマイケル反応受容体を有する化学構造ユニットである。式(1)中のMとして、具体的には以下のような骨格が挙げられる。
式(1)中のMはマイケル受容体ユニットを示す。マイケル受容体ユニットとは、いわゆる有機合成反応におけるマイケル反応受容体を有する化学構造ユニットである。式(1)中のMとして、具体的には以下のような骨格が挙げられる。
(上記各式において、破線が付いた結合は、式(1)中のZとの結合を表す。式(M4)及び式(M5)における破線が付いた結合は、式(M4)及び式(M5)における環状骨格中の任意の位置の炭素原子と式(1)中のZとの結合を表す。式(M2)、式(M5)及び式(M6)におけるR1、R2及びR6基は、水素原子又は炭素数1から6のアルキル基を表し、互いに同一又はそれぞれ異なっていてもよい。式(M5)におけるnは、R1及びR2基を有するメチレン基(-CR1R2-)の数を表し、1又は2である。式(M3)におけるR3からR5基は、水素原子、ハロゲン原子又は炭素数1から6のアルキル基を表し、互いに同一又はそれぞれ異なっていてもよい。式(M6)におけるR7基は、カルボン酸基(COOH基)又は(炭素数1から6のアルキル)エステル基を表し、式(M6)における波線は、二重結合の配置がシス又はトランスであることを表す。)
ここで「炭素数1~6のアルキル基」とは、メチル基、エチル基等の炭素数1から6の直鎖状アルキル基;イソプロピル基、イソブチル基等の炭素数3から6の分岐鎖状アルキル基;シクロプロピル基、シクロペンチル基等の炭素数3から6の環状アルキル基を表す。よって、式(M6)のR6基における「(炭素数1から6のアルキル)エステル基」とは、例えば、メチルエステル、エチルエステル等の炭素数1から6の直鎖状アルキルエステル;イソプロピルエステル、イソブチルエステル等の炭素数3から6の分岐鎖状アルキルエステル;シクロプロピルエステル、シクロペンチルエステル等の炭素数3から6の環状アルキルエステルを表す。また、式(M6)におけるR6基が炭素数1から6のアルキル基である場合、アルキルアミノ基、アミノアルキルアミノ基等の1若しくは2以上の第一級アミノ基若しくは第二級アミノ基を含むアルキル基で置換されたアミノ基、第一級アミノ基(NH2基)又は式(M1)の構造で置換されていてもよい。また、式(M6)は、R7基に関して、下記に表す式(M6-c)のシス体であってもよく、下記に表す式(M6-t)のトランスのいずれであってもよいが、シス体であることが好ましい。
上記式(M1)から式(M6)のうち、硫黄化合物との反応性の観点から、好ましくは式(M1)及び下記に表す式(M3-1)、式(M4-1)、式(M6-1)であり、より好ましくは式(M1)、下記に表す式(M3-1)である。
マイケル受容体ユニットは、マレイミド骨格を有するマイケル受容体ユニットを含むことが好ましい。このようなマレイミド骨格を有するマイケル受容体ユニットとしては、式(M1)で示される基が挙げられる。
<式(1)中のZ:連結基>
式(1)中のZは、式(1)中のMとXをつなぐ基を表し、単結合又は2価の連結基である。ここで2価の連結基としては、具体的には、炭素数1~12のアルキレン基及び以下のような基が挙げられる。
式(1)中のZは、式(1)中のMとXをつなぐ基を表し、単結合又は2価の連結基である。ここで2価の連結基としては、具体的には、炭素数1~12のアルキレン基及び以下のような基が挙げられる。
(上記各式において、破線が付いた結合は、式(1)中のMとの結合を表し、波線が付いた結合は、式(1)中のXとの結合を表す。式(Z1)から式(Z6)におけるm及びlは、メチレン基(-CH2-)の数を表し、1から6の整数である。式(Z5)におけるkは、オキシ基(=O)の数を表し、0又は1である。式(Z3)におけるR8は、水素原子又は炭素数1から6のアルキル基を表す。)
上記式(Z3)のR8における炭素数1から6のアルキル基とは、メチル基、エチル基等の炭素数1から6の直鎖状アルキル基;イソプロピル基、イソブチル基等の炭素数3から6の分岐鎖状アルキル基;シクロプロピル基、シクロペンチル基等の炭素数3から6の環状アルキル基を表す。
式(1)中のZとしては、硫黄化合物との反応性及び飲料への親和性の観点から、好ましくは炭素数1~12のアルキレン基、式(Z1)及び式(Z4)である。
<式(1)中のX:担体の基材と反応し得る官能基>
式(1)中のXは、担体の基材と反応し得る官能基であり、例えば、ヒドロキシ基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、アジド基(N3基)、アルキニル基が挙げられる。
式(1)中のXは、担体の基材と反応し得る官能基であり、例えば、ヒドロキシ基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、アジド基(N3基)、アルキニル基が挙げられる。
前記アルキニル基とは、直鎖状又は分岐状である、分子構造内に三重結合を有する1価の基である。アルキニル基の炭素原子数は、2~20であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。アルキニル基の具体例としては、エチニル基又はプロパルギル基等が挙げられる。
<マイケル受容体含有前駆体の好ましい態様>
マイケル受容体含有前駆体は、以下に示す化学構造のものが好ましい。
マイケル受容体含有前駆体は、以下に示す化学構造のものが好ましい。
(上記各式において、式(1-1)及び式(1-3)におけるpは、メチレン基(-CH2-)の数を表し、1から6の整数である。式(1-2)及び式(1-4)におけるm及びlは、前記式(Z1)から式(Z6)に記載のメチレン基の数と同義であり、1から6の整数である。)
マイケル受容体含有前駆体は、より好ましくは下記に表す式(1-1a)、式(1-2a)、式(1-3a)又は式(1-4a)で示される化合物であり、特に好ましくは下記に表す式(1-1a)又は式(1-3a)で示される化合物である。
マイケル受容体含有前駆体は、1種又は2種以上の組み合わせで担体に担持されていてもよい。
(マイケル受容体ユニットを形成する前駆体)
マイケル受容体ユニットを形成する前駆体(「マイケル受容体ユニット形成体」ともいう。)としては、無水マレイン酸、マレイン酸又はフマル酸が挙げられる。
マイケル受容体ユニットを形成する前駆体(「マイケル受容体ユニット形成体」ともいう。)としては、無水マレイン酸、マレイン酸又はフマル酸が挙げられる。
無水マレイン酸又はマレイン酸は、第一級アミノ基(-NH2)と反応することによって上記に表す式(M1)で示されるマレイミド基を形成し、第二級アミノ基(-NH-)と反応することによって下記に表す式(M6-2)で示される構造を形成する。また、フマル酸は、第一級アミノ基(-NH2)と反応することによって下記に表す式(M6-3)で示される構造を形成し、第二級アミノ基(-NH-)と反応することによって下記に表す式(M6-4)で示される構造を形成する。ここで、式(M6-2)及び式(M6-4)中破線が付いた結合は、第二級アミノ基の窒素原子が結合するH以外の基への結合を表す。即ち、式(M6-2)で示される構造は、NH基から水素原子を除いた式(M6-1)で示される構造に相当する。また、式(M6-3)で示される構造は、R6基が水素原子であり、R7基がカルボン酸基である、式(M6-t)で示される構造に相当する。そして、式(M6-4)で示される構造は、NH基から水素原子を除いた式(M6-3)で示される構造に相当する。
マイケル受容体ユニット形成体は、1種又は2種以上の組み合わせであってもよい。
≪ホスフィンユニットを固定化した担体≫
ホスフィンユニットを固定化した担体とは、ホスフィンユニット含有前駆体と担体の基材とが反応して結合した、ホスフィンユニットが固定化された担体である。ホスフィンユニットは、硫黄化合物としてのポリスルフィド化合物をチオール化合物へと分解することができる機能を示す化学構造部位を有する。
ホスフィンユニットを固定化した担体とは、ホスフィンユニット含有前駆体と担体の基材とが反応して結合した、ホスフィンユニットが固定化された担体である。ホスフィンユニットは、硫黄化合物としてのポリスルフィド化合物をチオール化合物へと分解することができる機能を示す化学構造部位を有する。
(ホスフィンユニット含有前駆体)
ホスフィンユニット含有前駆体は、3価のリンを有するホスフィン含有ユニット、担体と反応し得る官能基及びこれらの連結基の3つの部位から構成される。このようなホスフィンユニット含有前駆体としては下記一般式(2)で示される化合物が挙げられる。
ホスフィンユニット含有前駆体は、3価のリンを有するホスフィン含有ユニット、担体と反応し得る官能基及びこれらの連結基の3つの部位から構成される。このようなホスフィンユニット含有前駆体としては下記一般式(2)で示される化合物が挙げられる。
<式(2)中のQ;ホスフィンユニット>
式(2)中のQはホスフィンユニットを示す。ホスフィンユニットとは、硫黄化合物としてのポリスルフィド化合物をチオール化合物へと分解することができる機能を示す化学構造部位である。
式(2)中のQはホスフィンユニットを示す。ホスフィンユニットとは、硫黄化合物としてのポリスルフィド化合物をチオール化合物へと分解することができる機能を示す化学構造部位である。
式(2)中のQとして、好ましくは以下のような骨格が挙げられる。
前記式(Q1)における「炭素数1~6のアルキル基」とは、メチル基、エチル基等の炭素数1から6の直鎖状アルキル基;イソプロピル基、イソブチル基等の炭素数3から6の分岐鎖状アルキル基;シクロプロピル基、シクロペンチル基等の炭素数3から6の環状アルキル基を表す。
上記式(Q1)としては、下記に表す式(P1)、式(P2)、式(P3)が好ましい。
上記式(P1)から式(P3)のうち、硫黄化合物との反応性の観点から、好ましくは下記に表す式(P1-1)、式(P3-1)であり;より好ましくは下記に表す式(P1-1)である。
ホスフィンユニットは、少なくとも1つの炭化水素基を有するホスフィンユニットを含むことが好ましい。このようなこのようなホスフィンユニットとしては、R9及びR10の一方又は両方が、炭素数1~6のアルキル基である、式(Q1)で示される基が挙げられる。
<式(2)中のL:連結基>
式(2)中のLは、式(2)中のQとYをつなぐ基を表し、単結合又は2価の連結基である。ここで2価の連結基としては、具体的には、炭素数1~12のアルキレン基、及び以下のような基が挙げられる。
式(2)中のLは、式(2)中のQとYをつなぐ基を表し、単結合又は2価の連結基である。ここで2価の連結基としては、具体的には、炭素数1~12のアルキレン基、及び以下のような基が挙げられる。
(上記各式において、破線が付いた結合は、式(2)中のQとの結合を表し、波線が付いた結合は、式(2)中のYとの結合を表す。式(L1)から式(L6)におけるr及びsは、メチレン基の数を表し、1から6の整数である。式(L5)におけるtは、オキシ基の数を表し、0又は1である。式(L3)におけるR11は、水素原子又は炭素数1から6のアルキル基を表す。)
上記式(L3)のR11における炭素数1から6のアルキル基とは、メチル基、エチル基等の炭素数1から6の直鎖状アルキル基;イソプロピル基、イソブチル基等の炭素数3から6の分岐鎖状アルキル基;シクロプロピル基、シクロペンチル基等の炭素数3から6の環状アルキル基を表す。
式(2)中のLは、硫黄化合物との反応性及び飲料への親和性の観点から、好ましくは炭素数1~12のアルキレン基、式(L1)及び式(L4)である。
<式(2)中のY:担体の基材と反応し得る官能基>
式(2)中のYは、担体の基材と反応し得る官能基であり、例えば、ヒドロキシ基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、アジド基(N3基)、アルキニル基が挙げられる。
式(2)中のYは、担体の基材と反応し得る官能基であり、例えば、ヒドロキシ基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、アジド基(N3基)、アルキニル基が挙げられる。
前記アルキニル基とは、直鎖状又は分岐状である、分子構造内に三重結合を有する1価の基である。アルキニル基の炭素原子数は、2~20であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。アルキニル基の具体例としては、エチニル基又はプロパルギル基等が挙げられる。
<ホスフィン含有前駆体の好ましい態様>
ホスフィン含有前駆体は、以下に示す化学構造のものが好ましい。
ホスフィン含有前駆体は、以下に示す化学構造のものが好ましい。
(上記各式において、R9及びR10は、前記式(Q1)に記載のもの同義であり、水素原子又は炭素数1~6のアルキル基を示す。式(2-1)及び式(2-2)におけるqは、メチレン基(-CH2-)の数を表し、1から6の整数である。式(2-3)及び式(2-4)におけるr及びsは、前記式(L1)から式(L6)に記載のメチレン基(-CH2-)の数と同義であり、1から6の整数である。)
ホスフィンユニット含有前駆体は、より好ましくは下記に表す式(2-1a)、式(2-2a)、式(2-3a)又は式(2-4a)で示される化合物であり;特に好ましくは下記に表す式(2-2a)又は式(2-3a)で示される化合物である。
なお、ホスフィンユニット含有前駆体は、例えば、塩酸塩等の無機酸塩、酢酸塩等の有機酸塩のような塩の形態であってもよい。
ホスフィン含有前駆体は、1種又は2種以上の組み合わせで担体に担持されていてもよい。
≪担体≫
飲料用硫黄化合物除去剤に使用される担体とは、マイケル受容体ユニットが基材に固定化された担体又は/及びホスフィンユニットが基材に固定化された担体を表す。ここで「固定化」とは、担体の基材が有する結合基とマイケル受容体ユニット又は/及びホスフィンユニットとが化学的に結合していることを意味する。従って、飲料用硫黄化合物除去剤においては、マイケル受容体ユニット及びホスフィンユニットが物理的に脱落することがほとんどない。
飲料用硫黄化合物除去剤に使用される担体とは、マイケル受容体ユニットが基材に固定化された担体又は/及びホスフィンユニットが基材に固定化された担体を表す。ここで「固定化」とは、担体の基材が有する結合基とマイケル受容体ユニット又は/及びホスフィンユニットとが化学的に結合していることを意味する。従って、飲料用硫黄化合物除去剤においては、マイケル受容体ユニット及びホスフィンユニットが物理的に脱落することがほとんどない。
担体の基材は、マイケル受容体ユニット又は/及びホスフィンユニットを固定化できる結合基を有していれば、特に限定されない。
担体の基材としては、例えば、表面修飾されていてもよいケイ素含有材料、表面修飾されていてもよい金属酸化物、表面修飾されていてもよい粘土、表面修飾されていてもよい合成ポリマー及び表面修飾されていてもよい天然ポリマーが挙げられる。担体の基材は、1種又は2種以上の組み合わせであってもよい。
ケイ素含有材料としては、シリカ、アルミノケイ酸塩(例えば、アルミニウム含有メソポーラスシリカ等のシリカアルミナ)等が挙げられる。
金属酸化物における金属としては、チタン、ジルコニウム、鉄、コバルト、アルミニウム、セリウム、マンガン、亜鉛、ニッケル、マグネシウム、タングステン等が挙げられる。
粘土としては、モンモリロナイト、モンモリロナイトを含む粘土(例えば、ベントナイト、酸性白土、活性白土)、珪藻土等が挙げられる。
合成ポリマーとしては、ポリビニルピロリドン、ポリスチレン等が挙げられる。
天然ポリマーとしては、炭水化物、たんぱく質、その他の天然ポリマー等が挙げられる。炭水化物としては、糖類が挙げられ、デンプン、アガロース、アルギン酸ナトリウム、カラギナン、セルロース、キトサン等が挙げられる。たんぱく質としては、コラーゲン、グルテン、オボアルブミン等が挙げられる。その他の天然ポリマーとしては、タンニン(例えば、柿タンニン)等が挙げられる。天然ポリマーは、小麦粉、卵白、寒天、ゼラチン、微小繊維状セルロースの形態であってもよい。
ケイ素含有材料としては、シリカ、アルミノケイ酸塩(例えば、アルミニウム含有メソポーラスシリカ等のシリカアルミナ)等が挙げられる。
金属酸化物における金属としては、チタン、ジルコニウム、鉄、コバルト、アルミニウム、セリウム、マンガン、亜鉛、ニッケル、マグネシウム、タングステン等が挙げられる。
粘土としては、モンモリロナイト、モンモリロナイトを含む粘土(例えば、ベントナイト、酸性白土、活性白土)、珪藻土等が挙げられる。
合成ポリマーとしては、ポリビニルピロリドン、ポリスチレン等が挙げられる。
天然ポリマーとしては、炭水化物、たんぱく質、その他の天然ポリマー等が挙げられる。炭水化物としては、糖類が挙げられ、デンプン、アガロース、アルギン酸ナトリウム、カラギナン、セルロース、キトサン等が挙げられる。たんぱく質としては、コラーゲン、グルテン、オボアルブミン等が挙げられる。その他の天然ポリマーとしては、タンニン(例えば、柿タンニン)等が挙げられる。天然ポリマーは、小麦粉、卵白、寒天、ゼラチン、微小繊維状セルロースの形態であってもよい。
表面修飾としては、マイケル受容体ユニット又は/及びホスフィンユニットを基材へ固定化することができるものであれば特に限定されない。このような担体の基材への表面修飾としては、炭素数1から6のアミノアルキル基、炭素数2から12のアミノアルキルアミノアルキル基等の1又は2以上の第一級アミノ基又は第二級アミノ基を含むアルキル基又は炭素数1から6のヒドロキシアルキル基での表面修飾が挙げられる。ここで、1又は2以上の第一級アミノ基又は第二級アミノ基を含むアルキル基としては、アミノプロピル基、3-(2-アミノエチルアミノ)-プロピル基、ポリエチレンイミンの炭素原子から水素原子を除去した基、ポリビニルアミンの炭素原子から水素原子を除去した基、ポリプロピルアミンの炭素原子から水素原子を除去した基等が挙げられる。基材における表面修飾は、硫黄化合物の除去性により優れる観点から、炭素数が大きいものが好ましい。また、基材における表面修飾がアミノ基を有する場合は、硫黄化合物の除去性により優れる観点から、1以上の第一級アミノ基及び1以上の第二級アミノ基を有することが好ましい。
担体の基材は、好ましくは食品衛生法、酒税法等で認められている担体の基材から選択される。担体の基材は、より好ましくは、例えば、表面修飾されていても良いシリカ、アルミノケイ酸塩、チタニア、ジルコニア、ベントナイト、活性白土、珪藻土、モンモリロナイト、寒天、アガロース、ゼラチン、アルギン酸ナトリウム、カラギナン、微小繊維状セルロース、小麦粉、グルテン、卵白、タンニン、キトサン、ポリビニルピロリドン及びポリスチレンが挙げられる。飲料に対する親和性(親水性)に優れ、より安価である観点から、更に好ましくは、表面修飾されていても良いシリカ又は微小繊維状セルロースであり、特に好ましくは、表面修飾されていないシリカ、炭素数1から6のアミノアルキル基で表面修飾されたシリカ、炭素数1から6のヒドロキシアルキル基で表面修飾されたシリカである。ここで、炭素数1から6のアミノアルキル基として、好ましくはアミノエチル基、アミノプロピル基等の直鎖状のアミノアルキル基である。
(結合基)
担体の基材が有する結合基は、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と反応し、担体にマイケル受容体ユニット又は/及びホスフィンユニットをほとんど脱落させることなく固定化できるものであれば特に限定されない。担体が有する結合基として、例えば、水酸基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、第二級アミノ基(-NH-基)等が挙げられる。従って、担体は、結合基として、例えば、水酸基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、第二級アミノ基(-NH-基)等を有する担体である。ここで、担体の基材と結合基とは、連結基が存在していてもよい。このような連結基としては、式(1)において前記したとおりである。また、第二級アミノ基にはアルキレン基又はアルキル基等の脂肪族炭素原子が結合していることが好ましい。そして、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体の種類に応じて、適宜設定できる。
担体の基材が有する結合基は、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と反応し、担体にマイケル受容体ユニット又は/及びホスフィンユニットをほとんど脱落させることなく固定化できるものであれば特に限定されない。担体が有する結合基として、例えば、水酸基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、第二級アミノ基(-NH-基)等が挙げられる。従って、担体は、結合基として、例えば、水酸基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)、第二級アミノ基(-NH-基)等を有する担体である。ここで、担体の基材と結合基とは、連結基が存在していてもよい。このような連結基としては、式(1)において前記したとおりである。また、第二級アミノ基にはアルキレン基又はアルキル基等の脂肪族炭素原子が結合していることが好ましい。そして、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体の種類に応じて、適宜設定できる。
マイケル受容体含有前駆体又は/及びホスフィン含有前駆体が用いられる場合は、マイケル受容体含有前駆体又は/及びホスフィン含有前駆体と反応性の面から、担体の基材が有する結合基は、好ましくは、水酸基(OH基)、カルボン酸基(COOH基)、第一級アミノ基(NH2基)又は第二級アミノ基(-NH-基)である。ここで、担体と反応する成分がマイケル受容体含有前駆体及び/又はマイケル受容体形成体である場合は、担体にはマイケル受容体が固定化され、又は/及び担体と反応する成分がホスフィン含有前駆体である場合は、担体にはホスフィン含有ユニットが固定化される。
また、マイケル受容体形成体が用いられる場合は、担体が有する結合基として、第一級アミノ基(NH2基)又は第二級アミノ基(-NH-基)が挙げられる。ここで、マイケル受容体形成体と、第一級アミノ基(NH2基)又は第二級アミノ基(-NH-基)である結合基とが用いられる場合に得られるマイケル受容体ユニットの構造としては、前記したとおりである。ここで、担体が有する結合基が第一級アミノ基(NH2基)及び第二級アミノ基(-NH-基)の組み合わせである場合、上記に表す式(M1)のマイケル受容体ユニット及び上記に表す式(M6-2)のマイケル受容体ユニットを固定化した担体、又は、上記に表す式(M6-3)のマイケル受容体ユニット及び上記に表す式(M6-4)のマイケル受容体ユニットを固定化した担体が得られる。このような場合は、1個以上の第二級アミノ基で中断されたアミノアルキル基を有する基材を用いることで得られる。
マイケル受容体ユニット又は/及びホスフィンユニットを固定化できる結合基を有する担体は、市販品を用いることができる。また、表面修飾されていない担体の基材がシリカ(Si-OH基を有する)である場合は、例えば、シランカップリング剤(例えば、アミノプロピルトリメトキシシラン等)を用いることで、マイケル受容体ユニット又は/及びホスフィンユニットを基材へ固定化することができる。ちなみに、このような担体への担持方法としては、例えば、特表2010-538806号公報に記載された方法が挙げられる。
なお、飲料用硫黄化合物除去剤において、担体には、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と未反応である結合基が存在していてもよい。
(各前駆体又は形成体との反応点の量)
担体の基材におけるマイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体との反応点の個数(モル数/g)は反応を阻害しない量であれば特に制限されないが、好ましくは0.03~3.0mmol/g、より好ましくは0.5~1.5mmol/gである。前記反応点の個数は、例えば、市販品であれば記載されている。市販品以外の物は適宜分析する。
担体の基材におけるマイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体との反応点の個数(モル数/g)は反応を阻害しない量であれば特に制限されないが、好ましくは0.03~3.0mmol/g、より好ましくは0.5~1.5mmol/gである。前記反応点の個数は、例えば、市販品であれば記載されている。市販品以外の物は適宜分析する。
担体の基材の平均粒径は、10~5000μmであることが好ましく、50~200μmであることが特に好ましい。担体の基材の平均粒径が、50μm以上であると、取り扱い性に優れる。担体の基材の平均粒径が、200μm以下であると、飲料との接触面積が増加するため、硫黄化合物の除去効率が高まる。平均粒径は、レーザー回折/散乱式粒度分布測定装置で測定することができる。
(固定化量)
飲料用硫黄化合物除去剤における、マイケル受容体ユニット又は/及びホスフィンユニット(マイケル受容体含有前駆体、マイケル受容体形成体及びホスフィン含有前駆体)の固定化量(担持量)は、所望の活量(即ち、飲料用硫黄化合物除去剤の重量に対する硫黄化合物の除去量)を有する飲料用硫黄化合物除去剤が得られる量であれば、特に限定されない。飲料用硫黄化合物除去剤における、マイケル受容体ユニット及びホスフィン含有ユニットの固定化量は、飲料用硫黄化合物除去剤1gに対して、好ましくは0.01~1.0mmol、より好ましくは0.1~0.5mmolである。ここで、マイケル受容体ユニット1モル中のマイケル付加反応に寄与する不飽和結合が1モルである場合、又は、ホスフィンユニット1モル中の3価リン原子が1モルである場合、前記固定化量は、飲料用硫黄化合物除去剤の活量に相当する。
飲料用硫黄化合物除去剤における、マイケル受容体ユニット又は/及びホスフィンユニット(マイケル受容体含有前駆体、マイケル受容体形成体及びホスフィン含有前駆体)の固定化量(担持量)は、所望の活量(即ち、飲料用硫黄化合物除去剤の重量に対する硫黄化合物の除去量)を有する飲料用硫黄化合物除去剤が得られる量であれば、特に限定されない。飲料用硫黄化合物除去剤における、マイケル受容体ユニット及びホスフィン含有ユニットの固定化量は、飲料用硫黄化合物除去剤1gに対して、好ましくは0.01~1.0mmol、より好ましくは0.1~0.5mmolである。ここで、マイケル受容体ユニット1モル中のマイケル付加反応に寄与する不飽和結合が1モルである場合、又は、ホスフィンユニット1モル中の3価リン原子が1モルである場合、前記固定化量は、飲料用硫黄化合物除去剤の活量に相当する。
(飲料用硫黄化合物除去剤の好ましい態様)
飲料用硫黄化合物除去剤において、マイケル受容体含有担体及びホスフィン含有担体は、1種又は2種以上の組み合わせで使用してもよい。即ち、飲料用硫黄化合物除去剤は、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物であることができる。飲料用硫黄化合物除去剤は、マイケル受容体ユニットを固定化した担体及びホスフィンユニットを固定化した担体を含むものが好ましい。また、飲料用硫黄化合物除去剤の担体は、マイケル受容体ユニット及びホスフィンユニットの両方が同一の担体に固定化されたものであってもよい。
飲料用硫黄化合物除去剤において、マイケル受容体含有担体及びホスフィン含有担体は、1種又は2種以上の組み合わせで使用してもよい。即ち、飲料用硫黄化合物除去剤は、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物であることができる。飲料用硫黄化合物除去剤は、マイケル受容体ユニットを固定化した担体及びホスフィンユニットを固定化した担体を含むものが好ましい。また、飲料用硫黄化合物除去剤の担体は、マイケル受容体ユニット及びホスフィンユニットの両方が同一の担体に固定化されたものであってもよい。
(飲料用硫黄化合物除去剤の作用機構)
飲料用硫黄化合物除去剤は、ホスフィンユニットが飲料中のポリスルフィド化合物をチオール化合物に分解し、マイケル受容体ユニットが飲料中のチオール化合物を吸着する工程を通して、飲料に含まれる悪臭や不味成分とされる臭気の原因となる硫黄化合物を選択的に除去できる。ここで「除去」とは、飲料中に含まれるポリスルフィド化合物の少なくとも一部の除去及びチオール化合物の少なくとも一部の除去の少なくとも一方を意味する。
飲料用硫黄化合物除去剤は、ホスフィンユニットが飲料中のポリスルフィド化合物をチオール化合物に分解し、マイケル受容体ユニットが飲料中のチオール化合物を吸着する工程を通して、飲料に含まれる悪臭や不味成分とされる臭気の原因となる硫黄化合物を選択的に除去できる。ここで「除去」とは、飲料中に含まれるポリスルフィド化合物の少なくとも一部の除去及びチオール化合物の少なくとも一部の除去の少なくとも一方を意味する。
飲料用硫黄化合物除去剤は、処理される飲料に含まれる悪臭や不味成分とされる臭気(オフフレーバー)の原因となる硫黄化合物(ポリスルフィド類又は/及びチオール類)を除去する一方で、高級アルコール類、フーゼル類、エステル類等の旨味成分を飲料中に残すことができるため、優れた除去選択性が期待される。
[飲料用硫黄化合物除去剤の製造方法]
飲料用硫黄化合物除去剤の製造方法は、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体が担体と反応し、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体が得られる方法であれば特に限定されない。
飲料用硫黄化合物除去剤の製造方法は、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体が担体と反応し、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体が得られる方法であれば特に限定されない。
飲料用硫黄化合物除去剤の製造方法は、より詳しくは、担体と、前記式(1)で表されるマイケル受容体含有前駆体、マイケル受容体形成体又は/及び前記式(2)で表されるホスフィン含有前駆体とを反応させて、反応生成物を得る反応工程と得られた反応生成物を後処理して、飲料用硫黄化合物除去剤を得る精製工程と含む方法が挙げられる。
<反応工程>
本工程における反応とは、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と担体との間に化学的な結合が形成される方法であれば、特に限定されない。マイケル受容体含有前駆体又は/及びホスフィン含有前駆体と担体との間に化学的な結合が形成される組合せとしては、例えば、担体側のアミノ基と前記前駆体側の水酸基又はカルボキシル基との組合せ、担体側のアジド基と前記前駆体側のアルキニル基との組合せ等が挙げられ、反応のしやすさ及び操作の簡便さから、好ましくは担体側のアミノ基と前記前駆体側の水酸基又はカルボキシル基との組合せによる反応が好ましい。また、マイケル受容体形成体と担体との間に化学的な結合が形成される組合せとしては、マイケル受容体形成体と担体中の第一級アミノ基又は第二級アミノ基の窒素原子との組合せが挙げられる。
本工程における反応とは、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と担体との間に化学的な結合が形成される方法であれば、特に限定されない。マイケル受容体含有前駆体又は/及びホスフィン含有前駆体と担体との間に化学的な結合が形成される組合せとしては、例えば、担体側のアミノ基と前記前駆体側の水酸基又はカルボキシル基との組合せ、担体側のアジド基と前記前駆体側のアルキニル基との組合せ等が挙げられ、反応のしやすさ及び操作の簡便さから、好ましくは担体側のアミノ基と前記前駆体側の水酸基又はカルボキシル基との組合せによる反応が好ましい。また、マイケル受容体形成体と担体との間に化学的な結合が形成される組合せとしては、マイケル受容体形成体と担体中の第一級アミノ基又は第二級アミノ基の窒素原子との組合せが挙げられる。
なお、マイケル受容体含有前駆体又は/及びホスフィン含有前駆体と、担体との間に形成される化学的な結合の数は、少なくとも1であり、マイケル受容体含有前駆体又は/及びホスフィン含有前駆体が有する、担体と反応し得る官能基の数に応じて増加する。例えば、ホスフィンユニットがトリス(2-カルボキシエチル)ホスフィンであり、担体と反応し得る官能基がカルボキシル基である場合は、ホスフィンユニットと、担体との間に化学的な結合の数は、1、2又は3であることができる。また、マイケル受容体形成体によって形成されるマイケル受容体の数は、少なくとも1であり、担体が有する第一級アミノ基又は第二級アミノ基の数に応じて変動し得る。例えば、担体が3-(2-アミノエチルアミノ)プロピル基を有し、マイケル受容体形成体が無水マレイン酸である場合は、マイケル受容体形成体によって形成されるマイケル受容体の数が1若しくは2である担体又はその混合物が得られ得る。
担体と、マイケル受容体含有前駆体又は/及びホスフィン含有前駆体との反応は、縮合剤又は縮合剤と縮合添加剤との組合せの存在下で行うことができる。縮合剤を用いることによって、担体とマイケル受容体含有前駆体又は/及びホスフィン含有前駆体との反応を効率的に進めることができる。
縮合剤としては、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)、N,N’-ジシクロヘキシルカルボジイミド、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HATU)、((((1-シアノ-2-エトキシ-2-オキソエチリデン)アミノ)オキシ)-4-モルホリノメチレン)ジメチルアンモニウムヘキサフルオロリン酸塩(COMU)等が挙げられる。また、縮合添加剤として、3,4-ジヒドロキシ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン、1-ヒドロキシベンゾトリアゾール(HOBt)、N-ヒドロキシスクシンイミド、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド等が挙げられる。縮合剤及び縮合添加剤は、それぞれ、1種又は2種以上の組合せであってもよい。
担体と、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体との反応は、溶媒の存在下で行うことができる。溶媒としては、反応の促進の観点から、マイケル受容体ユニット又は/及びホスフィンユニットを溶解させるが、担体を分散させるような溶媒であることが好ましい。このような溶媒としては、水;メタノール、エタノール等のアルコール系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;シクロペンチルメチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン(THF)等の非環状又は環状のエーテル系溶媒;酢酸、プロピオン酸等のカルボン酸系溶媒;塩化メチレン等のハロゲン系溶媒が挙げられ、担体、マイケル受容体ユニット若しくはマイケル受容体形成体、及びホスフィンユニットの種類に応じて適宜選択できる。溶媒は、1種又は2種以上の組合せであってもよい。溶媒が2種以上の組合せである場合、その体積比は任意であってよい。
また、担体と、マイケル受容体含有前駆体又は/及びホスフィン含有前駆体との反応は、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミン、2,2,6,6-テトラメチルピペリジン、ジアザビシクロウンデセン(DBU)等の塩基の存在下で行うことができる。
マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体の使用量は、前記した飲料用硫黄化合物除去剤における担体及びマイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体の含有量になるような量であることが好ましい。担体、マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体の反応量及び官能基の使用量を調整することにより、所望の硫黄化合物の除去活性(活量)を有する飲料用硫黄化合物除去剤を製造することができる。
縮合剤、縮合添加剤、溶媒及び塩基の使用量は、所望の飲料用硫黄化合物除去剤が得られるような範囲で適宜設定することができる。
マイケル受容体含有前駆体又は/及びホスフィン含有前駆体と、担体との反応における反応温度は、特に限定されないが、10~70℃であることが好ましく、20~50℃であることが特に好ましい。マイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体と、担体との反応における反応時間は、特に限定されないが、0.5~24時間であることが好ましい。
マイケル受容体形成体と、担体との反応における反応温度は、特に限定されないが、10~120℃であることが好ましく、100~120℃であることが特に好ましい。マイケル受容体形成体と、担体との反応における反応時間は、特に限定されないが、0.5~24時間であることが好ましい。
反応工程によって、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体を含む、反応生成物が得られる。
この他に、担体へのマイケル受容体ユニット又は/及びホスフィンユニットの固定化の方法としては、特開2018-38号公報に記載された方法、特開2006-169369号公報に記載されたアミノ基又はカルボキシル基を末端基とし、これを出発反応点としたアミド化反応を利用する方法が挙げられる。
<精製工程>
精製工程における後処理とは、反応工程で得られた反応生成物に残存する原料等を除去する処理である。精製工程における後処理の方法としては、リンス、乾燥等が挙げられ、これらを組み合わせて適用することができる。
精製工程における後処理とは、反応工程で得られた反応生成物に残存する原料等を除去する処理である。精製工程における後処理の方法としては、リンス、乾燥等が挙げられ、これらを組み合わせて適用することができる。
リンスは、特に限定されないが、前記した溶媒を用いて反応生成物をリンスすることが好ましい。リンスが前記した溶媒を用いて行われる場合、未反応のマイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体を効率的に除去することができる。これにより、得られる飲料用硫黄化合物除去剤においては、マイケル受容体ユニット及びホスフィンユニットが物理的に脱落することをより抑制できる。なお、飲料用硫黄化合物除去剤は、所望の飲料用硫黄化合物除去剤が得られるような範囲で、未反応のマイケル受容体含有前駆体、マイケル受容体形成体又は/及びホスフィン含有前駆体が付着していてもよい。また、飲料用硫黄化合物除去剤は、所望の飲料用硫黄化合物除去剤が得られるような範囲で、未反応の結合基が存在していてもよい。
乾燥は、常圧又は減圧下で行うことができる。乾燥温度は、特に限定されないが、10℃~70℃であることが好ましい。乾燥時間は、特に限定されないが、30分~10時間であることが好ましい。
上記精製工程によって、飲料用硫黄化合物除去剤が得られる。
[飲料用硫黄化合物除去剤の使用方法]
飲料用硫黄化合物除去剤は、飲料から硫黄化合物を除去する方法に用いることができる。即ち、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物は、飲料から硫黄化合物を除去する方法に用いることができる。よって、本発明は、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の飲料用硫黄化合物除去剤としての使用;並びに、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を、飲料用硫黄化合物除去剤として使用する方法にも関する。また、本発明は、飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の使用;並びに、飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を使用する方法にも関する。飲料用硫黄化合物除去剤を用いた飲料から硫黄化合物を除去する方法としては、飲料用硫黄化合物除去剤に飲料を通液させる工程と、飲料用硫黄化合物除去剤によって、硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
飲料用硫黄化合物除去剤は、飲料から硫黄化合物を除去する方法に用いることができる。即ち、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物は、飲料から硫黄化合物を除去する方法に用いることができる。よって、本発明は、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の飲料用硫黄化合物除去剤としての使用;並びに、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を、飲料用硫黄化合物除去剤として使用する方法にも関する。また、本発明は、飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物の使用;並びに、飲料から硫黄化合物を除去するための、マイケル受容体ユニット又は/及びホスフィンユニットが固定化された担体又はその混合物を使用する方法にも関する。飲料用硫黄化合物除去剤を用いた飲料から硫黄化合物を除去する方法としては、飲料用硫黄化合物除去剤に飲料を通液させる工程と、飲料用硫黄化合物除去剤によって、硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
飲料用硫黄化合物除去剤に飲料を通液させる方法は、飲料用硫黄化合物除去剤と飲料とが接触する限り特に限定されない。具体的には、飲料用硫黄化合物除去剤を任意の容器内に充填し、飲料を前記容器内に充填して、飲料用硫黄化合物除去剤と飲料とを接触させる方法が挙げられる。前記方法により、飲料用硫黄化合物除去剤に含まれる化合物に応じて、硫黄化合物の分解又は/及び吸着が行われ、飲料に含まれる硫黄化合物が除去される。また、飲料用硫黄化合物除去剤を用いた飲料から硫黄化合物を除去する方法は、飲料用硫黄化合物除去剤によって、硫黄化合物を分解又は/及び吸着させる工程の後に、飲料用硫黄化合物除去剤をろ過により除去する後処理工程を含んでいてもよい。
ここで、飲料用硫黄化合物除去剤の形状は、飲料用硫黄化合物除去剤と飲料とが接触できるものであれば任意であり、担体の基材が有する形状のままで用いてもよく、板状、顆粒状、ペレット状、錠剤等の任意の形状に成形又は製剤化された形態で用いてもよい。ここで、板状の厚みは特に限定されず、フィルム状、シート状、箔状のいずれであってもよい。また、飲料用硫黄化合物除去剤は、更なる部材と組み合わせることができる。これにより、飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材とすることができる。
[飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材]
飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材(以下、単に「飲料用硫黄化合物除去部材」ともいう。)は、飲料用硫黄化合物除去剤及び更なる部材を含む。
飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材(以下、単に「飲料用硫黄化合物除去部材」ともいう。)は、飲料用硫黄化合物除去剤及び更なる部材を含む。
更なる部材としては、特に限定されず、飲料の製造、精製、保存又は輸送等のために通常用いられる材料から適宜選択される。また、飲料用硫黄化合物除去部材の形状は、任意であり、粉状、繊維状、中空状(筒状、容器状)、板状等の形状が挙げられ、飲料の製造、精製、保存又は輸送等の目的に応じて適宜選択される。
このような飲料用硫黄化合物除去部材としては、飲料用硫黄化合物除去剤を織布又は不織布に含浸させたもの、飲料用硫黄化合物除去剤を含む樹脂組成物としたものをフィルム状又は板状に成形したもの、飲料用硫黄化合物除去剤を容器内に充填したもの、飲料用硫黄化合物除去剤を含む樹脂組成物であるコーティング剤を配管の内壁、容器の内壁、又は容器部材(例えば、撹拌羽)にコーティングしたもの等が挙げられる。よって、硫黄化合物除去部材の具体例としては、板状又は筒状のろ過シート(ろ紙、ろ過板)、カートリッジ(カートリッジフィルター)、織布フィルター、不織布フィルター、容器、撹拌羽根、配管等が挙げられる。
(カートリッジ)
飲料用硫黄化合物除去剤を用いたカートリッジは、前記飲料用硫黄化合物除去剤を充填してなる。カートリッジは、飲料から硫黄化合物除去する機能を有するものである。カートリッジを通過した飲料は製品として取得される。カートリッジにおける飲料用硫黄化合物除去剤吸着剤の充填方法は、特に制限されず、目的に応じて適宜設定できる。
飲料用硫黄化合物除去剤を用いたカートリッジは、前記飲料用硫黄化合物除去剤を充填してなる。カートリッジは、飲料から硫黄化合物除去する機能を有するものである。カートリッジを通過した飲料は製品として取得される。カートリッジにおける飲料用硫黄化合物除去剤吸着剤の充填方法は、特に制限されず、目的に応じて適宜設定できる。
カートリッジは、1種又は2種以上のカートリッジの組み合わせであってもよい。2種以上のカートリッジの組み合わせである場合、直列又は並列に設置してもよい。
カートリッジは、マイケル受容体ユニット含有担体及びホスフィンユニット含有担体を含む飲料用硫黄化合物除去剤を2段式で充填するカートリッジであって、第1段目にホスフィンユニットを固定化した担体を含む飲料用硫黄化合物除去剤吸着剤を充填し、第2段目にマイケル受容体ユニットを固定化した担体を含む飲料用硫黄化合物除去剤吸着剤を充填してなるカートリッジであることが好ましい。ここで、第1段目とは、飲料が最初に通過する領域を意味し、第2段目とは、第1段目を通過した飲料が通過する領域を意味する。図1に、前記好ましい2段式のカートリッジを示す。1が1段目の除去剤が充填された領域であり、2が2段目の除去剤が充填された領域であり、矢印が飲料の通過する方向を示す。
このような、2段式のカートリッジであると、第1段目において、ポリスルフィド化合物がチオール化合物に分解されて除去され、第2段目において、チオール化合物(ポリスルフィド化合物の分解物及び第1段目を通過する前の原料飲料に含まれるチオール化合物)が吸着されることから、より効率的に硫黄化合物を除去することができる。
<カートリッジを含む飲料用硫黄化合物除去装置>
カートリッジを含む飲料用硫黄化合物除去装置(以下、単に「除去装置」ともいう。)は、原料タンクと、精製タンクと、ポンプと、前記したカートリッジと、ラインチューブとを備え、原料タンク、ポンプ、カートリッジ、精製タンクの順番又は原料タンク、カートリッジ、ポンプ、精製タンクの順番にラインチューブで連結されている。
カートリッジを含む飲料用硫黄化合物除去装置(以下、単に「除去装置」ともいう。)は、原料タンクと、精製タンクと、ポンプと、前記したカートリッジと、ラインチューブとを備え、原料タンク、ポンプ、カートリッジ、精製タンクの順番又は原料タンク、カートリッジ、ポンプ、精製タンクの順番にラインチューブで連結されている。
原料タンクは、カートリッジに接触する前の飲料が貯蔵される。ポンプは、原料タンクに貯蔵された飲料をカートリッジに送出する。精製タンクは、カートリッジに接触した後の飲料が貯蔵される。ラインチューブは、除去装置において、原料タンク、ポンプ、カートリッジ、精製タンクの間を接続する管であり、飲料が通過する。飲料は製造された後に原料タンクに収納される。そして、ポンプを作動させることによって、原料タンクに収納された飲料は、カートリッジに送出される。ポンプ及びカートリッジの順番は、順不同である。カートリッジを通過した飲料は製品として精製タンクに貯蔵される。
図2及び図3に、除去装置の例を示す。3が原料タンクであり、4がポンプであり、5がカートリッジであり、6が精製タンクであり、7、8及び9がラインチューブであり、7、8及び9における矢印が飲料の通過する方向を示す。
除去装置は、ワンパス式であっても、循環式であってもよい。即ち、カートリッジを通過した飲料は、精製タンクに貯蔵されてもよく、再度原料タンクに戻されてもよい。図2及び図3において、除去装置がワンパス式の場合、カートリッジを通過した飲料は、ラインチューブ8を通過して、精製タンク6に貯蔵され、飲用に供される。除去装置が循環式の場合、カートリッジを通過した飲料は、ラインチューブ9を通過して、原料タンク1に戻され、再度カートリッジ5を通過する。そして、飲料が所望の硫黄化合物の含有量になった時に、ラインチューブ8により、精製タンク6に貯蔵される。
(ろ過シート)
ろ過シートは、飲料用硫黄化合物除去剤と、紙、織布、不織布等の材料と組み合わせた部材である。ろ過シートは、組み合わせられる材料の形態に応じて、ろ紙又はろ過板と呼ばれる。ろ過シートは、具体的には、飲料用硫黄化合物除去剤と、疎水性繊維と、任意としての親水性繊維とを含むろ過シートが挙げられる。
ろ過シートは、飲料用硫黄化合物除去剤と、紙、織布、不織布等の材料と組み合わせた部材である。ろ過シートは、組み合わせられる材料の形態に応じて、ろ紙又はろ過板と呼ばれる。ろ過シートは、具体的には、飲料用硫黄化合物除去剤と、疎水性繊維と、任意としての親水性繊維とを含むろ過シートが挙げられる。
疎水性繊維としては、ポリオレフィン系、ポリエステル系、アクリル系の疎水性繊維等が挙げられ、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維等の疎水性かつ親油性の繊維が好ましい。親水性繊維としては、天然セルロース繊維、レーヨン繊維、ポリビニルアルコール繊維等が挙げられ、天然セルロース繊維が好ましく、精製リンターパルプ又は晒クラフトパルプ等の精製木材パルプ等で、α-セルロース分が90%以上である天然セルロース繊維であることが特に好ましい。疎水性繊維又は親水性繊維の繊維形状は、特に限定されず、得られるろ過シートの性質に応じて、適宜選択できる。
ろ過シートは、乾式法又は湿式法で製造できる。ろ過シートの性質の均一性、製造効率の観点から、ろ過シートは湿式法で製造することが好ましい。湿式法によるろ過シートの製造方法としては、例えば、水を含むビーター中に親水性繊維を添加、分散する工程、ビーターの刃を下して所定の叩解度に調整後、飲料用硫黄化合物除去剤を加えて、混合する工程、予め解繊した疎水性繊維を添加して、混合して抄紙原料とする工程、及び、抄紙原料を用いて常法により抄紙、乾燥して所望のろ過シートを得る工程を含む方法が挙げられる。湿式法によるろ過シートの製造方法において、疎水性繊維の分散性を良くするために、界面活性剤等の抄紙用分散剤を加えてもよい。ろ過シートにおける飲料用硫黄化合物除去剤、疎水性繊維及び親水性繊維の含有量は特に限定されず、所望の硫黄化合物の除去性能に応じて適宜設定できる。
また、ろ過シートは、例えば特開平3-42008号公報に記載の方法により製造することができる。
(撹拌羽根、配管、容器等)
撹拌羽根としては、飲料製造用タンクに用いられる撹拌羽根の翼表面に、飲料用硫黄化合物除去剤を含むコーティング剤を用いて、飲料用硫黄化合物除去剤を含むコーティングを備えたものや、撹拌羽根に、飲料用硫黄化合物除去剤と織布又は不織布とを組み合わせたろ過シートで包んだものが挙げられる。
撹拌羽根としては、飲料製造用タンクに用いられる撹拌羽根の翼表面に、飲料用硫黄化合物除去剤を含むコーティング剤を用いて、飲料用硫黄化合物除去剤を含むコーティングを備えたものや、撹拌羽根に、飲料用硫黄化合物除去剤と織布又は不織布とを組み合わせたろ過シートで包んだものが挙げられる。
配管としては、飲料製造用配管に用いられる配管の内壁に、飲料用硫黄化合物除去剤を含むコーティング剤を用いて、飲料用硫黄化合物除去剤を含むコーティングを備えたものが挙げられる。
容器としては、飲料製造用に用いられる容器又は飲料用容器の内壁に、飲料用硫黄化合物除去剤を含むコーティング剤を用いて、飲料用硫黄化合物除去剤を含むコーティングを備えたものが挙げられる。また、飲料用容器材料(例えば、飲料容器用の樹脂又は紙等)に、飲料用硫黄化合物除去剤を添加剤として練りこむことにより、前記飲料用容器材料に硫黄化合物除去性を付与することができる。
この他に、飲料用容器の蓋の飲料と接する側に、板状の除去部材を貼り付けることや、飲料用容器の蓋にろ過穴を設け、その中に飲料用硫黄化合物除去剤を格納することも可能である。このような蓋を用いることで、容器の保存又は輸送中に飲料と除去剤とは、接触することができる。
また、硫黄化合物除去部材は、前記した以外に、例えば特開2001-334120号公報、特開2009―39905号公報又は特開2011-56509号公報に記載されたような、無機粒子を繊維、樹脂又は樹脂フィルムに組み込む方法と類似の方法により製造してもよい。
[飲料用硫黄化合物除去部材の使用方法]
飲料用硫黄化合物除去部材は、飲料から硫黄化合物を除去する方法に用いることができる。飲料から硫黄化合物を除去する方法としては、硫黄化合物除去部材に飲料を接触させる工程と、硫黄化合物除去部材内で、硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。硫黄化合物除去部材に飲料を接触させる方法は、硫黄化合物除去部材の種類に応じて適宜選択できる。
飲料用硫黄化合物除去部材は、飲料から硫黄化合物を除去する方法に用いることができる。飲料から硫黄化合物を除去する方法としては、硫黄化合物除去部材に飲料を接触させる工程と、硫黄化合物除去部材内で、硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。硫黄化合物除去部材に飲料を接触させる方法は、硫黄化合物除去部材の種類に応じて適宜選択できる。
硫黄化合物除去部材が、飲料用硫黄化合物除去剤を充填してなるカートリッジである場合の、飲料から硫黄化合物を除去する方法としては、前記したカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。ここで、飲料用硫黄化合物除去剤、カートリッジ、通液する飲料の量等は、好ましい態様を含め、前記した通りである。
また、飲料用硫黄化合物除去部材が、飲料用硫黄化合物除去剤を含むろ過シートである場合の、飲料から硫黄化合物を除去する方法としては、前記したろ過シートに飲料を通液させる工程と、ろ過シート内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。ここで、飲料用硫黄化合物除去剤、ろ過シート、通液する飲料の量等は、好ましい態様を含め、前記した通りである。
[硫黄化合物が除去された飲料の製造方法]
飲料用硫黄化合物除去剤は、硫黄化合物が除去された飲料の製造方法に用いることができる。硫黄化合物が除去された飲料の製造方法としては、飲料用硫黄化合物除去剤に飲料を通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
飲料用硫黄化合物除去剤は、硫黄化合物が除去された飲料の製造方法に用いることができる。硫黄化合物が除去された飲料の製造方法としては、飲料用硫黄化合物除去剤に飲料を通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
飲料用硫黄化合物除去部材は、硫黄化合物が除去された飲料の製造方法に用いることができる。硫黄化合物が除去された飲料の製造方法としては、前記飲料用硫黄化合物除去部材に飲料を接触させる工程と、前記飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
ここで、飲料用硫黄化合物除去部材が飲料用硫黄化合物除去剤を充填してなるカートリッジである場合の、硫黄化合物が除去された飲料の製造方法としては、前記したカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
また、飲料用硫黄化合物除去部材が飲料用硫黄化合物除去剤を含むろ過シートである場合の、硫黄化合物が除去された飲料の製造方法としては、前記したろ過シートに飲料を通液させる工程と、ろ過シート内で硫黄化合物を分解又は/及び吸着させる工程とを含む方法が挙げられる。
<飲料>
飲料用硫黄化合物除去剤が適用される飲料としては、アルコール飲料及び非アルコール飲料が挙げられる。アルコール飲料としては、酒類、例えば、蒸留酒、醸造酒及び混成酒などが挙げられる。蒸留酒としては、ウイスキー、ブランデー、ジン、ウォッカ、テキーラ、ラム、白酒、アラック、焼酎等が挙げられる。醸造酒としては、清酒、ビール、ワイン、紹興酒等が挙げられる。混成酒としては、リキュール、梅酒、酒精強化ワイン等が挙げられる。非アルコール飲料としては、野菜ジュース、果物ジュース、コーヒー、紅茶、日本茶、麦茶、中国茶、炭酸飲料等が挙げられる。
飲料用硫黄化合物除去剤が適用される飲料としては、アルコール飲料及び非アルコール飲料が挙げられる。アルコール飲料としては、酒類、例えば、蒸留酒、醸造酒及び混成酒などが挙げられる。蒸留酒としては、ウイスキー、ブランデー、ジン、ウォッカ、テキーラ、ラム、白酒、アラック、焼酎等が挙げられる。醸造酒としては、清酒、ビール、ワイン、紹興酒等が挙げられる。混成酒としては、リキュール、梅酒、酒精強化ワイン等が挙げられる。非アルコール飲料としては、野菜ジュース、果物ジュース、コーヒー、紅茶、日本茶、麦茶、中国茶、炭酸飲料等が挙げられる。
<硫黄化合物>
飲料用硫黄化合物除去剤によって除去される硫黄化合物は、飲料用で悪臭や不味成分とされる臭気(オフフレーバー)の原因となる成分であり、ポリスルフィド化合物又は/及びチオール化合物が挙げられる。ポリスルフィド化合物は、ジメチルジスルフィド(DMDS)及びジメチルトリスルフィド(DMTS)等が挙げられる。チオール化合物は、分子中に、1つ又は2つ以上のメルカプト基(SH基)を有する化合物であり、例えば、硫化水素(腐卵臭)、メタンチオール(メチルメルカプタン:腐敗タマネギ臭又は腐敗キャベツ臭)、エタンチオール(エチルメルカプタン:沢庵臭)、n-プロピルメルカプタン(腐敗タマネギ臭)、アリルチオール(ゴム臭焦げ臭)等炭素数1から4のアルキルチオール、フラン-2-イルメタンチオール(フルフリルメルカプタン)、1-メルカプト-3-メチル-2-ブテン等が挙げられる。これらの化合物のうち、特に、メタンチオール(メチルメルカプタン)、エタンチオール(エチルメルカプタン)、フラン-2-イルメタンチオール(フルフリルメルカプタン)に対して、飲料用硫黄化合物除去剤による除去効果が高い。
飲料用硫黄化合物除去剤によって除去される硫黄化合物は、飲料用で悪臭や不味成分とされる臭気(オフフレーバー)の原因となる成分であり、ポリスルフィド化合物又は/及びチオール化合物が挙げられる。ポリスルフィド化合物は、ジメチルジスルフィド(DMDS)及びジメチルトリスルフィド(DMTS)等が挙げられる。チオール化合物は、分子中に、1つ又は2つ以上のメルカプト基(SH基)を有する化合物であり、例えば、硫化水素(腐卵臭)、メタンチオール(メチルメルカプタン:腐敗タマネギ臭又は腐敗キャベツ臭)、エタンチオール(エチルメルカプタン:沢庵臭)、n-プロピルメルカプタン(腐敗タマネギ臭)、アリルチオール(ゴム臭焦げ臭)等炭素数1から4のアルキルチオール、フラン-2-イルメタンチオール(フルフリルメルカプタン)、1-メルカプト-3-メチル-2-ブテン等が挙げられる。これらの化合物のうち、特に、メタンチオール(メチルメルカプタン)、エタンチオール(エチルメルカプタン)、フラン-2-イルメタンチオール(フルフリルメルカプタン)に対して、飲料用硫黄化合物除去剤による除去効果が高い。
以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下における「(v/v)」は、特に断らない限り、体積比を示す。
合成例1-1:ホスフィンユニット(ホスフィンユニット含有前駆体:TCEP塩酸塩)を固定化したシリカの製造
窒素雰囲気下においてトリスカルボキシエチルホスフィン塩酸塩(TCEP・HCl)1.90gをN,N-ジメチルホルムアミド(DMF)260mLに溶解し、ジアミンシリカ(株式会社ディーピーエス製MSLB100N2)10.0gを添加した。次いで、ジイソプロピルエチルアミン1.72gを加えた後、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)2.47gを溶解したDMF25mLを滴下した。室温(25℃)で3時間撹拌した後、ろ過により溶媒を除去し、DMF50mLの後、エタノール50mLでリンスした。60℃で1時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
窒素雰囲気下においてトリスカルボキシエチルホスフィン塩酸塩(TCEP・HCl)1.90gをN,N-ジメチルホルムアミド(DMF)260mLに溶解し、ジアミンシリカ(株式会社ディーピーエス製MSLB100N2)10.0gを添加した。次いで、ジイソプロピルエチルアミン1.72gを加えた後、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)2.47gを溶解したDMF25mLを滴下した。室温(25℃)で3時間撹拌した後、ろ過により溶媒を除去し、DMF50mLの後、エタノール50mLでリンスした。60℃で1時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
合成例1-2:ホスフィンユニット(ホスフィンユニット含有前駆体:TCEP塩酸塩)を固定化したシリカの製造
窒素雰囲気下において1-ヒドロキシベンゾトリアゾール(HOBt)0.919g、トリスカルボキシエチルホスフィン塩酸塩(TCEP?HCl)0.574g、及び窒素バブリングを施したテトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))130mLに加え攪拌しながら溶解させ、アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)9.99g及びジアザビシクロウンデセン(DBU)1.010gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC?HCl)0.425gを溶解した窒素バブリングを施したTHF/水混合溶媒(50/50(v/v))10mLを45分かけて滴下した。室温(24℃)で2時間撹拌した後、ろ過により溶媒を除去し、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))50mL、次いで、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
窒素雰囲気下において1-ヒドロキシベンゾトリアゾール(HOBt)0.919g、トリスカルボキシエチルホスフィン塩酸塩(TCEP?HCl)0.574g、及び窒素バブリングを施したテトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))130mLに加え攪拌しながら溶解させ、アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)9.99g及びジアザビシクロウンデセン(DBU)1.010gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC?HCl)0.425gを溶解した窒素バブリングを施したTHF/水混合溶媒(50/50(v/v))10mLを45分かけて滴下した。室温(24℃)で2時間撹拌した後、ろ過により溶媒を除去し、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))50mL、次いで、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
合成例1-3:ホスフィンユニット(ホスフィンユニット含有前駆体:TCEP塩酸塩)を固定化したシリカの製造
窒素雰囲気下においてアミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gにN-ヒドロキシスクシンイミド0.25g、窒素バブリングを施した蒸留水50mL、トリスカルボキシエチルホスフィン塩酸塩(TCEP・HCl)0.57g及びトリエチルアミン0.22gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)0.43gを溶解した窒素バブリングを施した蒸留水10mLを4分かけて滴下した。室温(20℃)で2時間撹拌した後、ろ過により溶媒を除去し、蒸留水10mLの後、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
窒素雰囲気下においてアミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gにN-ヒドロキシスクシンイミド0.25g、窒素バブリングを施した蒸留水50mL、トリスカルボキシエチルホスフィン塩酸塩(TCEP・HCl)0.57g及びトリエチルアミン0.22gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)0.43gを溶解した窒素バブリングを施した蒸留水10mLを4分かけて滴下した。室温(20℃)で2時間撹拌した後、ろ過により溶媒を除去し、蒸留水10mLの後、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(P1-1)で示されるホスフィンユニットを固定化したシリカを得た。
合成例2-1:マイケル受容体ユニット(マイケル受容体ユニット含有前駆体:4-マレイミド酪酸)を固定化したシリカの製造
4-マレイミド酪酸3.56gをエタノール250mLに溶解し、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)3.76gを添加した。次いで、ジアミンシリカ(株式会社ディーピーエス製MSLB100N2)5.0gを添加した。室温(25℃)で17時間撹拌した後、ろ過により溶媒を除去し、エタノール100mLでリンスした。60℃で6時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
4-マレイミド酪酸3.56gをエタノール250mLに溶解し、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)3.76gを添加した。次いで、ジアミンシリカ(株式会社ディーピーエス製MSLB100N2)5.0gを添加した。室温(25℃)で17時間撹拌した後、ろ過により溶媒を除去し、エタノール100mLでリンスした。60℃で6時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
合成例2-2:マイケル受容体ユニット(マイケル受容体ユニット含有前駆体:4-マレイミド酪酸)を固定化したシリカの製造
窒素雰囲気下において1-ヒドロキシベンゾトリアゾール(HOBt)2.302g、4-マレイミド酪酸0.914g、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))120mLに加え攪拌しながら溶解させ、アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.07g及びジアザビシクロウンデセン(DBU)1.528gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC?HCl)1.056gを溶解した窒素バブリングを施したTHF/水混合溶媒(50/50(v/v))10mLを40分かけて滴下した。室温(24℃)で2時間撹拌した後、ろ過により溶媒を除去し、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))50mL、次いで、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
窒素雰囲気下において1-ヒドロキシベンゾトリアゾール(HOBt)2.302g、4-マレイミド酪酸0.914g、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))120mLに加え攪拌しながら溶解させ、アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.07g及びジアザビシクロウンデセン(DBU)1.528gを添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC?HCl)1.056gを溶解した窒素バブリングを施したTHF/水混合溶媒(50/50(v/v))10mLを40分かけて滴下した。室温(24℃)で2時間撹拌した後、ろ過により溶媒を除去し、テトラヒドロフラン(THF)/水混合溶媒(50/50(v/v))50mL、次いで、エタノール50mLでリンスした。60℃で4時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
合成例2-3:マイケル受容体ユニット(マイケル受容体ユニット含有前駆体:4-マレイミド酪酸)を固定化したシリカの製造
アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gに4-マレイミド酪酸0.37g、N-ヒドロキシスクシンイミド0.25g、エタノール50mL及びトリエチルアミン0.22g添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)0.43gを溶解したエタノール10mLを25分かけて滴下した。室温(20℃)で2時間撹拌した後、ろ過により溶媒を除去し、エタノール40mLでリンスした。60℃で4時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gに4-マレイミド酪酸0.37g、N-ヒドロキシスクシンイミド0.25g、エタノール50mL及びトリエチルアミン0.22g添加した。この懸濁液を撹拌しながら1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)0.43gを溶解したエタノール10mLを25分かけて滴下した。室温(20℃)で2時間撹拌した後、ろ過により溶媒を除去し、エタノール40mLでリンスした。60℃で4時間減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
<硫黄化合物除去剤の除去選択性>
(各化合物の濃度測定)
島津製作所製GC-2010Plusを用い、ピーク面積から、各化合物の濃度を求めた。
(各化合物の濃度測定)
島津製作所製GC-2010Plusを用い、ピーク面積から、各化合物の濃度を求めた。
実施例1:ホスフィンユニットを固定化したシリカによるポリスルフィド化合物(DMTS)の除去選択性
合成例1-1で得たホスフィンユニットを固定化したシリカ0.048gを充填したカートリッジ(Swagelok製SS-400-6-1、SS-100-R-4及び濾紙(直径4mm)より構成される。以下の実施例、比較例で充填物を変更し、同様の構成のカートリッジを使用した。)に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)に、3mMのN-エチルマレイミド溶液0.1mLを添加し、GCにて分析した。溶液中のメチルメルカプタン(チオール化合物)はN-エチルマレイミド誘導体として検出した。また、計算によるチオール化合物(メチルメルカプタン)の残存率は80%であった。なお、硫化水素誘導体は検出されなかった。
また、合成例1-1で得たホスフィンユニットを固定化したシリカ0.063gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
合成例1-1で得たホスフィンユニットを固定化したシリカ0.048gを充填したカートリッジ(Swagelok製SS-400-6-1、SS-100-R-4及び濾紙(直径4mm)より構成される。以下の実施例、比較例で充填物を変更し、同様の構成のカートリッジを使用した。)に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)に、3mMのN-エチルマレイミド溶液0.1mLを添加し、GCにて分析した。溶液中のメチルメルカプタン(チオール化合物)はN-エチルマレイミド誘導体として検出した。また、計算によるチオール化合物(メチルメルカプタン)の残存率は80%であった。なお、硫化水素誘導体は検出されなかった。
また、合成例1-1で得たホスフィンユニットを固定化したシリカ0.063gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
実施例2:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去選択性
合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.065gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
また、合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.061gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.065gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
また、合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.061gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量49-50mL)をGCにて分析した。
実施例3:ホスフィンユニットを固定化したシリカ及びマイケル受容体ユニットを固定化したシリカによるポリスルフィド化合物(DMTS)の除去性
カートリッジの1段目に、合成例1-1で得たホスフィンユニットを固定化したシリカ0.056gを充填し、カートリッジの2段目に、合成例2-1で得たマイケル受容体を固定化したシリカ0.048gを充填したカートリッジを作製した。次に、そのカートリッジを用いて、合成例1-1で得たホスフィンユニットを固定化したシリカが充填された1段目から、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)に、3mMのN-エチルマレイミド溶液0.1mLを添加し、GCにて分析した。なお、メチルメルカプタン及び硫化水素のN-エチルマレイミド誘導体は検出されなかった。
カートリッジの1段目に、合成例1-1で得たホスフィンユニットを固定化したシリカ0.056gを充填し、カートリッジの2段目に、合成例2-1で得たマイケル受容体を固定化したシリカ0.048gを充填したカートリッジを作製した。次に、そのカートリッジを用いて、合成例1-1で得たホスフィンユニットを固定化したシリカが充填された1段目から、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))50mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0mL(通液量49-50mL)に、3mMのN-エチルマレイミド溶液0.1mLを添加し、GCにて分析した。なお、メチルメルカプタン及び硫化水素のN-エチルマレイミド誘導体は検出されなかった。
実施例4:ホスフィンユニットを固定化したシリカによるポリスルフィド化合物(DMTS)の除去選択性
合成例1-2で得たホスフィンユニットを固定化したシリカ0.5gを充填したカートリッジ(Swagelok製SS-400-6-1、SS-100-R-4及び濾紙(直径4mm)より構成される。)に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))1,200mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、途中の1.0mL(通液量299-300mL)GCにて分析した。
合成例1-2で得たホスフィンユニットを固定化したシリカ0.5gを充填したカートリッジ(Swagelok製SS-400-6-1、SS-100-R-4及び濾紙(直径4mm)より構成される。)に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))1,200mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、途中の1.0mL(通液量299-300mL)GCにて分析した。
実施例5:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去選択性
合成例2-2で得たマイケル受容体ユニットを固定化したシリカ0.5gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))1,500mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、途中の1.0mL(通液量299-300mL)GCにて分析した。
合成例2-2で得たマイケル受容体ユニットを固定化したシリカ0.5gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))1,500mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、途中の1.0mL(通液量299-300mL)GCにて分析した。
比較例1:活性炭によるポリスルフィド化合物(DMTS)の除去選択性
市販の活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.066gを充填したカートリッジに、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))45mLを流速1.0mL/分で通液させ、カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0m(通液量44-45mL)LをGCにて分析した。
また、活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.041gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))40mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量39-40mL)をGCにて分析した。
市販の活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.066gを充填したカートリッジに、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))45mLを流速1.0mL/分で通液させ、カートリッジから流出した溶液中のポリスルフィド化合物の濃度を調べるために、最後の1.0m(通液量44-45mL)LをGCにて分析した。
また、活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.041gを充填したカートリッジに、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))40mLを流速1.0mL/分で通液させた。カートリッジから流出した溶液中のカプロン酸エチルの濃度を調べるために、最後の1.0mL(通液量39-40mL)をGCにて分析した。
結果を表1に示す。表1~3におけるカートリッジから流出した溶液中の各化合物の残存率(%)は、以下の数式(1)に従い、小数点1桁目を四捨五入することにより求めた。また、実施例3~5は、旨味成分であるカプロン酸エチルを添加した実験ではないため、残存率の欄を「-」とした。
なお、実施例1のチオール化合物の残存率(%)は、カートリッジに通液させる前の溶液中のポリスルフィド化合物濃度(mg/L)を基準としてポリスルフィド化合物が分解して生成するチオール化合物の濃度を計算し、カートリッジから流出した溶液中のチオール化合物の濃度から算出した。
表1より、実施例の飲料用硫黄化合物除去剤は、ホスフィンユニットによる硫黄化合物の分解又は/及びマイケル受容体ユニットによる硫黄化合物の吸着により、飲料中の硫黄化合物の除去選択性に優れている。また、実施例の飲料用硫黄化合物除去剤は、安価に製造することができる。
実施例1及び実施例4より、飲料用硫黄化合物除去剤が、ホスフィンユニットが固定化された担体を含む場合、硫黄化合物であるポリスルフィド化合物を分解する一方で、実施例1においては旨味成分であるカプロン酸エチルを除去(分解又は吸着)しないことから、硫黄化合物の除去の選択性に優れていることが確認された。ちなみに、ポリスルフィド化合物の分解により生じるチオール化合物は、ポリスルフィド化合物より、悪臭や不味成分とされる臭気の原因となりにくいと言われている。
また、実施例2及び実施例5より、飲料用硫黄化合物除去剤が、マイケル受容体ユニットが固定化された担体を含む場合、硫黄化合物であるチオール化合物を吸着する一方で、実施例2においては旨味成分であるカプロン酸エチルを除去(分解又は吸着)しないことから、硫黄化合物の除去選択性に優れていることが確認された。
さらに、実施例3より、飲料用硫黄化合物除去剤が、ホスフィン含有担体、マイケル受容体含有担体の順で飲料を処理した場合、まずポリスルフィド化合物を分解し、次いで前記分解により生じたチオール化合物を含む飲料中のすべてのチオール化合物をより効果的に吸着できる。すなわち、このような飲料用硫黄化合物除去剤は、硫黄化合物の除去性がより優れていると考えられる。
実施例1及び実施例4より、飲料用硫黄化合物除去剤が、ホスフィンユニットが固定化された担体を含む場合、硫黄化合物であるポリスルフィド化合物を分解する一方で、実施例1においては旨味成分であるカプロン酸エチルを除去(分解又は吸着)しないことから、硫黄化合物の除去の選択性に優れていることが確認された。ちなみに、ポリスルフィド化合物の分解により生じるチオール化合物は、ポリスルフィド化合物より、悪臭や不味成分とされる臭気の原因となりにくいと言われている。
また、実施例2及び実施例5より、飲料用硫黄化合物除去剤が、マイケル受容体ユニットが固定化された担体を含む場合、硫黄化合物であるチオール化合物を吸着する一方で、実施例2においては旨味成分であるカプロン酸エチルを除去(分解又は吸着)しないことから、硫黄化合物の除去選択性に優れていることが確認された。
さらに、実施例3より、飲料用硫黄化合物除去剤が、ホスフィン含有担体、マイケル受容体含有担体の順で飲料を処理した場合、まずポリスルフィド化合物を分解し、次いで前記分解により生じたチオール化合物を含む飲料中のすべてのチオール化合物をより効果的に吸着できる。すなわち、このような飲料用硫黄化合物除去剤は、硫黄化合物の除去性がより優れていると考えられる。
合成例3:マイケル受容体ユニット(マイケル受容体ユニット形成体:無水マレイン酸)を固定化したシリカの製造
アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gに無水マレイン酸3.20g及び酢酸50mLを添加した。この懸濁液を室温(20℃)で2時間撹拌した後、6時間加熱還流した。ろ過により溶媒を除去し、エタノール100mLでリンスした。60℃で一晩減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
アミノプロピルシリカ(富士シリシア化学株式会社製NHシリカ)10.0gに無水マレイン酸3.20g及び酢酸50mLを添加した。この懸濁液を室温(20℃)で2時間撹拌した後、6時間加熱還流した。ろ過により溶媒を除去し、エタノール100mLでリンスした。60℃で一晩減圧乾燥し、式(M1)で示されるマイケル受容体ユニットを固定化したシリカを得た。
合成例4:マイケル受容体ユニット(マイケル受容体ユニット形成体:無水マレイン酸)を固定化したシリカの製造
3-(2-アミノエチルアミノ)プロピルシリカ(富士シリシア化学株式会社製ジアミンシリカ)10.0gに無水マレイン酸1.78g及び酢酸50mLを添加した。この懸濁液を室温(20℃)で1時間撹拌した後、3時間加熱還流した。ろ過により溶媒を除去し、エタノールでリンスした。60℃で一晩減圧乾燥し、式(M1)で示されるマイケル受容体ユニット及び/又は式(M6-2)で示されるマイケル受容体ユニットを固定化したシリカを得た。
3-(2-アミノエチルアミノ)プロピルシリカ(富士シリシア化学株式会社製ジアミンシリカ)10.0gに無水マレイン酸1.78g及び酢酸50mLを添加した。この懸濁液を室温(20℃)で1時間撹拌した後、3時間加熱還流した。ろ過により溶媒を除去し、エタノールでリンスした。60℃で一晩減圧乾燥し、式(M1)で示されるマイケル受容体ユニット及び/又は式(M6-2)で示されるマイケル受容体ユニットを固定化したシリカを得た。
実施例6:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去性
合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.55gを充填したカートリッジ(Swagelok製SS-810-6-2、SS-200-R-3及び濾紙(直径9mm)より構成した。以下の実施例で充填物を変更し、同様の構成のカートリッジを使用した。)に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
合成例2-1で得たマイケル受容体ユニットを固定化したシリカ0.55gを充填したカートリッジ(Swagelok製SS-810-6-2、SS-200-R-3及び濾紙(直径9mm)より構成した。以下の実施例で充填物を変更し、同様の構成のカートリッジを使用した。)に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
実施例7:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去性
合成例3で得たマイケル受容体ユニットを固定化したシリカ0.58gを充填したカートリッジに、10mg/Lのフルフリルメルカプタンを添加したモデル溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
合成例3で得たマイケル受容体ユニットを固定化したシリカ0.58gを充填したカートリッジに、10mg/Lのフルフリルメルカプタンを添加したモデル溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
実施例8:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去性
合成例4で得たマイケル受容体ユニットを固定化したシリカ0.59gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
合成例4で得たマイケル受容体ユニットを固定化したシリカ0.59gを充填したカートリッジに、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))300mLを流速10mL/分で通液させた。カートリッジから流出した溶液中のチオール化合物の濃度を調べるために、最後の1.0mL(通液量299-300mL)をGCにて分析した。
表2より、実施例の飲料用硫黄化合物除去剤が、マイケル受容体ユニットが固定化された担体を含む場合、硫黄化合物であるチオールを吸着することが確認された。また、実施例5、6の飲料用硫黄化合物除去剤は、安価に製造することができる。
実施例7及び8の比較より、担体の基材における表面修飾として、アミノアルキル基を用いた場合に比べて、3-(2-アミノエチルアミノ)プロピル基を用いた場合に、硫黄化合物であるチオールの吸着性が高く、実施例6におおよそ匹敵することが確認された。すなわち、基材における表面修飾として、炭素数が大きいことにより、硫黄化合物の除去性がより優れていると考えられる。
実施例9:ホスフィンユニットを固定化したシリカによるポリスルフィド化合物(DMTS)の除去選択性
合成例1-3で得たホスフィンユニットを固定化したシリカ0.50gをセライト(主成分は珪藻土である。)5.0gと混合し、これを桐山ロート(直径40mm、容量50mL、濾紙を使用)に敷き詰めることで板状のろ過シートを作製した。次に、10mg/LのDMTSを添加したモデル溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のポリスルフィド化合物の濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例1-3で得たホスフィンユニットを固定化したシリカ0.50g及びセライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
合成例1-3で得たホスフィンユニットを固定化したシリカ0.50gをセライト(主成分は珪藻土である。)5.0gと混合し、これを桐山ロート(直径40mm、容量50mL、濾紙を使用)に敷き詰めることで板状のろ過シートを作製した。次に、10mg/LのDMTSを添加したモデル溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のポリスルフィド化合物の濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例1-3で得たホスフィンユニットを固定化したシリカ0.50g及びセライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
実施例10:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去選択性
合成例2-3で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例2-3で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
合成例2-3で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例2-3で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
実施例11:マイケル受容体ユニットを固定化したシリカによるチオール化合物(フルフリルメルカプタン)の除去選択性
合成例4で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例4で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
合成例4で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、合成例4で得たマイケル受容体ユニットを固定化したシリカ0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
比較例2:活性炭によるポリスルフィド化合物(DMTS)の除去選択性
市販の活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のDMTSの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、活性炭0.50g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
市販の活性炭(川北化学株式会社製くじゃく活性炭特製SE)0.5g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のDMTSの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
また、活性炭0.50g及びセライト5.0gから実施例9と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLをろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
比較例3:セライトのみを用いたろ過シートによる、ポリスルフィド化合物(DMTS)及びチオール化合物(フルフリルメルカプタン)の除去選択性
セライト5.0gを桐山ロート(直径40mm、容量50mL、濾紙を使用)に敷き詰めることで板状のろ過シートを作製した。次に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のポリスルフィド化合物の濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
セライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
セライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
セライト5.0gを桐山ロート(直径40mm、容量50mL、濾紙を使用)に敷き詰めることで板状のろ過シートを作製した。次に、10mg/LのDMTS溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のポリスルフィド化合物の濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
セライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのカプロン酸エチル溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のカプロン酸エチルの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
セライト5.0gから、前記と同様な方法によってろ過シートを作製した。次に、10mg/Lのフルフリルメルカプタン溶液(溶媒EtOH/H2O=16/84(v/v))100mLを、吸引ろ過により、ろ過シートに通液させた。ろ過シートから流出した溶液中のフルフリルメルカプタンの濃度を調べるために、通液量20-100mLを採取し、GCにて分析した。
表3より、実施例の飲料用硫黄化合物除去剤が、ろ過シートの形状であっても、ホスフィンユニットが固定化された担体を含む場合、硫黄化合物であるポリスルフィドを吸着し、マイケル受容体ユニットが固定化された担体を含む場合、硫黄化合物であるチオールを吸着することが確認された。
また、表1の実施例3より、飲料用硫黄化合物除去剤が、ホスフィンユニット含有担体、マイケル受容体ユニット含有担体の順で飲料を処理した場合、まずポリスルフィド化合物を分解し、次いで前記分解により生じたチオール化合物を含む飲料中のすべてのチオール化合物をより効果的に吸着できることから、飲料用硫黄化合物除去剤が、ろ過シートの形状であっても、ホスフィンユニット、マイケル受容体ユニットの順で飲料を処理した場合、まずポリスルフィド化合物を分解し、次いで前記分解により生じたチオール化合物を含む飲料中のすべてのチオール化合物をより効果的に吸着できると考えることができる。
また、表3より、実施例の飲料用硫黄化合物除去剤が、ホスフィンユニット又はマイケル受容体ユニットが固定化された担体を含む場合、旨味成分であるカプロン酸エチルの残存率は、比較例3(対照実験であるセライトのみの場合)の残存率と同等であることが確認された。実施例の飲料用硫黄化合物除去剤が、ろ過シートの形状であっても、硫黄化合物であるポリスルフィド化合物又はチオール化合物を吸着する一方で、旨味成分であるカプロン酸エチルを除去(分解又は吸着)しないことから、硫黄化合物の除去選択性に優れていることが確認された。
1:1段目の飲料用硫黄化合物除去剤
2:2段目の飲料用硫黄化合物除去剤
3:原料タンク
4:ポンプ
5:カートリッジ
6:貯蔵タンク
7、8、9:ラインチューブ
2:2段目の飲料用硫黄化合物除去剤
3:原料タンク
4:ポンプ
5:カートリッジ
6:貯蔵タンク
7、8、9:ラインチューブ
Claims (15)
- マイケル受容体ユニット又は/及びホスフィンユニットを固定化した担体を含む、飲料用硫黄化合物除去剤。
- 前記マイケル受容体ユニットは、マレイミド骨格を含む、請求項1に記載の飲料用硫黄化合物除去剤。
- 前記ホスフィンユニットは、少なくとも1つの炭化水素基を有するホスフィンを含む、請求項1又は2に記載の飲料用硫黄化合物除去剤。
- 前記担体の基材が、ケイ素含有化合物、金属酸化物、粘土、合成ポリマー及び天然ポリマーからなる群より選択される少なくとも一種である、請求項1~3のいずれか一項に記載の飲料用硫黄化合物除去剤。
- マイケル受容体ユニットを固定化した担体及びホスフィンユニットを固定化した担体を含む、請求項1~4のいずれか一項に記載の飲料用硫黄化合物除去剤。
- 請求項1~5のいずれか一項に記載の飲料用硫黄化合物除去剤を充填してなるカートリッジ。
- 請求項5に記載の飲料用硫黄化合物除去剤を2段式で充填するカートリッジであって、第1段目にホスフィンユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填し、第2段目にマイケル受容体ユニットを固定化した担体を含む飲料用硫黄化合物除去剤を充填してなる、カートリッジ。
- 飲料用硫黄化合物除去装置であって、原料タンクと、精製タンクと、ポンプと、請求項6又は7に記載のカートリッジと、ラインチューブとを備え、原料タンク、ポンプ、カートリッジ、精製タンクの順番、又は原料タンク、カートリッジ、ポンプ、精製タンクの順番にラインチューブで連結されている、飲料用硫黄化合物除去装置。
- 飲料から硫黄化合物を除去する方法であって、請求項6又は7に記載のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
- 硫黄化合物が除去された飲料の製造方法であって、請求項6又は7に記載のカートリッジに飲料を通液させる工程と、カートリッジ内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
- 請求項1~5のいずれか一項に記載の飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材。
- 飲料から硫黄化合物を除去する方法であって、請求項1~5のいずれか一項に記載の飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
- 硫黄化合物が除去された飲料の製造方法であって、請求項1~5のいずれか一項に記載の飲料用硫黄化合物除去剤と飲料とを通液させる工程と、飲料用硫黄化合物除去剤内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
- 飲料から硫黄化合物を除去する方法であって、請求項11に記載の飲料用硫黄化合物除去部材と飲料とを接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、飲料から硫黄化合物を除去する方法。
- 硫黄化合物が除去された飲料の製造方法であって、請求項11に記載の飲料用硫黄化合物除去部材に飲料を接触させる工程と、飲料用硫黄化合物除去部材内で硫黄化合物を分解又は/及び吸着させる工程とを含む、硫黄化合物が除去された飲料の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-151317 | 2019-08-21 | ||
JP2019151317 | 2019-08-21 | ||
JP2020-014383 | 2020-01-31 | ||
JP2020014383A JP2022153679A (ja) | 2019-08-21 | 2020-01-31 | 飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021033712A1 true WO2021033712A1 (ja) | 2021-02-25 |
Family
ID=74661178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031247 WO2021033712A1 (ja) | 2019-08-21 | 2020-08-19 | 飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021033712A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4872339A (ja) * | 1971-12-28 | 1973-09-29 | ||
JPH05246935A (ja) * | 1991-11-25 | 1993-09-24 | Hoechst Celanese Corp | 有機液体からのハロゲン化物不純物の除去 |
US5744183A (en) * | 1995-08-17 | 1998-04-28 | Ellsworth; Robert M. | Removal of sulfides from alcoholic beverages |
US6239206B1 (en) * | 1995-12-20 | 2001-05-29 | Basf Aktiengesellschaft | Complexes of heavy metal ions and a polymer, and their use for selective removal of compounds from liquids |
JP2017527291A (ja) * | 2014-09-05 | 2017-09-21 | ハイネケン・サプライ・チェーン・ビー.ブイ.Heineken Supply Chain B.V. | オーダーメイドの風味プロフィールを有するビールを生産する方法 |
-
2020
- 2020-08-19 WO PCT/JP2020/031247 patent/WO2021033712A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4872339A (ja) * | 1971-12-28 | 1973-09-29 | ||
JPH05246935A (ja) * | 1991-11-25 | 1993-09-24 | Hoechst Celanese Corp | 有機液体からのハロゲン化物不純物の除去 |
US5744183A (en) * | 1995-08-17 | 1998-04-28 | Ellsworth; Robert M. | Removal of sulfides from alcoholic beverages |
US6239206B1 (en) * | 1995-12-20 | 2001-05-29 | Basf Aktiengesellschaft | Complexes of heavy metal ions and a polymer, and their use for selective removal of compounds from liquids |
JP2017527291A (ja) * | 2014-09-05 | 2017-09-21 | ハイネケン・サプライ・チェーン・ビー.ブイ.Heineken Supply Chain B.V. | オーダーメイドの風味プロフィールを有するビールを生産する方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007088879A1 (ja) | 消臭剤および消臭加工製品 | |
US10399864B2 (en) | Forming and using an adsorbent to remove cationic dyes from water | |
JP4911706B2 (ja) | 消臭フィルター | |
CN114588879B (zh) | 一种IL@MOFs复合材料及其制备方法与应用 | |
US11752488B2 (en) | Adsorbent comprising carboxylic acid dimer and preparation method thereof | |
CN109701505A (zh) | 一种交联聚苯乙烯吸附剂及其制备方法和应用 | |
CA1265412A (en) | Insoluble compositions for removing mercury from a liquid medium | |
WO2021033712A1 (ja) | 飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 | |
CN108636387A (zh) | 一种铁离子吸附海绵及其制备方法和应用 | |
Bourguignon et al. | Introducing polyhydroxyurethane hydrogels and coatings for formaldehyde capture | |
US20090029853A1 (en) | Adsorbent and Process for Producing the Same | |
Liu et al. | A highly selective protein adsorber via two-step surface-initiated molecular imprinting utilizing a multi-functional polymeric scaffold on a macroporous cellulose membrane | |
Trisunaryanti et al. | SYNTHESIS OF Co-NH 2/MESOPOROUS SILICA BIFUNCTIONAL CATALYST USING SIDOARJO MUD AND BOVINE BONE GELATIN TEMPLATE FOR CONVERSION OF USED COOKING OIL INTO BIOFUEL. | |
JP2022153679A (ja) | 飲料用硫黄化合物除去剤、並びに、前記飲料用硫黄化合物除去剤を用いた飲料用硫黄化合物除去部材、飲料から硫黄化合物を除去する方法及び硫黄化合物が除去された飲料の製造方法 | |
KR20150069268A (ko) | 메조다공성 이산화탄소 흡착제 및 이의 제조방법 | |
WO2005037334A1 (ja) | 消臭フィルター | |
JP2005054086A (ja) | 触媒物質含有機能材およびその製造方法 | |
JP5412055B2 (ja) | リン酸銅水溶液の製造方法および脱臭材の製造方法 | |
Bhamare et al. | Adsorptive removals of pollutants using aerogels and its composites | |
JP4486206B2 (ja) | 触媒物質含有機能材およびその製造方法 | |
JP4666826B2 (ja) | X型ゼオライト−親水性高分子複合体の製造方法 | |
JPS59186641A (ja) | 大気浄化フイルタ−用吸着剤 | |
CN115739028B (zh) | 一种精神活性物质吸附剂及其应用 | |
JP3489136B2 (ja) | 脱臭剤の製造方法 | |
JP2002211912A (ja) | 活性炭の改質方法、改質された活性炭及びそれを用いた吸着材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20854799 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |