WO2021033697A1 - 蓄電素子の製造方法及び蓄電素子 - Google Patents

蓄電素子の製造方法及び蓄電素子 Download PDF

Info

Publication number
WO2021033697A1
WO2021033697A1 PCT/JP2020/031187 JP2020031187W WO2021033697A1 WO 2021033697 A1 WO2021033697 A1 WO 2021033697A1 JP 2020031187 W JP2020031187 W JP 2020031187W WO 2021033697 A1 WO2021033697 A1 WO 2021033697A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
power storage
storage element
electrode body
electrolytic solution
Prior art date
Application number
PCT/JP2020/031187
Other languages
English (en)
French (fr)
Inventor
健太 上平
理史 ▲高▼野
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2021540955A priority Critical patent/JPWO2021033697A1/ja
Priority to US17/635,511 priority patent/US20220320568A1/en
Priority to EP20854358.7A priority patent/EP4006935A4/en
Priority to CN202080058232.6A priority patent/CN114616642A/zh
Publication of WO2021033697A1 publication Critical patent/WO2021033697A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers

Definitions

  • the present invention relates to a method for manufacturing a power storage element and a power storage element.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion non-aqueous electrolyte secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically separated by a separator, and a non-aqueous electrolyte solution interposed between the electrodes, and ion can be generated between both electrodes. It is configured to charge and discharge by handing over.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as power storage elements other than non-aqueous electrolyte secondary batteries.
  • Patent Document 1 For the purpose of improving characteristics such as the capacity retention rate of such a power storage element, for example, many studies have been made on additives for electrolytic solutions (see Patent Document 1).
  • the additive may be decomposed with the first charge and discharge, and gas such as carbon monoxide may be generated.
  • gas such as carbon monoxide
  • a gas pool is generated between the electrodes, and the distance between the electrodes tends to be partially increased.
  • current unevenness may occur, and metallic lithium electrodeposition may occur in the vicinity where the distance between the electrodes becomes large.
  • the distance between the electrodes may be partially increased due to the generation of gas by the redox decomposition of the electrolytic solution.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for manufacturing a power storage element and a power storage element capable of suppressing an increase in the distance between electrodes.
  • the method for manufacturing a power storage element includes accommodating an electrode body in which a negative electrode and a positive electrode are laminated in a case, and accommodating an electrolytic solution in the case. After the electrolytic solution is contained in the case, the gas soluble in the electrolytic solution is contained in the case, and the case is sealed with the gas soluble in the electrolytic solution contained in the case. To be equipped with.
  • the power storage element contains an electrode body in which a negative electrode and a positive electrode are laminated, an electrolytic solution, a gas soluble in the electrolytic solution, the electrode body, the electrolytic solution, and the gas. It is provided with a case that can be sealed, and the inside of the case has an atmosphere of a negative pressure state.
  • the present invention it is possible to provide a method for manufacturing a power storage element and a power storage element that can suppress an increase in the distance between electrodes.
  • FIG. 1 is a schematic exploded perspective view showing a power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the power storage element according to the embodiment of the present invention.
  • FIG. 3 is a schematic view showing a power storage device configured by assembling a plurality of power storage elements according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional image of an electrode body of a power storage element according to an embodiment of the present invention.
  • the method for manufacturing a power storage element includes housing an electrode body in which a negative electrode and a positive electrode are laminated in a case, storing an electrolytic solution in the case, and storing the electrolytic solution in the case. It is provided that the gas soluble in the electrolytic solution is contained in the case, and the case is sealed with the gas soluble in the electrolytic solution contained in the case.
  • the method for manufacturing the power storage element suppresses the generation of metallic lithium electrodeposition due to the increase in the distance between the electrodes during the decomposition of the additive or the redox decomposition of the electrolytic solution in the first charge / discharge. It is possible to manufacture a highly effective power storage element. The reason for this is not clear, but it can be considered as follows.
  • gas is generally generated in the case due to the decomposition of the additive or the redox decomposition of the electrolytic solution in the first charge / discharge. When the gas is generated between the electrodes, a gas pool is generated between the electrodes due to the presence of the gas, and the distance between the electrodes becomes large.
  • the method for manufacturing the power storage element after the electrolytic solution is contained in the case, a gas soluble in the electrolytic solution is contained in the case, and the case is sealed with the gas contained in the case. By doing so, the above gas dissolves in the electrolytic solution after sealing. As a result, the pressure inside the case drops and the inside of the case becomes a negative pressure state, that is, a force that pulls the case inward is generated, so that the gas existing between the electrodes is discharged to the outside of the electrode body. .. Therefore, it is presumed that the method for manufacturing the power storage element can manufacture the power storage element capable of suppressing the generation of metallic lithium electrodeposition because the increase in the distance between the electrodes is suppressed.
  • the "gas soluble in the electrolytic solution” in the present invention means a gas having a gas solubility of 1 cm 3 or more in 1 cm 3 of the electrolytic solution at 25 ° C. under 1 atm.
  • the electrode body is a winding type electrode body having a pair of curved portions facing each other and a flat portion located between the pair of curved portions, and the electrode body is formed after the electrode body is housed and before the sealing. If there is a hollow region in the center when viewed from the winding axis direction, or if there is a gap between the outer surface of the flat portion of the electrode body and the inner surface of the case, or a combination thereof, the present invention is concerned. The effect of the method of manufacturing the power storage element can be further enhanced. As described above, the wound electrode body has the pair of curved portions facing each other and the flat portion located between the pair of curved portions, and after the electrode body is housed and before the sealing, the electrode body.
  • the main component of the electrolytic solution is carbonate and the gas is carbon dioxide.
  • the main component of the electrolytic solution is carbonate, carbon dioxide can be used as the gas to improve the solubility of the gas in the electrolytic solution.
  • the "main component” means, for example, a component contained in an amount of 50% by mass or more with respect to the total mass of the electrolytic solution.
  • the electrolytic solution contains an oxalate complex salt.
  • the oxalate complex salt generates a large amount of gas that is difficult to dissolve in the electrolytic solution such as carbon monoxide in the first charge and discharge. Therefore, gas such as carbon monoxide tends to accumulate between the electrodes, and the distance between the electrodes tends to increase. According to the method for manufacturing the power storage element, even in such a case, it is possible to manufacture the power storage element having a high effect of suppressing an increase in the distance between the electrodes.
  • the case has a flat bottomed square cylinder-shaped case body and a lid, and after the case is sealed, the electrode body is in direct or indirect contact with the inner surface of the case body.
  • the case body has a flat bottomed square tube shape, when the inside of the case is in a negative pressure state, a force for pulling the case inward is generated, so that the side surface of the case body is easily dented.
  • the electrode body Since the electrode body is in direct or indirect contact with the inner surface of the case body, the side surface of the electrode body facing the side surface of the case body recessed by negative pressure is pressurized in the thickness direction, so that the space between the electrodes is increased. Gas is more likely to be discharged to the outside of the electrode body. Therefore, the effect of suppressing the increase in the distance between the electrodes can be further enhanced.
  • the method for manufacturing the power storage element further includes housing the member capable of adsorbing the gas in the case.
  • the manufacturing method of the power storage element further comprises accommodating the member capable of adsorbing the gas in the case, so that the absorption amount of the gas increases and the negative pressure inside the case also increases, so that the gas between the electrodes Is more likely to be discharged from the electrode body, so that the effect of suppressing an increase in the distance between the electrodes can be further improved. Further, since the gas is absorbed by the adsorbable member, it is possible to shorten the time from sealing the case until the inside of the case becomes an atmosphere in a negative pressure state.
  • the power storage element contains an electrode body in which a negative electrode and a positive electrode are laminated, an electrolytic solution, a gas soluble in the electrolytic solution, the electrode body, the electrolytic solution, and the gas. It is provided with a case that can be sealed, and the inside of the case has an atmosphere of a negative pressure state.
  • the power storage element by providing the above configuration, after the electrolytic solution is contained in the case, a gas soluble in the electrolytic solution is contained in the case, and the case is sealed so that the gas becomes the electrolytic solution. Dissolve.
  • the pressure inside the case drops and the inside of the case becomes a negative pressure state, that is, a force that pulls the case inward is generated, so that the gas existing between the electrodes is discharged to the outside of the electrode body. Therefore, the power storage element is suppressed from increasing the distance between the electrodes, and thus has a high effect of suppressing the generation of metallic lithium electrodeposition.
  • the “atmosphere” refers to the gas contained in the surplus space inside the case.
  • having an atmosphere in a negative pressure state inside the case means that the pressure in the excess space inside the case is lower than the pressure outside the case.
  • an electrode body in which a negative electrode and a positive electrode are laminated is housed in a case (hereinafter, also referred to as an electrode body housing step), and an electrolytic solution is housed in the case. That (hereinafter, also referred to as an electrolytic solution accommodating step), after accommodating the electrolytic solution in the case, accommodating a gas soluble in the electrolytic solution in the case (hereinafter, also referred to as a gas accommodating step). Further, the case is sealed in a state where the gas soluble in the electrolytic solution is contained in the case (hereinafter, also referred to as a sealing step).
  • the method for manufacturing the power storage element further includes accommodating the member capable of adsorbing the gas in the case (hereinafter, also referred to as an adsorption member accommodating step). Further, the method for manufacturing the power storage element includes, for example, forming a negative electrode (hereinafter, also referred to as a negative electrode forming step), forming a positive electrode (hereinafter, also referred to as a positive electrode forming step), and an electrode body as other steps. (Hereinafter, also referred to as an electrode body forming step) and the like can be provided.
  • a negative electrode having a negative electrode base material and a negative electrode mixture layer is formed.
  • the negative electrode mixture can be arranged along at least one surface of the negative electrode base material by applying the negative electrode mixture containing the negative electrode active material to the negative electrode base material.
  • the negative electrode mixture layer is arranged by applying the negative electrode mixture to the negative electrode base material and drying it.
  • the negative electrode base material is a base material having conductivity.
  • the material of the negative electrode base material metals such as copper, nickel, stainless steel and nickel-plated steel or alloys thereof are used, and copper or a copper alloy is preferable.
  • the form of the negative electrode base material include foils and thin-film deposition films, and foils are preferable from the viewpoint of cost. That is, copper foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil. Note that has a "conductive" means that the volume resistivity is measured according to JIS-H0505 (1975) is not more than 1 ⁇ 10 7 ⁇ ⁇ cm.
  • the negative electrode mixture forming the negative electrode mixture layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the negative electrode active material a material capable of occluding and releasing lithium ions is usually used.
  • Specific negative electrode active materials include, for example, metals or semi-metals such as Si and Sn; metal oxides or semi-metal oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite) and non-graphite.
  • Carbon materials such as carbon (graphitizable carbon or graphitizable carbon); lithium metal composite oxides such as lithium titanate and the like can be mentioned.
  • the negative electrode mixture is a typical non-metal element such as B, N, P, F, Cl, Br, I, a typical metal element such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, etc. It may contain transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb and W.
  • Examples of the conductive agent include carbonaceous materials, metals, conductive ceramics and the like.
  • Examples of the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon and the like.
  • Examples of non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerenes.
  • Examples of the shape of the conductive agent include powder and fibrous.
  • the conductive agent one of these materials may be used alone, or two or more of these materials may be mixed and used. Moreover, you may use these materials in combination.
  • a material in which carbon black and CNT are composited may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable.
  • binder examples include elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber; fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.).
  • EPDM ethylene-propylene-diene rubber
  • SBR sulfonated EPDM
  • SBR styrene butadiene rubber
  • fluororubber fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the thickener examples include polysaccharide polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), hydroxypropyl methyl cellulose (HPMC), and hydroxypropyl methyl cellulose phthalate (HPMCP). Can be mentioned.
  • CMC carboxymethyl cellulose
  • MC methyl cellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropyl methyl cellulose
  • HPCP hydroxypropyl methyl cellulose phthalate
  • HPMCP hydroxypropyl methyl cellulose phthalate
  • the filler is not particularly limited.
  • the main components of the filler are polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide and calcium hydroxide.
  • Hydroxides such as aluminum hydroxide, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite , Zeolites, apatites, kaolin, mulite, spinels, olivines, sericites, bentonites, mica and other mineral resource-derived substances, or man-made products thereof.
  • the negative electrode mixture may be a negative electrode mixture paste containing a dispersion medium in addition to the above-mentioned optional components.
  • a dispersion medium for example, an aqueous solvent such as water or a mixed solvent mainly composed of water; or an organic solvent such as N-methylpyrrolidone or toluene can be used.
  • the negative electrode mixture layer may be laminated directly on the negative electrode base material or via an intermediate layer.
  • the structure of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • a negative electrode overcoat layer having at least inorganic particles and a binder may be provided on the upper surface of the negative electrode mixture layer.
  • a positive electrode having a positive electrode base material and a positive electrode mixture layer is formed.
  • the positive electrode mixture can be arranged along at least one surface of the positive electrode base material by applying the positive electrode mixture containing the positive electrode active material to the positive electrode base material.
  • the positive electrode mixture layer is arranged by applying the positive electrode mixture to the positive electrode base material and drying it.
  • the positive electrode mixture may be a positive electrode mixture paste in which a dispersion medium is further contained in addition to the above-mentioned optional components.
  • the dispersion medium can be arbitrarily selected from those exemplified in the negative electrode forming step.
  • the positive electrode base material has conductivity.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used.
  • aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost.
  • examples of the form of the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, an aluminum foil is preferable as the positive electrode base material.
  • Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H4000 (2014).
  • the positive electrode mixture forming the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material for example, a known positive electrode active material can be appropriately selected.
  • the positive electrode active material for a lithium ion secondary battery a material capable of occluding and releasing lithium ions is usually used.
  • the positive electrode active material include a lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure, a lithium transition metal oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, sulfur and the like.
  • the lithium transition metal composite oxide having an ⁇ -NaFeO type 2 crystal structure include Li [Li x Ni 1-x ] O 2 (0 ⁇ x ⁇ 0.5) and Li [Li x Ni ⁇ Co (1-x-).
  • Examples of the lithium transition metal oxide having a spinel-type crystal structure include Li x Mn 2 O 4 , Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F and the like.
  • Examples of the chalcogen compound include titanium disulfide, molybdenum disulfide, molybdenum dioxide and the like. The atoms or polyanions in these materials may be partially substituted with atoms or anion species consisting of other elements. The surface of these materials may be coated with other materials. In the positive electrode active material layer, one of these materials may be used alone, or two or more of these materials may be mixed and used. In the positive electrode mixture layer, one of these compounds may be used alone, or two or more of these compounds may be mixed and used.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent can be selected from the materials exemplified in the negative electrode forming step.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene. Elastomers such as butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR butadiene rubber
  • fluororubber polysaccharide polymers and the like can be mentioned.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • the filler can be selected from the materials exemplified in the negative electrode forming step.
  • the positive electrode mixture layer may be laminated directly on the positive electrode base material or via an intermediate layer.
  • the intermediate layer is a coating layer on the surface of the positive electrode base material, and contains conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the structure of the intermediate layer is not particularly limited, and can be formed by, for example, a composition containing a resin binder and conductive particles.
  • the electrode body is formed by using the positive electrode body and the negative electrode body.
  • the electrode body is preferably a winding type electrode body having a pair of curved portions facing each other and a flat portion located between the pair of curved portions.
  • the positive electrode body and the negative electrode body are laminated or wound through a separator described later to form an electrode body which is alternately superimposed.
  • a woven fabric, a non-woven fabric, a porous resin film, or the like is used as the material of the separator.
  • a porous resin film is preferable from the viewpoint of strength
  • a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolytic solution.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength
  • polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • a composite separator having a porous resin film and an inorganic porous layer may be used.
  • the electrode body has a hollow region in the central portion when viewed from the winding axis direction after the electrode body is housed and before the sealing, or the outer surface of the flat portion of the electrode body and the inside of the case.
  • the wound electrode body has the pair of curved portions facing each other and the flat portion located between the pair of curved portions, and after the electrode body is housed and before the sealing, the electrode body.
  • the distance between the electrodes tends to increase toward the hollow region in the central portion and the gap on the outer surface side of the flat portion. Therefore, in these spaces, the distance between the electrodes tends to be larger due to the gas generated by the decomposition of the additive or the redox decomposition of the electrolytic solution in the first charge / discharge, and the metal lithium electrodeposition is more likely to occur. .. According to the method for manufacturing the power storage element, even in such a case, it is possible to manufacture the power storage element having a high effect of suppressing the generation of metallic lithium electrodeposition as the distance between the electrodes increases.
  • the electrode body in which the negative electrode and the positive electrode are laminated is accommodated in the case.
  • a known metal case, resin case, or the like that is usually used as a case for a non-aqueous electrolyte secondary battery can be used.
  • the metal for example, aluminum or an aluminum alloy can be used.
  • the case has, for example, a case body and a lid that can close the opening of the case body.
  • the electrode body When the case has a flat bottomed square cylinder-shaped case body and a lid, the electrode body is in direct or indirect contact with the inner surface of the case body after the case is sealed. Is preferable. Since the case body has a flat bottomed square tube shape, when the inside of the case is in a negative pressure state, a force for pulling the case inward is generated, so that the side surface of the case body is easily dented. Since the electrode body is in direct or indirect contact with the inner surface of the case body, the side surface of the electrode body facing the side surface of the case body recessed by negative pressure is pressurized in the thickness direction, so that the space between the electrodes is increased. Gas is more likely to be discharged to the outside of the electrode body.
  • the power storage element includes a spacer, a sheet, etc. interposed between the case and the electrode body, and the inner surface of the case is a spacer, a sheet, etc. Indirect contact with the outer surface of the electrode body may be mentioned.
  • the material of the spacer, sheet, etc. is not particularly limited as long as it has insulating properties.
  • the electrolytic solution is accommodated in the case.
  • the electrolytic solution when the power storage element is a non-aqueous electrolytic solution secondary battery, a non-aqueous electrolytic solution is used.
  • the electrolytic solution can be stored by a known method.
  • the non-aqueous electrolyte secondary battery houses the non-aqueous electrolyte in the case by injecting the non-aqueous electrolyte from, for example, an injection port provided in the case.
  • Non-aqueous electrolyte As the non-aqueous electrolytic solution, a known non-aqueous electrolytic solution usually used for a general non-aqueous electrolytic solution secondary battery (storage element) can be used.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent a known non-aqueous solvent usually used as a non-aqueous solvent for a general non-aqueous electrolytic solution for a power storage element can be used.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, ester, ether, amide, sulfonamide, lactone, nitrile and the like. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene examples thereof include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and among these, EC or PC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate and the like, and among these, DMC or EMC is preferable.
  • electrolyte salt a known electrolyte salt usually used as an electrolyte salt of a general non-aqueous electrolyte solution for a power storage element can be used.
  • electrolyte salt examples include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt and the like, but lithium salt is preferable.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO). 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other hydrogens are replaced with fluorine. Examples thereof include a lithium salt having a specified hydrocarbon group. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • additives may be added to the electrolytic solution in order to improve the performance of the power storage element as long as the effects of the present invention are not impaired.
  • an additive generally used for a non-aqueous electrolytic solution secondary battery can be used as an additive.
  • biphenyl, alkylbiphenyl and terphenyl can be used.
  • fluoroanisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole; vinylene carbonate, methylvinylene carbonate, ethyl Biphenylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, trifluoropropylene carbonate, succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride, ethylene sulfite, sulfite Propropylene, dimethyl sulfite, propane sulton, propensulton, butane sulton, methyl methanesulfonate, busulfane, methyl toluenesulfonate, dimethyl sulfate, ethylene
  • the oxalate complex salt generates a large amount of gas that is difficult to dissolve in an electrolytic solution such as carbon monoxide in the first charge / discharge. Therefore, gas such as carbon monoxide is more likely to be accumulated between the electrodes, and the distance between the electrodes is likely to be partially increased. According to the method for manufacturing the power storage element, even in such a case, it is possible to manufacture the power storage element having a high effect of suppressing an increase in the distance between the electrodes.
  • Examples of the oxalate complex salt include lithium difluorobisoxalate phosphate [LiPF 2 (C 2 O 4 ) 2 ], lithium difluorooxalate oxalate [LiBF 2 (C 2 O 4 )], and lithium bisoxalate oxalate [LiB (C)).
  • 2 O 4 ) 2 lithium tetrafluorooxalate phosphate [LiPF 4 (C 2 O 4 )]
  • lithium difluorobisoxalate phosphate generates a large amount of gas that is difficult to dissolve in an electrolytic solution such as carbon monoxide, so that the effect of the method for manufacturing the power storage element can be further exerted.
  • the gas soluble in the electrolytic solution is accommodating in the case.
  • the gas soluble in the electrolytic solution is contained in the case by injecting the gas into the case from the injection port.
  • the gas injection may be carried out in a state where the pressure inside the case is reduced by using a vacuum pump or the like.
  • under reduced pressure means, for example, that the pressure in the excess space inside the case is less than atmospheric pressure.
  • the injection port may be provided separately from the injection port for injecting the electrolytic solution.
  • the power storage element disclosed here includes the electrolytic solution, the gas, and the case, and the inside of the case has an atmosphere of a negative pressure state, and the atmosphere of the negative pressure state is realized.
  • One of the suitable conditions for this is to house the electrolytic solution in the case and then store the gas in the case. In this way, by injecting the gas into the case in which the electrolytic solution is contained, the pressure inside the case is effectively lowered by dissolving the gas in the electrolytic solution after sealing, and the inside of the case is suitable. It can be in a negative pressure state.
  • the electrolytic solution is injected into the case after the gas is contained in the case
  • most of the gas is dissolved in the electrolytic solution at the time of injection, and the gas is too dissolved in the electrolytic solution before sealing. It is not preferable because it dissolves saturated (for example). If the gas is too dissolved in the electrolytic solution before sealing, it becomes difficult for the gas to be further dissolved in the electrolytic solution after sealing, and the pressure in the case may not be effectively reduced.
  • precharging is performed before sealing. Then, after the pressure in the case is once reduced by using a vacuum pump, the gas may be injected so that the pressure becomes near the atmospheric pressure.
  • the pressure immediately after the injection of the gas is one important factor from the viewpoint of creating an atmosphere in a suitable negative pressure state inside the case.
  • the pressure immediately after gas injection is 0.1 MPa or more and 0.2 MPa or less (more preferably 0.1 MPa or more and 0.15 MPa or less, further preferably 0.1 MPa or more and 0.12 MPa or less, and particularly preferably 0.1 MPa or more.
  • the above gas is injected so as to be 0.11 MPa or less).
  • the amount of the gas soluble in the electrolytic solution is preferably 40% by volume or more, preferably 70% by volume or more, based on the volume of the excess space in the case from the viewpoint of reducing the pressure in the case. Is more preferable, and may be, for example, 95% by volume or more.
  • the amount of gas soluble in the electrolytic solution may be less than 100% by volume with respect to the volume of the excess space in the case.
  • the amount of gas soluble in the electrolytic solution is 70% by volume or more and less than 100% by volume (preferably 80% by volume or more and 95% by volume or less) with respect to the volume of the excess space in the case. ) Can be preferably carried out.
  • the "volume of the surplus space in the case” means the volume obtained by subtracting the volumes of the structure such as the electrode body, the electrolytic solution, and the current collector from the internal volume of the case.
  • the volume of the electrode body means the actual volume of the constituent elements (active material, separator, etc.) of the electrode, and does not include voids existing between the active materials or in the separator. That is, the volume of the surplus space in the case means the volume of gas that can be accommodated in the case under 25 ° C. atm.
  • the content of the gas soluble in the electrolytic solution contained in the case is 80% by volume or more with respect to the total gas contained in the case from the viewpoint of reducing the pressure in the case. It is preferably 98% by volume or more, and more preferably 100% by volume.
  • the content of the gas soluble in the electrolytic solution may be 80% by volume or less with respect to the content of the total gas contained in the case from the viewpoint of ease of handling the gas.
  • the gas soluble in the non-aqueous electrolytic solution is, for example, carbon dioxide gas (solubility in 1 cm 3 of the non-aqueous electrolytic solution at 25 ° C. under 1 atmospheric pressure). 5 cm 3 ) and the like.
  • examples of the gas that is poorly soluble or insoluble in the non-aqueous electrolytic solution include oxygen gas, nitrogen gas, hydrogen, and methane.
  • carbon dioxide is preferable as the gas.
  • carbon dioxide which is easy to handle and obtain, can be used as the gas.
  • the method for manufacturing the power storage element further includes a suction member accommodating step.
  • a member capable of adsorbing gas is accommodated in the case.
  • the manufacturing method of the power storage element further includes an adsorption member accommodating step, the absorption amount of the gas is increased and the negative pressure inside the case is also increased, so that the gas between the electrodes is more easily discharged to the outside of the electrode body. , The effect of suppressing an increase in the distance between electrodes can be further improved. Further, since the gas is absorbed by the adsorbable member, it is possible to shorten the time from sealing the case until the inside of the case becomes an atmosphere in a negative pressure state.
  • the member capable of adsorbing gas examples include silica, zeolite, activated carbon, and alumina.
  • the member can be accommodated as a member such as a core material arranged in the central portion of the electrode body, a sheet or a spacer arranged between the electrode body and the case.
  • the case is sealed with the gas soluble in the electrolytic solution contained in the case.
  • a non-aqueous electrolyte secondary battery can be obtained by sealing the injection port after accommodating the gas in the case.
  • the injection port is sealed, for example, by closing the injection port with a sealing member and fixing the sealing member by laser welding or the like.
  • the pressure inside the case when the dissolution of the gas in the electrolytic solution is in an equilibrium state is 0.02 MPa at 25 ° C. from the viewpoint of effectively suppressing an increase in the distance between the electrodes. More than 0.09 MPa is preferable.
  • the pressure inside the case immediately after sealing is preferably 0.07 MPa or more and 0.10 MPa or less. That is, most of the gas is not dissolved in the electrolytic solution immediately after sealing, and the pressure in the case can be reduced by dissolving the gas in the electrolytic solution after sealing.
  • the elapsed time from the storage of the gas soluble in the electrolytic solution to the sealing of the injection port is that the gas is dissolved in the electrolytic solution before sealing or is discharged to the outside of the case through the injection port by diffusion. From the viewpoint of reducing the amount of the gas, it is preferably 1 hour or less.
  • the elapsed time is preferably 30 minutes or less (for example, 1 minute or more and 30 minutes or less), more preferably 20 minutes or less, still more preferably 15 minutes or less, and particularly preferably 10 minutes or less (for example, 5 minutes or less).
  • a step of temporarily sealing the injection port may be provided between the step of accommodating the gas in the case and the step of sealing the injection port.
  • the step of temporarily sealing the injection port is, for example, a step of temporarily closing the injection port using a rubber stopper or the like.
  • the injection port may be closed with the sealing member, and the sealing member may be fixed by laser welding or the like.
  • a sealing member may be arranged to cover the plug member or the like that closes the injection port, and the sealing member may be fixed by laser welding or the like.
  • the method for manufacturing the power storage element it is possible to manufacture a power storage element having a high effect of suppressing an increase in the distance between electrodes.
  • the power storage element includes an electrode body in which a negative electrode and a positive electrode are laminated, an electrolytic solution, a gas soluble in the electrolytic solution, and a sealable case for accommodating the electrode body, the electrolytic solution, and the gas. To be equipped with. Further, the inside of the case has an atmosphere of a negative pressure state. It is preferable that the electrode body forms a wound electrode body in which a positive electrode and a negative electrode laminated via a separator are wound. Further, the electrolytic solution is interposed between the positive electrode and the negative electrode in a state of being impregnated with the separator.
  • the power storage element accommodates a gas soluble in the electrolytic solution in a case, seals the case, and then dissolves the gas in the electrolytic solution.
  • the pressure inside the case drops and the inside of the case becomes a negative pressure state, that is, a force that pulls the case inward is generated, so that the gas existing between the electrodes is discharged to the outside of the electrode body.
  • the electrode body is a winding type electrode body having a pair of curved portions facing each other and a flat portion located between the pair of curved portions, and the electrode body is from the winding axis direction.
  • the case has a flat bottomed square tube-shaped case body and a lid, and the electrode body is in direct or indirect contact with the inner surface of the case body.
  • a member capable of adsorbing the gas is further provided inside the case.
  • the inside of the case has an atmosphere in a negative pressure state of 0.02 MPa or more and 0.09 MPa or less (preferably 0.04 MPa or more and 0.07 MPa or less).
  • FIG. 1 is a schematic exploded perspective view showing an electrode body and a case of a non-aqueous electrolyte secondary battery as a power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the non-aqueous electrolyte secondary battery in FIG.
  • the power storage element 1 includes an electrode body 2, a positive electrode current collector 4'and a negative electrode current collector 5'connected to both ends of the electrode body 2, and a case 3 for accommodating them. Further, as a form in which the effect of the power storage element 1 can be more exerted, the electrode body 2 has a hollow region in the central portion 8.
  • the power storage element 1 includes a case 3, an electrode body 2 housed in the case 3, and a positive electrode terminal 4 and a negative electrode terminal 5 provided in the case 3.
  • the case 3 has a flat bottomed square cylinder-shaped case main body 11 and an elongated rectangular plate-shaped lid 12 capable of closing the elongated rectangular opening of the case main body 11.
  • the lid 12 is provided with a positive electrode terminal 4 and a negative electrode terminal 5 that energize the outside. Further, the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode current collector 4'connected to the positive electrode base material, and the negative electrode is connected to the negative electrode base material via the negative electrode current collector 5'. It is electrically connected to the negative electrode terminal 5.
  • the details of the electrode body, the electrolytic solution, the gas soluble in the electrolytic solution, the case, etc. that constitute the non-aqueous electrolyte secondary battery are as described above.
  • the power storage element of the present invention is not limited to the above embodiment.
  • the mode in which the power storage element is a non-aqueous electrolyte secondary battery has been mainly described, but other power storage elements may be used.
  • Examples of other power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • wound electrode body was used in the above embodiment, a laminated electrode body formed of a laminated body obtained by stacking a plurality of sheet bodies including a positive electrode, a negative electrode and a separator may be provided.
  • the electrode body has a hollow region in the central portion, but may be provided with an electrode body having no hollow region in the central portion, or the inner surface of the case body and the electrode body. There may be a gap between the flat portion and the outer surface of the flat portion.
  • the non-aqueous electrolytic solution is used as the electrolytic solution of the non-aqueous electrolyte secondary battery, but the method for manufacturing the power storage element can also be applied to a nickel hydrogen battery or the like using an aqueous electrolytic solution.
  • an alkaline solution such as a concentrated potassium hydroxide aqueous solution is used as the electrolytic solution.
  • the electrolyte is an aqueous electrolyte solution
  • the soluble gas to electrolytic solution such as ammonia (1 atm under, 20 ° C. Solubility 700 cm 3 in water 1 cm 3 of), and the like.
  • examples of the gas that is sparingly soluble or insoluble in the aqueous electrolytic solution include oxygen gas and nitrogen gas.
  • the present invention can also be realized as a power storage device including a plurality of the above power storage elements.
  • a power storage unit can be configured by using one or more power storage elements (cells) of the present invention, and a power storage device can be further configured by using the power storage unit.
  • the technique of the present invention may be applied to at least one power storage element included in the power storage unit or the power storage device.
  • the power storage device can be used as a power source for automobiles such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid vehicles (PHEV).
  • the power storage device can be used for various power supply devices such as an engine starting power supply device, an auxiliary power supply device, and an uninterruptible power supply (UPS).
  • UPS uninterruptible power supply
  • FIG. 3 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected power storage elements 1 are assembled is further assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1 and a bus bar (not shown) that electrically connects two or more power storage units 20.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) that monitors the state of one or more power storage elements.
  • Negative electrode forming step A negative electrode mixture containing non-graphitizable carbon as a negative electrode active material and polyvinylidene fluoride (PVDF) as a binder and using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • a paste was prepared.
  • the ratio of the negative electrode active material and the binder was 93.0: 7.0 in terms of mass ratio.
  • the negative electrode mixture paste is applied to both sides of a copper foil substrate having a thickness of 8 ⁇ m and dried to form a negative electrode mixture layer, and the negative electrodes of Examples 1 to 2 and Comparative Examples 1 to 2 are applied. Obtained.
  • the coating amount of the negative electrode mixture (the dispersion medium evaporated from the negative electrode mixture paste) per unit area on one side after drying was set to 0.40 g / 100 cm 2 .
  • Positive electrode forming step LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, polyvinylidene fluoride (PVDF) as a binder, and acetylene black as a conductive agent are contained in N.
  • a positive electrode mixture paste using -methyl-2-pyrrolidone (NMP) as a dispersion medium was prepared.
  • the ratio of the positive electrode active material, the binder, and the conductive agent was 91.0: 4.5: 4.5 in terms of mass ratio.
  • the positive electrode mixture paste is applied to both sides of an aluminum foil base material having a thickness of 15 ⁇ m and dried to form a positive electrode active material layer, and the positive electrodes of Examples 1 to 2 and Comparative Examples 1 to 2 are formed. Obtained.
  • the coating amount of the positive electrode mixture (the dispersion medium evaporated from the positive electrode mixture paste) per unit area on one side after drying was adjusted to 0.86 g / 100 cm 2 .
  • the electrode body of Comparative Example 2 was prepared.
  • the hollow winding core has a shape in which a hollow region is formed inside by heat-welding a polypropylene sheet having a thickness of 150 ⁇ m in an elliptical column shape. By using such a hollow winding core, an electrode body having a hollow region having an average thickness of 1 mm formed in the center of the electrode body was formed.
  • the electrode body was wound so as to be a winding type electrode body having a pair of curved portions facing each other and a flat portion located between the pair of curved portions. Further, the average thickness of the hollow region means the average length of the hollow region in the thickness direction of the electrode body (Y-axis direction in FIG. 2).
  • Electrode body housing process The electrode body was housed in a flat, bottomed square tube-shaped case body made of aluminum alloy. In all the power storage elements of Examples 1 to 2 and Comparative Examples 1 to 2, the outer surface of the wound electrode body contacts the inner surface of the case body via a polypropylene insulating sheet having a thickness of 150 ⁇ m. I let you. (5) Electrolyte Containing Step In the power storage elements of Example 2 and Comparative Example 2, LiPF 6 is 1.2 mol / L in a non-aqueous solvent in which PC, EMC and DMC are mixed at a volume ratio of 30:35:35. A non-aqueous electrolytic solution dissolved as described above was prepared.
  • the content of lithium difluorobisoxalate phosphate [LiPF 2 (C 2 O 4 ) 2 ] as an additive is 0.5% by mass in the non-aqueous electrolytic solution.
  • a non-aqueous electrolyte solution was prepared so as to be. 40 cm 3 of each of the prepared electrolytes was contained in the above case.
  • the internal volume of the case was 120 cm 3
  • the volume of the electrode body was 50 cm 3
  • the sum of the volumes of the structure (current collector, etc.) other than the electrode body and the electrolytic solution was 50 cm 3 . That is, the volume of the surplus space in the case was 20 cm 3 .
  • the power storage elements of Comparative Example 1 and Comparative Example 2 were the same as the power storage elements of Examples 1 and 2 except that air was housed inside the case instead of carbon dioxide gas. (7) Sealing Step The case is sealed by sealing the injection port 5 minutes after the carbon dioxide gas or the air is housed in the case, and the test cells are from Example 1 to Example 2 and Comparative Example.
  • the non-aqueous electrolyte power storage element of Comparative Example 2 was obtained from 1.
  • the pressure inside the case 48 hours after sealing was 0.06 MPa in Example 1, 0.11 MPa in Comparative Example 1, 0.06 MPa in Example 2, and 0.11 MPa in Comparative Example 2 at 25 ° C. there were.
  • the imaging mode was set to 3D CT, the image size was set to 512 pixels in both vertical and horizontal directions, the slice thickness was 77 ⁇ m, the distance between slices was 77 ⁇ m, the voxel size was 77 ⁇ m, the imaging field of view was 39.3 mm ⁇ , and the number of views was 1800.
  • a cross-sectional image of the YZ plane of the electrode body was acquired, and the obtained cross-sectional image was saved as an image file.
  • (2) Cutout of the contour of the electrode body The contour of the electrode body was cut out from the acquired cross-sectional image of the electrode body by using the image cutout function of the image editing software Adobe Photoshop Elements 11.
  • the void amount (number of pixels) of the electrode body was calculated using the image processing software WinROOF2013.
  • the amount of voids was calculated for a portion of the cross-sectional image of the electrode body with the contour cut out, excluding the hollow region located in the center of the electrode body and the winding core.
  • the binarization process was performed by setting a density 60% smaller than the density at which the intensity of brightness was maximized as a threshold value.
  • FIG. 4 shows cross-sectional images of the XY planes of the electrode bodies in the power storage elements of Examples 1 to 2 and Comparative Examples 1 to 2.
  • the electrode bodies of Comparative Example 1 and Comparative Example 2 which do not contain carbon dioxide gas, a plurality of portions where the distance between the electrodes is large can be visually observed.
  • the portion where the distance between the electrodes is large is reduced as compared with Comparative Example 1 and Comparative Example 2.
  • the power storage elements of Examples 1 and 2 come into contact with the outer surface of the flat portion of the electrode body via an insulating sheet with the inner surface of the case body recessed inward.
  • the power storage elements of Examples 1 and 2 come into contact with the outer surface of the flat portion of the electrode body via an insulating sheet with the inner surface of the case body recessed inward.
  • the inner surface of the case body is recessed inward and comes into contact with the outer surface of the electrode body, so that gas that is difficult to dissolve in the electrolytic solution existing between the electrodes is discharged to the outside of the electrode body. It is thought that it became easier.
  • the cross-sectional image was obtained by using a microfocus X-ray CT (inspeXio SMX-225CT FPD HR manufactured by Shimadzu Corporation) in the same manner as when calculating the amount of voids in the electrode body.
  • Example 1 From the result of determining the reduction rate (%) of the void amount of the electrode body by accommodating, Example 1 in which the above additive having a large amount of gas that is difficult to dissolve in the electrolytic solution such as carbon monoxide is added is more suitable. The reduction rate (%) of the amount of voids in the electrode body is large. From this, it can be seen that the effect of the power storage element was more exerted when the above-mentioned additive, which tends to increase the distance between the electrodes, was contained.
  • the method for manufacturing the power storage element has a high suppressing effect on the increase in the distance between the electrodes.
  • the present invention is suitably used as a power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, and automobiles.
  • a power storage element such as a non-aqueous electrolyte secondary battery used as a power source for personal computers, electronic devices such as communication terminals, and automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一側面に係る蓄電素子の製造方法は、負極及び正極が積層された電極体をケースに収容すること、電解液を上記ケースに収容すること、上記電解液を上記ケースに収容した後、上記電解液に可溶な気体を上記ケースに収容すること、及び上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉することを備える。

Description

蓄電素子の製造方法及び蓄電素子
 本発明は、蓄電素子の製造方法及び蓄電素子に関する。
 リチウムイオン非水電解液二次電池に代表される非水電解液二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解液二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解液を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解液二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 このような蓄電素子の容量維持率等の特性の向上を目的として、例えば電解液の添加剤において数多くの検討がなされている(特許文献1参照)。
日本国特許出願公開2007-165125号公報
 しかしながら、電解液の添加剤によっては初回の充放電に伴って添加剤が分解して、一酸化炭素等のガスが発生する場合がある。この初回の充放電によりガスが発生すると、電極間にガス溜りが生じ、部分的に電極間距離が大きくなりやすくなる。これにより電流ムラが生じ、電極間距離が大きくなった付近に金属リチウム電析が発生してしまうおそれがある。さらに、電解液が添加剤を含まない場合でも、電解液の酸化還元分解によりガスが発生することで、部分的に電極間距離が大きくなるおそれもある。
 本発明は、以上のような事情に基づいてなされたものであり、電極間距離が大きくなることを抑制できる蓄電素子の製造方法及び蓄電素子を提供することを目的とする。
 上記課題を解決するためになされた本発明の一側面に係る蓄電素子の製造方法は、負極及び正極が積層された電極体をケースに収容すること、電解液を上記ケースに収容すること、上記電解液を上記ケースに収容した後、上記電解液に可溶な気体を上記ケースに収容すること、及び上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉することを備える。
 本発明の他の一側面に係る蓄電素子は、負極及び正極が積層された電極体と、電解液と、上記電解液に可溶な気体と、上記電極体、上記電解液及び上記気体を収容するための密閉可能なケースとを備え、上記ケースの内部が負圧状態の雰囲気を有する。
 本発明によれば、電極間距離が大きくなることを抑制できる蓄電素子の製造方法及び蓄電素子を提供できる。
図1は、本発明の一実施形態における蓄電素子を示す模式的分解斜視図である。 図2は、本発明の一実施形態における蓄電素子の模式的断面図である。 図3は、本発明の一実施形態における蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。 図4は、本発明の一実施形態における蓄電素子の電極体の断面像である。
 本発明の一側面に係る蓄電素子の製造方法は、負極及び正極が積層された電極体をケースに収容すること、電解液を上記ケースに収容すること、上記電解液を上記ケースに収容した後、上記電解液に可溶な気体を上記ケースに収容すること、及び上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉することを備える。
 当該蓄電素子の製造方法は、上記工程を備えることで、初回の充放電における添加剤の分解又は電解液の酸化還元分解の時に電極間距離が大きくなることに伴う金属リチウム電析の発生に対する抑制効果が高い蓄電素子を製造できる。この理由は定かでは無いが、次のように考えられる。蓄電素子は、一般的に、初回の充放電における添加剤の分解又は電解液の酸化還元分解に伴いケース内でガスが発生する。上記ガスが電極間で発生すると、上記ガスの存在により電極間にガス溜りが生じ、電極間距離が大きくなってしまう。これにより電流ムラが生じ、電極間距離が大きくなった付近に金属リチウム電析が発生してしまうおそれがある。しかしながら、当該蓄電素子の製造方法においては、上記電解液を上記ケースに収容した後、当該電解液に可溶な気体を上記ケースに収容し、上記気体がケースに収容された状態でケースを密閉することで、密閉後に上記気体が電解液に溶解する。その結果、ケースの内部の圧力が下がり、ケースの内部が負圧状態になることにより、すなわちケースを内側に向けて引く力が生じることにより、電極間に存在するガスが電極体外に排出される。従って、当該蓄電素子の製造方法は、電極間距離が大きくなることが抑制されるので、金属リチウム電析の発生を抑制できる蓄電素子を製造できると推測される。
 なお、本発明における「電解液に可溶な気体」とは、1気圧下、25℃の電解液1cm3に対する気体の溶解度が1cm3以上の気体をいう。
 上記電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体であり、上記電極体収容後上記密閉前において、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである場合、当該蓄電素子の製造方法による効果をより奏することができる。このように、上記巻回型電極体が、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有し、上記電極体収容後上記密閉前において、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである場合、電極体の平坦部は、上記中央部の中空領域や上記平坦部の外表面側の隙間に向けて電極間距離が広がりやすくなる。そのため、これらの空間に初回の充放電における添加剤の分解又は電解液の酸化還元分解により発生するガスにより、電極間距離がより大きくなりやすくなり、金属リチウム電析がより発生しやすくなる。当該蓄電素子の製造方法によれば、このような場合においても、電極間距離が大きくなることに伴う金属リチウム電析の発生に対する抑制効果が高い蓄電素子を製造できる。
 上記電解液の主成分がカーボネートであり、上記気体が二酸化炭素であることが好ましい。電解液の主成分がカーボネートの場合、上記気体としては二酸化炭素を用いることで、電解液に対する気体の溶解性を高めることができる。ここで、「主成分」とは、例えば電解液の総質量に対して50質量%以上含まれる成分をいう。
 上記電解液が、オキサラト錯塩を含有することが好ましい。電解液に用いる添加剤の中でもオキサラト錯塩は、初回の充放電における一酸化炭素等の電解液に溶解しにくいガスの発生量が多い。そのため、電極間に一酸化炭素等のガスがより溜まりやすくなり、電極間距離が大きくなりやすい。当該蓄電素子の製造方法によれば、このような場合においても、電極間距離が大きくなることに対する抑制効果が高い蓄電素子を製造できる。
 上記ケースが偏平の有底角筒形状のケース本体と、蓋体とを有し、上記ケースの密閉後において、上記電極体は、上記ケース本体の内表面に直接又は間接に接触していることが好ましい。上記ケース本体が偏平の有底角筒形状であることで、ケースの内部が負圧状態の場合、ケースを内側に向けて引く力が生じることにより、ケース本体の側面が凹みやすくなる。上記電極体がケース本体の内表面に直接又は間接に接触していることで、負圧により凹んだケース本体の側面に対向する電極体の側面が厚さ方向に加圧されるので、電極間のガスがより電極体外に排出されやすくなる。従って、電極間距離が大きくなることに対する抑制効果をより高めることができる。
 当該蓄電素子の製造方法が上記気体を吸着可能な部材を上記ケースに収容することをさらに備えることが好ましい。当該蓄電素子の製造方法が上記気体を吸着可能な部材を上記ケースに収容することをさらに備えることで、上記気体の吸収量が増大してケースの内部の負圧も高まることで電極間のガスがより電極体外に排出されやすくなるので、電極間距離が大きくなることに対する抑制効果をより向上できる。また、上記吸着可能な部材によっても、上記気体が吸収されるので、上記ケースを密閉した後にケースの内部が負圧状態の雰囲気になるまでの時間が短縮できる。
 本発明の他の一側面に係る蓄電素子は、負極及び正極が積層された電極体と、電解液と、上記電解液に可溶な気体と、上記電極体、上記電解液及び上記気体を収容するための密閉可能なケースとを備え、上記ケースの内部が負圧状態の雰囲気を有する。
 当該蓄電素子によれば、上記構成を備えることで、上記電解液を上記ケースに収容した後、電解液に可溶な気体をケースに収容し、ケースを密閉することで上記気体が電解液に溶解する。その結果、ケース内の圧力が下がり、ケースの内部が負圧状態になることにより、すなわちケースを内側に向けて引く力が生じることにより、電極間に存在するガスが電極体外に排出される。従って、当該蓄電素子は、電極間距離が大きくなることが抑制されるので、金属リチウム電析の発生に対する抑制効果が高い。ここで、「雰囲気」とは、ケースの内部の余剰空間に収容されている気体をいう。また、「ケースの内部が負圧状態の雰囲気を有する」とは、ケースの外部の圧力と比較してケース内の余剰空間の圧力が低いことをいう。
 以下、本発明に係る蓄電素子の製造方法について詳説する。当該蓄電素子の製造方法の一例として、非水電解質二次電池(特にリチウムイオン二次電池)の製造方法について説明するが、本発明の適用対象を限定する意図ではない。
<蓄電素子の製造方法>
 本発明の一実施形態に係る蓄電素子の製造方法は、負極及び正極が積層された電極体をケースに収容すること(以下、電極体収容工程ともいう。)、電解液を上記ケースに収容すること(以下、電解液収容工程ともいう。)、上記電解液を上記ケースに収容した後、上記電解液に可溶な気体を上記ケースに収容すること(以下、気体収容工程ともいう。)、及び上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉すること(以下、密閉工程ともいう。)を備える。また、当該蓄電素子の製造方法が上記気体を吸着可能な部材を上記ケースに収容すること(以下、吸着部材収容工程ともいう。)をさらに備えることが好ましい。さらに、当該蓄電素子の製造方法は、その他の工程として、例えば負極を形成すること(以下、負極形成工程ともいう。)、正極を形成すること(以下、正極形成工程ともいう。)、電極体を形成すること(以下、電極体形成工程ともいう。)等を備えることができる。
[負極形成工程]
 負極形成工程では、負極基材及び負極合剤層を有する負極を形成する。上記負極形成工程では、負極活物質を含有する負極合剤を負極基材に塗工することにより負極合剤を負極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば負極基材に負極合剤を塗工して乾燥することにより負極合剤層を配置する。
 上記負極基材は、導電性を有する基材である。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。また、負極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。なお、「導電性」を有するとは、JIS-H0505(1975)に準拠して測定される体積抵抗率が1×107Ω・cm以下であることを意味する。
 負極合剤層を形成する負極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。
 負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料;チタン酸リチウム等のリチウム金属複合酸化物等が挙げられる。
 さらに、負極合剤は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。
 上記導電剤としては、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛化炭素、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 上記バインダーとしては、エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等のエラストマー以外の熱可塑性樹脂;多糖類高分子等が挙げられる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)などのセルロース誘導体等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーとしては、特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 上記負極合剤は、上述の任意成分以外に、さらに分散媒を含んだ状態である負極合剤ペーストであってもよい。この分散媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N-メチルピロリドン、トルエン等の有機系溶媒を用いることができる。
 負極合剤層は、負極基材に直接又は中間層を介して積層されてもよい。上記中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。また、負極合剤層の上面に、少なくとも無機粒子とバインダーとを有する負極オーバーコート層を設けてもよい。負極オーバーコート層を設けることにより、イオン伝導性の向上や短絡の可能性の低下などの効果が得られる。
[正極形成工程]
 正極形成工程では、正極基材及び正極合剤層を有する正極を形成する。上記正極形成工程では、正極活物質を含有する正極合剤を正極基材へ塗工することにより正極合剤を正極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば正極基材に正極合剤を塗工して乾燥することにより正極合剤層を配置する。また、上記正極合剤は、上述の任意成分以外に、さらに分散媒を含んだ状態である正極合剤ペーストであってもよい。分散媒は、上記負極形成工程で例示したものから任意に選択できる。
 上記正極基材は、導電性を有する。基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H4000(2014)に規定されるA1085、A3003等が例示できる。
 正極活物質層を形成する正極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。
 上記正極活物質としては、例えば、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO2型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LixNi1-x]O2(0≦x<0.5)、Li[LixNiγCo(1-x-γ)]O2(0≦x<0.5、0<γ<1)、Li[LixCo(1-x)]O2(0≦x<0.5)、Li[LixNiγMn(1-x-γ)]O2(0≦x<0.5、0<γ<1)、Li[LixNiγMnβCo(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LixNiγCoβAl(1-x-γ-β)]O2(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属酸化物として、LixMn24、LixNiγMn(2-γ)4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li32(PO43、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。正極合剤層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記導電剤としては、導電性材料であれば特に限定されない。このような導電剤としては、上記負極形成工程で例示した材料から選択できる。
 上記バインダーとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーとしては、上記負極形成工程で例示した材料から選択できる。
 正極合剤層は、正極基材に直接又は中間層を介して積層されてもよい。上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。負極と同様、中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。
[電極体形成工程]
 電極体形成工程では、上記正極及び上記負極を用いて電極体を形成する。上記電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体であると好ましい。電極体形成工程では、後述するセパレータを介して上記正極及び負極を積層又は巻回することにより、交互に重畳された電極体を形成する。
 上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解液の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。その他、多孔質樹脂フィルムと無機多孔層とを有する複合セパレータ等であってもよい。
 上記電極体は、上記電極体収容後上記密閉前において、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである場合、当該蓄電素子の製造方法による効果をより奏することができる。このように、上記巻回型電極体が、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有し、上記電極体収容後上記密閉前において、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである場合、電極体の平坦部は、上記中央部の中空領域や上記平坦部の外表面側の隙間に向けて電極間距離が広がりやすくなる。そのため、これらの空間においては、初回の充放電における添加剤の分解又は電解液の酸化還元分解により発生するガスにより、電極間距離がより大きくなりやすくなり、金属リチウム電析がより発生しやすくなる。当該蓄電素子の製造方法によれば、このような場合においても、電極間距離が大きくなることに伴う金属リチウム電析の発生に対する抑制効果が高い蓄電素子を製造できる。
[電極体収容工程]
 電極体収容工程では、負極及び正極が積層された電極体をケースに収容する。ケースとしては、非水電解質二次電池のケースとして通常用いられる公知の金属ケース、樹脂ケース等を用いることができる。上記金属としては、例えばアルミニウム又はアルミニウム合金が使用できる。ケースは、例えばケース本体と、ケース本体の開口部を閉鎖可能である蓋体とを有する。
 上記ケースが偏平の有底角筒形状のケース本体と、蓋体とを有する場合、上記ケースの密閉後において、上記電極体は、上記ケース本体の内表面に直接又は間接に接触していることが好ましい。上記ケース本体が偏平の有底角筒形状であることで、ケースの内部が負圧状態の場合、ケースを内側に向けて引く力が生じることにより、ケース本体の側面が凹みやすくなる。上記電極体がケース本体の内表面に直接又は間接に接触していることで、負圧により凹んだケース本体の側面に対向する電極体の側面が厚さ方向に加圧されるので、電極間のガスがより電極体外に排出されやすくなる。従って、電極間距離が大きくなることに対する抑制効果をより高めることができる。上記電極体がケース本体の内表面に間接に接触している場合とは、例えば蓄電素子が、ケースと電極体との間に介在するスペーサ、シート等を備え、ケースの内表面がスペーサ、シート等を介して電極体の外表面と間接に接触する場合が挙げられる。上記スペーサ、シート等の材質としては、絶縁性を有するものであれば特に限定されない。
[電解液収容工程]
 電解液収容工程では、上記電解液を上記ケースに収容する。電解液としては、当該蓄電素子が非水電解液二次電池である場合、非水電解液が用いられる。電解液の収容は、公知の方法により行うことができる。当該非水電解液二次電池は、例えばケースに設けられた注入口から非水電解液を注入することで上記電解液を上記ケースに収容する。
(非水電解液)
 上記非水電解液としては、一般的な非水電解液二次電池(蓄電素子)に通常用いられる公知の非水電解液が使用できる。上記非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩を含む。
 上記非水溶媒としては、一般的な蓄電素子用非水電解液の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもEC又はPCが好ましい。
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができ、これらの中でもDMC又はEMCが好ましい。
 上記電解質塩としては、一般的な蓄電素子用非水電解液の電解質塩として通常用いられる公知の電解質塩を用いることができる。上記電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。
 上記リチウム塩としては、LiPF6、LiPO22、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、LiC(SO2253等の水素がフッ素で置換された炭化水素基を有するリチウム塩などを挙げることができる。これらの中でも、無機リチウム塩が好ましく、LiPF6がより好ましい。
(添加剤)
 上記電解液には、本発明の効果を損なわない範囲で、蓄電素子の性能を向上するために種々の添加剤を添加してもよい。
 上記電解液が非水電解液の場合、添加剤として、一般に非水電解液二次電池に使用される添加剤が使用でき、例えばオキサラト錯塩、ホウ酸エステルの他、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等を単独で又は二種以上混合して非水電解質に加えることができる。
 上記添加剤の中でもオキサラト錯塩は、初回の充放電における一酸化炭素等の電解液に溶解しにくいガスの発生量が多い。そのため、電極間に一酸化炭素等のガスがより溜まりやすくなり、部分的に電極間距離が大きくなりやすい。当該蓄電素子の製造方法によれば、このような場合においても、電極間距離が大きくなることに対する抑制効果が高い蓄電素子を製造できる。上記オキサラト錯塩としては、例えばリチウムジフルオロビスオキサレートホスフェート[LiPF2(C242]、リチウムジフルオロオキサレートボレート[LiBF2(C24)]、リチウムビスオキサレートボレート[LiB(C242]、リチウムテトラフルオロオキサレートホスフェート[LiPF4(C24)]、リチウムトリスオキサレートホスフェート[LiP(C243]が挙げられる。これらの中でも、特にリチウムジフルオロビスオキサレートホスフェートが一酸化炭素等の電解液に溶解しにくいガスの発生量が多いため、当該蓄電素子の製造方法の効果をより奏することができる。
[気体収容工程]
 気体収容工程では、上記電解液収容工程の後、上記電解液に可溶な気体をケースに収容する。具体的には、上記電解液を上記ケースに収容した後、上記ケースに上記気体を上記注入口から注入することで上記電解液に可溶な気体をケースに収容する。上記気体の注入は、真空ポンプ等を用いてケースの内部の圧力を減圧下とした状態で実施してもよい。ここで、「減圧下」とは、例えばケースの内部の余剰空間の圧力が大気圧未満であることをいう。また、上記注入口は、上記電解液を注入するための注入口と別に設けられていてもよい。
 前述のとおり、ここで開示される蓄電素子は、上記電解液と上記気体と上記ケースとを備え、上記ケースの内部が負圧状態の雰囲気を有するものであり、かかる負圧状態の雰囲気を実現する好適な条件の一つとして、上記電解液を上記ケースに収容した後、当該ケースに上記気体を収容することが挙げられる。このように、電解液が収容された状態のケースに上記気体を注入することにより、密閉後に上記気体が上記電解液に溶解することによってケース内の圧力が効果的に下がり、ケース内部が好適な負圧状態になり得る。
 一方、上記気体を上記ケースに収容した後、当該ケースに上記電解液を注液する態様では、注液時に上記気体の多くが電解液に溶解し、密閉前の電解液に上記気体が溶けすぎる(例えば飽和溶解する)ため好ましくない。密閉前の電解液に上記気体が溶けすぎると、密閉後に上記気体が上記電解液にさらに溶解することが困難になり、ケース内の圧力を効果的に低減できない場合があり得る。
 好ましくは、上記電解液を上記ケースに収容した後、密閉前に予備充電を行うとよい。そして、真空ポンプを用いてケース内の圧力をいったん減圧した後に、当該圧力が大気圧付近となるように上記気体を注入するとよい。かかる気体注入直後の圧力は、ケース内部を好適な負圧状態の雰囲気にする観点から一つの重要なファクターである。好ましくは、気体注入直後の圧力が、0.1MPa以上0.2MPa以下(より好ましくは0.1MPa以上0.15MPa以下、さらに好ましくは0.1MPa以上0.12MPa以下、特に好ましくは0.1MPa以上0.11MPa以下)となるように、上記気体を注入する。このように気体注入直後の圧力が大気圧付近となるように上記気体を注入することにより、密閉前の電解液に上記気体が溶けすぎる不都合を解消または緩和し得、密閉後にケース内の圧力を効果的に下げることができる。
 上記電解液に可溶な気体の収容量としては、上記ケース内の圧力をより小さくする観点から、ケース内の余剰空間の体積に対して40体積%以上であることが好ましく、70体積%以上であることがより好ましく、例えば95体積%以上であってもよい。上記電解液に可溶な気体の収容量としては、ケース内の余剰空間の体積に対して100体積%未満であってもよい。ここに開示される技術は、上記電解液に可溶な気体の収容量が、ケース内の余剰空間の体積に対して70体積%以上100体積%未満(好ましくは80体積%以上95体積%以下)である態様で好ましく実施され得る。ここで、「ケース内の余剰空間の体積」とは、ケースの内容積から電極体、電解液、及び、集電体等の構造体の体積を差し引いた体積を意味する。また、電極体の体積とは、電極の構成要素(活物質、セパレータ、等)の実体積を意味し、活物質間やセパレータ内に存在する空隙は含まれない。つまり、ケース内の余剰空間の体積とは、25℃大気圧下において、ケース内に収容可能な気体の体積を意味する。
 ケース内に収容される上記電解液に可溶な気体の含有量は、上記ケース内の圧力をより小さくする観点から、ケース内に収容される全気体の収容量に対して80体積%以上であることが好ましく、98体積%以上であることが好ましく、100体積%であることがさらに好ましい。上記電解液に可溶な気体の含有量は、上記気体の取り扱いやすさの観点から、ケース内に収容される全気体の収容量に対して80体積%以下であってもよい。
 上記電解液がカーボネートを主成分とする非水電解液の場合、上記非水電解液に可溶な気体としては、例えば二酸化炭素ガス(1気圧下、25℃の非水電解液1cm3に対する溶解度5cm3)等が挙げられる。また、上記電解液がカーボネートを主成分とする非水電解液の場合、上記非水電解液に難溶又は不溶な気体としては、例えば、酸素ガス、窒素ガス、水素、メタン等が挙げられる。
 上記電解液の主成分がカーボネートである場合、上記気体としては二酸化炭素が好ましい。電解液の主成分がカーボネートの場合、上記気体としては取り扱い及び入手が容易な二酸化炭素を用いることができる。
[吸着部材収容工程]
 当該蓄電素子の製造方法は、吸着部材収容工程をさらに備えることが好ましい。吸着部材収容工程では、気体を吸着可能な部材をケースに収容する。当該蓄電素子の製造方法が吸着部材収容工程をさらに備えることで、上記気体の吸収量が増大してケースの内部の負圧も高まることで電極間のガスがより電極体外に排出されやすくなるので、電極間距離が大きくなることに対する抑制効果をより向上できる。また、上記吸着可能な部材によっても、上記気体が吸収されるので、上記ケースを密閉した後にケースの内部が負圧状態の雰囲気になるまでの時間が短縮できる。
 気体を吸着可能な部材としては、例えばシリカ、ゼオライト、活性炭、アルミナ等が挙げられる。上記部材は、電極体の中央部に配置される芯材、電極体とケースとの間に配置されるシート又はスペーサ等の部材として収容することができる。
[密閉工程]
 密閉工程では、上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉する。具体的には、上記ケースに上記気体を収容した後に注入口を封止することにより非水電解液二次電池を得ることができる。注入口の封止は、例えば、上記注入口を封止部材で塞ぎ、上記封止部材をレーザ溶接等により固定することにより行われる。
 密閉後、上記気体の上記電解液への溶解が平衡状態になった際の上記ケース内の圧力としては、電極間距離が大きくなることを効果的に抑制する観点から、25℃において0.02MPa以上0.09MPa以下が好ましい。なお、密閉直後における上記ケース内の圧力は、0.07MPa以上0.10MPa以下が好ましい。つまり、密閉直後は、上記気体の多くが上記電解液に溶解しておらず、密閉後に上記気体を上記電解液に溶解させることで、上記ケース内の圧力を小さくすることができる。
 上記電解液に可溶な気体の収容後から注入口の封止までの経過時間としては、密閉前に上記電解液に溶解したり、拡散によって上記注入口を介して上記ケースの外部へ排出されたりする上記気体の量を小さくする観点から1時間以下が好ましい。当該経過時間は、好ましくは30分以下(例えば1分以上30分以下)、より好ましくは20分以下、さらに好ましくは15分以下、特に好ましくは10分以下(例えば5分以下)である。上記電解液に可溶な気体の収容後から注入口の封止までの経過時間を短くすることにより、密閉前に上記電解液に上記気体が溶けすぎる(典型的には飽和溶解する)不都合を解消または緩和し得、密閉後にケース内の圧力を効果的に下げることができる。
 上記ケースに上記気体を収容した後、注入口を封止する工程までの間に、上記注入口を仮封止する工程を有してもよい。上記注入口を仮封止する工程は、例えば、ゴム製の栓部材等を用いて一時的に上記注入口を塞ぐ工程である。上記注入口を仮封止する工程を有することで、上記ケースに収容された上記気体が拡散によって上記注入口を介して上記ケースの外部に放出されることを抑制できる。この場合、上記注入口を封止する工程においては、栓部材等を取り外した後に上記注入口を封止部材で塞ぎ、上記封止部材をレーザ溶接等により固定すればよい。また、上記注入口を封止する工程においては、上記注入口を塞ぐ栓部材等ごと覆う封止部材を配置し、上記封止部材をレーザ溶接等により固定してもよい。
 当該蓄電素子の製造方法によれば、電極間距離が大きくなることに対する抑制効果が高い蓄電素子を製造できる。
<蓄電素子>
 当該蓄電素子は、負極及び正極が積層された電極体と、電解液と、上記電解液に可溶な気体と、上記電極体、上記電解液及び上記気体を収容するための密閉可能なケースとを備える。また、上記ケースの内部が負圧状態の雰囲気を有する。上記電極体は、セパレータを介して積層された正極及び負極を巻回した巻回型電極体を形成することが好ましい。また、上記電解液は、セパレータに含浸された状態で正極と負極との間に介在する。当該蓄電素子は、上記構成を備えることで、電解液に可溶な気体をケースに収容して上記ケースを密閉した後に上記気体が電解液に溶解する。その結果、ケース内の圧力が下がり、ケースの内部が負圧状態になることにより、すなわちケースを内側に向けて引く力が生じることにより、電極間に存在するガスが電極体外に排出される。
 好ましい一態様では、上記電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体であり、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである。
 好ましい一態様では、上記電解液の主成分がカーボネートであり、上記気体が二酸化炭素である。
 好ましい一態様では、上記電解液が、オキサラト錯塩を含有する。
 好ましい一態様では、上記ケースが偏平の有底角筒形状のケース本体と、蓋体とを有し、上記電極体は、上記ケース本体の内表面に直接又は間接に接触している。
 好ましい一態様では、上記気体を吸着可能な部材を上記ケースの内部にさらに備える。
 好ましい一態様では、上記ケースの内部が0.02MPa以上0.09MPa以下(好ましくは0.04MPa以上0.07MPa以下)の負圧状態の雰囲気を有する。
 次に、本発明の一実施形態の蓄電素子の具体的構成例について説明する。図1は、本発明の一実施形態の蓄電素子として非水電解液二次電池の電極体及びケースを示す模式的分解斜視図である。図2は、上記図1における非水電解液二次電池の模式的断面図である。蓄電素子1は、電極体2と、電極体2の両端部にそれぞれ接続される正極集電体4’及び負極集電体5’と、これらを収納するケース3とを備える。また、当該蓄電素子1による効果をより奏することができる形態として、上記電極体2は、中央部8に中空領域を有する。
 図1に示すように、蓄電素子1は、ケース3と、ケース3の中に収容される電極体2と、ケース3に設けられる正極端子4及び負極端子5とを備えている。ケース3は、偏平の有底角筒形状のケース本体11と、ケース本体11の細長い矩形状の開口部を閉鎖可能である細長い矩形板状の蓋体12とを有している。
 蓋体12には、外部と通電する正極端子4及び負極端子5が設けられている。また、正極は、正極基材と接続される正極集電体4’を介して正極端子4と電気的に接続され、負極は、負極基材と接続される負極集電体5’を介して負極端子5と電気的に接続されている。
 上記非水電解質二次電池を構成する電極体、電解液、電解液に可溶な気体及びケース等についての詳細は上述したとおりである。
[その他の実施形態]
 本発明の蓄電素子は、上記実施形態に限定されるものではない。
 また、上記実施の形態においては、蓄電素子が非水電解液二次電池である形態を中心に説明したが、その他の蓄電素子であってもよい。その他の蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。
 また、上記実施形態においては巻回型電極体を用いていたが、正極、負極及びセパレータを備える複数のシート体を重ねた積層体から形成される積層型電極体を備えてもよい。
 また、上記実施形態において、電極体は、中央部に中空領域を有していたが、中央部に中空領域を有していない電極体を備えてもよいし、ケース本体の内表面と電極体の平坦部の外表面との間に隙間が存在してもよい。
 また、上記実施形態においては、非水電解質二次電池の電解液として非水電解液を用いていたが、当該蓄電素子の製造方法は、水系電解液を用いるニッケル水素電池等にも適用できる。例えば上記ニッケル水素電池の場合、電解液として濃水酸化カリウム水溶液等のアルカリ溶液が用いられる。上記電解液が水系電解液の場合、電解液に可溶な気体としては、例えばアンモニア(1気圧下、20℃の水1cm3に対する溶解度700cm3)、等が挙げられる。また、上記電解液が水系電解液の場合、水系電解液に難溶又は不溶な気体としては、例えば、酸素ガス、窒素ガス等が挙げられる。
 本発明は、上記の蓄電素子を複数備える蓄電装置としても実現することができる。また、本発明の蓄電素子(セル)を単数又は複数個用いることにより蓄電ユニットを構成することができ、さらにこの蓄電ユニットを用いて蓄電装置を構成することができる。この場合、蓄電ユニット又は蓄電装置に含まれている少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。上記蓄電装置は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として用いることができる。さらに、上記蓄電装置は、エンジン始動用電源装置、補機用電源装置、無停電電源装置(UPS)等の種々の電源装置に用いることができる。
 図3に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1から実施例2及び比較例1から比較例2]
(1)負極形成工程
 負極活物質としての難黒鉛化質炭素と、バインダーとしてのポリフッ化ビニリデン(PVDF)とを含有し、N-メチル-2-ピロリドン(NMP)を分散媒とする負極合剤ペーストを調製した。負極活物質、バインダーの比率は、質量比で、93.0:7.0とした。負極合剤ペーストを厚さ8μmの銅箔基材の両面に塗工し、乾燥して、負極合剤層を形成し、実施例1から実施例2及び比較例1から比較例2の負極を得た。乾燥後の片面の単位面積当たりの負極合剤(負極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、0.40g/100cm2となるようにした。
(2)正極形成工程
 正極活物質としてのLiNi1/3Co1/3Mn1/32と、バインダーとしてのポリフッ化ビニリデン(PVDF)と、導電剤としてのアセチレンブラックとを含有し、N-メチル-2-ピロリドン(NMP)を分散媒とする正極合剤ペーストを調製した。正極活物質、バインダー、導電剤の比率は、質量比で、91.0:4.5:4.5とした。正極合剤ペーストを厚さ15μmのアルミニウム箔基材の両面に塗工し、乾燥して、正極活物質層を形成し、実施例1から実施例2及び比較例1から比較例2の正極を得た。乾燥後の片面の単位面積当たりの正極合剤(正極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、0.86g/100cm2となるようにした。
(3)電極体形成工程
 上記負極及び正極と、厚さ21μmのポリエチレン製セパレータとを積層した状態で中空巻芯を中心として巻回することで、実施例1から実施例2及び比較例1から比較例2の電極体を作製した。中空巻芯は、厚さ150μmのポリプロピレン製シートを楕円柱形状に丸めた状態で熱溶着することにより、内側に中空領域が形成される形状とした。このような中空巻芯を用いることにより、電極体の中心に平均厚さ1mmの中空領域が形成された電極体を構成した。電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体となるように巻回した。また、中空領域の平均厚さとは、電極体の厚さ方向(図2のY軸方向)における中空領域の平均長さを意味する。
(4)電極体収容工程
 電極体をアルミニウム合金製の偏平の有底角筒形状のケース本体に収容した。実施例1から実施例2及び比較例1から比較例2の全ての蓄電素子において、巻回型電極体の外面は、厚さ150μmのポリプロピレン製の絶縁シートを介して、ケース本体の内面に接触させた。
(5)電解液収容工程
 実施例2及び比較例2の蓄電素子において、PC、EMC及びDMCを体積比率として30:35:35で混合した非水溶媒にLiPF6を1.2mol/Lとなるように溶かした非水電解液を調製した。また、実施例1及び比較例1の蓄電素子において、上記非水電解液にさらに添加剤としてリチウムジフルオロビスオキサレートホスフェート[LiPF2(C242]を含有量が0.5質量%になるように溶かした非水電解液を調製した。調整された電解液をそれぞれ上記ケースに40cm3収容した。ケースの内容積は120cm3であり、電極体の体積は、50cm3であり、電極体以外の構造体(集電体等)及び電解液の体積の和は50cm3であった。つまり、ケース内の余剰空間の体積は20cm3であった。
(6)気体収容工程
 上記電解液の収容後、予備充電を行った。その後、実施例1及び実施例2の蓄電素子において、真空ポンプを用いてケース内の圧力を0.01MPaまで減圧した後に、電解液に可溶な気体としての二酸化炭素ガスを18cm3、ケースの内部に収容した。二酸化炭素ガス中の二酸化炭素の含有量は99.5体積%であり、二酸化炭素以外の成分として、窒素、酸素及びメタンを含んでいた。つまり、電解液に可溶な気体の収容量は、ケース内の余剰空間の体積に対して89.5体積%であった。比較例1及び比較例2の蓄電素子は、二酸化炭素ガスの代わりに空気をケースの内部に収容したことを除き、実施例1及び実施例2の蓄電素子と同様とした。
(7)密閉工程
 上記二酸化炭素ガス又は上記空気を上記ケースに収容した5分後に注入口の封止を行うことによりケースを密閉し、試験用セルである実施例1から実施例2及び比較例1から比較例2の非水電解質蓄電素子を得た。密閉後、48時間経過後のケース内の圧力は、25℃において、実施例1は0.06MPa、比較例1は0.11MPa、実施例2は0.06MPa、比較例2は0.11MPaであった。
 [評価]
(電極体の空隙量の測定)
 密閉後、48時間経過後の実施例1から実施例2及び比較例1から比較例2の蓄電素子の電極体の空隙量を下記の手順で測定した。
(1)電極体の断面像の取得
 測定対象とする蓄電素子における電極体の断面像の取得には、マイクロフォーカスX線CT(島津製作所製のinspeXio SMX-225CT FPD HR)を用いた。断面像の取得の条件として、撮影モードを3次元CT、画像サイズを縦横いずれも512ピクセル、スライス厚さ77μm、スライス間距離77μm、ボクセルサイズ77μm、撮影視野39.3mmφ、ビュー数1800とした。それぞれの蓄電素子において、電極体のYZ平面の断面像を取得し、得られた断面像は、画像ファイルとして保存した。
(2)電極体の輪郭の切り抜き
 画像編集ソフトAdobe Photoshop Elements 11の画像切り抜き機能を用いて、取得した電極体の断面像の画像から電極体の輪郭を切り抜いた。
(3)二値化処理
 輪郭を切り抜いた電極体の断面像について、画像処理ソフトWinROOF2013を用い、電極体の空隙量(ピクセル数)を算出した。ここで、空隙量の算出は、輪郭を切り抜いた電極体の断面像のうち、電極体の中央に位置する中空領域及び巻芯を除いた部分に対して行った。具体的には、まず、明るさの強度が最大となる濃度から60%分小さい濃度を閾値に設定して二値化処理を行った。明るさの濃度が低い側のうち、ピクセル集団が15ピクセル以下のものはノイズとみなし、ピクセル集団が16ピクセル以上のもののみを総和することで、電極体の空隙量(ピクセル数)を算出した。
 また、電解液に添加剤としてリチウムジフルオロビスオキサレートホスフェートを加えた実施例1及び比較例1と、上記添加剤を加えていない実施例2及び比較例2とのそれぞれの間で電極体の空隙量(ピクセル数)を比較することにより、二酸化炭素ガスを収容することによる電極体の空隙量の低減率(%)を求めた。これらの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図4に、実施例1から実施例2及び比較例1から比較例2の蓄電素子における電極体のXY平面の断面像を示す。図4に示されるように、二酸化炭素ガスを収容していない比較例1及び比較例2の電極体は、目視においても電極間距離が大きくなっている部分が複数箇所観察される。一方、二酸化炭素ガスを収容した実施例1及び実施例2の電極体は、電極間距離が大きくなっている部分が比較例1及び比較例2と比べて低減されている。また、比較例1及び比較例2と異なり、実施例1及び実施例2の蓄電素子は、ケース本体の内面が内向きに凹んだ状態で電極体の平坦部の外面に絶縁シートを介して接触していた。ケースの内部が負圧状態の場合、ケース本体の内面が内向きに凹んだ状態で電極体の外面に接触することで、電極間に存在する電解液に溶解しにくいガスが電極体外に排出されやすくなったと考えられる。なお、当該断面像は、電極体の空隙量を算出する際と同様に、マイクロフォーカスX線CT(島津製作所製のinspeXio SMX-225CT FPD HR)を用いて取得した。
 画像処理を用いて電極体の空隙量を測定した結果、表1に示されるように、電解液に可溶な気体がケースに収容された実施例1及び実施例2は、上記気体がケースに収容されていない比較例1及び比較例2に比べて電極体の空隙量が大きく抑制されていた。このことから、当該蓄電素子は、電極間距離が大きくなることに対する抑制効果が高いことが理解できる。また、電解液に添加剤としてリチウムジフルオロビスオキサレートホスフェートを加えた実施例1及び比較例1と、上記添加剤を加えていない実施例2及び比較例2とのそれぞれの間で二酸化炭素ガスを収容することによる電極体の空隙量の低減率(%)を求めた結果から、一酸化炭素等の電解液に溶解しにくいガスの発生量が多い上記添加剤を加えた実施例1が、より電極体の空隙量の低減率(%)が大きい。このことから、電極間距離が大きくなりやすい上記添加剤を含有する場合、当該蓄電素子の効果がより奏されたことがわかる。
 以上のように、当該蓄電素子の製造方法は、電極間距離が大きくなることに対する抑制効果が高いと推測される。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解液二次電池をはじめとした蓄電素子として好適に用いられる。
1       蓄電素子
2       電極体
3       ケース
4       正極端子
4’      正極集電体
5       負極端子
5’      負極集電体
8       中央部
11      ケース本体
12      蓋体
20      蓄電ユニット
30      蓄電装置

Claims (13)

  1.  負極及び正極が積層された電極体をケースに収容すること、
     電解液を上記ケースに収容すること、
     上記電解液を上記ケースに収容した後、上記電解液に可溶な気体を上記ケースに収容すること、及び
     上記電解液に可溶な気体が上記ケースに収容された状態で上記ケースを密閉することを備える蓄電素子の製造方法。
  2.  上記電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体であり、
     上記電極体収容後上記密閉前において、上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである請求項1の蓄電素子の製造方法。
  3.  上記電解液の主成分がカーボネートであり、上記気体が二酸化炭素である請求項1又は請求項2の蓄電素子の製造方法。
  4.  上記電解液が、オキサラト錯塩を含有する請求項3の蓄電素子の製造方法。
  5.  上記ケースが偏平の有底角筒形状のケース本体と、蓋体とを有し、
     上記ケースの密閉後において、上記電極体は、上記ケース本体の内表面に直接又は間接に接触している請求項1から請求項4のいずれか1項の蓄電素子の製造方法。
  6.  上記気体を吸着可能な部材を上記ケースに収容することをさらに備える請求項1から請求項5のいずれか1項の蓄電素子の製造方法。
  7.  負極及び正極が積層された電極体と、
     電解液と、
     上記電解液に可溶な気体と、
     上記電極体、上記電解液及び上記気体を収容するための密閉可能なケースと
     を備え、
     上記ケースの内部が負圧状態の雰囲気を有する蓄電素子。
  8.  上記電極体は、対向する一対の湾曲部と、上記一対の湾曲部の間に位置する平坦部とを有する巻回型電極体であり、
     上記電極体が巻回軸方向から見て中央部に中空領域を有するか、上記電極体の上記平坦部の外表面と上記ケースの内表面との間に隙間が存在するか、又はその組み合わせである請求項7の蓄電素子。
  9.  上記電解液の主成分がカーボネートであり、上記気体が二酸化炭素である請求項7又は請求項8の蓄電素子。
  10.  上記電解液が、オキサラト錯塩を含有する請求項9の蓄電素子。
  11.  上記ケースが偏平の有底角筒形状のケース本体と、蓋体とを有し、
     上記電極体は、上記ケース本体の内表面に直接又は間接に接触している請求項7から請求項10のいずれか1項の蓄電素子。
  12.  上記気体を吸着可能な部材を上記ケースの内部にさらに備える請求項7から請求項11のいずれか1項の蓄電素子。
  13.  上記ケースの内部が0.02MPa以上0.09MPa以下の負圧状態の雰囲気を有する請求項7から請求項12のいずれか1項の蓄電素子。
PCT/JP2020/031187 2019-08-20 2020-08-19 蓄電素子の製造方法及び蓄電素子 WO2021033697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021540955A JPWO2021033697A1 (ja) 2019-08-20 2020-08-19
US17/635,511 US20220320568A1 (en) 2019-08-20 2020-08-19 Method for manufacturing energy storage device and energy storage device
EP20854358.7A EP4006935A4 (en) 2019-08-20 2020-08-19 METHOD FOR PRODUCING AN ELECTRICITY STORAGE ELEMENT AND ELECTRICITY STORAGE ELEMENT
CN202080058232.6A CN114616642A (zh) 2019-08-20 2020-08-19 蓄电元件的制造方法和蓄电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019150700 2019-08-20
JP2019-150700 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021033697A1 true WO2021033697A1 (ja) 2021-02-25

Family

ID=74661169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031187 WO2021033697A1 (ja) 2019-08-20 2020-08-19 蓄電素子の製造方法及び蓄電素子

Country Status (5)

Country Link
US (1) US20220320568A1 (ja)
EP (1) EP4006935A4 (ja)
JP (1) JPWO2021033697A1 (ja)
CN (1) CN114616642A (ja)
WO (1) WO2021033697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066045A1 (zh) * 2021-10-19 2023-04-27 宁德时代新能源科技股份有限公司 一种注液装置和注液方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
JP2003157898A (ja) * 2001-11-20 2003-05-30 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2010153337A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp リチウム二次電池の製造方法
JP2010257989A (ja) * 2003-06-19 2010-11-11 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2013041781A (ja) * 2011-08-18 2013-02-28 Gs Yuasa Corp 蓄電素子及び蓄電素子システム
JP2013080698A (ja) * 2011-09-21 2013-05-02 Institute Of Energy Engineering Inc 積層電池および積層電池システム
WO2014010024A1 (ja) * 2012-07-09 2014-01-16 トヨタ自動車株式会社 電池製造方法
JP2014123526A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp 非水電解液二次電池及びその製造方法
WO2017098918A1 (ja) * 2015-12-09 2017-06-15 国立大学法人 横浜国立大学 二次電池
JP2020123434A (ja) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725381B2 (ja) * 2013-01-23 2015-05-27 トヨタ自動車株式会社 非水電解液二次電池及びその製造方法
JP6120065B2 (ja) * 2013-04-09 2017-04-26 トヨタ自動車株式会社 非水電解液二次電池及びその製造方法
JP7234529B2 (ja) * 2017-08-31 2023-03-08 株式会社Gsユアサ 非水電解質及び蓄電素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
JP2003157898A (ja) * 2001-11-20 2003-05-30 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2010257989A (ja) * 2003-06-19 2010-11-11 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2010153337A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp リチウム二次電池の製造方法
JP2013041781A (ja) * 2011-08-18 2013-02-28 Gs Yuasa Corp 蓄電素子及び蓄電素子システム
JP2013080698A (ja) * 2011-09-21 2013-05-02 Institute Of Energy Engineering Inc 積層電池および積層電池システム
WO2014010024A1 (ja) * 2012-07-09 2014-01-16 トヨタ自動車株式会社 電池製造方法
JP2014123526A (ja) * 2012-12-21 2014-07-03 Toyota Motor Corp 非水電解液二次電池及びその製造方法
WO2017098918A1 (ja) * 2015-12-09 2017-06-15 国立大学法人 横浜国立大学 二次電池
JP2020123434A (ja) * 2019-01-29 2020-08-13 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006935A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066045A1 (zh) * 2021-10-19 2023-04-27 宁德时代新能源科技股份有限公司 一种注液装置和注液方法

Also Published As

Publication number Publication date
EP4006935A4 (en) 2022-10-12
EP4006935A1 (en) 2022-06-01
JPWO2021033697A1 (ja) 2021-02-25
US20220320568A1 (en) 2022-10-06
CN114616642A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
JP2022075345A (ja) 蓄電素子用正極及び蓄電素子
US20230022950A1 (en) Energy storage device
WO2021033697A1 (ja) 蓄電素子の製造方法及び蓄電素子
WO2021193184A1 (ja) 蓄電素子、蓄電素子の製造方法及び蓄電装置
US20210305632A1 (en) Energy storage device
WO2021100470A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP2016085853A (ja) 非水電解液二次電池用のセパレータおよびその利用
WO2022176836A1 (ja) 蓄電素子
JPWO2019093313A1 (ja) 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
EP4276862A1 (en) Electricity storage element
US20240154180A1 (en) Energy storage device and method for manufacturing the same
EP4280330A1 (en) Nonaqueous electrolyte power storage element
EP4300524A1 (en) Electricity storage element
US20220336860A1 (en) Nonaqueous electrolyte energy storage device and energy storage apparatus
WO2023224070A1 (ja) 非水電解質蓄電素子
WO2023195434A1 (ja) 蓄電素子及び蓄電装置
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
JP7451994B2 (ja) 蓄電素子
EP4250419A1 (en) Nonaqueous electrolyte power storage element, electronic device, and automobile
EP4307405A1 (en) Nonaqueous-electrolyte electricity storage element
WO2024029333A1 (ja) 非水電解質蓄電素子
EP4322258A1 (en) Nonaqueous electrolyte power storage element and power storage device
WO2023243336A1 (ja) 蓄電素子用負極及び蓄電素子
EP4343910A1 (en) Power storage element
WO2022097612A1 (ja) 非水電解質蓄電素子用正極、非水電解質蓄電素子及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854358

Country of ref document: EP

Effective date: 20220225