WO2023066045A1 - 一种注液装置和注液方法 - Google Patents

一种注液装置和注液方法 Download PDF

Info

Publication number
WO2023066045A1
WO2023066045A1 PCT/CN2022/124087 CN2022124087W WO2023066045A1 WO 2023066045 A1 WO2023066045 A1 WO 2023066045A1 CN 2022124087 W CN2022124087 W CN 2022124087W WO 2023066045 A1 WO2023066045 A1 WO 2023066045A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid injection
assembly
electrolyte
housing
Prior art date
Application number
PCT/CN2022/124087
Other languages
English (en)
French (fr)
Inventor
施企明
汪志明
黄彩虾
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22882655.8A priority Critical patent/EP4354648A1/en
Publication of WO2023066045A1 publication Critical patent/WO2023066045A1/zh
Priority to US18/515,268 priority patent/US20240088536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery manufacturing, in particular to a liquid injection device and a liquid injection method.
  • a battery cell generally includes a casing, an electrode assembly, and an electrolyte.
  • the electrode assembly and the electrolyte are both arranged in the casing, and the electrolyte is used to infiltrate the electrode assembly.
  • it is necessary to inject electrolyte solution into the case with the electrode assembly through the liquid injection device.
  • the density of the electrode assembly is increasing, and it is more difficult for the electrolyte to completely infiltrate the electrode assembly, resulting in a slow flow of the electrolyte into the casing and a decrease in the injection efficiency.
  • the gas in the casing is extracted before the liquid injection, so that the air pressure in the casing is reduced, so as to accelerate the speed of the electrolyte flowing into the casing.
  • the liquid injection efficiency is still low.
  • embodiments of the present application provide a liquid injection device and a liquid injection method, which can improve liquid injection efficiency.
  • a liquid injection device which is used to inject electrolyte solution into the casing of the battery cell.
  • the liquid injection device includes: a liquid injection assembly, which has a liquid injection end, and the liquid injection end is used for The inner cavity of the housing is connected; the air extraction component has an air extraction end, and the air extraction end is used to communicate with the inner cavity of the housing; the gas injection component has an air intake end and an air injection end, and the air intake end is used for connecting with the gas The container is connected, and the gas injection end is used to communicate with the inner cavity of the housing; wherein, the gas storage container stores target gas, and the target gas is soluble in the electrolyte.
  • the gas injection assembly is used to inject the target gas into the housing, and the target gas is used to replace the air in the housing, and then the air extraction is used to The component extracts the gas in the housing.
  • the gas in the housing is mainly the target gas, and then the electrolyte is injected into the housing through the liquid injection component.
  • the solubility of the target gas in the electrolyte is greater than 0.1.
  • the solubility of the target gas in the electrolyte is large, and the resistance to the process of injecting the electrolyte into the shell and infiltrating the electrode assembly is small, improving the injection efficiency of the electrolyte, and preventing the electrolyte from incompletely infiltrating the electrode assembly and affecting the battery cell. Charge and discharge performance.
  • the target gas is CO2 or CO gas.
  • CO 2 or CO is an electrolyte-soluble gas that is easy to produce and low in cost, and can reduce the cost of liquid injection.
  • the target gas is a dry gas. After the dry gas is passed into the casing, it will not affect the concentration ratio of the electrolyte, which ensures the electrochemical performance of the battery cell after liquid injection.
  • the gas injection assembly further includes: a pressure regulating valve disposed between the gas inlet end and the gas injection end.
  • the pressure regulating valve adjusts the gas flow velocity at the gas injection end, thereby controlling the velocity of the gas flowing into the casing, thereby achieving the effect of controlling the air pressure in the casing.
  • a liquid injection method injects electrolyte solution into the casing of the battery cell through the liquid injection device in the above embodiment.
  • the method includes: The target gas is injected into the body; the gas in the casing is extracted through the gas pumping component; the electrolyte is injected into the casing through the liquid injection component. Inject the target gas into the shell, replace the air in the shell with the target gas, and then extract the target gas in the shell. After the gas in the shell is pumped out, even if there is residual target gas in the shell, the target gas can be dissolved in Therefore, the residual target gas has less resistance to the electrolyte injection process, so that the injection efficiency is improved.
  • the method before injecting the target gas into the casing through the gas injection component, the method further includes: extracting the gas in the casing through the gas extraction component. Before injecting the target gas, the extracted gas is the gas in the casing. After the gas is extracted, a negative pressure is formed in the casing to facilitate the injection of the target gas; after the target gas is injected, the target gas is the main gas in the casing. After the target gas is extracted, use Negative pressure is formed in the housing to facilitate electrolyte injection.
  • the method further includes: controlling the air pressure in the housing through a pressure regulating valve, so that the air pressure in the housing is lower than the air pressure in the liquid injection assembly. Since the air pressure in the casing is lower than the air pressure in the liquid injection container, the electrolyte in the liquid injection container is accelerated to flow to the casing under the push of the air pressure in the liquid injection container, thereby improving the liquid injection efficiency.
  • injecting the electrolyte into the housing through the liquid injection assembly includes: injecting gas into the liquid injection assembly, so that the air pressure in the housing is lower than the air pressure in the liquid injection assembly. Injecting gas into the liquid injection container can increase the air pressure in the liquid injection container, so that the air pressure in the shell is lower than the air pressure in the liquid injection container. With the injection process of the electrolyte, the injection of gas into the liquid injection container can be flexibly adjusted The air pressure difference between the liquid injection container and the shell can be adjusted in real time.
  • the air pressure control method is relatively simple to implement, and the implementation method is flexible and controllable.
  • the method before injecting the electrolyte solution into the case through the liquid injection assembly, the method further includes: drying the electrode assembly in the battery cell.
  • the electrode assembly may absorb moisture in the surrounding environment during the manufacturing process, and this part of moisture is mixed into the electrolyte, which may affect the proportion of the electrolyte. Drying the electrode assembly before liquid injection can reduce the moisture in the electrode assembly, thereby reducing the influence of moisture on the electrolyte ratio, and making the electrochemical performance of the battery cell stable.
  • drying the electrode assembly in the battery cell includes: placing the battery cell in an oven; extracting gas in the oven through a gas extraction component; injecting a target gas into the oven through a gas injection component.
  • the water in the electrode assembly evaporates into water vapor.
  • this part of the gas with water vapor is extracted, and then the target gas is injected into the oven.
  • the gas replaces the humid gas in the oven and the shell of the battery cell, preventing this part of the gas with water vapor from remaining in the shell and affecting the drying effect of the electrode assembly.
  • FIG. 1 is a schematic structural diagram of a liquid injection device in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a usage state of the liquid injection device in an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another usage state of the liquid injection device in an embodiment of the present application.
  • Fig. 4 is a flowchart of a liquid injection method provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of a liquid injection method provided by another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of injecting gas into the liquid injection container using the gas injection assembly in an embodiment of the present application.
  • Fig. 7 is a flowchart of a liquid injection method provided in another embodiment of the present application.
  • FIG. 8 is a flowchart of a method for drying an electrode assembly of a battery cell in an embodiment of the present application.
  • Air extraction component 11. Air extraction end; 12. Air extraction pump; 13. Air extraction pipe; 14. Air extraction valve; 2. Air injection assembly; 21. Air intake end; 22. Air injection end; 23. Air pump; 24, air supply pipeline; 25, air supply valve; 26, pressure regulating valve; 3, gas storage container; 4, liquid injection component; 41, liquid injection end; 5, battery cell; 6, oven.
  • multiple means more than two (including two), and similarly, “multiple groups” means more than two (including two).
  • connection or “connection” of mechanical structures It may refer to a physical connection, for example, a physical connection may be a fixed connection, such as a fixed connection through a fixture, such as a fixed connection through screws, bolts or other fasteners; a physical connection may also be a detachable connection, such as Mutual clamping or clamping connection; the physical connection may also be an integral connection, for example, welding, bonding or integrally formed connection for connection.
  • connection or “connection” of the circuit structure may not only refer to a physical connection, but also an electrical connection or a signal connection, for example, it may be a direct connection, that is, a physical connection, or an indirect connection through at least one intermediate component, As long as the circuit is connected, it can also be the internal connection of two components; besides the signal connection through the circuit, the signal connection can also refer to the signal connection through the media medium, for example, radio waves.
  • a battery cell generally includes a casing, an electrode assembly and an electrolyte.
  • the casing has an inner cavity. Both the electrode assembly and the electrolyte are located in the inner cavity of the casing.
  • the electrolyte is used to infiltrate the electrode assembly.
  • the electrode assembly is first placed in the case, and then the electrolyte is injected into the inner cavity of the case through the liquid injection device.
  • the density of the electrode assembly is increasing, and it is more difficult for the electrolyte to completely infiltrate the electrode assembly, resulting in a slow flow of the electrolyte into the casing and a decrease in the injection efficiency.
  • the gas in the housing is extracted before the liquid injection, so that the air pressure in the housing is lower than normal pressure.
  • the electrolyte can be accelerated into the housing under the action of negative pressure.
  • the wetting speed of the electrolyte can only be increased to a certain extent at the initial stage of electrolyte injection, and after the air pressure in the casing increases, the electrolyte still flows into the casing at a relatively low speed, and the injection efficiency Still lower.
  • the gas will hinder the infiltration of the electrolyte, resulting in a slower wetting speed of the electrolyte, and it is difficult to completely extract the gas filled between the tab interlayers of the electrode assembly. As a result, the injection efficiency cannot be greatly improved.
  • the embodiment of the present application provides a liquid injection device and a liquid injection method, which inject the target gas into the casing of the battery cell through the gas injection assembly to replace the original gas in the casing, and reuse
  • the air extraction component extracts the gas in the shell.
  • the gas remaining in the shell is mainly a small amount of target gas.
  • the target gas can dissolve in the electrolyte, the target gas hinders the electrolyte less. , so that the electrolyte can quickly infiltrate the electrode assembly, thereby speeding up the injection of the electrolyte into the casing.
  • FIG. 1 is a schematic structural diagram of a liquid injection device in an embodiment of the present application.
  • a liquid injection device is provided for injecting electrolyte solution into the casing of the battery cell 5, the liquid injection device includes: an air extraction assembly 1, an air injection assembly 2 and the liquid injection assembly 4; the air extraction assembly 1 has an air extraction end 11, and the air extraction end 11 is used to communicate with the inner cavity of the housing to extract the gas in the housing; the air injection assembly 2 has an air intake end 21 and an air injection end 22.
  • the gas inlet port 21 is connected to the gas storage container 3, and the gas injection port 22 is used to communicate with the cavity of the housing to inject the target gas in the gas storage container 3 into the housing; the gas storage container 3 stores the target gas, and the target gas The gas is soluble in the electrolyte.
  • the liquid injection assembly 4 has a liquid injection port 41 for communicating with the inner cavity of the housing.
  • the air pumping assembly 1 extracts the gas in the casing, so that the air pressure in the casing is reduced to a negative pressure state, and in the negative pressure state, it is convenient to inject gas or liquid into the casing.
  • the gas extracted by the pumping assembly 1 can be air, target gas, or other mixed gases or pure gases, which is not limited in this embodiment of the application.
  • the pumping assembly 1 can be used for pumping in any link during the liquid injection process. Air operation, which is used according to the actual situation, does not affect the structure and function of the air extraction assembly 1 in the embodiment of the present application.
  • the gas extraction assembly 1 can extract the gas in the housing by directly connecting the air extraction end 11 with the housing of the battery cell 5 to extract the gas in the housing, or by connecting the air extraction end 11 of the air extraction assembly 1 with the Other media are connected to extract the gas in the shell.
  • the air extraction assembly 1 includes an air extraction pump 12, an air extraction pipeline 13, and an air extraction valve 14 connected to the air extraction pipeline 13, and the air extraction pipeline 13 is far away from the air extraction pump
  • One end of 12 is the air extraction end 11.
  • the air extraction end 11 is connected to the parts that need air extraction, and the air extraction pump 12 and the air extraction valve 14 are opened to extract gas. After the air extraction is completed, close the air extraction pump 12 and the air extraction valve. Exhaust valve 14 gets final product.
  • the gas injection assembly 2 injects the target gas in the gas storage container 3 into the casing, so that the target gas replaces the original gas in the casing. Since the target gas is soluble in the electrolyte, during the electrolyte injection process, the target gas There is no resistance to the infiltration of the electrolyte, or the resistance to the electrolyte is small, so that the infiltration of the electrolyte is accelerated and the injection efficiency is improved.
  • the gas injection assembly 2 can inject gas into the casing of the battery cell 5 by directly connecting the gas injection end 22 of the gas injection assembly 2 with the battery cell 5 to inject the target gas into the casing of the battery cell 5 , it can also be that the gas injection end 22 of the gas injection component 2 is connected to the space where the battery cell 5 is located, and the gas injection component 2 injects the target gas into the space where the battery cell 5 is located, so that the target gas flows from the space into the battery cell Inside the shell of body 5.
  • the air injection assembly 2 includes an air supply pump 23, an air supply pipeline 24 and an air supply valve 25 connected to the air supply pipeline 24.
  • One end of the air supply pipeline 24 is the intake end 21, and the other end
  • the gas injection port 22 is connected to the gas storage container 3 at the gas inlet port 21 .
  • connect the gas injection end 22 to the parts that need to inject gas open the air delivery pump 23 and the gas delivery valve 25, send the target gas in the gas storage container 3 to the gas injection end 22 along the gas delivery pipeline 24, and inject and inject gas.
  • the gas delivery pump 23 and the gas delivery valve 25 can be closed.
  • Fig. 2 is a schematic diagram of a usage state of the liquid injection device in an embodiment of the present application.
  • a plurality of battery cells 5 are placed in a relatively closed space, such as an oven 6, and when it is necessary to extract the gas in the housing, the exhaust assembly 1
  • the gas end 11 communicates with the closed space, so as to extract the gas in the closed space, and then extract the gas in the shells of all the battery cells 5 located in the closed space.
  • the gas injection end 22 of the gas injection assembly 2 is communicated with the closed space, and the target gas is passed into the closed space, and then the target gas flows from the closed space into the casing.
  • Fig. 3 is a schematic diagram of another usage state of the liquid injection device in an embodiment of the present application.
  • the air extraction end 11 of the air extraction assembly 1 is directly communicated with the casing of the battery cell 5 to extract the gas in the casing.
  • the gas injection end 22 of the liquid injection assembly is directly connected to the casing of the battery cell 5 to inject the target gas into the casing of the battery cell 5 .
  • the liquid injection assembly 4 may be a liquid injection container, so that the structure of the liquid injection assembly 4 is simpler.
  • the target gas can be injected into the inner cavity of the housing through the gas injection component 2, and the target gas replaces the original gas in the inner cavity of the housing;
  • the gas in the body cavity, the gas remaining in the casing at this time is mainly a small amount of target gas; then the electrolyte is injected into the casing through the liquid injection assembly 4, during the liquid injection process, because the target gas can dissolve in the electrolyte, so , the target gas has less hindrance to the electrolyte, thereby speeding up the injection speed of the electrolyte into the shell and improving the efficiency of liquid injection.
  • the solubility of the target gas in the electrolyte in the gas storage container 3 is greater than 0.1.
  • the solubility of the target gas in the electrolyte is relatively large, and the resistance to the process of injecting the electrolyte into the casing and infiltrating the electrode assembly is small, improving the injection efficiency of the electrolyte, and preventing the electrolyte from infiltrating the electrode assembly. It affects the charging and discharging performance of the battery cell 5 .
  • the target gas in the gas storage container 3 includes any one of carbon dioxide (CO 2 ) gas or carbon monoxide (CO) gas.
  • the target gas is CO 2 gas; or the target gas is CO gas; or the target gas is a mixed gas of CO 2 gas and CO gas.
  • CO 2 or CO is an electrolyte-soluble gas that is easy to produce and has low cost, which can reduce the cost of liquid injection.
  • the target gas is a dry gas.
  • the target gas is CO 2 gas which is a dry gas; or CO gas which is a dry gas; or a mixed gas of CO 2 gas and CO gas which is a dry gas.
  • the gas injection assembly 2 further includes a pressure regulating valve 26, the pressure regulating valve 26 is arranged between the air intake end 21 and the gas injection end 22, the pressure regulating valve 26 is used for The outflow velocity of the gas flow from the gas injection port 22 is controlled.
  • the pressure regulating valve 26 adjusts the outflow velocity of the airflow at the gas injection port 22, thereby controlling the velocity of the gas flowing into the housing, thereby achieving the effect of controlling the air pressure in the housing.
  • the embodiments of the present application provide a liquid injection method, the liquid injection method injects electrolyte solution into the casing of the battery cell through the above-mentioned liquid injection device.
  • Fig. 4 is a flowchart of a liquid injection method provided by an embodiment of the present application. As shown in Figure 4, in some embodiments, the liquid injection method includes:
  • the target gas is a gas soluble in the electrolyte.
  • the target gas is injected into the housing, the air in the housing is replaced by the target gas, and then the target gas in the housing is extracted. After the gas in the housing is extracted, even if there is residual target gas in the housing, due to the The target gas can be dissolved in the electrolyte, therefore, the remaining target gas has less resistance to the injection process of the electrolyte, thereby improving the injection efficiency.
  • Fig. 5 is a flowchart of a liquid injection method provided by another embodiment of the present application. As shown in Figure 5, the injection method includes:
  • the gas in the housing is extracted before the target gas is injected, and after the gas is extracted, a negative pressure is formed in the housing to facilitate the injection of the target gas; after the target gas is injected, the target gas is used as the main gas in the housing, and after the target gas is extracted, A negative pressure is formed in the shell to facilitate electrolyte injection.
  • the liquid injection method further includes: controlling the air pressure in the housing through a pressure regulating valve, so that the air pressure in the housing is lower than the air pressure in the liquid injection assembly, so as to The speed at which the electrolyte solution in the liquid injection assembly 4 flows into the housing is accelerated.
  • the electrolyte in the liquid injection assembly 4 accelerates to flow to the casing under the push of the air pressure in the liquid injection assembly 4 , thereby improving the liquid injection efficiency.
  • injecting the electrolyte into the housing includes: injecting gas into the liquid injection assembly 4 , so as to control the air pressure in the housing to be smaller than the air pressure in the liquid injection assembly 4 .
  • the gas injected into the liquid injection assembly 4 may be the above-mentioned target gas or other gases.
  • FIG. 6 is a schematic structural diagram of using the gas injection assembly to inject gas into the liquid injection container in an embodiment of the present application.
  • the gas injection end 22 of the gas injection assembly 2 of the above embodiment can be connected to the liquid injection assembly 4 to inject the gas in the gas storage container 3 into the liquid injection assembly 4 for increasing the The air pressure of liquid injection assembly 4.
  • injecting gas into the liquid injection assembly 4 can increase the air pressure in the liquid injection assembly 4, so that the air pressure in the casing is lower than the air pressure in the liquid injection assembly 4.
  • the speed of injecting gas into the liquid injection assembly 4 is adjusted to adjust the air pressure difference between the liquid injection assembly 4 and the housing in real time.
  • This air pressure control method is relatively simple to implement, and the implementation method is flexible and controllable.
  • Fig. 7 is a flowchart of a liquid injection method provided in another embodiment of the present application. As shown in Figure 7, the injection method includes:
  • the equipment used for drying may be an oven 6, etc., and the battery cell 5 is placed in the oven 6, and the oven 6 can be kept airtight during the drying process of the battery cell 5, so as to reduce heat loss.
  • the electrode assembly may absorb moisture in the surrounding environment during the manufacturing process. This part of moisture is mixed into the electrolyte, which may affect the proportion of the electrolyte. Drying the electrode assembly before liquid injection can reduce the moisture in the electrode assembly , thereby reducing the influence of moisture on the proportion of the electrolyte solution, so that the electrochemical performance of the battery cell 5 is stable.
  • FIG. 8 is a flowchart of a method for drying an electrode assembly of a battery cell in an embodiment of the present application. As shown in Figure 8, in some embodiments, S30 includes:
  • the gas extraction assembly 1 of the above embodiment can be used to extract the gas in the oven 6, and the gas injection assembly 2 of the above embodiment can be used to inject the target gas into the oven 6.
  • the working state of the drying process is shown in Figure 2 , reference can be made to the above-mentioned embodiments of the liquid injection device, and the embodiments of the present application will not be repeated.
  • the above steps S301 and S302 may be repeated multiple times, so as to ensure that the water vapor in the casing of the battery cell 5 can be completely extracted.
  • the water in the electrode assembly evaporates into water vapor, and during the process of extracting the gas in the oven 6, this part of the gas with water vapor is extracted, and then in the oven 6 Inject the target gas, and use the target gas to replace the moist gas in the oven 6 and the casing of the battery cell 5, so as to prevent this part of the gas with water vapor from remaining in the casing and affect the drying effect of the electrode assembly.
  • the two steps of injecting the target gas into the housing and extracting the gas in the housing of the battery cell 5 can be cycled once or more times, so that the battery The gas in the casing of the battery cell 5 is replaced with the target gas as much as possible, so as to avoid gas insoluble in the electrolyte remaining in the casing of the battery cell 5 and affecting the injection efficiency of the electrolyte.
  • the gas injection assembly 2 before injecting the electrolyte into the casing, the gas injection assembly 2 is used to inject the target gas into the casing, and the air in the casing is replaced by the target gas, and then the air pumping assembly 1 is used to extract the air in the casing. Finally, the electrolyte is injected into the casing.
  • the liquid injection process even if there is residual target gas in the casing, since the target gas is soluble in the electrolyte, the residual gas has less resistance to the electrolyte injection process. , so that the injection efficiency is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

本申请涉及电池制造的技术领域,尤其涉及一种注液装置和注液方法。注液装置包括注液组件、抽气组件和注气组件。注液组件具有注液端,注液端用于与壳体的内腔连通,抽气组件具有抽气端,抽气端用于与壳体的内腔连通,注气组件具有进气端和注气端,进气端用于与储气容器连通,注气端用于与壳体的内腔连通,其中,储气容器存储有目标气体,目标气体可溶于电解液。本申请实施例提供的注液装置和注液方法能够提升对电池单体的注液效率。

Description

一种注液装置和注液方法
交叉引用
本申请引用于2021年10月19日递交的名称为“一种注液装置和注液方法”的第202111215135.6号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池制造的技术领域,尤其涉及一种注液装置和注液方法。
背景技术
电池单体一般包括壳体、电极组件和电解液,电极组件和电解液均设置在壳体内,电解液用于浸润电极组件。在制作电池的过程中,需要通过注液装置向具有电极组件的壳体内注入电解液。随着电池的能量密度的提升,电极组件的密度越来越大,电解液完全浸润电极组件的难度加大,导致电解液流入壳体的速度缓慢,注液效率降低。
在一些情况下,为提高注液效率,在注液之前抽取壳体内的气体,使得壳体内的气压降低,以加快电解液流入壳体内的速度。但由于壳体内的气体抽取不彻底,注液效率仍然较低。
发明内容
鉴于上述问题,本申请实施例提供了一种注液装置和注液方法,其能够提升注液效率。
根据本申请实施例的一个方面,提供了一种注液装置,用于向电池单体的壳体内注入电解液,注液装置包括:注液组件,具有注液端,注液端用于与壳体的内腔连通;抽气组件,具有抽气端,抽气端用于与壳体的内腔连通;注气组件,具有进气端和注气端,进气端用于与储气容器连通,注气端用于与壳体的内腔连通;其中,储气容器存储有目标气体,目标气体可溶于电解液。
通过采用上述方案,采用本申请实施例提供的注液装置向壳体内注入电解液时,先利用注气组件向壳体内通入目标气体,利用目标气体置换壳体内的空气,之后再使用抽气组件抽取壳体内的气体,此时壳体内的气体主要为目标气体,然后再通过注液组件向壳体内注入电解液,在注液过程中,即使壳体内具有残留的目标气体,由于目标气体可 溶于电解液,因此,残留的气体对电解液注入过程的阻力较小,从而使注液效率得到提升。
在一些实施例中,目标气体在电解液中的溶解度大于0.1。目标气体在电解液中的溶解度较大,对电解液注入壳体和浸润电极组件过程的阻力较小,提升电解液的注入效率,并防止电解液对电极组件浸润不完全而影响电池单体的充放电性能。
在一些实施例中,目标气体为CO 2或CO气体。CO 2或CO属于容易制取且成本较低的可溶于电解液的气体,能够降低注液的成本,
在一些实施例中,目标气体为干燥气体。干燥的气体通入到壳体内以后不会影响电解液的浓度配比,保证了电池单体注液以后的电化学性能。
在一些实施例中,注气组件还包括:调压阀,设置于进气端和注气端之间。调压阀调整注气端的气流速度,从而控制气体流入壳体内的速度,进而达到控制壳体内的气压的效果。
根据本申请实施例的另一方面,提供了一种注液方法,注液方法通过上述实施例中的注液装置向电池单体的壳体内注入电解液,方法包括:通过注气组件向壳体内注入目标气体;通过抽气组件抽取壳体内的气体;通过注液组件向壳体内注入电解液。将目标气体注入壳体,利用目标气体置换壳体内的空气,再将壳体内的目标气体抽出,当壳体内的气体被抽出之后,即使壳体内有残留的目标气体,由于该目标气体能够溶于电解液,因此,残留的目标气体对电解液注入过程的阻力较小,从而使注液效率得到提升。
在一些实施例中,通过注气组件向壳体内注入目标气体之前,方法还包括:通过抽气组件抽取壳体内的气体。注入目标气体之前,抽取的气体为壳体内的气体,抽取气体后以使壳体内形成负压,便于目标气体注入;注入目标气体之后,壳体内以目标气体为主要气体,抽取目标气体之后,使壳体内形成负压,便于电解液注入。
在一些实施例中,通过注液组件向壳体内注入电解液的过程中,方法还包括:通过调压阀控制壳体内的气压,使得壳体内的气压小于注液组件内的气压。由于壳体内的气压小于注液容器内的气压,因此注液容器中的电解液在注液容器内的气压的推动下加速流向壳体,从而提升注液效率。
在一些实施例中,通过注液组件向壳体内注入电解液包括:向注液组件内注入气体,以使得壳体内的气压小于注液组件内的气压。向注液容器内注入气体能够增大注液容器中的气压,从而使壳体内的气压小于注液容器中的气压,随着电解液的注入进程, 可以灵活地调整向注液容器内注入气体的速度,从而实时调整注液容器与壳体内的气压差,该气压控制方式的实施较为简单,实施方式灵活可控。
在一些实施例中,通过注液组件向壳体内注入电解液之前,方法还包括:烘干电池单体中的电极组件。电极组件在制造过程中可能吸收周围环境中的水分,这部分的水分混入到电解液内,可能影响电解液的配比。在注液前对电极组件进行烘干则可以减少电极组件中的水分,从而降低水分对电解液配比的影响,使得电池单体的电化学性能稳定。
在一些实施例中,烘干电池单体中电极组件包括:将电池单体放置在烘箱内;通过抽气组件抽取烘箱内的气体;通过注气组件向烘箱内注入目标气体。在烘干电极组件的过程中,电极组件中的水分蒸发变成水蒸气,在抽取烘箱内气体的过程中,将这部分带有水蒸气的气体抽出,然后在烘箱内注入目标气体,用目标气体代替烘箱内以及电池单体的壳体内的湿润的气体,防止这部分带有水蒸气的气体留在壳体内,影响电极组件的烘干效果。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例中注液装置的结构简图。
图2为本申请一实施例中注液装置的一种使用状态简图。
图3为本申请一实施例中注液装置的另一种使用状态简图。
图4为本申请一实施例提供的注液方法流程图。
图5为本申请另一实施例提供的注液方法流程图。
图6为本申请一实施例中采用注气组件为注液容器注入气体的结构简图。
图7为本申请又一实施例中提供的注液方法流程图。
图8为本申请一实施例中烘干电池单体的电极组件的方法流程图。
附图标记说明:
1、抽气组件;11、抽气端;12、抽气泵;13、抽气管道;14、抽气阀门;2、注气组件;21、进气端;22、注气端;23、送气泵;24、送气管道;25、送气阀门;26、调压阀;3、储气容器;4、注液组件;41、注液端;5、电池单体;6、烘箱。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖而不排除其它的内容。单词“一”或“一个”并不排除存在多个。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的注液装置的具体结构进行限定。例如,在本申请的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
电池单体一般包括壳体、电极组件和电解液,壳体具有内腔,电极组件和电解液均位于壳体的内腔中,电解液用于浸润电极组件。在制作电池的过程中,先将电极组件放置在壳体内,然后通过注液装置向具有壳体的内腔中注入电解液。随着电池的能量密度的提升,电极组件的密度越来越大,电解液完全浸润电极组件的难度加大,导致电解液流入壳体的速度缓慢,注液效率降低。
相关技术中,为提高注液效率,在注液之前抽取壳体内的气体,使得壳体内的气压低于常压。在注液过程中,将注液装置与壳体上的注液孔连接之后,由于壳体内的气压较低,因此电解液在负压的作用下能够加速流入到壳体内。
但是采用上述技术方案之后,只能够在电解液注入的初期使电解液的浸润速度有一定提升,之后壳体内的气压增大后,电解液依旧以较低的速度流入到壳体内,注液效率任然较低。
申请人经过研究发现,这是由于在电解液注入的初期,壳体内的负压可以将电解液吸入到壳体内,但是随着电解液的持续注入,电解液的注入速度更多的是取决于电解液对电极组件的浸润速度,浸润速度越快,电解液流入的越快,反之则越慢。当电极组件的极耳层之间的气体较多时,气体会阻碍电解液的浸润,导致电解液的浸润速度变慢,而充斥在电极组件的极耳夹层之间的气体是难以完全被抽取干净的,从而导致注液效率无法得到大幅度的提高。
有鉴于此,本申请实施例提供了一种注液装置和注液方法,其通过在注气组件将目标气体注入到电池单体的壳体内,用于置换壳体内的原本的气体,再利用抽气组件抽取壳体内的气体,此时残留在壳体内的气体主要是少量的目标气体,在注液过程中,由于目标气体能够溶于电解液,因此,目标气体对电解液的阻碍较小,使得电解液能够快速浸润电极组件,进而加快电解液注入壳体的速度。
图1为本申请一实施例中注液装置的结构简图。如图1所示,根据本申请实施例的一个方面,提供了一种注液装置,用于向电池单体5的壳体内注入电解液,注液装置包括:抽气组件1、注气组件2和注液组件4;抽气组件1具有抽气端11,抽气端11用于与壳体的内腔连通,以抽取壳体内气体;注气组件2具有进气端21和注气端22,进气端21连接储气容器3,注气端22用于与壳体的腔连通,以将储气容器3内的目标气体注入壳体内;储气容器3内存储有目标气体,目标气体可溶于电解液。注液组件4具有注液端41,注液端41用于与壳体的内腔连通。
抽气组件1抽取壳体内的气体,以使壳体内的气压降低成为负压状态,在负压状态下,便于向壳体内注入气体或者液体。抽气组件1抽取的气体可以是空气,目标气体,或者其他混合气体或者纯净气体,本申请实施例对此不作限定,此外,抽气组件1在注液过程中可以用于任一环节的抽气作业,这根据实际情况而使用,并不影响本申请实施例中抽气组件1的结构和功能。
此外,抽气组件1抽取壳体内的气体可以是通过将抽气端11直接与电池单体5的壳体相连而抽取壳体内的气体,也可以是将抽气组件1的抽气端11与其他介质连通,以抽取壳体内的气体。
示例性的,如图1所示,在一些实施例中,抽气组件1包括抽气泵12、抽气管道13和连接于抽气管道13上的抽气阀门14,抽气管道13远离抽气泵12的一端为抽气端11,使用时,将抽气端11连接在需要抽气的部件上,打开抽气泵12和抽气阀门14,以抽取气体,抽气完成后,关闭抽气泵12和抽气阀门14即可。
注气组件2将储气容器3内的目标气体注入到壳体内,使目标气体置换出壳体内的原本的气体,由于目标气体可溶于电解液,因此,在电解液注入过程中,目标气体不会对电解液的浸润形成阻力,或者对电解液的阻力较小,从而加快电解液的浸润,提高注液效率。
同样的,注气组件2向电池单体5的壳体内注入气体的方式可以是注气组件2的注气端22与电池单体5直接相连而将目标气体注入到电池单体5的壳体内,也可以是注 气组件2的注气端22与电池单体5所在空间相连通,注气组件2将目标气体注入到电池单体5所在空间,从而使目标气体从该空间流入到电池单体5的壳体内。
例如,如图1所示,在一些实施例中,注气组件2包括送气泵23、送气管道24和连接在送气管道24上的送气阀门25,送气管道24一端为进气端21,另一端为注气端22,进气端21连接储气容器3。使用时,将注气端22连接在需要注入气体的部件上,打开送气泵23和送气阀门25,将储气容器3内的目标气体沿送气管道24送至注气端22,并注入与注气端22连接的部件内,目标气体注入结束后,关闭送气泵23和送气阀门25即可。
图2为本申请一实施例中注液装置的一种使用状态简图。如图2所示,在一种可能的使用状态下,多个电池单体5放置在一个相对封闭的空间内,例如烘箱6内,需要抽取壳体内的气体时,将抽气组件1的抽气端11与该封闭空间连通,以抽取该封闭空间内的气体,进而抽取位于该封闭空间内的所有电池单体5的壳体内的气体。同样的,需要注入目标气体时,将注气组件2的注气端22与该封闭空间连通,并将目标气体通入该封闭空间内,然后使目标气体从封闭空间流入到壳体内。
图3为本申请一实施例中注液装置的另一种使用状态简图。如图3所示,在另一种可能的使用状态下,将抽气组件1的抽气端11直接与电池单体5的壳体连通,以抽取壳体内的气体。同样的,需要注入目标气体时,将注液组件的注气端22与电池单体5的壳体直接连通,以将目标气体注入到电池单体5的壳体内。
在本申请实施例的一种实现方式中,注液组件4可以为注液容器,使得注液组件4的结构更加简单。
在使用本申请实施例提供的注液装置时,可以通过注气组件2向壳体的内腔内注入目标气体,目标气体置换壳体内腔中原本的气体;然后再通过抽气组件1抽取壳体内腔中的气体,此时残留在壳体内的气体主要是少量的目标气体;再通过注液组件4向壳体内注入电解液,在注液过程中,由于目标气体能够溶于电解液,因此,目标气体对电解液的阻碍较小,进而加快电解液注入壳体的速度,提高注液效率。
在一些实施例中,储气容器3内的目标气体在电解液中的溶解度大于0.1。
通过采用上述方案,目标气体在电解液中的溶解度较大,对电解液注入壳体和浸润电极组件过程的阻力较小,提升电解液的注入效率,并防止电解液对电极组件浸润不完全而影响电池单体5的充放电性能。
在一些实施例中,储气容器3内的目标气体包括二氧化碳(CO 2)气体或一氧化碳(CO)气体中的任意一种。
示例性地,目标气体为CO 2气体;或目标气体为CO气体;或者目标气体为CO 2气体和CO气体的混合气体。
通过采用上述方案,CO 2或CO属于容易制取且成本较低的可溶于电解液的气体,能够降低注液的成本。
在一些实施例中,目标气体为干燥气体。示例性地,目标气体为干燥气体的CO 2气体;或目标气体为干燥气体的CO气体;或者目标气体为干燥气体的CO 2气体和CO气体的混合气体。
由于,干燥的气体通入到壳体内以后不会影响电解液的浓度配比,保证了电池单体5注液以后的电化学性能。
如图2和图3所示,在一些实施例中,注气组件2还包括调压阀26,调压阀26设于进气端21和注气端22之间,调压阀26用于控制注气端22的气流流出速度。
通过采用上述方案,调压阀26调整注气端22的气流流出速度,从而控制气体流入壳体内的速度,进而达到控制壳体内的气压的效果。当气流流入较快时,壳体内的气压上升的较快,壳体内的气压较高,当气流流入较慢时,壳体内的气压上升的较慢,壳体内的气压较低。
根据本申请实施例的另一方面,本申请实施例提供了一种注液方法,该注液方法通过上述的注液装置向电池单体的壳体内注入电解液。
图4为本申请一实施例提供的注液方法流程图。如图4所示,在一些实施例中,注液方法包括:
S10:通过注气组件向壳体内注入目标气体。
S11:通过抽气组件抽取壳体内的气体。
S12:通过注液组件向壳体内注入电解液。
其中,目标气体为可溶于电解液的气体。
通过采用上述方案,将目标气体注入壳体,利用目标气体置换壳体内的空气,再将壳体内的目标气体抽出,当壳体内的气体被抽出之后,即使壳体内有残留的目标气体,由于该目标气体能够溶于电解液,因此,残留的目标气体对电解液注入过程的阻力较小,从而使注液效率得到提升。
图5为本申请另一实施例提供的注液方法流程图。如图5所示,注液方法包括:
S20:通过抽气组件抽取壳体内的气体。
S21:通过注气组件向壳体内注入目标气体。
S22:通过抽气组件抽取壳体内的气体。
S23:通过注液组件向壳体内注入电解液。
通过采用上述方案,注入目标气体之前抽取壳体内的气体,抽取气体后以使壳体内形成负压,便于目标气体注入;注入目标气体之后,壳体内以目标气体为主要气体,抽取目标气体之后,使壳体内形成负压,便于电解液注入。
在一些实施例中,通过注液组件向壳体内注入电解液的过程中,注液方法还包括:通过调压阀控制壳体内的气压,使得壳体内的气压小于注液组件内的气压,以加快注液组件4内的电解液流入壳体内的速度。
控制壳体内的气压小于注液组件4内的气压,可以有三种方式,其中一种方式是增加注液组件4内的气压,另一种方式是减小壳体内的气压,再一种方式是增加注液组件4内的气压的同时减小壳体内的气压,本申请实施例对此不作限定。
由于壳体内的气压小于注液组件4内的气压,因此注液组件4中的电解液在注液组件4内的气压的推动下加速流向壳体,从而提升注液效率。
例如,在一些实施例中,向壳体内注入电解液包括:向注液组件4内注入气体,以控制壳体内的气压小于注液组件4内的气压。
其中,在注液组件4内通入的气体可以是上述目标气体,也可以是其他气体,例如,图6为本申请一实施例中采用注气组件为注液容器注入气体的结构简图。如图6所示,可以将上述实施例的注气组件2的注气端22连接到注液组件4上,以将储气容器3中的气体注入到注液组件4内,用于增大注液组件4的气压。
通过采用上述方案,向注液组件4内注入气体能够增大注液组件4中的气压,从而使壳体内的气压小于注液组件4中的气压,随着电解液的注入进程,可以灵活地调整向注液组件4内注入气体的速度,从而实时调整注液组件4与壳体内的气压差,该气压控制方式的实施较为简单,实施方式灵活可控。
图7为本申请又一实施例中提供的注液方法流程图。如图7所示,注液方法包括:
S30:烘干电池单体中的电极组件。
S31:通过注气组件向壳体内注入目标气体。
S32:通过抽气组件抽取壳体内的气体。
S33:通过注液组件向壳体内注入电解液。
其中,烘干所用设备可以是烘箱6等,将电池单体5放置在烘箱6内,烘箱6在烘干电池单体5的过程中可以保持密闭,以减小热量损耗。
电极组件在制造过程中可能吸收周围环境中的水分,这部分的水分混入到电解液内,可能影响电解液的配比,在注液前对电极组件进行烘干则可以减少电极组件中的水分,从而降低水分对电解液配比的影响,使得电池单体5的电化学性能稳定。
图8为本申请一实施例中烘干电池单体的电极组件的方法流程图。如图8所示,在一些实施例中,S30包括:
S301:将电池单体放置在烘箱内;
S302:通过抽气组件抽取烘箱内的气体。
S303:通过注气组件向烘箱内注入目标气体。
该步骤中,可以使用上述实施例的抽气组件1抽取烘箱6内的气体,并使用上述实施例的注气组件2向烘箱6内注入目标气体,烘干过程的工作状态如图2所示,可参照上述关于注液装置的实施例,本申请实施例不再赘述。
此外,烘干电池单体5的电极组件的过程中,上述S301步骤和S302步骤可以循环多次,从而确保电池单体5的壳体内的水蒸气可以被较为彻底的抽出。
通过采用上述方案,在烘干电极组件的过程中,电极组件中的水分蒸发变成水蒸气,在抽取烘箱6内气体的过程中,将这部分带有水蒸气的气体抽出,然后在烘箱6内注入目标气体,用目标气体代替烘箱6内以及电池单体5的壳体内的湿润的气体,防止这部分带有水蒸气的气体留在壳体内,影响电极组件的烘干效果。
需要注意的是,以上几种关于注液方法的实施例中,向壳体内注入目标气体以及抽取电池单体5的壳体内的气体这两个步骤均可以循环进行一次或者多次,以使电池单体5的壳体内的气体尽可能全部被置换成目标气体,以避免不溶于电解液的气体残留在电池单体5的壳体内而影响电解液的注入效率。
本申请上述各保护主题以及各实施例中的特征之间可以相互借鉴,在结构允许的情况下,本领域技术人员也可对不同实施例中的技术特征灵活组合,以形成更多的实施例。
综上所述,本申请实施例通过向壳体内注入电解液之前,利用注气组件2向壳体内通入目标气体,利用目标气体置换壳体内的空气,之后再使用抽气组件1抽取壳体内的气体,最后再向壳体内注入电解液,在注液过程中,即使壳体内具有残留的目标气体, 由于目标气体可溶于电解液,因此,残留的气体对电解液注入过程的阻力较小,从而使注液效率得到提升。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种注液装置,用于向电池单体的壳体内注入电解液,所述注液装置包括:
    注液组件,具有注液端,所述注液端用于与所述壳体的内腔连通;
    抽气组件,具有抽气端,所述抽气端用于与所述壳体的内腔连通;
    注气组件,具有进气端和注气端,所述进气端用于与储气容器连通,所述注气端用于与所述壳体的内腔连通;
    其中,所述储气容器存储有目标气体,所述目标气体可溶于所述电解液。
  2. 根据权利要求1所述的注液装置,所述目标气体在所述电解液中的溶解度大于0.1。
  3. 根据权利要求1或2所述的注液装置,所述目标气体包括CO 2气体和CO气体中的任意一种。
  4. 根据权利要求1至3中任一项所述的注液装置,所述目标气体为干燥气体。
  5. 根据权利要求1至4中任一项所述的注液装置,所述注气组件还包括:
    调压阀,设置于所述进气端和所述注气端之间。
  6. 一种注液方法,所述注液方法通过如权利要求1至5中任一项所述的注液装置向电池单体的壳体内注入电解液,所述方法包括:
    通过所述注气组件向所述壳体内注入所述目标气体;
    通过所述抽气组件抽取所述壳体内的气体;
    通过所述注液组件向所述壳体内注入电解液。
  7. 根据权利要求6所述的注液方法,通过所述注气组件向所述壳体内注入所述目标气体之前,所述方法还包括:
    通过所述抽气组件抽取所述壳体内的气体。
  8. 根据权利要求6或7所述的注液方法,所述注液装置为权利要求5所述的注液装置,通过所述注液组件向所述壳体内注入电解液的过程中,所述方法还包括:
    通过所述调压阀控制所述壳体内的气压,使得所述壳体内的气压小于所述注液组件内的气压。
  9. 根据权利要求6至8中任一项所述的注液方法,通过所述注液组件向所述壳体内注入电解液包括:
    向所述注液组件内注入气体,以使得所述壳体内的气压小于所述注液组件内的气压。
  10. 根据权利要求6至9中任一项所述的注液方法,通过所述注液组件向所述壳体内注入电解液之前,所述方法还包括:
    烘干所述电池单体中的电极组件。
  11. 根据权利要求10所述的注液方法,所述注液装置为权利要求4所述的注液装置,烘干所述电池单体中电极组件包括:
    将所述电池单体放置在烘箱内;
    通过所述抽气组件抽取所述烘箱内的气体;
    通过所述注气组件向所述烘箱内注入所述目标气体。
PCT/CN2022/124087 2021-10-19 2022-10-09 一种注液装置和注液方法 WO2023066045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22882655.8A EP4354648A1 (en) 2021-10-19 2022-10-09 Liquid injection device and liquid injection method
US18/515,268 US20240088536A1 (en) 2021-10-19 2023-11-21 Electrolyte injection apparatus and electrolyte injection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111215135.6 2021-10-19
CN202111215135.6A CN115842225A (zh) 2021-10-19 2021-10-19 一种注液装置和注液方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/515,268 Continuation US20240088536A1 (en) 2021-10-19 2023-11-21 Electrolyte injection apparatus and electrolyte injection method

Publications (1)

Publication Number Publication Date
WO2023066045A1 true WO2023066045A1 (zh) 2023-04-27

Family

ID=85575279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124087 WO2023066045A1 (zh) 2021-10-19 2022-10-09 一种注液装置和注液方法

Country Status (4)

Country Link
US (1) US20240088536A1 (zh)
EP (1) EP4354648A1 (zh)
CN (1) CN115842225A (zh)
WO (1) WO2023066045A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275380A1 (en) * 2004-06-01 2005-12-15 Wavecrest Laboratories System and method for adding electrolyte to an energy storage cell
CN103050657A (zh) * 2011-10-13 2013-04-17 赵宽 氮气置换脱水自吸法真空注液机
WO2021033697A1 (ja) * 2019-08-20 2021-02-25 株式会社Gsユアサ 蓄電素子の製造方法及び蓄電素子
CN214043941U (zh) * 2020-11-12 2021-08-24 湖北亿纬动力有限公司 注液装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395904C (zh) * 2004-06-01 2008-06-18 肇庆市风华锂电池有限公司 电池极片加压注液法及其加压注液装置
JP2007335181A (ja) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法およびその製造装置
JP5585174B2 (ja) * 2010-04-07 2014-09-10 日産自動車株式会社 電解液注液方法および電解液注液装置
CN209691841U (zh) * 2019-01-16 2019-11-26 深圳市利华美科技有限公司 一种锂电池注液机的注液杯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275380A1 (en) * 2004-06-01 2005-12-15 Wavecrest Laboratories System and method for adding electrolyte to an energy storage cell
CN103050657A (zh) * 2011-10-13 2013-04-17 赵宽 氮气置换脱水自吸法真空注液机
WO2021033697A1 (ja) * 2019-08-20 2021-02-25 株式会社Gsユアサ 蓄電素子の製造方法及び蓄電素子
CN214043941U (zh) * 2020-11-12 2021-08-24 湖北亿纬动力有限公司 注液装置

Also Published As

Publication number Publication date
US20240088536A1 (en) 2024-03-14
EP4354648A1 (en) 2024-04-17
CN115842225A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN104037437B (zh) 一种真空保温燃料电池系统
JP6444727B2 (ja) 燃料電池用空気加湿装置及び方法
KR101592656B1 (ko) 연료전지용 공기공급 장치 및 방법
WO2022160909A1 (zh) 电子雾化装置、雾化器及其底座
WO2023066045A1 (zh) 一种注液装置和注液方法
CN110416445A (zh) 双孔锂离子盖板及其摇椅式注液装置与方法
CN104253262A (zh) 一种锂离子电池的注液方法
CN105186067A (zh) 一种基于氧-金属电池的电极-电解液相互分离结构
CN115799568A (zh) 一种燃料电池阴极系统及其控制方法
CN214152954U (zh) 一种液冷燃料电池系统低温吹扫系统
WO2022141919A1 (zh) 一种超级电容器、注液设备及注液方法
CN108375285A (zh) 一种锂离子动力电池干燥装置与干燥方法
CN206868363U (zh) 一种生物燃料的加工罐
CN209045662U (zh) 一种锂电池外壳自动泄压结构
CN211320241U (zh) 电池化成用的抽气装置以及化成系统
CN216648548U (zh) 静置腔装置及注液机
CN109406237A (zh) 一种混凝土试样快速饱和装置及饱和方法
JP4742564B2 (ja) 燃料電池システム及びその制御装置、制御方法並びにコンピュータプログラム
US11824235B2 (en) Ejector nozzle and ejector including same
JP2004234892A (ja) 燃料電池システム
CN107403952A (zh) 快注液高浸润长寿命锂电池及制造方法和模具
CN207160410U (zh) 一种建筑防火内墙板
CN209230160U (zh) 一种锂电材料烘干装置
CN221176605U (zh) 电芯注液装置
CN107425216A (zh) 一种高效烘烤的电芯及其烘烤方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882655

Country of ref document: EP

Effective date: 20240108

NENP Non-entry into the national phase

Ref country code: DE