WO2021033412A1 - Dc/dc変換装置 - Google Patents

Dc/dc変換装置 Download PDF

Info

Publication number
WO2021033412A1
WO2021033412A1 PCT/JP2020/024286 JP2020024286W WO2021033412A1 WO 2021033412 A1 WO2021033412 A1 WO 2021033412A1 JP 2020024286 W JP2020024286 W JP 2020024286W WO 2021033412 A1 WO2021033412 A1 WO 2021033412A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
flying capacitor
voltage
capacitor circuit
diode
Prior art date
Application number
PCT/JP2020/024286
Other languages
English (en)
French (fr)
Inventor
直章 藤居
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080058764.XA priority Critical patent/CN114270685A/zh
Priority to US17/636,672 priority patent/US20220286049A1/en
Priority to EP20854782.8A priority patent/EP4007144A4/en
Publication of WO2021033412A1 publication Critical patent/WO2021033412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters

Definitions

  • the present disclosure relates to a DC / DC converter that converts DC power into DC power of another voltage.
  • DC / DC converters and inverters are used in power conditioners connected to solar cells, storage batteries, fuel cells, etc. Highly efficient power conversion and compact design are desired for DC / DC converters and inverters.
  • a flying capacitor circuit (four switching elements connected in series and a flying capacitor connected in parallel to the second switching element and the third switching element is configured after the reactor.
  • a multi-level power converter has been proposed in which the voltage at the connection point between the reactor and the flying capacitor circuit is divided into three levels (see, for example, Patent Document 1).
  • the multi-level power converter can reduce the voltage applied to each switching element, thereby reducing the switching loss and realizing highly efficient power conversion.
  • the voltage applied to each switching element constituting the flying capacitor circuit can be reduced to 1/2 times the DC bus voltage by increasing the level to three. ..
  • a switching element having a low withstand voltage is cheaper than a switching element having a high withstand voltage, and has less conduction loss and switching loss during power conversion, which contributes to further improvement in efficiency.
  • the present disclosure has been made in view of such a situation, and an object of the present invention is to provide a DC / DC converter that realizes further high efficiency by enabling the use of a switching element having a lower withstand voltage. ..
  • the DC / DC converter includes a first flying capacitor circuit and a second flying capacitor circuit connected in series with a high-voltage side DC section, and a low-voltage side DC section. It includes a positive terminal and a reactor connected between the midpoints of the first flying capacitor circuit. The middle point of the second flying capacitor circuit is connected to the negative terminal of the low voltage side DC unit, and the connection point between the first flying capacitor circuit and the second flying capacitor circuit is the high voltage side DC unit. It is connected to the intermediate potential point of.
  • FIG. 7 (a)-(c) are diagrams showing a configuration example of a flying capacitor circuit. It is a figure which shows the flying capacitor circuit of N (N is a natural number) stage. It is a figure for demonstrating the structure of the DC / DC conversion apparatus which concerns on modification 1. FIG. It is a figure for demonstrating the structure of the DC / DC conversion apparatus which concerns on modification 2. FIG. It is a figure for demonstrating the structure of the DC / DC conversion apparatus which concerns on modification 3.
  • FIG. 1 is a diagram for explaining the configuration of the DC / DC converter 3 according to the embodiment.
  • the DC / DC converter 3 according to the embodiment is a bidirectional buck-boost DC / DC converter.
  • the DC / DC converter 3 can boost the DC power supplied from the second DC power supply 2 and supply it to the first DC power supply 1. Further, the DC / DC converter 3 can step down the DC power supplied from the first DC power supply 1 and supply it to the second DC power supply 2.
  • the second DC power supply 2 is a power supply having a lower voltage than the first DC power supply 1.
  • the second DC power supply 2 corresponds to, for example, a storage battery, an electric double layer capacitor, or the like.
  • the first DC power supply 1 corresponds to, for example, a DC bus to which a bidirectional DC / AC inverter is connected.
  • the AC side of the bidirectional DC / AC inverter is connected to the commercial power system and the AC load in the application of the power storage system. In the application of electric vehicles, it is connected to a motor (with regenerative function).
  • a DC / DC converter for a solar cell and a DC / DC converter for another storage battery may be further connected to the DC bus.
  • the DC / DC converter 3 includes a DC / DC converter 30 and a control unit 40.
  • the DC / DC converter 30 includes an input capacitor C5, a reactor L1, a first flying capacitor circuit 31, a second flying capacitor circuit 32, a first dividing capacitor C3, and a second dividing capacitor C4.
  • the input capacitor C5 is connected in parallel with the second DC power supply 2.
  • the first dividing capacitor C3 and the second dividing capacitor C4 are connected in series between the positive side bus and the negative side bus of the first DC power supply 1.
  • the first dividing capacitor C3 and the second dividing capacitor C4 act as a snubber capacitor for dividing the voltage E of the first DC power supply 1 into 1/2 and suppressing the surge voltage generated in the DC / DC converter 30. Has the action of.
  • the configuration before the input capacitor C5 is referred to as a low-voltage DC section
  • the configuration after the first-split capacitor C3 and the second-split capacitor C4 is referred to as a high-voltage DC section.
  • the first flying capacitor circuit 31 and the second flying capacitor circuit 32 are connected in series with the high-voltage side DC unit in parallel.
  • the reactor L1 is connected in series between the positive terminal of the low-voltage side DC portion and the midpoint of the first flying capacitor circuit 31.
  • the negative terminal of the low-voltage side DC portion and the midpoint of the second flying capacitor circuit 32 are connected.
  • the connection point between the first flying capacitor circuit 31 and the second flying capacitor circuit 32 is connected to the intermediate potential point M (the voltage dividing point of the first divided capacitor C3 and the second divided capacitor C4) of the DC portion on the high voltage side.
  • the first division capacitor C3 and the second division capacitor C4 can be omitted.
  • the connection point between the first flying capacitor circuit 31 and the second flying capacitor circuit 32 is not necessarily in the middle of the high-voltage side DC portion. It does not need to be connected to the potential point M.
  • the first flying capacitor circuit 31 includes a first switching element S1, a second switching element S2, a third switching element S3, a fourth switching element S4, and a first flying capacitor C1.
  • the first switching element S1, the second switching element S2, the third switching element S3, and the fourth switching element S4 are connected in series and are connected between the positive bus of the high-voltage DC section and the intermediate potential point M.
  • the first flying capacitor C1 is connected between a connection point between the first switching element S1 and the second switching element S2 and a connection point between the third switching element S3 and the fourth switching element S4, and is connected to the first switching element. S1-Charged and discharged by the fourth switching element S4.
  • the voltage E [V] of the first DC power supply 1 applied to the upper terminal of the first switching element S1 and the voltage E [V] applied to the lower terminal of the fourth switching element S4 are applied. Potentials in the range between 1 / 2E [V] are generated.
  • the first flying capacitor C1 is initially charged (precharged) so as to have a voltage of 1 / 4E [V], and charging / discharging is repeated centering on the voltage of 1 / 4E [V]. Therefore, at the midpoint of the first flying capacitor circuit 31, three levels of potentials of E [V], 3/4 E [V], and 1 / 2E [V] are generally generated.
  • the second flying capacitor circuit 32 includes a fifth switching element S5, a sixth switching element S6, a seventh switching element S7, an eighth switching element S8, and a second flying capacitor C2.
  • the fifth switching element S5, the sixth switching element S6, the seventh switching element S7, and the eighth switching element S8 are connected in series and are connected between the intermediate potential point M of the high-voltage DC portion and the negative bus.
  • the second flying capacitor C2 is connected between the connection point between the fifth switching element S5 and the sixth switching element S6 and the connection point between the seventh switching element S7 and the eighth switching element S8, and is connected to the fifth switching element. S5-charged and discharged by the eighth switching element S8.
  • the second flying capacitor circuit 32 At the midpoint of the second flying capacitor circuit 32, 1 / 2E [V] applied to the upper terminal of the fifth switching element S5 and 0 [V] applied to the lower terminal of the eighth switching element S8. Potentials in the range between are generated.
  • the second flying capacitor C2 is initially charged (precharged) so as to have a voltage of 1 / 4E [V], and charging / discharging is repeated centering on the voltage of 1 / 4E [V]. Therefore, at the midpoint of the second flying capacitor circuit 32, three levels of potentials of 1 / 2E [V], 1 / 4E [V], and 0 [V] are generally generated.
  • the first diode D1 to the eighth diode D8 are formed / connected in antiparallel to each of the first switching element S1 to the eighth switching element S8.
  • the first switching element S1 to the eighth switching element S8 it is preferable to use a switching element having a withstand voltage lower than the voltage of the first DC power supply 1 and the second DC power supply 2.
  • an N-channel MOSFET with a withstand voltage of 150 V is used for the first switching element S1 to the eighth switching element S8 is assumed.
  • the N-channel MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • An IGBT Insulated Gate Bipolar Transistor
  • a bipolar transistor may be used for the first switching element S1 to the eighth switching element S8. In that case, no parasitic diode is formed in the first switching element S1-8th switching element S8, and external diodes are connected to the first switching element S1-eighth switching element S8 in antiparallel.
  • Si general silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • Ga2O3 gallium oxide
  • C diamond
  • a first voltage sensor that detects the voltage across the low-voltage DC section, a current sensor that detects the current flowing through the reactor L1, and a second voltage sensor that detects the voltage across the high-voltage DC section are provided. Then, each measured value is output to the control unit 40.
  • the control unit 40 can control the first flying capacitor circuit 31 and the second flying capacitor circuit 32 to transmit DC power from the low-voltage side DC unit to the high-voltage side DC unit by a boosting operation.
  • DC power can be transmitted from the high-voltage side DC section to the low-voltage side DC section by step-down operation. More specifically, the control unit 40 supplies a drive signal (PWM (Pulse Width Modulation) signal) to the gate terminal of the first switching element S1-8th switching element S8, thereby supplying the first switching element S1-8th.
  • PWM Pulse Width Modulation
  • the configuration of the control unit 40 can be realized by the collaboration of hardware resources and software resources, or only by hardware resources. Analog elements, microcomputers, DSPs, ROMs, RAMs, FPGAs, ASICs, and other LSIs can be used as hardware resources. Programs such as firmware can be used as software resources.
  • FIG. 2 is a diagram summarizing the switching patterns of the first switching element S1 to the eighth switching element S8 of the DC / DC converter 3 according to the embodiment.
  • the set of the first switching element S1 and the eighth switching element S8 and the set of the fourth switching element S4 and the fifth switching element S5 have a complementary relationship.
  • the set of the second switching element S2 and the seventh switching element S7 and the set of the third switching element S3 and the sixth switching element S6 have a complementary relationship.
  • the control unit 40 executes a step-up operation or a step-down operation using four modes.
  • the control unit 40 turns on the second switching element S2, the fourth switching element S4, the fifth switching element S5, and the seventh switching element S7, and the first switching element S1, the third switching element S3, and the sixth.
  • the switching element S6 and the eighth switching element S8 are controlled to be in the off state.
  • the voltage between the midpoint of the first flying capacitor circuit 31 and the midpoint of the second flying capacitor circuit 32 (that is, the input / output voltage VL on the low voltage side) is 1 / 2E.
  • the control unit 40 turns on the first switching element S1, the third switching element S3, the sixth switching element S6, and the eighth switching element S8, and the second switching element S2, the fourth switching element S4, and the fifth switching.
  • the element S5 and the seventh switching element S7 are controlled to be in the off state.
  • the input / output voltage VL on the low voltage side of the first flying capacitor circuit 31 and the second flying capacitor circuit 32 is 1 / 2E.
  • the control unit 40 turns on the first switching element S1, the second switching element S2, the seventh switching element S7, and the eighth switching element S8, and the third switching element S3, the fourth switching element S4, and the fifth switching.
  • the element S5 and the sixth switching element S6 are controlled to be in the off state.
  • the input / output voltage VL on the low voltage side of the first flying capacitor circuit 31 and the second flying capacitor circuit 32 is E.
  • the control unit 40 turns on the third switching element S3, the fourth switching element S4, the fifth switching element S5, and the sixth switching element S6, and the first switching element S1, the second switching element S2, and the seventh switching.
  • the element S7 and the eighth switching element S8 are controlled to be in the off state.
  • the input / output voltage VL on the low voltage side of the first flying capacitor circuit 31 and the second flying capacitor circuit 32 becomes 0.
  • 3 (a)-(d) are circuit diagrams showing the current paths of each switching pattern during the boosting operation.
  • 4 (a)-(d) are circuit diagrams showing the current paths of each switching pattern during the step-down operation.
  • the MOSFET is drawn with a simple switch symbol to simplify the drawing.
  • FIG. 3A shows the current path of mode a during boosting operation
  • FIG. 3B shows the current path of mode b during boosting operation
  • FIG. 3C shows the current of mode c during boosting operation.
  • the path is shown
  • FIG. 3D shows the current path in mode d during the boosting operation
  • FIG. 4A shows the current path of mode a during step-down operation
  • FIG. 4B shows the current path of mode b during step-down operation
  • FIG. 4C shows the mode during step-down operation.
  • the current path of c is shown
  • FIG. 4 (d) shows the current path of the mode d at the time of step-down operation.
  • the direction of the current is opposite between the step-up operation and the step-down operation.
  • the first flying capacitor C1 and the second flying capacitor C2 are in the charging operation during the step-up operation, but as shown in FIG. 4A, the first flying capacitor C1 is in the step-down operation.
  • the flying capacitor C1 and the second flying capacitor C2 perform a discharge operation.
  • the first flying capacitor C1 and the second flying capacitor C2 are in the discharging operation during the boosting operation, but as shown in FIG. 4B, the first flying capacitor C1 is in the depressing operation.
  • the flying capacitor C1 and the second flying capacitor C2 are in the charging operation.
  • the control unit 40 When the control unit 40 transmits power from the low-voltage DC unit to the high-voltage DC unit by boosting operation, the control unit 40 sets a current command value in the positive direction, and the measured value of the current flowing through the reactor L1 maintains the current command value in the positive direction.
  • the duty ratio (on time) of the first switching element S1 to the eighth switching element S8 is controlled so as to be performed.
  • the control unit 40 transmits power from the high-voltage DC unit to the low-voltage DC unit by step-down operation, the control unit 40 sets a current command value in the negative direction, and the measured value of the current flowing through the reactor L1 is the current command in the negative direction.
  • the duty ratio (on time) of the first switching element S1 to the eighth switching element S8 is controlled so as to maintain the value.
  • the control unit 40 uses modes a, b, and c. Transmit power. Further, when the boost ratio is larger than the set value, the control unit 40 transmits power using modes a, b, and d. Further, when the boost ratio matches the set value, the control unit 40 transmits power using modes a and b.
  • the voltage of the low-voltage side DC section and the voltage of the high-voltage side DC section are measured by voltage sensors, respectively.
  • the above set value is set according to the ratio of the total voltage 1 / 2E of the voltage of the first flying capacitor C1 and the voltage of the second flying capacitor C2 and the voltage E of the first DC power supply 1. In the present embodiment, the above set value is set to 2. When the ratio of the voltage of the low-voltage side DC section to the voltage of the high-voltage side DC section is defined by the step-down ratio, the above set value is set to 1/2.
  • the control unit 40 generates a duty ratio so that the current command value and the measured value of the current flowing through the reactor L1 match, and the voltages of the first flying capacitor C1 and the second flying capacitor C2 are 1 / 4E, respectively. .. Specifically, the control unit 40 increases the duty ratio as the current flowing through the reactor L1 is smaller than the current command value, and lowers the duty ratio as the current flows through the reactor L1.
  • FIG. 5 is a timing chart showing an example of the switching pattern of the first switching element S1 to the eighth switching element S8 when the boost ratio is larger than twice.
  • FIG. 6 is a timing chart showing an example of the switching pattern of the first switching element S1 to the eighth switching element S8 when the boost ratio is smaller than twice.
  • the control examples shown in FIGS. 5 and 6 show a control example using the double carrier drive system. In the double carrier drive system, two carrier signals (triangular waves in FIGS. 5 and 6) that are 180 ° out of phase are used.
  • the duty ratio duty is a threshold value to be compared with the two carrier signals. When the boost ratio is larger than 2 times, the duty ratio duty takes a value in the range of 0.5 to 1.0, and when the boost ratio is smaller than 2 times, the duty ratio duty is in the range of 0.0 to 0.5. Take a value.
  • the first gate signal supplied to the first switching element S1 and the eighth switching element S8 and the fourth gate supplied to the fourth switching element S4 and the fifth switching element S5. Generate a signal. Specifically, in the region where the carrier signal of the thick line is higher than the duty ratio duty, the first gate signal is turned on and the fourth gate signal is turned off. In the region where the carrier signal of the thick line is lower than the duty ratio duty, the first gate signal is turned off and the fourth gate signal is turned on. The first gate signal and the fourth gate signal are in a complementary relationship. A dead time period is set in which the first gate signal and the fourth gate signal are turned off at the same time when the first gate signal and the fourth gate signal are switched on / off.
  • the second gate signal supplied to the second switching element S2 and the seventh switching element S7 and the third gate supplied to the third switching element S3 and the sixth switching element S6 Generate a signal. Specifically, in the region where the carrier signal of the thin wire is higher than the duty ratio duty, the second gate signal is turned on and the third gate signal is turned off. In the region where the carrier signal of the thin wire is lower than the duty ratio duty, the second gate signal is turned off and the third gate signal is turned on. The second gate signal and the third gate signal are in a complementary relationship. A dead time period is set in which the second gate signal and the third gate signal are turned off at the same time when the second gate signal and the third gate signal are switched on / off.
  • the control unit 40 When the boost ratio is larger than 2 times, the control unit 40 alternately switches between mode a and mode b, and inserts mode d while switching between the two. That is, the control unit 40 switches modes in the order of mode a ⁇ mode d ⁇ mode b ⁇ mode d ⁇ mode a ⁇ mode d ⁇ mode b ⁇ mode d .... While the duty ratio duty does not change, the periods of mode a and mode b become equal, and the voltages of the first flying capacitor C1 and the second flying capacitor C2 are maintained at 1 / 4E, respectively.
  • the boost ratio is larger than 2 times, as the duty ratio duty increases, the period of mode d with respect to the period of mode a and mode b becomes longer, and the amount of energy transmitted increases.
  • the control unit 40 When the boost ratio is less than 2 times, the control unit 40 alternately switches between mode a and mode b, and inserts mode c while switching between the two. That is, the control unit 40 switches modes in the order of mode a ⁇ mode c ⁇ mode b ⁇ mode c ⁇ mode a ⁇ mode c ⁇ mode b ⁇ mode c .... While the duty ratio duty does not change, the periods of mode a and mode b become equal, and the voltages of the first flying capacitor C1 and the second flying capacitor C2 are maintained at 1 / 4E, respectively.
  • the boost ratio is less than 2 times, as the duty ratio duty increases, the period of mode c becomes shorter than the period of modes a and b, and the amount of energy transmitted increases.
  • the duty ratio duty maintains 0.5.
  • the control unit 40 increases the time of the charging mode among the modes a and b. Bring the total voltage closer to 1 / 2E.
  • the control unit 40 increases the time of the discharging mode among the modes a and b. The total voltage is brought close to 1 / 2E.
  • the control unit 40 causes the DC / DC converter 30 to operate a normal boost chopper by alternately switching between the mode c and the mode d without using the first flying capacitor C1 and the second flying capacitor C2. It is also possible to let it. In this case, the operation mode is not switched depending on the boost ratio.
  • the switch portion in the subsequent stage of the reactor L1 is composed of the first flying capacitor circuit 31 and the second flying capacitor circuit 32 connected in series with the high-voltage side DC portion.
  • a low withstand voltage switching element for example, a MOSFET with a withstand voltage of 150 V
  • the conduction loss of the switching element can be reduced, and the efficiency of the DC / DC converter 3 can be improved.
  • heat generation can be reduced, and heat dissipation components can be miniaturized.
  • high frequency can be increased with low switching loss, so that passive components can also be miniaturized.
  • the amount of energy stored in the reactor L1 can be changed.
  • the boost ratio is smaller than 2 times, it operates in modes a, mode b and mode c, and when the boost ratio is larger than 2 times, it operates in modes a, mode b and mode d.
  • the DC / DC converter 3 corresponding to a wide voltage range of the second DC power supply 2 and the first DC power supply 1 can be constructed.
  • the voltages of the first flying capacitor C1 and the second flying capacitor C2 to be 1 / 4E respectively, it is possible to prevent the withstand voltage excess of the first switching element S1 to the eighth switching element S8.
  • the flying capacitor circuit As a configuration example of the flying capacitor circuit, four switching elements connected in series and a one-stage flying capacitor circuit using one flying capacitor are given as an example. In this respect, a flying capacitor circuit with an increased number of stages can also be used.
  • FIG. 7 (a)-(c) are diagrams showing a configuration example of a flying capacitor circuit.
  • FIG. 7A shows a one-stage flying capacitor circuit.
  • the flying capacitor circuit shown in FIG. 7A has the same circuit configuration as that described in the above embodiment.
  • FIG. 7B shows a two-stage flying capacitor circuit.
  • the two-stage flying capacitor circuit includes six switching elements S12, S1, S2, S3, S4, and S42 connected in series, and two flying capacitors C11 and C12.
  • the innermost flying capacitor C11 is connected in parallel to the two switching elements S2 and S3, and is controlled to maintain a voltage of 1 / 6E.
  • E indicates the voltage of the DC portion on the high voltage side.
  • the second flying capacitor C12 from the inside is connected in parallel to the four switching elements S1, S2, S3, and S4, and is controlled to maintain a voltage of 1 / 6E.
  • FIG. 7 (c) shows a three-stage flying capacitor circuit.
  • the three-stage flying capacitor circuit includes six switching elements S13, S12, S1, S2, S3, S4, S42, and S43 connected in series, and three flying capacitors C11, C12, and C13.
  • the innermost flying capacitor C11 is connected in parallel to the two switching elements S2 and S3, and is controlled to maintain a voltage of 1 / 8E.
  • the second flying capacitor C12 from the inside is connected in parallel to the four switching elements S1, S2, S3, and S4, and is controlled to maintain a voltage of 2 / 8E.
  • the third flying capacitor C13 from the inside is connected in parallel to the six switching elements S12, S1, S2, S3, S4, and S42, and is controlled to maintain a voltage of 3 / 8E.
  • FIG. 8 shows an N (N is a natural number) stage flying capacitor circuit.
  • N (2N + 2) switching elements S1n, ..., S13, S12, S1, S2, S3, S4, S42, S43, ..., S4n connected in series.
  • the flying capacitors C11, C12, C13, ..., C1n are provided.
  • the innermost flying capacitor C11 is connected in parallel to the two switching elements S2 and S3, and is controlled to maintain a voltage of 1 / (2N + 2) E.
  • the second flying capacitor C12 from the inside is connected in parallel to the four switching elements S1, S2, S3, and S4, and is controlled to maintain a voltage of 2 / (2N + 2) E.
  • the third flying capacitor C13 from the inside is connected in parallel to the six switching elements S12, S1, S2, S3, S4, and S42, and is controlled to maintain a voltage of 3 / (2N + 2) E.
  • the outermost flying capacitor C1n is for 2N S1 (n-1), ..., S13, S12, S1, S2, S3, S4, S42, S43, ..., S4 (n-1). They are connected in parallel and controlled to maintain a voltage of N / (2N + 2) E.
  • the first flying capacitor circuit 31 and the second flying capacitor circuit 32 shown in FIG. 1 use the one-stage flying capacitor circuit shown in FIG. 7A.
  • a voltage of three levels (E, 1 / 2E, 0) is generated between the midpoint of the first flying capacitor circuit 31 and the midpoint of the second flying capacitor circuit 32.
  • E, 1 / 2E, 0 a voltage of three levels (E, 1 / 2E, 0) is generated between the midpoint of the first flying capacitor circuit 31 and the midpoint of the second flying capacitor circuit 32.
  • E, 2 / 3E there are five levels (E, 2 / 3E,) between the midpoint of the first flying capacitor circuit 31 and the midpoint of the second flying capacitor circuit 32. It is possible to generate a voltage of 1 / 2E, 1 / 3E, 0).
  • the designer may determine the optimum number of stages of the flying capacitor circuit in consideration of the total cost and the total conversion efficiency. Further, in an application in which the voltage of the DC portion on the high voltage side exceeds 1000 V or in an application in which the voltage exceeds 10000 V, it is effective to increase the number of stages of the flying capacitor circuit in order to reduce the withstand voltage of each switching element.
  • FIG. 9 is a diagram for explaining the configuration of the DC / DC converter 3 according to the first modification.
  • the DC / DC converter 3 according to the first modification is a unidirectional step-down DC / DC converter, and cannot transmit electric power from the low-voltage side DC unit to the high-voltage side DC unit.
  • four diode elements (third diode D3, 3rd diode D3,) are used instead of the third switching element S3, the fourth switching element S4, the fifth switching element S5, and the sixth switching element S6.
  • the fourth diode D4, the fifth diode D5 and the sixth diode D6) are used.
  • the DC / DC converter 3 according to the first modification can be used, for example, as a step-down circuit that generates a reference voltage (for example, DC12V, DC24V, DC48V) from the first DC power supply 1.
  • a reference voltage for example, DC12V, DC24V, DC48V
  • FIG. 10 is a diagram for explaining the configuration of the DC / DC converter 3 according to the second modification.
  • the DC / DC converter 3 according to the second modification is a unidirectional boost DC / DC converter, and cannot transmit power from the high-voltage side DC unit to the low-voltage side DC unit.
  • four diode elements (first diode D1, first diode D1,) are used instead of the first switching element S1, the second switching element S2, the seventh switching element S7, and the eighth switching element S8.
  • the second diode D2, the seventh diode D7 and the eighth diode D8) are used.
  • the DC / DC converter 3 according to the second modification can be used, for example, as a booster circuit for a solar cell.
  • FIG. 11 is a diagram for explaining the configuration of the DC / DC converter 3 according to the modified example 3.
  • the reactor L1 is connected between the positive terminal of the low-voltage side DC portion and the midpoint of the first flying capacitor circuit 31, but as shown in FIG. 11, the low-voltage side It may be connected between the negative terminal of the DC portion and the midpoint of the second flying capacitor circuit 32.
  • the same effect as that of the DC / DC converter 3 shown in FIG. 1 can be obtained.
  • the embodiment may be specified by the following items.
  • the midpoint of the second flying capacitor circuit (32) is connected to the negative terminal of the low voltage side DC portion.
  • a DC / DC converter characterized in that the connection point between the first flying capacitor circuit (31) and the second flying capacitor circuit (32) is connected to an intermediate potential point of the high-voltage side DC portion. (3). According to this, it becomes possible to use a low withstand voltage switching element for the switching element that controls the current flowing through the reactor (L1), and it is possible to achieve miniaturization and high efficiency.
  • the first flying capacitor circuit (31) and the second flying capacitor circuit (32) connected in parallel with the high-voltage side DC section, and It is provided with a negative terminal of a low-voltage side DC portion and a reactor (L1) connected between the midpoints of the second flying capacitor circuit (32).
  • the midpoint of the first flying capacitor circuit (31) is connected to the positive terminal of the low voltage side DC portion.
  • a DC / DC converter characterized in that the connection point between the first flying capacitor circuit (31) and the second flying capacitor circuit (32) is connected to an intermediate potential point of the high-voltage side DC portion. (3). According to this, it becomes possible to use a low withstand voltage switching element for the switching element that controls the current flowing through the reactor (L1), and it is possible to achieve miniaturization and high efficiency.
  • the first flying capacitor circuit (31) The first switching element (S1), the second switching element (S2), the third switching element (S3), and the fourth switching element (S4) connected in series, A first connected between a connection point between the first switching element (S1) and the second switching element (S2) and a connection point between the third switching element (S3) and the fourth switching element (S4).
  • Including the flying capacitor (C1), The second flying capacitor circuit (32) The fifth switching element (S5), the sixth switching element (S6), the seventh switching element (S7), and the eighth switching element (S8) connected in series, A second connected between the connection point between the fifth switching element (S5) and the sixth switching element (S6) and the connection point between the seventh switching element (S7) and the eighth switching element (S8).
  • the DC / DC converter (3) according to item 3, wherein the flying capacitor (C2) is included.
  • the flying capacitor (C2) By connecting eight switching elements (S1-S8) in series in parallel with the high-voltage DC unit, it is possible to use a switching element having a lower withstand voltage than before.
  • the control unit (40) The second switching element (S2), the fourth switching element (S4), the fifth switching element (S5), and the seventh switching element (S7) are turned on, and the first switching element (S1), the said.
  • a first mode for controlling the third switching element (S3), the sixth switching element (S6), and the eighth switching element (S8) in an off state The first switching element (S1), the third switching element (S3), the sixth switching element (S6), and the eighth switching element (S8) are turned on, and the second switching element (S2), the first.
  • the first switching element (S1), the second switching element (S2), the seventh switching element (S7), and the eighth switching element (S8) are turned on, and the third switching element (S3), the first.
  • a third mode for controlling the 4 switching element (S4), the 5th switching element (S5), and the 6th switching element (S6) in an off state The third switching element (S3), the fourth switching element (S4), the fifth switching element (S5), and the sixth switching element (S6) are in the ON state, and the first switching element (S1), the first.
  • the control unit (40) When the ratio of the voltage of the low-voltage side DC section to the voltage of the high-voltage side DC section is smaller than the set value, the first mode, the second mode and the third mode are used, and the ratio is higher than the set value.
  • the DC / DC converter (3) according to item 5, wherein when the size is large, the first mode, the second mode, and the fourth mode are used. By switching the mode according to the ratio, the amount of energy stored in the reactor (L1) can be changed.
  • the control unit (40) controls the voltage of the first flying capacitor (C1) and the voltage of the second flying capacitor (C2) so as to be 1/4 times the voltage of the DC unit on the high voltage side.
  • the DC / DC converter (3) according to any one of items 4 to 6, wherein the DC / DC converter (3) is characterized in that. According to this, it is possible to prevent the withstand voltage of the first switching element (S1) -8th switching element (S8) from being exceeded.
  • the first flying capacitor circuit (31) and the second flying capacitor circuit (32) each include N (N is a natural number) of flying capacitors (C1, ..., C1N).
  • the voltage (C1) of the first flying capacitor connected to the innermost side is controlled to be (1 / (2N + 2)) times the voltage of the DC portion on the high voltage side.
  • the voltage (C1N) of the Nth flying capacitor connected to the outermost side is controlled to be (N / (2N + 2)) times the voltage of the DC portion on the high voltage side.
  • the DC / DC converter (3) according to item 1. According to this, by increasing the number of stages of the flying capacitor circuits (31, 32), it becomes possible to use a switching element having a lower withstand voltage.
  • the high-voltage side DC unit is included in the plurality of switching elements (S1-S4) included in the first flying capacitor circuit (31) and the plurality of switching elements (S5-S8) included in the second flying capacitor circuit (32).
  • the DC / DC conversion device (3) according to any one of items 1 to 8, wherein a switching element having a withstand voltage lower than the voltage of the above and the voltage of the low-voltage side DC portion is used. According to this, it becomes possible to use a switching element having a low withstand voltage, and it is possible to achieve miniaturization and high efficiency.
  • the first flying capacitor circuit (31) The first diode (D1), the second diode (D2), the third switching element (S3), and the fourth switching element (S4) connected in series, A first flying capacitor connected between the connection point between the first diode (D1) and the second diode (D2) and the connection point between the third switching element (S3) and the fourth switching element (S4).
  • the second flying capacitor circuit (32) A fifth switching element (S5), a sixth switching element (S6), a seventh diode (D7) and an eighth diode (D8) connected in series, A second flying capacitor connected between the connection point between the fifth switching element (S5) and the sixth switching element (S6) and the connection point between the seventh diode (D7) and the eighth diode (D8).
  • Including (C2) and The control unit (40) controls the third switching element (S3), the fourth switching element (S4), the fifth switching element (S5), and the sixth switching element (S6) to control the low pressure.
  • the DC / DC converter (3) according to item 3, wherein DC power is output from the side DC unit to the high-pressure side DC unit by a boosting operation.
  • the first flying capacitor circuit (31) A first switching element (S1), a second switching element (S2), a third diode (D3) and a fourth diode (D4) connected in series, A first flying capacitor connected between the connection point between the first switching element (S1) and the second switching element (S2) and the connection point between the third diode (D3) and the fourth diode (D4).
  • the second flying capacitor circuit (32) A fifth diode (D5), a sixth diode (D6), a seventh switching element (S7), and an eighth switching element (S8) connected in series, A second flying capacitor connected between the connection point between the fifth diode (D5) and the sixth diode (D6) and the connection point between the seventh switching element (S7) and the eighth switching element (S8).
  • Including (C2) and The control unit (40) controls the first switching element (S1), the second switching element (S2), the seventh switching element (S7), and the eighth switching element (S8) to control the high pressure.
  • the DC / DC converter (3) according to item 3, wherein DC power is output from the side DC unit to the low pressure side DC unit by a step-down operation. Costs can be reduced by using a unidirectional buck converter.
  • This disclosure can be used for multi-level converters using flying capacitors.
  • 1 1st DC power supply, 2 2nd DC power supply, 3 DC / DC conversion device, 30 DC / DC conversion unit, 31, 32 flying capacitor circuit, 40 control unit, S1-S8 switching element, D1-D8 diode, C1, C2 flying capacitor, C3, C4 split capacitor, C5 input capacitor, L1 reactor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

第1フライングキャパシタ回路31及び第2フライングキャパシタ回路32は、高圧側直流部と並列に直列接続される。リアクトルL1は、低圧側直流部の正側端子と、第1フライングキャパシタ回路31の中点間に接続される。第2フライングキャパシタ回路32の中点は、低圧側直流部の負側端子に接続される。第1フライングキャパシタ回路31と第2フライングキャパシタ回路32との間の接続点は、高圧側直流部の中間電位点に接続される。

Description

DC/DC変換装置
 本開示は、直流電力を別の電圧の直流電力に変換するDC/DC変換装置に関する。
 太陽電池、蓄電池、燃料電池などに接続されるパワーコンディショナでは、DC/DCコンバータとインバータが使用される。DC/DCコンバータとインバータは、高効率な電力変換と小型設計が望まれる。それを実現するためのDC/DCコンバータとして、リアクトルの後段に、フライングキャパシタ回路(直列接続された4つのスイッチング素子と、第2スイッチング素子と第3スイッチング素子に並列接続されたフライングキャパシタで構成される)を接続し、リアクトルとフライングキャパシタ回路の接続点の電圧を3レベル化したマルチレベル電力変換装置が提案されている(例えば、特許文献1参照)。
 マルチレベル電力変換装置は、各スイッチング素子に印加される電圧を小さくでき、それによりスイッチング損失を少なくでき、高効率な電力変換を実現する。上記フライングキャパシタ回路を利用したマルチレベル電力変換装置では3レベル化することにより、フライングキャパシタ回路を構成する各スイッチング素子に印加される電圧を、直流バス電圧の1/2倍まで小さくすることができる。
 それにより、インバータのフルブリッジ部で使用している比較的高い耐圧(例えば、600V)のスイッチング素子を使用せずに、比較的低い耐圧(例えば、300V)のスイッチング素子で構成することが可能となる。耐圧の低いスイッチング素子は耐圧の高いスイッチング素子に対して安価であり、かつ電力変換中の導通損失、スイッチング損失などが少なく、さらなる高効率化に寄与する。
特開2013-192383号公報
 しかしながら動作電圧が比較的高圧(例えば、450Vなど)のアプリケーションにおいて300V耐圧のスイッチング素子を使用する場合、600V耐圧のスイッチング素子を使用する場合と比較して損失が改善するものの、複数のスイッチング素子を導通するため、トータルでの損失改善効果は限定的なものとなる。
 本開示はこうした状況に鑑みなされたものであり、その目的は、より低耐圧のスイッチング素子の使用を可能とすることにより、さらなる高効率化を実現したDC/DC変換装置を提供することにある。
 上記課題を解決するために、本開示のある態様のDC/DC変換装置は、高圧側直流部と並列に直列接続された第1フライングキャパシタ回路及び第2フライングキャパシタ回路と、低圧側直流部の正側端子と、前記第1フライングキャパシタ回路の中点間に接続されたリアクトルと、を備える。前記第2フライングキャパシタ回路の中点は、前記低圧側直流部の負側端子に接続され、前記第1フライングキャパシタ回路と前記第2フライングキャパシタ回路との間の接続点は、前記高圧側直流部の中間電位点に接続される。
 本開示によれば、より低耐圧のスイッチング素子の使用を可能とすることにより、さらなる高効率化を実現したDC/DC変換装置を提供できる。
実施の形態に係るDC/DC変換装置の構成を説明するための図である。 実施の形態に係るDC/DC変換装置の第1スイッチング素子-第8スイッチング素子のスイッチングパターンをまとめた図である。 図3(a)-(d)は、昇圧動作時の各スイッチングパターンの電流経路を示す回路図である。 図4(a)-(d)は、降圧動作時の各スイッチングパターンの電流経路を示す回路図である。 昇圧比が2倍より大きい場合の第1スイッチング素子-第8スイッチング素子のスイッチングパターンの一例を示すタイミングチャートである。 昇圧比が2倍より小さい場合の第1スイッチング素子-第8スイッチング素子のスイッチングパターンの一例を示すタイミングチャートである。 図7(a)-(c)は、フライングキャパシタ回路の構成例を示す図である。 N(Nは自然数)段のフライングキャパシタ回路を示す図である。 変形例1に係るDC/DC変換装置の構成を説明するための図である。 変形例2に係るDC/DC変換装置の構成を説明するための図である。 変形例3に係るDC/DC変換装置の構成を説明するための図である。
 図1は、実施の形態に係るDC/DC変換装置3の構成を説明するための図である。実施の形態に係るDC/DC変換装置3は、双方向の昇降圧DC/DCコンバータである。DC/DC変換装置3は、第2直流電源2から供給される直流電力を昇圧して第1直流電源1に供給することができる。またDC/DC変換装置3は、第1直流電源1から供給される直流電力を降圧して第2直流電源2に供給することができる。本明細書では、第2直流電源2が第1直流電源1より低圧な電源であることを前提とする。
 第2直流電源2は例えば、蓄電池、電気二重層コンデンサなどが該当する。第1直流電源1は例えば、双方向DC/ACインバータが接続された直流バスなどが該当する。当該双方向DC/ACインバータの交流側は、蓄電システムの用途では商用電力系統と交流負荷に接続される。電気自動車の用途ではモータ(回生機能あり)に接続される。蓄電システムの用途では当該直流バスに、太陽電池用のDC/DCコンバータや、他の蓄電池用のDC/DCコンバータがさらに接続されていてもよい。
 DC/DC変換装置3は、DC/DC変換部30及び制御部40を備える。DC/DC変換部30は、入力コンデンサC5、リアクトルL1、第1フライングキャパシタ回路31、第2フライングキャパシタ回路32、第1分割コンデンサC3及び第2分割コンデンサC4を含む。
 第2直流電源2と並列に入力コンデンサC5が接続される。第1直流電源1の正側バスと負側バスの間に、第1分割コンデンサC3及び第2分割コンデンサC4が直列に接続される。第1分割コンデンサC3及び第2分割コンデンサC4は、第1直流電源1の電圧Eを1/2に分圧する作用、DC/DC変換部30内で発生するサージ電圧を抑制するためのスナバコンデンサとしての作用を有する。本明細書では、入力コンデンサC5より前段の構成を低圧直流部と呼び、第1分割コンデンサC3及び第2分割コンデンサC4より後段の構成を高圧直流部と呼ぶ。
 第1フライングキャパシタ回路31及び第2フライングキャパシタ回路32は、高圧側直流部と並列に直列接続される。リアクトルL1は、低圧側直流部の正側端子と、第1フライングキャパシタ回路31の中点間に直列に接続される。低圧側直流部の負側端子と、第2フライングキャパシタ回路32の中点が接続される。第1フライングキャパシタ回路31と第2フライングキャパシタ回路32との間の接続点は、高圧側直流部の中間電位点M(第1分割コンデンサC3と第2分割コンデンサC4の分圧点)に接続される。
 なお、第1分割コンデンサC3及び第2分割コンデンサC4は省略可能であり、その場合、第1フライングキャパシタ回路31と第2フライングキャパシタ回路32との間の接続点は、必ずしも高圧側直流部の中間電位点Mに接続される必要はない。
 第1フライングキャパシタ回路31は、第1スイッチング素子S1、第2スイッチング素子S2、第3スイッチング素子S3、第4スイッチング素子S4及び第1フライングキャパシタC1を含む。第1スイッチング素子S1、第2スイッチング素子S2、第3スイッチング素子S3及び第4スイッチング素子S4は直列接続され、高圧直流部の正側バスと中間電位点Mの間に接続される。第1フライングキャパシタC1は、第1スイッチング素子S1と第2スイッチング素子S2との接続点と、第3スイッチング素子S3と第4スイッチング素子S4との接続点との間に接続され、第1スイッチング素子S1-第4スイッチング素子S4により充放電される。
 第1フライングキャパシタ回路31の中点には、第1スイッチング素子S1の上側端子に印加される第1直流電源1の電圧E[V]と、第4スイッチング素子S4の下側端子に印加される1/2E[V]の間の範囲の電位が生成される。第1フライングキャパシタC1は1/4E[V]の電圧になるように初期充電(プリチャージ)され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第1フライングキャパシタ回路31の中点には、概ね、E[V]、3/4E[V]、1/2E[V]の3レベルの電位が生成される。
 第2フライングキャパシタ回路32は、第5スイッチング素子S5、第6スイッチング素子S6、第7スイッチング素子S7、第8スイッチング素子S8及び第2フライングキャパシタC2を含む。第5スイッチング素子S5、第6スイッチング素子S6、第7スイッチング素子S7及び第8スイッチング素子S8は直列接続され、高圧直流部の中間電位点Mと負側バスの間に接続される。第2フライングキャパシタC2は、第5スイッチング素子S5と第6スイッチング素子S6との接続点と、第7スイッチング素子S7と第8スイッチング素子S8との接続点との間に接続され、第5スイッチング素子S5-第8スイッチング素子S8により充放電される。
 第2フライングキャパシタ回路32の中点には、第5スイッチング素子S5の上側端子に印加される1/2E[V]と、第8スイッチング素子S8の下側端子に印加される0[V]の間の範囲の電位が生成される。第2フライングキャパシタC2は1/4E[V]の電圧になるように初期充電(プリチャージ)され、1/4E[V]の電圧を中心として充放電が繰り返される。従って、第2フライングキャパシタ回路32の中点には、概ね、1/2E[V]、1/4E[V]、0[V]の3レベルの電位が生成される。
 第1スイッチング素子S1-第8スイッチング素子S8にはそれぞれ、第1ダイオードD1-第8ダイオードD8が逆並列に形成/接続される。
 第1スイッチング素子S1-第8スイッチング素子S8には、第1直流電源1及び第2直流電源2の電圧より低い耐圧のスイッチング素子が使用されることが好ましい。以下、本実施の形態では第1スイッチング素子S1-第8スイッチング素子S8に、150V耐圧のNチャネルMOSFETを使用する例を想定する。NチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)では、ソースからドレイン方向に寄生ダイオードが形成される。
 なお、第1スイッチング素子S1-第8スイッチング素子S8にIGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタを使用してもよい。その場合、第1スイッチング素子S1-第8スイッチング素子S8に寄生ダイオードは形成されず、第1スイッチング素子S1-第8スイッチング素子S8にそれぞれ外付けダイオードが逆並列に接続される。なお、一般的なシリコン(Si)半導体に限らず、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンド(C)等を使用したワイドバンドギャップ半導体を用いてもよい。
 図1には示していないが、低圧直流部の両端電圧を検出する第1電圧センサ、リアクトルL1に流れる電流を検出する電流センサ、及び高圧直流部の両端電圧を検出する第2電圧センサが設けられ、それぞれの計測値が制御部40に出力される。
 制御部40は、第1フライングキャパシタ回路31及び第2フライングキャパシタ回路32を制御して、低圧側直流部から高圧側直流部へ昇圧動作で直流電力を伝送することができる。また高圧側直流部から低圧側直流部へ降圧動作で直流電力を伝送することができる。より具体的には制御部40は、第1スイッチング素子S1-第8スイッチング素子S8のゲート端子に駆動信号(PWM(Pulse Width Modulation)信号)を供給することにより、第1スイッチング素子S1-第8スイッチング素子S8をオン/オフ制御して、昇圧動作または降圧動作で、双方向に電力を伝送することができる。
 制御部40の構成は、ハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、ASIC、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
 図2は、実施の形態に係るDC/DC変換装置3の第1スイッチング素子S1-第8スイッチング素子S8のスイッチングパターンをまとめた図である。図2に示すスイッチングパターンでは、第1スイッチング素子S1及び第8スイッチング素子S8の組と、第4スイッチング素子S4及び第5スイッチング素子S5の組とが相補関係となる。また第2スイッチング素子S2及び第7スイッチング素子S7の組と、第3スイッチング素子S3及び第6スイッチング素子S6の組とが相補関係となる。
 制御部40は、4つのモードを使用して昇圧動作または降圧動作を実行する。
 モードaでは制御部40は、第2スイッチング素子S2、第4スイッチング素子S4、第5スイッチング素子S5及び第7スイッチング素子S7をオン状態、並びに第1スイッチング素子S1、第3スイッチング素子S3、第6スイッチング素子S6及び第8スイッチング素子S8をオフ状態に制御する。モードaでは、第1フライングキャパシタ回路31の中点と第2フライングキャパシタ回路32の中点間の電圧(即ち、低圧側の入出力電圧V)は1/2Eとなる。
 モードbでは制御部40は、第1スイッチング素子S1、第3スイッチング素子S3、第6スイッチング素子S6及び第8スイッチング素子S8をオン状態 並びに第2スイッチング素子S2、第4スイッチング素子S4、第5スイッチング素子S5及び第7スイッチング素子S7をオフ状態に制御する。モードbでは、第1フライングキャパシタ回路31と第2フライングキャパシタ回路32の低圧側の入出力電圧Vは1/2Eとなる。
 モードcでは制御部40は、第1スイッチング素子S1、第2スイッチング素子S2、第7スイッチング素子S7及び第8スイッチング素子S8をオン状態 並びに第3スイッチング素子S3、第4スイッチング素子S4、第5スイッチング素子S5及び第6スイッチング素子S6をオフ状態に制御する。モードcでは、第1フライングキャパシタ回路31と第2フライングキャパシタ回路32の低圧側の入出力電圧VはEとなる。
 モードdでは制御部40は、第3スイッチング素子S3、第4スイッチング素子S4、第5スイッチング素子S5及び第6スイッチング素子S6をオン状態 並びに第1スイッチング素子S1、第2スイッチング素子S2、第7スイッチング素子S7及び第8スイッチング素子S8をオフ状態に制御する。モードdでは、第1フライングキャパシタ回路31と第2フライングキャパシタ回路32の低圧側の入出力電圧Vは0となる。
 図3(a)-(d)は、昇圧動作時の各スイッチングパターンの電流経路を示す回路図である。図4(a)-(d)は、降圧動作時の各スイッチングパターンの電流経路を示す回路図である。なお、図面の簡略化のためMOSFETを単純なスイッチ記号で描いている。
 図3(a)は昇圧動作時のモードaの電流経路を示し、図3(b)は昇圧動作時のモードbの電流経路を示し、図3(c)は昇圧動作時のモードcの電流経路を示し、図3(d)は昇圧動作時のモードdの電流経路を示している。同様に、図4(a)は降圧動作時のモードaの電流経路を示し、図4(b)は降圧動作時のモードbの電流経路を示し、図4(c)は降圧動作時のモードcの電流経路を示し、図4(d)は降圧動作時のモードdの電流経路を示している。
 昇圧動作時と降圧動作時とで電流の向きが反対になる。モードaにおいて、図3(a)に示すように昇圧動作時は第1フライングキャパシタC1及び第2フライングキャパシタC2が充電動作となるが、図4(a)に示すように降圧動作時は第1フライングキャパシタC1及び第2フライングキャパシタC2が放電動作となる。モードbにおいて、図3(b)に示すように昇圧動作時は第1フライングキャパシタC1及び第2フライングキャパシタC2が放電動作となるが、図4(b)に示すように降圧動作時は第1フライングキャパシタC1及び第2フライングキャパシタC2が充電動作となる。
 制御部40は低圧直流部から高圧直流部へ昇圧動作で電力を伝送する場合、正方向の電流指令値を設定し、リアクトルL1に流れる電流の計測値が、当該正方向の電流指令値を維持するように第1スイッチング素子S1-第8スイッチング素子S8のデューティ比(オン時間)を制御する。反対に、制御部40は高圧直流部から低圧直流部へ降圧動作で電力を伝送する場合、負方向の電流指令値を設定し、リアクトルL1に流れる電流の計測値が、当該負方向の電流指令値を維持するように第1スイッチング素子S1-第8スイッチング素子S8のデューティ比(オン時間)を制御する。
 また制御部40は、低圧側直流部の電圧と高圧側直流部の電圧との比率(以下、昇圧比で定義する)が設定値より小さい場合、モードa、モードb及びモードcを使用して電力を伝送する。また制御部40は、当該昇圧比が当該設定値より大きい場合、モードa、モードb及びモードdを使用して電力を伝送する。また制御部40は、当該昇圧比が当該設定値と一致する場合、モードa及びモードbを使用して電力を伝送する。
 低圧側直流部の電圧と高圧側直流部の電圧は、それぞれ電圧センサにより計測される。上記設定値は、第1フライングキャパシタC1の電圧と第2フライングキャパシタC2の電圧の合計電圧1/2Eと、第1直流電源1の電圧Eとの比率に応じて設定される。本実施の形態では上記設定値は2に設定される。なお、低圧側直流部の電圧と高圧側直流部の電圧との比率を降圧比で定義する場合、上記設定値は1/2に設定される。
 制御部40は、電流指令値とリアクトルL1に流れる電流の計測値とが一致し、かつ第1フライングキャパシタC1及び第2フライングキャパシタC2の電圧がそれぞれ1/4Eになるようにデューティ比を生成する。具体的には制御部40は、リアクトルL1に流れる電流が電流指令値に対して小さいほどデューティ比を上昇させ、大きいほどデューティ比を低下させる。
 図5は、昇圧比が2倍より大きい場合の第1スイッチング素子S1-第8スイッチング素子S8のスイッチングパターンの一例を示すタイミングチャートである。図6は、昇圧比が2倍より小さい場合の第1スイッチング素子S1-第8スイッチング素子S8のスイッチングパターンの一例を示すタイミングチャートである。図5及び図6に示す制御例は、ダブルキャリア駆動方式を使用した制御例を示している。ダブルキャリア駆動方式では、180°位相がずれた2つのキャリア信号(図5及び図6では三角波)を使用する。デューティ比dutyは2つのキャリア信号と比較される閾値となる。昇圧比が2倍より大きい場合、デューティ比dutyは0.5~1.0の範囲の値をとり、昇圧比が2倍より小さい場合、デューティ比dutyは0.0~0.5の範囲の値をとる。
 太線のキャリア信号とデューティ比dutyの比較結果により、第1スイッチング素子S1及び第8スイッチング素子S8に供給する第1ゲート信号と、第4スイッチング素子S4及び第5スイッチング素子S5に供給する第4ゲート信号を生成する。具体的には太線のキャリア信号がデューティ比dutyより高い領域では、第1ゲート信号がオン及び第4ゲート信号がオフになる。太線のキャリア信号がデューティ比dutyより低い領域では、第1ゲート信号がオフ及び第4ゲート信号がオンになる。第1ゲート信号と第4ゲート信号は相補関係にある。なお、第1ゲート信号と第4ゲート信号のオン/オフが切り替わる際に、第1ゲート信号と第4ゲート信号が同時にオフになるデッドタイム期間が設定されている。
 細線のキャリア信号とデューティ比dutyの比較結果により、第2スイッチング素子S2及び第7スイッチング素子S7に供給する第2ゲート信号と、第3スイッチング素子S3及び第6スイッチング素子S6に供給する第3ゲート信号を生成する。具体的には細線のキャリア信号がデューティ比dutyより高い領域では、第2ゲート信号がオン及び第3ゲート信号がオフになる。細線のキャリア信号がデューティ比dutyより低い領域では、第2ゲート信号がオフ及び第3ゲート信号がオンになる。第2ゲート信号と第3ゲート信号は相補関係にある。なお、第2ゲート信号と第3ゲート信号のオン/オフが切り替わる際に、第2ゲート信号と第3ゲート信号が同時にオフになるデッドタイム期間が設定されている。
 昇圧比が2倍より大きい場合、制御部40はモードaとモードbを交互に切り替え、両者を切り替える間にモードdを挿入する。即ち制御部40は、モードa→モードd→モードb→モードd→モードa→モードd→モードb→モードd・・・の順にモードを切り替える。デューティ比dutyが変化しない間は、モードaとモードbの期間が等しくなり、第1フライングキャパシタC1及び第2フライングキャパシタC2の電圧がそれぞれ1/4Eに保たれる。昇圧比が2倍より大きい場合、デューティ比dutyが上昇するほど、モードa及びモードbの期間に対するモードdの期間が長くなり、伝達されるエネルギー量が増大する。
 昇圧比が2倍より小さい場合、制御部40はモードaとモードbを交互に切り替え、両者を切り替える間にモードcを挿入する。即ち制御部40は、モードa→モードc→モードb→モードc→モードa→モードc→モードb→モードc・・・の順にモードを切り替える。デューティ比dutyが変化しない間は、モードaとモードbの期間が等しくなり、第1フライングキャパシタC1及び第2フライングキャパシタC2の電圧がそれぞれ1/4Eに保たれる。昇圧比が2倍より小さい場合、デューティ比dutyが上昇するほど、モードa及びモードbの期間に対するモードcの期間が短くなり、伝達されるエネルギー量が増大する。
 昇圧比が理想的に2倍を維持し、第1フライングキャパシタC1及び第2フライングキャパシタC2の電圧がそれぞれ理想的に1/4Eを維持すれば、デューティ比dutyは0.5を維持する。
 制御部40は、第1フライングキャパシタC1の電圧と第2フライングキャパシタC2の電圧の合計電圧が1/2Eを下回ると、モードa及びモードbの内、充電する方のモードの時間を増やして当該合計電圧を1/2Eに近づける。反対に制御部40は、第1フライングキャパシタC1の電圧と第2フライングキャパシタC2の電圧の合計電圧が1/2Eを上回ると、モードa及びモードbの内、放電する方のモードの時間を増やして当該合計電圧を1/2Eに近づける。
 なお制御部40は、第1フライングキャパシタC1及び第2フライングキャパシタC2を使用せずに、モードcとモードdを交互に切り替えることにより、DC/DC変換部30に、通常の昇圧チョッパの動作をさせることも可能である。この場合、昇圧比による動作モードの切り替えは発生しない。
 以上説明したように本実施の形態によれば、リアクトルL1の後段のスイッチ部を、高圧側直流部と並列に直列接続された第1フライングキャパシタ回路31及び第2フライングキャパシタ回路32で構成する。これにより、第1スイッチング素子S1-第8スイッチング素子S8に低耐圧のスイッチング素子(例えば、150V耐圧のMOSFET)の使用が可能となる。低耐圧のスイッチング素子を使用することにより、スイッチング素子の導通損失を低減することができ、DC/DC変換装置3を高効率化することができる。また低耐圧のスイッチング素子を使用することにより発熱が低減され、放熱部品を小型化することができる。また低耐圧のスイッチング素子を使用することにより、低スイッチングロスで高周波化できるため、受動部品も小型化することができる。
 また昇圧比に応じてモードを切り替えることで、リアクトルL1に蓄えるエネルギー量を変えることができる。具体的には昇圧比が2倍よりも小さい場合は、モードa、モードb及びモードcで動作し、昇圧比が2倍よりも大きい場合は、モードa、モードb及びモードdで動作する。これにより、第2直流電源2と第1直流電源1の広範囲な電圧レンジに対応するDC/DC変換装置3が構築可能となる。また、第1フライングキャパシタC1及び第2フライングキャパシタC2の電圧がそれぞれ1/4Eになるように制御することで、第1スイッチング素子S1-第8スイッチング素子S8の耐圧超過を防止することができる。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 上記実施の形態では、フライングキャパシタ回路の構成例として、直列接続された4つのスイッチング素子と、1つのフライングキャパシタを使用する1段のフライングキャパシタ回路を例に挙げた。この点、さらに段数を増やしたフライングキャパシタ回路を使用することもできる。
 図7(a)-(c)は、フライングキャパシタ回路の構成例を示す図である。図7(a)は1段のフライングキャパシタ回路を示す。図7(a)に示すフライングキャパシタ回路は、上記実施の形態で説明した回路構成と同様である。
 図7(b)は2段のフライングキャパシタ回路を示す。2段のフライングキャパシタ回路では、直列接続された6つのスイッチング素子S12、S1、S2、S3、S4、S42と、2つのフライングキャパシタC11、C12を備える。1番内側のフライングキャパシタC11は、2つのスイッチング素子S2、S3に対して並列に接続され、1/6Eの電圧を維持するように制御される。本明細書ではEは、高圧側直流部の電圧を示す。内側から2番目のフライングキャパシタC12は、4つのスイッチング素子S1、S2、S3、S4に対して並列に接続され、1/6Eの電圧を維持するように制御される。
 図7(c)は3段のフライングキャパシタ回路を示す。3段のフライングキャパシタ回路では、直列接続された6つのスイッチング素子S13、S12、S1、S2、S3、S4、S42、S43と、3つのフライングキャパシタC11、C12、C13を備える。1番内側のフライングキャパシタC11は、2つのスイッチング素子S2、S3に対して並列に接続され、1/8Eの電圧を維持するように制御される。内側から2番目のフライングキャパシタC12は、4つのスイッチング素子S1、S2、S3、S4に対して並列に接続され、2/8Eの電圧を維持するように制御される。内側から3番目のフライングキャパシタC13は、6つのスイッチング素子S12、S1、S2、S3、S4、S42に対して並列に接続され、3/8Eの電圧を維持するように制御される。
 図8は、N(Nは自然数)段のフライングキャパシタ回路を示す。N段のフライングキャパシタ回路では、直列接続された(2N+2)個のスイッチング素子S1n、・・・、S13、S12、S1、S2、S3、S4、S42、S43、・・・、S4nと、N個のフライングキャパシタC11、C12、C13、・・・、C1nを備える。1番内側のフライングキャパシタC11は、2つのスイッチング素子S2、S3に対して並列に接続され、1/(2N+2)Eの電圧を維持するように制御される。内側から2番目のフライングキャパシタC12は、4つのスイッチング素子S1、S2、S3、S4に対して並列に接続され、2/(2N+2)Eの電圧を維持するように制御される。内側から3番目のフライングキャパシタC13は、6つのスイッチング素子S12、S1、S2、S3、S4、S42に対して並列に接続され、3/(2N+2)Eの電圧を維持するように制御される。最も外側のフライングキャパシタC1nは、2N個のS1(n-1)、・・・、S13、S12、S1、S2、S3、S4、S42、S43、・・・、S4(n-1)に対して並列に接続され、N/(2N+2)Eの電圧を維持するように制御される。
 図1に示した第1フライングキャパシタ回路31及び第2フライングキャパシタ回路32では、図7(a)に示した1段のフライングキャパシタ回路を使用している。1段のフライングキャパシタ回路を使用すると、第1フライングキャパシタ回路31の中点と第2フライングキャパシタ回路32の中点との間に3レベル(E、1/2E、0)の電圧を発生させることが可能となる。図7(b)に示した2段のフライングキャパシタ回路を使用すると、第1フライングキャパシタ回路31の中点と第2フライングキャパシタ回路32の中点との間に5レベル(E、2/3E、1/2E、1/3E、0)の電圧を発生させることが可能となる。図7(c)に示した3段のフライングキャパシタ回路を使用すると、第1フライングキャパシタ回路31の中点と第2フライングキャパシタ回路32の中点との間に7レベル(E、3/4E、5/8E、1/2E、3/8E、1/4E、0)の電圧を発生させることが可能となる。図8に示したN段のフライングキャパシタ回路を使用すると、第1フライングキャパシタ回路31の中点と第2フライングキャパシタ回路32の中点との間に(2N+1)レベルの電圧を発生させることが可能となる。
 フライングキャパシタ回路の段数を増やすほど、安価で耐圧が低いスイッチング素子を使用することができる一方、使用するスイッチング素子の数が増大する。従って設計者は、トータルのコストとトータルの変換効率を考慮して、フライングキャパシタ回路の最適な段数を決定すればよい。また、高圧側直流部の電圧が1000Vを超えるアプリケーションや、10000Vを超えるアプリケーションでは、各スイッチング素子の耐圧を下げるために、フライングキャパシタ回路の段数を増やすことが有効である。
 図9は、変形例1に係るDC/DC変換装置3の構成を説明するための図である。変形例1に係るDC/DC変換装置3は、単方向の降圧DC/DCコンバータであり、低圧側直流部から高圧側直流部へは電力を伝送することができない。変形例1に係るDC/DC変換装置3では、第3スイッチング素子S3、第4スイッチング素子S4、第5スイッチング素子S5及び第6スイッチング素子S6の代わりに、4つのダイオード素子(第3ダイオードD3、第4ダイオードD4、第5ダイオードD5及び第6ダイオードD6)が使用される。これにより、スイッチング素子とドライバの数を減らすことができ、コストを削減することができる。変形例1に係るDC/DC変換装置3は例えば、第1直流電源1から基準電圧(例えば、DC12V、DC24V、DC48V)を生成する降圧回路として使用可能である。
 図10は、変形例2に係るDC/DC変換装置3の構成を説明するための図である。変形例2に係るDC/DC変換装置3は、単方向の昇圧DC/DCコンバータであり、高圧側直流部から低圧側直流部へは電力を伝送することができない。変形例2に係るDC/DC変換装置3では、第1スイッチング素子S1、第2スイッチング素子S2、第7スイッチング素子S7及び第8スイッチング素子S8の代わりに、4つのダイオード素子(第1ダイオードD1、第2ダイオードD2、第7ダイオードD7及び第8ダイオードD8)が使用される。これにより、スイッチング素子とドライバの数を減らすことができ、コストを削減することができる。変形例2に係るDC/DC変換装置3は例えば、太陽電池用の昇圧回路として使用可能である。
 図11は、変形例3に係るDC/DC変換装置3の構成を説明するための図である。図1に示したDC/DC変換装置3では、リアクトルL1を、低圧側直流部の正側端子と第1フライングキャパシタ回路31の中点間に接続したが、図11に示すように、低圧側直流部の負側端子と第2フライングキャパシタ回路32の中点間に接続してもよい。この場合も、図1に示したDC/DC変換装置3と同様の効果を得られる。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 高圧側直流部と並列に直列接続された第1フライングキャパシタ回路(31)及び第2フライングキャパシタ回路(32)と、
 低圧側直流部の正側端子と、前記第1フライングキャパシタ回路(31)の中点間に接続されたリアクトル(L1)と、を備え、
 前記第2フライングキャパシタ回路(32)の中点は、前記低圧側直流部の負側端子に接続され、
 前記第1フライングキャパシタ回路(31)と前記第2フライングキャパシタ回路(32)との間の接続点は、前記高圧側直流部の中間電位点に接続されることを特徴とするDC/DC変換装置(3)。
 これによれば、リアクトル(L1)に流れる電流を制御するスイッチング素子に、低耐圧のスイッチング素子を使用することが可能となり、小型化・高効率化を図ることができる。
[項目2]
 高圧側直流部と並列に直列接続された第1フライングキャパシタ回路(31)及び第2フライングキャパシタ回路(32)と、
 低圧側直流部の負側端子と、前記第2フライングキャパシタ回路(32)の中点間に接続されたリアクトル(L1)と、を備え、
 前記第1フライングキャパシタ回路(31)の中点は、前記低圧側直流部の正側端子に接続され、
 前記第1フライングキャパシタ回路(31)と前記第2フライングキャパシタ回路(32)との間の接続点は、前記高圧側直流部の中間電位点に接続されることを特徴とするDC/DC変換装置(3)。
 これによれば、リアクトル(L1)に流れる電流を制御するスイッチング素子に、低耐圧のスイッチング素子を使用することが可能となり、小型化・高効率化を図ることができる。
[項目3]
 前記第1フライングキャパシタ回路(31)及び前記第2フライングキャパシタ回路(32)を制御して、前記低圧側直流部から前記高圧側直流部へ昇圧動作で電力伝送、及び前記高圧側直流部から前記低圧側直流部へ降圧動作で電力伝送の少なくとも一方を実行可能な制御部(40)をさらに備えることを特徴とする項目1または2に記載のDC/DC変換装置(3)。
 これによれば、双方向に電力を伝送することができる。
[項目4]
 前記第1フライングキャパシタ回路(31)は、
 直列接続された第1スイッチング素子(S1)、第2スイッチング素子(S2)、第3スイッチング素子(S3)及び第4スイッチング素子(S4)と、
 前記第1スイッチング素子(S1)と第2スイッチング素子(S2)との接続点と、第3スイッチング素子(S3)と第4スイッチング素子(S4)との接続点との間に接続された第1フライングキャパシタ(C1)と、を含み、
 前記第2フライングキャパシタ回路(32)は、
 直列接続された第5スイッチング素子(S5)、第6スイッチング素子(S6)、第7スイッチング素子(S7)及び第8スイッチング素子(S8)と、
 前記第5スイッチング素子(S5)と第6スイッチング素子(S6)との接続点と、第7スイッチング素子(S7)と第8スイッチング素子(S8)との接続点との間に接続された第2フライングキャパシタ(C2)と、を含むことを特徴とする項目3に記載のDC/DC変換装置(3)。
 高圧直流部と並列に、8個のスイッチング素子(S1-S8)を直列接続することにより、従来より低耐圧のスイッチング素子を使用することが可能となる。
[項目5]
 前記制御部(40)は、
 前記第2スイッチング素子(S2)、前記第4スイッチング素子(S4)、前記第5スイッチング素子(S5)及び前記第7スイッチング素子(S7)をオン状態、並びに前記第1スイッチング素子(S1)、前記第3スイッチング素子(S3)、前記第6スイッチング素子(S6)及び前記第8スイッチング素子(S8)をオフ状態に制御する第1モード、
 前記第1スイッチング素子(S1)、前記第3スイッチング素子(S3)、前記第6スイッチング素子(S6)及び前記第8スイッチング素子(S8)をオン状態 並びに前記第2スイッチング素子(S2)、前記第4スイッチング素子(S4)、前記第5スイッチング素子(S5)及び前記第7スイッチング素子(S7)をオフ状態に制御する第2モード、
 前記第1スイッチング素子(S1)、前記第2スイッチング素子(S2)、前記第7スイッチング素子(S7)及び前記第8スイッチング素子(S8)をオン状態 並びに前記第3スイッチング素子(S3)、前記第4スイッチング素子(S4)、前記第5スイッチング素子(S5)及び前記第6スイッチング素子(S6)をオフ状態に制御する第3モード、
 前記第3スイッチング素子(S3)、前記第4スイッチング素子(S4)、前記第5スイッチング素子(S5)及び前記第6スイッチング素子(S6)をオン状態 並びに前記第1スイッチング素子(S1)、前記第2スイッチング素子(S2)、前記第7スイッチング素子(S7)及び前記第8スイッチング素子(S8)をオフ状態に制御する第4モード、
 の4つのモードを使用して前記昇圧動作または前記降圧動作を実行することを特徴とする項目4に記載のDC/DC変換装置(3)。
 4つのモードを組み合わせて使用することにより、種々の制御が可能となる。
[項目6]
 前記制御部(40)は、
 前記低圧側直流部の電圧と前記高圧側直流部の電圧との比率が設定値より小さい場合、前記第1モード、前記第2モード及び前記第3モードを使用し、前記比率が前記設定値より大きい場合、前記第1モード、前記第2モード及び前記第4モードを使用することを特徴とする項目5に記載のDC/DC変換装置(3)。
 当該比率に応じてモードを切り替えることにより、リアクトル(L1)に蓄積するエネルギー量を変えることができる。
[項目7]
 前記制御部(40)は、前記第1フライングキャパシタ(C1)の電圧と前記第2フライングキャパシタ(C2)の電圧を、前記高圧側直流部の電圧の1/4倍の電圧になるように制御することを特徴とする項目4から6のいずれか1項に記載のDC/DC変換装置(3)。
 これによれば、第1スイッチング素子(S1)-第8スイッチング素子(S8)の耐圧超過を防止することができる。
[項目8]
 前記第1フライングキャパシタ回路(31)及び前記第2フライングキャパシタ回路(32)はそれぞれ、N(Nは自然数)個のフライングキャパシタ(C1、・・・、C1N)を含み、
 前記制御部(40)は、
 最も内側に接続される1番目のフライングキャパシタの電圧(C1)は、前記高圧側直流部の電圧の(1/(2N+2))倍の電圧になるように制御し、
 最も外側に接続されるN番目のフライングキャパシタの電圧(C1N)は、前記高圧側直流部の電圧の(N/(2N+2))倍の電圧になるように制御し、
 前記第1フライングキャパシタ回路(31)の中点と前記第2フライングキャパシタ回路(32)の中点との間に、(2N+1)通りの電圧を発生させることを特徴とする項目3から7のいずれか1項に記載のDC/DC変換装置(3)。
 これによれば、フライングキャパシタ回路(31、32)の段数を増やすことにより、さらに低耐圧のスイッチング素子を使用することが可能となる。
[項目9]
 前記第1フライングキャパシタ回路(31)に含まれる複数のスイッチング素子(S1-S4)及び前記第2フライングキャパシタ回路(32)に含まれる複数スイッチング素子(S5-S8)には、前記高圧側直流部の電圧及び前記低圧側直流部の電圧より低い耐圧のスイッチング素子が使用されることを特徴とする項目1から8のいずれか1項に記載のDC/DC変換装置(3)。
 これによれば、低耐圧のスイッチング素子を使用することが可能となり、小型化・高効率化を図ることができる。
[項目10]
 前記第1フライングキャパシタ回路(31)は、
 直列接続された第1ダイオード(D1)、第2ダイオード(D2)、第3スイッチング素子(S3)及び第4スイッチング素子(S4)と、
 前記第1ダイオード(D1)と第2ダイオード(D2)との接続点と、第3スイッチング素子(S3)と第4スイッチング素子(S4)との接続点との間に接続された第1フライングキャパシタ(C1)と、を含み、
 前記第2フライングキャパシタ回路(32)は、
 直列接続された第5スイッチング素子(S5)、第6スイッチング素子(S6)、第7ダイオード(D7)及び第8ダイオード(D8)と、
 前記第5スイッチング素子(S5)と第6スイッチング素子(S6)との接続点と、第7ダイオード(D7)と第8ダイオード(D8)との接続点との間に接続された第2フライングキャパシタ(C2)と、を含み、
 前記制御部(40)は、前記第3スイッチング素子(S3)、前記第4スイッチング素子(S4)、前記第5スイッチング素子(S5)及び前記第6スイッチング素子(S6)を制御して、前記低圧側直流部から前記高圧側直流部へ昇圧動作で直流電力を出力させることを特徴とする項目3に記載のDC/DC変換装置(3)。
 単方向の昇圧コンバータとすることにより、コストを低減することができる。
[項目11]
 前記第1フライングキャパシタ回路(31)は、
 直列接続された第1スイッチング素子(S1)、第2スイッチング素子(S2)、第3ダイオード(D3)及び第4ダイオード(D4)と、
 前記第1スイッチング素子(S1)と第2スイッチング素子(S2)との接続点と、第3ダイオード(D3)と第4ダイオード(D4)との接続点との間に接続された第1フライングキャパシタ(C1)と、を含み、
 前記第2フライングキャパシタ回路(32)は、
 直列接続された第5ダイオード(D5)、第6ダイオード(D6)、第7スイッチング素子(S7)及び第8スイッチング素子(S8)と、
 前記第5ダイオード(D5)と第6ダイオード(D6)との接続点と、第7スイッチング素子(S7)と第8スイッチング素子(S8)との接続点との間に接続された第2フライングキャパシタ(C2)と、を含み、
 前記制御部(40)は、前記第1スイッチング素子(S1)、前記第2スイッチング素子(S2)、前記第7スイッチング素子(S7)及び前記第8スイッチング素子(S8)を制御して、前記高圧側直流部から前記低圧側直流部へ降圧動作で直流電力を出力させることを特徴とする項目3に記載のDC/DC変換装置(3)。
 単方向の降圧コンバータとすることにより、コストを低減することができる。
 本開示は、フライングキャパシタを用いたマルチレベルコンバータに利用可能である。
 1 第1直流電源、 2 第2直流電源、 3 DC/DC変換装置、 30 DC/DC変換部、 31,32 フライングキャパシタ回路、 40 制御部、 S1-S8 スイッチング素子、 D1-D8 ダイオード、 C1,C2 フライングキャパシタ、 C3,C4 分割コンデンサ、 C5 入力コンデンサ、 L1 リアクトル。

Claims (11)

  1.  高圧側直流部と並列に直列接続された第1フライングキャパシタ回路及び第2フライングキャパシタ回路と、
     低圧側直流部の正側端子と、前記第1フライングキャパシタ回路の中点間に接続されたリアクトルと、を備え、
     前記第2フライングキャパシタ回路の中点は、前記低圧側直流部の負側端子に接続され、
     前記第1フライングキャパシタ回路と前記第2フライングキャパシタ回路との間の接続点は、前記高圧側直流部の中間電位点に接続されることを特徴とするDC/DC変換装置。
  2.  高圧側直流部と並列に直列接続された第1フライングキャパシタ回路及び第2フライングキャパシタ回路と、
     低圧側直流部の負側端子と、前記第2フライングキャパシタ回路の中点間に接続されたリアクトルと、を備え、
     前記第1フライングキャパシタ回路の中点は、前記低圧側直流部の正側端子に接続され、
     前記第1フライングキャパシタ回路と前記第2フライングキャパシタ回路との間の接続点は、前記高圧側直流部の中間電位点に接続されることを特徴とするDC/DC変換装置。
  3.  前記第1フライングキャパシタ回路及び前記第2フライングキャパシタ回路を制御して、前記低圧側直流部から前記高圧側直流部へ昇圧動作で電力伝送、及び前記高圧側直流部から前記低圧側直流部へ降圧動作で電力伝送の少なくとも一方を実行可能な制御部をさらに備えることを特徴とする請求項1または2に記載のDC/DC変換装置。
  4.  前記第1フライングキャパシタ回路は、
     直列接続された第1スイッチング素子、第2スイッチング素子、第3スイッチング素子及び第4スイッチング素子と、
     前記第1スイッチング素子と第2スイッチング素子との接続点と、第3スイッチング素子と第4スイッチング素子との接続点との間に接続された第1フライングキャパシタと、を含み、
     前記第2フライングキャパシタ回路は、
     直列接続された第5スイッチング素子、第6スイッチング素子、第7スイッチング素子及び第8スイッチング素子と、
     前記第5スイッチング素子と第6スイッチング素子との接続点と、第7スイッチング素子と第8スイッチング素子との接続点との間に接続された第2フライングキャパシタと、を含むことを特徴とする請求項3に記載のDC/DC変換装置。
  5.  前記制御部は、
     前記第2スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第7スイッチング素子をオン状態、並びに前記第1スイッチング素子、前記第3スイッチング素子、前記第6スイッチング素子及び前記第8スイッチング素子をオフ状態に制御する第1モード、
     前記第1スイッチング素子、前記第3スイッチング素子、前記第6スイッチング素子及び前記第8スイッチング素子をオン状態 並びに前記第2スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第7スイッチング素子をオフ状態に制御する第2モード、
     前記第1スイッチング素子、前記第2スイッチング素子、前記第7スイッチング素子及び前記第8スイッチング素子をオン状態 並びに前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子をオフ状態に制御する第3モード、
     前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子をオン状態 並びに前記第1スイッチング素子、前記第2スイッチング素子、前記第7スイッチング素子及び前記第8スイッチング素子をオフ状態に制御する第4モード、
     の4つのモードを使用して前記昇圧動作または前記降圧動作を実行することを特徴とする請求項4に記載のDC/DC変換装置。
  6.  前記制御部は、
     前記低圧側直流部の電圧と前記高圧側直流部の電圧との比率が設定値より小さい場合、前記第1モード、前記第2モード及び前記第3モードを使用し、前記比率が前記設定値より大きい場合、前記第1モード、前記第2モード及び前記第4モードを使用することを特徴とする請求項5に記載のDC/DC変換装置。
  7.  前記制御部は、前記第1フライングキャパシタの電圧と前記第2フライングキャパシタの電圧を、前記高圧側直流部の電圧の1/4倍の電圧になるように制御することを特徴とする請求項4から6のいずれか1項に記載のDC/DC変換装置。
  8.  前記第1フライングキャパシタ回路及び前記第2フライングキャパシタ回路はそれぞれ、N(Nは自然数)個のフライングキャパシタを含み、
     前記制御部は、
     最も内側に接続される1番目のフライングキャパシタの電圧は、前記高圧側直流部の電圧の(1/(2N+2))倍の電圧になるように制御し、
     最も外側に接続されるN番目のフライングキャパシタの電圧は、前記高圧側直流部の電圧の(N/(2N+2))倍の電圧になるように制御し、
     前記第1フライングキャパシタ回路の中点と前記第2フライングキャパシタ回路の中点との間に、(2N+1)通りの電圧を発生させることを特徴とする請求項3から7のいずれか1項に記載のDC/DC変換装置。
  9.  前記第1フライングキャパシタ回路に含まれる複数のスイッチング素子及び前記第2フライングキャパシタ回路に含まれる複数スイッチング素子には、前記高圧側直流部の電圧及び前記低圧側直流部の電圧より低い耐圧のスイッチング素子が使用されることを特徴とする請求項1から8のいずれか1項に記載のDC/DC変換装置。
  10.  前記第1フライングキャパシタ回路は、
     直列接続された第1ダイオード、第2ダイオード、第3スイッチング素子及び第4スイッチング素子と、
     前記第1ダイオードと第2ダイオードとの接続点と、第3スイッチング素子と第4スイッチング素子との接続点との間に接続された第1フライングキャパシタと、を含み、
     前記第2フライングキャパシタ回路は、
     直列接続された第5スイッチング素子、第6スイッチング素子、第7ダイオード及び第8ダイオードと、
     前記第5スイッチング素子と第6スイッチング素子との接続点と、第7ダイオードと第8ダイオードとの接続点との間に接続された第2フライングキャパシタと、を含み、
     前記制御部は、前記第3スイッチング素子、前記第4スイッチング素子、前記第5スイッチング素子及び前記第6スイッチング素子を制御して、前記低圧側直流部から前記高圧側直流部へ昇圧動作で直流電力を出力させることを特徴とする請求項3に記載のDC/DC変換装置。
  11.  前記第1フライングキャパシタ回路は、
     直列接続された第1スイッチング素子、第2スイッチング素子、第3ダイオード及び第4ダイオードと、
     前記第1スイッチング素子と第2スイッチング素子との接続点と、第3ダイオードと第4ダイオードとの接続点との間に接続された第1フライングキャパシタと、を含み、
     前記第2フライングキャパシタ回路は、
     直列接続された第5ダイオード、第6ダイオード、第7スイッチング素子及び第8スイッチング素子と、
     前記第5ダイオードと第6ダイオードとの接続点と、第7スイッチング素子と第8スイッチング素子との接続点との間に接続された第2フライングキャパシタと、を含み、
     前記制御部は、前記第1スイッチング素子、前記第2スイッチング素子、前記第7スイッチング素子及び前記第8スイッチング素子を制御して、前記高圧側直流部から前記低圧側直流部へ降圧動作で直流電力を出力させることを特徴とする請求項3に記載のDC/DC変換装置。
PCT/JP2020/024286 2019-08-21 2020-06-22 Dc/dc変換装置 WO2021033412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080058764.XA CN114270685A (zh) 2019-08-21 2020-06-22 Dc/dc转换装置
US17/636,672 US20220286049A1 (en) 2019-08-21 2020-06-22 Dc/dc converting device
EP20854782.8A EP4007144A4 (en) 2019-08-21 2020-06-22 DC VOLTAGE CONVERSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019151285A JP7270139B2 (ja) 2019-08-21 2019-08-21 Dc/dc変換装置
JP2019-151285 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021033412A1 true WO2021033412A1 (ja) 2021-02-25

Family

ID=74660805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024286 WO2021033412A1 (ja) 2019-08-21 2020-06-22 Dc/dc変換装置

Country Status (5)

Country Link
US (1) US20220286049A1 (ja)
EP (1) EP4007144A4 (ja)
JP (1) JP7270139B2 (ja)
CN (1) CN114270685A (ja)
WO (1) WO2021033412A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230308014A1 (en) * 2022-03-25 2023-09-28 Cirrus Logic International Semiconductor Ltd. Dc-dc converters
EP4274073A1 (en) * 2022-05-02 2023-11-08 Infineon Technologies Austria AG Power conversion phases and coupling inductance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690750B1 (ja) * 2019-03-19 2020-04-28 株式会社明電舎 Fc型3レベル電力変換装置
US20220224231A1 (en) * 2021-01-13 2022-07-14 Infineon Technologies Austria Ag Power conversion and flying capacitor implementations
CN115250061B (zh) * 2022-09-23 2023-01-06 深圳市微源半导体股份有限公司 变压电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141871A (ja) * 2006-12-01 2008-06-19 Honda Motor Co Ltd 電力変換器
JP2011010519A (ja) * 2009-06-29 2011-01-13 Honda Motor Co Ltd Dc/dcコンバータ
JP2012182977A (ja) * 2011-02-28 2012-09-20 Semikron Elektronik Gmbh & Co Kg Dc/dc変換器セル、それから形成されるフィードバック能力を備えたdc/dc変換器回路、およびその操作方法
JP2013192383A (ja) 2012-03-14 2013-09-26 Sanken Electric Co Ltd Dc−dcコンバータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063573A1 (ja) * 2010-11-09 2012-05-18 株式会社安川電機 フィルタ回路及びそれを備える双方向電力変換装置
CN102185359B (zh) * 2011-05-30 2013-02-06 哈尔滨工业大学 基于双向升降压变换器的总线式电池组均衡方法
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
CN102332818B (zh) * 2011-09-13 2013-08-28 天津大学 一种三电平大降压直流变换器及其脉冲宽度调制方法
JP5780914B2 (ja) * 2011-10-24 2015-09-16 株式会社豊田中央研究所 電力変換器の制御装置および制御方法
DE102012005974A1 (de) * 2012-03-23 2013-09-26 Tq-Systems Gmbh Elektrische Schaltung und Verfahren zu deren Betrieb
US9083230B2 (en) * 2013-06-20 2015-07-14 Rockwell Automation Technologies, Inc. Multilevel voltage source converters and systems
JP6454936B2 (ja) * 2014-05-12 2019-01-23 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
JP6191965B2 (ja) * 2014-05-12 2017-09-06 パナソニックIpマネジメント株式会社 電力変換装置、およびそれを用いたパワーコンディショナ
CN106230253B (zh) * 2016-09-09 2019-05-07 华为技术有限公司 升压功率变换电路和控制方法
WO2019066929A1 (en) * 2017-09-29 2019-04-04 Intel Corporation CONVERTING MULTIPLE OUTPUT VOLTAGES
JPWO2019069654A1 (ja) * 2017-10-06 2020-06-18 パナソニックIpマネジメント株式会社 電力変換装置
JP6690750B1 (ja) * 2019-03-19 2020-04-28 株式会社明電舎 Fc型3レベル電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141871A (ja) * 2006-12-01 2008-06-19 Honda Motor Co Ltd 電力変換器
JP2011010519A (ja) * 2009-06-29 2011-01-13 Honda Motor Co Ltd Dc/dcコンバータ
JP2012182977A (ja) * 2011-02-28 2012-09-20 Semikron Elektronik Gmbh & Co Kg Dc/dc変換器セル、それから形成されるフィードバック能力を備えたdc/dc変換器回路、およびその操作方法
JP2013192383A (ja) 2012-03-14 2013-09-26 Sanken Electric Co Ltd Dc−dcコンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007144A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230308014A1 (en) * 2022-03-25 2023-09-28 Cirrus Logic International Semiconductor Ltd. Dc-dc converters
EP4274073A1 (en) * 2022-05-02 2023-11-08 Infineon Technologies Austria AG Power conversion phases and coupling inductance

Also Published As

Publication number Publication date
CN114270685A (zh) 2022-04-01
EP4007144A1 (en) 2022-06-01
EP4007144A4 (en) 2022-10-12
US20220286049A1 (en) 2022-09-08
JP2021035118A (ja) 2021-03-01
JP7270139B2 (ja) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2021033412A1 (ja) Dc/dc変換装置
CN101098103B (zh) 功率转换器开关驱动器的自供电电源
JP5049637B2 (ja) Dc/dc電力変換装置
US9007040B2 (en) DC-DC power conversion apparatus
US9564806B2 (en) Boost converter with reduced switching loss and methods of operating the same
EP2487786A2 (en) Five-level power conversion device
US20120069604A1 (en) Compact power converter with high efficiency in operation
US8508194B2 (en) Semiconductor device
US11539296B2 (en) Hybrid power conversion system and control method
Stillwell et al. Design of a 1 kV bidirectional DC-DC converter with 650 V GaN transistors
JP2021027698A (ja) 電力変換装置
US11205969B2 (en) Inverter device configured to operate in a CCM and sequentially operate in buck and boost phases
JP2021175260A (ja) Dc/dc変換装置
US20230253877A1 (en) Power factor correction and dc-dc multiplexing converter and uninterruptible power supply including the same
Mousa et al. New converter circuitry for high v applications using Switched Inductor Multilevel Converter
JP7466089B2 (ja) Dc/dc変換装置
JP7296558B2 (ja) Dc/dc変換装置
JP7432892B2 (ja) 電力変換装置
WO2021246242A1 (ja) Dc/dc変換装置
KR100790748B1 (ko) 전류원 인버터
JP6936993B2 (ja) 電力変換回路
JP7262054B2 (ja) 電力変換装置
JP6991491B2 (ja) 電力変換回路
CN113300594B (zh) 一种具有自举电路的三次型升压变换系统
JP7422347B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854782

Country of ref document: EP

Effective date: 20220225