WO2021031964A1 - 一种碘硒热化学循环电解制氢方法 - Google Patents

一种碘硒热化学循环电解制氢方法 Download PDF

Info

Publication number
WO2021031964A1
WO2021031964A1 PCT/CN2020/108768 CN2020108768W WO2021031964A1 WO 2021031964 A1 WO2021031964 A1 WO 2021031964A1 CN 2020108768 W CN2020108768 W CN 2020108768W WO 2021031964 A1 WO2021031964 A1 WO 2021031964A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
selenium
electrolysis
hydroiodic acid
reaction
Prior art date
Application number
PCT/CN2020/108768
Other languages
English (en)
French (fr)
Inventor
孟东旺
齐乃烨
王春铭
Original Assignee
中核能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中核能源科技有限公司 filed Critical 中核能源科技有限公司
Priority to GB2202726.2A priority Critical patent/GB2601271B/en
Publication of WO2021031964A1 publication Critical patent/WO2021031964A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/068Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents the hydrogen being generated from the water as a result of a cyclus of reactions, not covered by groups C01B3/063 or C01B3/105
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of hydrogen energy, and in particular relates to a method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis.
  • thermochemical cycle hydrogen production method which includes 3 chemical reactions, as follows Show:
  • water can produce hydrogen through thermal dissociation, but the reaction requires a high temperature above 4000°C.
  • the sulfur-iodine cycle hydrogen production method divides the decomposition reaction of water into several steps, which can reduce the reaction temperature and avoid hydrogen- The problem of oxygen separation, and the sulfur dioxide and iodine used in the cycle can be recycled.
  • the disadvantage of the sulfur-iodine cycle hydrogen production method is that the decomposition reaction of sulfuric acid still requires a higher temperature, and it is still on a laboratory scale, which consumes high energy and heat. For large-scale hydrogen production, it is necessary to provide a high-temperature stable heat source, and such a high-temperature stable heat source above 970K does not exist.
  • the purpose of the present invention is to provide a method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis.
  • the method of the present invention requires low reaction temperature and low production cost for hydrogen production.
  • the invention provides a method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis, which comprises the following steps:
  • the temperature of the reaction is 5-100°C;
  • the voltage of the electrolysis is 0.1-10V; the temperature of the electrolysis is 10-210°C;
  • step B) and step C) is not limited.
  • the molar ratio of water, selenium and iodine in the step A) is 1:(0.3-2):(0.5-4).
  • the reaction pressure in the step A) is normal pressure; the reaction time in the step A) is 30-120 min.
  • the obtained reaction solution is subjected to liquid-liquid separation to obtain a selenite solution and hydroiodic acid.
  • the hydroiodic acid obtained by the liquid-liquid separation is purified to remove water in the hydroiodic acid.
  • the purification method is rectification
  • the feed temperature of the rectification is the bubble point temperature
  • the pressure of the rectification is 1.1 to 1.5 Mpa
  • the time of the rectification is 10 to 50 min.
  • the decomposition pressure in step B) is 1.1 to 1.5 MPa; the decomposition temperature in step B) is 400 to 500° C.; the decomposition time in step B) is 30 to 120 min.
  • the step C) uses a selenite solution as an electrolyte, and a nickel sheet as a cathode and an anode for electrolysis.
  • the electrolysis time in step C) is 10 to 120 minutes.
  • the iodine obtained in step B) and the selenium obtained in step C) are returned to step A) as raw materials for recycling.
  • the present invention provides a method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis, which comprises the following steps: A) reacting selenium and iodine in water to obtain a selenite solution and hydroiodic acid; the reaction temperature is 5-100°C B) decompose hydroiodic acid to obtain hydrogen and iodine; C) electrolyze the selenite solution to obtain selenium; the voltage of the electrolysis is 0.1-10V; the temperature of the electrolysis is 10-210°C; The order of step B) and step C) is not limited.
  • the maximum temperature required for the reaction process of the method of the invention is 400-500°C, which avoids the problem that large-scale hydrogen production cannot be carried out due to excessively high reaction temperature.
  • the reactants iodine and selenium in the method of the invention can be recycled, thus greatly reducing the production cost of hydrogen production.
  • this method can be well coupled with the latest clean energy high-temperature gas-cooled reactor, and the thermal energy, electrical energy and mechanical energy of the high-temperature gas-cooled reactor can all be utilized by the iodine-selenium thermochemical cycle hydrogen production process.
  • the invention provides a method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis, which comprises the following steps:
  • the temperature of the reaction is 5-100°C;
  • the voltage of the electrolysis is 0.1-10V; the temperature of the electrolysis is 10-210°C;
  • step B) and step C) is not limited.
  • the present invention improves the existing sulfur-iodine thermochemical cycle hydrogen production process, and proposes an iodine-selenium thermochemical cycle electrolysis hydrogen production process using selenium and iodine as raw materials.
  • the maximum temperature required for the reaction process is 400°C to 500°C. This solves the problem that large-scale hydrogen production cannot be carried out due to the high reaction temperature.
  • the method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis includes the following steps:
  • reaction equation (1) Using water as raw material, adding selenium and iodine, and reacting under normal pressure to obtain a selenite solution and hydroiodic acid.
  • the reaction equation is as follows:
  • the molar ratio of the water, selenium and iodine is preferably 1:(0.3 ⁇ 2):(0.5 ⁇ 4), more preferably 1:(0.4 ⁇ 1.5):(1 ⁇ 3), most preferably It is 1:(0.5 ⁇ 1.2):(1.2 ⁇ 2), specifically, in an embodiment of the present invention, it may be 1:0.4:1; in another embodiment of the present invention, it may be 1:0.5 : 1.2; In another embodiment of the present invention, it may be 1:1:2.
  • the reaction temperature is preferably 5 to 100°C, more preferably 10 to 80°C, and most preferably 20 to 50°C. Specifically, in one embodiment of the present invention, it may be 28°C. In another embodiment of the present invention, In an example, it can be 25°C; the reaction time is preferably 30 to 120 minutes, more preferably 40 to 100 minutes, and most preferably 50 to 80 minutes. Specifically, in an embodiment of the present invention, it can be 48 minutes. In another embodiment of the invention, it may be 50 minutes, and in another embodiment of the invention, it may be 60 minutes.
  • the generated hydroiodic acid and selenous acid are obviously separated due to the difference in density, with hydroiodic acid in the upper layer and selenous acid solution in the lower layer, and the resulting reaction liquid Liquid-liquid separation is performed to obtain a selenite solution and hydroiodic acid.
  • liquid-liquid separation of hydroiodic acid and selenious acid is a well-known and commonly used liquid-liquid separation method by those skilled in the art, and the present invention will not be repeated here.
  • the present invention processes the two to obtain recyclable iodine and selenium, and reduce the cost of hydrogen production.
  • hydroiodic acid decomposition and selenite electrolysis are in no particular order.
  • the hydroiodic acid obtained in step (1) contains the following components: I 2 , HI and H 2 O, and the mixed ternary solution is recorded as the HIx solution.
  • the HIx solution is purified to obtain purified hydroiodic acid.
  • the purification method is not particularly limited, and the water in the HIx solution can be removed from the HIx solution without introducing new impurities.
  • the purification method in the present invention is distillation.
  • the HIx solution is preferably fed into a rectification tower for rectification.
  • the feed temperature of the rectification tower is the bubble point temperature
  • the internal pressure of the rectification tower is preferably 1.1 to 1.5 MPa, and more It is preferably 1.2-1.4 MPa, specifically, in one embodiment of the present invention, it can be 1.17 MPa, in another embodiment of the present invention, it can be 1.2 Mpa, in another embodiment of the present invention, Is 1.3Mpa
  • the rectification time is preferably 10-50min, more preferably 20-40min, specifically, in one embodiment of the present invention, it may be 20min, in another embodiment of the present invention, It is 23 minutes, and in another embodiment of the present invention, it may be 30 minutes.
  • step (3) Decompose the hydroiodic acid obtained in step (2), the products are H 2 and I 2 , hydrogen is output as a product, and iodine is recycled to step (1).
  • the chemical reaction equation is as follows:
  • the hydroiodic acid is preferably decomposed in a decomposition tower.
  • the pressure in the decomposition tower is preferably 1.1 to 1.5 MPa, more preferably 1.2 to 1.4 MPa.
  • It is 1.17MPa, in another embodiment of the present invention, it can be 1.2Mpa, in another embodiment of the present invention, it can be 1.3Mpa;
  • the decomposition temperature is preferably 400°C ⁇ 500°C, more preferably 430 to 480°C, specifically, in one embodiment of the present invention, it may be 450°C, in another embodiment of the present invention, it may be 480°C;
  • the decomposition time is preferably 30 to 120 minutes, more preferably It is 50-100 minutes, specifically, in one embodiment of the present invention, it may be 50 minutes, in another embodiment of the present invention, it may be 57 minutes, and in another embodiment of the present invention, it may be 60 minutes.
  • step (1) Electrolyze the selenite solution in step (1), use the selenite solution as the electrolyte, and the electrolyzed cathode and anode are nickel sheets. Under normal pressure, the selenium obtained by electrolysis is precipitated at the cathode, and the selenium is returned In step (1), it is recycled as a raw material.
  • the reaction temperature of the electrolysis is preferably 10°C to 210°C, more preferably 25 to 200°C. Specifically, in one embodiment of the present invention, it may be 25°C. In one embodiment, it may be 100°C, and in another embodiment of the present invention, it may be 200°C; the electrolysis voltage is preferably 0.10V-10V, more preferably 1-8V, specifically, in the present invention In one embodiment, it may be 0.9V, in another embodiment of the present invention, it may be 5V, and in another embodiment of the present invention, it may be 8V; the electrolysis time is preferably 10 to 120 minutes, and more It is preferably 20 to 100 minutes, most preferably 30 to 80 minutes. Specifically, in one embodiment of the present invention, it may be 30 minutes, and in another embodiment of the present invention, it may be 40 minutes. In another embodiment of the present invention, In the example, it can be 100 minutes.
  • the energy source (such as high temperature heat source, electrolysis power source, etc.) of the iodine-selenium thermochemical cycle electrolysis hydrogen production method of the present invention is not particularly limited, and can be appropriately coupled with the method steps of the present invention according to actual needs and actual use environment.
  • the iodine-selenium thermochemical cycle electrolysis hydrogen production method of the present invention can be well coupled with the latest clean energy high-temperature gas-cooled reactor.
  • the thermal energy, electrical energy and mechanical energy of the high-temperature gas-cooled reactor can be produced by the iodine-selenium thermochemical cycle The process is utilized.
  • the high-temperature gas-cooled reactor can provide three forms of energy, namely thermal energy, electrical energy and mechanical energy, all of which can be used in the hydrogen production process of the iodine-selenium thermochemical cycle.
  • the heat energy generated by the high-temperature gas-cooled reactor can be used in cascades.
  • the heat is transferred through the intermediate heat exchanger and the temperature gradient is set to 700°C, 500°C, 300°C and 100°C.
  • the heat energy can be fully utilized, and the utilization rate of heat energy can be fully utilized.
  • the electric energy generated by the high-temperature gas-cooled reactor itself can also be used in the subsequent iodine-selenium thermochemical cycle for electrical equipment such as motors, and its utilization rate can reach 30-50%.
  • the large amount of steam generated by the high-temperature gas-cooled reactor can also provide mechanical energy, directly coupled with the steam turbine in the iodine-selenium thermochemical cycle system, and the utilization efficiency can reach 90%.
  • the reactants selenium, the intermediate products selenious acid and hydroiodic acid are highly corrosive or highly toxic, the equipment, pipelines and pumps need to be corrosion resistant and zero leakage. Use torque magnetic drive to achieve zero leakage.
  • thermochemical cycle electrolysis hydrogen production method proposed by the present invention.
  • the maximum temperature required in the reaction process is 400°C-500°C, which avoids the problem that large-scale hydrogen production cannot be carried out due to high reaction temperature.
  • the reactants iodine and selenium can be recycled, thus greatly reducing the production cost of hydrogen production.
  • the method for producing hydrogen by iodine-selenium thermochemical cycle electrolysis of the present invention can use high-temperature gas-cooled reactors to couple with the chemical equipment of the iodine-selenium thermochemical cycle system. Because the reactants selenium, the intermediate products selenious acid and hydroiodic acid are strong It is corrosive or highly toxic. Therefore, equipment, pipelines and pumps need to be corrosion resistant and zero leakage. Torque magnetic transmission is used in the process to achieve zero leakage.
  • the iodine-selenium thermochemical cycle electrolysis hydrogen production method of the present invention is used to couple with a high-temperature gas-cooled reactor, and the high-temperature gas-cooled reactor can provide three forms of energy, namely thermal energy, electrical energy and mechanical energy, all of which can be heated by iodine and selenium. Used in the chemical cycle hydrogen production process.
  • the heat energy generated by the high-temperature gas-cooled reactor can be used in cascades. The heat is transferred through the intermediate heat exchanger and the temperature gradient is set to 700°C, 500°C, 300°C and 100°C. In this way, the heat energy can be fully utilized, and the utilization rate of heat energy can be fully utilized. Reach 99%.
  • the electric energy generated by the high-temperature gas-cooled reactor itself can also be used in the subsequent iodine-selenium thermochemical cycle for electrical equipment such as motors, and its utilization rate can reach 30-50%.
  • the large amount of steam generated by the high-temperature gas-cooled reactor can also provide mechanical energy, directly coupled with the steam turbine in the iodine-selenium thermochemical cycle system, and the utilization efficiency can reach 90%.
  • the iodine-selenium thermochemical cycle electrolysis hydrogen production method of the present invention is not limited to coupling with a high-temperature gas-cooled reactor, and can also be coupled with other high-temperature heat sources and the iodine-selenium thermochemical cycle electrolysis hydrogen production method.
  • hydroiodic acid and selenous acid are obviously stratified due to different densities, with hydroiodic acid in the upper layer and selenous acid solution in the lower layer.
  • liquid-liquid separation method liquid-liquid separation of the selenite solution and hydroiodic acid to obtain the selenite solution and hydroiodic acid;
  • the hydroiodic acid obtained in step (1) contains the following components: I 2 , HI and H 2 O, and the mixed ternary solution is recorded as the HIx solution.
  • the HIx solution enters the HI rectification decomposition unit for rectification.
  • the feed temperature of the rectification tower is the bubble point temperature
  • the pressure inside the tower is 1.17 MPa
  • the reaction time is 30 min.
  • step (3) Decompose the hydroiodic acid after rectification in step (2), the pressure in the decomposition tower is 1.17MPa, the reaction temperature is 480°C, the reaction time is 60min, the products are H 2 and I 2 , and hydrogen is output as the product. Iodine is returned to step (1) for recycling; the chemical reaction principle of this process is shown in the chemical reaction equation as follows:
  • the high-temperature environment in this step is provided by the high-temperature gas-cooled reactor, and the high-temperature steam of the high-temperature gas-cooled reactor passes through the heat exchanger to the hydroiodic acid decomposition tower.
  • step (1) Electrolyze the selenite solution in step (1), use the selenite solution as the electrolyte, and the cathode and anode of the electrolysis are nickel sheets. Under normal pressure, the reaction temperature is 25°C and the electrolysis voltage is 0.9 V, the reaction time is 100 minutes, and the selenium obtained by electrolysis is precipitated at the cathode. Selenium will be recycled as a raw material in step (1).
  • step (1) Due to the participation of highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.
  • highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.
  • hydroiodic acid and selenous acid are obviously stratified due to different densities, with hydroiodic acid in the upper layer and selenous acid solution in the lower layer.
  • liquid-liquid separation method liquid-liquid separation of the selenite solution and hydroiodic acid to obtain the selenite solution and hydroiodic acid;
  • the hydroiodic acid obtained in step (1) contains the following components: I 2 , HI and H 2 O, and the mixed ternary solution is recorded as the HIx solution.
  • the HIx solution enters the HI rectification decomposition unit for rectification.
  • the feed temperature of the rectification tower is the bubble point temperature
  • the pressure inside the tower is 1.2 MPa
  • the reaction time is 23 min.
  • step (3) Decompose the hydroiodic acid after rectification in step (2), the pressure in the decomposition tower is 1.2MPa, the reaction temperature is 450°C, the reaction time is 55min, the products are H 2 and I 2 , and hydrogen is output as the product. Iodine is returned to step (1) for recycling; the chemical reaction principle of this process is shown in the chemical reaction equation as follows:
  • the high-temperature environment in this step is provided by the high-temperature gas-cooled reactor, and the high-temperature steam of the high-temperature gas-cooled reactor passes through the heat exchanger to the hydroiodic acid decomposition tower.
  • step (1) Electrolyze the selenite solution in step (1), use the selenite solution as the electrolyte, and the cathode and anode of the electrolysis are nickel sheets. Under normal pressure, the reaction temperature is 200°C, and the electrolysis voltage is 5V , The reaction time is 30min, the selenium obtained by electrolysis is precipitated at the cathode. Selenium will be recycled as a raw material in step (1).
  • step (1) Due to the participation of highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.
  • highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.
  • hydroiodic acid and selenous acid are obviously stratified due to different densities, with hydroiodic acid in the upper layer and selenous acid solution in the lower layer.
  • liquid-liquid separation method liquid-liquid separation of the selenite solution and hydroiodic acid to obtain the selenite solution and hydroiodic acid;
  • the hydroiodic acid obtained in step (1) contains the following components: I 2 , HI and H 2 O, and the mixed ternary solution is recorded as the HIx solution.
  • the HIx solution enters the HI rectification decomposition unit for rectification.
  • the feed temperature of the rectification tower is the bubble point temperature
  • the pressure inside the tower is 1.3 MPa
  • the reaction time is 20 min.
  • step (3) Decompose the hydroiodic acid after rectification in step (2).
  • the pressure in the decomposition tower is 1.3MPa
  • the reaction temperature is 450°C
  • the reaction time is 57min
  • the products are H 2 and I 2
  • hydrogen is output as a product.
  • Iodine is returned to step (1) for recycling; the chemical reaction principle of this process is shown in the chemical reaction equation as follows:
  • the high-temperature environment in this step is provided by the high-temperature gas-cooled reactor, and the high-temperature steam from the high-temperature gas-cooled reactor passes through the heat exchanger to the hydroiodic acid decomposition tower.
  • step (1) Electrolyze the selenite solution in step (1), use the selenite solution as the electrolyte, and the cathode and anode of the electrolysis are nickel sheets. Under normal pressure, the reaction temperature is 100°C, and the electrolysis voltage is 8V , The reaction time is 40min, the selenium obtained by electrolysis is precipitated at the cathode. Selenium will be recycled as a raw material in step (1).
  • step (1) Due to the participation of highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.
  • highly toxic substances such as selenium, selenious acid, and highly corrosive substance hydroiodic acid in step (1), step (2), step (3), and step (4), equipment, pipelines and pumps If corrosion resistance and zero leakage are required, torque magnetic transmission will be used in the process to achieve zero leakage.

Abstract

本发明涉及一种碘硒热化学循环电解制氢方法,首先以水为原料,加入硒和碘,在常压下反应,得到亚硒酸溶液和氢碘酸,对氢碘酸进行精馏浓缩,对精馏浓缩后的氢碘酸进行分解,分解得到的氢气作为产品输出,碘循环使用,得到的亚硒酸溶液通过电解法分解,生成硒,硒作为原料循环使用。本发明方法的反应过程所需最高温度为400~500℃,避免了因反应温度过高无法进行大规模制氢生产的问题。本发明方法中的反应剂碘和硒,可以循环利用,因此大大降低了制氢的生产成本。

Description

一种碘硒热化学循环电解制氢方法
本申请要求于2019年08月20日提交中国专利局、申请号为201910768032.9、发明名称为“一种高温气冷堆耦合碘硒热化学循环电解制氢方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于氢能技术领域,尤其涉及一种碘硒热化学循环电解制氢方法。
背景技术
氢能是一种理想的清洁二次能源,其分布广泛,燃烧不产生污染,并且相对于电力,氢更便于存储运输,并可以直接作为燃料,以氢能为核心的能源体系日益受到重视。热化学循环分解水制氢是最有前景的方法之一。目前常见的热化学循环制氢的方法是硫碘循环制氢,如中国专利申请(申请公布号为CN104817057)公开了一种热化学循环制氢的方法,该方法包括3个化学反应,如下所示:
Bunsen反应:
SO 2+I 2+2H 2O→2HI+H 2SO 4(T=290~390K);
硫酸分解反应:
H 2SO 4→2H 2O+SO 2+0.5O 2(T=970~1270K)
氢碘酸分解反应:
2HI→H 2+I 2(T=570~770K)
理论上,水通过热解离可以制氢,但是反应需要4000℃以上的高温,硫碘循环制氢法的是将水的分解反应分成几步,这样既可以降低反应温度,又可以避免氢-氧分离问题,并且循环中所用的二氧化硫和碘都可以循环使用。硫碘循环制氢法的缺点是,硫酸的分解反应仍然需要较高的温度,并且还处于实验室规模,耗能耗热很高。若大规模制氢,则需要能提供高温的稳定热源,而此种符合条件能够提供970K温度以上的高温稳定大型工程用热源还不存在。
发明内容
本发明的目的在于提供一种碘硒热化学循环电解制氢方法,本发明中的方法所需反应温度低,且制氢的生产成本低。
本发明提供一种碘硒热化学循环电解制氢方法,包括以下步骤:
A)以硒和碘在水中反应,得到亚硒酸溶液和氢碘酸;
所述反应的温度为5~100℃;
B)将氢碘酸分解,得到氢气和碘;
C)将亚硒酸溶液进行电解,得到硒;
所述电解的电压为0.1~10V;所述电解的温度为10~210℃;
所述步骤B)和步骤C)不限定先后顺序。
优选的,所述步骤A)中水、硒和碘的摩尔比为1:(0.3~2):(0.5~4)。
优选的,所述步骤A)中反应的压力为常压;所述步骤A)中反应的时间为30~120min。
优选的,所述步骤A)中反应完成后,将得到的反应液进行液液分离,得到亚硒酸溶液和氢碘酸。
优选的,将所述液液分离得到的氢碘酸进行纯化,去除氢碘酸中的水。
优选的,所述纯化的方法为精馏,所述精馏的进料温度为泡点温度,精馏的压力为1.1~1.5Mpa,精馏的时间为10~50min。
优选的,所述步骤B)中分解的压力为1.1~1.5MPa;所述步骤B)中分解的温度为400~500℃;所述步骤B)中分解的时间为30~120min。
优选的,所述步骤C)以亚硒酸溶液为电解液,以镍片为阴极和阳极,进行电解。
优选的,所述步骤C)中电解的时间为10~120min。
优选的,所述步骤B)中得到的碘和步骤C)中得到的硒,返回步骤A)中作为原料循环使用。
本发明提供了一种碘硒热化学循环电解制氢方法,包括以下步骤:A)以硒和碘在水中反应,得到亚硒酸溶液和氢碘酸;所述反应的温度为5~100℃;B)将氢碘酸分解,得到氢气和碘;C)将亚硒酸溶液进行电解,得到硒;所述电解的电压为0.1~10V;所述电解的温度为10~210℃;所述步骤B)和步骤C)不限定先后顺序。本发明方法的反应过程所需最高温度为400-500℃,避免了因反应温度过高无法进行大规模制氢生产的问题。本发明方法中的反应剂碘和硒,可以循环利用,因此大大降低了制氢的生产成本。
进一步的,本方法可以很好的与最新清洁能源高温气冷堆耦合,高温气冷 堆的热能、电能和机械能均能被碘硒热化学循环制氢过程所利用。
具体实施方式
本发明提供了一种碘硒热化学循环电解制氢方法,包括以下步骤:
A)以硒和碘在水中反应,得到亚硒酸溶液和氢碘酸;
所述反应的温度为5~100℃;
B)将氢碘酸分解,得到氢气和碘;
C)将亚硒酸溶液进行电解,得到硒;
所述电解的电压为0.1~10V;所述电解的温度为10~210℃;
所述步骤B)和步骤C)不限定先后顺序。
本发明针对现有的硫碘热化学循环制氢工艺进行改进,提出了以硒和碘为原料的碘硒热化学循环电解制氢工艺,反应过程所需最高温度为400℃~500℃,避免了因反应温度过高无法进行大规模制氢生产的问题。
本发明提出的碘硒热化学循环电解制氢方法,包括以下步骤:
(1)以水为原料,加入硒和碘,在常压下反应,反应得到亚硒酸溶液和氢碘酸,反应方程式如下:
3H 2O+Se+2I 2→H 2SeO 3+4HI;
在本发明中,所述水、硒和碘的摩尔比优选为1:(0.3~2):(0.5~4),更优选为1:(0.4~1.5):(1~3),最优选为1:(0.5~1.2):(1.2~2),具体的,在本发明的一个实施例中,可以是1:0.4:1;在本发明的另一个实施例中,可以是1:0.5:1.2;在本发明的另一个实施例中,可以是1:1:2。
所述反应温度优选为5~100℃,更优选10~80℃,最优选为20~50℃,具体的,在本发明的一个实施例中,可以是28℃,在本发明的另一个实施例中,可以是25℃;所述反应时间优选为30~120min,更优选为40~100min,最优选为50~80min,具体的,在本发明的一个实施例中,可以是48min,在本发明的另一个实施例中,可以是50min,在本发明的另一个实施例中,可以是60min。
反应完全之后(反应完全的标志为不再产生气体),生成的氢碘酸和亚硒酸因密度不同而明显分层,氢碘酸在上层,亚硒酸溶液在下层,将得到的反应液进行液液分离,得到亚硒酸溶液和氢碘酸。
在本发明中,所述氢碘酸和亚硒酸的液液分离为本领域技术人员所熟知并 且常用的液液分离方法,本发明在此不再赘述。
得到氢碘酸和亚硒酸溶液之后,本发明对二者进行处理,以获取可循环利用的碘单质和硒单质,降低制氢成本。
在本发明后续对氢碘酸分解和亚硒酸电解的步骤描述中,所述氢碘酸分解和亚硒酸电解不分先后顺序。
(2)对步骤(1)得到的氢碘酸中包含有以下组分:I 2、HI和H 2O,混合的三元溶液记为HIx溶液。HIx溶液进行纯化,得到纯化后的氢碘酸。
在本发明中,所述纯化的方法没有特殊的限制,能够将HIx溶液中的水从HIx溶液中去除且不引入新的杂质即可,优选的,本发明中的纯化方法为精馏,
在本发明中,优选将所述HIx溶液输入精馏塔内进行精馏,所述精馏塔进料温度为泡点温度,所述精馏塔的塔内压力优选为1.1~1.5MPa,更优选为1.2~1.4MPa,具体的,在本发明的一个实施例中,可以是1.17MPa,在本发明的另一个实施例中,可以是1.2Mpa,在本发明的另一个实施例中,可以是1.3Mpa;所述精馏的时间优选为10~50min,更优选为20~40min,具体的,在本发明的一个实施例中,可以是20min,在本发明的另一个实施例中,可以是23min,在本发明的另一个实施例中,可以是30min。
(3)对步骤(2)得到的氢碘酸进行分解,产物为H 2和I 2,氢气作为产品输出,碘回到步骤(1)中循环使用,化学反应方程式如下:
2HI→H 2+I 2
本发明优选将所述氢碘酸在分解塔内进行分解,所述分解塔内压力优选为1.1~1.5MPa,更优选为1.2~1.4MPa,具体的,在本发明的一个实施例中,可以是1.17MPa,在本发明的另一个实施例中,可以是1.2Mpa,在本发明的另一个实施例中,可以是1.3Mpa;所述分解的温度优选为400℃~500℃,更优选为430~480℃,具体的,在本发明的一个实施例中,可以是450℃,在本发明的另一个实施例中,可以是480℃;所述分解的时间优选为30~120min,更优选为50~100min,具体的,在本发明的一个实施例中,可以是50min,在本发明的另一个实施例中,可以是57min,在本发明的另一个实施例中,可以是60min。
(4)对步骤(1)中的亚硒酸溶液进行电解,以亚硒酸溶液为电解液,电解的阴极和阳极为镍片,在常压下,电解得到的硒在阴极析出,硒返回到步骤 (1)中作为原料循环使用。
在本发明中个,所述电解的反应温度优选为10℃~210℃,更优选为25~200℃,具体的,在本发明的一个实施例中,可以是25℃,在本发明的另一个实施例中,可以是100℃,在本发明的另一个实施例中,可以是200℃;所述电解电压优选为0.10V~10V,更优选为1~8V,具体的,在本发明的一个实施例中,可以是0.9V,在本发明的另一个实施例中,可以是5V,在本发明的另一个实施例中,可以是8V;所述电解的时间优选为10~120min,更优选为20~100min,最优选为30~80min,具体的,在本发明的一个实施例中,可以是30min,在本发明的另一个实施例中,可以是40min,在本发明的另一个实施例中,可以是100min。
本发明中的碘硒热化学循环电解制氢方法的能量来源(如高温热源、电解电源等)没有特殊的限制,可根据实际需求和实际使用环境与本发明中的方法步骤进行适当耦合。
基于上述方法,本发明的碘硒热化学循环电解制氢方法可以很好的与最新清洁能源高温气冷堆耦合,高温气冷堆的热能、电能和机械能均能被碘硒热化学循环制氢过程所利用。高温气冷堆可以提供三种形式的能量,即热能、电能和机械能,均能被碘硒热化学循环制氢过程所利用。高温气冷堆产生的热能可以梯级利用,热量经过中间换热器传递,并设置温度梯度为700℃、500℃、300℃和100℃,通过这种方式来充分利用热能,热能的利用率可达到99%。另外,高温气冷堆本身发电产生的电能也可利用到后续碘硒热化学循环中,为电机等用电设备所利用,其利用率也能达到30-50%。此外,高温气冷堆产生的大量蒸汽也可提供机械能,直接与碘硒热化学循环系统中的汽轮机耦合,利用效率可达90%。
优选的,本发明中的方法中,由于反应物硒、中间产物亚硒酸和氢碘酸属于强腐蚀性或剧毒,因此,设备、管路和泵等需要耐腐蚀和零泄漏,流程中使用扭矩磁传动实现零泄漏。
综上所述,本发明提出的碘硒热化学循环电解制氢方法,其特点和优点如下:
1、本发明的碘硒热化学循环电解制氢方法,反应过程所需最高温度为 400℃-500℃,避免了因反应温度过高无法进行大规模制氢生产的问题。
2、本发明的电解制氢方法,其中的反应剂碘和硒,可以循环利用,因此大大降低了制氢的生产成本。
3、本发明的碘硒热化学循环电解制氢方法,可利用高温气冷堆与碘硒热化学循环系统的各化工设备耦合,由于反应物硒、中间产物亚硒酸和氢碘酸属于强腐蚀性或剧毒,因此,设备、管路和泵等需要耐腐蚀和零泄漏,流程中使用扭矩磁传动实现零泄漏。
4、本发明的碘硒热化学循环电解制氢方法,用于与高温气冷堆耦合,而高温气冷堆可以提供三种形式的能量,即热能、电能和机械能,均能被碘硒热化学循环制氢过程所利用。高温气冷堆产生的热能可以梯级利用,热量经过中间换热器传递,并设置温度梯度为700℃、500℃、300℃和100℃,通过这种方式来充分利用热能,热能的利用率可达到99%。另外,高温气冷堆本身发电产生的电能也可利用到后续碘硒热化学循环中,为电机等用电设备所利用,其利用率也能达到30-50%。此外,高温气冷堆产生的大量蒸汽也可提供机械能,直接与碘硒热化学循环系统中的汽轮机耦合,利用效率可达90%。
5、本发明的碘硒热化学循环电解制氢方法,不局限于用高温气冷堆进行耦合,还可用其他高温热源与碘硒热化学循环电解制氢方法进行耦合。
为了进一步说明本发明,以下结合实施例对本发明提供的一种碘硒热化学循环电解制氢方法进行详细描述,但不能将其理解为对本发明保护范围的限定。
实施例1
(1)以水为原料,加入硒和碘,在常压下反应,水、硒和碘的摩尔比为:水:硒:碘=1:0.4:1,反应温度为25℃,反应时间为60min,反应完全的标志为不再产生气体,反应得到亚硒酸溶液和氢碘酸,反应方程式如下:
3H 2O+Se+2I 2→H 2SeO 3+4HI;
上述生成的氢碘酸和亚硒酸因密度不同而明显分层,氢碘酸在上层,亚硒酸溶液在下层。利用液液分离方法,将亚硒酸溶液和氢碘酸进行液液分离,得到亚硒酸溶液和氢碘酸;
(2)对步骤(1)得到的氢碘酸中包含有以下组分:I 2、HI和H 2O,混合 的三元溶液记为HIx溶液。HIx溶液进入HI精馏分解单元中进行精馏,精馏塔进料温度为泡点温度,塔内压力为1.17MPa,反应时间为30min。
(3)对步骤(2)精馏后的氢碘酸进行分解,分解塔内压力为1.17MPa,反应温度为480℃,反应时间为60min,产物为H 2和I 2,氢气作为产品输出,碘回到步骤(1)中循环使用;此过程的化学反应原理如化学反应方程式如下所示:
2HI→H 2+I 2
此步骤中的高温环境,由高温气冷堆提供,高温气冷堆的高温蒸汽通过换热器,传至氢碘酸分解塔内。
(4)对步骤(1)中的亚硒酸溶液进行电解,以亚硒酸溶液为电解液,电解的阴极和阳极为镍片,在常压下,反应温度为25℃,电解电压为0.9V,反应时间为100min,电解得到的硒在阴极析出。硒将回到步骤(1)中作为原料循环使用。
由于步骤(1)、步骤(2)、步骤(3)、步骤(4)有剧毒物质硒、亚硒酸和强腐蚀性物质氢碘酸等物质的参与,因此,设备、管路和泵等需要耐腐蚀和零泄漏,流程中将使用扭矩磁传动来实现零泄漏。
实施例2
(1)以水为原料,加入硒和碘,在常压下反应,水、硒和碘的摩尔比为:水:硒:碘=1:0.5:1.2,反应温度为28℃,反应时间为50min,反应完全的标志为不再产生气体,反应得到亚硒酸溶液和氢碘酸,反应方程式如下:
3H 2O+Se+2I 2→H 2SeO 3+4HI;
上述生成的氢碘酸和亚硒酸因密度不同而明显分层,氢碘酸在上层,亚硒酸溶液在下层。利用液液分离方法,将亚硒酸溶液和氢碘酸进行液液分离,得到亚硒酸溶液和氢碘酸;
(2)对步骤(1)得到的氢碘酸中包含有以下组分:I 2、HI和H 2O,混合的三元溶液记为HIx溶液。HIx溶液进入HI精馏分解单元中进行精馏,精馏塔进料温度为泡点温度,塔内压力为1.2MPa,反应时间为23min。
(3)对步骤(2)精馏后的氢碘酸进行分解,分解塔内压力为1.2MPa,反应温度为450℃,反应时间为55min,产物为H 2和I 2,氢气作为产品输出,碘 回到步骤(1)中循环使用;此过程的化学反应原理如化学反应方程式如下所示:
2HI→H 2+I 2
此步骤中的高温环境,由高温气冷堆提供,高温气冷堆的高温蒸汽通过换热器,传至氢碘酸分解塔内。
(4)对步骤(1)中的亚硒酸溶液进行电解,以亚硒酸溶液为电解液,电解的阴极和阳极为镍片,在常压下,反应温度为200℃,电解电压为5V,反应时间为30min,电解得到的硒在阴极析出。硒将回到步骤(1)中作为原料循环使用。
由于步骤(1)、步骤(2)、步骤(3)、步骤(4)有剧毒物质硒、亚硒酸和强腐蚀性物质氢碘酸等物质的参与,因此,设备、管路和泵等需要耐腐蚀和零泄漏,流程中将使用扭矩磁传动来实现零泄漏。
实施例3
(1)以水为原料,加入硒和碘,在常压下反应,水、硒和碘的摩尔比为:水:硒:碘=1:1:2,反应温度为28℃,反应时间为48min,反应完全的标志为不再产生气体,反应得到亚硒酸溶液和氢碘酸,反应方程式如下:
3H 2O+Se+2I 2→H 2SeO 3+4HI;
上述生成的氢碘酸和亚硒酸因密度不同而明显分层,氢碘酸在上层,亚硒酸溶液在下层。利用液液分离方法,将亚硒酸溶液和氢碘酸进行液液分离,得到亚硒酸溶液和氢碘酸;
(2)对步骤(1)得到的氢碘酸中包含有以下组分:I 2、HI和H 2O,混合的三元溶液记为HIx溶液。HIx溶液进入HI精馏分解单元中进行精馏,精馏塔进料温度为泡点温度,塔内压力为1.3MPa,反应时间为20min。
(3)对步骤(2)精馏后的氢碘酸进行分解,分解塔内压力为1.3MPa,反应温度为450℃,反应时间为57min,产物为H 2和I 2,氢气作为产品输出,碘回到步骤(1)中循环使用;此过程的化学反应原理如化学反应方程式如下所示:
2HI→H 2+I 2
此步骤中的高温环境,由高温气冷堆提供,高温气冷堆的高温蒸汽通过换 热器,传至氢碘酸分解塔内。
(4)对步骤(1)中的亚硒酸溶液进行电解,以亚硒酸溶液为电解液,电解的阴极和阳极为镍片,在常压下,反应温度为100℃,电解电压为8V,反应时间为40min,电解得到的硒在阴极析出。硒将回到步骤(1)中作为原料循环使用。
由于步骤(1)、步骤(2)、步骤(3)、步骤(4)有剧毒物质硒、亚硒酸和强腐蚀性物质氢碘酸等物质的参与,因此,设备、管路和泵等需要耐腐蚀和零泄漏,流程中将使用扭矩磁传动来实现零泄漏。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种碘硒热化学循环电解制氢方法,包括以下步骤:
    A)以硒和碘在水中反应,得到亚硒酸溶液和氢碘酸;
    所述反应的温度为5~100℃;
    B)将氢碘酸分解,得到氢气和碘;
    C)将亚硒酸溶液进行电解,得到硒;
    所述电解的电压为0.1~10V;所述电解的温度为10~210℃;
    所述步骤B)和步骤C)不限定先后顺序。
  2. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤A)中水、硒和碘的摩尔比为1:(0.3~2):(0.5~4)。
  3. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤A)中反应的压力为常压;所述步骤A)中反应的时间为30~120min。
  4. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤A)中反应完成后,将得到的反应液进行液液分离,得到亚硒酸溶液和氢碘酸。
  5. 根据权利要求4所述的碘硒热化学循环电解制氢方法,其特征在于,将所述液液分离得到的氢碘酸进行纯化,去除氢碘酸中的水。
  6. 根据权利要求5所述的碘硒热化学循环电解制氢方法,其特征在于,所述纯化的方法为精馏,所述精馏的进料温度为泡点温度,精馏的压力为1.1~1.5Mpa,精馏的时间为10~50min。
  7. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤B)中分解的压力为1.1~1.5MPa;所述步骤B)中分解的温度为400~500℃;所述步骤B)中分解的时间为30~120min。
  8. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤C)以亚硒酸溶液为电解液,以镍片为阴极和阳极,进行电解。
  9. 根据权利要求1所述的碘硒热化学循环电解制氢方法,其特征在于,所述步骤C)中电解的时间为10~120min。
  10. 根据权利要求1~9任意一项所述的碘硒热化学循环电解制氢方法,其 特征在于,所述步骤B)中得到的碘和步骤C)中得到的硒,返回步骤A)中作为原料循环使用。
PCT/CN2020/108768 2019-08-20 2020-08-13 一种碘硒热化学循环电解制氢方法 WO2021031964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2202726.2A GB2601271B (en) 2019-08-20 2020-08-13 Method for producing hydrogen by means of iodine selenium thermochemical cycle electrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910768032.9A CN110510576B (zh) 2019-08-20 2019-08-20 一种高温气冷堆耦合碘硒热化学循环电解制氢方法
CN201910768032.9 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031964A1 true WO2021031964A1 (zh) 2021-02-25

Family

ID=68625856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108768 WO2021031964A1 (zh) 2019-08-20 2020-08-13 一种碘硒热化学循环电解制氢方法

Country Status (3)

Country Link
CN (1) CN110510576B (zh)
GB (1) GB2601271B (zh)
WO (1) WO2021031964A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116812865A (zh) * 2023-08-29 2023-09-29 浙江百能科技有限公司 一种热化学硒碘循环制氢同时脱除烟气中co的系统和工艺
CN117568848A (zh) * 2024-01-17 2024-02-20 浙江百能科技有限公司 一种电解氢碘酸制氢的装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510576B (zh) * 2019-08-20 2020-12-11 中核能源科技有限公司 一种高温气冷堆耦合碘硒热化学循环电解制氢方法
CN113526461A (zh) * 2020-04-17 2021-10-22 孟想 一种单硒热化学循环制氢方法
CN113401867B (zh) * 2021-07-20 2023-10-31 西安热工研究院有限公司 一种利用高温气冷堆的硫碘循环制氢系统与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127644A (en) * 1977-04-29 1978-11-28 General Atomic Company Process for hydrogen production from water
CN1785796A (zh) * 2005-10-14 2006-06-14 浙江大学 硫碘开路循环制氢的工艺方法及设备
CN103213945A (zh) * 2013-04-21 2013-07-24 浙江大学 促进热化学硫碘循环制氢中Bunsen反应的方法
CN110510576A (zh) * 2019-08-20 2019-11-29 中核能源科技有限公司 一种高温气冷堆耦合碘硒热化学循环电解制氢方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1089632A (en) * 1976-08-20 1980-11-18 Alfred J. Darnell Hydrogen production
US20050000825A1 (en) * 2003-07-04 2005-01-06 Japan Atomic Energy Research Institute Process for efficient hydrogen production by thermochemical water splitting using iodine and sulfur dioxide
FI121271B (fi) * 2007-01-19 2010-09-15 Outotec Oyj Menetelmä vedyn ja rikkihapon valmistamiseksi
CN101138721B (zh) * 2007-09-07 2010-09-29 清华大学 一种碘化氢催化分解用催化剂的制备方法
CN101459251A (zh) * 2007-12-11 2009-06-17 古琴 采用载带燃料发电、开车,抑制地球暖化
CN101830443B (zh) * 2010-04-14 2011-06-15 清华大学 一种对碘硫循环中硫酸相和氢碘酸相进行纯化的工艺
CN101857204B (zh) * 2010-06-18 2012-06-27 清华大学 一种低压下纯化碘硫循环中硫酸相的工艺与装置
CN102583239B (zh) * 2012-01-15 2013-10-30 浙江大学 热化学循环分解co2和h2o制备co和h2的方法及装置
CN107904617B (zh) * 2017-11-23 2019-04-23 浙江大学 在硫碘循环制氢中以电化学分解hi制氢的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127644A (en) * 1977-04-29 1978-11-28 General Atomic Company Process for hydrogen production from water
CN1785796A (zh) * 2005-10-14 2006-06-14 浙江大学 硫碘开路循环制氢的工艺方法及设备
CN103213945A (zh) * 2013-04-21 2013-07-24 浙江大学 促进热化学硫碘循环制氢中Bunsen反应的方法
CN110510576A (zh) * 2019-08-20 2019-11-29 中核能源科技有限公司 一种高温气冷堆耦合碘硒热化学循环电解制氢方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU BOHAO: "Animal Toxicology", 30 June 2001, CHINA AGRICULTURE PRESS, CN, ISBN: 7-109-06763-7, article SHI ZHICHENG: "Passage : Animal Toxicology", pages: 849 - 850, XP009526241 *
ZHU HONGFA , ZHU YUXIA: " Handbook of Inorganic Chemical Products", 31 December 2008, GOLDEN SHIELD PUBLISHING HOUSE, CN, ISBN: 978-7-5082-5272-8, article ZHU HONGFA; ZHU YUXIA; ZHU HONGFA: "Selenite ", pages: 27 - 30, XP009526190 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116812865A (zh) * 2023-08-29 2023-09-29 浙江百能科技有限公司 一种热化学硒碘循环制氢同时脱除烟气中co的系统和工艺
CN116812865B (zh) * 2023-08-29 2023-12-05 浙江百能科技有限公司 一种热化学硒碘循环制氢同时脱除烟气中co的系统和工艺
CN117568848A (zh) * 2024-01-17 2024-02-20 浙江百能科技有限公司 一种电解氢碘酸制氢的装置及方法
CN117568848B (zh) * 2024-01-17 2024-04-02 浙江百能科技有限公司 一种电解氢碘酸制氢的装置及方法

Also Published As

Publication number Publication date
CN110510576A (zh) 2019-11-29
CN110510576B (zh) 2020-12-11
GB202202726D0 (en) 2022-04-13
GB2601271B (en) 2024-04-17
GB2601271A (en) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2021031964A1 (zh) 一种碘硒热化学循环电解制氢方法
CN105084311B (zh) 一种零碳排放的甲醇水重整制氢系统及其应用和制氢方法
JP5959036B2 (ja) 余剰電力を利用する排ガス中二酸化炭素の天然ガス変換方法および装置
WO2021031963A1 (zh) 一种碘硒热化学循环磷还原制氢方法
CN108483396A (zh) 电-热化学循环耦合的太阳能燃料制备系统及方法
CN114195094B (zh) 一种热化学硫碘循环制氢全流程方法与装置
CN112391641B (zh) 一种电解水制氢装置及方法
CN111547678B (zh) 沼气全组分热催化制备甲醇的方法及系统
CN205222680U (zh) 一种零碳排放的甲醇水重整制氢系统及其燃料电池汽车
CN103756741B (zh) 一种利用可再生电力的固体氧化物电解池制天然气的方法
US20110100006A1 (en) Integrated process for water-hydrogen-electricity nuclear gas-cooled reactor
CN102553407B (zh) 热化学循环反应体系分解co2和h2o的方法及装置
CN113137783A (zh) 一种利用热泵回收电解水制氢余热的系统及方法
CN110156047B (zh) 一种固体氧化物电解/化石燃料合成氨耦合的合成氨方法
CN110436410B (zh) 一种高温气冷堆耦合碘硒热化学循环碳还原制氢方法
CN208843727U (zh) 电-热化学循环耦合的太阳能燃料制备系统
CN112323092A (zh) 两步式热化学循环分解水进行制氢和产电的方法及系统
CN113526461A (zh) 一种单硒热化学循环制氢方法
CN102553408B (zh) 基于反应物质循环的热化学分解co2和h2o的方法及装置
CN110467153B (zh) 一种高温气冷堆耦合碘硒热化学循环氮还原制氢方法
CN110407168B (zh) 一种高温气冷堆耦合碘硒热化学循环硫还原制氢方法
CN215062987U (zh) 一种利用热泵回收电解水制氢余热的系统
CN212269945U (zh) 一种绿色生产碳酸二甲酯的系统
CN110438166B (zh) 一种高温气冷堆耦合碘硒热化学循环微生物制氢方法
CN217921893U (zh) 用于己内酰胺生产的供电、供氢调峰系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202202726

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200813

122 Ep: pct application non-entry in european phase

Ref document number: 20854964

Country of ref document: EP

Kind code of ref document: A1