WO2021031235A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021031235A1
WO2021031235A1 PCT/CN2019/103598 CN2019103598W WO2021031235A1 WO 2021031235 A1 WO2021031235 A1 WO 2021031235A1 CN 2019103598 W CN2019103598 W CN 2019103598W WO 2021031235 A1 WO2021031235 A1 WO 2021031235A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
radius
Prior art date
Application number
PCT/CN2019/103598
Other languages
English (en)
French (fr)
Inventor
陈杰康
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021031235A1 publication Critical patent/WO2021031235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application relates to the field of optical lenses, and in particular to a photographic optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than charge-coupled devices (CCD) or complementary metal oxide semiconductor devices (Complementary Metal).
  • CCD charge-coupled devices
  • CMOS Sensor complementary metal oxide semiconductor devices
  • the lenses traditionally mounted on mobile phone cameras often adopt three-element, four-element, or even five-element or six-element lens structures.
  • the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, although the common four-element lens already has better optics Performance, but its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, while being unable to meet the design requirements of large aperture, ultra-thin, and wide-angle.
  • the purpose of this application is to provide an imaging optical lens, which has good optical performance and meets the design requirements of large aperture, ultra-thin, and wide-angle.
  • An imaging optical lens from the object side to the image side, including: a first lens with positive refractive power, a second lens with positive refractive power, a third lens with positive refractive power, and a fourth lens with negative refractive power ;
  • the overall focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the axial thickness of the third lens is d5
  • the image side surface of the third lens is to the fourth lens
  • the on-axis distance of the object side is d6
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6,
  • the radius of curvature of the second lens is R3.
  • the curvature radius of the image side surface of the second lens is R4, which satisfies the following relationship:
  • the focal length of the third lens is f3, which satisfies the following relationship:
  • the radius of curvature of the object side surface of the fourth lens is R7
  • the radius of curvature of the image side surface of the fourth lens is R8, which satisfies the following relationship:
  • the on-axis distance from the image side surface of the second lens to the object side surface of the third lens is d4, which satisfies the following relationship:
  • the focal length of the first lens is f1
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the first lens The on-axis thickness of is d1
  • the total optical length of the camera optical lens is TTL, which satisfies the following relationship:
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the total optical length of the camera optical lens is TTL, which satisfies the following relationship:
  • the focal length of the fourth lens is f4
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the combined focal length of the first lens and the second lens is f12, which satisfies the following relationship:
  • the FNO of the imaging optical lens satisfies the following relationship:
  • the imaging optical lens according to the present application has good optical performance, and has the characteristics of large aperture and wide-angle, and is especially suitable for mobile phone camera lens components composed of high-pixel CCD, CMOS and other imaging elements. WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 3;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
  • FIG. 6 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5.
  • the present application provides a camera optical lens 10.
  • the left side is the object side
  • the right side is the image side.
  • the imaging optical lens 10 includes four lenses arranged coaxially, and sequentially includes a first lens L1 and a second lens L2 from the object side to the image side. , The third lens L3 and the fourth lens L4.
  • An aperture S1 is also provided on the object side of the first lens L1, and optical elements such as an optical filter GF can be provided between the fourth lens L4 and the image plane Si.
  • the first lens L1 has positive refractive power, its object side surface is convex, and its image side surface is concave;
  • the second lens L2 has positive refractive power, its object side surface is concave, and its image side surface is convex;
  • third The lens L3 has positive refractive power, its object side surface is concave, and its image side surface is convex;
  • the fourth lens L4 has negative refractive power, its object side surface is a convex surface, and its image side surface is a concave surface.
  • the overall focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2
  • the axial thickness of the third lens L3 is d5
  • the axial distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4 is d6
  • the curvature radius of the object side surface of the third lens L3 is R5
  • the curvature radius of the image side surface of the third lens L3 is R6
  • the curvature radius of the object side surface of the second lens L2 is R3,
  • the curvature radius of the image side surface of the second lens L2 The radius is R4, f, f2, d5, d6, R5, R6, R3, R4 satisfy the following relationship:
  • conditional formula (1) specifies the ratio of the focal length of the second lens L2 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (1), the optical power of the second lens L2 can be effectively allocated to the camera. The aberration of the optical lens 10 is corrected to improve the imaging quality.
  • Conditional expression (2) specifies the ratio of the thickness of the third lens L3 to the air separation distance between the third lens L3 and the fourth lens L4. Within the range specified by the conditional expression (2), it is helpful for lens processing and imaging optics. The assembly of the lens 10.
  • conditional expression (3) defines the shape of the third lens L3 and contributes to correcting the axial chromatic aberration within the range specified by the conditional expression (3).
  • conditional expression (4) specifies the shape of the second lens L2. Within the range specified by the conditional expression (4), the spherical aberration generated by the first lens L1 and the field curvature of the imaging optical lens 10 can be effectively balanced.
  • the focal length of the third lens L3 is f3, and f3 and f satisfy the following relationship:
  • the conditional formula (5) specifies the ratio of the focal length of the third lens L3 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (5), through a reasonable distribution of optical power, the imaging optical lens 10 has a better The imaging quality and lower sensitivity.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, and R7 and R8 satisfy the following relationship:
  • Conditional expression (6) specifies the shape of the fourth lens L4. Within the range specified by conditional expression (6), it is beneficial to correct the aberrations of the off-axis angle of view, and is beneficial to the ultra-thin and wide-angle imaging optical lens 10 Development.
  • the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 is d4, and d4 and f satisfy the following relationship:
  • Conditional expression (7) specifies the ratio of the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3 to the total focal length of the imaging optical lens 10, which is within the range specified by the conditional expression (7).
  • the total optical length of the imaging optical lens 10 is compressed to achieve an ultra-thin effect.
  • the focal length of the first lens L1 is f1
  • the radius of curvature of the object side of the first lens L1 is R1
  • the radius of curvature of the image side of the first lens L1 is R2
  • the on-axis thickness of the first lens L1 is d1
  • the total optical length of the camera optical lens 10 is TTL, f1, f, R1, R2, d1, and TTL satisfy the following relationship:
  • conditional formula (8) specifies the ratio of the focal length of the first lens L1 to the total focal length of the imaging optical lens 10.
  • the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce The small system aberration is conducive to the ultra-thin and wide-angle development of the imaging optical lens 10 at the same time.
  • conditional expression (9) specifies the shape of the first lens L1. Within the range specified by the conditional expression (9), the shape of the first lens L1 is reasonably controlled so that the first lens L1 can effectively correct the spherical aberration of the system.
  • conditional expression (10) specifies the ratio of the on-axis thickness of the first lens L1 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (10), it is beneficial to realize the ultra-thinning effect.
  • the on-axis thickness of the second lens L2 is d3, and R3, R4, d3, and TTL satisfy the following relationship:
  • conditional expression (11) specifies the shape of the second lens L2. Within the range specified by the conditional expression (11), as the imaging optical lens 10 becomes ultra-thin and wide-angle, it is beneficial to correct axial chromatic aberration.
  • conditional expression (12) specifies the ratio of the on-axis thickness of the second lens L2 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (12), it is beneficial to realize the ultra-thinning effect.
  • d5 and TTL satisfy the following relationship:
  • conditional expression (13) specifies the ratio of the on-axis thickness of the third lens L3 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (13), it is beneficial to realize the ultra-thinning effect.
  • the focal length of the fourth lens L4 is f4
  • the on-axis thickness of the fourth lens L4 is d7
  • f4, f, d7, and TTL satisfy the following relationship:
  • conditional formula (14) specifies the ratio of the focal length of the fourth lens L4 to the total focal length of the imaging optical lens 10. Within the range specified by the conditional formula (14), through a reasonable distribution of optical power, the imaging optical lens 10 has Better imaging quality helps improve the performance of the optical system.
  • conditional expression (15) specifies the ratio of the on-axis thickness of the fourth lens L4 to the total optical length of the imaging optical lens 10, and within the range specified by the conditional expression (15), it is beneficial to realize the ultra-thinning effect.
  • the frequency band width of the imaging optical lens 10 is 920nm-960nm, 0.72 ⁇ f12/f ⁇ 3.09, FNO ⁇ 1.34, where the combined focal length of the first lens L1 and the second lens L2 of the imaging optical lens 10 is defined as f12 defines the FNO of the imaging optical lens 10.
  • f12 defines the FNO of the imaging optical lens 10.
  • the imaging optical lens 10 can be made to have good optical performance, and at the same time, it can meet the requirements of large aperture, wide-angle, and the frequency band width is preferably 920nm- 960nm design requirements; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10 is particularly suitable for mobile phone camera lens components and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present application is a TOF (Time of flight) receiving end lens.
  • the principle of TOF technology is that the transmitting end lens emits an infrared surface light source, which is irradiated and reflected back on the object, and the receiving end lens receives the reflected infrared light information. The process realizes the 3D recognition process.
  • the working wavelength range of the imaging optical lens 10 of the present application is 920 nm-960 nm.
  • the imaging optical lens 10 of the present application will be described below with an example.
  • the symbols described in each example are as follows.
  • the units of focal length, on-axis distance, radius of curvature, on-axis thickness, total optical length, inflection point position, and stagnation point position are all mm.
  • the object side surface and/or the image side surface of each lens may also be provided with inflection points and/or stagnation points to meet the requirements of high-quality imaging.
  • inflection points and/or stagnation points may also be provided with inflection points and/or stagnation points to meet the requirements of high-quality imaging.
  • the design data of the imaging optical lens 10 shown in FIG. 1 is shown below.
  • Table 1 lists the object side curvature radius and the image side curvature radius R of the first lens L1 to the fourth lens L4 constituting the imaging optical lens 10 in Embodiment 1 of the present application, the on-axis thickness of each lens, and the distance between two adjacent lenses.
  • R the radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the curvature radius of the object side of the optical filter GF
  • R10 the radius of curvature of the image side surface of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula.
  • this application is not limited to the aspheric polynomial form expressed by this formula.
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of this embodiment.
  • P1R1, P1R2 represent the object side and image side of the first lens L1
  • P2R1, P2R2 represent the object side and image side of the second lens L2
  • P3R1, P3R2 represent the object side and image side of the third lens L3,
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 shows a schematic diagram of field curvature and distortion of light with a wavelength of 940 nm after passing through the imaging optical lens 10.
  • the curvature of field S in FIG. 2 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the image height of the imaging optical lens 10 is IH
  • the field of view is FOV
  • the camera optical lens 10 has a large aperture, ultra-thin, wide-angle, and excellent imaging performance.
  • FIG. 3 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those of the first embodiment. List the differences.
  • Table 5 and Table 6 show the design data of the imaging optical lens 20 in the second embodiment of the present application.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20.
  • Table 13 also lists the values corresponding to various parameters and conditional expressions in the second embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 940 nm after passing through the imaging optical lens 20.
  • the curvature of field S in FIG. 4 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the image height of the imaging optical lens 20 is IH
  • the angle of view is FOV
  • the camera optical lens 20 has a large aperture, ultra-thin, wide-angle, and has excellent imaging performance.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment.
  • the meanings of the symbols in the following list are also the same as those in the first embodiment. List the differences.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 in the third embodiment of the present application.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30.
  • FIG. 6 shows a schematic diagram of field curvature and distortion of light with a wavelength of 940 nm after passing through the imaging optical lens 30.
  • the curvature of field S in FIG. 6 is the curvature of field in the sagittal direction, and T is the curvature of field in the meridional direction.
  • the image height of the imaging optical lens 30 is IH
  • the field of view is FOV
  • the camera optical lens 30 has a large aperture, ultra-thin, wide-angle, and excellent imaging performance.
  • Example 1 Example 2
  • Example 3 Remarks f2/f 3.97 3.12 5.00 Conditional (1) d5/d6 23.60 19.10 13.07 Conditional expression (2) (R5+R6)/(R5-R6) 3.83 6.91 9.96 Conditional expression (3) R3/R4 30.02 5.30 49.95 Conditional (4) f 2.519 2.462 2.563 To f1 4.906 5.909 7.934 To f2 9.996 7.681 12.804 To f3 2.189 2.437 2.074 To f4 -3.308 -4.639 -4.141 To FNO 1.330 1.330 1.330 To

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请涉及一种摄像光学镜头,该摄像光学镜头由物侧至像侧依次包括:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜及具有负屈折力的第四透镜。其中,摄像光学镜头整体的焦距为f,第二透镜的焦距为f2,第三透镜的轴上厚度为d5,第三透镜的像侧面至第四透镜的物侧面的轴上距离为d6,第三透镜的物侧面的曲率半径为R5,第三透镜的像侧面的曲率半径为R6,第二透镜的物侧面的曲率半径为R3,第二透镜的像侧面的曲率半径为R4,满足下列关系式:3.00≤f2/f≤5.00;13.00≤d5/d6≤25.00;3.00≤(R5+R6)/(R5-R6)≤10.00;5.00≤R3/R4≤50.00。本申请提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、广角化的设计要求。

Description

摄像光学镜头 【技术领域】
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的四片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
【申请内容】
针对上述问题,本申请的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
本申请的技术方案如下:
一种摄像光学镜头,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜及具有负屈折力的第四透镜;
其中,所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面至所述第四透镜的物侧面的轴上距离为d6,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,满足下列关系式:
3.00≤f2/f≤5.00;
13.00≤d5/d6≤25.00;
3.00≤(R5+R6)/(R5-R6)≤10.00;
5.00≤R3/R4≤50.00。
在其中一个实施例中,所述第三透镜的焦距为f3,满足下列关系式:
0.50≤f3/f≤1.00。
在其中一个实施例中,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,满足下列关系式:
3.00≤(R7+R8)/(R7-R8)≤10.00。
在其中一个实施例中,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,满足下列关系式:
0.05≤d4/f≤0.15。
在其中一个实施例中,所述第一透镜的焦距为f1,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.97≤f1/f≤4.64;
-10.66≤(R1+R2)/(R1-R2)≤-1.71;
0.05≤d1/TTL≤0.19。
在其中一个实施例中,所述第二透镜的轴上厚度为d3,所述摄像光学 镜头的光学总长为TTL,满足下列关系式:
0.52≤(R3+R4)/(R3-R4)≤2.20;
0.07≤d3/TTL≤0.21。
在其中一个实施例中,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.05≤d5/TTL≤0.25。
在其中一个实施例中,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-3.77≤f4/f≤-0.88;
0.03≤d7/TTL≤0.14。
在其中一个实施例中,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
0.72≤f12/f≤3.09。
在其中一个实施例中,所述摄像光学镜头的FNO满足下列关系式:
FNO≤1.34。
本申请的有益效果在于:根据本申请的摄像光学镜头具有良好光学性能,且具有大光圈、广角化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的场曲及畸变示意图;
图3是实施方式二的摄像光学镜头的结构示意图;
图4是图3所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式三的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
以下为实施方式一:
请一并参阅图1至图2,本申请提供了一种摄像光学镜头10。在图1中,左侧为物侧,右侧为像侧,摄像光学镜头10包括同轴设置的四个透镜,从物侧至像侧依次依序包括:第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4。在第一透镜L1的物侧面还设有光圈S1,在第四透镜L4与像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1具有正屈折力,其物侧面为凸面,其像侧面为凹面;第二透镜L2具有正屈折力,其物侧面为凹面,其像侧面为凸面;第三透镜L3具有正屈折力,其物侧面为凹面,其像侧面为凸面;第四透镜L4具有负屈折力,其物侧面为凸面,其像侧面为凹面。
摄像光学镜头10整体的焦距为f,第二透镜L2的焦距为f2,第三透镜L3的轴上厚度为d5,第三透镜L3的像侧面至第四透镜L4的物侧面的轴上距离为d6,第三透镜L3的物侧面的曲率半径为R5,第三透镜L3的像侧面的曲率半径为R6,第二透镜L2的物侧面的曲率半径为R3,第二透镜L2的像侧面的曲率半径为R4,f、f2、d5、d6、R5、R6、R3、R4满足下列关系式:
3.00≤f2/f≤5.00                                          (1)
13.00≤d5/d6≤25.00                                       (2)
3.00≤(R5+R6)/(R5-R6)≤10.00                              (3)
5.00≤R3/R4≤50.00                                       (4)
其中,条件式(1)规定了第二透镜L2的焦距与摄像光学镜头10总焦距的比值,在条件式(1)规定的范围内,可以有效分配第二透镜L2的光焦度,对摄像光学镜头10的像差进行校正,进而提升成像品质。
条件式(2)规定了第三透镜L3的厚度和第三透镜L3与第四透镜L4间空气间隔距离的比值,在条件式(2)规定的范围内,有助于镜片的加工和摄像光学镜头10的组装。
条件式(3)规定了第三透镜L3的形状,在条件式(3)规定的范围内,有助于补正轴上色像差。
条件式(4)规定了第二透镜L2的形状,在条件式(4)规定的范围内,可以有效地平衡由具有第一透镜L1产生的球差以及摄像光学镜头10的场曲量。
在本实施方式中,第三透镜L3的焦距为f3,f3与f满足下列关系式:
0.50≤f3/f≤1.00                                          (5)
条件式(5)规定了第三透镜L3的焦距与摄像光学镜头10总焦距的比值,在条件式(5)规定的范围内,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。
在本实施方式中,第四透镜L4的物侧面的曲率半径为R7,第四透镜L4的像侧面的曲率半径为R8,R7和R8满足下列关系式:
3.00≤(R7+R8)/(R7-R8)≤10.00                             (6)
条件式(6)规定了第四透镜L4的形状,在条件式(6)规定的范围内,有利于补正轴外画角的像差等问题,有利于摄像光学镜头10的超薄化、广角化发展。
在本实施方式中,第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离为d4,d4与f满足下列关系式:
0.05≤d4/f≤0.15                                          (7)
条件式(7)规定了第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离与摄像光学镜头10总焦距的比值,在条件式(7)规定的范围内, 有助于压缩摄像光学镜头10的光学总长,实现超薄化效果。
在本实施方式中,第一透镜L1的焦距为f1,第一透镜L1的物侧面的曲率半径为R1,第一透镜L1的像侧面的曲率半径为R2,第一透镜L1的轴上厚度为d1,摄像光学镜头10的光学总长为TTL,f1、f、R1、R2、d1、TTL满足下列关系式:
0.97≤f1/f≤4.64                                           (8)
-10.66≤(R1+R2)/(R1-R2)≤-1.71                            (9)
0.05≤d1/TTL≤0.19                                       (10)
其中,条件式(8)规定了第一透镜L1的焦距与摄像光学镜头10总焦距的比值,在条件式(8)规定的范围内,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于摄像光学镜头10向超薄化、广角化发展。
条件式(9)规定了第一透镜L1的形状,在条件式(9)规定的范围内,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。
条件式(10)规定了第一透镜L1的轴上厚度与摄像光学镜头10光学总长的比值,在条件式(10)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第二透镜L2的轴上厚度为d3,R3、R4、d3、TTL满足下列关系式:
0.52≤(R3+R4)/(R3-R4)≤2.20                              (11)
0.07≤d3/TTL≤0.21                                       (12)
其中,条件式(11)规定了第二透镜L2的形状,在条件式(11)规定的范围内,随着摄像光学镜头10向超薄广角化发展,有利于补正轴上色像差问题。
条件式(12)规定了第二透镜L2的轴上厚度与摄像光学镜头10光学总长的比值,在条件式(12)规定的范围内,有利于实现超薄化效果。
在本实施方式中,d5、TTL满足下列关系式:
0.05≤d5/TTL≤0.25                                       (13)
条件式(13)规定了第三透镜L3的轴上厚度与摄像光学镜头10光学 总长的比值,在条件式(13)规定的范围内,有利于实现超薄化效果。
在本实施方式中,第四透镜L4的焦距为f4,第四透镜L4的轴上厚度为d7,f4、f、d7、TTL满足下列关系式:
-3.77≤f4/f≤-0.88                                        (14)
0.03≤d7/TTL≤0.14                                      (15)
其中,条件式(14)规定了第四透镜L4的焦距与摄像光学镜头10总焦距的比值,在条件式(14)规定的范围内,通过光焦度的合理分配,使得摄像光学镜头10具有较佳的成像品质,有助于提高光学系统性能。
条件式(15)规定了第四透镜L4的轴上厚度与摄像光学镜头10光学总长的比值,在条件式(15)规定的范围内,有利于实现超薄化效果。
本实施方式中:摄像光学镜头10的频段宽度为920nm-960nm,0.72≤f12/f≤3.09,FNO≤1.34,其中,定义摄像光学镜头10的第一透镜L1与第二透镜L2的组合焦距为f12,定义摄像光学镜头10的FNO。在条件式f12/f的范围内,可消除摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。
当本申请摄像光学镜头10的焦距、各透镜的焦距和曲率半径满足上述关系式时,可以使摄像光学镜头10具有良好光学性能,同时能够满足了大光圈、广角化、频段宽度优选为920nm-960nm的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
此外,本申请的摄像光学镜头10为TOF(Time of flight)接受端镜头,TOF技术原理为发射端镜头发射红外面光源,照射到物体反射回来,接受端镜头接受反射回来的红外光信息,此过程实现了3D识别过程。本申请的摄像光学镜头10的工作波段范围为920nm-960nm。
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。而且,焦距、轴上距离、曲率半径、轴上厚度、光学总长、反曲点位置、驻点位置的单位均为mm。
另外,各透镜的物侧面和/或像侧面中上还可以设置有反曲点和/或驻 点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了图1所示的摄像光学镜头10的设计数据。
表1列出了本申请实施方式一中构成摄像光学镜头10的第一透镜L1~第四透镜L4的物侧面曲率半径和像侧面曲率半径R、各透镜的轴上厚度、相邻两透镜间的距离d、折射率nd及阿贝数νd。
【表1】
Figure PCTCN2019103598-appb-000001
上表中各符号的含义如下:
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:光学过滤片GF的物侧面的曲率半径;
R10:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度、透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到光学过滤片GF的物侧面的轴上距离;
d9:光学过滤片GF的轴上厚度;
d10:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本申请第一实施方式的摄像光学镜头10中各透镜的非球面数 据。
【表2】
Figure PCTCN2019103598-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16
为方便起见,各个透镜面的非球面使用上述公式中所示的非球面。但是,本申请不限于该公式表示的非球面多项式形式。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.855  
P1R2 1 0.565  
P2R1 1 0.915  
P2R2 1 1.035  
P3R1 2 0.865 1.185
P3R2 1 1.095  
P4R1 1 0.675  
P4R2 1 0.685  
【表4】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.795
P2R1    
P2R2    
P3R1    
P3R2    
P4R1 1 1.215
P4R2 1 1.465
表3、表4示出本实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
另外,在后续的表13中,还列出了实施方式一中各种参数、条件式所对应的值。
图2示出了波长为940nm的光经过摄像光学镜头10后的场曲及畸变示意图。图2的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头10的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.00mm,对角线方向的FOV=77.00°,ENPD=1.894,如此,摄像光学镜头10具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为实施方式二:
图3是实施方式二中摄像光学镜头20的结构示意图,实施方式二与实 施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表5、表6示出本申请实施方式二的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019103598-appb-000003
【表6】
Figure PCTCN2019103598-appb-000004
表7、表8示出摄像光学镜头20中各透镜的反曲点及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1
P1R1 1 0.865
P1R2 1 0.625
P2R1 1 0.915
P2R2 1 0.975
P3R1 1 0.875
P3R2 1 1.025
P4R1 1 0.825
P4R2 1 0.765
【表8】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.835
P2R1    
P2R2 1 1.105
P3R1 1 1.165
P3R2    
P4R1 1 1.535
P4R2 1 1.575
另外,在后续的表13中,还列出了实施方式二中各种参数、条件式所对应的值。
图4示出了波长为940nm的光经过摄像光学镜头20后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头20的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.00mm,对角线方向的FOV=77.92°,ENPD=1.851,如此,摄像光学镜头20具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为实施方式三:
图5是实施方式三中摄像光学镜头30的结构示意图,实施方式三与实施方式一基本相同,以下列表中符号含义与实施方式一也相同,故对于相同的部分此处不再赘述,以下仅列出不同点。
表9、表10示出本申请实施方式三的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019103598-appb-000005
【表10】
Figure PCTCN2019103598-appb-000006
表11、表12示出摄像光学镜头30中各透镜的反曲点及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.885  
P1R2 1 0.615  
P2R1      
P2R2 1 1.005  
P3R1 1 0.885  
P3R2 1 0.945  
P4R1 2 1.025 1.705
P4R2 1 0.915  
【表12】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.845
P2R1    
P2R2    
P3R1 1 1.135
P3R2 1 1.215
P4R1 1 1.535
P4R2 1 1.525
另外,在后续的表13中,还列出了实施方式三中各种参数、条件式所对应的值。
图6示出了波长为940nm的光经过摄像光学镜头30后的场曲及畸变示意图。图6的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,摄像光学镜头30的像高为IH,视场角为FOV,入瞳直径为ENPD,其中,IH=2.00mm,对角线方向的FOV=77.10°,ENPD=1.927,如此,摄像光学镜头30具有大光圈、超薄、广角,且具有 优秀的成像性能。
以下表13根据上述条件式列出了实施方式一、实施方式二、实施方式三中对应参数及条件式(1)、(2)、(3)、(4)的数值。
【表13】
参数及条件式 实施例1 实施例2 实施例3 备注
f2/f 3.97 3.12 5.00 条件式(1)
d5/d6 23.60 19.10 13.07 条件式(2)
(R5+R6)/(R5-R6) 3.83 6.91 9.96 条件式(3)
R3/R4 30.02 5.30 49.95 条件式(4)
f 2.519 2.462 2.563  
f1 4.906 5.909 7.934  
f2 9.996 7.681 12.804  
f3 2.189 2.437 2.074  
f4 -3.308 -4.639 -4.141  
FNO 1.330 1.330 1.330  
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,由物侧至像侧依次包括:具有正屈折力的第一透镜、具有正屈折力的第二透镜、具有正屈折力的第三透镜及具有负屈折力的第四透镜;
    其中,所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第三透镜的轴上厚度为d5,所述第三透镜的像侧面至所述第四透镜的物侧面的轴上距离为d6,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第二透镜的物侧面的曲率半径为R3,所述第二透镜的像侧面的曲率半径为R4,满足下列关系式:
    3.00≤f2/f≤5.00;
    13.00≤d5/d6≤25.00;
    3.00≤(R5+R6)/(R5-R6)≤10.00;
    5.00≤R3/R4≤50.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,满足下列关系式:
    0.50≤f3/f≤1.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的物侧面的曲率半径为R7,所述第四透镜的像侧面的曲率半径为R8,满足下列关系式:
    3.00≤(R7+R8)/(R7-R8)≤10.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,满足下列关系式:
    0.05≤d4/f≤0.15。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜的物侧面的曲率半径为R1,所述第一透镜的像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.97≤f1/f≤4.64;
    -10.66≤(R1+R2)/(R1-R2)≤-1.71;
    0.05≤d1/TTL≤0.19。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.52≤(R3+R4)/(R3-R4)≤2.20;
    0.07≤d3/TTL≤0.21。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.05≤d5/TTL≤0.25。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    -3.77≤f4/f≤-0.88;
    0.03≤d7/TTL≤0.14。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
    0.72≤f12/f≤3.09。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的FNO满足下列关系式:
    FNO≤1.34。
PCT/CN2019/103598 2019-08-16 2019-08-30 摄像光学镜头 WO2021031235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760178.9A CN110531490B (zh) 2019-08-16 2019-08-16 摄像光学镜头
CN201910760178.9 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031235A1 true WO2021031235A1 (zh) 2021-02-25

Family

ID=68663559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103598 WO2021031235A1 (zh) 2019-08-16 2019-08-30 摄像光学镜头

Country Status (4)

Country Link
US (1) US11567297B2 (zh)
JP (1) JP6876361B2 (zh)
CN (1) CN110531490B (zh)
WO (1) WO2021031235A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111329442A (zh) * 2020-03-16 2020-06-26 广东小天才科技有限公司 一种视力健康检测方法及装置、电子设备
CN113759508B (zh) * 2021-09-14 2023-01-20 浙江舜宇光学有限公司 光学成像镜头
CN113960758B (zh) * 2021-11-04 2023-06-02 业成科技(成都)有限公司 光学成像系统、取像装置及电子设备
CN114035305B (zh) * 2021-11-22 2023-08-08 浙江舜宇光学有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184880A1 (en) * 2012-12-31 2014-07-03 Kolen Co., Ltd. Photographic Lens Optical System
CN204009199U (zh) * 2014-04-17 2014-12-10 深圳市彰骏光电科技有限公司 一种高清广角低畸变dv镜头
CN108279483A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 摄像镜头组
CN109387919A (zh) * 2017-08-08 2019-02-26 玉晶光电(厦门)有限公司 光学成像镜头
CN109581623A (zh) * 2017-09-29 2019-04-05 大立光电股份有限公司 电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319671A (zh) * 2014-06-25 2016-02-10 Kolen株式会社 照相镜头光学系统
US10228542B2 (en) * 2016-02-12 2019-03-12 Newmax Technology Co., Ltd. Four-piece infrared single wavelength lens system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184880A1 (en) * 2012-12-31 2014-07-03 Kolen Co., Ltd. Photographic Lens Optical System
CN204009199U (zh) * 2014-04-17 2014-12-10 深圳市彰骏光电科技有限公司 一种高清广角低畸变dv镜头
CN109387919A (zh) * 2017-08-08 2019-02-26 玉晶光电(厦门)有限公司 光学成像镜头
CN109581623A (zh) * 2017-09-29 2019-04-05 大立光电股份有限公司 电子装置
CN108279483A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 摄像镜头组

Also Published As

Publication number Publication date
JP2021033280A (ja) 2021-03-01
JP6876361B2 (ja) 2021-05-26
US11567297B2 (en) 2023-01-31
CN110531490B (zh) 2021-04-09
US20210048615A1 (en) 2021-02-18
CN110531490A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021031233A1 (zh) 摄像光学镜头
WO2020134294A1 (zh) 摄像光学镜头
WO2021031282A1 (zh) 摄像光学镜头
WO2021031235A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2022021513A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2021097952A1 (zh) 摄像光学镜头
WO2021097925A1 (zh) 摄像光学镜头
WO2021031285A1 (zh) 摄像光学镜头
WO2021031277A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头
WO2021168878A1 (zh) 摄像光学镜头
WO2021097928A1 (zh) 摄像光学镜头
WO2021031238A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168879A1 (zh) 摄像光学镜头
WO2021168885A1 (zh) 摄像光学镜头
WO2021168883A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021168892A1 (zh) 摄像光学镜头
WO2021114083A1 (zh) 摄像光学镜头
WO2021127861A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941867

Country of ref document: EP

Kind code of ref document: A1