WO2021031285A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021031285A1
WO2021031285A1 PCT/CN2019/107280 CN2019107280W WO2021031285A1 WO 2021031285 A1 WO2021031285 A1 WO 2021031285A1 CN 2019107280 W CN2019107280 W CN 2019107280W WO 2021031285 A1 WO2021031285 A1 WO 2021031285A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
ttl
focal length
optical lens
Prior art date
Application number
PCT/CN2019/107280
Other languages
English (en)
French (fr)
Inventor
彭海潮
葛诗雨
寺冈弘之
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021031285A1 publication Critical patent/WO2021031285A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present invention relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal-OxideSemicondctor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing technology, the pixel size of photosensitive devices has been reduced, and nowadays electronic products are developed with good functions, thin and short appearance, so The miniaturized camera lens with good image quality has become the mainstream in the current market.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • the lenses traditionally mounted on mobile phone cameras mostly adopt a three-element or four-element lens structure.
  • the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, the five-element lens structure gradually appears in the lens design.
  • the five-element lens has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of large aperture, Long focal length, ultra-thin design requirements.
  • the object of the present invention is to provide an imaging optical lens which has good optical performance while meeting the design requirements of long focal length and ultra-thinness.
  • an embodiment of the present invention provides the imaging optical lens, the imaging optical lens sequentially includes from the object side to the image side: a first lens with a positive refractive power, and a lens with a negative refractive power.
  • the total focal length of the camera optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5
  • the on-axis thickness of the first lens is d1
  • the on-axis distance from the image side of the first lens to the object side of the second lens is d2
  • the radius of curvature of the object side of the third lens is R5
  • the third lens is
  • the curvature radius of the mirror image side surface is R6, the curvature radius of the object side surface of the fourth lens is R7
  • the curvature radius of the image side surface of the fourth lens is R8, and the following relationship is satisfied:
  • the focal length of the third lens is f3, and satisfies the following relationship:
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the total optical length of the imaging optical lens is TTL
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens It is TTL and satisfies the following relationship:
  • the axial thickness of the third lens is d5, and the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the axial thickness of the fourth lens is d7, and the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the radius of curvature of the object side surface of the fifth lens is R9
  • the radius of curvature of the image side surface of the fifth lens is R10
  • the axial thickness of the fifth lens is d9
  • the optics of the imaging optical lens The total length is TTL and satisfies the following relationship:
  • the combined focal length of the first lens and the second lens is f12, which satisfies the following relationship:
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the aperture F number of the imaging optical lens is Fno, and the following relationship is satisfied:
  • the imaging optical lens according to the present invention has good optical performance, long focal length and ultra-thin characteristics, and is especially suitable for mobile phone camera lens assemblies and mobile phone cameras composed of high-pixel CCD, CMOS and other imaging elements. WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a third lens with negative refractive power. Lens L3, fourth lens L4 with positive refractive power, and fifth lens L5 with negative refractive power.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the total focal length of the imaging optical lens system is f
  • the focal length of the first lens is f1
  • the following relationship is satisfied: 0.40 ⁇ f1/f ⁇ 0.48
  • the focal length of the first lens L1 is defined as The ratio of the total focal length of the system can effectively balance the spherical aberration and field curvature of the system.
  • the focal length of the second lens L2 is defined as f2, and the following relationship is satisfied: -0.75 ⁇ f2/f ⁇ -0.50.
  • the ratio of the focal length of the second lens L2 to the focal length of the system is specified, which helps to improve the performance of the optical system within the range of the conditional expression.
  • the focal length of the fourth lens L4 as f4, and satisfy the following relationship: 1.20 ⁇ f4/f ⁇ 3.20; when f4/f satisfies the condition, the optical power of the fourth lens L4 can be effectively allocated, which is important for the optical system Aberrations are corrected to improve image quality.
  • the focal length of the fifth lens L5 is defined as f5, and the following relational expression is satisfied: -1.40 ⁇ f5/f ⁇ -1.10; the ratio of the focal length of the fifth lens L5 to the total focal length of the system is specified, and the focal length is reasonably allocated to make the system Has better imaging quality and lower sensitivity.
  • the on-axis thickness of the first lens L1 is defined as d1, and the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2 is d2, and the following relationship is satisfied: 6.00 ⁇ d1/d2 ⁇ 8.00.
  • the ratio of the thickness of the first lens L1 to the air space between the first lens L1 and the second lens L2 is specified, which helps to compress the total length of the optical system within the scope of the conditional expression and achieves an ultra-thinning effect.
  • the curvature radius of the object side surface of the third lens L3 is defined as R5, and the curvature radius of the image side surface of the third lens L3 is R6, and the following relationship is satisfied: 0.80 ⁇ (R5+R6)/(R5-R6) ⁇ 6.50 ; Prescribes the shape of the third lens L3, within the specified range of the conditional formula, can relax the degree of deflection of light passing through the lens, and effectively reduce aberrations.
  • the radius of curvature of the object side surface of the fourth lens L4 as R7
  • the radius of curvature of the image side surface of the fourth lens L4 as R8, and satisfy the following relationship: 3.00 ⁇ (R7+R8)/(R7-R8) ⁇ 10.00 .
  • the shape of the fourth lens L4 is specified, and when it is within this range, it is beneficial to correct the aberration of the off-axis angle of view.
  • the focal length of the third lens L3 is defined as f3, and satisfies the following relationship: -10.00 ⁇ f3/f ⁇ -0.80.
  • the ratio of the focal length of the third lens L3 to the total focal length of the system is specified, and the reasonable allocation of the focal length makes the system have better imaging quality and lower sensitivity.
  • the curvature radius of the object side surface of the first lens L1 as R1
  • the curvature radius of the image side surface of the first lens L1 is R2, and satisfy the following relationship: -1.71 ⁇ (R1+R2)/(R1-R2) ⁇ -0.39 ;
  • the on-axis thickness of the first lens L1 is defined as d1, the total optical length of the imaging optical lens 10 is TTL, and the following relationship is satisfied: 0.08 ⁇ d1/TTL ⁇ 0.31. Conducive to ultra-thin. Preferably, 0.13 ⁇ d1/TTL ⁇ 0.25.
  • the curvature radius of the object side surface of the second lens is defined as R3, and the curvature radius of the image side surface of the second lens is R4, and the following relationship is satisfied: 0.41 ⁇ (R3+R4)/(R3-R4) ⁇ 4.41.
  • the shape of the second lens L2 is specified. When the lens is within the range, as the lens becomes ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • the on-axis thickness of the second lens L2 is defined as d3, and the total optical length of the imaging optical lens 10 is TTL, and the following relationship is satisfied: 0.02 ⁇ d3/TTL ⁇ 0.07, which is beneficial to realize ultra-thinness. Preferably, 0.04 ⁇ d3/TTL ⁇ 0.06.
  • the on-axis thickness of the third lens L3 is defined as d5, and the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied: 0.02 ⁇ d5/TTL ⁇ 0.08, which is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d5/TTL ⁇ 0.06.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, and the following relationship is satisfied: 0.05 ⁇ d7/TTL ⁇ 0.16. Conducive to ultra-thin. Preferably, 0.07 ⁇ d7/TTL ⁇ 0.13.
  • the on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens 10 is TTL, and the following relationship is satisfied: 0.03 ⁇ d9/TTL ⁇ 0.09, which is beneficial to realize ultra-thinness.
  • the combined focal length of the first lens L1 and the second lens L2 is defined as f12, which satisfies the following relationship: 0.34 ⁇ f12/f ⁇ 1.23.
  • f12 which satisfies the following relationship: 0.34 ⁇ f12/f ⁇ 1.23.
  • TTL is the total optical length of the camera optical lens 10
  • the total focal length of the camera optical lens system is f, which satisfies the following relationship: f/TTL ⁇ 1.09, which is conducive to achieving ultra-thinness
  • Fno is the number of aperture F, also That is, the ratio of the effective focal length to the entrance pupil aperture satisfies the following relationship: Fno ⁇ 2.55, which is conducive to achieving a large aperture and good imaging performance.
  • the imaging optical lens 10 achieves a long focal length and ultra-thin design requirements while achieving good optical imaging performance; according to the characteristics of the optical lens 10, the optical lens 10 is particularly suitable for Mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, inflection point position, stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, when the lens is the central radius of curvature
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side surface of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the curvature radius of the object side surface of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • D the on-axis thickness of the lens and the on-axis distance between the lenses
  • D2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • D4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • D6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • D8 the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;
  • D10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • D11 the axial thickness of the optical filter GF
  • D12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • Nd the refractive index of d-line
  • Nd1 the refractive index of the d-line of the first lens L1;
  • Nd2 the refractive index of the d-line of the second lens L2
  • Nd3 the refractive index of the d-line of the third lens L3
  • Nd4 the refractive index of the d-line of the fourth lens L4
  • Nd5 the refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d-line of the optical filter GF
  • Vd Abbe number
  • V1 Abbe number of the first lens L1;
  • V2 Abbe number of the second lens L2
  • V3 Abbe number of the third lens L3;
  • V4 Abbe number of the fourth lens L4;
  • V5 Abbe number of the fifth lens L5;
  • Vg Abbe number of optical filter GF.
  • Table 2 shows aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1, P1R2 represent the object side and image side of the first lens L1
  • P2R1, P2R2 represent the object side and image side of the second lens L2
  • P3R1, P3R2 represent the object side and image side of the third lens L3
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 shows a schematic diagram of the axial aberrations of light having wavelengths of 430 nm, 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm after passing through the imaging optical lens 10 of the first embodiment
  • FIG. 3 shows the wavelengths
  • a schematic diagram of the chromatic aberration of magnification after light of 430 nm, 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm passes through the imaging optical lens 10 of the first embodiment.
  • Fig. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in Fig. 4 is the field curvature in the sagittal direction, and T is the meridian direction. Field song.
  • Table 13 shows the values corresponding to the various values in the first, second, and third embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 2.520mm
  • the full-field image height is 2.619mm
  • the diagonal field angle is 45.28°, making the imaging optical lens 10 long focal length, Ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 5 for the structure of the imaging optical lens 20 of the second embodiment. Only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of the axial aberrations of light with wavelengths of 430nm, 470nm, 510nm, 555nm, 610nm and 650nm after passing through the imaging optical lens 20 of the second embodiment.
  • Schematic diagram of chromatic aberration of magnification after light of 555nm, 610nm and 650nm passes through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 20 of the second embodiment.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter of the imaging optical lens is 2.269mm
  • the full-field image height is 2.300mm
  • the diagonal field angle is 45.10°, making the imaging optical lens 20 long focal length, Ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 9 for the structure of the imaging optical lens 30 of the third embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • Figure 10 shows a schematic diagram of the axial aberrations of light with wavelengths of 430nm, 470nm, 510nm, 555nm, 610nm, and 650nm after passing through the imaging optical lens 30 of the third embodiment.
  • Schematic diagram of chromatic aberration of magnification after light of 555 nm, 610 nm and 650 nm passes through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after light with a wavelength of 555 nm passes through the imaging optical lens 30 of the third embodiment.
  • the entrance pupil diameter of the imaging optical lens is 3.119mm
  • the full-field image height is 2.040mm
  • the diagonal field angle is 30.00°, making the imaging optical lens 30 long focal length, Ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),摄像光学镜头(10)自物侧至像侧依序包含第一透镜(L1)至第五透镜(L5);摄像光学镜头(10)的系统总焦距为f,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第四透镜(L4)的焦距为f4,第五透镜(L5)的焦距为f5,第一透镜(L1)的轴上厚度为d1,第一透镜(L1)像侧面到第二透镜(L2)物侧面的轴上距离为d2,第三透镜(L3)物侧面的曲率半径为R5,第三透镜(L3)像侧面的曲率半径为R6,第四透镜(L4)物侧面的曲率半径为R7,第四透镜(L4)像侧面的曲率半径为R8,且满足下列关系式:0.40≤f1/f≤0.48;-0.75≤f2/f≤-0.50;1.20≤f4/f≤3.20;-1.40≤f5/f≤-1.10;6.00≤d1/d2≤8.00;0.80≤(R5+R6)/(R5-R6)≤6.50;3.00≤(R7+R8)/(R7-R8)≤10.00。摄像光学镜头具有良好光学性能的同时,满足长焦距、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
技术问题
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、长焦距、超薄化的设计要求。
技术解决方案
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足长焦距、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种所述摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
所述摄像光学镜头的系统总焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第一透镜的轴上厚度为d1,第一透镜像侧面到第二透镜物侧面的轴上距离为d2,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,且满足下列关系式:
0.40≤f1/f≤0.48;
-0.75≤f2/f≤-0.50;
1.20≤f4/f≤3.20;
-1.40≤f5/f≤-1.10;
6.00≤d1/d2≤8.00;
0.80≤(R5+R6)/(R5-R6) ≤6.50;
3.00≤(R7+R8)/(R7-R8)≤10.00。
优选的,所述第三透镜的焦距为f3,且满足下列关系式:
-10.00≤f3/f≤-0.80。
优选的,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.71≤(R1+R2)/(R1-R2)≤-0.39;
0.08≤d1/TTL≤0.31。
优选的,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.41≤(R3+R4)/(R3-R4)≤4.41;
0.02≤d3/TTL≤0.07。
优选的,所述第三透镜的轴上厚度为d5,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.02≤d5/TTL≤0.08。
优选的,所述第四透镜的轴上厚度为d7,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.05≤d7/TTL≤0.16。
优选的,所述第五透镜物侧面的曲率半径为R9,以及所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.99≤(R9+R10)/(R9-R10)≤-0.55;
0.03≤d9/TTL≤0.09。
优选的,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
0.34≤f12/f≤1.23。
优选的,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
f/TTL≥1.09。
优选的,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
Fno≤2.55。
有益效果
本发明的有益效果在于: 根据本发明的摄像光学镜头具有良好光学性能,且长焦距、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,所述摄像光学镜头的系统总焦距为f,所述第一透镜的焦距为f1,且满足下列关系式:0.40≤f1/f≤0.48;规定了第一透镜L1焦距与系统总焦距的比值,可以有效地平衡系统的球差以及场曲量。
定义所述第二透镜L2的焦距为f2,且满足下列关系式:-0.75≤f2/f≤-0.50。规定了第二透镜L2焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。
定义所述第四透镜L4的焦距为f4,且满足下列关系式:1.20≤f4/f≤3.20;当f4/f满足条件时,可有效分配第四透镜L4的光焦度,对光学系统的像差进行校正,进而提升成像品质。
定义所述第五透镜L5的焦距为f5,且满足下列关系式:-1.40≤f5/f≤-1.10;规定了第五透镜L5焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
定义所述第一透镜L1的轴上厚度为d1,第一透镜L1像侧面到第二透镜L2物侧面的轴上距离为d2,且满足下列关系式:6.00≤d1/d2≤8.00。规定了第一透镜L1厚度与第一透镜L1和第二透镜L2之间空气间隔的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
定义所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,且满足下列关系式:0.80≤(R5+R6)/(R5-R6)≤6.50;规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,且满足下列关系式:3.00≤(R7+R8)/(R7-R8)≤10.00。规定了第四透镜L4的形状,在此范围内时,有利于补正轴外画角的像差。
定义所述第三透镜L3的焦距为f3,且满足下列关系式:-10.00≤f3/f≤-0.80。规定了第三透镜L3焦距与系统总焦距的比值,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
定义第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,且满足下列关系式:-1.71≤(R1+R2)/(R1-R2)≤-0.39;合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。
定义所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.08≤d1/TTL≤0.31。有利于实现超薄化。优选的,0.13≤d1/TTL≤0.25。
定义所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:0.41≤(R3+R4)/(R3-R4)≤4.41。规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。
定义所述第二透镜L2的轴上厚度为d3,以及所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.02≤d3/TTL≤0.07,有利于实现超薄化。优选的,0.04≤d3/TTL≤0.06。
定义所述第三透镜L3的轴上厚度为d5,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.02≤d5/TTL≤0.08,有利于实现超薄化。优选的,0.03≤d5/TTL≤0.06。
定义所述第四透镜L4的轴上厚度为d7,以及所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.05≤d7/TTL≤0.16。有利于实现超薄化。优选的,0.07≤d7/TTL≤0.13。
定义所述第五透镜L5物侧面的曲率半径为R9,以及所述第五透镜L5像侧面的曲率半径为R10,且满足下列关系式:-6.99≤(R9+R10)/(R9-R10)≤-0.55;规定了第五透镜L5的形状,在范围内时,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。
定义所述第五透镜L5的轴上厚度为d9,以及所述摄像光学镜头10的光学总长为TTL,且满足下列关系式:0.03≤d9/TTL≤0.09,有利于实现超薄化。优选的,0.04≤d9/TTL≤0.07。
定义所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.34≤f12/f≤1.23。在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。
进一步的,TTL为摄像光学镜头10的光学总长,所述摄像光学镜头的系统总焦距为f,满足下列关系式:f/TTL≥1.09,有利于实现超薄化;Fno为光圈F数,也即有效焦距与入射瞳孔径的比值,满足下列关系式:Fno≤2.55,有利于实现大光圈,使得成像性能好。即当满足上述关系,使得摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足长焦距、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure 82198dest_path_image001
其中,各符号的含义如下。
 S1: 光圈;
 R:  光学面的曲率半径、透镜时为中心曲率半径;
 R1: 第一透镜L1的物侧面的曲率半径;
 R2: 第一透镜L1的像侧面的曲率半径;
 R3: 第二透镜L2的物侧面的曲率半径;
 R4: 第二透镜L2的像侧面的曲率半径;
 R5: 第三透镜L3的物侧面的曲率半径;
 R6: 第三透镜L3的像侧面的曲率半径;
 R7: 第四透镜L4的物侧面的曲率半径;
 R8: 第四透镜L4的像侧面的曲率半径;
 R9: 第五透镜L5的物侧面的曲率半径;
 R10:第五透镜L5的像侧面的曲率半径;
 R11:光学过滤片GF的物侧面的曲率半径;
 R12:光学过滤片GF的像侧面的曲率半径;
 d : 透镜的轴上厚度与透镜之间的轴上距离;
 d0: 光圈S1到第一透镜L1的物侧面的轴上距离;
 d1: 第一透镜L1的轴上厚度;
 d2: 第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
 d3: 第二透镜L2的轴上厚度;
 d4: 第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
 d5: 第三透镜L3的轴上厚度;
 d6: 第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
 d7: 第四透镜L4的轴上厚度;
 d8: 第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
 d9: 第五透镜L5的轴上厚度;
 d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
 d11:光学过滤片GF的轴上厚度;
 d12:光学过滤片GF的像侧面到像面的轴上距离;
 nd: d线的折射率;
 nd1:第一透镜L1的d线的折射率;
 nd2:第二透镜L2的d线的折射率;
 nd3:第三透镜L3的d线的折射率;
 nd4:第四透镜L4的d线的折射率;
 nd5:第五透镜L5的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
 vd:阿贝数;
 v1:第一透镜L1的阿贝数;
 v2:第二透镜L2的阿贝数;
 v3:第三透镜L3的阿贝数;
 v4:第四透镜L4的阿贝数;
 v5:第五透镜L5的阿贝数;
 vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure 261506dest_path_image002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20                                    (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面, P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
Figure 474313dest_path_image003
【表4】
Figure 117784dest_path_image004
图2示出了波长为430 nm、470 nm、510 nm、555 nm、610 nm和650 nm的光经过第一实施方式的摄像光学镜头10后的轴向像差示意图,图3示出了波长为430 nm、470 nm、510 nm、555 nm、610 nm和650 nm的光经过第一实施方式的摄像光学镜头10后的倍率色差示意图。图4则示出了,波长为555 nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.520mm,全视场像高为2.619mm,对角线方向的视场角为45.28°,使得所述摄像光学镜头10长焦距、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure 125054dest_path_image005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure 791659dest_path_image006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
Figure 808156dest_path_image007
【表8】
Figure 243817dest_path_image008
图6示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差示意图,图7示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.269mm,全视场像高为2.300mm,对角线方向的视场角为45.10°,使得所述摄像光学镜头20长焦距、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure 950217dest_path_image009
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure 838539dest_path_image010
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
Figure 658727dest_path_image011
【表12】
Figure 948894dest_path_image012
图10示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差示意图,图11示出了波长为430nm、470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.119mm,全视场像高为2.040mm,对角线方向的视场角为30.00°,使得所述摄像光学镜头30长焦距、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
Figure 829126dest_path_image013
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。 

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
    所述摄像光学镜头的系统总焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,所述第一透镜的轴上厚度为d1,第一透镜像侧面到第二透镜物侧面的轴上距离为d2,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,且满足下列关系式:
    0.40≤f1/f≤0.48;
    -0.75≤f2/f≤-0.50;
    1.20≤f4/f≤3.20;
    -1.40≤f5/f≤-1.10;
    6.00≤d1/d2≤8.00;
    0.80≤(R5+R6)/(R5-R6) ≤6.50;
    3.00≤(R7+R8)/(R7-R8)≤10.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,且满足下列关系式:
    -10.00≤f3/f≤-0.80。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.71≤(R1+R2)/(R1-R2)≤-0.39;
    0.08≤d1/TTL≤0.31。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.41≤(R3+R4)/(R3-R4)≤4.41;
    0.02≤d3/TTL≤0.07。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的轴上厚度为d5,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.02≤d5/TTL≤0.08。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的轴上厚度为d7,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.05≤d7/TTL≤0.16。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,以及所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,以及所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -6.99≤(R9+R10)/(R9-R10)≤-0.55;
    0.03≤d9/TTL≤0.09。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜与所述第二透镜的组合焦距为f12,满足下列关系式:
    0.34≤f12/f≤1.23。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    f/TTL≥1.09。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
    Fno≤2.55。
PCT/CN2019/107280 2019-08-19 2019-09-23 摄像光学镜头 WO2021031285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910764713.8A CN110596859B (zh) 2019-08-19 2019-08-19 摄像光学镜头
CN201910764713.8 2019-08-19

Publications (1)

Publication Number Publication Date
WO2021031285A1 true WO2021031285A1 (zh) 2021-02-25

Family

ID=68854922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107280 WO2021031285A1 (zh) 2019-08-19 2019-09-23 摄像光学镜头

Country Status (4)

Country Link
US (1) US11525983B2 (zh)
JP (1) JP6846094B2 (zh)
CN (1) CN110596859B (zh)
WO (1) WO2021031285A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726300B2 (en) * 2019-09-04 2023-08-15 Tokyo Visionary Optics Co., Ltd. Imaging lens
WO2021127891A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021127834A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021134321A1 (zh) * 2019-12-30 2021-07-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2022151157A1 (zh) * 2021-01-14 2022-07-21 欧菲光集团股份有限公司 光学系统、取像模组及电子设备
CN115079383B (zh) * 2022-08-22 2022-12-16 江西联益光学有限公司 光学镜头及成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903684U (zh) * 2010-12-13 2011-07-20 大立光电股份有限公司 光学取像透镜组
CN106646829A (zh) * 2017-01-04 2017-05-10 浙江舜宇光学有限公司 摄远镜头以及摄像装置
CN107219614A (zh) * 2017-08-07 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN108398770A (zh) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 光学成像镜头
US10241296B1 (en) * 2018-02-14 2019-03-26 AAC Technologies Pte. Ltd. Camera lens

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364929B (zh) * 2012-03-30 2015-08-19 玉晶光电(厦门)有限公司 光学成像镜头及应用该镜头的电子装置
KR101757101B1 (ko) * 2013-07-04 2017-07-12 코어포토닉스 리미티드 소형 망원 렌즈 조립체
KR102340793B1 (ko) * 2014-10-20 2021-12-17 삼성전자주식회사 촬영 렌즈 및 이를 포함한 촬영 장치
TWI548893B (zh) * 2014-11-12 2016-09-11 大立光電股份有限公司 攝影用光學鏡組、取像裝置及電子裝置
CN106154494B (zh) * 2016-03-18 2019-03-22 玉晶光电(厦门)有限公司 光学镜片组
JP6093080B1 (ja) * 2016-07-26 2017-03-08 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI594037B (zh) * 2016-11-24 2017-08-01 大立光電股份有限公司 影像擷取鏡頭組、取像裝置及電子裝置
US10101563B1 (en) * 2017-07-05 2018-10-16 Nexmax Technology Co., Ltd. Five-piece optical lens system
CN107664811A (zh) * 2017-09-07 2018-02-06 南昌欧菲光电技术有限公司 镜片模组
CN208818909U (zh) * 2018-06-05 2019-05-03 浙江舜宇光学有限公司 光学成像镜头
CN114236754B (zh) * 2018-12-24 2023-12-29 浙江舜宇光学有限公司 光学成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903684U (zh) * 2010-12-13 2011-07-20 大立光电股份有限公司 光学取像透镜组
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN106646829A (zh) * 2017-01-04 2017-05-10 浙江舜宇光学有限公司 摄远镜头以及摄像装置
CN107219614A (zh) * 2017-08-07 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
US10241296B1 (en) * 2018-02-14 2019-03-26 AAC Technologies Pte. Ltd. Camera lens
CN108398770A (zh) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110596859A (zh) 2019-12-20
CN110596859B (zh) 2021-04-23
JP6846094B2 (ja) 2021-03-24
US11525983B2 (en) 2022-12-13
US20210055524A1 (en) 2021-02-25
JP2021033273A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021168910A1 (zh) 摄像光学镜头
WO2021168905A1 (zh) 摄像光学镜头
WO2021031284A1 (zh) 摄像光学镜头
WO2021031285A1 (zh) 摄像光学镜头
WO2021196257A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2021031283A1 (zh) 摄像光学镜头
WO2021027022A1 (zh) 摄像光学镜头
WO2021031275A1 (zh) 摄像光学镜头
WO2021031274A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021031277A1 (zh) 摄像光学镜头
WO2021168887A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头
WO2021127852A1 (zh) 摄像光学镜头
WO2021168885A1 (zh) 摄像光学镜头
WO2021253518A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021114235A1 (zh) 摄像光学镜头
WO2021109078A1 (zh) 摄像光学镜头
WO2021114242A1 (zh) 摄像光学镜头
WO2021031286A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941800

Country of ref document: EP

Kind code of ref document: A1