WO2021031275A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021031275A1
WO2021031275A1 PCT/CN2019/107151 CN2019107151W WO2021031275A1 WO 2021031275 A1 WO2021031275 A1 WO 2021031275A1 CN 2019107151 W CN2019107151 W CN 2019107151W WO 2021031275 A1 WO2021031275 A1 WO 2021031275A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
curvature
focal length
Prior art date
Application number
PCT/CN2019/107151
Other languages
English (en)
French (fr)
Inventor
石荣宝
陈佳
寺冈弘之
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021031275A1 publication Critical patent/WO2021031275A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present invention relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor) two types, and due to the advancement of semiconductor manufacturing technology, the pixel size of photosensitive devices has been reduced.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • the lenses traditionally mounted on mobile phone cameras mostly adopt three-element and four-element lens structures.
  • the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, although the common four-element lens already has better optics Performance, but its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, while being unable to meet the design requirements of ultra-thin and wide-angle.
  • the object of the present invention is to provide an imaging optical lens, which has good optical performance while meeting the design requirements of ultra-thin and wide-angle.
  • the embodiments of the present invention provide an imaging optical lens, which sequentially includes from the object side to the image side: a first lens with positive refractive power, a second lens with negative refractive power, and positive refractive power A powerful third lens, and a fourth lens with negative refractive power;
  • the focal length of the first lens is f1, the focal length of the second lens is f2, the focal length of the fourth lens is f4, the radius of curvature of the object side surface of the fourth lens is R7, and the fourth lens image side
  • the radius of curvature of is R8, the on-axis thickness of the first lens is d1, and the on-axis distance from the image side of the first lens to the object side of the second lens is d2, and the following relationship is satisfied:
  • the radius of curvature of the object side of the second lens is R3, and the radius of curvature of the image side of the second lens is R4, which satisfies the following relationship:
  • the focal length of the imaging optical lens is f
  • the curvature radius of the object side surface of the first lens is R1
  • the curvature radius of the image side surface of the first lens is R2
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, so
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the focal length of the imaging optical lens is f
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL
  • the total optical length of the imaging optical lens is TTL, and the image height of the imaging optical lens is IH, which satisfies the following relationship:
  • the focal length of the imaging optical lens is f
  • the combined focal length of the first lens and the second lens is f12, which satisfies the following relationship:
  • the imaging optical lens according to the present invention has good optical performance, wide-angle and ultra-thin characteristics, and is especially suitable for mobile phone camera lens assemblies composed of high-pixel CCD, CMOS and other imaging elements And WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic diagram of the structure of the imaging optical lens of the fourth embodiment.
  • FIG. 14 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of the chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13;
  • FIG. 17 is a schematic diagram of the structure of the imaging optical lens of the fifth embodiment.
  • FIG. 18 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 17;
  • FIG. 19 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 17;
  • FIG. 20 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 17.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes four lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power.
  • the lens L3 and the fourth lens L4 with negative refractive power.
  • Optical elements such as an optical filter GF may be provided between the fourth lens L4 and the image plane Si.
  • the focal length of the first lens L1 is defined as f1
  • the focal length of the second lens L2 is defined as f2, which satisfies the following relationship: -0.75 ⁇ f1/f2 ⁇ -0.67, which defines the first
  • the ratio of the focal length of the lens L1 to the focal length of the second lens L2, within the range of the conditional expression, can effectively balance the spherical aberration and field curvature of the system.
  • the focal length of the fourth lens L4 is f4, which satisfies the following relational formula: 0.32 ⁇ f4/f2 ⁇ 0.40, which specifies the ratio of the focal lengths of the fourth lens L4 to the second lens L2, and within the scope of the conditional formula, through a reasonable focal length Distribution makes the system have better imaging quality and lower sensitivity.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 5.00 ⁇ R7/R8 ⁇ 6.00, which defines the shape of the fourth lens L4, Outside of this range, with the development of ultra-thin and wide-angle, it is difficult to correct the aberration of the off-axis angle of view.
  • the on-axis thickness of the first lens L1 is d1
  • the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2 is d2, which satisfies the following relationship: 1.40 ⁇ d1/d2 ⁇ 3.20
  • the ratio of the on-axis thickness of the first lens L1 to the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2 is specified. Within the scope of the conditional expression, it helps to compress the total length of the optical system and realize Ultra-thin effect.
  • the focal length of the imaging optical lens 10 is defined as f
  • the focal length of the first lens L1 is f1
  • the following relationship is satisfied: 0.46 ⁇ f1/f ⁇ 1.78, which specifies the focal length of the first lens L1 and the imaging
  • the ratio of the focal length of the optical lens 10 is within the range of the conditional formula
  • the first lens L1 has an appropriate positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -3.21 ⁇ (R1+R2)/(R1-R2) ⁇ -0.53 ,
  • reasonably control the shape of the first lens L1 so that the first lens L1 can effectively correct the spherical aberration of the system.
  • the total optical length of the imaging optical lens 10 is TTL, and the on-axis thickness of the first lens L1 is d1, which satisfies the following relationship: 0.07 ⁇ d1/TTL ⁇ 0.32. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness .
  • the focal length of the second lens L2 is defined as f2, and the focal length of the imaging optical lens 10 is defined as f.
  • the following relational expression is satisfied: -3.45 ⁇ f2/f ⁇ -0.88, which specifies the ratio of the focal length of the second lens L2 to the focal length of the imaging optical lens 10.
  • the negative light of the second lens L2 Controlling the power in a reasonable range is beneficial to correct the aberration of the optical system.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, satisfying the following relationship: -2.95 ⁇ (R3+R4)/(R3-R4) ⁇ - 0.17, which specifies the shape of the second lens L2.
  • R3+R4/(R3-R4) ⁇ - 0.17 which specifies the shape of the second lens L2.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d3/TTL ⁇ 0.15. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness .
  • the focal length of the third lens L3 is defined as f3, the focal length of the imaging optical lens 10 is f, and the following relational expression is satisfied: 0.23 ⁇ f3/f ⁇ 0.76, within the scope of the conditional expression, through reasonable distribution of optical power , So that the system has better imaging quality and lower sensitivity.
  • the curvature radius of the object side surface of the third lens L3 is R5, and the curvature radius of the image side surface of the third lens L3 is R6, which satisfies the following relationship: 0.39 ⁇ (R5+R6)/(R5-R6) ⁇ 1.76, Within the range of the conditional expression, the shape of the third lens L3 can be effectively controlled, which is beneficial to the molding of the third lens L3, and avoids molding defects and stress generation due to excessive surface curvature of the third lens L3.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.09 ⁇ d5/TTL ⁇ 0.33. Within the range of the conditional formula, it is beneficial to achieve ultra-thinness .
  • the focal length of the fourth lens L4 is defined as f4, the focal length of the imaging optical lens 10 is f, and the following relational expression is satisfied: -1.25 ⁇ f4/f ⁇ -0.32, within the range of the conditional expression, through the power of Reasonable distribution makes the system have better imaging quality and lower sensitivity.
  • the radius of curvature of the object side surface of the fourth lens L4 is R7
  • the radius of curvature of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.70 ⁇ (R7+R8)/(R7-R8) ⁇ 2.25.
  • the shape of the fourth lens L4 is specified.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.19. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness .
  • the total optical length of the imaging optical lens 10 is defined as TTL, and the image height of the imaging optical lens 10 is IH, which satisfies the following relationship: TTL/IH ⁇ 1.68, which is beneficial to realize ultra-thinness.
  • the combined focal length of the first lens L1 and the second lens L2 as f12, which satisfies the following relational expression: 0.91 ⁇ f12/f ⁇ 3.71.
  • the aberration of the imaging optical lens 10 can be eliminated And distortion, and can suppress the back focal length of the imaging optical lens 10, and maintain the miniaturization of the image lens system group.
  • the camera optical lens 10 achieves good optical imaging performance while also meeting the design requirements of ultra-thin and wide-angle; according to the characteristics of the camera optical lens 10, the camera optical lens 10 is particularly suitable For mobile phone camera lens assembly and WEB camera lens composed of high-resolution CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, inflection point position, stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the image plane Si), the unit is mm;
  • the object side and/or the image side of the lens may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, when the lens is the central radius of curvature
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side surface of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side of the optical filter GF
  • R10 the radius of curvature of the image side surface of the optical filter GF
  • D the on-axis thickness of the lens and the on-axis distance between the lenses
  • D2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • D4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • D6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • D10 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • Nd the refractive index of d-line
  • Nd1 the refractive index of the d-line of the first lens L1;
  • Nd2 the refractive index of the d-line of the second lens L2
  • Nd3 the refractive index of the d-line of the third lens L3
  • Nd4 the refractive index of the d-line of the fourth lens L4
  • Ndg the refractive index of the d-line of the optical filter GF
  • ⁇ d Abbe number
  • ⁇ 1 Abbe number of the first lens L1;
  • ⁇ 2 Abbe number of the second lens L2
  • ⁇ 3 Abbe number of the third lens L3
  • ⁇ 4 Abbe number of the fourth lens L4
  • ⁇ g Abbe number of optical filter GF.
  • Table 2 shows aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1, P1R2 represent the object side and image side of the first lens L1
  • P2R1, P2R2 represent the object side and image side of the second lens L2
  • P3R1, P3R2 represent the object side and image side of the third lens L3,
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. is a schematic diagram of field curvature and distortion of light with a wavelength of 555nm after passing through the imaging optical lens 10 of the first embodiment.
  • Table 21 shows the values corresponding to the various values in the first, second, third, fourth, and fifth embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens is 1.349mm
  • the image height IH of the imaging optical lens is 2.297mm
  • the field angle in the diagonal direction is 79.30°, so that the imaging optical lens 10 Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberration is fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 5 for the structure of the imaging optical lens 20 of the second embodiment. Only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. .
  • the entrance pupil diameter of the imaging optical lens 20 is 1.376 mm
  • the image height of the imaging optical lens is 2.297 mm
  • the field angle of the diagonal direction is 77.00°, so that the imaging optical lens 20 Wide-angle, ultra-thin, fully corrected on-axis and off-axis chromatic aberration, and has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 9 for the structure of the imaging optical lens 30 of the third embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction
  • T is the field curvature in the meridian direction .
  • the entrance pupil diameter of the imaging optical lens 30 is 1.335 mm
  • the image height of the imaging optical lens is 2.297 mm
  • the field angle in the diagonal direction is 79.80°, so that the imaging optical lens 30 Wide-angle and ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 13 for the structure of the imaging optical lens 40 of the fourth embodiment. Only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 40 of the fourth embodiment of the present invention.
  • Table 15 and Table 16 show the inflection point and stagnation point design data of each lens in the imaging optical lens 40 of the fourth embodiment of the present invention.
  • FIG. 14 and 15 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 436 nm, 486 nm, 546 nm, 587 nm, and 656 nm pass through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 shows a schematic diagram of field curvature and distortion of light with a wavelength of 546 nm after passing through the imaging optical lens 40 of the fourth embodiment.
  • the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction .
  • the entrance pupil diameter of the imaging optical lens 40 is 1.345 mm
  • the image height of the imaging optical lens is 2.297 mm
  • the field angle in the diagonal direction is 79.50°, so that the imaging optical lens 40 Wide-angle, ultra-thin, fully corrected on-axis and off-axis chromatic aberration, and has excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment.
  • the structure of the imaging optical lens 50 of the fifth embodiment is shown in FIG. 17, and only the differences are listed below.
  • Table 17 and Table 18 show design data of the imaging optical lens 30 of the fifth embodiment of the present invention.
  • Table 18 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present invention.
  • Table 19 and Table 20 show the inflection point and stagnation point design data of each lens in the imaging optical lens 50 of the fifth embodiment of the present invention.
  • FIG. 20 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 50 of the fifth embodiment.
  • the field curvature S in FIG. 20 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. .
  • the entrance pupil diameter of the imaging optical lens 50 is 1.383 mm
  • the image height of the imaging optical lens is 2.297 mm
  • the field angle in the diagonal direction is 77.00°, so that the imaging optical lens 50 wide-angle, ultra-thin, its on-axis and off-axis chromatic aberration is fully corrected, and has excellent optical characteristics.
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),具有正屈折力的第三透镜(L3),以及具有负屈折力的第四透镜(L4);第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,第四透镜(L4)的焦距为f4,第四透镜(L4)物侧面的曲率半径为R7,第四透镜(L4)像侧面的曲率半径为R8,第一透镜(L1)的轴上厚度为d1,第一透镜(L1)像侧面到第二透镜(L2)物侧面的轴上距离为d2,满足下列关系式:-0.75≤f1/f2≤-0.67;0.32≤f4/f2≤0.40;5.00≤R7/R8≤6.00;1.40≤d1/d2≤3.20。摄像光学镜头(10)具有良好光学性能的同时,满足广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
技术问题
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的四片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足超薄化、广角化的设计要求。
技术解决方案
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,以及具有负屈折力的第四透镜;
所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第一透镜像侧面到所述第二透镜物侧面的轴上距离为d2,满足下列关系式:
-0.75≤f1/f2≤-0.67;
0.32≤f4/f2≤0.40;
5.00≤R7/R8≤6.00;
1.40≤d1/d2≤3.20。
优选的,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,满足下列关系式:
-0.60≤R3/R4≤0.20。
优选的,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.46≤f1/f≤1.78;
-3.21≤(R1+R2)/(R1-R2)≤-0.53;
0.07≤d1/TTL≤0.32。
优选的,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-3.45≤f2/f≤-0.88;
-2.95≤(R3+R4)/(R3-R4)≤-0.17;
0.03≤d3/TTL≤0.15。
优选的,所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.23≤f3/f≤0.76;
0.39≤(R5+R6)/(R5-R6)≤1.76;
0.09≤d5/TTL≤0.33。
优选的,所述摄像光学镜头的焦距为f,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.25≤f4/f≤-0.32;
0.70≤(R7+R8)/(R7-R8)≤2.25;
0.04≤d7/TTL≤0.19。
优选的,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
TTL/IH≤1.68。
优选的,所述摄像光学镜头的焦距为f,所述第一透镜和所述第二透镜的组合焦距为f12,满足下列关系式:
0.91≤f12/f≤3.71。
有益效果
本发明的有益效果在于: 根据本发明的摄像光学镜头具有良好光学性能,且具有广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图;
图13是实施方式四的摄像光学镜头的结构示意图;
图14是图13所示的摄像光学镜头的轴向像差示意图;
图15是图13所示的摄像光学镜头的倍率色差示意图;
图16是图13所示的摄像光学镜头的场曲及畸变示意图;
图17是实施方式五的摄像光学镜头的结构示意图;
图18是图17所示的摄像光学镜头的轴向像差示意图;
图19是图17所示的摄像光学镜头的倍率色差示意图;
图20是图17所示的摄像光学镜头的场曲及畸变示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括四个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3以及具有负屈折力的第四透镜L4。第四透镜L4和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,定义所述第一透镜L1的焦距为f1,所述第二透镜L2的焦距为f2,满足下列关系式:-0.75≤f1/f2≤-0.67,规定了所述第一透镜L1的焦距和所述第二透镜L2的焦距的比值,在条件式范围内,可以有效地平衡系统的球差以及场曲量。
所述第四透镜L4的焦距为f4,满足下列关系式:0.32≤f4/f2≤0.40,规定了第四透镜L4与第二透镜L2的焦距的比值,在条件式范围内,通过焦距的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:5.00≤R7/R8≤6.00,规定了第四透镜L4的形状,在此范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题。
所述第一透镜L1的轴上厚度为d1,所述第一透镜L1像侧面到所述第二透镜L2物侧面的轴上距离为d2,满足下列关系式:1.40≤d1/d2≤3.20,规定了第一透镜L1的轴上厚度与所述第一透镜L1像侧面到所述第二透镜L2物侧面的轴上距离的比值,在条件式范围内,有助于压缩光学系统总长,实现超薄化效果。
定义所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,满足下列关系式:-0.60≤R3/R4≤0.20,规定了所述第二透镜L2的形状,在条件式范围内,有利于补正轴上色像差。
定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.46≤f1/f≤1.78,规定了所述第一透镜L1的焦距和所述摄像光学镜头10的焦距的比值,在条件式范围内,第一透镜L1具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.21≤(R1+R2)/(R1-R2)≤-0.53,在条件式范围内,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差。
所述摄像光学镜头10的光学总长为TTL,所述第一透镜L1的轴上厚度为d1,满足下列关系式:0.07≤d1/TTL≤0.32,在条件式范围内,有利于实现超薄化。
定义所述第二透镜L2的焦距为f2,所述摄像光学镜头10的焦距为f。满足下列关系式:-3.45≤f2/f≤-0.88,规定了第二透镜L2的焦距和所述摄像光学镜头10的焦距的比值,在条件式范围内,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学系统的像差。
所述第二透镜L2物侧面的曲率半径为R3,以及所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:-2.95≤(R3+R4)/(R3-R4)≤-0.17,规定了第二透镜L2的形状,在条件式范围内,随着镜头向超薄化、广角化发展,有利于补正轴上色像差问题。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d3/TTL≤0.15,在条件式范围内,有利于实现超薄化。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,且满足下列关系式:0.23≤f3/f≤0.76,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第三透镜L3物侧面的曲率半径为R5,以及所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:0.39≤(R5+R6)/(R5-R6)≤1.76,在条件式范围内,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.09≤d5/TTL≤0.33,在条件式范围内,有利于实现超薄化。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10的焦距为f,且满足下列关系式:-1.25≤f4/f≤-0.32,在条件式范围内,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。
所述第四透镜L4物侧面的曲率半径为R7,以及所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.70≤(R7+R8)/(R7-R8)≤2.25。规定了第四透镜L4的形状,在条件式范围内,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.04≤d7/TTL≤0.19,在条件式范围内,有利于实现超薄化。
进一步的,定义所述摄像光学镜头10的光学总长为TTL,所述摄像光学镜头10的像高为IH,满足下列关系式:TTL/IH≤1.68,有利于实现超薄化。
定义所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:0.91≤f12/f≤3.71,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。
当满足上述关系,使得摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足超薄化、广角化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure 617475dest_path_image001
其中,各符号的含义如下。
 S1: 光圈;
 R:  光学面的曲率半径、透镜时为中心曲率半径;
 R1: 第一透镜L1的物侧面的曲率半径;
 R2: 第一透镜L1的像侧面的曲率半径;
 R3: 第二透镜L2的物侧面的曲率半径;
 R4: 第二透镜L2的像侧面的曲率半径;
 R5: 第三透镜L3的物侧面的曲率半径;
 R6: 第三透镜L3的像侧面的曲率半径;
 R7: 第四透镜L4的物侧面的曲率半径;
 R8: 第四透镜L4的像侧面的曲率半径;
 R9:光学过滤片GF的物侧面的曲率半径;
 R10:光学过滤片GF的像侧面的曲率半径;
 d:  透镜的轴上厚度与透镜之间的轴上距离;
 d0: 光圈S1到第一透镜L1的物侧面的轴上距离;
 d1: 第一透镜L1的轴上厚度;
 d2: 第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
 d3: 第二透镜L2的轴上厚度;
 d4: 第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
 d5: 第三透镜L3的轴上厚度;
 d6: 第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
 d7: 第四透镜L4的轴上厚度;
 d8: 第四透镜L4的像侧面到光学过滤片GF的物侧面的轴上距离;
 d9:光学过滤片GF的轴上厚度;
 d10:光学过滤片GF的像侧面到像面的轴上距离;
 nd: d线的折射率;
 nd1:第一透镜L1的d线的折射率;
 nd2:第二透镜L2的d线的折射率;
 nd3:第三透镜L3的d线的折射率;
 nd4:第四透镜L4的d线的折射率;
 ndg:光学过滤片GF的d线的折射率;
 νd:阿贝数;
 ν1:第一透镜L1的阿贝数;
 ν2:第二透镜L2的阿贝数;
 ν3:第三透镜L3的阿贝数;
 ν4:第四透镜L4的阿贝数;
 νg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure 361178dest_path_image002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
y=(x 2/R)/{1+[1-(k+1)(x 2/R 2)] 1/2}+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16                                 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面, P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
Figure 251774dest_path_image003
【表4】
Figure 986512dest_path_image004
图2、图3分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差和倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表21示出各实施方式一、二、三、四、五中各种数值与条件式中已规定的参数所对应的值。
如表21所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.349mm,所述摄像光学镜头的像高IH为2.297mm,对角线方向的视场角为79.30°,使得所述摄像光学镜头10广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure 533031dest_path_image005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure 644206dest_path_image006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
Figure 91106dest_path_image007
【表8】
Figure 59062dest_path_image008
图6和图7分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差和倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图,图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头20满足上述的条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径为1.376mm,所述摄像光学镜头的像高为2.297mm,对角线方向的视场角为77.00°,使得所述摄像光学镜头20广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。 
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure 92877dest_path_image009
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure 7743dest_path_image010
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
Figure 545035dest_path_image011
【表12】
Figure 683892dest_path_image012
图10和图11分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差和倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图,图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头30满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径为1.335mm,所述摄像光学镜头的像高为2.297mm,对角线方向的视场角为79.80°,使得所述摄像光学镜头30广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第四实施方式的摄像光学镜头40的结构形式请参图13所示,以下只列出不同点。
表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure 703538dest_path_image013
表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表14】
Figure 890937dest_path_image014
表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
Figure 813894dest_path_image015
【表16】
Figure 326915dest_path_image016
图14和图15分别示出了波长为436nm、486nm、546nm、587nm和656nm的光经过第四实施方式的摄像光学镜头40后的轴向像差和倍率色差示意图。图16则示出了波长为546nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图,图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头40满足上述的条件式。
在本实施方式中,所述摄像光学镜头40的入瞳直径为1.345mm,所述摄像光学镜头的像高为2.297mm,对角线方向的视场角为79.50°,使得所述摄像光学镜头40广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第五实施方式的摄像光学镜头50的结构形式请参图17所示,以下只列出不同点。
表17、表18示出本发明第五实施方式的摄像光学镜头30的设计数据。
【表17】
Figure 397639dest_path_image017
表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表18】
Figure 639263dest_path_image018
表19、表20示出本发明第五实施方式的摄像光学镜头50中各透镜的反曲点以及驻点设计数据。
【表19】
Figure 416726dest_path_image019
【表20】
Figure 100648dest_path_image020
图18和图19分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第五实施方式的摄像光学镜头50后的轴向像差和倍率色差示意图。图20则示出了波长为555nm的光经过第五实施方式的摄像光学镜头50后的场曲及畸变示意图,图20的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头50满足上述的条件式。
在本实施方式中,所述摄像光学镜头50的入瞳直径为1.383mm,所述摄像光学镜头的像高为2.297mm,对角线方向的视场角为77.00°,使得所述摄像光学镜头50广角化、超薄化,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表21】
Figure 393089dest_path_image021
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (8)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有正屈折力的第三透镜,以及具有负屈折力的第四透镜;
    所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第一透镜的轴上厚度为d1,所述第一透镜像侧面到所述第二透镜物侧面的轴上距离为d2,满足下列关系式:
    -0.75≤f1/f2≤-0.67;
    0.32≤f4/f2≤0.40;
    5.00≤R7/R8≤6.00;
    1.40≤d1/d2≤3.20。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,满足下列关系式:
    -0.60≤R3/R4≤0.20。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.46≤f1/f≤1.78;
    -3.21≤(R1+R2)/(R1-R2)≤-0.53;
    0.07≤d1/TTL≤0.32。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -3.45≤f2/f≤-0.88;
    -2.95≤(R3+R4)/(R3-R4)≤-0.17;
    0.03≤d3/TTL≤0.15。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.23≤f3/f≤0.76;
    0.39≤(R5+R6)/(R5-R6)≤1.76;
    0.09≤d5/TTL≤0.33。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -1.25≤f4/f≤-0.32;
    0.70≤(R7+R8)/(R7-R8)≤2.25;
    0.04≤d7/TTL≤0.19。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
    TTL/IH≤1.68。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第一透镜和所述第二透镜的组合焦距为f12,满足下列关系式:
    0.91≤f12/f≤3.71。
PCT/CN2019/107151 2019-08-16 2019-09-21 摄像光学镜头 WO2021031275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760417.0 2019-08-16
CN201910760417.0A CN110596856B (zh) 2019-08-16 2019-08-16 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021031275A1 true WO2021031275A1 (zh) 2021-02-25

Family

ID=68854623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107151 WO2021031275A1 (zh) 2019-08-16 2019-09-21 摄像光学镜头

Country Status (4)

Country Link
US (1) US11567296B2 (zh)
JP (1) JP6961050B2 (zh)
CN (1) CN110596856B (zh)
WO (1) WO2021031275A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409859B2 (ja) * 2019-12-17 2024-01-09 東京晨美光学電子株式会社 撮像レンズ
CN113031210B (zh) * 2019-12-25 2022-08-30 新巨科技股份有限公司 四片式光学成像镜片组
CN111308652B (zh) * 2020-02-24 2021-07-30 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN115390219A (zh) * 2021-05-25 2022-11-25 华为技术有限公司 光学镜头、镜头模组和电子设备
CN113721351B (zh) * 2021-11-04 2022-04-19 江西联益光学有限公司 光学镜头及成像设备
CN113791490B (zh) * 2021-11-18 2022-04-19 江西联益光学有限公司 光学镜头及成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298101Y (zh) * 2008-11-07 2009-08-26 浙江舜宇光学有限公司 超薄型低敏感度镜头
CN104880811A (zh) * 2015-04-30 2015-09-02 深圳市霸王贝思特光学有限公司 一种摄像头
CN105467558A (zh) * 2015-08-05 2016-04-06 瑞声声学科技(深圳)有限公司 摄像镜头
CN105892019A (zh) * 2016-04-08 2016-08-24 瑞声科技(新加坡)有限公司 摄像镜头
CN206147165U (zh) * 2016-09-30 2017-05-03 惠州萨至德光电科技有限公司 一种耐公差成像镜头
US20170192201A1 (en) * 2015-12-30 2017-07-06 Newmax Technology Co., Ltd. Optical lens system with a wide field of view

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561634B2 (ja) * 2003-11-13 2010-10-13 コニカミノルタオプト株式会社 撮像レンズ及び撮像装置
JP5069554B2 (ja) * 2007-12-28 2012-11-07 カンタツ株式会社 撮像レンズ
TWI472794B (zh) * 2013-01-31 2015-02-11 Largan Precision Co Ltd 移動對焦光學系統
TWI461729B (zh) * 2013-03-20 2014-11-21 Largan Precision Co Ltd 結像系統
CN106980172B (zh) * 2016-01-15 2019-07-09 新巨科技股份有限公司 广角成像镜片组
CN206460205U (zh) * 2016-12-14 2017-09-01 广东旭业光电科技股份有限公司 一种成像光学系统
CN206960760U (zh) * 2017-05-12 2018-02-02 浙江舜宇光学有限公司 成像镜头
CN208654422U (zh) * 2018-08-23 2019-03-26 南昌欧菲精密光学制品有限公司 摄影镜头、取像装置及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298101Y (zh) * 2008-11-07 2009-08-26 浙江舜宇光学有限公司 超薄型低敏感度镜头
CN104880811A (zh) * 2015-04-30 2015-09-02 深圳市霸王贝思特光学有限公司 一种摄像头
CN105467558A (zh) * 2015-08-05 2016-04-06 瑞声声学科技(深圳)有限公司 摄像镜头
US20170192201A1 (en) * 2015-12-30 2017-07-06 Newmax Technology Co., Ltd. Optical lens system with a wide field of view
CN105892019A (zh) * 2016-04-08 2016-08-24 瑞声科技(新加坡)有限公司 摄像镜头
CN206147165U (zh) * 2016-09-30 2017-05-03 惠州萨至德光电科技有限公司 一种耐公差成像镜头

Also Published As

Publication number Publication date
JP6961050B2 (ja) 2021-11-05
CN110596856B (zh) 2021-07-30
CN110596856A (zh) 2019-12-20
JP2021033284A (ja) 2021-03-01
US11567296B2 (en) 2023-01-31
US20210048614A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2021031236A1 (zh) 摄像光学镜头
WO2021031233A1 (zh) 摄像光学镜头
WO2021031276A1 (zh) 摄像光学镜头
WO2021031284A1 (zh) 摄像光学镜头
WO2021109199A1 (zh) 摄像光学镜头
WO2021031275A1 (zh) 摄像光学镜头
WO2021031283A1 (zh) 摄像光学镜头
WO2022021513A1 (zh) 摄像光学镜头
WO2021031282A1 (zh) 摄像光学镜头
WO2021027022A1 (zh) 摄像光学镜头
WO2021031274A1 (zh) 摄像光学镜头
WO2021031277A1 (zh) 摄像光学镜头
WO2021031285A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2021031278A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021109198A1 (zh) 摄像光学镜头
WO2022011740A1 (zh) 摄像光学镜头
WO2021097952A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2022047985A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头
WO2021168879A1 (zh) 摄像光学镜头
WO2021168886A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942484

Country of ref document: EP

Kind code of ref document: A1