WO2020134294A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2020134294A1
WO2020134294A1 PCT/CN2019/109344 CN2019109344W WO2020134294A1 WO 2020134294 A1 WO2020134294 A1 WO 2020134294A1 CN 2019109344 W CN2019109344 W CN 2019109344W WO 2020134294 A1 WO2020134294 A1 WO 2020134294A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
curvature
radius
Prior art date
Application number
PCT/CN2019/109344
Other languages
English (en)
French (fr)
Inventor
赵青
寺岡弘之
孙雯
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020134294A1 publication Critical patent/WO2020134294A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • This application relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the photosensitive device of general photographic lenses is nothing more than a photosensitive coupling device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor device (Complementary Metal) -Oxide Semicondctor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing technology, the pixel size of the photosensitive device has been reduced.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • today's electronic products have a trend of good function, thin and thin appearance, so they have good
  • the imaging quality of the miniaturized camera lens has become the mainstream on the market.
  • the lenses traditionally mounted on mobile phone cameras mostly use three-piece and four-piece lens structures.
  • the pixel area of the photosensitive device continues to shrink, and the system's imaging quality requirements continue to increase.
  • the five-piece lens structure gradually appears in the lens design. Common Although the five-piece lens has good optical performance, its optical power, lens spacing and lens shape settings still have certain irrationality. As a result, the lens structure has good optical performance and cannot meet the large aperture, Ultra-thin and wide-angle design requirements.
  • the purpose of the present application is to provide an imaging optical lens that has good optical performance and meets the design requirements of large aperture, ultra-thin and wide-angle.
  • an imaging optical lens which includes, in order from the object side to the image side, an aperture, a first lens with positive refractive power, and a second lens with negative refractive power Lens, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with negative refractive power;
  • the focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, which satisfies the following relationship: 0.80 ⁇ f1/f ⁇ 0.90 ; 70.00 ⁇ f3/f ⁇ 120.00; -450.00 ⁇ (R5+R6)/(R5-R6) ⁇ -430.00.
  • the embodiments of the present application use the first lens having a specific matching relationship with the overall optical lens in focal length and a specific matching relationship and specific
  • the shape of the third lens can reasonably allocate the power of the first lens and the third lens, which is helpful to correct the aberration of the optical system, so that the optical system has good optical performance, meets the large aperture, ultra-thin, Wide-angle design requirements.
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2, satisfying the following relationship: -1.50 ⁇ (R1+R2)/(R1-R2) ⁇ -1.35 .
  • the focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the second lens is R3, which satisfies the following relationship: -10.70 ⁇ R3/f ⁇ -9.50
  • FIG. 1 is a schematic structural diagram of an imaging optical lens in the first embodiment of the present application
  • FIG. 2 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present application.
  • FIG. 6 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present application.
  • FIG. 10 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 13 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present application.
  • FIG. 14 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 13;
  • FIG. 15 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 13;
  • FIG. 16 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 13.
  • FIG. 1 shows an imaging optical lens 10 of the first embodiment of the present application.
  • the imaging optical lens 10 includes five lenses.
  • the imaging optical lens 10 includes an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side to the image side.
  • an optical element such as a glass flat plate GF is provided between the fifth lens L5 and the image plane Si.
  • the glass flat plate GF may be a glass cover plate or an optical filter. Of course, In other possible implementation manners, the glass plate GF may also be disposed at other positions.
  • the first lens L1 has a positive refractive power, and its object side surface is convex outward, and its image side surface is concave;
  • the second lens L2 has a negative refractive power, its object side surface is concave, and its image side surface is concave ;
  • the third lens L3 has a positive refractive power, its object side is convex, and its image side is concave;
  • the fourth lens L4 has a positive refractive power, its object side is concave, and its image side is convex;
  • the fifth lens L5 has negative refractive power Force, its object side is convex, and the image side is concave.
  • the focal length of the imaging optical lens 10 is defined as f
  • the unit of the focal length is millimeter (mm)
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the third The radius of curvature of the lens image side is R6.
  • the f, f3, f6, R5 and R6 satisfy the following relationship:
  • conditional expression (1) specifies the ratio between the focal length of the first lens L1 and the overall imaging optical lens 10.
  • the first lens L1 can more reasonably distribute the optical power, correct the aberration of the optical system, and thereby improve the imaging quality.
  • Conditional expression (2) specifies the ratio between the focal length of the third lens L3 and the overall imaging optical lens 10. In this way, the third lens L3 can distribute the power more reasonably, which is beneficial to correct the aberration of the optical system, thereby improving the imaging quality.
  • Conditional expression (3) specifies the shape of the third lens L3. With this arrangement, the aberrations generated by the two lenses (first lens L1, second lens L2) in front of the optical system can be effectively corrected.
  • each lens having a different refractive power is used to have a first lens L1 having a specific cooperation relationship with the overall optical lens 10 in focal length and a specific cooperation with the overall optical lens 10 in focal length
  • the third lens L3, which is related and has a specific shape, can effectively distribute the power of the first lens L1 and the third lens L3, which helps to correct the aberration of the optical system, so that the optical system has good optical performance while satisfying Large aperture, ultra-thin, wide-angle design requirements.
  • the radius of curvature of the object side of the first lens L1 is R1
  • the radius of curvature of the image side of the first lens L1 is R2, which satisfies the following relationship:
  • Conditional formula (4) specifies the shape of the first lens L1. As the lens develops to a wide angle and a large aperture, when R1 and R2 are within the range specified by conditional formula (4), the degree of deflection of light passing through the lens can be eased. Effectively reduce aberrations.
  • the focal length of the imaging optical lens 10 is f
  • the radius of curvature of the object side of the second lens L2 is R3
  • R3 and f satisfy the following relationship:
  • Conditional expression (5) specifies the ratio of the radius of curvature of the object-side surface of the second lens L2 to the focal length of the overall imaging optical lens 10. When R3 and f are within the range specified by conditional expression (5), it contributes to lens processing and The assembly of the lens.
  • the surface of the lens can be set as an aspherical surface, and the aspherical surface can be easily made into a shape other than a spherical surface to obtain more control variables to reduce aberrations, thereby reducing the number of lenses used, so the imaging optics of the present application can be effectively reduced
  • the total length of the lens In the embodiments of the present application, the object side and the image side of each lens are aspherical.
  • the imaging optical lens 10 can reasonably allocate the power, surface type, and on-axis thickness of each lens, etc., and thus correct various types of aberrations.
  • the object side and/or image side of the lens may also be provided with a reflex point and/or a stagnation point to meet the high-quality imaging requirements.
  • a reflex point and/or a stagnation point may also be provided with a stagnation point to meet the high-quality imaging requirements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens 10 in the first embodiment.
  • the design data of the imaging optical lens 10 in the first embodiment of the present application is shown below.
  • Table 1 lists the curvature radius R of the object side and the image side of the first lens L1 to the fifth lens L5 constituting the imaging optical lens 10 in the first embodiment of the present application, the center thickness of the lens, the distance d between the lenses, and the refractive index nd and Abbe number vd.
  • Table 2 shows the conic coefficient k and aspherical coefficient of the imaging optical lens 10. It should be noted that in this embodiment, the unit of distance, radius, and center thickness is millimeters (mm).
  • R the radius of curvature of the optical surface and the center radius of curvature when the lens is used
  • R1 radius of curvature of the object side of the first lens L1;
  • R2 radius of curvature of the image side of the first lens L1;
  • R3 radius of curvature of the object side of the second lens L2;
  • R4 radius of curvature of the image side of the second lens L2;
  • R5 radius of curvature of the object side of the third lens L3;
  • R6 radius of curvature of the image side of the third lens L3;
  • R7 radius of curvature of the object side of the fourth lens L4;
  • R8 radius of curvature of the image side of the fourth lens L4;
  • R9 radius of curvature of the object side of the fifth lens L5;
  • R10 radius of curvature of the image side of the fifth lens L5;
  • R11 the radius of curvature of the side of the glass plate GF
  • R12 the radius of curvature of the image side of the glass plate GF
  • d the axial thickness of the lens or the axial distance between adjacent lenses
  • d2 the axial distance between the image side of the first lens L1 and the object side of the second lens L2;
  • d4 the axial distance between the image side of the second lens L2 and the object side of the third lens L3;
  • d6 the axial distance between the image side of the third lens L3 and the object side of the fourth lens L4;
  • d10 the axial distance between the image side of the fifth lens L5 and the object side of the optical filter GF;
  • d11 on-axis thickness of glass plate GF
  • nd refractive index of d line
  • nd1 refractive index of the d-line of the first lens L1;
  • nd2 refractive index of the d-line of the second lens L2;
  • nd3 refractive index of the d-line of the third lens L3;
  • nd4 refractive index of the d-line of the fourth lens L4;
  • nd5 refractive index of the d-line of the fifth lens L5;
  • ndg the refractive index of the d line of the glass plate GF
  • vg Abbe number of glass plate GF.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are aspherical coefficients.
  • the aspherical surface of each lens preferably uses the aspherical surface shown in the following conditional expression (6).
  • conditional expression (6) the specific form of the following conditional expression (6) is only an example. In fact, It is not limited to the aspherical polynomial form expressed in conditional expression (6).
  • Tables 3 and 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the embodiment of the present application.
  • P1R1, P2R2 represent the object side and the image side of the first lens L1
  • P2R1, P2R2 represent the object side and the image side of the second lens L2
  • P3R1, P3R2 represent the object side and the image side of the third lens L3,
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and image side of the fifth lens L5.
  • the corresponding data in the "Recurve Point Position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the corresponding data in the "stay point position” column is the vertical distance between the stagnation point set on the surface of each lens and the optical axis of the imaging optical lens 10.
  • FIGS. 2 and 3 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 546 nm passes through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the imaging optical lens 10 has good optical performance while satisfying Large aperture, ultra-thin and wide-angle design requirements.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Tables 5 and 6 show the design data of the camera 20 according to the second embodiment of the present application. ⁇ table 5 ⁇
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the embodiment of the present application.
  • FIG. 6 and 7 show schematic diagrams of axial aberration and chromatic aberration of magnification of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 of the third embodiment of the present application. ⁇ Table 9 ⁇
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the embodiment of the present application.
  • FIG. 10 and 11 show schematic diagrams of axial aberration and chromatic aberration of magnification of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 is a schematic diagram showing the field curvature and distortion of light having a wavelength of 546 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • FIG. 13 is a schematic diagram of the structure of the imaging optical lens 40 in the fourth embodiment.
  • the fourth embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Table 13 and Table 14 show the design data of the imaging optical lens 40 according to the fourth embodiment of the present application.
  • Table 15 and Table 16 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 40 of the embodiment of the present application.
  • FIGS. 14 and 15 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 40 of the fourth embodiment.
  • FIG. 16 is a schematic diagram showing the field curvature and distortion of light having a wavelength of 546 nm after passing through the imaging optical lens 40 of the fourth embodiment.
  • the field curvature S in FIG. 16 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • Example 1 Example 2
  • Example 3 Example 4 Remarks f1/f 0.80 0.89 0.86 0.84 Conditional (1) f3/f 118.99 93.88 89.93 70.98 Conditional (2) (R5+R6)/(R5-R6) -443.15 -434.25 -443.00 -447.10 Conditional (3) (R1+R2)/(R1-R2) -1.36 -1.50 -1.43 -1.41 Conditional (4) R3/f -9.51 -10.70 -9.50 -9.51 Conditional (5) Fno 2.04 2.02 2.04 2.03 A 2 ⁇ 76.90 77.09 76.89 76.9 A f 3.567 3.538 3.567 3.561 A f1 2.863 3.166 3.068 2.974 A f2 -6.169 -7.256 -6.726 -6.604 A f3 424.427 332.142 320.793 252.775 A f4 3.062 3.334 3.363 3.242 A

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),由物侧至像侧依序包括:一光圈(S1),一具有正屈折力的第一透镜(L1),一具有负屈折力的第二透镜(L2),一具有正屈折力的第三透镜(L3),一具有正屈折力的第四透镜(L4),一具有负屈折力的第五透镜(L5);摄像光学镜头(10)的焦距为f,第一透镜(L1)的焦距为f1,第三透镜(L3)的焦距为f3,第三透镜(L3)物侧面的曲率半径为R5,第三透镜(L3)像侧面的曲率半径为R6,满足下列关系式:0.80≤f1/f≤0.90;70.00≤f3/f≤120.00;‑450.00≤(R5+R6)/(R5‑R6)≤‑430.00。摄像光学镜头能在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。

Description

摄像光学镜头 【技术领域】
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化和广角化的设计要求。
【申请内容】
针对上述问题,本申请的目的在于提供一种摄像光学镜头,其在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。
为解决上述技术问题,本申请的实施方式提供了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有正屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜;所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:0.80≤f1/f≤0.90;70.00≤f3/f≤120.00;-450.00≤(R5+R6)/(R5-R6)≤-430.00。
本申请实施方式相对于现有技术而言,通过上述透镜的配置方式,利用在焦距上与整体光学镜头具有特定配合关系的第一透镜以及在焦距上与整体光学镜头具有特定配合关系并具有特定形状的第三透镜,因此能够合理分配第一透镜及第三透镜的光焦度,有利于矫正光学系统的像差,使光学系统在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
另外,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,满足下列关系式:-1.50≤(R1+R2)/(R1-R2)≤-1.35。
另外,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,满足下列关系式:-10.70≤R3/f≤-9.50
【附图说明】
图1是本申请第一实施方式中摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本申请第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本申请第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
图13是本申请第四实施方式的摄像光学镜头的结构示意图;
图14是图13所示摄像光学镜头的轴向像差示意图;
图15是图13所示摄像光学镜头的倍率色差示意图;
图16是图13所示摄像光学镜头的场曲及畸变示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
以下为第一实施方式:
参考附图,本申请提供了一种摄像光学镜头10。图1所示为本申请第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜 L4以及第五透镜L5。本实施方式中,优选的,在第五透镜L5和像面Si之间设置有玻璃平板GF等光学元件,其中玻璃平板GF可以是玻璃盖板,也可以是光学过滤片(filter),当然在其他可实施方式中,玻璃平板GF还可以设置在其他位置。
本实施方式中,第一透镜L1具有正屈折力,其物侧面向外凸出为凸面,其像侧面为凹面;第二透镜L2具有负屈折力,其物侧面为凹面,其像侧面为凹面;第三透镜L3具有正屈折力,其物侧面为凸面,其像侧面为凹面;第四透镜L4具有正屈折力,其物侧面为凹面,其像侧面为凸面;第五透镜L5具有负屈折力,其物侧面为凸面,像侧面为凹面。
在此,定义所述摄像光学镜头10的焦距为f,焦距的单位为毫米(mm)所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6。所述f、f3、f6、R5及R6满足下列关系式:
0.80≤f1/f≤0.90   (1)
70.00≤f3/f≤120.00   (2)
-450.00≤(R5+R6)/(R5-R6)≤-430.00   (3)
其中,条件式(1)规定了第一透镜L1与整体摄像光学镜头10焦距之间的比值。如此设置,第一透镜L1可以更合理的分配光焦度,对光学系统的像差进行校正,进而提升成像品质。
条件式(2)规定了第三透镜L3与整体摄像光学镜头10焦距之间的比值。如此设置,第三透镜L3可以更合理的分配光焦度,有利于对光学系统的像差进行校正,进而提升成像品质。
条件式(3)规定了第三透镜L3的形状。如此设置,可以有效校正光学系统前面两片镜片(第一透镜L1、第二透镜L2)所产生的像差。
本实施方式中,通过上述透镜的配置方式,利用具有不同屈折力的各个透镜,在焦距上与整体光学镜头10具有特定配合关系的第一透镜L1以及在焦距上与整体光学镜头10具有特定配合关系且具有特定形状的第三透镜L3,可以有效分配第一透镜L1及第三透镜L3的光焦度,有助于矫正光学系统的像差,使光学系统在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,本申请实施方式中,第一透镜L1物侧面的曲率半径为R1,第一透镜L1像侧面的曲率半径为R2,满足下列关系的关系式:
-1.50≤(R1+R2)/(R1-R2)≤-1.35   (4)
条件式(4)规定了第一透镜L1的形状,随着镜头向广角和大光圈发展,当R1与R2在条件式(4)规定的范围内时,可以缓和光线经过镜片的偏折程度,有效减小像差。
优选的,本实施方式中,摄像光学镜头10的焦距为f,第二透镜L2物侧面的曲率半径为R3,R3与f满足下列关系的关系式:
-10.70≤R3/f≤-9.50   (5)
条件式(5)规定了第二透镜L2物方表面的曲率半径与整体摄像光学镜头10焦距的比值,当R3和f在条件式(5)规定的范围内时,有助于镜片的加工和镜头的组装。
此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本申请摄像光学镜头的总长度。本申请实施例中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于构成本实施方式的摄像光学透镜10的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、面型以及各透镜的轴上厚度等,并因此校正了各类像差,本申请中的摄像光学镜头10的光学成像系统Fno≤2.05;摄像光学镜头10的光学总长TTL,摄像光学镜头10的像高IH,满足下列关系式:TTL/IH≤1.50;摄像光学镜头10的视场角FOV,满足以下关系式:FOV≥76.9度。实现了在具有良好光学成像性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
图1是第一实施方式中摄像光学镜头10的结构示意图。以下示出了本申请第一实施方式中摄像光学镜头10的设计数据。表1列出了本申请第一实施方式中构成摄像光学镜头10的第一透镜L1~第五透镜L5的物侧以及像侧曲率半径R、透镜的中心厚度、透镜间的距离d、折射率nd及阿贝数vd。表2示出了摄像光学镜头10的圆锥系数k与非球面系数。需要说明的是,本实施方式中,距离、半径和中心厚度的单位为毫米(mm)。
【表1】
Figure PCTCN2019109344-appb-000001
上表中各符号的含义如下。
R:光学面的曲率半径、透镜时为中心曲率半径;
S1:光圈;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:玻璃平板GF的物侧面的曲率半径;
R12:玻璃平板GF的像侧面的曲率半径;
d:透镜的轴上厚度或相邻透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
d11:玻璃平板GF的轴上厚度;
d12:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
ndg:玻璃平板GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
vg:玻璃平板GF的阿贝数。
【表2】
Figure PCTCN2019109344-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
需要说明的是,本实施方式中各透镜的非球面优选的使用下述条件式(6)所示的非球面,但是,下述条件式(6)的具体形式仅为一个示例,实际上,并不限于条件式(6)中表示的非球面多项式形式。
Y=(x 2/R)/{1+[1-(1+k)(x 2/R 2)] 1/2}+A 4x 4+A 6x 6+A 8x 8+A 10x 10+A 12x 12+A 14x 14+A 16x 16+A 18x 18+A 20x 20   (6)
表3、表4示出本申请实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P2R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.865    
P1R2 1 0.565    
P2R1 1 0.345    
P2R2        
P3R1 1 0.235    
P3R2 2 0.275 0.905  
P4R1 1 1.385    
P4R2 2 0.925 1.425  
P5R1 3 0.205 1.135 1.835
P5R2 1 0.425    
【表4】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.745
P2R1 1 0.485
P2R2    
P3R1 1 0.395
P3R2 1 0.465
P4R1    
P4R2    
P5R1 1 0.365
P5R2 1 1.145
另外,在后续的表17中,还列出了第一实施方式中各种参数与条件式中已规定的参数所对应的值。
图2、图3分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图4的 场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的全画角为2ω,F值为Fno,其中,2ω=76.90°,Fno=2.04,如此,摄像光学镜头10在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。
以下为第二实施方式:
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本申请第二实施方式的摄像头20的设计数据。【表5】
Figure PCTCN2019109344-appb-000003
【表6】
Figure PCTCN2019109344-appb-000004
表7、表8示出本申请实施例的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1        
P1R2 1 0.585    
P2R1 1 0.385    
P2R2        
P3R1 1 0.235    
P3R2 2 0.275 0.905  
P4R1 1 1.445    
P4R2 2 0.895 1.415  
P5R1 3 0.225 1.175 1.905
P5R2 1 0.415    
【表8】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.785
P2R1 1 0.555
P2R2    
P3R1 1 0.395
P3R2 1 0.475
P4R1    
P4R2    
P5R1 1 0.415
P5R2 1 1.115
在后续的表17中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值。
图6、图7分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头20中,2ω=77.09°,Fno=2.02,如此,摄像光学镜头20在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。
以下为第三实施方式:
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出了本申请第三实施方式的摄像光学镜头30的设计数据。【表9】
Figure PCTCN2019109344-appb-000005
【表10】
Figure PCTCN2019109344-appb-000006
表11、表12示出本申请实施例的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 0      
P1R2 1 0.575    
P2R1 1 0.365    
P2R2 0      
P3R1 1 0.245    
P3R2 2 0.275 0.905  
P4R1 0      
P4R2 2 0.905 1.405  
P5R1 3 0.225 1.175 1.895
P5R2 1 0.425    
【表12】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.755
P2R1 1 0.515
P2R2    
P3R1 1 0.415
P3R2 1 0.475
P4R1    
P4R2    
P5R1 1 0.405
P5R2 1 1.115
在后续的表17中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。
图10、图11分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头30中,2ω=76.89°,Fno=2.04,如此,摄像光学镜头30在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。
以下为第四实施方式:
图13是第四实施方式中摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出了本申请第四实施方式的摄像光学镜头40的设计数据。
【表13】
Figure PCTCN2019109344-appb-000007
【表14】
Figure PCTCN2019109344-appb-000008
表15、表16示出本申请实施例的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。
【表15】
   反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 0.845    
P1R2 1 0.335    
P2R1 1 0.375    
P2R2        
P3R1 1 0.255    
P3R2 2 0.295 0.915  
P4R1 1 1.375    
P4R2 2 0.925 1.405  
P5R1 3 0.215 1.165 1.865
P5R2 1 0.425    
【表16】
  驻点个数 驻点位置1
P1R1    
P1R2 1 0.695
P2R1 1 0.515
P2R2    
P3R1 1 0.435
P3R2 1 0.515
P4R1    
P4R2    
P5R1 1 0.385
P5R2 1 1.125
在后续的表17中,还列出了第四实施方式中各种参数与条件式中已规定的参数所对应的值。
图14、图15分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了波长为546nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图。图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头40中,2ω=76.90°,Fno=2.03,如此,摄像光学镜头40在具有良好光学性能的同时,满足大光圈、超薄化和广角化的设计要求。
以下表17按照上述条件式列出了第一实施方式、第二实施方式、第三实施方式和第四实施方式中对应各条件式(1)、(2)、(3)、(4)、(5)的数值,以及其他相关参数的取值。
【表17】
  实施例1 实施例2 实施例3 实施例4 备注
f1/f 0.80 0.89 0.86 0.84 条件式(1)
f3/f 118.99 93.88 89.93 70.98 条件式(2)
(R5+R6)/(R5-R6) -443.15 -434.25 -443.00 -447.10 条件式(3)
(R1+R2)/(R1-R2) -1.36 -1.50 -1.43 -1.41 条件式(4)
R3/f -9.51 -10.70 -9.50 -9.51 条件式(5)
Fno 2.04 2.02 2.04 2.03  
76.90 77.09 76.89 76.9  
f 3.567 3.538 3.567 3.561  
f1 2.863 3.166 3.068 2.974  
f2 -6.169 -7.256 -6.726 -6.604  
f3 424.427 332.142 320.793 252.775  
f4 3.062 3.334 3.363 3.242  
f5 -2.541 -2.844 -2.844 -2.696  
TTL 4.339 4.340 4.340 4.339  
IH 2.911 2.911 2.911 2.911  
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (3)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有正屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
    0.80≤f1/f≤0.90;
    70.00≤f3/f≤120.00;
    -450.00≤(R5+R6)/(R5-R6)≤-430.00。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,满足下列关系式:
    -1.50≤(R1+R2)/(R1-R2)≤-1.35。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的焦距为f,所述第二透镜物侧面的曲率半径为R3,满足下列关系式:
    -10.70≤R3/f≤-9.50。
PCT/CN2019/109344 2018-12-28 2019-09-30 摄像光学镜头 WO2020134294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811631380.3A CN109839726B (zh) 2018-12-28 2018-12-28 摄像光学镜头
CN201811631380.3 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134294A1 true WO2020134294A1 (zh) 2020-07-02

Family

ID=66883598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109344 WO2020134294A1 (zh) 2018-12-28 2019-09-30 摄像光学镜头

Country Status (4)

Country Link
US (1) US11243377B2 (zh)
JP (1) JP6890644B2 (zh)
CN (1) CN109839726B (zh)
WO (1) WO2020134294A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839726B (zh) * 2018-12-28 2021-06-22 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110221411B (zh) * 2019-06-30 2021-06-22 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110531491B (zh) * 2019-08-16 2021-04-09 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110501806B (zh) * 2019-08-16 2021-04-09 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110850563B (zh) * 2019-11-22 2021-08-20 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI750615B (zh) 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
CN111208626B (zh) * 2020-02-24 2021-11-02 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111830689B (zh) * 2020-07-30 2022-04-08 玉晶光电(厦门)有限公司 光学成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969810A (zh) * 2013-02-20 2014-08-06 瑞声声学科技(深圳)有限公司 摄影透镜
CN106802470A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106959503A (zh) * 2016-04-27 2017-07-18 瑞声科技(新加坡)有限公司 摄像镜头
US20180017764A1 (en) * 2016-07-13 2018-01-18 Kolen Co., Ltd. Photographic lens and photographic apparatus including the same
CN108398769A (zh) * 2018-05-30 2018-08-14 广东旭业光电科技股份有限公司 光学成像镜头
CN109839726A (zh) * 2018-12-28 2019-06-04 瑞声科技(新加坡)有限公司 摄像光学镜头

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156389A (ja) * 2012-01-27 2013-08-15 Konica Minolta Inc 撮像レンズ、撮像装置、及び携帯端末
CN104395806B (zh) * 2012-05-24 2017-06-30 富士胶片株式会社 摄像镜头以及具备该摄像镜头的摄像装置
JP6394598B2 (ja) * 2013-07-12 2018-09-26 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN104007537B (zh) * 2014-01-27 2017-01-11 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
CN104898255B (zh) * 2015-02-13 2017-06-13 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
TWI537632B (zh) * 2015-02-13 2016-06-11 玉晶光電股份有限公司 可攜式電子裝置與其光學成像鏡頭
US20160252708A1 (en) * 2015-02-27 2016-09-01 Glory Science Co., Ltd. Optical imaging lens
JP5843996B1 (ja) * 2015-07-07 2016-01-13 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP5986696B1 (ja) * 2016-06-16 2016-09-06 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
TWI616699B (zh) * 2016-12-29 2018-03-01 大立光電股份有限公司 影像擷取系統組、取像裝置及電子裝置
TWI613480B (zh) * 2017-02-08 2018-02-01 大立光電股份有限公司 光學取像鏡片系統、取像裝置及電子裝置
WO2019052180A1 (zh) * 2017-09-18 2019-03-21 浙江舜宇光学有限公司 摄像镜头组
CN109031626A (zh) * 2018-10-23 2018-12-18 浙江舜宇光学有限公司 摄像镜头组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969810A (zh) * 2013-02-20 2014-08-06 瑞声声学科技(深圳)有限公司 摄影透镜
CN106959503A (zh) * 2016-04-27 2017-07-18 瑞声科技(新加坡)有限公司 摄像镜头
US20180017764A1 (en) * 2016-07-13 2018-01-18 Kolen Co., Ltd. Photographic lens and photographic apparatus including the same
CN106802470A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108398769A (zh) * 2018-05-30 2018-08-14 广东旭业光电科技股份有限公司 光学成像镜头
CN109839726A (zh) * 2018-12-28 2019-06-04 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN109839726A (zh) 2019-06-04
JP2020109491A (ja) 2020-07-16
US11243377B2 (en) 2022-02-08
US20200209527A1 (en) 2020-07-02
JP6890644B2 (ja) 2021-06-18
CN109839726B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2020140520A1 (zh) 摄像光学镜头
WO2020140509A1 (zh) 摄像光学镜头
WO2020134373A1 (zh) 摄像光学镜头
WO2020134294A1 (zh) 摄像光学镜头
WO2020134483A1 (zh) 摄像光学镜头
WO2022047989A1 (zh) 摄像光学镜头
WO2020140508A1 (zh) 摄像光学镜头
WO2021031236A1 (zh) 摄像光学镜头
WO2020140498A1 (zh) 摄像光学镜头
WO2020140521A1 (zh) 摄像光学镜头
WO2020140595A1 (zh) 摄像光学镜头
WO2020140505A1 (zh) 摄像光学镜头
WO2020140502A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
WO2020134372A1 (zh) 摄像光学镜头
WO2022016629A1 (zh) 摄像光学镜头
WO2020140497A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022047987A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021097928A1 (zh) 摄像光学镜头
WO2022041382A1 (zh) 摄像光学镜头
WO2022047980A1 (zh) 摄像光学镜头
WO2022062072A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901834

Country of ref document: EP

Kind code of ref document: A1