WO2020140498A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2020140498A1
WO2020140498A1 PCT/CN2019/108687 CN2019108687W WO2020140498A1 WO 2020140498 A1 WO2020140498 A1 WO 2020140498A1 CN 2019108687 W CN2019108687 W CN 2019108687W WO 2020140498 A1 WO2020140498 A1 WO 2020140498A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
optical lens
focal length
refractive power
Prior art date
Application number
PCT/CN2019/108687
Other languages
English (en)
French (fr)
Inventor
孙雯
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020140498A1 publication Critical patent/WO2020140498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive device of general photographic lenses is nothing more than a photosensitive coupling device (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal) -Oxide Semicondctor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing process technology, the pixel size of the photosensitive device has been reduced.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • today's electronic products have a trend of good function, thin and short appearance, so they have good
  • the imaging quality of the miniaturized camera lens has become the mainstream on the market.
  • the lenses used in traditional mobile phone cameras mostly adopt three-piece, four-piece and five-piece lens structures.
  • the six-piece lens structure gradually appears in the lens design, common Although the six-piece lens has good optical performance, its optical power, lens spacing and lens shape settings still have certain irrationality, resulting in a lens structure that cannot meet good optical performance and long focal length design. Claim.
  • an object of the present invention is to provide an imaging optical lens that has good optical performance and meets the design requirements of a long focal length.
  • an imaging optical lens which includes, in order from the object side to the image side, an aperture, a first lens with positive refractive power, and a second lens with negative refractive power Lens, a third lens with negative refractive power, a fourth lens with negative refractive power, a fifth lens with positive refractive power, a sixth lens with negative refractive power;
  • the focal length of the imaging optical lens is f
  • the focal length is in millimeters
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2, which satisfies the following relationship: 0.35 ⁇ f1/f ⁇ 0.60; -5.70 ⁇ f2/f ⁇ -2.50.
  • the embodiments of the present invention specify the ratio of the focal length of the first lens to the focal length of the overall imaging optical lens, and the ratio of the focal length of the second lens to the focal length of the overall imaging optical lens. Distributing the power of the first lens and the second lens helps to correct the aberration of the optical system, thereby improving the imaging quality, so that the optical system has good optical performance and meets the design requirements of long focal length.
  • the on-axis thickness of the fifth lens is d9
  • the on-axis distance of the image side of the fifth lens to the object side of the sixth lens is d10, satisfying the following relationship: 2.00 ⁇ d10/d9 ⁇ 5.00 .
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, which satisfies the following relationship: 0.50 ⁇ (R5+R6)/(R5-R6) ⁇ 1.10.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens in the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural view of an imaging optical lens according to a second embodiment of the invention.
  • FIG. 6 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural view of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9;
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes six lenses.
  • the imaging optical lens 10 includes, in order from the object side to the image side, an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth Lens L6.
  • an optical element such as a glass flat plate GF is provided between the sixth lens L6 and the image plane Si.
  • the glass flat plate GF may be a glass cover or an optical filter. Of course, In other possible implementation manners, the glass plate GF may also be disposed at other positions.
  • the first lens L1 has a positive refractive power, and its object side surface is convex outward, and its image side surface is concave;
  • the second lens L2 has a negative refractive power, its object side surface is concave, and its image side surface is convex
  • the third lens L3 has negative refractive power, its object side is concave, and its image side is concave;
  • the fourth lens L4 has negative refractive power, its object side is convex, and its image side is concave;
  • the fifth lens L5 has positive refractive power The object side is concave and the image side is convex;
  • the sixth lens L6 has negative refractive power, the object side is concave and the image side is convex.
  • the focal length of the imaging optical lens 10 is defined as f
  • the focal length unit is millimeter (mm)
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2.
  • the f, f1 and f2 satisfy the following relationship:
  • conditional expression (1) specifies the ratio of the focal length f1 of the first lens L1 to the focal length f of the overall imaging optical lens 10, and within the range of this conditional expression, it helps to improve the performance of the optical system.
  • Conditional expression (2) specifies the ratio of the focal length f2 of the second lens L2 to the focal length f of the overall imaging optical lens. Within the range of this conditional expression, the power of the second lens L2 is more rationally distributed, which is beneficial to the optical The aberration of the system is corrected to improve the imaging quality.
  • the first lens L1 and the second lens L2 having a specific cooperation relationship with the overall optical lens 10 in focal length by using the lenses with different refractive powers through the above-mentioned lens arrangement method, through the above-mentioned lens arrangement method , Can effectively distribute the power of the first lens and the second lens, help to correct the aberration of the optical system, thereby improving the imaging quality, so that the optical system has good optical performance while meeting the design requirements of long focal length .
  • the axial thickness of the fifth lens L5 is d9
  • the axial distance of the image side of the fifth lens L5 to the object side of the sixth lens L6 is d10, which satisfies the following relationship:
  • Conditional expression (3) specifies the ratio of the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6 to the on-axis thickness of the fifth lens L5. Processing and assembling of 10 of the imaging optical lens.
  • the radius of curvature of the object side of the third lens L3 is R5
  • the radius of curvature of the image side of the third lens L3 is R6, and R5 and R6 satisfy the following relationship:
  • Conditional expression (4) specifies the shape of the third lens L3, so that it can effectively correct the five lenses (first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens) in front of the optical system L5) The resulting aberration.
  • the surface of the lens can be set as an aspheric surface, and the aspheric surface can be easily made into a shape other than a spherical surface, and more control variables are obtained to reduce aberrations, thereby reducing the number of lenses used, so the imaging optics of the present invention can be effectively reduced
  • the total length of the lens In the embodiment of the present invention, the object side and the image side of each lens are aspherical.
  • the imaging optical lens 10 can reasonably allocate the power, surface type, and axial thickness of each lens, etc., and thus correct various aberrations.
  • the imaging optical lens in the present invention The focal length f of 10 and the total optical length TTL of the imaging optical lens 10 satisfy the following relationship: f/TTL ⁇ 1.09. It achieves the design requirements of long focal length while having good optical imaging performance.
  • the object side and/or image side of the lens may also be provided with a reflex point and/or a stagnation point to meet the high-quality imaging requirements.
  • a reflex point and/or a stagnation point may also be provided with a stagnation point to meet the high-quality imaging requirements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens 10 in the first embodiment.
  • Table 1 lists the curvature radius R of the object side and the image side of the first lens L1 to the sixth lens L6 constituting the imaging optical lens 10 in the first embodiment of the present invention, the center thickness of the lens, the distance d between the lenses, and the refractive index nd and Abbe number vd.
  • Table 2 shows the conic coefficient k and aspherical coefficient of the imaging optical lens 10. It should be noted that in this embodiment, the unit of distance, radius, and center thickness is millimeters (mm).
  • R the radius of curvature of the optical surface and the center radius of curvature when the lens is used
  • R1 radius of curvature of the object side of the first lens L1;
  • R2 radius of curvature of the image side of the first lens L1;
  • R3 radius of curvature of the object side of the second lens L2;
  • R4 radius of curvature of the image side of the second lens L2;
  • R5 radius of curvature of the object side of the third lens L3;
  • R6 radius of curvature of the image side of the third lens L3;
  • R7 radius of curvature of the object side of the fourth lens L4;
  • R8 radius of curvature of the image side of the fourth lens L4;
  • R9 radius of curvature of the object side of the fifth lens L5;
  • R10 radius of curvature of the image side of the fifth lens L5;
  • R11 radius of curvature of the object side of the sixth lens L6;
  • R12 radius of curvature of the image side of the sixth lens L6;
  • R13 the radius of curvature of the side of the glass plate GF
  • R14 radius of curvature of the image side of the glass plate GF
  • d the axial thickness of the lens or the axial distance between adjacent lenses
  • d2 the axial distance between the image side of the first lens L1 and the object side of the second lens L2;
  • d4 the axial distance between the image side of the second lens L2 and the object side of the third lens L3;
  • d6 the axial distance between the image side of the third lens L3 and the object side of the fourth lens L4;
  • d10 the axial distance between the image side of the fifth lens L5 and the object side of the sixth lens L6;
  • d12 the axial distance between the image side of the sixth lens L6 and the object side of the optical filter GF;
  • nd refractive index of d line
  • nd1 refractive index of the d-line of the first lens L1;
  • nd2 refractive index of the d-line of the second lens L2;
  • nd3 refractive index of the d-line of the third lens L3;
  • nd4 refractive index of the d-line of the fourth lens L4;
  • nd5 refractive index of the d-line of the fifth lens L5;
  • nd6 refractive index of the d-line of the sixth lens L6;
  • ndg the refractive index of the d line of the glass plate GF
  • vg Abbe number of glass plate GF.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16 are aspherical coefficients.
  • the aspherical surface of each lens is preferably an aspherical surface as shown in the following conditional expression (5).
  • conditional expression (5) the specific form of the following conditional expression (5) is only an example. In fact, It is not limited to the aspherical polynomial form expressed in conditional expression (5).
  • Tables 3 and 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1, P2R2 respectively represent the object side and the image side of the first lens L1
  • P2R1, P2R2 respectively represent the object side and the image side of the second lens L2
  • P3R1, P3R2 respectively represent the object side and the image side of the third lens L3
  • P4R1 and P4R2 respectively represent the object side and image side of the fourth lens L4
  • P5R1 and P5R2 respectively represent the object side and image side of the fifth lens L5
  • P6R1 and P6R2 respectively represent the object side and image side of the sixth lens L6.
  • the corresponding data in the "Recurve Point Position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the corresponding data in the “stay point position” column is the vertical distance between the stagnation point set on the surface of each lens and the optical axis of the imaging optical lens 10.
  • FIGS. 2 and 3 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 546 nm passes through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the entrance pupil diameter of the imaging optical lens is 2.122 mm
  • the full-field image height is 2.778 mm
  • the diagonal viewing angle is 48.40°.
  • the imaging optical lens 10 has a long focal length and Has excellent imaging performance.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Tables 5 and 6 show the design data of the camera 20 according to the second embodiment of the present invention.
  • Tables 7 and 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the embodiment of the present invention.
  • FIG. 6 and 7 show schematic diagrams of axial aberration and chromatic aberration of magnification of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 546 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the entrance pupil diameter of the imaging optical lens is 2.124 mm
  • the full-field image height is 2.777 mm
  • the field angle in the diagonal direction is 48.40°.
  • the imaging optical lens 20 has a long focal length and has excellent imaging performance.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the embodiment of the present invention.
  • FIG. 10 and 11 show schematic diagrams of axial aberration and chromatic aberration of magnification of light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm after passing through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 is a schematic diagram showing the field curvature and distortion of light having a wavelength of 546 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the entrance pupil diameter of the imaging optical lens is 2.118 mm
  • the full-field image height is 2.776 mm
  • the field angle in the diagonal direction is 48.40°.
  • the imaging optical lens 30 has a long focal length and has excellent imaging performance.
  • Table 13 lists the numerical values corresponding to the conditional expressions (1), (2), (3), and (4) in the first, second, and third embodiments according to the above conditional expressions, and other related The value of the parameter.
  • Example 1 Example 2
  • Example 3 Remarks f1/f 0.49 0.6 0.35 Conditional (1) f2/f -2.6 -5.61 -2.6 Conditional (2) d10/d9 3.59 4.87 2.06 Conditional (3) (R5+R6)/(R5-R6) 0.5 1.07 0.52 Conditional (4) f 5.942 5.948 5.931 A f1 2.934 3.548 2.078 A f2 -15.422 -33.343 -15.417 A f3 -6.253 -9.084 -3.136 A f4 -19.531 -20.136 -13.253 A f5 27.716 21.205 21.198 A f6 -10.896 -8.296 -9.809 A f12 3.455 3.869 2.385 A TTL 5.403 5.403 5.403 A

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种摄像光学镜头,由物侧至像侧依序包括:一光圈(S1),一具有正屈折力的第一透镜(L1),一具有负屈折力的第二透镜(L2),一具有负屈折力的第三透镜(L3),一具有负屈折力的第四透镜(L4),一具有正屈折力的第五透镜(L5),一具有负屈折力的第六透镜(L6);摄像光学镜头的焦距为f,第一透镜(L1)的焦距为f1,第二透镜(L2)的焦距为f2,满足下列关系式:0.35≤f1/f≤0.60;-5.70≤f2/f≤-2.50。该摄像光学镜头能在具有良好光学性能的同时,满足长焦距的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式及五片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,六片式透镜结构逐渐出现在镜头设计当中,常见的六片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构无法满足具有良好光学性能的同时,满足长焦距设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其在具有 良好光学性能的同时,满足长焦距的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有负屈折力的第三透镜,一具有负屈折力的第四透镜,一具有正屈折力的第五透镜,一具有负屈折力的第六透镜;所述摄像光学镜头的焦距为f,焦距单位为毫米,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,满足下列关系式:0.35≤f1/f≤0.60;-5.70≤f2/f≤-2.50。
本发明实施方式相对于现有技术而言,规定了第一透镜焦距与整体摄像光学镜头焦距的比值,以及第二透镜焦距与整体摄像光学镜头焦距的比值,通过上述透镜的配置方式,可有效分配第一透镜和第二透镜的光焦度,有助于对光学系统的像差进行校正,进而提升成像品质,使光学系统在具有良好光学性能的同时,满足长焦距的设计要求。
另外,所述第五透镜的轴上厚度为d9,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,满足下列关系式:2.00≤d10/d9≤5.00。
另外,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:0.50≤(R5+R6)/(R5-R6)≤1.10。
附图说明
图1是本发明第一实施方式中摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
以下为第一实施方式:
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。本实施方式中,优选的,在第六透镜L6和像面Si之间设置有玻璃平板GF等光学元件,其中玻璃平板GF可以是玻璃盖板,也可以是光学过滤片(filter),当然在其他可实施方式中,玻璃平板GF还可以设置在其他位置。
本实施方式中,第一透镜L1具有正屈折力,其物侧面向外凸出为凸面,其像侧面为凹面;第二透镜L2具有负屈折力,其物侧面为凹面,其像侧面为凸面;第三透镜L3具有负屈折力,其物侧面为凹面,其像侧面为凹面;第四透镜L4具有负屈折力,其物侧面为凸面,其像侧面为凹面;第五透镜L5具有正屈折力,其物侧面为凹面,像侧面为凸面;第六透镜L6具有负屈折力,其物侧面为凹面,其像侧面为凸面。
在此,定义摄像光学镜头10的焦距为f,焦距单位为毫米(mm),第一透镜L1的焦距为f1,第二透镜L2的焦距为f2。所述f、f1及f2满足下列关系式:
0.35≤f1/f≤0.60           (1)
-5.70≤f2/f≤-2.50          (2)
其中,条件式(1)规定了第一透镜L1的焦距f1与整体摄像光学镜头10焦距f的比值,在此条件式范围内时,有助于提高光学系统性能。
条件式(2)规定了第二透镜L2焦距的f2与整体摄像光学镜头焦距f的比值,在此条件式范围内时,更合理的分配了第二透镜L2的光焦度,有利于对光学系统的像差进行校正,进而提升成像品质。
本实施方式中,通过上述透镜的配置方式,利用具有不同屈折力的各个透镜,在焦距上与整体光学镜头10具有特定配合关系的第一透镜L1以及第二透镜L2,通过上述透镜的配置方式,可有效分配第一透镜和第二透镜的光焦度,有助于对光学系统的像差进行校正,进而提升成像品质,使光学系统在具有良好光学性能的同时,满足长焦距的设计要求。
具体的,本发明实施方式中,第五透镜L5的轴上厚度为d9,第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离为d10,满足下列关系的关系式:
2.00≤d10/d9≤5.00      (3)
条件式(3)规定了第五透镜L5的像侧面到第六透镜L6物侧面的轴上距离和第五透镜L5轴上厚度的比值,在条件式范围内时,有助于第五透镜的加工和摄像光学镜头的10的组装。
优选的,本实施方式中,第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,R5与R6满足下列关系的关系式:
0.50≤(R5+R6)/(R5-R6)≤1.10           (4)
条件式(4)规定了第三透镜L3的形状,如此设置,可以有效校正光学系统前面五片镜片(第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5)所产生的像差。
此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。
值得一提的是,由于构成本实施方式的摄像光学透镜10的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、面型以及各透镜的轴上厚度等,并因此校正了各类像差,本发明中的摄像光学镜头10的焦距f,摄像光学镜头10的光学总长TTL,满足下列关系式:f/TTL≥1.09。实现了在具有良好光学成像性能的同时,满足长焦距的设计要求。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
图1是第一实施方式中摄像光学镜头10的结构示意图。以下示出了本发明第一实施方式中摄像光学镜头10的设计数据。表1列出了本发明第一 实施方式中构成摄像光学镜头10的第一透镜L1~第六透镜L6的物侧以及像侧曲率半径R、透镜的中心厚度、透镜间的距离d、折射率nd及阿贝数vd。表2示出了摄像光学镜头10的圆锥系数k与非球面系数。需要说明的是,本实施方式中,距离、半径和中心厚度的单位为毫米(mm)。
【表1】
Figure PCTCN2019108687-appb-000001
上表中各符号的含义如下。
R:光学面的曲率半径、透镜时为中心曲率半径;
S1:光圈;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:玻璃平板GF的物侧面的曲率半径;
R14:玻璃平板GF的像侧面的曲率半径;
d:透镜的轴上厚度或相邻透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:玻璃平板GF的轴上厚度;
d14:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:玻璃平板GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:玻璃平板GF的阿贝数。
【表2】
Figure PCTCN2019108687-appb-000002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
需要说明的是,本实施方式中各透镜的非球面优选的使用下述条件式(5)所示的非球面,但是,下述条件式(5)的具体形式仅为一个示例,实际上,并不限于条件式(5)中表示的非球面多项式形式。
Y=(x2/R)/{1+[1-(1+k)(x2/R2)] 1/2}+A 4x 4+A 6x 6+A 8x 8+A 10x 10+A 12x 12+A 14x 14+A 16x 16       (5)
表3、表4示出本发明第一实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P2R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.925  
P1R2 1 0.225  
P2R1 1 0.405  
P2R2 1 0.025  
P3R1 2 0.225 0.805
P3R2 1 0.815  
P4R1 1 0.165  
P4R2 2 0.355 0.935
P5R1 2 0.385 1.285
P5R2 2 0.625 1.355
P6R1 1 1.385  
P6R2 1 2.005  
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2 1 0.405  
P2R1 1 0.605  
P2R2 1 0.035  
P3R1 2 0.385 0.905
P3R2      
P4R1 1 0.265  
P4R2 2 0.545 1.085
P5R1 2 0.575 1.545
P5R2 2 0.905 1.615
P6R1      
P6R2      
另外,在后续的表13中,还列出了第一实施方式中各种参数与条件式中已规定的参数所对应的值。
图2、图3分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头的入瞳直径为2.122mm,全视场 像高为2.778mm,对角线方向的视场角为48.40°,如此,摄像光学镜头10具有长焦距且具有优秀的成像性能。
以下为第二实施方式:
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像头20的设计数据。
【表5】
Figure PCTCN2019108687-appb-000003
【表6】
Figure PCTCN2019108687-appb-000004
Figure PCTCN2019108687-appb-000005
表7、表8示出本发明实施例的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1 1 0.945  
P1R2 1 0.325  
P2R1 1 0.335  
P2R2      
P3R1 1 0.845  
P3R2 1 0.825  
P4R1 1 0.205  
P4R2 2 0.375 0.955
P5R1 1 1.275  
P5R2 2 0.585 1.345
P6R1 1 1.385  
P6R2 1 2.005  
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2 1 0.615  
P2R1 1 0.455  
P2R2      
P3R1      
P3R2 1 0.955  
P4R1 1 0.335  
P4R2 2 0.585 1.095
P5R1 1 1.505  
P5R2 2 0.825 1.605
P6R1 1 2.015  
P6R2      
在后续的表13中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值。
图6、图7分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头20中,所述摄像光学镜头的入瞳直径为2.124mm,全视场像高为2.777mm,对角线方向的视场角为48.40°,如此,摄像光学镜头20具有长焦距且具有优秀的成像性能。
以下为第三实施方式:
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出了本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019108687-appb-000006
Figure PCTCN2019108687-appb-000007
【表10】
Figure PCTCN2019108687-appb-000008
表11、表12示出本发明实施例的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 1.025    
P1R2 2 0.275 0.675  
P2R1 3 0.225 0.705 0.895
P2R2 2 0.145 0.755  
P3R1 2 0.105 0.695  
P3R2 2 0.605 0.845  
P4R1 1 0.265    
P4R2 2 0.395 0.705  
P5R1 2 0.605 1.665  
P5R2 2 0.725 1.755  
P6R1 2 1.435 2.025  
P6R2 1 2.055    
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2 2 0.495 0.795
P2R1 1 0.415  
P2R2 1 0.255  
P3R1 2 0.175 0.865
P3R2      
P4R1 1 0.435  
P4R2      
P5R1 2 1.005 1.795
P5R2 2 1.195 1.915
P6R1      
P6R2      
在后续的表13中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。
图10、图11分别示出了波长为435nm、486nm、546nm、587nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头30中,所述摄像光学镜头的入瞳直径为2.118mm,全视场像高为2.776mm,对角线方向的视场角为48.40°,如此,摄像光学镜头30具有长焦距且具有优秀的成像性能。
以下表13按照上述条件式列出了第一实施方式、第二实施方式、第三实施方式中对应各条件式(1)、(2)、(3)、(4)的数值,以及其他相关参数的取值。
【表13】
  实施例1 实施例2 实施例3 备注
f1/f 0.49 0.6 0.35 条件式(1)
f2/f -2.6 -5.61 -2.6 条件式(2)
d10/d9 3.59 4.87 2.06 条件式(3)
(R5+R6)/(R5-R6) 0.5 1.07 0.52 条件式(4)
f 5.942 5.948 5.931  
f1 2.934 3.548 2.078  
f2 -15.422 -33.343 -15.417  
f3 -6.253 -9.084 -3.136  
f4 -19.531 -20.136 -13.253  
f5 27.716 21.205 21.198  
f6 -10.896 -8.296 -9.809  
f12 3.455 3.869 2.385  
TTL 5.403 5.403 5.403  
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (3)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有负屈折力的第三透镜,一具有负屈折力的第四透镜,一具有正屈折力的第五透镜,一具有负屈折力的第六透镜;
    所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,满足下列关系式:
    0.35≤f1/f≤0.60;
    -5.70≤f2/f≤-2.50。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的轴上厚度为d9,所述第五透镜的像侧面到所述第六透镜的物侧面的轴上距离为d10,满足下列关系式:
    2.00≤d10/d9≤5.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
    0.50≤(R5+R6)/(R5-R6)≤1.10。
PCT/CN2019/108687 2018-12-31 2019-09-27 摄像光学镜头 WO2020140498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650636.5 2018-12-31
CN201811650636.5A CN109581627B (zh) 2018-12-31 2018-12-31 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2020140498A1 true WO2020140498A1 (zh) 2020-07-09

Family

ID=65915534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108687 WO2020140498A1 (zh) 2018-12-31 2019-09-27 摄像光学镜头

Country Status (4)

Country Link
US (1) US11460669B2 (zh)
JP (1) JP6802613B2 (zh)
CN (1) CN109581627B (zh)
WO (1) WO2020140498A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581627B (zh) * 2018-12-31 2021-07-09 常州市瑞泰光电有限公司 摄像光学镜头
CN110471163B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110297318B (zh) * 2019-07-22 2024-06-04 浙江舜宇光学有限公司 光学成像镜头组
CN110426823B (zh) * 2019-09-03 2024-05-14 浙江舜宇光学有限公司 光学成像透镜组
JP7328113B2 (ja) * 2019-10-10 2023-08-16 東京晨美光学電子株式会社 撮像レンズ
TWI703364B (zh) * 2019-11-29 2020-09-01 大立光電股份有限公司 攝影用光學鏡片組及電子裝置
CN111308651B (zh) * 2020-02-24 2022-03-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111650726B (zh) * 2020-07-10 2022-04-08 玉晶光电(厦门)有限公司 光学成像镜头
CN111929821B (zh) * 2020-09-03 2022-07-12 诚瑞光学(苏州)有限公司 摄像光学镜头
CN111929827B (zh) * 2020-09-03 2021-04-30 诚瑞光学(苏州)有限公司 摄像光学镜头
CN111929873B (zh) * 2020-09-21 2020-12-15 瑞泰光学(常州)有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
US20140153117A1 (en) * 2012-12-04 2014-06-05 Samsung Electronics Co., Ltd. Photographing lens and electronic apparatus
US20140211325A1 (en) * 2013-01-28 2014-07-31 Newmax Technology Co., Ltd. Six-piece optical lens system
CN108562993A (zh) * 2018-01-23 2018-09-21 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108873262A (zh) * 2018-08-03 2018-11-23 瑞声光电科技(苏州)有限公司 摄像光学镜头
CN109581627A (zh) * 2018-12-31 2019-04-05 瑞声精密制造科技(常州)有限公司 摄像光学镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985865B (zh) * 2010-07-16 2015-03-11 柯尼卡美能达株式会社 拍摄镜头
JP5915462B2 (ja) * 2012-08-28 2016-05-11 ソニー株式会社 撮像レンズおよび撮像装置
KR101452045B1 (ko) * 2012-10-25 2014-10-21 삼성전기주식회사 고해상도 촬상 광학계
US8896935B2 (en) * 2013-01-31 2014-11-25 Newmax Technology Co., Ltd. Six-piece optical lens system
TWI548895B (zh) * 2015-07-03 2016-09-11 大立光電股份有限公司 取像鏡片系統、取像裝置及電子裝置
TWI565967B (zh) * 2015-09-30 2017-01-11 大立光電股份有限公司 成像用光學系統、取像裝置及電子裝置
TWI589922B (zh) * 2016-09-12 2017-07-01 大立光電股份有限公司 成像光學鏡片系統、取像裝置及電子裝置
CN108375823A (zh) * 2018-04-03 2018-08-07 浙江舜宇光学有限公司 光学成像镜头
CN108490587B (zh) * 2018-05-28 2023-06-09 浙江舜宇光学有限公司 成像镜头
CN108957711B (zh) * 2018-08-02 2021-02-26 诚瑞光学(苏州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
US20140153117A1 (en) * 2012-12-04 2014-06-05 Samsung Electronics Co., Ltd. Photographing lens and electronic apparatus
US20140211325A1 (en) * 2013-01-28 2014-07-31 Newmax Technology Co., Ltd. Six-piece optical lens system
CN108562993A (zh) * 2018-01-23 2018-09-21 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108873262A (zh) * 2018-08-03 2018-11-23 瑞声光电科技(苏州)有限公司 摄像光学镜头
CN109581627A (zh) * 2018-12-31 2019-04-05 瑞声精密制造科技(常州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN109581627B (zh) 2021-07-09
CN109581627A (zh) 2019-04-05
JP2020109493A (ja) 2020-07-16
US11460669B2 (en) 2022-10-04
US20200209590A1 (en) 2020-07-02
JP6802613B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2020140509A1 (zh) 摄像光学镜头
WO2020140520A1 (zh) 摄像光学镜头
WO2020140498A1 (zh) 摄像光学镜头
WO2020134373A1 (zh) 摄像光学镜头
WO2020134483A1 (zh) 摄像光学镜头
WO2022047989A1 (zh) 摄像光学镜头
WO2020140508A1 (zh) 摄像光学镜头
WO2020140521A1 (zh) 摄像光学镜头
WO2020134294A1 (zh) 摄像光学镜头
WO2020140505A1 (zh) 摄像光学镜头
WO2020140595A1 (zh) 摄像光学镜头
WO2020140502A1 (zh) 摄像光学镜头
WO2020134372A1 (zh) 摄像光学镜头
WO2020140497A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
WO2020134281A1 (zh) 摄像光学镜头
WO2022016629A1 (zh) 摄像光学镜头
WO2022082928A1 (zh) 摄像光学镜头
WO2020134287A1 (zh) 摄像光学镜头
WO2020140511A1 (zh) 摄像光学镜头
WO2022057048A1 (zh) 摄像光学镜头
WO2022057047A1 (zh) 摄像光学镜头
WO2022052269A1 (zh) 摄像光学镜头
WO2022041382A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907000

Country of ref document: EP

Kind code of ref document: A1