WO2020140505A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2020140505A1
WO2020140505A1 PCT/CN2019/108894 CN2019108894W WO2020140505A1 WO 2020140505 A1 WO2020140505 A1 WO 2020140505A1 CN 2019108894 W CN2019108894 W CN 2019108894W WO 2020140505 A1 WO2020140505 A1 WO 2020140505A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
refractive power
focal length
optical lens
Prior art date
Application number
PCT/CN2019/108894
Other languages
English (en)
French (fr)
Inventor
房春环
Original Assignee
瑞声通讯科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声通讯科技(常州)有限公司 filed Critical 瑞声通讯科技(常州)有限公司
Publication of WO2020140505A1 publication Critical patent/WO2020140505A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive device of general photographic lenses is nothing more than a photosensitive coupling device (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal) -Oxide Semicondctor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing process technology, the pixel size of the photosensitive device has been reduced.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • today's electronic products have a trend of good function, thin and short appearance, so they have good
  • the imaging quality of the miniaturized camera lens has become the mainstream on the market.
  • the lenses traditionally mounted on mobile phone cameras mostly adopt three-piece, four-piece or even five-piece and six-piece lens structures.
  • the pixel area of the photosensitive device continues to shrink, and the system's requirements for imaging quality continue to increase.
  • the seven-piece lens structure gradually appears in the lens design. Common Although the seven-piece lens has good optical performance, its optical power, lens spacing and lens shape settings still have certain irrationality. As a result, the lens structure has good optical performance and cannot meet the large aperture, Ultra-thin and wide-angle design requirements.
  • the object of the present invention is to provide an imaging optical lens that has good optical performance and meets the design requirements of large aperture, ultra-thin and wide-angle.
  • an imaging optical lens which includes, in order from the object side to the image side, an aperture, a first lens with positive refractive power, and a second lens with negative refractive power
  • the lens a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with negative refractive power, a sixth lens with positive refractive power, and a third lens with negative refractive power Seven lenses;
  • the focal length of the imaging optical lens is f
  • the focal length is in millimeters (mm)
  • the refractive index of the second lens is n2
  • the focal length of the third lens is f3, satisfying the following relationship: 1.68 ⁇ n2 ⁇ 2.20; 15.00 ⁇ f3/f.
  • the embodiments of the present invention use the above lens configuration method to use lenses with different refractive powers and a third lens that has a specific matching relationship with the overall optical lens in focal length, and a lens that meets a specific refractive index range
  • the second lens enables the optical system to meet the design requirements of large aperture, ultra-thin and wide angle while having good optical performance.
  • the focal length of the sixth lens is f6, which satisfies the following relationship: 2.50 ⁇ f6/f ⁇ 5.00.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5, which satisfies the following relationship: 10.00 ⁇
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, which satisfies the following relationship: (R5+R6)/(R5-R6) ⁇ -20.00.
  • the focal length of the second lens is f2
  • the focal length unit is millimeter (mm), which satisfies the following relationship: -15.00 ⁇ f2-f ⁇ -11.00.
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10, which satisfies the following relationship: -10.00 ⁇ (R9+R10)/(R9-R10) ⁇ -6.00 .
  • the on-axis thickness of the first lens is d1
  • the on-axis distance of the image side of the first lens to the object side of the second lens is d2, satisfying the following relationship: 9.00 ⁇ d1/d2 ⁇ 12.00 .
  • FIG. 1 is a schematic structural diagram of an imaging optical lens in the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic structural view of an imaging optical lens according to a second embodiment of the invention.
  • FIG. 6 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of magnification chromatic aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic structural view of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes seven lenses.
  • the imaging optical lens 10 includes, in order from the object side to the image side, an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth The lens L6 and the seventh lens L7.
  • an optical element such as a glass flat plate GF is provided between the seventh lens L7 and the image plane Si.
  • the glass flat plate GF may be a glass cover plate or an optical filter.
  • the glass plate GF can also be arranged in other positions.
  • the first lens L1 has a positive refractive power, and its object side surface is convex outward, and its image side is concave;
  • the second lens L2 has a negative refractive power, its object side surface is convex, and its image side is concave
  • the third lens L3 has a positive refractive power, its object side is convex, and its image side is concave;
  • the fourth lens L4 has a positive refractive power, its object side is convex, and its image side is convex;
  • the fifth lens L5 has negative refractive power
  • the object side is concave and the image side is convex;
  • the sixth lens L6 has positive refractive power, the object side is convex and the image side is concave;
  • the seventh lens L7 has negative refractive power and the object side is convex, the image side is Concave surface.
  • the surface of the lens can be set as an aspheric surface, and the aspheric surface can be easily made into a shape other than a spherical surface, and more control variables are obtained to reduce aberrations, thereby reducing the number of lenses used, so the imaging optics of the present invention can be effectively reduced
  • the total length of the lens In the embodiment of the present invention, the object side and the image side of each lens are aspherical.
  • the focal length of the imaging optical lens 10 is f
  • the focal length unit is millimeter (mm)
  • the refractive index of the second lens L2 is n2
  • the focal length of the third lens L3 is f3.
  • the f, f3 and n2 satisfy the following relationship:
  • conditional expression (1) specifies the refractive index of the second lens L2. It should be noted that, with the development of wide-angle and ultra-thin lenses, the use of optical materials with a refractive index within the range of conditional expression (1) will help improve the performance of the optical system and further shorten the overall length of the optical system.
  • Conditional expression (2) specifies the ratio between the focal length of the third lens L3 and the overall imaging optical lens 10. With this arrangement, the third lens L3 can more reasonably distribute the optical power and improve the optical performance of the imaging optical lens 10.
  • each lens having a different refractive power and a third lens L3 having a specific matching relationship with the overall optical lens 10 in focal length and a second lens satisfying a specific refractive index range are used.
  • the optical system has good optical performance and meets the design requirements of large aperture, ultra-thin and wide angle.
  • the focal length of the sixth lens L6 is f6, and the focal length of the overall imaging optical lens 10 is f, where f6 and f can be designed to satisfy the following relationship:
  • Conditional expression (3) specifies the ratio between the focal length of the sixth lens L6 and the focal length of the overall imaging optical lens 10. With this arrangement, the sixth lens L6 can more reasonably distribute the optical power, which helps to correct the aberration of the imaging optical lens 10, thereby improving the imaging quality.
  • the focal length of the first lens L1 is f1
  • the focal length of the second lens L2 is f2
  • the focal length of the third lens L3 is f3
  • the focal length of the fourth lens L4 is f4
  • the focal length of the fifth lens L5 The focal length is f5, where f1, f2, f3, f4 and f5 can be designed to satisfy the following relationship:
  • Conditional expression (4) specifies the absolute value of the sum of the focal length f1 of the first lens L1, the focal length f2 of the second lens L2, the focal length f3 of the third lens L3, the focal length f4 of the fourth lens L4 and the focal length of the fifth lens L5
  • the ratio of the absolute value of the sum of f5, set in this way, will help improve the imaging quality of the optical system under the premise of satisfying the conditional expression (3).
  • the radius of curvature of the object side of the third lens L3 is R5
  • the radius of curvature of the image side of the third lens L3 is R6, and the relationship between R5 and R6 can be designed to satisfy the following relationship:
  • Conditional expression (5) specifies the shape of the third lens L3. With the development of wide-angle and ultra-thin lenses, when R5 and R6 are within the range of conditional expression (5), the degree of deflection of light passing through the lens can be alleviated to effectively reduce aberrations.
  • the focal length of the second lens L2 is f2
  • the relationship between f2 and f may be designed to satisfy the following relationship:
  • conditional expression (6) specifies the difference between the focal length f2 of the second lens L2 and the focal length f of the overall imaging optical lens 10, and when it is within the range of the conditional expression, it helps the optical system to obtain good imaging quality.
  • the radius of curvature of the object side of the fifth lens L5 is R9
  • the radius of curvature of the image side of the fifth lens L5 is R10
  • the relationship between R9 and R10 can be designed to satisfy the following relationship:
  • Conditional expression (7) specifies the shape of the fifth lens.
  • the conditional expression is within the range, the aberrations generated by the four lenses (L1, L2, L3, L4) in front of the optical system can be effectively corrected.
  • the axial thickness of the first lens L1 is d1
  • the axial distance between the image side of the first lens L1 and the object side of the second lens L2 is d2
  • the distance between d1 and d2 can be designed as Relationships that satisfy the following relationships:
  • Conditional expression (8) specifies the ratio of the axial thickness of the first lens L1 to the axial distance of the image side of the first lens L1 to the object side of the second lens L2, and within the range of the conditional expression, it contributes to the processing of the lens And lens assembly.
  • the imaging optical lens 10 can reasonably allocate the power, surface type, material, and on-axis thickness of each lens, etc., and thus correct various types of aberrations, Therefore, the optical imaging system Fno ⁇ 1.70 of the imaging optical lens 10 in the present invention; the total optical length of the imaging optical lens 10 TTL, and the image height IH of the imaging optical lens 10 satisfy the following relationship: TTL/IH ⁇ 1.57; the imaging optical lens 10
  • the FOV of the field of view satisfies the following relationship: FOV ⁇ 76.60 degrees.
  • the imaging optical lens 10 has good optical performance and meets the design requirements of large aperture, ultra-thin and wide angle.
  • the object side and/or image side of the lens may also be provided with a reflex point and/or a stagnation point to meet the high-quality imaging requirements.
  • a reflex point and/or a stagnation point may also be provided with a stagnation point to meet the high-quality imaging requirements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens 10 in the first embodiment. The following shows the design data of the imaging optical lens 10 in the first embodiment of the present invention.
  • Table 1 lists the curvature radius R of the object side and the image side of the first lens L1 to the seventh lens L7 constituting the imaging optical lens 10 in the first embodiment of the present invention, the axial thickness of the lens, the distance d between the lenses, and the refraction Rate nd and Abbe number vd.
  • Table 2 shows the conic coefficient k and aspherical coefficient of the imaging optical lens 10. It should be noted that in this embodiment, the unit of distance, radius, and center thickness is millimeters (mm).
  • R radius of curvature of the optical surface
  • R1 the object side of the first lens L1;
  • R2 the image side of the first lens L1;
  • R3 the object side of the second lens L2;
  • R4 the image side of the second lens L2
  • R5 the object side of the third lens L3;
  • R6 the image side of the third lens L3;
  • R7 the object side of the fourth lens L4;
  • R8 the image side of the fourth lens L4;
  • R9 the object side of the fifth lens L5;
  • R10 the image side of the fifth lens L5;
  • R11 the object side of the sixth lens L6;
  • R12 the image side of the sixth lens L6;
  • R13 the object side of the seventh lens L7;
  • R14 the image side of the seventh lens L7;
  • R15 Object side of glass plate GF
  • R16 The image side of the glass plate GF
  • d the axial thickness of the lens or the axial distance between adjacent lenses
  • d2 the axial distance between the image side of the first lens L1 and the object side of the second lens L2;
  • d4 the axial distance between the image side of the second lens L2 and the object side of the third lens L3;
  • d6 the axial distance between the image side of the third lens L3 and the object side of the fourth lens L4;
  • d10 the axial distance between the image side of the fifth lens L5 and the object side of the sixth lens L6;
  • d12 the axial distance between the image side of the sixth lens L6 and the object side of the seventh lens L7;
  • d14 the axial distance between the image side of the seventh lens L7 and the object side of the optical filter GF;
  • nd refractive index of d line
  • nd1 refractive index of the first lens L1;
  • nd2 refractive index of the second lens L2
  • nd3 refractive index of the third lens L3
  • nd4 refractive index of the fourth lens L4
  • nd5 refractive index of the fifth lens L5;
  • nd6 refractive index of the sixth lens L6
  • nd7 refractive index of the seventh lens L7;
  • ndg the refractive index of the glass plate GF
  • V7 Abbe number of the seventh lens L7;
  • vg Abbe number of glass plate GF.
  • k is a conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are aspherical coefficients.
  • the aspherical surface of each lens is preferably an aspherical surface shown in the following conditional expression (9).
  • conditional expression (9) the specific form of the following conditional expression (9) is only an example. In fact, It is not limited to the aspherical polynomial form expressed in conditional expression (9).
  • Tables 3 and 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the embodiment of the present invention.
  • P1R1, P2R2 respectively represent the object side and the image side of the first lens L1, P2R1, P2R2 respectively represent the object side and the image side of the second lens L2, P3R1, P3R2 respectively represent the object side and the image side of the third lens L3, P4R1, P4R2 respectively represent the object side and image side of the fourth lens L4, P5R1, P5R2 respectively represent the object side and image side of the fifth lens L5, P6R1, P6R2 respectively represent the object side and image side of the sixth lens L6, P7R1 P7R2 represents the object side and the image side of the seventh lens L7, respectively.
  • the corresponding data in the "Recurve Point Position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the corresponding data in the “stay point position” column is the vertical distance between the stagnation point set on the surface of each lens and the optical axis of the imaging optical lens 10.
  • FIGS. 2 and 3 show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486 nm, 588 nm, and 656 nm after passing through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 588 nm passes through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction, and T is the field curvature in the meridional direction.
  • the imaging optical lens 10 has a large aperture, ultra-thin, wide-angle And has excellent imaging performance.
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens 20 in the second embodiment.
  • the second embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Table 5 and Table 6 show the design data of the imaging optical lens 20 of the second embodiment of the present invention.
  • Tables 7 and 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486 nm, 588 nm, and 656 nm after passing through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 588 nm passes through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 4 is the field curvature in the sagittal direction
  • T is the field curvature in the meridional direction.
  • the imaging optical lens 20 has a large aperture, an ultra-thin, wide angle, and has excellent imaging performance.
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens 30 in the third embodiment.
  • the third embodiment is basically the same as the first embodiment, and the symbols have the same meaning as the first embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show the design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and magnification chromatic aberration of light having wavelengths of 486 nm, 588 nm, and 656 nm after passing through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion after the light with a wavelength of 588 nm passes through the imaging optical lens 30 of the third embodiment.
  • the imaging optical lens 30 has a large aperture, ultra-thin, wide angle, and excellent imaging performance.
  • Table 13 lists the corresponding conditional expressions (1), (2), (3), (4), (5), (( 6), (7), (8) and other related parameters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),涉及光学镜头领域,由物侧至像侧依序包括:一光圈(S1),一具有正屈折力的第一透镜(L1),一具有负屈折力的第二透镜(L2),一具有正屈折力的第三透镜(L3),一具有正屈折力的第四透镜(L4),一具有负屈折力的第五透镜(L5),一具有正屈折力的第六透镜(L6),以及一具有负屈折力的第七透镜(L7);整体摄像光学镜头的焦距为f,第二透镜(L2)的折射率为n2,第三透镜(L3)的焦距为f3,满足下列关系式:1.68≤n2≤2.20;15.00≤f3/f。摄像光学镜头能在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,七片式透镜结构逐渐出现在镜头设计当中,常见的七片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有正屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜,一具有正屈折力的第六透镜,以及一具有负屈折力的第七透镜;所述摄像光学镜头的焦距为f,焦距单位为毫米(mm),所述第二透镜的折射率为n2,所述第三透镜的焦距为f3,满足下列关系式:1.68≤n2≤2.20;15.00≤f3/f。
本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用具有不同屈折力的透镜以及在焦距上与整体光学镜头具有特定配合关系的第三透镜,以及满足特定折射率范围的第二透镜,使得光学系统在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
另外,所述第六透镜的焦距为f6,满足下列关系式:2.50≤f6/f≤5.00。
另外,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,满足下列关系式:10.00≤|f1+f3+f4|/|f2+f5|≤20.00。
另外,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:(R5+R6)/(R5-R6)≤-20.00。
另外,所述第二透镜的焦距为f2,焦距单位为毫米(mm),满足下列关系式:-15.00≤f2-f≤-11.00。
另外,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:-10.00≤(R9+R10)/(R9-R10)≤-6.00。
另外,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,满足下列关系式:9.00≤d1/d2≤12.00。
附图说明
图1是本发明第一实施方式中摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
以下为第一实施方式:
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。本实施方式中,优选的,在第七透镜L7和像面Si之间设置有玻璃平板GF等光学元件,其中玻璃平板GF可以是玻璃盖板,也可以是光学过滤片(filter),当然,在其他可实施方式中,玻璃平板GF还可以设置在其他位置。
本实施方式中,第一透镜L1具有正屈折力,其物侧面向外凸出为凸面,其像侧面为凹面;第二透镜L2具有负屈折力,其物侧面为凸面,其像侧面为凹面;第三透镜L3具有正屈折力,其物侧面为凸面,其像侧面为凹面;第四透镜L4具有正屈折力,其物侧面为凸面,其像侧面为凸面;第五透镜L5具有负屈折力,其物侧面为凹面,像侧面为凸面;第六透镜L6具有正屈折力,其物侧面为凸面,像侧面为凹面;第七透镜L7具有负屈折力其物侧面为凸面,像侧面为凹面。
此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。
本实施方式中,所述摄像光学镜头10的焦距为f,焦距单位为毫米(mm),所述第二透镜L2的折射率为n2,所述第三透镜L3的焦距为f3。所述f、f3以及n2满足下列关系式:
1.68≤n2≤2.20   (1)
15.00≤f3/f   (2)
其中,条件式(1)规定了第二透镜L2的折射率。需要说明的是,随着镜头向广角 化、超薄化发展,采用折射率在条件式(1)范围内的光学材料,将有利于提升光学系统性能,并且能够进一步缩短光学系统的总长。
条件式(2)规定了第三透镜L3与整体摄像光学镜头10焦距之间的比值。如此设置,第三透镜L3可以更合理的分配光焦度,提高摄像光学镜头10的光学性能。
本实施方式中,通过上述透镜的配置方式,利用具有不同屈折力的各个透镜以及在焦距上与整体光学镜头10具有特定配合关系的第三透镜L3,以及满足特定折射率范围的第二透镜,使得光学系统在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,本发明实施方式中,第六透镜L6的焦距为f6,整体摄像光学镜头10的焦距为f,其中,f6和f可以设计为满足下列关系的关系式:
2.50≤f6/f≤5.00   (3)
条件式(3)规定了第六透镜L6的焦距与整体摄像光学镜头10焦距之间的比值。如此设置,第六透镜L6可以更合理的分配光焦度,有助于对摄像光学镜头10的像差进行校正,进而提升成像品质。
优选的,本发明实施方式中,第一透镜L1的焦距为f1,第二透镜L2的焦距为f2,第三透镜L3的焦距为f3,第四透镜L4的焦距为f4,第五透镜L5的焦距为f5,其中,f1、f2、f3、f4与f5之间可以设计为满足下列关系的关系式:
10.00≤|f1+f3+f4|/|f2+f5|≤20.00   (4)
条件式(4)规定了第一透镜L1的焦距f1,第二透镜L2的焦距f2,第三透镜L3的焦距f3之和的绝对值与第四透镜L4的焦距f4与第五透镜L5的焦距f5之和的绝对值的比值,如此设置,在满足条件式(3)的前提下,有助于提升光学系统成像品质。
优选的,本实施方式中,第三透镜L3物侧面的曲率半径为R5,第三透镜L3像侧面的曲率半径为R6,R5与R6之间可以设计为满足下列关系的关系式:
(R5+R6)/(R5-R6)≤-20.00   (5)
条件式(5)规定了第三透镜L3的形状。随着镜头向广角和超薄化发展,在R5与R6在条件式(5)的范围内时,可以缓和光线经过镜片的偏折程度,有效减小像差。
优选的,本实施方式中,第二透镜L2的焦距为f2,f2与f之间可以设计为满足下列关系的关系式:
-15.00≤f2-f≤-11.00   (6)
条件式(6)规定了第二透镜L2的焦距f2与整体摄像光学镜头10的焦距f之差,在条件式范围内时,有助于光学系统获得良好的成像品质。
优选的,在本实施方式中,第五透镜L5物侧面的曲率半径为R9,第五透镜L5像侧面的曲率半径为R10,R9与R10之间可以设计为满足下列关系的关系式:
-10.00≤(R9+R10)/(R9-R10)≤-6.00   (7)
条件式(7)规定了第五透镜的形状,在条件式范围内时,可以有效校正光学系统前面四片镜片(L1、L2、L3、L4)所产生的像差。
优选的,在本实施方式中,第一透镜L1的轴上厚度为d1,第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离为d2,d1与d2之间可以设计为满足下列关系的关系式:
9.00≤d1/d2≤12.00   (8)
条件式(8)规定了第一透镜L1的轴上厚度和第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离的比值,在条件式范围内,有助于镜片的加工和镜头的组装。
值得一提的是,由于构成本实施方式的摄像光学透镜10的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7具有如前所述的结构和参数关系,因此,摄像光学镜头10能够合理分配各透镜的光焦度、面型、材料以及各透镜的轴上厚度等,并因此校正了各类像差,所以本发明中的摄像光学镜头10的光学成像系统Fno≤1.70;摄像光学镜头10的光学总长TTL,摄像光学镜头10的像高IH,满足下列关系式:TTL/IH≤1.57;摄像光学镜头10的视场角FOV,满足以下关系式:FOV≥76.60度。使得摄像光学镜头10在具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
图1是第一实施方式中摄像光学镜头10的结构示意图。以下示出了本发明第一实施方式中摄像光学镜头10的设计数据。
表1列出了本发明第一实施方式中构成摄像光学镜头10的第一透镜L1~第七镜头L7的物侧以及像侧曲率半径R、透镜的轴上厚度以及透镜间的距离d、折射率nd及阿贝数vd。表2示出了摄像光学镜头10的圆锥系数k与非球面系数。需要说明的是,本实施方式中,距离、半径和中心厚度的单位为毫米(mm)。
【表1】
Figure PCTCN2019108894-appb-000001
上表中各符号的含义如下。
R:光学面的曲率半径;
S1:光圈;
R1:第一透镜L1的物侧面;
R2:第一透镜L1的像侧面;
R3:第二透镜L2的物侧面;
R4:第二透镜L2的像侧面;
R5:第三透镜L3的物侧面;
R6:第三透镜L3的像侧面;
R7:第四透镜L4的物侧面;
R8:第四透镜L4的像侧面;
R9:第五透镜L5的物侧面;
R10:第五透镜L5的像侧面;
R11:第六透镜L6的物侧面;
R12:第六透镜L6的像侧面;
R13:第七透镜L7的物侧面;
R14:第七透镜L7的像侧面;
R15:玻璃平板GF的物侧面;
R16:玻璃平板GF的像侧面;
d:透镜的轴上厚度或相邻透镜之间的轴上距离;
d0:从开口光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:玻璃平板GF的轴上厚度;
d16:玻璃平板GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的折射率;
nd2:第二透镜L2的折射率;
nd3:第三透镜L3的折射率;
nd4:第四透镜L4的折射率;
nd5:第五透镜L5的折射率;
nd6:第六透镜L6的折射率;
nd7:第七透镜L7的折射率;
ndg:玻璃平板GF的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
V7:第七透镜L7的阿贝数;
vg:玻璃平板GF的阿贝数。
【表2】
Figure PCTCN2019108894-appb-000002
在表2中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
需要说明的是,本实施方式中各透镜的非球面优选的使用下述条件式(9)所示的非球面,但是,下述条件式(9)的具体形式仅为一个示例,实际上,并不限于条件式(9)中表示的非球面多项式形式。
Y=(x2/R)/{1+[1-(1+k)(x2/R2)] 1/2}+A 4x 4+A 6x 6+A 8x 8+A 10x 10+A 12x 12+A 14x 14+A 16x 16(9)
表3、表4示出本发明实施例的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P2R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3
P1R1 1 1.255    
P1R2 3 0.275 0.625 0.945
P2R1 1 0.745    
P2R2 1 1.025    
P3R1 2 0.615 1.285  
P3R2 2 0.505 1.355  
P4R1 1 0.525    
P4R2 1 1.255    
P5R1        
P5R2 3 1.145 1.515 1.685
P6R1 3 0.865 1.915 2.095
P6R2 1 1.035    
P7R1 2 0.505 1.695  
P7R2 2 0.695 2.785  
【表4】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2 1 1.065  
P2R1 1 1.165  
P2R2      
P3R1 1 0.995  
P3R2 1 0.805  
P4R1 1 0.835  
P4R2 1 1.425  
P5R1      
P5R2      
P6R1 1 1.345  
P6R2 1 1.605  
P7R1 2 0.975 2.585
P7R2 1 1.535  
另外,在后续的表13中,还列出了第一实施方式中各种参数与条件式中已规定的参数所对应的值。
图2、图3分别示出了波长为486nm、588nm和656nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为588nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式中,所述摄像光学镜头10的全画角为2ω,F值为Fno,其中,2ω=78.25°,Fno=1.70,如此,摄像光学镜头10具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为第二实施方式:
图5是第二实施方式中摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出了本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure PCTCN2019108894-appb-000003
【表6】
Figure PCTCN2019108894-appb-000004
表7、表8示出本发明实施例的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
  反曲点个数 反曲点位置1 反曲点位置2 反曲点位置3 反曲点位置4 反曲点位置5
P1R1 1 1.305        
P1R2 5 0.305 0.495 1.005 1.225 1.265
P2R1 2 0.905 1.225      
P2R2 1 1.095        
P3R1 1 0.605        
P3R2 1 0.495        
P4R1 1 0.515        
P4R2 1 1.265        
P5R1            
P5R2 3 1.185 1.465 1.715    
P6R1 3 0.875 1.915 2.095    
P6R2 1 1.035        
P7R1 2 0.505 1.695      
P7R2 2 0.705 2.765      
【表8】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2 2 1.155 1.245
P2R1      
P2R2      
P3R1 1 0.965  
P3R2 1 0.805  
P4R1 1 0.825  
P4R2 1 1.435  
P5R1      
P5R2      
P6R1 1 1.345  
P6R2 1 1.605  
P7R1 2 0.985 2.545
P7R2 1 1.555  
在后续的表13中,还列出了第二实施方式中各种参数与条件式中已规定的参数所对应的值。
图6、图7分别示出了波长为486nm、588nm和656nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为588nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
在本实施方式的摄像光学镜头20中,2ω=77.95°,Fno=1.70,如此,摄像光学镜头 20具有大光圈、超薄、广角,且具有优秀的成像性能。
以下为第三实施方式:
图9是第三实施方式中摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出了本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure PCTCN2019108894-appb-000005
【表10】
Figure PCTCN2019108894-appb-000006
表11、表12示出本发明实施例的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
  反曲点个数 反曲点位置1 反曲点位置2
P1R1      
P1R2 2 0.285 0.455
P2R1 2 0.945 1.255
P2R2 1 0.915  
P3R1 2 0.605 1.115
P3R2 2 0.525 1.275
P4R1 1 0.545  
P4R2 1 1.125  
P5R1      
P5R2 2 1.085 1.435
P6R1 1 0.795  
P6R2 1 0.945  
P7R1 2 0.475 1.755
P7R2 2 0.675 2.755
【表12】
  驻点个数 驻点位置1 驻点位置2
P1R1      
P1R2      
P2R1      
P2R2      
P3R1 2 1.095 1.115
P3R2 1 0.845  
P4R1 1 0.875  
P4R2 1 1.315  
P5R1      
P5R2      
P6R1 1 1.275  
P6R2 1 1.475  
P7R1 2 0.885 2.715
P7R2 1 1.425  
在后续的表7中,还列出了第三实施方式中各种参数与条件式中已规定的参数所对应的值。
图10、图11分别示出了波长为486nm、588nm和656nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为588nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
在本实施方式的摄像光学镜头30中,2ω=76.59°,Fno=1.70,如此,摄像光学镜头30具有大光圈、超薄、广角,且具有优秀的成像性能。
以下表13按照上述条件式列出了第一实施方式、第二实施方式和第三实施方式中对应各条件式(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)的数值,以及其他相关参数的取值。
【表13】
  实施例1 实施例2 实施例3 备注
n2 1.69 1.85 2 条件式(1)
f3/f 48.61 51.81 60.34 条件式(2)
f6/f 3.22 3.27 3.85 条件式(3)
∣f1+f3+f4∣/∣f2+f5∣ 12.54 13.78 14.44 条件式(4)
(R5+R6)/(R5-R6) -47.31 -53.96 -68.3 条件式(5)
f2-f -11.79 -11.08 -11.32 条件式(6)
(R9+R10)/(R9-R10) -6.24 -6.39 -7.13 条件式(7)
d1/d2 9.56 9.93 10.15 条件式(8)
f 4.367 4.39 4.498  
f1 4.224 4.016 4.152  
f2 -7.427 -6.694 -6.82  
f3 212.292 227.436 271.396  
f4 6.97 7.036 6.568  
f5 -10.399 -10.615 -12.72  
f6 14.045 14.349 17.309  
f7 -16.842 -16.75 -11.792  
f12 7.614 7.55 7.835  
IH 3.552 3.552 3.552  
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (7)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有正屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜,一具有正屈折力的第六透镜,以及一具有负屈折力的第七透镜;
    整体摄像光学镜头的焦距为f,焦距单位为毫米(mm),所述第二透镜的折射率为n2,所述第三透镜的焦距为f3,满足下列关系式:
    1.68≤n2≤2.20;
    15.00≤f3/f。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,满足下列关系式:
    2.50≤f6/f≤5.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5,满足下列关系式:
    10.00≤|f1+f3+f4|/|f2+f5|≤20.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,满足下列关系式:
    (R5+R6)/(R5-R6)≤-20.00。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,满足下列关系式:
    -15.00≤f2-f≤-11.00。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:
    -10.00≤(R9+R10)/(R9-R10)≤-6.00。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,满足下列关系式:
    9.00≤d1/d2≤12.00。
PCT/CN2019/108894 2018-12-31 2019-09-29 摄像光学镜头 WO2020140505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811650529.2 2018-12-31
CN201811650529.2A CN109445076B (zh) 2018-12-31 2018-12-31 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2020140505A1 true WO2020140505A1 (zh) 2020-07-09

Family

ID=65542476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108894 WO2020140505A1 (zh) 2018-12-31 2019-09-29 摄像光学镜头

Country Status (4)

Country Link
US (1) US11314049B2 (zh)
JP (1) JP6803646B2 (zh)
CN (1) CN109445076B (zh)
WO (1) WO2020140505A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445076B (zh) * 2018-12-31 2021-10-19 诚瑞光学(苏州)有限公司 摄像光学镜头
CN110361835B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN113433668B (zh) * 2019-08-28 2022-06-10 浙江舜宇光学有限公司 光学成像系统
WO2021127892A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 光学摄像镜头
WO2021128146A1 (zh) * 2019-12-26 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111929819B (zh) 2020-09-02 2021-04-27 诚瑞光学(苏州)有限公司 摄像光学镜头
CN114371547B (zh) * 2022-03-22 2022-07-12 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取系统组
CN105319680A (zh) * 2014-08-01 2016-02-10 大立光电股份有限公司 取像用光学镜组、取像装置及电子装置
CN107678135A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107797237A (zh) * 2017-10-19 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头
TWI622822B (zh) * 2017-09-13 2018-05-01 大立光電股份有限公司 影像系統鏡組、取像裝置及電子裝置
CN108121055A (zh) * 2017-12-29 2018-06-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108318998A (zh) * 2018-03-13 2018-07-24 瑞声科技(新加坡)有限公司 摄像光学镜头
US20180246300A1 (en) * 2012-11-21 2018-08-30 Kantatsu Co., Ltd. Imaging lens
TWI644142B (zh) * 2018-01-25 2018-12-11 大立光電股份有限公司 成像用光學鏡組、取像裝置及電子裝置
CN109445076A (zh) * 2018-12-31 2019-03-08 瑞声光电科技(苏州)有限公司 摄像光学镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587970B2 (ja) * 1975-09-05 1983-02-14 ミノルタ株式会社 マエシボリダイコウケイレンズ
JPS6317422A (ja) * 1986-07-09 1988-01-25 Canon Inc 小型の変倍光学系
JPH07111502B2 (ja) * 1986-12-19 1995-11-29 旭光学工業株式会社 コンパクトカメラ用ズ−ムレンズ
JP6160423B2 (ja) * 2013-10-04 2017-07-12 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP6388703B1 (ja) * 2017-10-19 2018-09-12 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取系统组
US20180246300A1 (en) * 2012-11-21 2018-08-30 Kantatsu Co., Ltd. Imaging lens
CN105319680A (zh) * 2014-08-01 2016-02-10 大立光电股份有限公司 取像用光学镜组、取像装置及电子装置
TWI622822B (zh) * 2017-09-13 2018-05-01 大立光電股份有限公司 影像系統鏡組、取像裝置及電子裝置
CN107678135A (zh) * 2017-10-19 2018-02-09 瑞声科技(新加坡)有限公司 摄像光学镜头
CN107797237A (zh) * 2017-10-19 2018-03-13 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108121055A (zh) * 2017-12-29 2018-06-05 玉晶光电(厦门)有限公司 光学成像镜头
TWI644142B (zh) * 2018-01-25 2018-12-11 大立光電股份有限公司 成像用光學鏡組、取像裝置及電子裝置
CN108318998A (zh) * 2018-03-13 2018-07-24 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109445076A (zh) * 2018-12-31 2019-03-08 瑞声光电科技(苏州)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
US20200209545A1 (en) 2020-07-02
CN109445076A (zh) 2019-03-08
US11314049B2 (en) 2022-04-26
JP2020109495A (ja) 2020-07-16
JP6803646B2 (ja) 2020-12-23
CN109445076B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2020140509A1 (zh) 摄像光学镜头
WO2020140520A1 (zh) 摄像光学镜头
WO2020134373A1 (zh) 摄像光学镜头
WO2020134483A1 (zh) 摄像光学镜头
WO2020140498A1 (zh) 摄像光学镜头
WO2020140508A1 (zh) 摄像光学镜头
WO2020140505A1 (zh) 摄像光学镜头
WO2020134294A1 (zh) 摄像光学镜头
WO2020140521A1 (zh) 摄像光学镜头
WO2022082928A1 (zh) 摄像光学镜头
WO2020140502A1 (zh) 摄像光学镜头
WO2022052264A1 (zh) 摄像光学镜头
WO2022067954A1 (zh) 摄像光学镜头
WO2020140595A1 (zh) 摄像光学镜头
WO2022016629A1 (zh) 摄像光学镜头
WO2022016624A1 (zh) 摄像光学镜头
WO2022052258A1 (zh) 摄像光学镜头
WO2022021512A1 (zh) 摄像光学镜头
WO2020140497A1 (zh) 摄像光学镜头
WO2022088252A1 (zh) 摄像光学镜头
WO2022057046A1 (zh) 摄像光学镜头
WO2022057049A1 (zh) 摄像光学镜头
WO2022126699A1 (zh) 摄像光学镜头
WO2022047979A1 (zh) 摄像光学镜头
WO2022088347A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906827

Country of ref document: EP

Kind code of ref document: A1