WO2021029266A1 - 成形用樹脂シートおよびそれを用いた成形品 - Google Patents
成形用樹脂シートおよびそれを用いた成形品 Download PDFInfo
- Publication number
- WO2021029266A1 WO2021029266A1 PCT/JP2020/029751 JP2020029751W WO2021029266A1 WO 2021029266 A1 WO2021029266 A1 WO 2021029266A1 JP 2020029751 W JP2020029751 W JP 2020029751W WO 2021029266 A1 WO2021029266 A1 WO 2021029266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- layer
- mass
- resin sheet
- hardness
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/071—Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C51/00—Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
- B29C51/08—Deep drawing or matched-mould forming, i.e. using mechanical means only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/0017—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/02—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/15—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/402—Coloured
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/414—Translucent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2369/00—Polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
Definitions
- the present invention relates to a resin sheet for molding and a molded product using the same.
- Glass plates, transparent resin plates, etc. are used for display surface components of automobile interior parts such as instrument covers, home appliances, OA equipment, personal computers, small mobile devices, etc., and the frame parts that hold them are made of resin. Molded body is used.
- a transparent sheet, particularly a glass plate, bonded to a frame component made of injection molded resin with a double-sided adhesive tape or the like is used as a component of a touch panel type display surface used in a mobile phone terminal or the like.
- a transparent sheet, particularly a glass plate, bonded to a frame component made of injection molded resin with a double-sided adhesive tape or the like is used as the touch panel type display surface.
- a material having a high elastic modulus is selected because a thinner thickness is preferable from the viewpoint of response speed and a certain thickness or more is required from the viewpoint of strength.
- scratch resistance and fingerprint wiping property are also required.
- the resin molded body used for the above-mentioned applications can be manufactured by molding a resin sheet, but various measures have been taken to impart characteristics according to the application.
- the resin sheet is modified with a hard coat layer, a decorative sheet, or the like, resin layers having different compositions are laminated to form a resin sheet, or the composition of the resin to be used is devised. ..
- Patent Document 1 discloses a decorative sheet in which a transparent acrylic resin sheet layer, a pattern printing ink layer, an ABS resin sheet layer, and an ABS resin backer layer are laminated in this order from the surface side.
- Patent Document 2 discloses a multilayer film in which a layer made of a methacrylic resin and an acrylic rubber particle is laminated on the surface of a polycarbonate resin layer, and one surface of the multilayer film is decorated and added.
- a decorative sheet in which a thermoplastic resin sheet is laminated on a decorative surface is disclosed. Further, a decorative molded product manufactured by injection molding a thermoplastic resin on the decorative surface is also disclosed.
- Patent Document 3 discloses a resin molded product formed by using a sheet provided with a thermosetting type or ultraviolet curable type hard coat layer on a resin base material. Further, Patent Document 4 discloses a decorative hard coat film having a layer formed by using a hard coat paint having a specific composition on one side of the base film, and a printing layer is provided on the base film. Good things are also mentioned. This decorative film can be thermoformed. The decorative film described in Patent Document 4 is integrated with a molding resin to become a decorative molded product.
- Patent Document 5 discloses a laminated sheet provided with a coating layer containing an acrylic resin as a main component on one side of a base material layer containing a polycarbonate resin composition as a main component.
- the components of the display surface may be provided with an anti-glare layer in order to disperse the reflection of external light and make the display easier to see.
- the anti-glare treatment is applied by imparting a fine structure or shape to the surface. If the display surface has a curved shape, when the glass plate is used as a front plate component, it is necessary to bend the glass plate and then perform anti-glare treatment. This is because the anti-glare layer cannot withstand the bending temperature of the glass and disappears. However, it is difficult to uniformly apply anti-glare treatment to a curved surface. On the other hand, when a resin plate is used, it is possible to bend a flat plate that has been anti-glare treated in advance. Since the bending temperature of the resin plate is significantly lower than the bending temperature of glass and the anti-glare layer does not disappear, there is an advantage that it is not necessary to perform anti-glare treatment on the curved surface.
- the display surface of car navigation systems and smartphones is often provided with a touch panel function, but if the display surface has a curved surface shape, it is very difficult to attach the touch sensor to the curved resin front plate. Therefore, before shaping the resin plate into a curved shape, the touch sensor is attached in advance in the state of a flat plate, and then the resin plate and the touch sensor are simultaneously shaped. It is necessary to attach the touch sensor to the curved front plate. As a manufacturing process, the productivity becomes very high.
- the high retardation resin front plate and the low retardation resin film touch sensor were suitable. This is because if the combination of retardation other than the above is used, color unevenness or coloring occurs when the car navigation system or smartphone is viewed while wearing polarized sunglasses, and the visibility deteriorates.
- the present inventors preferably have a high retardation resin front plate retardation of 3500 nm or more, more preferably 4000 nm, and a low retardation resin film touch sensor retardation of 100 nm or less, further preferably 50 nm or less. I found that.
- An object of the present invention is to provide a molding resin sheet having high hardness, less likely to cause appearance abnormality during molding, and suppressed color unevenness and coloring even when wearing polarized sunglasses, and a resin molded product using the same.
- the inventors of the present application have diligently studied a resin sheet for molding containing a polycarbonate resin as a base material, a resin sheet having a hard coat layer on the surface, and a resin film touch sensor to be bonded to the resin sheet.
- a high-hardness resin layer is provided between the polycarbonate resin layer and the hard coat layer, and further, by selecting a polycarbonate resin and a high-hardness resin whose glass transition points satisfy a predetermined relationship, the hardness is increased. It has been found that it is possible to provide a resin sheet that is expensive and less likely to cause appearance abnormalities such as cracks and flow marks during molding.
- the present invention is, for example, as follows.
- a high hardness resin layer containing a high hardness resin is provided on at least one surface of the base material layer containing the polycarbonate resin (a1), and a hard coat layer or a hard coat anti-glare layer is provided on at least one surface of the high hardness resin layer.
- It is a resin sheet in which The glass transition points of the polycarbonate resin (a1) and the high-hardness resin satisfy the following relationship: -10 ° C ⁇ (glass transition point of high hardness resin)-(glass transition point of polycarbonate resin (a1)) ⁇ 40 ° C
- the in-plane retardation of the resin sheet measured at a wavelength of 543 nm is 4000 nm or more.
- the polycarbonate resin (a1) is an aromatic polycarbonate resin.
- the aromatic polycarbonate resin contains a structural unit represented by the following general formula (4a).
- ⁇ 5> The molding resin sheet according to any one of ⁇ 1> to ⁇ 4> above, wherein the high hardness resin is selected from the group consisting of the following resins (B1) to (B6): -Resin (B1): Contains a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2).
- the high hardness resin is selected from the group consisting of the following resins (B1) to (B6): -Resin (B1): Contains a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2).
- Copolymer, or alloy of the copolymer and resin (B2) (In the formula, R1 is a hydrogen atom or a methyl group; R2 is an alkyl group having 1 to 18 carbon atoms.) (In the formula, R3 is a hydrogen atom or a methyl group; R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.); Resin (B2): A copolymer (D) containing 6 to 77% by mass of the (meth) acrylic acid ester constituent unit, 15 to 71% by mass of the styrene constituent unit, and 8 to 23% by mass of the unsaturated dicarboxylic acid constituent unit.
- Resin (B3) A copolymer containing a structural unit (c) represented by the following general formula (6) and optionally a structural unit (d) represented by the following general formula (7); Resin (B4): A copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit.
- ⁇ 7> The molding resin sheet according to any one of ⁇ 1> to ⁇ 6>, wherein the total thickness of the base material layer and the high hardness resin layer is 0.5 mm to 3.5 mm.
- ⁇ 8> The molding according to any one of ⁇ 1> to ⁇ 7> above, wherein the ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is 75% to 99%.
- Resin sheet for. ⁇ 9> The molding resin sheet according to any one of ⁇ 1> to ⁇ 8> above, wherein the haze of the molding resin sheet is 2 to 30%.
- ⁇ 10> The molding resin sheet according to any one of ⁇ 1> to ⁇ 9> above, wherein the pencil hardness on the surface of the hard coat layer in the molding resin sheet is 2H or more.
- the resin film (X) in the molding resin sheet is made of a polycarbonate film containing a polycarbonate resin (a1).
- the resin film (X) in the molding resin sheet comprises a film touch sensor in which a sensor electrode is formed on a polycarbonate film.
- ⁇ 13> The molding resin sheet according to any one of ⁇ 1> to ⁇ 12> above, wherein the adhesive layer in the molding resin sheet is an optical adhesive sheet.
- ⁇ 14> A resin molded product molded by using the molding resin sheet according to any one of ⁇ 1> to ⁇ 13> above.
- a high-hardness resin layer is provided on the base material layer containing the polycarbonate resin, and a hard coat layer or a hard coat anti-glare layer is provided on the outside, so that it is not easily scratched, has antiglare properties, has good visibility, and is thermally bent.
- An easy resin plate can be provided.
- the molding resin sheet of the present invention includes a base material layer containing a polycarbonate resin (a1), a high hardness resin layer containing a high hardness resin, and a hard coat layer or a hard coat antiglare.
- the high hardness resin layer comprises a layer and is located between the base material layer and the hard coat layer or the hard coat anti-glare layer.
- Further layers may be present between the base material layer and the high hardness resin layer, and between the high hardness resin layer and the hard coat layer or the hard coat anti-glare layer. Examples of the further layer include, but are not limited to, an adhesive layer, a primer layer, and the like.
- a resin sheet including a hard coat layer or a hard coat anti-glare layer laminated on the resin layer is provided.
- the high hardness resin layer and the hard coat layer or the hard coat anti-glare layer may be provided on at least one side of the base material layer, and the configuration on the other side is not particularly limited. Further, the high hardness resin layer may be provided on both sides of the base material layer, and in that case, the hard coat layer or the hard coat anti-glare layer can be provided on one or both of the high hardness resin layers. When the high hardness resin layers are provided on both sides of the base material layer, it is desirable to use the same high hardness resin for the two high hardness resin layers in order to obtain a stable resin sheet with less warpage.
- the molding resin sheet of the present invention has a high hardness resin layer provided between the base material layer and the hard coat layer or the hard coat anti-glare layer, and further has high hardness with the polycarbonate resin (a1) in the base material layer.
- the glass transition points of the high-hardness resin in the resin layer satisfy a predetermined relationship, it is possible to obtain a resin sheet having high hardness and less likely to cause appearance abnormalities such as cracks and flow marks during molding. In particular, abnormal appearance is unlikely to occur during thermoforming, and such a resin sheet can be said to be a resin sheet suitable for thermoforming because conditions (temperature, heating time, etc.) during thermoforming can be widely set.
- a resin sheet having a hard coat layer or a hard coat anti-glare layer on the surface as in the present invention has excellent impact resistance as compared with a normal glass plate. Highly safe and lightweight. In addition, it is easier to bend than a normal glass plate and will not break with a slight bend. It is considered that this is because the hard coat layer or the hard coat anti-glare layer in the resin sheet has a certain degree of flexibility.
- the hardness of the resin sheet can be further increased.
- the hard coat anti-glare layer is provided directly on the polycarbonate resin layer, there may be a problem that the elastic modulus is low and buckling is likely to occur, but such a problem can be solved by providing the high hardness resin layer.
- the glass transition points of the polycarbonate resin (a1) in the base material layer and the high hardness resin in the high hardness resin layer satisfy the following relationship. -10 ° C ⁇ (glass transition point of high hardness resin)-(glass transition point of polycarbonate resin (a1)) ⁇ 40 ° C
- the glass transition point (Tg) and melt viscosity of the resin contained in each layer are different so that problems such as cracks do not occur. There was a problem that it was difficult to thermoform.
- such a problem can be solved by using the polycarbonate resin (a1) and the high hardness resin satisfying the above relationship.
- thermoforming a multi-layered resin sheet into a desired shape it is usually molded according to the molding temperature of the resin contained most in the layer.
- the polycarbonate resin having good impact resistance is usually contained in the largest amount, so thermoforming is performed at a molding temperature suitable for the polycarbonate resin. ..
- the resin sheet of the present invention uses a polycarbonate resin (a1) and a high-hardness resin that satisfy the above relationship, the problem of appearance abnormality is unlikely to occur even when thermoforming is performed at a molding temperature suitable for the polycarbonate resin. .. Therefore, it can be said that the resin sheet of the present invention is a resin sheet more suitable for thermoforming than the conventional one.
- the glass transition point of the polycarbonate resin (a1) and the high hardness resin is preferably ⁇ 5 ° C. ⁇ (glass transition point of the high hardness resin) ⁇ (glass transition point of the polycarbonate resin (a1)) ⁇ 30 ° C., 0. More preferably, ° C. ⁇ (glass transition point of the high hardness resin)-(glass transition point of the polycarbonate resin (a1)) ⁇ 30 ° C.
- the Tg of the high-hardness resin is extremely lower than the Tg of the polycarbonate resin (a1), the high-hardness resin is in a rubber state or a molten state at the time of thermoforming, and becomes easy to move.
- the hard coat anti-glare layer which has a highly crosslinked structure and is hard even when heat is applied, cannot follow the movement of the high-hardness resin which has become easy to move, and cracks are likely to occur.
- the Tg of the high hardness resin is too high as compared with the Tg of the polycarbonate resin (a1), the difference in viscosity between the high hardness resin and the polycarbonate resin becomes large, and the interface becomes rough when these are laminated, resulting in a flow. Marks can occur.
- the resin sheet of the present invention can be suitably used for producing a molded product having a bent shape that requires hardness.
- a component having a bent portion continuous with a flat portion can be successfully manufactured, it is also possible to provide a product having a new design and a function.
- many problems such as cracks occur during thermoforming such as hot press molding, vacuum forming, compressed air molding, and TOM molding. It was. Therefore, in order to suppress the occurrence of cracks during thermoforming, it is necessary to take measures such as reducing the hardness of the hard coat.
- the hardness of the hard coat is reduced, although the thermoformability is improved, there are new problems that the hard coat is soft and easily scratched, and the chemical resistance is lowered.
- the resin sheet of the present invention since the generation of cracks is suppressed as described above, it is possible to provide a heat-forming resin sheet without lowering the hardness of the hard coat. Since the resin sheet of the present invention can be provided with a hard hard coat anti-glare layer on the surface layer, it is not easily scratched and has high chemical resistance. Taking advantage of these characteristics, the resin sheet of the present invention can be used for curved surfaces in display surface components of personal computers, mobile phones, automobile exterior and interior members, mobile phone terminals, personal computers, tablet PCs, car navigation systems, and the like. It is possible to use it for a housing or a front plate having a.
- the base material layer is a resin layer mainly containing a polycarbonate resin (a1).
- the polycarbonate resin (a1) contained in the base material layer may be one type or two or more types.
- the content of the polycarbonate resin (a1) in the base material layer is preferably 75 to 100% by mass, more preferably 90 to 100% by mass, and 100% by mass with respect to the total mass of the base material layer. Is particularly preferable. Impact resistance is improved by increasing the content of the polycarbonate resin.
- the polycarbonate resin (a1) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (where R is an aliphatic group, an aromatic group, or an aliphatic group and aroma. It may contain both group groups, and may have a linear structure or a branched structure), but is not particularly limited, but is preferably an aromatic polycarbonate resin. In particular, it is preferable to use a polycarbonate resin containing the structural unit of the following formula (4a). By using such a polycarbonate resin, a resin sheet having higher impact resistance can be obtained.
- an aromatic polycarbonate resin for example, Iupiron S-2000, Iupilon S-1000, Iupilon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
- an aromatic polycarbonate resin for example, Iupiron S-2000, Iupilon S-1000, Iupilon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
- a polycarbonate resin to which a monohydric phenol as represented by the following general formula (4) is added as a terminal terminator has also been used.
- the polycarbonate resin to which the terminal terminator is added can be used as described above.
- R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
- R 2 to R 5 each independently have a hydrogen atom, a halogen, or a substituent.
- alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms which may be used; where the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 6 to 12 carbon atoms. It is an aryl group.
- the "alkyl group” and the “alkenyl group” may be linear or branched chain, and may have a substituent.
- the monohydric phenol represented by the general formula (4) is represented by the following general formula (5).
- R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
- the carbon number of R 1 in the general formula (4) or the general formula (5) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable.
- either or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester shall be used as the terminal terminator. Is particularly preferable.
- monohydric phenol which is an alkyl group having 16 carbon atoms in R 1 in the general formula (5)
- it is excellent in glass transition temperature, melt fluidity, moldability, drawdown resistance and the like. It is particularly preferable because a polycarbonate resin can be obtained and the monohydric phenol is excellent in solvent solubility during the production of the polycarbonate resin.
- Examples of the polycarbonate resin using such a monohydric phenol include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company). If the carbon number of R 1 in the general formula (4) or the general formula (5) is too small, the glass transition point of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may deteriorate.
- the weight average molecular weight of the polycarbonate resin (a1) can affect the impact resistance and molding conditions of the resin sheet. That is, if the weight average molecular weight is too small, the impact resistance of the resin sheet may decrease. If the weight average molecular weight is too high, an excess heat source may be required when forming the base material layer containing the polycarbonate resin (a1). Further, since a high temperature is required depending on the molding method selected, the polycarbonate resin (a1) is exposed to a high temperature, which may adversely affect its thermal stability.
- the weight average molecular weight of the polycarbonate resin (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 20,000 to 65,000.
- the weight average molecular weight in the present specification is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
- the Tg of the polycarbonate resin (a1) is preferably 90 to 190 ° C., more preferably 100 to 170 ° C., and particularly preferably 110 to 150 ° C.
- the glass transition point is a temperature calculated by the midpoint method measured at a sample of 10 mg and a heating rate of 10 ° C./min using a differential scanning calorimetry device.
- the base material layer may contain another resin in addition to the polycarbonate resin (a1).
- a resin include polyester resin and the like.
- the polyester resin preferably contains mainly terephthalic acid as a dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
- a polyester resin obtained by polycondensing a glycol component containing 20 to 40 mol% (100 mol% in total) of 1,4-cyclohexanedimethanol with 80 to 60 mol% of ethylene glycol as the main component so-called "PETG").
- PETG 1,4-cyclohexanedimethanol
- the resin in the base material layer is preferably only the polycarbonate resin (a1), but when other resins are contained, the amount thereof is 0 to 25% by mass with respect to the total mass of the base material layer. It is preferably 0 to 10% by mass, more preferably 0 to 10% by mass.
- the base material layer may further contain additives and the like.
- additives those usually used in a resin sheet can be used, and such an additive includes, for example, an antioxidant, an anticolorant, an anticharge agent, a release agent, a lubricant, a dye, and the like. Examples thereof include pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, and reinforcing materials such as organic fillers and inorganic fillers.
- the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
- the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer.
- the thickness of the base material layer is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and particularly preferably 0.3 to 3.5 mm.
- the high-hardness resin layer is a resin layer mainly containing a high-hardness resin.
- the high hardness resin means a resin having a hardness higher than that of a polycarbonate resin as a base material and having a pencil hardness of HB or more.
- the pencil hardness of the high hardness resin is preferably HB to 3H, more preferably H to 3H, and particularly preferably 2H to 3H.
- the high-hardness resin contained in the high-hardness resin layer may be one type or two or more types.
- Tg glass transition point of the polycarbonate resin to be used, and from among the known high hardness resins, "-10 ° C ⁇ (glass transition point of the high hardness resin)-(polycarbonate resin (a1) ), A high-hardness resin having a Tg that satisfies the relationship of) ⁇ 40 ° C. ”can be appropriately selected and used.
- the high hardness resin is preferably selected from at least one of the resins (B1) to (B6) shown below.
- the resin (B1) includes a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). It is a copolymer containing, or an alloy of the copolymer and a resin (B2) described below.
- R1 is a hydrogen atom or a methyl group
- R2 is an alkyl group having 1 to 18 carbon atoms.
- R3 is a hydrogen atom or a methyl group
- R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.
- the "hydrocarbon group” may be linear, branched, or cyclic, and may have a substituent.
- R2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and carbon. More preferably, it is an alkyl group having the number 1 to 6. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group, and an isobornyl group.
- R2 is a methyl group or an ethyl group (meth) acrylic acid ester structural unit, and more preferably R1 is a methyl group and R2 is It is a methyl methacrylate constituent unit which is a methyl group.
- R3 is a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
- R4 is a cyclohexyl group substituted with a cyclohexyl group or a hydrocarbon group having 1 to 4 carbon atoms, and is preferably a cyclohexyl group having no substituent. Therefore, among the aliphatic vinyl constituent units (b), more preferable is an aliphatic vinyl constituent unit in which R3 is a hydrogen atom and R4 is a cyclohexyl group.
- the resin (B1) may contain one or more (meth) acrylic acid ester structural units (a), and may contain one or two or more aliphatic vinyl structural units (b). May be good.
- the total content of the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) is preferably 90 to 100 mol% with respect to all the structural units of the resin (B1), more preferably. Is 95 to 100 mol%, particularly preferably 98 to 100 mol%.
- the resin (B1) may contain a structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b).
- the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably 2 mol% or less, based on all the constituent units of the resin (B1).
- Examples of the structural unit other than the (meth) acrylic acid ester structural unit (a) and the aliphatic vinyl structural unit (b) include the aromatic vinyl after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer.
- Examples thereof include a structural unit derived from an aromatic vinyl monomer containing an unhydrogenated aromatic double bond, which is generated in the process of producing a resin (B1) by hydrogenating an aromatic double bond derived from the monomer.
- the content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is preferably 65 to 80 mol% with respect to all the structural units in the resin (B1). It is preferably 70 to 80 mol%.
- the ratio of the (meth) acrylic acid ester structural unit (a) to all the structural units in the resin (B1) is 65 mol% or more, a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained. Can be done. Further, if it is 80 mol% or less, warpage due to water absorption of the resin sheet is unlikely to occur.
- the content of the aliphatic vinyl structural unit (b) represented by the general formula (2) is preferably 20 to 35 mol%, more preferably 20 with respect to all the structural units in the resin (B1). ⁇ 30 mol%. If the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warpage under high temperature and high humidity can be prevented, and if it is 35 mol% or less, at the interface with the base material layer. Can be prevented from peeling off.
- a "copolymer” may have any structure of a random, a block and an alternating copolymer.
- the method for producing the resin (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, the aromatic vinyl monomer-derived aromatic two Those obtained by hydrogenating the heavy bond are preferable.
- the (meth) acrylic acid means methacrylic acid and / or acrylic acid.
- Specific examples of the aromatic vinyl monomer used at this time include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
- a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a massive polymerization method, a solution polymerization method, or the like.
- the bulk polymerization method is carried out by a method in which a monomer composition containing the above-mentioned monomer and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
- the monomer composition may contain a chain transfer agent, if necessary.
- the polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexyl).
- Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, and the like.
- Examples thereof include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
- the solvent used for the hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer may be the same as or different from the above polymerization solvent.
- hydrocarbon solvents such as cyclohexane and methylcyclohexane
- ester solvents such as ethyl acetate and methyl isobutyrate
- ketone solvents such as acetone and methyl ethyl ketone
- ether solvents such as tetrahydrofuran and dioxane
- alcohol solvents such as methanol and isopropanol.
- solvents include solvents.
- the resin (B1) used in the present invention is obtained by polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer as described above, and then hydrogenating the aromatic double bond derived from the aromatic vinyl monomer. ) Is obtained.
- the method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the temperature is 60 ° C. or higher, the reaction time does not take too long, and when the temperature is 250 ° C. or lower, the molecular chain is less likely to be cleaved or the ester site is hydrogenated.
- Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, and carbon, alumina, silica, silica-alumina, and diatomaceous earth. Examples thereof include a solid catalyst supported on a porous carrier such as.
- the resin (B1) is preferably one in which 70% or more of the aromatic double bonds derived from the aromatic vinyl monomer are hydrogenated. That is, the unhydrogenation rate of the aromatic double bond contained in the structural unit derived from the aromatic vinyl monomer is preferably less than 30%. When the dehydrogenation rate is less than 30%, a resin having excellent transparency can be obtained. The dehydrogenation rate is more preferably less than 10%, still more preferably less than 5%.
- the weight average molecular weight of the resin (B1) is not particularly limited, but is preferably 50,000 to 400,000, more preferably 70,000 to 300,000 from the viewpoint of strength and moldability. ..
- the glass transition point of the resin (B1) is preferably in the range of 110 to 140 ° C, more preferably 110 to 135 ° C, and particularly preferably 110 to 130 ° C.
- the resin sheet provided in the present invention is less likely to be deformed or cracked in a thermal environment or a moist thermal environment.
- the temperature is 140 ° C. or lower, the workability is excellent when molding is performed by continuous heat shaping using a mirror surface roll or a shaping roll, or batch type heat shaping using a mirror surface mold or a shaping die.
- resin (B1) examples include Optimus 7500 and 6000 (manufactured by Mitsubishi Gas Chemical Company).
- a resin (B1) When a resin (B1) is used as the high hardness resin, it is preferable to use Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) as the polycarbonate resin (a1).
- the structural unit represented by the general formula (1) R1 and R2 are both methyl groups; methyl methacrylate
- R3 the structural unit represented by the general formula (2) (R3 is hydrogen).
- a copolymer containing 25 mol% of an atom (R4 is a cyclohexyl group) was used, a polycarbonate resin containing a structural unit of the general formula (4a) was used as the polycarbonate resin (a1), and the general formula (5) was used as the terminal terminator.
- a monovalent phenol represented by (R1 has 8 to 22 carbon atoms).
- the resin (B2) is a copolymer containing 6 to 77% by mass of a (meth) acrylic acid ester constituent unit, 15 to 71% by mass of a styrene constituent unit, and 8 to 23% by mass of an unsaturated dicarboxylic acid constituent unit.
- a resin that is an alloy of D) or the copolymer (D) and a resin that is an alloy of the copolymer (D) and a high-hardness resin other than the resin (B2), or the copolymer (D). It is a resin that is an alloy of acrylic resin and acrylic resin.
- Examples of the high hardness resin other than the resin (B2) include a methyl methacrylate-styrene copolymer and an acrylonitrile-butadiene-styrene copolymer.
- Examples of the acrylic resin include polymethyl methacrylate, a copolymer of methyl methacrylate and methyl acrylate, or ethyl acrylate. It is also possible to use commercially available products, and specific examples thereof include Mitsubishi Chemical Corporation's Acrypet, Sumitomo Chemical Corporation's Sumipex, Kuraray's Parapet, and Arkema's Altgrass. In the case of alloying, alloys of resins having higher Tg are preferable in order to avoid a decrease in Tg of the high hardness resin.
- Examples of the (meth) acrylic acid ester monomer constituting the (meth) acrylic acid ester constituent unit include acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, diethylhexyl acrylate, methacrylic acid, and methacrylic acid. Examples thereof include methyl acetate, ethyl methacrylate, n-butyl methacrylate, diethylhexyl methacrylate and the like, and methyl methacrylate is particularly preferable. Two or more of these (meth) acrylic acid ester monomers may be mixed and used.
- the content of the (meth) acrylic acid ester structural unit is 6 to 77% by mass, preferably 20 to 70% by mass, based on the total mass of the resin (B2).
- the styrene constituent unit is not particularly limited, and any known styrene-based monomer can be used. From the viewpoint of easy availability, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like are preferable. Among these, styrene is particularly preferable from the viewpoint of compatibility. Two or more kinds of these styrene-based monomers may be mixed and used. The content of the styrene constituent unit is 15 to 71% by mass, preferably 20 to 66% by mass, based on the total mass of the resin (B2).
- Examples of the unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and the phase with the styrene-based monomer.
- Maleic anhydride is preferable from the viewpoint of solubility. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed and used.
- the content of the unsaturated dicarboxylic acid constituent unit is 8 to 23% by mass, preferably 10 to 23% by mass, based on the total mass of the resin (B2).
- the total content of the (meth) acrylic acid ester constituent unit, the styrene constituent unit and the unsaturated dicarboxylic acid constituent unit is preferably 90 to 100 mol%, more preferably 90 to 100 mol%, based on all the constituent units of the resin (B2). It is 95 to 100 mol%, particularly preferably 98 to 100 mol%. That is, the resin (B2) may contain a structural unit other than the above-mentioned (meth) acrylic acid ester structural unit, styrene structural unit and unsaturated dicarboxylic acid structural unit. The amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably 2 mol% or less, based on all the constituent units of the resin (B2).
- Examples of other structural units include N-phenylmaleimide and the like.
- the method for producing the resin (B2) is not particularly limited, and examples thereof include a massive polymerization method and a solution polymerization method.
- resin (B2) examples include Regisphi R100, R200, R310 (manufactured by Denka), Delpet 980N (manufactured by Asahi Kasei Chemical Co., Ltd.), hp55 (manufactured by Daicel Evonik), and the like.
- the weight average molecular weight of the resin (B2) is not particularly limited, but is preferably 50,000 to 300,000, more preferably 80,000 to 200,000.
- the glass transition point of the resin (B2) is preferably 90 to 150 ° C., more preferably 100 to 150 ° C., and particularly preferably 115 to 150 ° C.
- the resin (B2) is used as the high hardness resin
- the polycarbonate resin containing the structural unit of the general formula (4a) is used as the polycarbonate resin (a1).
- a monohydric phenol represented by the general formula (5) (R1 has 8 to 22 carbon atoms) is particularly preferable.
- Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) and Iupiron E-2000 (manufactured by Mitsubishi Engineering Plastics).
- the resin (B3) is a copolymer containing a structural unit (c) represented by the following general formula (6) and optionally a structural unit (d) represented by the following general formula (7).
- the resin (B3) may or may not contain the structural unit (d), but is preferably contained.
- the ratio of the structural unit (c) to all the structural units of the resin (B3) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and preferably 70 to 100 mol%. Especially preferable.
- the ratio of the structural unit (d) to all the structural units of the resin (B3) is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and preferably 0 to 30 mol%. Especially preferable.
- the total content of the structural unit (c) and the structural unit (d) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and particularly preferably 98 to 98 to the resin (B3). It is 100 mol%.
- the resin (B3) may contain a structural unit other than the structural unit (c) and the structural unit (d).
- the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less, based on all the structural units of the resin (B3). Is particularly preferred.
- Examples of other structural units include structural units represented by the following general formula (4a).
- the method for producing the resin (B3) is not particularly limited, but it can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
- resin (B3) examples include Iupiron KH3410UR, KH3520UR, and KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.).
- the weight average molecular weight of the resin (B3) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
- the glass transition point of the resin (B3) is preferably 105 to 150 ° C., more preferably 110 to 140 ° C., and particularly preferably 110 to 135 ° C.
- the polycarbonate resin (B3) When the resin (B3) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (4a) as the polycarbonate resin (a1). Furthermore, it is particularly preferable to use a monohydric phenol represented by the general formula (5) (R1 has 8 to 22 carbon atoms) as the terminal terminator.
- a polycarbonate resin examples include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
- Iupiron KS3410UR manufactured by Mitsubishi Engineering Plastics
- Iupizeta T-1380 manufactured by Mitsubishi Gas Chemical Company
- the resin (B3) is used as the high-hardness resin, as the other resin contained in the high-hardness resin layer, a resin that does not contain the structural unit (c) but contains the structural unit (d) is preferable, and the structural unit (d) is preferable. ) Only resin is more preferable. Specifically, aromatic polycarbonate resins (for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like can be used. When the other resin is contained, the resin (B3) is contained in a proportion of preferably 45% by mass or more, more preferably 55% by mass or more, based on the total resin contained in the high hardness resin layer.
- aromatic polycarbonate resins for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
- the resin (B4) is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit. G), or an alloy of the copolymer (G) and the resin (B2). In the case of alloys, alloys of resins having higher Tg are preferable in order to avoid a decrease in Tg of the high hardness resin layer.
- the styrene constituent unit is not particularly limited, and any known styrene-based monomer can be used, but from the viewpoint of easy availability, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methyl Styrene, p-methylstyrene, t-butylstyrene and the like are preferable. Of these, styrene is particularly preferable from the viewpoint of compatibility.
- the copolymer (G) may contain two or more of these styrene constituent units.
- the content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 10% by mass with respect to the total mass of the resin (B4).
- Examples of the (meth) acrylic acid ester constituent unit include acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, and n-butyl methacrylate. , Constituent unit derived from 2-ethylhexyl methacrylate and the like, and particularly preferably a structural unit derived from methyl methacrylate. Further, the copolymer (G) may contain two or more kinds of these (meth) acrylic acid ester constituent units.
- the content of the (meth) acrylic acid ester structural unit is 60 to 90% by mass, preferably 70 to 90% by mass, and 80 to 90% by mass with respect to the total mass of the resin (B4). Is more preferable.
- the N-substituted maleimide constituent units in the resin (B4) include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, and N-.
- Examples include structural units derived from N-arylmaleimide such as carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide, and structural units derived from N-phenylmaleimide from the viewpoint of compatibility with acrylic resin. Is preferable.
- the copolymer (G) may contain two or more of these N-substituted maleimide building blocks.
- the content of the N-substituted maleimide structural unit is 5 to 20% by mass, preferably 5 to 15% by mass, and preferably 5 to 10% by mass with respect to the total mass of the resin (B4). More preferred.
- the total content of the styrene structural unit, the (meth) acrylic acid ester structural unit, and the N-substituted maleimide structural unit is preferably 90 to 100 mol%, more preferably 95 to 100, based on the resin (B4). It is mol%, particularly preferably 98-100 mol%.
- the resin (B4) may contain a structural unit other than the above-mentioned structural unit. When other structural units are included, the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less, based on all the structural units of the resin (B4). Is particularly preferred.
- Examples of other structural units include a structural unit derived from the following general formula (1), a structural unit derived from the general formula (2), and the like.
- R1 is a hydrogen atom or a methyl group
- R2 is an alkyl group having 1 to 18 carbon atoms.
- R3 is a hydrogen atom or a methyl group
- R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.
- the method for producing the resin (B4) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
- resin (B4) examples include Delpet PM120N (manufactured by Asahi Kasei Chemical Co., Ltd.).
- the weight average molecular weight of the resin (B4) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
- the glass transition point of the resin (B4) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 135 ° C.
- the resin (B4) is used as the high hardness resin
- the polycarbonate resin containing the structural unit of the general formula (4a) is used as the polycarbonate resin (a1).
- a monohydric phenol represented by the general formula (5) (R1 has 8 to 22 carbon atoms) is particularly preferable.
- Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
- Delpet PM-120N composed of 7% by mass of a styrene constituent unit, 86% by mass of a (meth) acrylic acid ester constituent unit, and 7% by mass of an N-substituted maleimide constituent unit is used, and a polycarbonate resin is used. It is preferable to use Iupizeta T-1380 as (a1).
- the resin (B5) is a resin containing a structural unit (e) represented by the following general formula (8).
- the ratio of the constituent unit (e) to all the constituent units of the resin (B5) is preferably 80 to 100 mol%, more preferably 90 to 100 mol%, and preferably 95 to 100 mol%.
- the resin (B5) may contain a structural unit other than the structural unit (e), but is preferably a polycarbonate resin composed of the structural unit (e).
- the amount thereof is preferably 20 mol% or less, more preferably 10 mol% or less, and 5 mol% or less, based on all the structural units of the resin (B5). Is particularly preferred.
- Examples of other structural units include a structural unit represented by the following general formula (6), a structural unit represented by the general formula (7), and the like.
- the method for producing the resin (B5) is not particularly limited, but the resin (B5) can be produced in the same manner as the above-mentioned method for producing the polycarbonate resin (a1), except that bisphenol AP is used as the monomer.
- Specific examples of the resin (B5) include Iupizeta FPC0220 (manufactured by Mitsubishi Gas Chemical Company, Inc.).
- the weight average molecular weight of the resin (B5) is preferably 10,000 to 1,000,000, more preferably 15,000 to 50,000.
- the glass transition point of the resin (B5) is preferably 120 to 200 ° C, more preferably 130 to 190 ° C, and particularly preferably 140 to 190 ° C.
- the polycarbonate resin (a1) When the resin (B5) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (4a) as the polycarbonate resin (a1).
- a polycarbonate resin examples include Iupiron E-2000 (manufactured by Mitsubishi Engineering Plastics).
- Iupizeta FPC0220 manufactured by Mitsubishi Gas Chemical Company
- Iupiron E-2000 manufactured by Mitsubishi Engineering Plastics
- the other resin contained in the high-hardness resin layer does not include the structural unit (e) but contains the structural unit (d) described in the resin (B3). Is preferable, and a resin composed of only the structural unit (d) is more preferable. Specifically, aromatic polycarbonate resins (for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like can be used.
- the resin (B5) is contained in a proportion of preferably 45% by mass or more, more preferably 55% by mass or more, based on the total resin contained in the high hardness resin layer.
- the resin (B6) is a copolymer (H) containing 50 to 95% by mass of a styrene constituent unit and 5 to 50% by mass of an unsaturated dicarboxylic acid constituent unit, or a copolymer (H) and the above resin (B1). Alloy, or alloy of copolymer (H) and acrylic resin. In the case of alloys, alloys of resins having higher Tg are preferable in order to avoid a decrease in Tg of the high hardness resin layer.
- the styrene constituent unit the styrene-based monomer described in the resin (B4) can be used.
- the copolymer (H) may contain two or more of these styrene constituent units.
- the content of the styrene constituent unit is 50 to 95% by mass, preferably 60 to 90% by mass, and more preferably 65 to 87% by mass with respect to the total mass of the copolymer (H). ..
- Examples of the unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and the phase with the styrene-based monomer.
- Maleic anhydride is preferable from the viewpoint of solubility.
- Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed and used.
- the content of the unsaturated dicarboxylic acid constituent unit is 5 to 50% by mass, preferably 10 to 40% by mass, and 13 to 35% by mass with respect to the total mass of the copolymer (H). Is more preferable.
- the copolymer (H) may contain a structural unit other than the above-mentioned structural unit.
- the amount thereof is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less with respect to all the structural units of the resin (H). Is particularly preferred.
- Examples of other structural units include a structural unit derived from the following general formula (1), a structural unit derived from the general formula (2), and the like.
- R1 is a hydrogen atom or a methyl group
- R2 is an alkyl group having 1 to 18 carbon atoms.
- R3 is a hydrogen atom or a methyl group
- R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.
- the method for producing the copolymer (H) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
- copolymer (H) examples include XIBOND140 and XIBOND160 (manufactured by Polyscope).
- the weight average molecular weight of the copolymer (H) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
- the content of the copolymer (H) composed of the styrene constituent unit and the unsaturated dicarboxylic acid constituent unit is preferably 10 to 90% by mass, more preferably 20 to 85% by mass with respect to the resin (B6). Yes, particularly preferably 30-80% by mass.
- the glass transition point of the resin (B6) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 137 ° C.
- the resin (B6) is used as the high hardness resin
- the polycarbonate resin containing the structural unit of the general formula (4a) is used as the polycarbonate resin (a1).
- a monohydric phenol represented by the general formula (5) (R1 has 8 to 22 carbon atoms) is particularly preferable.
- Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
- the high-hardness resin contained in the high-hardness resin layer may be one type or two or more types, and when two or more types are selected from the resins (B1) to (B6), the same or different categories are used. It can be selected and may further contain a high hardness resin other than the resins (B1) to (B6).
- the content of the high-hardness resin in the high-hardness resin layer is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 100% by mass.
- the high-hardness resin layer may contain other resins in addition to the high-hardness resin as described above.
- resins include methyl methacrylate-styrene copolymer, polymethyl methacrylate, polystyrene, polycarbonate, cycloolefin (co) polymer resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and various other resins. Examples include polymers.
- the resin in the high-hardness resin layer is preferably only high-hardness resin, but when other resins are contained, the amount thereof is preferably 35% by mass or less, and 25% by mass or less with respect to the high-hardness resin layer. Is more preferable, and 10% by mass or less is particularly preferable.
- the high hardness resin layer may further contain additives and the like.
- additive the same additive as described in "1. Base material layer” can be used, and the amount thereof is also the same.
- the thickness of the high hardness resin layer affects the surface hardness and impact resistance of the molding resin sheet. That is, if the high hardness resin layer is too thin, the surface hardness will be low, and if it is too thick, the impact resistance will be lowered.
- the thickness of the high hardness resin layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m, and particularly preferably 60 to 150 ⁇ m.
- a further layer may exist between the base material layer and the high hardness resin layer, but here, the high hardness resin layer is provided on the base material layer.
- the laminating method is not particularly limited, and laminating can be performed in the same manner when other layers are present. For example, a method in which an individually formed base material layer and a high hardness resin layer are superposed and heat-bonded to each other; a separately formed base material layer and a high hardness resin layer are superposed and both are bonded by an adhesive.
- Various methods such as a method of co-extruding a base material layer and a high-hardness resin layer; a method of in-molding a base material layer into a pre-formed high-hardness resin layer and integrating them. There is. Of these, the coextrusion molding method is preferable from the viewpoint of manufacturing cost and productivity.
- the coextrusion method is not particularly limited.
- a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate.
- a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminate. ..
- the rotation speed (m / min) ratio between the forming roll and the sheet taking-up roll is controlled, and the sheet is cooled while being stretched in the uniaxial direction.
- the draw ratio is controlled at 1.0 to 1.5 times, and the in-plane retardation of the resin sheet is controlled.
- the in-plane retardation of the resin sheet of the present invention measured at a wavelength of 543 nm is 4000 nm or more, preferably 4500 to 10000 nm, and more preferably 5500 to 8000 nm.
- the total thickness of the base material layer and the high hardness resin layer is preferably 0.5 to 3.5 mm, more preferably 0.5 to 3.0 mm, and particularly preferably 1.2 to 3.0 mm.
- the ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. is there. Within the above range, both hardness and impact resistance can be achieved.
- the resin sheet of the present invention includes a hard coat layer or a hard coat anti-glare layer.
- a further layer may be present between the hard coat layer, the hard coat anti-glare layer and the high hardness resin layer, but preferably, the hard coat layer and the hard coat anti-glare layer are laminated on the high hardness resin layer.
- the hard coat layer and the hard coat anti-glare layer are preferably made of an acrylic hard coat.
- the term "acrylic hard coat” means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure.
- the composition of the acrylic hard coat preferably contains 2 to 98% by mass of the (meth) acrylic monomer, 2 to 98% by mass of the (meth) acrylic oligomer, and 0 to 15% by mass of the surface modifier. It is preferable to contain 0.001 to 7 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier.
- the hard coat layer and the hard coat anti-glare layer are more preferably 5 to 50% by mass of the (meth) acrylic monomer, 50 to 94% by mass of the (meth) acrylic oligomer, and 1 to 10% by mass of the surface modifier. Particularly preferably, it contains 20 to 40% by mass of the (meth) acrylic monomer, 60 to 78% by mass of the (meth) acrylic oligomer, and 2 to 5% by mass of the surface modifier.
- the amount of the photopolymerization initiator is more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier. It is particularly preferably 0.1 to 3 parts by mass.
- the (meth) acrylic monomer can be used as long as the (meth) acryloyl group exists as a functional group in the molecule, and can be used as a monofunctional monomer, a bifunctional monomer, or a trifunctional monomer. It may be the above monomer.
- Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
- Specific examples of the bifunctional and / or trifunctional or higher (meth) acrylic monomer include diethylene glycol di (meth) acrylate and di. Propropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate , Hydroxypivalate neopentyl glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, Polyethylene glycol diacrylate, 1,4-butanediol oligo acryl
- the (meth) acrylic oligomer is a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer [hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer], which is bifunctional or higher.
- Functional polyester (meth) acrylate oligomers [hereinafter, also referred to as polyfunctional polyester (meth) acrylate oligomers]
- bifunctional or higher polyfunctional epoxy (meth) acrylate oligomers hereinafter, also referred to as polyfunctional epoxy (meth) acrylate oligomers]
- the hard coat anti-glare layer may contain one or more (meth) acrylic oligomers.
- polyfunctional urethane (meth) acrylate oligomer a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and polyisocyanate; polyols are polyisocyanates. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
- Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
- Examples include (meth) acrylate.
- the polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates.
- diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate
- di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate.
- polyols used in the urethanization reaction in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
- aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include methylolpropionic acid, dimethylolbutylionic acid, glycerin, and hydrogenated bisphenol A.
- polyester polyol examples include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid.
- Specific compounds of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like. These polycarboxylic acids may be anhydrides.
- examples of the polyether polyol include the above-mentioned polyols or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
- the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol.
- the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrides.
- the polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol.
- Examples thereof include butyric acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
- the polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid.
- the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
- the surface modifier used in the present invention is the surface performance of a hard coat antiglare layer such as a leveling agent, an antistatic agent, a surfactant, a water / oil repellent, an inorganic particle, and an organic particle. It changes.
- a hard coat antiglare layer such as a leveling agent, an antistatic agent, a surfactant, a water / oil repellent, an inorganic particle, and an organic particle.
- the leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, and silicon-modified acrylic.
- antistatic agent examples include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
- examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
- examples of the organic particles include acrylic particles and silicon particles.
- surfactants and water- and oil-repellent agents include fluorine-containing surfactants such as fluorine-containing group / lipophilic group-containing oligomers, fluorine-containing groups / hydrophilic groups, lipophilic groups, and UV-reactive group-containing oligomers. And water and oil repellents.
- the hard coat layer and the hard coat anti-glare layer may contain a photopolymerization initiator.
- the photopolymerization initiator refers to a photoradical generator.
- Examples of the monofunctional photopolymerization initiator that can be used in the present invention include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; ⁇ -hydroxy.
- Benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether; other examples include halogenated ketones, acylphosphinoxides, and acylphosphonates.
- the method for forming the hard coat layer and hard coat anti-glare layer is not particularly limited, but for example, a layer located under the hard coat anti-glare layer (for example, a high hardness resin layer). It can be formed by applying a hard coat liquid on top and then photopolymerizing.
- the method of applying the hard coat liquid (polymerizable composition) is not particularly limited, and a known method can be used.
- spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, and handling method can be mentioned. ..
- a lamp having a light emission distribution with a light wavelength of 420 nm or less is used, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, and a black light lamp. , Microwave-excited mercury lamp, metal halide lamp, etc.
- high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. This is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
- the irradiation intensity of the lamp is a factor that affects the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product.
- the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 .
- the photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen.
- One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced by an inert gas such as nitrogen gas or carbon dioxide gas.
- the airflow velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. More preferably, it is 0.1 m / sec or less.
- the coated surface may be pretreated for the purpose of improving the adhesion between the hard coat layer and the hard coat anti-glare layer.
- Known treatment examples include sandblasting methods, solvent treatment methods, corona discharge treatment methods, chromic acid treatment methods, flame treatment methods, hot air treatment methods, ozone treatment methods, ultraviolet treatment methods, and primer treatment methods using resin compositions. Can be mentioned.
- the hard coat layer and the hard coat anti-glare layer preferably have a pencil hardness of 2H or more when irradiated with ultraviolet rays using a metal halide lamp having an irradiation output of UV light (254 nm) of 20 mW / cm 2 .
- the film thickness of the hard coat layer and the hard coat anti-glare layer is preferably 1 ⁇ m or more and 40 ⁇ m or less, and more preferably 2 ⁇ m or more and 10 ⁇ m or less. Sufficient hardness can be obtained when the film thickness is 1 ⁇ m or more. Further, when the film thickness is 40 ⁇ m or less, the occurrence of cracks during bending can be suppressed.
- the film thickness of the hard coat anti-glare layer can be measured by observing the cross section with a microscope or the like and actually measuring from the coating film interface to the surface.
- the hard coat layer and hard coat anti-glare layer apply an acrylic hard coat between the mirror surface type or anti-glare type and the high hardness resin, irradiate with UV light to cure, and then remove from the mirror surface type and anti-glare type. Can be produced in.
- the resin sheet has a mirror surface hard coat layer
- the anti glare type is used, the resin sheet has a hard coat anti glare layer.
- the mirror surface type and anti-glare type materials may be any material that transmits UV light, and the materials are glass, transparent resin, and the like.
- the hard coat layer and the hard coat anti-glare layer may be further modified.
- any one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment can be applied.
- These treatment methods are not particularly limited, and known methods can be used.
- a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
- the pencil hardness of the resin sheet of the present invention is preferably 2H or more, for example, 2H to 4H, and particularly preferably 3H to 4H.
- the pencil hardness of the resin sheet referred to here means the hardness of the hardest pencil that does not cause scratches when the pencil is pressed against the surface of the hard coat anti-glare layer at an angle of 45 degrees and a load of 750 g. Pencil scratch hardness test based on JIS K 5600-5-4).
- Resin film (X) is a molding resin sheet in which a resin film (X) having an in-plane retardation of 50 nm or less when measured at a wavelength of 543 nm is bonded to one side surface of the resin sheet by an adhesive layer containing an adhesive. It is preferable to bond a resin film (X) having an in-plane retardation of 45 nm or less, and more preferably an in-plane retardation of 3 to 45 nm. By laminating a resin film (X) having an in-plane retardation of 50 nm or less, the slow axes of the resin film (X) and the resin sheet or the slow axis and the phase advance during thermoforming after the resin sheet is bonded.
- a preferred embodiment of the present invention is to attach the resin film (X) to the base material layer side containing the polycarbonate resin (a1). Further, another preferred embodiment of the present invention is that the resin film (X) is made of a polycarbonate film containing a polycarbonate resin (a1). Further, another preferred embodiment of the present invention comprises a film touch sensor in which the resin film (X) has a sensor electrode formed on a base film.
- COP cycloolefin polymer
- COC cycloolefin copolymer
- acrylic resin polycarbonate resin
- PET resin PET resin
- the polycarbonate resin can be preferably used.
- the sensor electrode include a resistance film type sensor in which a transparent electrode made of ITO or the like is arranged, a capacitance type sensor, and the like.
- Adhesive may be a transparent optical adhesive, such as Lintec's Optically Clear Adhesive (OCA) (Opteria series), Nitto Denko's optical transparent adhesive sheet LUCIACS series, and Sekisui Chemical Co., Ltd. It is preferable to use a transparent double-sided tape, an optical adhesive silicone for display of Asahi Kasei Co., Ltd., or the like as an adhesive layer.
- OCA Lintec's Optically Clear Adhesive
- Nitto Denko's optical transparent adhesive sheet LUCIACS series Nitto Denko's optical transparent adhesive sheet LUCIACS series
- Sekisui Chemical Co., Ltd Sekisui Chemical Co., Ltd. It is preferable to use a transparent double-sided tape, an optical adhesive silicone for display of Asahi Kasei Co., Ltd., or the like as an adhesive layer.
- the haze of the resin sheet of the present invention is preferably 2 to 30%, more preferably 4 to 25%.
- the above haze is a value measured in accordance with JIS K 7136 using the HR-100 type manufactured by Murakami Color Technology Research Institute.
- a resin molded product molded by using the above-mentioned molding resin sheet is provided.
- the molding method is not particularly limited, but thermoforming is suitable because of the characteristics of the resin sheet of the present invention.
- Thermoforming can be performed by methods commonly used in the art, and examples thereof include thermoforming, compressed air forming, vacuum forming, and TOM forming.
- the molding temperature is preferably 100 ° C to 200 ° C.
- the presence or absence of cracks in the 50 mmR portion or the 100 mmR portion was confirmed.
- a resin sheet having a total thickness of the base material layer and the high hardness resin layer of 0.5 mm, 1.2 mm or 1.5 mm using a heat pressing die having a clearance of 2 mm, respectively.
- 1.5 mm, 0.8 mm, and 0.5 mm single-layer polycarbonate sheets were laid underneath, and heat-press molded to have a total thickness of 2 mm.
- the retardation of the resin sheet or the resin film was measured using the birefringence evaluation device WPA-200-L manufactured by Photonic Lattice.
- the measurement wavelength is 543 nm. Since it is not possible to measure the retardation region exceeding 3500 nm with the attached standard lens, a high phase difference measurement lens K4 FUJINON 1: 1.4 / 16 mm HF16HA-1B was used.
- Example 1 R100 (Tg124 ° C) / low TgPC (Tg125 ° C) /1.2 mmt Using a multi-screw extruder having a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to each extruder, and a T-die connected to the feed block. A laminate consisting of a material layer and a high-hardness resin layer was formed.
- a copolymer of a high hardness resin (B2) (methyl methacrylate constituent unit 21% by mass, styrene constituent unit 64% by mass, and maleic anhydride constituent unit 15% by mass) in a single shaft extruder having a shaft diameter of 35 mm.
- Resin Styrene R100 manufactured by Denka was continuously introduced and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h.
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- the extruded high-hardness resin and polycarbonate resin were introduced into a feed block equipped with two types of two-layer distribution pins, and the high-hardness resin and polycarbonate resin were laminated at a temperature of 240 ° C. Furthermore, it is introduced into a T-die having a temperature of 240 ° C., extruded into a sheet, and cooled and stretched from the upstream side with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. A laminate of a resin layer and a polycarbonate resin layer (base material layer) was obtained. The draw ratio was 1.3 times. The thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center.
- a hard coat anti-glare layer was formed on the high hardness resin layer side of the laminate obtained above.
- the material of the hard coat anti-glare layer is as follows.
- U6HA 6-functional urethane acrylate oligomer (manufactured by Shin Nakamura Chemical Industry Co., Ltd.) 60% by mass
- 4EG-A PEG200 # diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) 35% by mass
- ⁇ RS-90 Fluorophilic group, hydrophilic group, lipophilic group, UV reactive group-containing oligomer (manufactured by DIC Co., Ltd.) 5% by mass based on 100 parts by mass of the mixture -Photopolymerization initiator: 1 part by mass of I-184 (manufactured by BASF Corporation [Compound name: 1-hydroxy-cyclohexylphenyl ketone]).
- the above material is applied to the laminate with a bar coater, the uneven surface of a 2 mm thick frosted glass plate with 10% haze is covered, and a metal halide lamp (20 mW / cm 2 ) is applied from the glass plate for 5 seconds to harden it.
- a metal halide lamp (20 mW / cm 2 ) is applied from the glass plate for 5 seconds to harden it.
- the frosted glass plate was peeled off to prepare a resin sheet.
- the film thickness of the hard coat anti-glare layer was 6 ⁇ m.
- the haze of the resin sheet was 9%, and the in-plane retardation was 6200 to 6500 nm.
- a polycarbonate film (FS-2000 manufactured by Mitsubishi Gas Chemical Company, 100 ⁇ mt) was bonded as a resin film (X) to the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to prepare a resin sheet for molding.
- the thickness of the polycarbonate film was 0.1 mm, and the in-plane retardation was 20 nm or less.
- Example 2 R100 (Tg124 ° C.) / Low TgPC (Tg125 ° C.) / 2 mmt
- the ejection speed of the polycarbonate resin extruded by the single-screw extruder is 83.0 kg / h
- the thickness of the laminate of the high-hardness resin layer and the polycarbonate resin layer (base material layer) is 2 mm (the thickness of the high-hardness resin layer is It was set to 60 ⁇ m near the center.
- the draw ratio was 1.17 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1 to obtain a resin sheet.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 3 R100 (Tg124 ° C.) / Low TgPC (Tg125 ° C.) /0.5 mmt
- the discharge rates of the high-hardness resin (B2) and the polycarbonate resin extruded by the single-screw extruder were set to 4.8 kg / h and 35.0 kg / h, respectively, and the high-hardness resin layer and the polycarbonate resin layer (base material layer) were used.
- the thickness of the laminate was 0.5 mm (the thickness of the high hardness resin layer was 60 ⁇ m near the center).
- the draw ratio was 1.5 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1 to obtain a resin sheet.
- the in-plane retardation was 4100-4500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 4 R100 (Tg124 ° C.) / Low TgPC (Tg125 ° C.) /3.5 mmt
- the discharge rates of the high-hardness resin (B2) and the polycarbonate resin extruded by the single-screw extruder were set to 1.3 kg / h and 72.0 kg / h, respectively, and the high-hardness resin layer and the polycarbonate resin layer (base material layer) were used.
- the thickness of the laminate was 3.5 mm (the thickness of the high-hardness resin layer was 60 ⁇ m near the center).
- the draw ratio was 1.1 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1 to obtain a resin sheet.
- the in-plane retardation was 6800-7000 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 5 R310 (Tg 141 ° C.) / Low TgPC (Tg 125 ° C.) / 2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a copolymer of a high hardness resin (B2) (methyl methacrylate constituent unit 6% by mass, styrene constituent unit 71% by mass, and maleic anhydride constituent unit 23% by mass) in a single shaft extruder having a shaft diameter of 35 mm. Resin Styrene R310 (manufactured by Denka) was continuously introduced and extruded under the conditions of a cylinder temperature of 240 ° C.
- B2 high hardness resin
- Resin Styrene R310 manufactured by Denka
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 83.0 kg / h.
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 2 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.17 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 6 R310 (Tg 141 ° C.) / S-1000 (Tg 147 ° C.) / 2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a copolymer of a high hardness resin (B2) (methyl methacrylate constituent unit 6% by mass, styrene constituent unit 71% by mass, and maleic anhydride constituent unit 23% by mass) in a single shaft extruder having a shaft diameter of 35 mm. Resin Styrene R310 (manufactured by Denka) was continuously introduced and extruded under the conditions of a cylinder temperature of 240 ° C.
- B2 high hardness resin
- Resin Styrene R310 manufactured by Denka
- a polycarbonate resin (Iupilon S-1000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 280 ° C. and a discharge speed of 83.0 kg / h. ..
- the extruded high-hardness resin and the polycarbonate resin were introduced into a feed block provided with two types and two layers of distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 280 ° C. Further, it is introduced into a T-die having a temperature of 280 ° C., extruded into a sheet, and cooled and stretched while transferring the mirror surface with three mirror finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side to achieve high hardness. A laminate of a resin layer and a polycarbonate resin layer (base material layer) was obtained.
- the thickness of the obtained laminate was 2 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.17 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 7 PM120N (Tg120 ° C.) / Low TgPC (Tg125 ° C.) /1.5 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a copolymer of high hardness resin (B4) (styrene constituent unit 7% by mass, methyl methacrylate constituent unit 86% by mass, and N-phenylmaleimide constituent unit 7% by mass) on a single shaft extruder having a shaft diameter of 35 mm.
- B4 high hardness resin
- Delpet PM120N manufactured by Asahi Kasei Chemical Co., Ltd.
- a polycarbonate resin Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company
- a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 62.0 kg / h.
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.5 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.23 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 8 R200 (Tg126 ° C.) / Low TgPC (Tg125 ° C.) / 2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a copolymer of high hardness resin (B2) (methyl methacrylate constituent unit 26% by mass, styrene constituent unit 55% by mass, maleic anhydride constituent unit 19% by mass) in a single shaft extruder having a shaft diameter of 35 mm; Resin styrene (manufactured by Denka) was continuously introduced and extruded under the conditions of a cylinder temperature of 230 ° C.
- B2 high hardness resin
- Resin styrene manufactured by Denka
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 83.0 kg / h.
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 2 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.17 times.
- the material of the hard coat anti-glare layer is the same as in Example 1, and the laminate is coated with a bar coater, covered with a 2 mm thick frosted glass having a haze of 30%, and a metal halide lamp (20 mW / 20 mW /) from above the glass.
- the hard coat was cured by applying cm 2 ) for 5 seconds to attach the hard coat anti-glare layer, and then the frosted glass plate was peeled off to prepare a resin sheet.
- the film thickness of the hard coat anti-glare layer was 6 ⁇ m.
- the haze of the resin sheet was 29%, and the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 9 C-PC (KH3410UR) (Tg118 ° C.) / Low TgPC (Tg125 ° C.) / 2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, high-hardness resin (B3) (polycarbonate resin; Iupilon KH3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.)) is continuously introduced and extruded under the conditions of a cylinder temperature of 270 ° C. and a discharge rate of 2.6 kg / h. It was.
- B3 polycarbonate resin; Iupilon KH3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.)
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 83.0 kg / h.
- Example 2 The thickness of the obtained laminate was 2 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.17 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 8.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 1, to prepare a resin sheet for molding.
- Example 10 Alloy of R100 and PM120N (Tg123 ° C.) / Low TgPC (Tg125 ° C.) /1.2 mmt 75% by mass of a copolymer (Regisphi R100 (manufactured by Denka)) containing 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and 7% by mass of styrene constituent unit, methacrylic.
- a copolymer (Regisphi R100 (manufactured by Denka)) containing 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and 7% by mass of styrene constituent unit, methacrylic.
- a copolymer (Delpet PM120N; manufactured by Asahi Kasei Chemicals Co., Ltd.) of 86% by mass of methyl acid constituent unit and 7% by mass of N-phenylmaleimide constituent unit is extruded with a screw diameter of 26 mm (TEM-26SS, L / D). ⁇ 40; manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 240 ° C. to obtain a high-hardness resin (B4).
- Example 2 Using the same multi-layer extruder as in Example 1, a laminate consisting of a base material layer and a high hardness resin layer was molded. Specifically, the above-mentioned high-hardness resin (B4) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- a polycarbonate resin Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 8.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Example 11 R310 (Tg 141 ° C.) / Low TgPC (Tg 125 ° C.) /0.5 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a copolymer of a high hardness resin (B2) (methyl methacrylate constituent unit 6% by mass, styrene constituent unit 71% by mass, and maleic anhydride constituent unit 23% by mass) in a single shaft extruder having a shaft diameter of 35 mm. Resin Styrene R310 (manufactured by Denka) was continuously introduced and extruded under the conditions of a cylinder temperature of 230 ° C.
- B2 high hardness resin
- Resin Styrene R310 manufactured by Denka
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 35.0 kg / h.
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 0.5 mm, and the thickness of the high hardness resin layer was 100 ⁇ m near the center.
- the draw ratio was 1.5 times.
- the material of the hard coat anti-glare layer is the same as that of Example 1, and the laminate is coated with a bar coater, and the uneven surface of 2 mm thick frosted glass having a haze of 4% is covered over the laminated body, and the metal halide lamp (20 mW / 20 mW /) is placed on the glass.
- the hard coat was cured by applying cm 2 ) for 5 seconds to attach the hard coat anti-glare layer, and then the frosted glass plate was peeled off to prepare a resin sheet.
- the film thickness of the hard coat anti-glare layer was 6 ⁇ m.
- the haze of the resin sheet was 2%, and the in-plane retardation was 4100-4500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 10, to prepare a resin sheet for molding.
- Example 12 FPC0220 (Tg184 ° C.) /E2000 (147 ° C.) /1.2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a high-hardness resin (B5) (polycarbonate resin containing a structural unit represented by the general formula (8); Iupizeta FPC0220 (manufactured by Mitsubishi Gas Chemical Company)) is continuously introduced into a single-screw extruder having a shaft diameter of 35 mm. Then, it was extruded under the conditions of a cylinder temperature of 300 ° C. and a discharge rate of 2.6 kg / h.
- B5 polycarbonate resin containing a structural unit represented by the general formula (8); Iupizeta FPC0220 (manufactured by Mitsubishi Gas Chemical Company)
- a polycarbonate resin (Iupilon E2000; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h.
- the extruded high-hardness resin and the polycarbonate resin were introduced into a feed block provided with two types and two layers of distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 280 ° C. Further, it is extruded into a sheet with a T-die having a temperature of 280 ° C., and cooled and stretched while transferring the mirror surface with three mirror finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side to form a high hardness resin layer. A laminate with a polycarbonate resin layer (base material layer) was obtained.
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 11.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 10, to prepare a resin sheet for molding.
- the first protective film and the second protective film were bonded in the same manner as in Example 1.
- Example 13 MS-H (Tg115 ° C.) / Low TgPC (Tg125 ° C.) /1.2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded.
- a high hardness resin (B1) (R1 and R2 in the general formula (1) are both methyl groups, R3 in the general formula (2) is a hydrogen atom, and R4 is a cyclohexyl group in a single shaft extruder having a shaft diameter of 35 mm.
- Resin (meth) acrylic acid ester constituent unit 75 mol%, aliphatic vinyl constituent unit 25 mol%, weight average molecular weight 120,000) was continuously introduced, cylinder temperature 240 ° C., discharge rate 2.6 kg. Extruded under the condition of / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 11.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- the method of attaching the polycarbonate film to the resin sheet was the same as in Example 10, to prepare a resin sheet for molding.
- Example 14 Alloy of V040 and St-MAH resin (Tg 136 ° C.) / Low TgPC (Tg 125 ° C.) /1.2 mmt 75% by mass of a copolymer (XIBOND160 (manufactured by Polyscope)) of 78% by mass of styrene constituent unit and 22% by mass of maleic anhydride constituent unit, and 25% by mass of acrylic resin (Altoglass V040 (manufactured by Alchema)) with a screw diameter of 26 mm.
- TEM-26SS, L / D ⁇ 40 manufactured by Toshiba Machine Co., Ltd.
- Example 2 Using the same multi-layer extruder as in Example 1, a laminate consisting of a base material layer and a high hardness resin layer was molded. Specifically, the above-mentioned high-hardness resin (B6) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- a polycarbonate resin Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 8.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Example 15 Alloy of V020 and St-MAH resin (Tg132 ° C.) / Low TgPC (Tg125 ° C.) /1.2 mmt 75% by mass of a copolymer (XIBOND160 (manufactured by Polyscope)) of 78% by mass of styrene constituent unit and 22% by mass of maleic anhydride constituent unit, and 25% by mass of acrylic resin (Altoglass V020 (manufactured by Alchema)) with a screw diameter of 26 mm.
- TEM-26SS, L / D ⁇ 40 manufactured by Toshiba Machine Co., Ltd.
- Example 2 Using the same multi-layer extruder as in Example 1, a laminate consisting of a base material layer and a high hardness resin layer was molded. Specifically, the above-mentioned high-hardness resin (B6) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- a polycarbonate resin Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 8.
- the in-plane retardation of the resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 1 MS-H (Tg115 ° C.) / Low TgPC (125 ° C.) /0.5 mmt
- the conditions for extruding the high-hardness resin (B1) with a single-screw extruder are a cylinder temperature of 230 ° C. and a discharge rate of 8.0 kg / h, and the discharge speed for extruding the polycarbonate resin with a single-screw extruder is 35.0 kg / h.
- the thickness of the laminate of the high-hardness resin layer and the polycarbonate resin layer (base material layer) was set to 0.5 mm (the thickness of the high-hardness resin layer was 60 ⁇ m near the center). The draw ratio was 1.5 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the resin sheet was 4100-4500 nm.
- a polycarbonate film (NF-2000NS manufactured by Mitsubishi Gas Chemical Company, 500 ⁇ mt) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a resin sheet for molding.
- the thickness of the polycarbonate film was 0.5 mm, and the in-plane retardation was 300 to 400 nm.
- Comparative Example 2 Alloy of R100 and PMMA (Tg115 ° C.) / Low TgPC (Tg125 ° C.) /1.2 mmt 75% by mass of a copolymer (Regisphi R100; manufactured by Denka) consisting of 21% by mass of methyl methacrylate constituent unit, 64% by mass of styrene constituent unit, and 15% by mass of maleic anhydride constituent unit, and acrylic resin (Parapet HR-1000L (Parapet HR-1000L) PMMA); 25% by mass of Kuraray Co., Ltd.) was introduced into an extruder (TEM-26SS, L / D ⁇ 40; manufactured by Toshiba Machine Co., Ltd.) with a screw diameter of 26 mm, melt-kneaded at 240 ° C., and made into a high-hardness resin (PMMA). B2) was obtained.
- a copolymer (Regisphi R100; manufactured by Denka) consisting of 21% by mass of methyl methacrylate
- Example 2 Using the same multi-layer extruder as in Example 1, a laminate consisting of a base material layer and a high hardness resin layer was molded. Specifically, the above-mentioned high-hardness resin was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge speed of 2.6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- a polycarbonate resin Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company
- Example 2 it was extruded with a T-die in the same manner as in Example 1 to obtain a laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer).
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center. The draw ratio was 1.3 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6200 to 6500 nm.
- a polycarbonate film (NF-2000NS manufactured by Mitsubishi Gas Chemical Company, 500 ⁇ mt) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a resin sheet for molding.
- the thickness of the polycarbonate film was 0.5 mm, and the in-plane retardation was 300 to 400 nm.
- Comparative Example 3 R100 (Tg124 ° C.) / Low TgPC (Tg125 ° C.) /1.2 mmt Using a multi-screw extruder having a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to each extruder, and a T-die connected to the feed block. A laminate consisting of a material layer and a high-hardness resin layer was formed.
- a copolymer of a high hardness resin (B2) (methyl methacrylate constituent unit 21% by mass, styrene constituent unit 64% by mass, and maleic anhydride constituent unit 15% by mass) in a single shaft extruder having a shaft diameter of 35 mm.
- Resin Styrene R100 manufactured by Denka was continuously introduced and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h.
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- the extruded high-hardness resin and the polycarbonate resin were introduced into a feed block provided with two types and two layers of distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 240 ° C. Furthermore, it is introduced into a T-die having a temperature of 240 ° C., extruded into a sheet, and cooled and stretched while transferring the mirror surface with three mirror finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side to achieve high hardness. A laminate of a resin layer and a polycarbonate resin layer (base material layer) was obtained. The draw ratio was 1.3 times.
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 3000 to 3500 nm.
- a polycarbonate film (FS-2000 manufactured by Mitsubishi Gas Chemical Company, 100 ⁇ mt) was bonded as a resin film (X) to the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.1 mm, and the in-plane retardation was 20 nm or less.
- Comparative Example 4 A laminate of a high hardness resin layer and a polycarbonate resin layer (base material layer) was obtained in the same manner as in Example 1. The hard coat anti-glare layer was formed in the same manner as in Example 1. The in-plane retardation of the above resin sheet was 6200 to 6500 nm. A polycarbonate film (NF-2000 (H11) manufactured by Mitsubishi Gas Chemical Company, 500 ⁇ mt) was bonded as a resin film (X) to the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to form a resin sheet for molding. did. The thickness of the polycarbonate film was 0.5 mm, and the in-plane retardation was 5000 to 6000 nm.
- Comparative Example 5 MS-H (Tg115 ° C.) / S1000 (Tg147 ° C.) /1.2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, in a single shaft extruder having a shaft diameter of 35 mm, a high hardness resin (B1) (R1 and R2 in the general formula (1) are both methyl groups, R3 in the general formula (2) is a hydrogen atom, and R4.
- Resin having a cyclohexyl group (meth) acrylic acid ester constituent unit 75 mol%, aliphatic vinyl constituent unit 25 mol%, weight average molecular weight 120,000) was continuously introduced, and the cylinder temperature was 240 ° C. It was extruded under the condition of a discharge rate of 2.6 kg / h. Further, a polycarbonate resin (Iupilon S-1000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 280 ° C. and a discharge rate of 50.0 kg / h. ..
- the extruded high-hardness resin and polycarbonate resin were introduced into a feed block provided with two types of two-layer distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 270 ° C. Further, it is extruded into a sheet with a T-die having a temperature of 270 ° C., and cooled while transferring the mirror surface with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side. A laminate with a resin layer (base material layer) was obtained. The draw ratio was 1.3 times. The thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 6 MS-H (Tg115 ° C.) / S1000 (Tg147 ° C.) / 2 mmt
- the ejection speed of the polycarbonate resin extruded by the single-screw extruder was set to 83.0 kg / h
- the thickness of the laminate of the high-hardness resin layer and the polycarbonate resin layer (base material layer) was 2 mm (high hardness).
- the thickness of the resin layer was 60 ⁇ m near the center).
- the draw ratio was 1.17 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 7 MS-H (Tg115 ° C.) / S1000 (Tg147 ° C.) /3.5 mmt
- the discharge rates of the high-hardness resin (B1) and the polycarbonate resin extruded by the single-screw extruder were set to 1.3 kg / h and 72.0 kg / h, respectively, and the high-hardness resin layer and the polycarbonate resin layer ( The thickness of the laminate with the base material layer) was 3.5 mm (the thickness of the high hardness resin layer was 60 ⁇ m near the center). The draw ratio was 1.1 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6800 to 7000 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 8 MS-H (Tg115 ° C.) / S1000 (Tg147 ° C.) /0.5 mmt
- the discharge rates of the high-hardness resin (B1) and the polycarbonate resin extruded by the single-screw extruder were set to 4.8 kg / h and 35.0 kg / h, respectively, and the high-hardness resin layer and the polycarbonate resin layer ( The thickness of the laminate with the base material layer) was set to 0.5 mm (the thickness of the high hardness resin layer was 60 ⁇ m near the center). The draw ratio was 1.5 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 4100 to 4500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 9 PMMA (Tg105 ° C.) / Low TgPC (Tg125 ° C.) /0.8 mmt Using a multi-screw extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to each extruder, and a T-die connected to the feed block. A laminate consisting of a material layer and a high-hardness resin layer was molded.
- a high-hardness resin (acrylic resin; Parapet HR-1000L (PMMA); manufactured by Kuraray Co., Ltd.) is continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, a cylinder temperature of 250 ° C., and a discharge speed of 2. Extruded under the condition of .6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 32.0 kg / h.
- acrylic resin Parapet HR-1000L (PMMA); manufactured by Kuraray Co., Ltd.
- a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and ex
- the extruded high-hardness resin and the polycarbonate resin were introduced into a feed block provided with two types and two layers of distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 240 ° C. Furthermore, it is introduced into a T-die having a temperature of 240 ° C., extruded into a sheet, and cooled while transferring the mirror surface with three mirror-finishing rolls having temperatures of 110 ° C., 140 ° C., and 185 ° C. from the upstream side. A laminate of the layer and the polycarbonate resin layer (base material layer) was obtained. The thickness of the obtained laminate was 0.8 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
- the draw ratio was 1.43 times.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 5800 to 6300 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 10 FPC0220 (Tg184 ° C.) /T1380 (125 ° C.) /1.2 mmt Using the same multilayer extruder as in Example 1, a laminate composed of a base material layer and a high hardness resin layer was molded. Specifically, a high-hardness resin (B5) (polycarbonate resin containing a structural unit represented by the general formula (8); Iupizeta FPC0220 (manufactured by Mitsubishi Gas Chemical Company)) is continuously introduced into a single-screw extruder having a shaft diameter of 35 mm. Then, it was extruded under the conditions of a cylinder temperature of 300 ° C. and a discharge rate of 2.6 kg / h.
- B5 polycarbonate resin containing a structural unit represented by the general formula (8); Iupizeta FPC0220 (manufactured by Mitsubishi Gas Chemical Company)
- a polycarbonate resin (Iupizeta T1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 50.0 kg / h.
- the extruded high-hardness resin and the polycarbonate resin were introduced into a feed block provided with two types and two layers of distribution pins, and the high-hardness resin and the polycarbonate resin were laminated at a temperature of 280 ° C. Further, it is extruded into a sheet with a T-die having a temperature of 280 ° C., and cooled and stretched while transferring the mirror surface with three mirror finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side to form a high hardness resin layer. A laminate with a polycarbonate resin layer (base material layer) was obtained. The draw ratio was 1.3 times.
- the thickness of the obtained laminate was 1.2 mm, and the thickness of the high-hardness resin layer was 60 ⁇ m near the center.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- Comparative Example 11 S-1000 (Tg147 ° C.) alone / 2 mmt
- the laminate was molded using the same polycarbonate resin contained in the substrate layer instead of the high hardness resin.
- the extruder the same multilayer extruder as in Example 1 was used. Specifically, a polycarbonate resin (Iupilon S-1000 (manufactured by Mitsubishi Engineering Plastics Co., Ltd.); pencil hardness 3B) was continuously introduced into a single-screw extruder having a shaft diameter of 35 mm, and the cylinder temperature was 280 ° C. and the discharge speed was 2. It was extruded under the condition of 6 kg / h.
- a polycarbonate resin (Iupilon S-1000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 280 ° C. and a discharge speed of 83.0 kg / h. ..
- the extruded polycarbonate resin was introduced into a feed block provided with two types and two layers of distribution pins, and laminated at a temperature of 280 ° C. Further, it is introduced into a T-die having a temperature of 280 ° C., extruded into a sheet, and cooled and stretched while transferring the mirror surface with three mirror finishing rolls having temperatures of 120 ° C., 130 ° C. Was obtained. The draw ratio was 1.17 times. The thickness of the obtained laminate was 2 mm.
- the hard coat anti-glare layer was formed in the same manner as in Example 1.
- the in-plane retardation of the above resin sheet was 6200 to 6500 nm.
- a polycarbonate film (FS-2000, 200 ⁇ mt manufactured by Mitsubishi Gas Chemical Company, Inc.) was bonded as a resin film (X) on the base material layer side of the above resin sheet with an adhesive (acrylic OCA) to obtain a molding resin sheet.
- the thickness of the polycarbonate film was 0.2 mm, and the in-plane retardation was 45 nm or less.
- the resin sheet of the present invention has excellent hardness, no flow marks, and no appearance abnormalities such as cracks after thermoforming.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Geometry (AREA)
- Laminated Bodies (AREA)
Abstract
本発明によれば、ポリカーボネート樹脂(a1)を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有し、高硬度樹脂層の少なくとも片側表面にハードコート層またはハードコートアンチグレア層を積層した樹脂シートであって、 前記ポリカーボネート樹脂(a1)および前記高硬度樹脂のガラス転移点が、以下の関係を満たし: -10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃ 前記樹脂シートの543nmの波長で測定した際の面内リタデーションが4000nm以上であり、 前記樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シートを提供することができる。
Description
本発明は、成形用樹脂シートおよびそれを用いた成形品に関する。
計器カバーなどの自動車内装品や家電、OA機器、パーソナルコンピュータ、小型携帯機器などの表示面の構成部品には、ガラス板、透明樹脂板などが使用され、これを保持する枠部品などに樹脂製の成形体が用いられている。他方、携帯電話端末などに用いられるタッチパネル型表示面の構成部品には、射出成形樹脂からなる枠部品に、透明シート、特に、ガラス板を両面粘着テープなどで接着したものが用いられている。タッチパネル型表示面としては、応答速度の点からは厚みが薄いものほど好ましく、強度の点からはある程度以上の厚さが必要であるため、高弾性率の材料が選択される。また、耐擦り傷性や指紋ふき取り性なども要求される。
上記のような用途に使用される樹脂成形体は、樹脂シートを成形することにより製造することができるが、用途に応じた特性を付与すべく、種々の工夫がなされている。例えば、樹脂シートをハードコート層、加飾シート等で修飾したり、異なる組成を有する樹脂層を積層して樹脂シートを構成したり、使用する樹脂の組成を工夫したりということがなされている。
加飾シートとしては、例えばアクリル系樹脂が用いられており、ハードコート層を有するものや、印刷等の意匠を設けた上に、更にフィルムを貼り合わせたものなども用いられている。
例えば、特許文献1には、表面側から順に、透明アクリル系樹脂シート層、絵柄印刷インキ層、ABS樹脂シート層およびABS樹脂バッカー層が積層された化粧シートが開示されている。特許文献2には、ポリカーボネート樹脂層の表面にメタクリル樹脂およびアクリルゴム粒子からなる層が積層されてなる多層フィルムが開示されており、その多層フィルムの一方の面に加飾が施され、その加飾面に熱可塑性樹脂シートが積層された加飾シートが開示されている。さらに、その加飾面に熱可塑性樹脂を射出成形することによって製造された加飾成形品も開示されている。
例えば、特許文献1には、表面側から順に、透明アクリル系樹脂シート層、絵柄印刷インキ層、ABS樹脂シート層およびABS樹脂バッカー層が積層された化粧シートが開示されている。特許文献2には、ポリカーボネート樹脂層の表面にメタクリル樹脂およびアクリルゴム粒子からなる層が積層されてなる多層フィルムが開示されており、その多層フィルムの一方の面に加飾が施され、その加飾面に熱可塑性樹脂シートが積層された加飾シートが開示されている。さらに、その加飾面に熱可塑性樹脂を射出成形することによって製造された加飾成形品も開示されている。
特許文献3には、樹脂基材上に熱硬化型もしくは紫外線硬化型のハードコート層を設けたシートを用いて成形された樹脂成形品が開示されている。
また、特許文献4には、基材フィルムの片面に特定組成のハードコート塗料を用いて形成した層を有する加飾用ハードコートフィルムが開示されており、基剤フィルム上に印刷層を設けてよいことも記載されている。この加飾フィルムは、熱成形が可能である。特許文献4に記載の加飾フィルムは、成形用樹脂と一体化され、加飾成形品となる。
特許文献5は、ポリカーボネート系樹脂組成物を主成分とする基材層の片面に、アクリル系樹脂を主成分とする被覆層を備えた積層シートを開示している。
また、特許文献4には、基材フィルムの片面に特定組成のハードコート塗料を用いて形成した層を有する加飾用ハードコートフィルムが開示されており、基剤フィルム上に印刷層を設けてよいことも記載されている。この加飾フィルムは、熱成形が可能である。特許文献4に記載の加飾フィルムは、成形用樹脂と一体化され、加飾成形品となる。
特許文献5は、ポリカーボネート系樹脂組成物を主成分とする基材層の片面に、アクリル系樹脂を主成分とする被覆層を備えた積層シートを開示している。
また、表示面の構成部品は外光の反射を散らして、表示を見やすくするためにアンチグレア層を設ける場合もある。アンチグレア処理は表面に微細な構造や形状を付与することにより施される。
表示面が曲がった形状であると、ガラス板を前面板部品として使用する場合はガラス板を曲げてからアンチグレア処理を施す必要がある。これはガラスの曲げ温度にアンチグレア層が耐えられず消失してしまうからである。しかしながら、曲面に均一にアンチグレア処理をするのは困難である。一方で樹脂板を使用する場合はあらかじめ平板にアンチグレア処理をしたものを曲げることができる。樹脂板の曲げ温度はガラスの曲げ温度よりも著しく低く、アンチグレア層が消失しないため、曲面にアンチグレア処理をする必要がない利点がある。
表示面が曲がった形状であると、ガラス板を前面板部品として使用する場合はガラス板を曲げてからアンチグレア処理を施す必要がある。これはガラスの曲げ温度にアンチグレア層が耐えられず消失してしまうからである。しかしながら、曲面に均一にアンチグレア処理をするのは困難である。一方で樹脂板を使用する場合はあらかじめ平板にアンチグレア処理をしたものを曲げることができる。樹脂板の曲げ温度はガラスの曲げ温度よりも著しく低く、アンチグレア層が消失しないため、曲面にアンチグレア処理をする必要がない利点がある。
カーナビゲーションシステムやスマートフォンなどの表示面はタッチパネル機能が付与されている場合が多いが、表示面が曲面形状の場合、曲面の樹脂前面板にタッチセンサーを貼合することはとても難易度が高い。したがって樹脂板を曲面形状に賦形する前に、平板の状態でタッチセンサーをあらかじめ貼合した後、樹脂板とタッチセンサーを同時に賦形する方法が曲面の前面板にタッチセンサーを貼合する必要が無くなり製造工程としては非常に生産性が高くなる。
本発明者らが樹脂前面板とタッチセンサーの組合せについて検討した結果、高リタデーションの樹脂前面板と低リタデーションの樹脂フィルムタッチセンサーが好適であった。これは、上記以外のリタデーションの組合せであると、偏光サングラス装着時にカーナビゲーションシステムやスマートフォンを見ると、色むらや着色が発生し視認性が悪化するためである。
高リタデーションの樹脂前面板と低リタデーションの樹脂フィルムタッチセンサーの組合せ以外でも、樹脂前面板の遅相軸と樹脂フィルムタッチセンサーの遅相軸が平行もしくは垂直の関係で貼合すれば色むらや着色は発生しないが、賦形時に軸がずれてしまう可能性が高い。
ここで、本発明者らは、高リタデーションの樹脂前面板のリタデーションは3500nm以上が良く、4000nmがさらに良く、また、低リタデーションの樹脂フィルムタッチセンサーのリタデーションは100nm以下が良く、50nm以下がさらに良いことを見出した。
樹脂板を曲げる際は金型、木型、樹脂型などを用いて加熱された樹脂板をプレスして熱曲げすることが多い。
用途により適した特性を有する樹脂成形体を製造することができる樹脂シートまたはフィルムを追及することは、尽きることのない課題である。
本発明は、硬度が高く、成形時に外観異常が生じにくく、偏光サングラス着用時でも色むらや着色が抑制された成形用樹脂シートおよびそれを用いた樹脂成形品を提供することを目的とする。
本願発明者らは、ポリカーボネート樹脂を基材として含む成形用樹脂シートであって、表面にハードコート層を設けた樹脂シートと、樹脂シートに貼合する樹脂フィルムタッチセンサーについて鋭意研究した。その結果、ポリカーボネート樹脂層とハードコート層との間に高硬度樹脂層を設け、さらにはポリカーボネート樹脂および高硬度樹脂としてそれぞれのガラス転移点が所定の関係を満たすものを選択することにより、硬度が高く、成形時にクラック、フローマーク等の外観異常が生じにくい樹脂シートを提供できることを見出した。また、樹脂シートのリタデーションと貼合する樹脂フィルムタッチセンサーのリタデーションを選択することにより、フィルムセンサー付き成形用樹脂シートを熱賦形後でも、偏光サングラス着用時に色むらや着色を抑制することが可能となった。すなわち、本発明は、例えば以下のとおりである。
<1> ポリカーボネート樹脂(a1)を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有し、高硬度樹脂層の少なくとも片側表面にハードコート層またはハードコートアンチグレア層を積層した樹脂シートであって、
前記ポリカーボネート樹脂(a1)および前記高硬度樹脂のガラス転移点が、以下の関係を満たし:
-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃
前記樹脂シートの543nmの波長で測定した際の面内リタデーションが4000nm以上であり、
前記樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シート。
<2> 前記ポリカーボネート樹脂(a1)が芳香族ポリカーボネート樹脂である上記<1>に記載の成形用樹脂シート。
<3> 前記芳香族ポリカーボネート樹脂が下記一般式(4a)で表される構成単位を含む、上記<2>に記載の成形用樹脂シート。
<4> 前記ポリカーボネート樹脂(a1)の含有量が前記基材層の全質量に対して75~100質量%である、上記<1>~<3>のいずれかに記載の成形用樹脂シート。
<5> 前記高硬度樹脂が以下の樹脂(B1)~(B6)からなる群より選択される、上記<1>~<4>のいずれかに記載の成形用樹脂シート:
・樹脂(B1):下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体、または該共重合体と樹脂(B2)とのアロイ
(式中、R1は水素原子またはメチル基であり;R2は炭素数1~18のアルキル基である。)
(式中、R3は水素原子またはメチル基であり;R4は炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基である。);
・樹脂(B2):(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体(D)、該共重合体(D)同士のアロイ、または該共重合体(D)と他の高硬度樹脂とのアロイ、または、該共重合体(D)とアクリル樹脂とのアロイ;
・樹脂(B3):下記一般式(6)で表される構成単位(c)と、任意に下記一般式(7)で表される構成単位(d)とを含む共重合体;
・樹脂(B4):スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体(G)、または該共重合体(G)と前記樹脂(B2)とのアロイ;
・樹脂(B5):下記一般式(8)で表される構成単位(e)を含む樹脂。
・樹脂(B6):スチレン構成単位を50~95質量%、不飽和ジカルボン酸単位を5~50質量%含む共重合体とアクリル樹脂とのアロイ。
<6> 前記高硬度樹脂の含有量が前記高硬度樹脂層の全質量に対して70~100質量%である、上記<1>~<5>のいずれかに記載の成形用樹脂シート。
<7> 前記基材層と前記高硬度樹脂層の合計厚みが0.5mm~3.5mmである、上記<1>~<6>のいずれかに記載の成形用樹脂シート。
<8> 前記基材層と前記高硬度樹脂層の合計厚みに占める前記基材層の厚みの割合が75%~99%である、上記<1>~<7>のいずれかに記載の成形用樹脂シート。
<9> 前記成形用樹脂シートのヘーズが2~30%である、上記<1>~<8>のいずれかに記載の成形用樹脂シート。
<10> 前記成形用樹脂シートにおけるハードコート層表面の鉛筆硬度が2H以上である、上記<1>~<9>のいずれかに記載の成形用樹脂シート。
<11> 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネート樹脂(a1)を含むポリカーボネートフィルムからなる上記<1>~<10>のいずれかに記載の成形用樹脂シート。
<12> 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネートフィルムにセンサー電極を施工したフィルムタッチセンサーからなる上記<1>~<10>のいずれかに記載の成形用樹脂シート。
<13> 前記成形用樹脂シートにおける接着剤層が光学粘着シートである上記<1>~<12>のいずれかに記載の成形用樹脂シート。
<14> 上記<1>~<13>のいずれかに記載の成形用樹脂シートを用いて成形された樹脂成形品。
前記ポリカーボネート樹脂(a1)および前記高硬度樹脂のガラス転移点が、以下の関係を満たし:
-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃
前記樹脂シートの543nmの波長で測定した際の面内リタデーションが4000nm以上であり、
前記樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シート。
<2> 前記ポリカーボネート樹脂(a1)が芳香族ポリカーボネート樹脂である上記<1>に記載の成形用樹脂シート。
<3> 前記芳香族ポリカーボネート樹脂が下記一般式(4a)で表される構成単位を含む、上記<2>に記載の成形用樹脂シート。
<5> 前記高硬度樹脂が以下の樹脂(B1)~(B6)からなる群より選択される、上記<1>~<4>のいずれかに記載の成形用樹脂シート:
・樹脂(B1):下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体、または該共重合体と樹脂(B2)とのアロイ
・樹脂(B2):(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体(D)、該共重合体(D)同士のアロイ、または該共重合体(D)と他の高硬度樹脂とのアロイ、または、該共重合体(D)とアクリル樹脂とのアロイ;
・樹脂(B3):下記一般式(6)で表される構成単位(c)と、任意に下記一般式(7)で表される構成単位(d)とを含む共重合体;
・樹脂(B5):下記一般式(8)で表される構成単位(e)を含む樹脂。
<6> 前記高硬度樹脂の含有量が前記高硬度樹脂層の全質量に対して70~100質量%である、上記<1>~<5>のいずれかに記載の成形用樹脂シート。
<7> 前記基材層と前記高硬度樹脂層の合計厚みが0.5mm~3.5mmである、上記<1>~<6>のいずれかに記載の成形用樹脂シート。
<8> 前記基材層と前記高硬度樹脂層の合計厚みに占める前記基材層の厚みの割合が75%~99%である、上記<1>~<7>のいずれかに記載の成形用樹脂シート。
<9> 前記成形用樹脂シートのヘーズが2~30%である、上記<1>~<8>のいずれかに記載の成形用樹脂シート。
<10> 前記成形用樹脂シートにおけるハードコート層表面の鉛筆硬度が2H以上である、上記<1>~<9>のいずれかに記載の成形用樹脂シート。
<11> 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネート樹脂(a1)を含むポリカーボネートフィルムからなる上記<1>~<10>のいずれかに記載の成形用樹脂シート。
<12> 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネートフィルムにセンサー電極を施工したフィルムタッチセンサーからなる上記<1>~<10>のいずれかに記載の成形用樹脂シート。
<13> 前記成形用樹脂シートにおける接着剤層が光学粘着シートである上記<1>~<12>のいずれかに記載の成形用樹脂シート。
<14> 上記<1>~<13>のいずれかに記載の成形用樹脂シートを用いて成形された樹脂成形品。
本発明によれば、硬度が高く、成形時に外観異常が生じにくく、偏光サングラス着用時でも色むらや着色が抑制された成形用樹脂シートおよびそれを用いた樹脂成形品を提供することができる。本発明では、ポリカーボネート樹脂を含む基材層に高硬度樹脂層を設け、更に外側にハードコート層またはハードコートアンチグレア層を設けたので傷つきにくく、防眩性があり視認性もよく、熱曲げしやすい樹脂板を提供することができる。
以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行なうこともできる。
本発明の成形用樹脂シート(以下、単に「樹脂シート」とも称する)は、ポリカーボネート樹脂(a1)を含む基材層と、高硬度樹脂を含む高硬度樹脂層と、ハードコート層またはハードコートアンチグレア層とを具備し、高硬度樹脂層は、基材層とハードコート層またはハードコートアンチグレア層との間に位置する。基材層と高硬度樹脂層の間、高硬度樹脂層とハードコート層またはハードコートアンチグレア層の間には、それぞれさらなる層が存在していてもよい。さらなる層としては、接着剤層、プライマー層等が挙げられるが、これらに限定されるものではない。さらなる層は存在していなくてもよく、1つの実施形態として、ポリカーボネート樹脂(a1)を含む基材層と、基材層の少なくとも一方の面上に積層された高硬度樹脂層と、高硬度樹脂層上に積層されたハードコート層またはハードコートアンチグレア層とを具備する樹脂シートが提供される。
高硬度樹脂層およびハードコート層またはハードコートアンチグレア層は、基材層の少なくとも一方の側に設ければよく、他方の側の構成に特に制限はない。また、高硬度樹脂層を基材層の両側に設けてもよく、その場合、一方または両方の高硬度樹脂層上にハードコート層またはハードコートアンチグレア層を設けることができる。高硬度樹脂層を基材層の両側に設ける場合には、2つの高硬度樹脂層で同じ高硬度樹脂を使用することが、反りの少ない安定した樹脂シートを得るために望ましい。
本発明の成形用樹脂シートは、上述したように基材層とハードコート層またはハードコートアンチグレア層の間に高硬度樹脂層を設け、さらには基材層中のポリカーボネート樹脂(a1)と高硬度樹脂層中の高硬度樹脂のガラス転移点が所定の関係を満たすことにより、硬度が高く、成形する際にクラック、フローマーク等の外観異常が生じにくい樹脂シートを得ることができる。特に熱成形時に外観異常が生じにくく、このような樹脂シートは、熱成形時の条件(温度、加熱時間等)を広く設定することができるため、熱成形に適した樹脂シートであると言える。また、熱成形に適した樹脂シートの成形前に樹脂フィルムタッチセンサーをあらかじめ貼合しておくことで、成形後の曲面を有する前面板にタッチセンサーを貼合する困難な工程を省略することができる。このため、曲面を有するディスプレイ前面板の生産性を向上させることが可能となる。
本発明のように硬度の高いハードコート層またはハードコートアンチグレア層を表面に有する樹脂シート、特にポリカーボネート樹脂を基材として用いた樹脂シートは、通常のガラス板と比較して耐衝撃性に優れ、安全性が高く、軽量である。また、通常のガラス板よりも曲げ易く、少しの曲げで割れることはない。これは、樹脂シートにおけるハードコート層またはハードコートアンチグレア層が、ある程度の柔軟性を有するためであると考えられる。
基材層とハードコートアンチグレア層との間に高硬度樹脂層を設けることにより、樹脂シートの硬度をさらに高めることができる。ポリカーボネート樹脂層上に直接ハードコートアンチグレア層を設けた場合には、弾性率が低く座屈しやすいという問題が生じ得るが、高硬度樹脂層を設けることによりこのような問題も解決することができる。
基材層とハードコートアンチグレア層との間に高硬度樹脂層を設けることにより、樹脂シートの硬度をさらに高めることができる。ポリカーボネート樹脂層上に直接ハードコートアンチグレア層を設けた場合には、弾性率が低く座屈しやすいという問題が生じ得るが、高硬度樹脂層を設けることによりこのような問題も解決することができる。
本発明において、基材層中のポリカーボネート樹脂(a1)と高硬度樹脂層中の高硬度樹脂のガラス転移点は、以下の関係を満たす。
-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃
従来、異なる種類の樹脂層を積層し、その上にハードコート層を設ける場合には、各層に含まれる樹脂のガラス転移点(Tg)や溶融粘度が異なり、クラック等の不具合が生じないように熱成形することが難しいという問題があった。しかしながら、本発明によると、上記のような関係を満たすポリカーボネート樹脂(a1)および高硬度樹脂を使用することにより、このような問題も解決することができる。
-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃
従来、異なる種類の樹脂層を積層し、その上にハードコート層を設ける場合には、各層に含まれる樹脂のガラス転移点(Tg)や溶融粘度が異なり、クラック等の不具合が生じないように熱成形することが難しいという問題があった。しかしながら、本発明によると、上記のような関係を満たすポリカーボネート樹脂(a1)および高硬度樹脂を使用することにより、このような問題も解決することができる。
多層構造の樹脂シートを所望の形状に熱成形する際には、通常、層中に最も多く含まれる樹脂の成形温度に合わせて成形する。例えば、ポリカーボネート樹脂を基材層として使用した樹脂シートの場合、耐衝撃性が良好なポリカーボネート樹脂が最も多く含まれることが通常であるため、ポリカーボネート樹脂に合わせた成形温度にて熱成形を実施する。本発明の樹脂シートは、上記関係を満たすポリカーボネート樹脂(a1)および高硬度樹脂を使用しているため、ポリカーボネート樹脂に適した成形温度で熱成形を行った場合にも外観異常の問題が生じにくい。したがって、本発明の樹脂シートは、従来のものよりも熱成形に適した樹脂シートであると言える。
ポリカーボネート樹脂(a1)および高硬度樹脂のガラス転移点は、-5℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦30℃であることが好ましく、0℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦30℃であることがより好ましい。高硬度樹脂のTgがポリカーボネート樹脂(a1)のTgよりも極端に低いと、熱成形時に高硬度樹脂がゴム状態または溶融状態となり、動きやすくなる。このような場合、高度に架橋された構造を有し、熱がかかっても硬いままであるハードコートアンチグレア層が、動きやすくなった高硬度樹脂の動きに追従できずクラックが生じ易くなる。一方、高硬度樹脂のTgがポリカーボネート樹脂(a1)のTgと比較して高すぎると、高硬度樹脂とポリカーボネート樹脂の粘度の差が大きくなり、これらを積層する際に界面が荒れてしまい、フローマークが生じ得る。
本発明の樹脂シートは、硬度が要求される曲げ形状を有する成形品の製造に好適に使用することができる。例えば、平面部と連続した曲げ部を有する構成部品を首尾よく製造することができるため、新規なデザインや機能を有する製品を提供することもできる。
従来の樹脂シートでは、上記のような形状を有する成形品を製造しようとした場合、熱プレス成形、真空成形、圧空成形、TOM成形などの熱成形時にクラックが生じるなどの不具合が多く発生していた。そこで、熱成形時のクラック発生を抑制するために、ハードコートの硬さを低下させるなどの工夫をする必要があった。しかしながら、ハードコートの硬さを低下させた場合、熱成形性は向上するものの、ハードコートが軟らかいため傷が付きやすい、耐薬品性が低下するという新たな問題が生じていた。
従来の樹脂シートでは、上記のような形状を有する成形品を製造しようとした場合、熱プレス成形、真空成形、圧空成形、TOM成形などの熱成形時にクラックが生じるなどの不具合が多く発生していた。そこで、熱成形時のクラック発生を抑制するために、ハードコートの硬さを低下させるなどの工夫をする必要があった。しかしながら、ハードコートの硬さを低下させた場合、熱成形性は向上するものの、ハードコートが軟らかいため傷が付きやすい、耐薬品性が低下するという新たな問題が生じていた。
それに対して本発明によれば、上述したようにクラックの発生が抑制されるため、ハードコートの硬さを低下させることなく、熱形成可能な樹脂シートを提供することができる。本発明の樹脂シートは、硬いハードコートアンチグレア層を表層に設けることができるため、傷が付きにくく、耐薬品性も高い。このような特性を利用して、本発明の樹脂シートは、パソコン、携帯電話などの表示面の構成部品、自動車外装用および内装用部材、携帯電話端末、パソコン、タブレット型PC、カーナビなどにおける曲面を有する筐体や前面板などに使用することが可能である。
以下、本発明による樹脂シートの各構成部材について説明する。
1.基材層
基材層とは、主としてポリカーボネート樹脂(a1)を含む樹脂層である。基材層に含まれるポリカーボネート樹脂(a1)は、1種類であっても2種類以上であってもよい。基材層中のポリカーボネート樹脂(a1)の含有量は、基材層の全質量に対して75~100質量%であることが好ましく、90~100質量%であることがより好ましく、100質量%であることが特に好ましい。ポリカーボネート樹脂の含有量を増やすことで、耐衝撃性が向上する。
1.基材層
基材層とは、主としてポリカーボネート樹脂(a1)を含む樹脂層である。基材層に含まれるポリカーボネート樹脂(a1)は、1種類であっても2種類以上であってもよい。基材層中のポリカーボネート樹脂(a1)の含有量は、基材層の全質量に対して75~100質量%であることが好ましく、90~100質量%であることがより好ましく、100質量%であることが特に好ましい。ポリカーボネート樹脂の含有量を増やすことで、耐衝撃性が向上する。
ポリカーボネート樹脂(a1)としては、分子主鎖中に炭酸エステル結合、即ち、-[O-R-OCO]-単位(ここで、Rは、脂肪族基、芳香族基、または脂肪族基と芳香族基の双方を含んでいてもよく、直鎖構造であっても分岐構造であってもよい)を含むものであれば特に限定されるものではないが、芳香族ポリカーボネート樹脂であることが好ましく、特に下記式(4a)の構成単位を含むポリカーボネート樹脂を使用することが好ましい。このようなポリカーボネート樹脂を使用することで、耐衝撃性により優れた樹脂シートを得ることができる。
近年、ポリカーボネート樹脂のガラス転移点を制御する目的で、下記一般式(4)で表されるような1価フェノールを末端停止剤として付加したポリカーボネート樹脂も使用されている。本発明においても、このように末端停止剤を付加したポリカーボネート樹脂を使用することができる。
(式中、R1は、炭素数8~36のアルキル基または炭素数8~36のアルケニル基を表し;R2~R5はそれぞれ独立して、水素原子、ハロゲン、または置換基を有していてもよい炭素数1~20のアルキル基もしくは炭素数6~12のアリール基を表し;ここで、前記置換基は、ハロゲン、炭素数1~20のアルキル基、または炭素数6~12のアリール基である。)
本明細書中において、「アルキル基」および「アルケニル基」は、直鎖状であっても分岐鎖状であってもよく、置換基を有していてもよい。
本明細書中において、「アルキル基」および「アルケニル基」は、直鎖状であっても分岐鎖状であってもよく、置換基を有していてもよい。
一般式(4)または一般式(5)におけるR1の炭素数は、特定の数値範囲内であることがより好ましい。具体的には、R1の炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、R1の炭素数の下限値として、8が好ましく、12がより好ましい。
一般式(4)または一般式(5)で示される1価フェノールの中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。
例えば、一般式(5)においてR1が炭素数16のアルキル基である1価フェノールを末端停止剤として使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性等に優れたポリカーボネート樹脂を得ることができ、また、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性にも優れるため、特に好ましい。
一方、一般式(4)または一般式(5)におけるR1の炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
一例として、R1の炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。R1の炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。このような1価フェノールを使用したポリカーボネート樹脂としては、例えば、ユピゼータT-1380(三菱ガス化学製)等が挙げられる。
一般式(4)または一般式(5)におけるR1の炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移点が十分に低い値とはならず、熱成形性が低下することがある。
一例として、R1の炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。R1の炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。このような1価フェノールを使用したポリカーボネート樹脂としては、例えば、ユピゼータT-1380(三菱ガス化学製)等が挙げられる。
一般式(4)または一般式(5)におけるR1の炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移点が十分に低い値とはならず、熱成形性が低下することがある。
本発明において、ポリカーボネート樹脂(a1)の重量平均分子量は、樹脂シートの耐衝撃性および成形条件に影響し得る。つまり、重量平均分子量が小さすぎる場合は、樹脂シートの耐衝撃性が低下するおそれがある。重量平均分子量が高すぎる場合は、ポリカーボネート樹脂(a1)を含む基材層を形成する時に過剰な熱源を必要とする場合がある。また、選択する成形法によっては高い温度が必要になるので、ポリカーボネート樹脂(a1)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート樹脂(a1)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは20,000~65,000である。なお、本明細書における重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
当業者であれば、使用する高硬度樹脂のガラス転移点(Tg)を考慮して、公知のポリカーボネート樹脂の中から上記関係を満たすようなTgを有するポリカーボネート樹脂(a1)を適宜選択して使用することができる。ポリカーボネート樹脂(a1)のTgは90~190℃であることが好ましく、100~170℃であることがより好ましく、110~150℃であることが特に好ましい。なお、本明細書において、ガラス転移点とは、示差走査熱量測定装置を用いて、試料10mg、昇温速度10℃/分で測定し、中点法で算出した温度である。
基材層は、ポリカーボネート樹脂(a1)に加え、他の樹脂を含んでいてもよい。そのような樹脂としては、ポリエステル樹脂等が挙げられる。ポリエステル樹脂は、ジカルボン酸成分として主にテレフタル酸を含んでいることが好ましく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。
例えば、主成分であるエチレングリコール80~60モル%に対して1,4-シクロヘキサンジメタノールを20~40モル%(合計100モル%)含むグリコール成分が重縮合してなるポリエステル樹脂(所謂「PETG」)が好ましい。基材層における樹脂は、ポリカーボネート樹脂(a1)のみであることが好ましいが、その他の樹脂を含む場合には、その量は基材層の全質量に対して0~25質量%であることが好ましく、0~10質量%であることがより好ましい。
例えば、主成分であるエチレングリコール80~60モル%に対して1,4-シクロヘキサンジメタノールを20~40モル%(合計100モル%)含むグリコール成分が重縮合してなるポリエステル樹脂(所謂「PETG」)が好ましい。基材層における樹脂は、ポリカーボネート樹脂(a1)のみであることが好ましいが、その他の樹脂を含む場合には、その量は基材層の全質量に対して0~25質量%であることが好ましく、0~10質量%であることがより好ましい。
基材層は、さらに添加剤等を含んでいてもよい。添加剤としては、樹脂シートにおいて通常使用されるものを使用することができ、そのような添加剤としては、例えば、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。添加剤と樹脂を混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。添加剤の量は、基材層の全質量に対して0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。
基材層の厚みは、0.3~10mmであることが好ましく、0.3~5mmであることがより好ましく、0.3~3.5mmであることが特に好ましい。
2.高硬度樹脂層
高硬度樹脂層は、主として高硬度樹脂を含む樹脂層である。本明細書において、高硬度樹脂とは、基材となるポリカーボネート樹脂よりも硬度の高い樹脂であり、鉛筆硬度がHB以上の樹脂を意味する。高硬度樹脂の鉛筆硬度は、HB~3Hであることが好ましく、H~3Hであることがより好ましく、2H~3Hであることが特に好ましい。高硬度樹脂層に含まれる高硬度樹脂は、1種類であっても2種類以上であってもよい。当業者であれば、使用するポリカーボネート樹脂のガラス転移点(Tg)を考慮して、公知の高硬度樹脂の中から「-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃」の関係を満たすようなTgを有する高硬度樹脂を適宜選択して使用することができる。高硬度樹脂は、以下に示す樹脂(B1)~(B6)の少なくとも1つから選択されることが好ましい。
高硬度樹脂層は、主として高硬度樹脂を含む樹脂層である。本明細書において、高硬度樹脂とは、基材となるポリカーボネート樹脂よりも硬度の高い樹脂であり、鉛筆硬度がHB以上の樹脂を意味する。高硬度樹脂の鉛筆硬度は、HB~3Hであることが好ましく、H~3Hであることがより好ましく、2H~3Hであることが特に好ましい。高硬度樹脂層に含まれる高硬度樹脂は、1種類であっても2種類以上であってもよい。当業者であれば、使用するポリカーボネート樹脂のガラス転移点(Tg)を考慮して、公知の高硬度樹脂の中から「-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃」の関係を満たすようなTgを有する高硬度樹脂を適宜選択して使用することができる。高硬度樹脂は、以下に示す樹脂(B1)~(B6)の少なくとも1つから選択されることが好ましい。
<樹脂(B1)>
樹脂(B1)とは、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体、あるいは該共重合体と以下で説明する樹脂(B2)とのアロイである。
樹脂(B1)とは、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体、あるいは該共重合体と以下で説明する樹脂(B2)とのアロイである。
本明細書中において、「炭化水素基」は、直鎖状、分岐鎖状、環状のいずれであってもよく、置換基を有していてもよい。
一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)において、R2は炭素数1~18のアルキル基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。
(メタ)アクリル酸エステル構成単位(a)のうち、好ましいのはR2がメチル基またはエチル基である(メタ)アクリル酸エステル構成単位であり、更に好ましいのはR1がメチル基であり、R2がメチル基であるメタクリル酸メチル構成単位である。
(メタ)アクリル酸エステル構成単位(a)のうち、好ましいのはR2がメチル基またはエチル基である(メタ)アクリル酸エステル構成単位であり、更に好ましいのはR1がメチル基であり、R2がメチル基であるメタクリル酸メチル構成単位である。
一般式(2)で表される脂肪族ビニル構成単位(b)において、R3は水素原子またはメチル基であり、水素原子であることがより好ましい。R4は、シクロヘキシル基または炭素数1~4の炭化水素基で置換されたシクロヘキシル基であり、置換基を有さないシクロへキシル基であることが好ましい。
従って、脂肪族ビニル構成単位(b)のうち、より好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル構成単位である。
従って、脂肪族ビニル構成単位(b)のうち、より好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル構成単位である。
樹脂(B1)は、(メタ)アクリル酸エステル構成単位(a)を1種または2種以上含有していてもよく、脂肪族ビニル構成単位(b)を1種または2種以上含有していてもよい。
(メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計含有量は、樹脂(B1)の全構成単位に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。
(メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計含有量は、樹脂(B1)の全構成単位に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。
すなわち、樹脂(B1)は、(メタ)アクリル酸エステル構成単位(a)および脂肪族ビニル構成単位(b)以外の構成単位を含有していてもよい。その量は、樹脂(B1)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
(メタ)アクリル酸エステル構成単位(a)および脂肪族ビニル構成単位(b)以外の構成単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して樹脂(B1)を製造する過程において生じる、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。
また、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)の含有量は、樹脂(B1)中の全構成単位に対して好ましくは65~80モル%であり、より好ましくは70~80モル%である。樹脂(B1)中の全構成単位に対する(メタ)アクリル酸エステル構成単位(a)の割合が65モル%以上であると、基材層との密着性や表面硬度に優れた樹脂層を得ることができる。また、80モル%以下であれば、樹脂シートの吸水による反りが発生しづらい。
また、一般式(2)で表される脂肪族ビニル構成単位(b)の含有量は、樹脂(B1)中の全構成単位に対して好ましくは20~35モル%であり、より好ましくは20~30モル%である。脂肪族ビニル構成単位(b)の含有量が20モル%以上であれば、高温高湿下でのそりを防ぐことができ、また、35モル%以下であれば、基材層との界面での剥離を防ぐことができる。
なお、本明細書において、「共重合体」は、ランダム、ブロックおよび交互共重合体のいずれの構造であってもよい。
なお、本明細書において、「共重合体」は、ランダム、ブロックおよび交互共重合体のいずれの構造であってもよい。
樹脂(B1)の製造方法は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。なお、(メタ)アクリル酸とは、メタクリル酸および/またはアクリル酸を示す。
この際に使用される芳香族ビニルモノマーとしては、具体的にはスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、およびそれらの誘導体などが挙げられる。これらの中で好ましいのはスチレンである。
この際に使用される芳香族ビニルモノマーとしては、具体的にはスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、およびそれらの誘導体などが挙げられる。これらの中で好ましいのはスチレンである。
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法や溶液重合法などにより製造することができる。
塊状重合法は、上記モノマーおよび重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでいてもよい。
塊状重合法は、上記モノマーおよび重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでいてもよい。
重合開始剤としては、特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。
連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。
連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。
溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応に用いられる溶媒は、上記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。
上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、本発明に用いられる樹脂(B1)が得られる。
水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。
水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。
水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属またはそれら金属の酸化物、塩もしくは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。
樹脂(B1)は、芳香族ビニルモノマー由来の芳香族二重結合の70%以上が水素化されたものであることが好ましい。即ち、芳香族ビニルモノマー由来の構成単位中に含まれる芳香族二重結合の未水素化率は、30%未満であることが好ましい。未水素化率が30%未満であることにより、透明性に優れた樹脂を得ることができる。未水素化率は、より好ましくは10%未満であり、さらに好ましくは5%未満である。
樹脂(B1)の重量平均分子量は、特に制限はないが、強度および成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。
樹脂(B1)のガラス転移点は、110~140℃の範囲であることが好ましく、110~135℃であることがより好ましく、110~130℃であることが特に好ましい。ガラス転移点が110℃以上であることにより、本発明で提供される樹脂シートが熱環境あるいは湿熱環境において変形や割れを生じることが少ない。一方、140℃以下であることにより、鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形によって成形する場合に加工性に優れる。
樹脂(B1)として、具体的には、オプティマス7500、6000(三菱ガス化学製)が挙げられる。
高硬度樹脂として樹脂(B1)を使用する場合には、ポリカーボネート樹脂(a1)としてユピゼータT-1380(三菱ガス化学製)を使用することが好ましい。樹脂(B1)として、一般式(1)で表される構成単位(R1、R2がともにメチル基;メタクリル酸メチル)を75モル%、一般式(2)で表される構成単位(R3が水素原子、R4がシクロヘキシル基)を25モル%含む共重合体を使用し、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用し、末端停止剤として一般式(5)で表される1価フェノール(R1の炭素数が8~22)を使用する態様が特に好ましい。
<樹脂(B2)>
樹脂(B2)とは、(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体(D)または共重合体(D)同士のアロイである樹脂、更には、共重合体(D)と樹脂(B2)以外の高硬度樹脂とのアロイである樹脂、または、共重合体(D)とアクリル樹脂とのアロイである樹脂である。樹脂(B2)以外の高硬度樹脂としては、メタクリル酸メチル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。また、アクリル樹脂としてはポリメタクリル酸メチル、メタクリル酸メチルとアクリル酸メチルまたはアクリル酸エチルとの共重合体などがあげられる。また、市販品を用いることも可能であり、具体例としては三菱ケミカル(株)のアクリペット、住友化学(株)のスミペックス、(株)クラレのパラペット、アルケマのアルトグラスなどが例示できる。アロイにする場合には、高硬度樹脂のTg低下を避けるため、より高Tgである樹脂同士のアロイが良い。
樹脂(B2)とは、(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体(D)または共重合体(D)同士のアロイである樹脂、更には、共重合体(D)と樹脂(B2)以外の高硬度樹脂とのアロイである樹脂、または、共重合体(D)とアクリル樹脂とのアロイである樹脂である。樹脂(B2)以外の高硬度樹脂としては、メタクリル酸メチル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。また、アクリル樹脂としてはポリメタクリル酸メチル、メタクリル酸メチルとアクリル酸メチルまたはアクリル酸エチルとの共重合体などがあげられる。また、市販品を用いることも可能であり、具体例としては三菱ケミカル(株)のアクリペット、住友化学(株)のスミペックス、(株)クラレのパラペット、アルケマのアルトグラスなどが例示できる。アロイにする場合には、高硬度樹脂のTg低下を避けるため、より高Tgである樹脂同士のアロイが良い。
(メタ)アクリル酸エステル構成単位を構成する(メタ)アクリル酸エステル単量体としては、例えばアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等が挙げられ、特にメタクリル酸メチルが好ましい。これらの(メタ)アクリル酸エステル単量体は、2種以上を混合して使用してもよい。
(メタ)アクリル酸エステル構成単位の含有量は、樹脂(B2)の全質量に対して6~77質量%であり、20~70質量%であることが好ましい。
(メタ)アクリル酸エステル構成単位の含有量は、樹脂(B2)の全質量に対して6~77質量%であり、20~70質量%であることが好ましい。
スチレン構成単位としては、特に限定されず、任意の公知のスチレン系単量体を用いることが出来る。入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が好ましい。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は、2種以上を混合して使用しても良い。
スチレン構成単位の含有量は、樹脂(B2)の全質量に対して15~71質量%であり、20~66質量%であることが好ましい。
スチレン構成単位の含有量は、樹脂(B2)の全質量に対して15~71質量%であり、20~66質量%であることが好ましい。
不飽和ジカルボン酸構成単位を構成する不飽和ジカルボン酸無水物単量体としては、例えばマレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、スチレン系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合して使用しても良い。
不飽和ジカルボン酸構成単位の含有量は、樹脂(B2)の全質量に対して8~23質量%であり、10~23質量%であることが好ましい。
不飽和ジカルボン酸構成単位の含有量は、樹脂(B2)の全質量に対して8~23質量%であり、10~23質量%であることが好ましい。
上記(メタ)アクリル酸エステル構成単位、スチレン構成単位および不飽和ジカルボン酸構成単位の合計含有量は、樹脂(B2)の全構成単位に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。
すなわち、樹脂(B2)は、上記(メタ)アクリル酸エステル構成単位、スチレン構成単位および不飽和ジカルボン酸構成単位以外の構成単位を含有していてもよい。その量は、樹脂(B2)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
すなわち、樹脂(B2)は、上記(メタ)アクリル酸エステル構成単位、スチレン構成単位および不飽和ジカルボン酸構成単位以外の構成単位を含有していてもよい。その量は、樹脂(B2)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
その他の構成単位としては、例えば、N-フェニルマレイミドなどが挙げられる。
樹脂(B2)の製造方法は、特に限定されないが、塊状重合法や溶液重合法が挙げられる。
樹脂(B2)の製造方法は、特に限定されないが、塊状重合法や溶液重合法が挙げられる。
樹脂(B2)として、具体的には、レジスファイ R100、R200、R310(デンカ製)、デルペット980N(旭化成ケミカル製)、hw55(ダイセルエボニック製)等が挙げられる。
樹脂(B2)の重量平均分子量は、特に制限はないが、50,000~300,000であることが好ましく、80,000~200,000であることがより好ましい。
樹脂(B2)のガラス転移点は、90~150℃であることが好ましく、100~150℃であることがより好ましく、115~150℃であることが特に好ましい。
高硬度樹脂として樹脂(B2)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(5)で表される1価フェノール(R1の炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)、ユーピロンE-2000(三菱エンジニアリングプラスチックス製)等が挙げられる。樹脂(B2)としてメタクリル酸メチル構成単位6~26質量%、スチレン構成単位55~21質量%、無水マレイン酸構成単位15~23質量%で構成される共重合体(R100、R200、またはR310;デンカ製)を使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用する態様が好ましい。また、樹脂(B2)としてメタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、無水マレイン酸構成単位23質量%で構成される共重合体(R310;デンカ製)を使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用する態様が特に好ましい。
<樹脂(B3)>
樹脂(B3)は、下記一般式(6)で表される構成単位(c)と、任意に下記一般式(7)で表される構成単位(d)とを含む共重合体である。樹脂(B3)は、構成単位(d)を含んでいても含んでいなくてもよいが、含んでいることが好ましい。
樹脂(B3)は、下記一般式(6)で表される構成単位(c)と、任意に下記一般式(7)で表される構成単位(d)とを含む共重合体である。樹脂(B3)は、構成単位(d)を含んでいても含んでいなくてもよいが、含んでいることが好ましい。
樹脂(B3)の全構成単位における構成単位(c)の割合は、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。樹脂(B3)の全構成単位における構成単位(d)の割合は、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが特に好ましい。
構成単位(c)と構成単位(d)の合計含有量は、樹脂(B3)に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。
樹脂(B3)は、構成単位(c)および構成単位(d)以外の構成単位を含んでいてもよい。その他の構成単位を含む場合、その量は、樹脂(B3)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
その他の構成単位としては、例えば、下記一般式(4a)で表される構成単位などが挙げられる。
その他の構成単位としては、例えば、下記一般式(4a)で表される構成単位などが挙げられる。
樹脂(B3)の製造方法は、特に限定されないが、モノマーとしてビスフェノールCを使用することを除いて上述したポリカーボネート樹脂(a1)の製造方法と同様の方法で製造することができる。
樹脂(B3)として、具体的には、ユーピロン KH3410UR、KH3520UR、KS3410UR(三菱エンジニアリングプラスチック社製)等が挙げられる。
樹脂(B3)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましく、25,000~65,000が特に好ましい。
樹脂(B3)のガラス転移点は、105~150℃であることが好ましく、110~140℃であることがより好ましく、110~135℃であることが特に好ましい。
高硬度樹脂として樹脂(B3)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(5)で表される1価フェノール(R1の炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B3)としてユーピロンKS3410UR(三菱エンジニアリングプラスチックス製)を使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380(三菱ガス化学製)を使用することが好ましい。
高硬度樹脂として樹脂(B3)を使用する場合、高硬度樹脂層に含まれる他の樹脂としては、構成単位(c)を含まず、構成単位(d)を含む樹脂が好ましく、構成単位(d)のみからなる樹脂がより好ましい。具体的には、芳香族ポリカーボネート樹脂(例えば、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000;三菱エンジニアリングプラスチックス社製)等が使用可能である。他の樹脂を含む場合、樹脂(B3)は、高硬度樹脂層に含まれる全樹脂に対して、好ましくは45質量%以上、より好ましくは55質量%以上の割合で含まれる。
<樹脂(B4)>
樹脂(B4)は、スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体(G)、または共重合体(G)と上記樹脂(B2)とのアロイである。アロイの場合には、高硬度樹脂層のTg低下を避けるため、より高Tg同士の樹脂のアロイが良い。
樹脂(B4)は、スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体(G)、または共重合体(G)と上記樹脂(B2)とのアロイである。アロイの場合には、高硬度樹脂層のTg低下を避けるため、より高Tg同士の樹脂のアロイが良い。
スチレン構成単位としては、特に限定されず、任意の公知のスチレン系単量体を用いることが出来るが、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が好ましい。これらの中でも、相溶性の観点からスチレンが特に好ましい。共重合体(G)は、これらのスチレン構成単位を2種以上含んでいてもよい。スチレン構成単位の含有量は、樹脂(B4)の全質量に対して5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。
(メタ)アクリル酸エステル構成単位としては、例えばアクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等に由来する構成単位が挙げられ、特にメタクリル酸メチルに由来する構成単位が好ましい。また、共重合体(G)は、これらの(メタ)アクリル酸エステル構成単位を2種類以上含んでいてもよい。(メタ)アクリル酸エステル構成単位の含有量は、樹脂(B4)の全質量に対して60~90質量%であり、70~90質量%であることが好ましく、80~90質量%であることがより好ましい。
樹脂(B4)におけるN-置換型マレイミド構成単位としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等に由来する構成単位が挙げられ、アクリル樹脂との相溶性の観点からN-フェニルマレイミドに由来する構成単位が好ましい。共重合体(G)は、これらのN-置換型マレイミド構成単位を2種以上含んでいてもよい。N-置換型マレイミド構成単位の含有量は、樹脂(B4)の全質量に対して5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。
スチレン構成単位、(メタ)アクリル酸エステル構成単位、およびN-置換型マレイミド構成単位の合計含有量は、樹脂(B4)に対して好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。
樹脂(B4)は、上記構成単位以外の構成単位を含んでいてもよい。その他の構成単位を含む場合、その量は、樹脂(B4)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
樹脂(B4)は、上記構成単位以外の構成単位を含んでいてもよい。その他の構成単位を含む場合、その量は、樹脂(B4)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
その他の構成単位としては、例えば、下記一般式(1)に由来する構成単位、一般式(2)に由来する構成単位などが挙げられる。
(式中、R1は水素原子またはメチル基であり;R2は炭素数1~18のアルキル基である。)
(式中、R3は水素原子またはメチル基であり;R4は炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基である。)
樹脂(B4)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。
樹脂(B4)として、具体的には、デルペット PM120N(旭化成ケミカル社製)が挙げられる。
樹脂(B4)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。
樹脂(B4)のガラス転移点は、110~150℃であることが好ましく、115~140℃であることがより好ましく、115~135℃であることが特に好ましい。
高硬度樹脂として樹脂(B4)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(5)で表される1価フェノール(R1の炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B4)としてスチレン構成単位7質量%、(メタ)アクリル酸エステル構成単位86質量%、およびN-置換型マレイミド構成単位7質量%からなるデルペットPM-120Nを使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用するのが好ましい。
樹脂(B5)の全構成単位における構成単位(e)の割合は、80~100モル%であることが好ましく、90~100モル%であることがより好ましく、95~100モル%であることが特に好ましい。
樹脂(B5)は、構成単位(e)以外の構成単位を含んでいてもよいが、構成単位(e)からなるポリカーボネート樹脂であることが好ましい。その他の構成単位を含む場合、その量は、樹脂(B5)の全構成単位に対して20モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることが特に好ましい。
樹脂(B5)は、構成単位(e)以外の構成単位を含んでいてもよいが、構成単位(e)からなるポリカーボネート樹脂であることが好ましい。その他の構成単位を含む場合、その量は、樹脂(B5)の全構成単位に対して20モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることが特に好ましい。
樹脂(B5)の製造方法は、特に限定されないが、モノマーとしてビスフェノールAPを使用することを除き、上述したポリカーボネート樹脂(a1)の製造方法と同様の方法で製造することができる。
樹脂(B5)として、具体的には、ユピゼータ FPC0220(三菱ガス化学社製)が挙げられる。
樹脂(B5)として、具体的には、ユピゼータ FPC0220(三菱ガス化学社製)が挙げられる。
樹脂(B5)の重量平均分子量は、10,000~1,000,000であることが好ましく、15,000~50,000がより好ましい。
樹脂(B5)のガラス転移点は、120~200℃であることが好ましく、130~190℃であることがより好ましく、140~190℃であることが特に好ましい。
高硬度樹脂として樹脂(B5)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。このようなポリカーボネート樹脂としては、ユーピロンE-2000(三菱エンジニアリングプラスチックス製)が挙げられる。特に、樹脂(B5)としてユピゼータFPC0220(三菱ガス化学製)を使用し、ポリカーボネート樹脂(a1)としてユーピロンE-2000(三菱エンジニアリングプラスチックス製)を使用することが好ましい。
高硬度樹脂として樹脂(B5)を使用する場合、高硬度樹脂層に含まれる他の樹脂としては、構成単位(e)を含まず、樹脂(B3)で説明した構成単位(d)を含む樹脂が好ましく、構成単位(d)のみからなる樹脂がより好ましい。具体的には、芳香族ポリカーボネート樹脂(例えば、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000;三菱エンジニアリングプラスチックス社製)等が使用可能である。他の樹脂を含む場合、樹脂(B5)は、高硬度樹脂層に含まれる全樹脂に対して、好ましくは45質量%以上、より好ましくは55質量%以上の割合で含まれる。
<樹脂(B6)>
樹脂(B6)は、スチレン構成単位を50~95質量%、不飽和ジカルボン酸構成単位を5~50質量%含む共重合体(H)、または共重合体(H)と上記樹脂(B1)とのアロイ、または共重合体(H)とアクリル樹脂とのアロイである。アロイの場合には、高硬度樹脂層のTg低下を避けるため、より高Tg同士の樹脂のアロイが良い。
樹脂(B6)は、スチレン構成単位を50~95質量%、不飽和ジカルボン酸構成単位を5~50質量%含む共重合体(H)、または共重合体(H)と上記樹脂(B1)とのアロイ、または共重合体(H)とアクリル樹脂とのアロイである。アロイの場合には、高硬度樹脂層のTg低下を避けるため、より高Tg同士の樹脂のアロイが良い。
スチレン構成単位としては、樹脂(B4)で記載のスチレン系単量体を用いることができる。共重合体(H)は、これらのスチレン構成単位を2種以上含んでいてもよい。スチレン構成単位の含有量は、共重合体(H)の全質量に対して50~95質量%であり、60~90質量%であることが好ましく、65~87質量%であることがより好ましい。
不飽和ジカルボン酸構成単位を構成する不飽和ジカルボン酸無水物単量体としては、例えばマレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、スチレン系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合して使用しても良い。
不飽和ジカルボン酸構成単位の含有量は、共重合体(H)の全質量に対して5~50質量%であり、10~40質量%であることが好ましく、13~35質量%であることがより好ましい。
不飽和ジカルボン酸構成単位の含有量は、共重合体(H)の全質量に対して5~50質量%であり、10~40質量%であることが好ましく、13~35質量%であることがより好ましい。
共重合体(H)は、上記構成単位以外の構成単位を含んでいてもよい。その他の構成単位を含む場合、その量は、樹脂(H)の全構成単位に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。
その他の構成単位としては、例えば、下記一般式(1)に由来する構成単位、一般式(2)に由来する構成単位などが挙げられる。
(式中、R1は水素原子またはメチル基であり;R2は炭素数1~18のアルキル基である。)
(式中、R3は水素原子またはメチル基であり;R4は炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基である。)
共重合体(H)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。
共重合体(H)として、具体的には、XIBOND140、XIBOND160(ポリスコープ社製)が挙げられる。
共重合体(H)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。
スチレン構成単位、および不飽和ジカルボン酸構成単位からなる共重合体(H)の含有量は、樹脂(B6)に対して好ましくは10~90質量%であり、より好ましくは20~85質量%であり、特に好ましくは30~80質量%である。
樹脂(B6)のガラス転移点は、110~150℃であることが好ましく、115~140℃であることがより好ましく、115~137℃であることが特に好ましい。
高硬度樹脂として樹脂(B6)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(4a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(5)で表される1価フェノール(R1の炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B6)としてスチレン構成単位78質量%、無水マレイン酸構成単位22質量%からなるXIBOND160とアクリル樹脂とのアロイを使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用するのが好ましい。
高硬度樹脂層に含まれる高硬度樹脂は、1種類であっても2種類以上であってもよく、樹脂(B1)~(B6)から2種類以上を選択する場合は、同じまたは異なるカテゴリーから選択することができ、さらに樹脂(B1)~(B6)以外の高硬度樹脂を含んでいてもよい。高硬度樹脂層中の高硬度樹脂の含有量は、70~100質量%であることが好ましく、80~100質量%であることがより好ましく、100質量%であることが特に好ましい。
高硬度樹脂層は、上記で説明したような高硬度樹脂に加え、他の樹脂を含んでいてもよい。そのような樹脂としては、メタクリル酸メチル-スチレン共重合体、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフィン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、各種エラストマーなどが挙げられる。高硬度樹脂層における樹脂は、高硬度樹脂のみであることが好ましいが、その他の樹脂を含む場合、その量は高硬度樹脂層に対して35質量%以下であることが好ましく、25質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。
高硬度樹脂層は、さらに添加剤等を含んでいてもよい。添加剤としては、上記「1.基材層」において記載したのと同様の添加剤を使用することができ、その量についても同様である。
高硬度樹脂層の厚さは、成形用樹脂シートの表面硬度や耐衝撃性に影響する。つまり、高硬度樹脂層が薄すぎると表面硬度が低くなり、厚すぎると耐衝撃性が低下する。高硬度樹脂層の厚みは、好ましくは10~250μmであり、より好ましくは30~200μmであり、特に好ましくは60~150μmである。
3.基材層と高硬度樹脂層の積層
上述したとおり、基材層と高硬度樹脂層の間にはさらなる層が存在していてもよいが、ここでは、基材層上に高硬度樹脂層を積層する場合について説明する。その積層方法は特に限定されず、他の層が存在する場合にも同様に積層することができる。例えば、個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を加熱圧着する方法;個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を接着剤によって接着する方法;基材層と高硬度樹脂層とを共押出成形する方法;予め形成しておいた高硬度樹脂層に、基材層をインモールド成形して一体化する方法、などの各種方法がある。これらのうち、製造コストや生産性の観点から、共押出成形する方法が好ましい。
上述したとおり、基材層と高硬度樹脂層の間にはさらなる層が存在していてもよいが、ここでは、基材層上に高硬度樹脂層を積層する場合について説明する。その積層方法は特に限定されず、他の層が存在する場合にも同様に積層することができる。例えば、個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を加熱圧着する方法;個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を接着剤によって接着する方法;基材層と高硬度樹脂層とを共押出成形する方法;予め形成しておいた高硬度樹脂層に、基材層をインモールド成形して一体化する方法、などの各種方法がある。これらのうち、製造コストや生産性の観点から、共押出成形する方法が好ましい。
共押出の方法は特に限定されない。例えば、フィードブロック方式では、フィードブロックで基材層の片面上に高硬度樹脂層を配置し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内で基材層の片面上に高硬度樹脂層を配置し、シート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。この際、成形ロールとシート引き取りロールの回転速度(m/min)比を制御し、シートを一軸方向に延伸しながら冷却する。延伸倍率は1.0~1.5倍でコントロールし、樹脂シートの面内リタデーションを制御する。本発明の樹脂シートの543nmの波長で測定した際の面内リタデーションは4000nm以上であり、4500~10000nmが好ましく、5500~8000nmがより好ましい。樹脂シートの面内リタデーションが4000nm以上であることにより、樹脂シートを液晶パネル前面板として張り合わせた後、偏光サングラスを装着して液晶ディスプレイを見ても、着色や色むらが発生しにくくなり好ましい。
基材層と高硬度樹脂層の合計厚みは、好ましくは0.5~3.5mm、より好ましくは0.5~3.0mm、特に好ましくは1.2~3.0mmである。合計厚みを0.5mm以上とすることにより、シートの剛性を保つことができる。また、3.5mm以下とすることにより、シートの下にタッチパネルを設置する場合等にタッチセンサーの感度が悪くなるのを防ぐことができる。基材層と高硬度樹脂層の合計厚みに占める基材層の厚みの割合は、好ましくは75%~99%であり、より好ましくは80~99%であり、特に好ましくは85~99%である。上記範囲とすることにより、硬度と耐衝撃性を両立できる。
4.ハードコート層、ハードコートアンチグレア層
本発明の樹脂シートは、ハードコート層またはハードコートアンチグレア層を具備する。ハードコート層、ハードコートアンチグレア層と高硬度樹脂層の間にさらなる層が存在していてもよいが、好ましくは、ハードコート層、ハードコートアンチグレア層は高硬度樹脂層上に積層される。ハードコート層、ハードコートアンチグレア層は、アクリル系ハードコートで作製されることが好ましい。本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー2~98質量%、(メタ)アクリル系オリゴマー2~98質量%および表面改質剤0~15質量%を含むことが好ましく、さらに、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.001~7質量部の光重合開始剤を含むことが好ましい。
本発明の樹脂シートは、ハードコート層またはハードコートアンチグレア層を具備する。ハードコート層、ハードコートアンチグレア層と高硬度樹脂層の間にさらなる層が存在していてもよいが、好ましくは、ハードコート層、ハードコートアンチグレア層は高硬度樹脂層上に積層される。ハードコート層、ハードコートアンチグレア層は、アクリル系ハードコートで作製されることが好ましい。本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー2~98質量%、(メタ)アクリル系オリゴマー2~98質量%および表面改質剤0~15質量%を含むことが好ましく、さらに、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.001~7質量部の光重合開始剤を含むことが好ましい。
ハードコート層、ハードコートアンチグレア層は、より好ましくは、(メタ)アクリル系モノマーを5~50質量%、(メタ)アクリル系オリゴマーを50~94質量%および表面改質剤を1~10質量%含み、特に好ましくは、(メタ)アクリル系モノマーを20~40質量%、(メタ)アクリル系オリゴマーを60~78質量%および表面改質剤を2~5質量%含む。
光重合開始剤の量は、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.01~5質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。
光重合開始剤の量は、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.01~5質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。
(1)(メタ)アクリル系モノマー
(メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用でき、1官能モノマー、2官能モノマー、または3官能以上のモノマーであって良い。
(メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用でき、1官能モノマー、2官能モノマー、または3官能以上のモノマーであって良い。
1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示でき、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、トリプロピレングルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できる。
ハードコートアンチグレア層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。
ハードコートアンチグレア層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。
(2)(メタ)アクリル系オリゴマー
(メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー〔以下、多官能ウレタン(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー〔以下、多官能ポリエステル(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー〔以下、多官能エポキシ(メタ)アクリレートオリゴマーともいう〕などが挙げられる。ハードコートアンチグレア層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。
(メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー〔以下、多官能ウレタン(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー〔以下、多官能ポリエステル(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー〔以下、多官能エポキシ(メタ)アクリレートオリゴマーともいう〕などが挙げられる。ハードコートアンチグレア層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。
多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。
ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。
ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。
ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。
また、多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。
多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。
(3)表面改質剤
本発明で使用される表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコートアンチグレア層の表面性能を変えるものである。
レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。
本発明で使用される表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコートアンチグレア層の表面性能を変えるものである。
レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。
帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。
無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。
有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。
界面活性剤および撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。
無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。
有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。
界面活性剤および撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。
(4)光重合開始剤
ハードコート層、ハードコートアンチグレア層は、光重合開始剤を含んでいてよい。本明細書において、光重合開始剤とは光ラジカル発生剤を指す。
ハードコート層、ハードコートアンチグレア層は、光重合開始剤を含んでいてよい。本明細書において、光重合開始剤とは光ラジカル発生剤を指す。
本発明で使用することができる単官能光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α'-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。
(5)ハードコート層、ハードコートアンチグレア層の形成方法
ハードコート層、ハードコートアンチグレア層の形成方法は特に限定されないが、例えば、ハードコートアンチグレア層の下に位置する層(例えば高硬度樹脂層)上にハードコート液を塗布した後、光重合させることにより形成することができる。
ハードコート層、ハードコートアンチグレア層の形成方法は特に限定されないが、例えば、ハードコートアンチグレア層の下に位置する層(例えば高硬度樹脂層)上にハードコート液を塗布した後、光重合させることにより形成することができる。
ハードコート液(重合性組成物)を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。
光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられ、その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。
上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cm2の範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cm2とすることが好ましい。
光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。
光照射をイナート雰囲気下で行なう場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。
ハードコート層、ハードコートアンチグレア層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。
ハードコート層、ハードコートアンチグレア層は、UV光(254nm)の照射出力が20mW/cm2のメタルハライドランプを用いて紫外線照射した場合に、鉛筆硬度が2H以上であることが好ましい。
ハードコート層、ハードコートアンチグレア層の膜厚としては、1μm以上40μm以下が望ましく、2μm以上10μm以下がより望ましい。膜厚が1μm以上であることにより十分な硬度を得ることができる。また、膜厚が40μm以下であることにより、曲げ加工時のクラックの発生を抑制することができる。なお、ハードコートアンチグレア層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。
ハードコート層、ハードコートアンチグレア層は、アクリル系ハードコートを鏡面型もしくはアンチグレア型と高硬度樹脂との間に塗装しUV光を照射し硬化させた後、鏡面型、アンチグレア型から脱型することで作製することができる。鏡面型を使用した場合は樹脂シートが鏡面のハードコート層を持つことになり、アンチグレア型を使用した場合は樹脂シートがハードコートアンチグレア層を持つことになる。鏡面型、アンチグレア型の材料はUV光を透過するものであれば良く、材料としてはガラス、透明樹脂などである。
ハードコート層、ハードコートアンチグレア層は、さらに修飾されてもよい。例えば、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。これらの処理方法は特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。
本発明の樹脂シートの鉛筆硬度は、2H以上であることが好ましく、例えば2H~4Hであり、3H~4Hであることが特に好ましい。ここでいう樹脂シートの鉛筆硬度は、ハードコートアンチグレア層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を意味する(JIS K 5600-5-4に準拠した鉛筆ひっかき硬度試験)。
5.樹脂フィルム(X)
本発明は、樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シートである。好ましくは面内リタデーションが45nm以下であり、より好ましくは面内リタデーションが3~45nmの樹脂フィルム(X)を貼合することである。面内リタデーションが50nm以下の樹脂フィルム(X)を貼合することによって、樹脂シートと貼合した後の熱成形時に樹脂フィルム(X)と樹脂シートの遅相軸同士または遅相軸と進相軸の組合せが成形によりずれてしまっても、成形用樹脂シートを液晶パネル前面板として張り合わせた後、偏光サングラスを装着して液晶ディスプレイを見ても、着色や色むらが発生しにくくなり好ましい。
本発明の好ましい態様は、ポリカーボネート樹脂(a1)を含む基材層側に樹脂フィルム(X)を貼合することである。また、本発明の別の好ましい態様は、樹脂フィルム(X)がポリカーボネート樹脂(a1)を含むポリカーボネートフィルムからなるものである。更に、本発明の別の好ましい態様は、樹脂フィルム(X)が基材フィルムにセンサー電極を施工したフィルムタッチセンサーからなるものである。上記基材フィルムとしては、COP(シクロオレフィンポリマー)、COC(シクロオレフィンコポリマー)、アクリル樹脂、ポリカーボネート樹脂、PET樹脂などを使用することができ、ポリカーボネート樹脂を好ましく使用することができる。上記センサー電極としては、ITOなどで作製された透明電極を配置した抵抗膜方式センサー、静電容量方式センサーなどが挙げられる。
本発明は、樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シートである。好ましくは面内リタデーションが45nm以下であり、より好ましくは面内リタデーションが3~45nmの樹脂フィルム(X)を貼合することである。面内リタデーションが50nm以下の樹脂フィルム(X)を貼合することによって、樹脂シートと貼合した後の熱成形時に樹脂フィルム(X)と樹脂シートの遅相軸同士または遅相軸と進相軸の組合せが成形によりずれてしまっても、成形用樹脂シートを液晶パネル前面板として張り合わせた後、偏光サングラスを装着して液晶ディスプレイを見ても、着色や色むらが発生しにくくなり好ましい。
本発明の好ましい態様は、ポリカーボネート樹脂(a1)を含む基材層側に樹脂フィルム(X)を貼合することである。また、本発明の別の好ましい態様は、樹脂フィルム(X)がポリカーボネート樹脂(a1)を含むポリカーボネートフィルムからなるものである。更に、本発明の別の好ましい態様は、樹脂フィルム(X)が基材フィルムにセンサー電極を施工したフィルムタッチセンサーからなるものである。上記基材フィルムとしては、COP(シクロオレフィンポリマー)、COC(シクロオレフィンコポリマー)、アクリル樹脂、ポリカーボネート樹脂、PET樹脂などを使用することができ、ポリカーボネート樹脂を好ましく使用することができる。上記センサー電極としては、ITOなどで作製された透明電極を配置した抵抗膜方式センサー、静電容量方式センサーなどが挙げられる。
6.接着剤
接着剤は透明な光学糊であればよく、リンテック社の光学粘着シート(OCA:Optically Clear Adhesive)(Opteriaシリーズ)、日東電工社の光学用透明粘着シートLUCIACSシリーズ、積水化学工業社の高透明両面テープ、旭化成社のディスプレイ光学接着シリコーンなどを接着剤層として使用することが好ましい。
接着剤は透明な光学糊であればよく、リンテック社の光学粘着シート(OCA:Optically Clear Adhesive)(Opteriaシリーズ)、日東電工社の光学用透明粘着シートLUCIACSシリーズ、積水化学工業社の高透明両面テープ、旭化成社のディスプレイ光学接着シリコーンなどを接着剤層として使用することが好ましい。
本発明の樹脂シートのヘーズは、2~30%であることが好ましく、4~25%であることがより好ましい。上記ヘーズは、村上色彩技術研究所製HR-100型を用いてJIS K 7136に準拠し測定した値である。
本発明の一実施形態によると、上述した成形用樹脂シートを用いて成形された樹脂成形品が提供される。成形方法は特に限定されないが、本発明の樹脂シートの特性から、熱成形が適している。熱成形は、当該分野で通常使用される方法で行うことができ、例えば、熱プレス成形、圧空成形、真空成形、TOM成形が挙げられる。成形温度は、100℃から200℃であることが好ましい。
以下に本発明の実施例を示すが、本発明は実施例の態様に制限されるものではない。
<ガラス転移点(Tg)、融点の測定>
日立ハイテクサイエンス製示差走査熱量計DSC7020を使用し、昇温速度10℃/分、窒素雰囲気下で、実施例および比較例で使用したポリカーボネート樹脂および高硬度樹脂のガラス転移点および保護フィルムの融点を測定した。測定に使用した樹脂の重量は10~20mgである。
<ガラス転移点(Tg)、融点の測定>
日立ハイテクサイエンス製示差走査熱量計DSC7020を使用し、昇温速度10℃/分、窒素雰囲気下で、実施例および比較例で使用したポリカーボネート樹脂および高硬度樹脂のガラス転移点および保護フィルムの融点を測定した。測定に使用した樹脂の重量は10~20mgである。
<樹脂シートの鉛筆硬度の測定>
実施例および比較例で製造した樹脂シートを、JIS K 5600-5-4に準拠した鉛筆ひっかき硬度試験にて評価した。ハードコートアンチグレア層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。硬度が2H以上を合格とした。
実施例および比較例で製造した樹脂シートを、JIS K 5600-5-4に準拠した鉛筆ひっかき硬度試験にて評価した。ハードコートアンチグレア層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。硬度が2H以上を合格とした。
<曲げ形状を有する成形品の作製と成形後ハードコートクラックの評価>
実施例および比較例で製造した樹脂シートを熱成形した。実施例1~3、5~15、比較例1~6、8~11については、クリアランス(金型上下で成形シートを挟み込む隙間)が2mmで成形Rが50mmの熱プレス用金型を用い、実施例4および比較例7については、クリアランスが3.5mmで成形Rが100mmの熱プレス用金型を用いた。熱プレス金型にかかる圧力は0.6MPaであった。金型の材質はアルミである。熱成形時の金型の温度は、実施例1~5、7~11、13~15、比較例1~4、9、10では124℃、実施例6、12、比較例5~8、11では143℃とした。
実施例および比較例で製造した樹脂シートを熱成形した。実施例1~3、5~15、比較例1~6、8~11については、クリアランス(金型上下で成形シートを挟み込む隙間)が2mmで成形Rが50mmの熱プレス用金型を用い、実施例4および比較例7については、クリアランスが3.5mmで成形Rが100mmの熱プレス用金型を用いた。熱プレス金型にかかる圧力は0.6MPaであった。金型の材質はアルミである。熱成形時の金型の温度は、実施例1~5、7~11、13~15、比較例1~4、9、10では124℃、実施例6、12、比較例5~8、11では143℃とした。
得られた成形品について、50mmR部分または100mmR部分のクラックの有無を確認した。なお、クリアランスが2mmの熱プレス用金型を使用して、基材層と高硬度樹脂層の合計厚みが0.5mm、1.2mmまたは1.5mmである樹脂シートを成形する場合は、それぞれ、1.5mm、0.8mm、0.5mmの単層ポリカーボネートシートを下に敷き、合計で2mm厚となるようにして熱プレス成形した。
<フローマーク>
実施例および比較例で製造したハードコートをする前の高硬度樹脂層とポリカーボネート樹脂層の積層体について、3波長蛍光灯下で目視にて外観検査を行い、うろこ状模様、白濁の有無を確認した。うろこ状模様および白濁がいずれも観察されなかった場合には「フローマーク無し」と評価し、うろこ状模様または白濁のいずれかが観察された場合には「フローマーク有り」と評価した。
実施例および比較例で製造したハードコートをする前の高硬度樹脂層とポリカーボネート樹脂層の積層体について、3波長蛍光灯下で目視にて外観検査を行い、うろこ状模様、白濁の有無を確認した。うろこ状模様および白濁がいずれも観察されなかった場合には「フローマーク無し」と評価し、うろこ状模様または白濁のいずれかが観察された場合には「フローマーク有り」と評価した。
<面内リタデーションの測定>
フォトニックラティス社の複屈折評価装置WPA-200-Lを使用し、樹脂シートまたは樹脂フィルムのリタデーションを測定した。測定波長は543nmである。3500nmを超えるリタデーション域の測定には付属の標準レンズでは測定できないため、高位相差測定用レンズK4 FUJINON1:1.4/16mm HF16HA-1Bを使用した。
フォトニックラティス社の複屈折評価装置WPA-200-Lを使用し、樹脂シートまたは樹脂フィルムのリタデーションを測定した。測定波長は543nmである。3500nmを超えるリタデーション域の測定には付属の標準レンズでは測定できないため、高位相差測定用レンズK4 FUJINON1:1.4/16mm HF16HA-1Bを使用した。
<樹脂シートのヘーズの測定>
村上色彩技術研究所製HR-100型を用いてJIS K 7136に準拠し評価した。
村上色彩技術研究所製HR-100型を用いてJIS K 7136に準拠し評価した。
実施例1:R100(Tg124℃)/低TgPC(Tg125℃)/1.2mmt
軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体;レジスファイ R100(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体;レジスファイ R100(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、240℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度240℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。延伸倍率は1.3倍であった。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。
上記で得られた積層体の高硬度樹脂層側に、ハードコートアンチグレア層を形成した。ハードコートアンチグレア層の材料は、以下のとおりである。
・U6HA:6官能ウレタンアクリレートオリゴマー(新中村化学工業(株)製)60質量%、
・4EG-A:PEG200#ジアクリレート(共栄社化学(株)製)35質量%、
および
・RS-90:含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(DIC(株)製)5質量%の混合物100質量部に対して、
・光重合開始剤:I-184(BASF(株)製〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕)を1質量部。
・U6HA:6官能ウレタンアクリレートオリゴマー(新中村化学工業(株)製)60質量%、
・4EG-A:PEG200#ジアクリレート(共栄社化学(株)製)35質量%、
および
・RS-90:含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(DIC(株)製)5質量%の混合物100質量部に対して、
・光重合開始剤:I-184(BASF(株)製〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕)を1質量部。
上記材料をバーコーターにて積層体に塗布し、その上からヘーズが10%の2mm厚のすりガラス板の凹凸面を被せ、ガラス板上からメタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、ハードコートアンチグレア層を付着させた後、すりガラス板を剥離し、樹脂シートを作製した。ハードコートアンチグレア層の膜厚は6μmであった。樹脂シートのヘーズは9%、面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、100μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.1mm、面内リタデーションは20nm以下であった。
実施例2:R100(Tg124℃)/低TgPC(Tg125℃)/2mmt
単軸押出機でのポリカーボネート樹脂の押し出しにおける吐出速度を83.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを2mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.17倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
単軸押出機でのポリカーボネート樹脂の押し出しにおける吐出速度を83.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを2mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.17倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例3:R100(Tg124℃)/低TgPC(Tg125℃)/0.5mmt
単軸押出機での高硬度樹脂(B2)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ4.8kg/hおよび35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。面内リタデーションは4100~4500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
単軸押出機での高硬度樹脂(B2)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ4.8kg/hおよび35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。面内リタデーションは4100~4500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例4:R100(Tg124℃)/低TgPC(Tg125℃)/3.5mmt
単軸押出機での高硬度樹脂(B2)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ1.3kg/hおよび72.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを3.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.1倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。面内リタデーションは6800~7000nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
単軸押出機での高硬度樹脂(B2)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ1.3kg/hおよび72.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを3.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.1倍であった。ハードコートアンチグレア層を実施例1と同様に形成し樹脂シートとした。面内リタデーションは6800~7000nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例5:R310(Tg141℃)/低TgPC(Tg125℃)/2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.17倍であった。
ハードコートアンチグレア層は、実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層は、実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例6:R310(Tg141℃)/S-1000(Tg147℃)/2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度83.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度83.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、280℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度280℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.17倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例7:PM120N(Tg120℃)/低TgPC(Tg125℃)/1.5mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B4)(スチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体;デルペット PM120N(旭化成ケミカル製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータ T-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度62.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B4)(スチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体;デルペット PM120N(旭化成ケミカル製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータ T-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度62.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.5mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.23倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例8:R200(Tg126℃)/低TgPC(Tg125℃)/2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位26質量%、スチレン構成単位55質量%、無水マレイン酸構成単位19質量%の共重合体;レジスファイ R200(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位26質量%、スチレン構成単位55質量%、無水マレイン酸構成単位19質量%の共重合体;レジスファイ R200(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.17倍であった。
ハードコートアンチグレア層の材料は実施例1と同様で、バーコーターにて積層体に塗布し、その上からヘーズが30%の2mm厚のすりガラスの凹凸面を被せ、ガラス上からメタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、ハードコートアンチグレア層を付着させた後、すりガラス板を剥離し、樹脂シートを作製した。ハードコートアンチグレア層の膜厚は6μmであった。樹脂シートのヘーズは29%であり、樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層の材料は実施例1と同様で、バーコーターにて積層体に塗布し、その上からヘーズが30%の2mm厚のすりガラスの凹凸面を被せ、ガラス上からメタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、ハードコートアンチグレア層を付着させた後、すりガラス板を剥離し、樹脂シートを作製した。ハードコートアンチグレア層の膜厚は6μmであった。樹脂シートのヘーズは29%であり、樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例9:C-PC(KH3410UR)(Tg118℃)/低TgPC(Tg125℃)/2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、高硬度樹脂(B3)(ポリカーボネート樹脂;ユーピロン KH3410UR(三菱エンジニアリングプラスチック(株)製))を連続的に導入し、シリンダ温度270℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、高硬度樹脂(B3)(ポリカーボネート樹脂;ユーピロン KH3410UR(三菱エンジニアリングプラスチック(株)製))を連続的に導入し、シリンダ温度270℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.17倍であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。樹脂シートへのポリカーボネートフィルムの貼合方法は実施例1と同様に行い、成形用樹脂シートを作製した。
実施例10:R100とPM120Nとのアロイ(Tg123℃)/低TgPC(Tg125℃)/1.2mmt
メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体(レジスファイ R100(デンカ製))75質量%、ならびにスチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体(デルペット PM120N;旭化成ケミカル製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B4)を得た。
メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体(レジスファイ R100(デンカ製))75質量%、ならびにスチレン構成単位7質量%、メタクリル酸メチル構成単位86質量%、およびN-フェニルマレイミド構成単位7質量%の共重合体(デルペット PM120N;旭化成ケミカル製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B4)を得た。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に上記の高硬度樹脂(B4)を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
実施例11:R310(Tg141℃)/低TgPC(Tg125℃)/0.5mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度8kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度35.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位6質量%、スチレン構成単位71質量%、および無水マレイン酸構成単位23質量%の共重合体;レジスファイ R310(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度8kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度35.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは0.5mm、高硬度樹脂層の厚みは中央付近で100μmであった。延伸倍率は1.5倍であった。
ハードコートアンチグレア層の材料は実施例1と同様で、バーコーターにて積層体に塗布し、その上からヘーズが4%の2mm厚のすりガラスの凹凸面を被せ、ガラス上からメタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、ハードコートアンチグレア層を付着させた後、すりガラス板を剥離し、樹脂シートを作製した。ハードコートアンチグレア層の膜厚は6μmであった。樹脂シートのヘーズは2%であり、面内リタデーションは4100~4500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層の材料は実施例1と同様で、バーコーターにて積層体に塗布し、その上からヘーズが4%の2mm厚のすりガラスの凹凸面を被せ、ガラス上からメタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、ハードコートアンチグレア層を付着させた後、すりガラス板を剥離し、樹脂シートを作製した。ハードコートアンチグレア層の膜厚は6μmであった。樹脂シートのヘーズは2%であり、面内リタデーションは4100~4500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
実施例12:FPC0220(Tg184℃)/E2000(147℃)/1.2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B5)(一般式(8)で示される構成単位を含むポリカーボネート樹脂;ユピゼータFPC0220(三菱ガス化学製))を連続的に導入し、シリンダ温度300℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンE2000;三菱ガス化学製)を連続的に導入し、シリンダ温度280℃、吐出速度50.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B5)(一般式(8)で示される構成単位を含むポリカーボネート樹脂;ユピゼータFPC0220(三菱ガス化学製))を連続的に導入し、シリンダ温度300℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンE2000;三菱ガス化学製)を連続的に導入し、シリンダ温度280℃、吐出速度50.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、280℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度280℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例11と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
第一保護フィルム及び第二保護フィルムは実施例1と同様に貼合した。
ハードコートアンチグレア層は実施例11と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
第一保護フィルム及び第二保護フィルムは実施例1と同様に貼合した。
実施例13:MS-H(Tg115℃)/低TgPC(Tg125℃)/1.2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B1)(一般式(1)におけるR1およびR2が共にメチル基であり、一般式(2)におけるR3が水素原子で、R4がシクロヘキシル基である樹脂;(メタ)アクリル酸エステル構成単位75モル%、脂肪族ビニル構成単位25モル%からなり、重量平均分子量は120,000)を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。軸径35mmの単軸押出機に高硬度樹脂(B1)(一般式(1)におけるR1およびR2が共にメチル基であり、一般式(2)におけるR3が水素原子で、R4がシクロヘキシル基である樹脂;(メタ)アクリル酸エステル構成単位75モル%、脂肪族ビニル構成単位25モル%からなり、重量平均分子量は120,000)を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例11と同様に形成した。
樹脂シートの面内リタデーションは6200~6500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
ハードコートアンチグレア層は実施例11と同様に形成した。
樹脂シートの面内リタデーションは6200~6500nmであった。
樹脂シートへのポリカーボネートフィルムの貼合方法は実施例10と同様に行い、成形用樹脂シートを作製した。
実施例14:V040とSt-MAH樹脂とのアロイ(Tg136℃)/低TgPC(Tg125℃)/1.2mmt
スチレン構成単位78質量%、無水マレイン酸構成単位22質量%の共重合体(XIBOND160(ポリスコープ製))75質量%、ならびにアクリル樹脂(アルトグラスV040(アルケマ製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B6)を得た。
スチレン構成単位78質量%、無水マレイン酸構成単位22質量%の共重合体(XIBOND160(ポリスコープ製))75質量%、ならびにアクリル樹脂(アルトグラスV040(アルケマ製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B6)を得た。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に上記の高硬度樹脂(B6)を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
実施例15:V020とSt-MAH樹脂とのアロイ(Tg132℃)/低TgPC(Tg125℃)/1.2mmt
スチレン構成単位78質量%、無水マレイン酸構成単位22質量%の共重合体(XIBOND160(ポリスコープ製))75質量%、ならびにアクリル樹脂(アルトグラスV020(アルケマ製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B6)を得た。
スチレン構成単位78質量%、無水マレイン酸構成単位22質量%の共重合体(XIBOND160(ポリスコープ製))75質量%、ならびにアクリル樹脂(アルトグラスV020(アルケマ製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B6)を得た。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に上記の高硬度樹脂(B6)を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例8と同様に形成した。樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例1:MS-H(Tg115℃)/低TgPC(125℃)/0.5mmt
高硬度樹脂(B1)を単軸押出機で押し出す際の条件をシリンダ温度230℃、吐出速度8.0kg/hとし、ポリカーボネート樹脂を単軸押出機で押し出す際の吐出速度を35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは4100~4500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000NS、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは300~400nmであった。
高硬度樹脂(B1)を単軸押出機で押し出す際の条件をシリンダ温度230℃、吐出速度8.0kg/hとし、ポリカーボネート樹脂を単軸押出機で押し出す際の吐出速度を35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。樹脂シートの面内リタデーションは4100~4500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000NS、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは300~400nmであった。
比較例2:R100とPMMAとのアロイ(Tg115℃)/低TgPC(Tg125℃)/1.2mmt
メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%からなる共重合体(レジスファイ R100;デンカ製)75質量%、ならびにアクリル樹脂(パラペットHR-1000L(PMMA);クラレ(株)製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B2)を得た。
メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%からなる共重合体(レジスファイ R100;デンカ製)75質量%、ならびにアクリル樹脂(パラペットHR-1000L(PMMA);クラレ(株)製)25質量%を、スクリュー径26mmの押し出し機(TEM-26SS、L/D≒40;東芝機械製)に導入し、240℃で溶融混練して高硬度樹脂(B2)を得た。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に上記の高硬度樹脂を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
その後、実施例1と同様にTダイで押し出し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.3倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。
上記の樹脂シートの面内リタデーションは6200~6500nmであった。上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000NS、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは300~400nmであった。
ハードコートアンチグレア層は実施例1と同様に形成した。
上記の樹脂シートの面内リタデーションは6200~6500nmであった。上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000NS、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは300~400nmであった。
比較例3:R100(Tg124℃)/低TgPC(Tg125℃)/1.2mmt
軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体;レジスファイ R100(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位21質量%、スチレン構成単位64質量%、および無水マレイン酸構成単位15質量%の共重合体;レジスファイ R100(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、240℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度240℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。延伸倍率は1.3倍であった。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。ハードコートアンチグレア層は実施例1と同様に形成した。
上記の樹脂シートの面内リタデーションは3000~3500nmであった。上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、100μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.1mm、面内リタデーションは20nm以下であった。
上記の樹脂シートの面内リタデーションは3000~3500nmであった。上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、100μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.1mm、面内リタデーションは20nm以下であった。
比較例4
実施例1と同様に高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000(H11)、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは5000~6000nmであった。
実施例1と同様に高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製NF-2000(H11)、500μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.5mm、面内リタデーションは5000~6000nmであった。
比較例5:MS-H(Tg115℃)/S1000(Tg147℃)/1.2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B1)(一般式(1)におけるR1およびR2が共にメチル基であり、一般式(2)におけるR3が水素原子で、R4がシクロヘキシル基である樹脂;(メタ)アクリル酸エステル構成単位75モル%、脂肪族ビニル構成単位25モル%からなり、重量平均分子量は120,000)を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度50.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B1)(一般式(1)におけるR1およびR2が共にメチル基であり、一般式(2)におけるR3が水素原子で、R4がシクロヘキシル基である樹脂;(メタ)アクリル酸エステル構成単位75モル%、脂肪族ビニル構成単位25モル%からなり、重量平均分子量は120,000)を連続的に導入し、シリンダ温度240℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度50.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、270℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度270℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。延伸倍率は1.3倍であった。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例6:MS-H(Tg115℃)/S1000(Tg147℃)/2mmt
比較例5において、単軸押出機でのポリカーボネート樹脂の押し出しにおける吐出速度を83.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを2mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.17倍であった。ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例5において、単軸押出機でのポリカーボネート樹脂の押し出しにおける吐出速度を83.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを2mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.17倍であった。ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例7:MS-H(Tg115℃)/S1000(Tg147℃)/3.5mmt
比較例5において、単軸押出機での高硬度樹脂(B1)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ1.3kg/hおよび72.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを3.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.1倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6800~7000nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例5において、単軸押出機での高硬度樹脂(B1)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ1.3kg/hおよび72.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを3.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.1倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6800~7000nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例8:MS-H(Tg115℃)/S1000(Tg147℃)/0.5mmt
比較例5において、単軸押出機での高硬度樹脂(B1)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ4.8kg/hおよび35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは4100~4500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例5において、単軸押出機での高硬度樹脂(B1)およびポリカーボネート樹脂の押し出しにおける吐出速度を、それぞれ4.8kg/hおよび35.0kg/hとし、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体の厚みを0.5mm(高硬度樹脂層の厚みは中央付近で60μm)とした。延伸倍率は1.5倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは4100~4500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例9:PMMA(Tg105℃)/低TgPC(Tg125℃)/0.8mmt
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径32mmの単軸押出機に高硬度樹脂(アクリル樹脂;パラペットHR-1000L(PMMA);クラレ(株)製)を連続的に導入し、シリンダ温度250℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータ T-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度32.0kg/hの条件で押し出した。
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径32mmの単軸押出機に高硬度樹脂(アクリル樹脂;パラペットHR-1000L(PMMA);クラレ(株)製)を連続的に導入し、シリンダ温度250℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータ T-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度32.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、240℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度240℃のTダイに導入してシート状に押し出し、上流側から温度110℃、140℃、185℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。得られた積層体の厚みは0.8mm、高硬度樹脂層の厚みは中央付近で60μmであった。延伸倍率は1.43倍であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは5800~6300nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは5800~6300nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例10:FPC0220(Tg184℃)/T1380(125℃)/1.2mmt
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B5)(一般式(8)で示される構成単位を含むポリカーボネート樹脂;ユピゼータFPC0220(三菱ガス化学製))を連続的に導入し、シリンダ温度300℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
実施例1と同じ多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。具体的には、軸径35mmの単軸押出機に高硬度樹脂(B5)(一般式(8)で示される構成単位を含むポリカーボネート樹脂;ユピゼータFPC0220(三菱ガス化学製))を連続的に導入し、シリンダ温度300℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度50.0kg/hの条件で押し出した。
押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、280℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度280℃のTダイでシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層とポリカーボネート樹脂層(基材層)との積層体を得た。延伸倍率は1.3倍であった。得られた積層体の厚みは1.2mm、高硬度樹脂層の厚みは中央付近で60μmであった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
比較例11:S-1000(Tg147℃)単独/2mmt
高硬度樹脂の代わりに基材層に含まれるのと同じポリカーボネート樹脂を使用して、積層体を成形した。押出装置としては、実施例1と同じ多層押出装置を使用した。具体的には、軸径35mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000(三菱エンジニアリングプラスチックス社製);鉛筆硬度3B)を連続的に導入し、シリンダ温度280℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度83.0kg/hの条件で押し出した。
高硬度樹脂の代わりに基材層に含まれるのと同じポリカーボネート樹脂を使用して、積層体を成形した。押出装置としては、実施例1と同じ多層押出装置を使用した。具体的には、軸径35mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000(三菱エンジニアリングプラスチックス社製);鉛筆硬度3B)を連続的に導入し、シリンダ温度280℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユーピロンS-1000;三菱エンジニアリングプラスチックス社製)を連続的に導入し、シリンダ温度280℃、吐出速度83.0kg/hの条件で押し出した。
押し出された上記ポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、280℃の温度で積層した。さらにそれを温度280℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、ポリカーボネート樹脂の積層体を得た。延伸倍率は1.17倍であった。得られた積層体の厚みは2mmであった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
ハードコートアンチグレア層は実施例1と同様に形成した。上記の樹脂シートの面内リタデーションは6200~6500nmであった。
上記の樹脂シートの基材層側に接着剤(アクリル系OCA)にて樹脂フィルム(X)としてポリカーボネートフィルム(三菱ガス化学製FS-2000、200μmt)を貼合し成形用樹脂シートとした。ポリカーボネートフィルムの厚みは0.2mm、面内リタデーションは45nm以下であった。
実施例および比較例で製造した樹脂シートについて、硬度、成形後クラックの有無、フローマーク、金型傷転写、及び保護フィルム融着の有無を評価した。その結果を以下の表1に示す。
本発明の樹脂シートは、硬度に優れ、フローマークが無く、熱成形後にクラック等の外観異常が生じていないことが分かる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Claims (14)
- ポリカーボネート樹脂(a1)を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有し、高硬度樹脂層の少なくとも片側表面にハードコート層またはハードコートアンチグレア層を積層した樹脂シートであって、
前記ポリカーボネート樹脂(a1)および前記高硬度樹脂のガラス転移点が、以下の関係を満たし:
-10℃≦(高硬度樹脂のガラス転移点)-(ポリカーボネート樹脂(a1)のガラス転移点)≦40℃
前記樹脂シートの543nmの波長で測定した際の面内リタデーションが4000nm以上であり、
前記樹脂シートの片側表面に接着剤を含む接着剤層により、543nmの波長で測定した際の面内リタデーションが50nm以下の樹脂フィルム(X)を貼合した成形用樹脂シート。 - 前記ポリカーボネート樹脂(a1)が芳香族ポリカーボネート樹脂である請求項1に記載の成形用樹脂シート。
- 前記ポリカーボネート樹脂(a1)の含有量が前記基材層の全質量に対して75~100質量%である、請求項1~3のいずれか1項に記載の成形用樹脂シート。
- 前記高硬度樹脂が以下の樹脂(B1)~(B6)からなる群より選択される、請求項1~4のいずれか1項に記載の成形用樹脂シート:
・樹脂(B1):下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体、または該共重合体と樹脂(B2)とのアロイ
・樹脂(B2):(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体(D)、該共重合体(D)同士のアロイ、または該共重合体(D)と他の高硬度樹脂とのアロイ、または、該共重合体(D)とアクリル樹脂とのアロイ;
・樹脂(B3):下記一般式(6)で表される構成単位(c)と、任意に下記一般式(7)で表される構成単位(d)とを含む共重合体;
・樹脂(B5):下記一般式(8)で表される構成単位(e)を含む樹脂。
- 前記高硬度樹脂の含有量が前記高硬度樹脂層の全質量に対して70~100質量%である、請求項1~5のいずれか1項に記載の成形用樹脂シート。
- 前記基材層と前記高硬度樹脂層の合計厚みが0.5mm~3.5mmである、請求項1~6のいずれか1項に記載の成形用樹脂シート。
- 前記基材層と前記高硬度樹脂層の合計厚みに占める前記基材層の厚みの割合が75%~99%である、請求項1~7のいずれか1項に記載の成形用樹脂シート。
- 前記成形用樹脂シートのヘーズが2~30%である、請求項1~8のいずれか1項に記載の成形用樹脂シート。
- 前記成形用樹脂シートにおけるハードコート層表面の鉛筆硬度が2H以上である、請求項1~9のいずれか1項に記載の成形用樹脂シート。
- 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネート樹脂(a1)を含むポリカーボネートフィルムからなる請求項1~10のいずれか1項に記載の成形用樹脂シート。
- 前記成形用樹脂シートにおける樹脂フィルム(X)がポリカーボネートフィルムにセンサー電極を施工したフィルムタッチセンサーからなる請求項1~10のいずれか1項に記載の成形用樹脂シート。
- 前記成形用樹脂シートにおける接着剤層が光学粘着シートである請求項1~12のいずれか1項に記載の成形用樹脂シート。
- 請求項1~13のいずれか1項に記載の成形用樹脂シートを用いて成形された樹脂成形品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217042153A KR20220042061A (ko) | 2019-08-09 | 2020-08-04 | 성형용 수지 시트 및 그것을 이용한 성형품 |
CN202080055078.7A CN114174041A (zh) | 2019-08-09 | 2020-08-04 | 成型用树脂片和使用其的成型品 |
EP20853416.4A EP4011622A4 (en) | 2019-08-09 | 2020-08-04 | RESIN FILM FOR MOLDING AND MOLDING ARTICLES WITH IT |
US17/631,918 US20220379590A1 (en) | 2019-08-09 | 2020-08-04 | Resin sheet for molding and molded article using same |
JP2021539217A JP7555932B2 (ja) | 2019-08-09 | 2020-08-04 | 成形用樹脂シートおよびそれを用いた成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146934 | 2019-08-09 | ||
JP2019-146934 | 2019-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021029266A1 true WO2021029266A1 (ja) | 2021-02-18 |
Family
ID=74569539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/029751 WO2021029266A1 (ja) | 2019-08-09 | 2020-08-04 | 成形用樹脂シートおよびそれを用いた成形品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220379590A1 (ja) |
EP (1) | EP4011622A4 (ja) |
JP (1) | JP7555932B2 (ja) |
KR (1) | KR20220042061A (ja) |
CN (1) | CN114174041A (ja) |
TW (1) | TW202122273A (ja) |
WO (1) | WO2021029266A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166636A1 (ja) * | 2020-02-18 | 2021-08-26 | 三菱瓦斯化学株式会社 | 成形用積層樹脂シートおよびそれを用いた成形品 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0440183B2 (ja) | 1984-02-15 | 1992-07-02 | Peruku Kk | |
JP2001334609A (ja) | 2000-05-25 | 2001-12-04 | Toppan Printing Co Ltd | 化粧シート及びそれを使用した絵付樹脂成形品 |
JP2009196153A (ja) | 2008-02-20 | 2009-09-03 | Mitsubishi Plastics Inc | 成形用樹脂シート及び成形体 |
JP2009234184A (ja) | 2008-03-28 | 2009-10-15 | Sumitomo Chemical Co Ltd | 射出成形同時貼合用多層フィルム |
JP2010284910A (ja) | 2009-06-12 | 2010-12-24 | Tomoegawa Paper Co Ltd | 加飾用ハードコートフィルム、加飾フィルムおよび加飾成形品 |
JP2014157289A (ja) * | 2013-02-15 | 2014-08-28 | Toyobo Co Ltd | 画像表示装置 |
JP2015132691A (ja) * | 2014-01-10 | 2015-07-23 | 大日本印刷株式会社 | 樹脂積層板及びタッチパネル |
WO2016060100A1 (ja) * | 2014-10-15 | 2016-04-21 | 三菱瓦斯化学株式会社 | 合成樹脂積層シート |
WO2016104003A1 (ja) * | 2014-12-26 | 2016-06-30 | 日本写真印刷株式会社 | タッチパネル |
WO2017150646A1 (ja) * | 2016-03-04 | 2017-09-08 | 三菱瓦斯化学株式会社 | 車載用液晶表示装置の前面板 |
WO2019031072A1 (ja) * | 2017-08-08 | 2019-02-14 | アルプス電気株式会社 | 入力装置の製造方法および入力装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0440183A (ja) | 1990-06-05 | 1992-02-10 | Matsushita Electric Ind Co Ltd | 信号再生装置 |
JP2007326334A (ja) * | 2006-06-09 | 2007-12-20 | Sumitomo Chemical Co Ltd | 積層樹脂板 |
JP2013020120A (ja) * | 2011-07-12 | 2013-01-31 | Keiwa Inc | ハードコートフィルム及びタッチパネル |
JP6295659B2 (ja) * | 2012-12-27 | 2018-03-20 | 三菱ケミカル株式会社 | 成形用樹脂積層体、および成形体 |
CN105874361B (zh) * | 2013-12-24 | 2018-08-21 | 富士胶片株式会社 | 光学片部件及显示装置 |
TWI772319B (zh) * | 2016-08-18 | 2022-08-01 | 日商三菱瓦斯化學股份有限公司 | 2段硬化性層合板 |
US11370206B2 (en) * | 2017-09-06 | 2022-06-28 | Mitsubishi Gas Chemical Company, Inc. | High-hardness molding resin sheet and molded article using same |
JP7187963B2 (ja) | 2018-01-11 | 2022-12-13 | 東洋紡株式会社 | 積層フィルム及びそれを用いた偏光板 |
-
2020
- 2020-08-04 CN CN202080055078.7A patent/CN114174041A/zh active Pending
- 2020-08-04 TW TW109126267A patent/TW202122273A/zh unknown
- 2020-08-04 JP JP2021539217A patent/JP7555932B2/ja active Active
- 2020-08-04 WO PCT/JP2020/029751 patent/WO2021029266A1/ja unknown
- 2020-08-04 EP EP20853416.4A patent/EP4011622A4/en not_active Withdrawn
- 2020-08-04 US US17/631,918 patent/US20220379590A1/en not_active Abandoned
- 2020-08-04 KR KR1020217042153A patent/KR20220042061A/ko unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0440183B2 (ja) | 1984-02-15 | 1992-07-02 | Peruku Kk | |
JP2001334609A (ja) | 2000-05-25 | 2001-12-04 | Toppan Printing Co Ltd | 化粧シート及びそれを使用した絵付樹脂成形品 |
JP2009196153A (ja) | 2008-02-20 | 2009-09-03 | Mitsubishi Plastics Inc | 成形用樹脂シート及び成形体 |
JP2009234184A (ja) | 2008-03-28 | 2009-10-15 | Sumitomo Chemical Co Ltd | 射出成形同時貼合用多層フィルム |
JP2010284910A (ja) | 2009-06-12 | 2010-12-24 | Tomoegawa Paper Co Ltd | 加飾用ハードコートフィルム、加飾フィルムおよび加飾成形品 |
JP2014157289A (ja) * | 2013-02-15 | 2014-08-28 | Toyobo Co Ltd | 画像表示装置 |
JP2015132691A (ja) * | 2014-01-10 | 2015-07-23 | 大日本印刷株式会社 | 樹脂積層板及びタッチパネル |
WO2016060100A1 (ja) * | 2014-10-15 | 2016-04-21 | 三菱瓦斯化学株式会社 | 合成樹脂積層シート |
WO2016104003A1 (ja) * | 2014-12-26 | 2016-06-30 | 日本写真印刷株式会社 | タッチパネル |
WO2017150646A1 (ja) * | 2016-03-04 | 2017-09-08 | 三菱瓦斯化学株式会社 | 車載用液晶表示装置の前面板 |
WO2019031072A1 (ja) * | 2017-08-08 | 2019-02-14 | アルプス電気株式会社 | 入力装置の製造方法および入力装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4011622A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021166636A1 (ja) * | 2020-02-18 | 2021-08-26 | 三菱瓦斯化学株式会社 | 成形用積層樹脂シートおよびそれを用いた成形品 |
US11897980B2 (en) | 2020-02-18 | 2024-02-13 | Mitsubishi Gas Chemical Company, Inc. | Laminated resin sheet for molding, and molded article using same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021029266A1 (ja) | 2021-02-18 |
EP4011622A4 (en) | 2022-08-24 |
EP4011622A1 (en) | 2022-06-15 |
US20220379590A1 (en) | 2022-12-01 |
JP7555932B2 (ja) | 2024-09-25 |
TW202122273A (zh) | 2021-06-16 |
KR20220042061A (ko) | 2022-04-04 |
CN114174041A (zh) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7105784B2 (ja) | 高硬度成形用樹脂シートおよびそれを用いた成形品 | |
JP6883043B2 (ja) | 2段硬化性積層板 | |
JPWO2020075619A1 (ja) | ポリカーボネートシートのプレス成形体の製造方法 | |
JP7497337B2 (ja) | 高硬度成形用樹脂シートおよびそれを用いた成形品 | |
JP7555932B2 (ja) | 成形用樹脂シートおよびそれを用いた成形品 | |
WO2021166636A1 (ja) | 成形用積層樹脂シートおよびそれを用いた成形品 | |
WO2022091810A1 (ja) | 成形用積層樹脂シートおよびそれを用いた成形品 | |
WO2022097677A1 (ja) | 樹脂シートの曲げ成形品の製造方法および曲げ成形品 | |
WO2021246295A1 (ja) | 成形用樹脂シートおよびそれを用いた成形品 | |
JP2023110549A (ja) | 成形用積層樹脂シートおよびそれを用いた成形品 | |
WO2024057985A1 (ja) | 防眩性積層体及びその製造方法 | |
WO2024181290A1 (ja) | 防眩性積層体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853416 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021539217 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020853416 Country of ref document: EP Effective date: 20220309 |