WO2021029108A1 - 樹脂組成物、電気機器および樹脂組成物の製造方法 - Google Patents
樹脂組成物、電気機器および樹脂組成物の製造方法 Download PDFInfo
- Publication number
- WO2021029108A1 WO2021029108A1 PCT/JP2020/015650 JP2020015650W WO2021029108A1 WO 2021029108 A1 WO2021029108 A1 WO 2021029108A1 JP 2020015650 W JP2020015650 W JP 2020015650W WO 2021029108 A1 WO2021029108 A1 WO 2021029108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- boron nitride
- elastic
- particles
- particle size
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- the present invention relates to a resin composition used for electrical insulation and an electric device such as a transformer to which the resin composition is applied.
- a resin composition (insulating resin) has been used as an electrical insulating material in transformers, electric motors, opening / closing devices, converters, control devices, home appliances, in-vehicle devices, railway-mounted devices, and the like.
- the resin composition since the resin composition has a low thermal conductivity, it is common to add an additive (filler) having excellent electrical insulation and thermal conductivity.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2014-015540 states that "(a) a unit composed of an alicyclic dicarboxylic acid, (b) a unit composed of a diamine having 8 or more carbon atoms, and (c) the following (c) A unit consisting of at least one copolymerizing component selected from the group consisting of c-1) to (c-3) and a dicarboxylic acid other than ((c-1) (a) alicyclic dicarboxylic acid. -2) Diamine having a smaller number of carbon atoms than the diamine of (b) above.
- Patent Document 1 describes a copolymerized polyamide, a glass fiber, and an inorganic substance other than the glass fiber, which satisfy specific conditions, in order to provide a resin composition having good rigidity after water absorption and rigidity under high temperature use.
- a composition containing a filler is described. The addition raises the crystallization peak temperature of the polyamide resin composition, reduces the difference between the external start temperature and the external end temperature of the crystallization peak, and refines or sizes the spherulites of the obtained molded product. It is said that talc, boron nitride, mica and the like are preferable as the nucleating agent capable of obtaining the effect of homogenizing.
- the average particle size is preferably 0.01 to 10 ⁇ m, and the content of the nucleating agent is 0.001 with respect to 100 parts by mass of the copolymerized polyamide. It is disclosed that the heat resistance of the polyamide resin composition is satisfactorily improved by increasing the amount by mass or more.
- Patent Document 1 states that the amount of the nucleating agent added may be simply increased. It is said that the toughness is excellent by setting the content of the nucleating agent to 1 part by mass or less with respect to 100 parts by mass of the copolymerized polyamide, but the pressure resistance is not considered.
- Patent Document 1 targets low-power electric devices for low power of several tens of V (volts) and several A (ampere), and in the industrial field, insulation corresponding to electric devices for high power with a larger capacity than these.
- the properties of the resin composition are not taken into account.
- a transformer in the industrial field a transformer having a capacity of several tens of kVA (volt ampere) or more is used, and the capacity becomes even larger at an extra high voltage.
- the insulating resin member of such a high-power electric device is required to have an electrical withstand voltage, and the insulating resin member covers the electric device, so that the weight becomes large. Therefore, the insulating resin member covers the electric device as thinly as possible while providing insulation. Although it is necessary to increase this point, this point is not considered in Patent Document 1.
- the resin composition according to one embodiment is a resin composition containing a base polymer and an additive, wherein the additive contains boron nitride and an elastic member, and the boron nitride has an aspect ratio of 2 or more.
- the elastic member is composed of hexagonal boron nitride primary particles, and the elastic member is composed of elastic particles having a core layer and a shell layer arranged on the outer periphery of the core layer, and has an elastic modulus of the core layer and elasticity of the shell layer. The modulus is different from each other, and the particle size of the elastic particles is smaller than the particle size of the hexagonal boron nitride primary particles.
- high withstand voltage can be realized in a resin composition used for electrical insulation and an electric device to which the resin composition is applied.
- 6 is a graph showing the relationship between the particle size of the core-shell rubber and the dielectric strength in the resin composition according to the first embodiment. It is a graph which shows the relationship between the weight ratio of the core-shell rubber and the precipitation amount of boron nitride in the resin composition which concerns on 2nd Example. It is a graph which shows the relationship between the weight ratio of the core-shell rubber and the dielectric strength in the resin composition which concerns on 2nd Example. 6 is a graph showing the relationship between the weight ratio of the core-shell rubber and the fracture toughness in the resin composition according to the second embodiment. It is a graph which shows the relationship between the aspect ratio of boron nitride and the dielectric strength in the resin composition which concerns on 3rd Example.
- FIG. 14 is an enlarged schematic view showing the polymerization reaction of boron nitride constituting the resin composition according to the study example.
- the resin composition according to the study example contains a base polymer and boron nitride as an additive.
- the resin composition according to the study example is the same as the resin composition 10 shown in FIG. 1 described later.
- the resin composition according to the study example does not contain an elastic member as the additive.
- the resistance that does not cause dielectric breakdown of the resin composition when a voltage is applied to the resin composition used for such electrical insulation is called pressure resistance.
- the present inventors have paid attention to this pressure resistance and confirmed the following problems.
- Boron nitride can particularly improve pressure resistance as an additive for resin compositions used for electrical insulation.
- FIG. 14 shows a part of the crystal structure of boron nitride.
- Boron nitride which is particularly preferable as an additive, is the primary particles of atmospheric pressure phase boron nitride.
- the primary particles of atmospheric pressure phase boron nitride are electrically stable among pressure resistant additives such as mica, silicon and alumina.
- the crystal structure of atmospheric pressure phase boron nitride is hexagonal, and has a layered structure of hexagonal network similar to graphite. Therefore, the particle shape of atmospheric pressure phase boron nitride has a stable scaly shape and an aspect ratio of 2 or more.
- Reptile refers to an anisotropic shape.
- the reptile shape refers to a shape in which the outer edge has irregularities rather than a straight shape.
- the reptile scale is a flake-like shape.
- the aspect ratio of a reptile-like substance is a value comparing the length in the longitudinal direction and the length in the lateral direction when viewed in a plan view of any angle of the reptile-like shape. For example, if the ratio of the length in the longitudinal direction to the length in the lateral direction is 2 or more and 1 when the image is taken with an electron microscope, the aspect ratio is 2 or more.
- the "primary particle” means a crystal body (microcrystal) which is the minimum constituent unit of a particle.
- the “average aspect ratio” refers to the aspect ratio obtained by averaging the aspect ratios of the crystals in the imaging range imaged by an electron microscope or the like.
- particle size is meant the average major axis of the particles.
- boron nitride used as an additive will be referred to as “hexagonal boron nitride primary particles” or simply “boron nitride”.
- boron nitrides 12a and 12b have a six-membered ring structure in which boron 14 and nitrogen 15 are arranged at the vertices of regular hexagons. Boron nitride 12b is obtained by exchanging boron 14 and nitrogen 15 of boron nitride 12a with each other. Since boron 14 (nitrogen 15) of boron nitride 12a and nitrogen 15 (boron 14) of boron nitride 12b have opposite charges, a hydrogen bond is formed between the boron nitride 12a and the boron nitride 12b. An attractive force of the same magnitude is generated.
- This attractive force promotes polymerization and aggregation of hexagonal boron nitride primary particles. That is, when the amount of boron nitride added to the resin composition is increased, boron nitride is polymerized and aggregated by this mechanism to generate boron nitride (secondary particles), which precipitates in the resin composition. It will precipitate. As a result, it is considered that the electric field is concentrated on the precipitated boron nitride and dielectric breakdown occurs, and the pressure resistance of the resin composition is not improved.
- boron nitride having a spherical particle shape and an average aspect ratio of less than 2 boron nitride is polymerized with each other as compared with boron nitride having a scaly particle shape and an average aspect ratio of 2 or more. Aggregation is unlikely to occur, but since the electrical stability is not high, it is difficult to increase the pressure resistance of the resin composition. Therefore, it can be carried out, but the average aspect ratio is preferably 2 or more.
- FIG. 1 is a schematic cross-sectional view of the resin composition according to the first embodiment.
- FIG. 2 is an enlarged schematic view of boron nitride constituting the resin composition according to the first embodiment.
- FIG. 3 is an enlarged cross-sectional schematic view of an elastic member constituting the resin composition according to the first embodiment.
- the resin composition 10 according to the first embodiment contains a base polymer 11 and an additive.
- the additive includes boron nitride 12 and an elastic member 13.
- the boron nitride 12 is composed of a plurality of hexagonal boron nitride primary particles having an average aspect ratio of 2 or more, and as shown in FIG. 2, the boron 14 and the nitrogen 15 have regular hexagonal vertices. It has a six-membered ring structure arranged in.
- the plurality of hexagonal boron nitride primary particles may be referred to as hexagonal boron nitride primary particles 12.
- the elastic member 13 is composed of a plurality of elastic particles.
- the plurality of elastic particles may be referred to as elastic particles 13.
- the elastic particles 13 have a core layer 16 and a shell layer 17 arranged on the outer periphery of the core layer 16.
- the elastic modulus of the core layer 16 and the elastic modulus of the shell layer 17 are different from each other.
- the average particle size of the plurality of elastic particles 13 is smaller than the average particle size of the plurality of hexagonal boron nitride primary particles 12.
- the resin composition 10 according to the first embodiment suppresses the polymerization and aggregation of boron nitrides in the resin composition to which boron nitride is added, and realizes a high pressure resistance. be able to. The reason will be described below.
- the present inventors can suppress the polymerization and aggregation of boron nitride 12 by adding an elastic member 13 in addition to boron nitride 12 as an additive of the resin composition 10. I found. This can be explained by the Brownian motion theory shown below.
- the diffusion coefficient D is given by the following equation.
- Equation 1 k B is the Boltzmann constant, T is the temperature, ⁇ is the viscosity of the base polymer, and a is the diameter (particle size) of the particles. From Equation 1, it can be seen that the smaller the particle size a, the larger the diffusion coefficient D. Therefore, when boron nitride 12 is added to the base polymer 11 and kneaded, if elastic particles 13 having an average particle size smaller than the average particle size of the hexagonal boron nitride primary particles 12 are further added, the elastic particles 13 become hexagonal. Brownian motion is more intense than the crystallization boron nitride primary particles 12.
- the elastic particles 13 enter between the hexagonal boron nitride primary particles 12 and the hexagonal boron nitride primary particles 12, and the above-mentioned polymerization / aggregation reaction between boron nitrides can be suppressed.
- Equation 1 From (Equation 1), it can be seen that the reach of the elastic particles after one second is the same size as the epoxy resin which is the base material of the resin at room temperature, and the elastic particles move significantly.
- the elastic particles 13 have a core / shell structure of a core layer 16 and a shell layer 17 having different elastic moduli, whereby a plurality of elastic particles are contained in the resin composition 10. It was found that the particles 13 can be effectively dispersed. That is, by dispersing the elastic particles 13 in the resin composition 10, the polymerization / agglutination reaction between the boron nitrides 12 can be suppressed more effectively.
- the core layer 16 is made of a material (elastomer) having a lower elastic modulus (that is, higher flexibility) than the base polymer 11, and the shell layer 17 is made of a material having high compatibility with the base polymer 11.
- the elastomer component can be effectively dispersed in the resin composition 10, and as a result, the toughness of the resin composition 10 can be increased and the crack resistance can be improved.
- the interaction with the six-membered ring of boron nitride becomes large, so that the elastic particles 13 are easily arranged around the hexagonal boron nitride primary particles 12.
- the resin composition 10 according to the first embodiment even when a large amount of boron nitride 12 is added, the polymerization / aggregation of the boron nitride 12 is suppressed and the pressure resistance is increased. Can be done.
- each of the plurality of elastic particles 13 is used in the resin composition 10.
- Hexagonal boron nitride primary particles 12 are interposed between them. That is, since the boron nitride 12 according to the first embodiment exists in the resin composition 10 as hexagonal boron nitride primary particles and does not exist as an aggregate (secondary particles) of boron nitride, the resin composition 10 Pressure resistance can be improved. Further, in other words, since the plurality of elastic particles 13 are connected by a network of boron nitride 12 having high heat resistance and high thermal conductivity, the heat resistance of the elastic member 13 can be improved.
- the shape of the plurality of elastic particles 13 is spherical, and the average particle size of the plurality of elastic particles 13 is a plurality of hexagonal boron nitrides. It is 1/10 or more and 1/5 or less of the particle size of the primary particles 12.
- spherical means that the aspect ratio (ratio of major axis to minor axis) is 1 or more and less than 2.
- the polymerization and aggregation of boron nitride can be effectively suppressed. More preferably, it means that the aspect ratio (ratio of major axis to minor axis) is 1 or more and less than 1.5. With such a structure, the elastic particles 13 become closer to a sphere. As a result, the polymerization and aggregation of boron nitride can be suppressed more effectively.
- the amount of agglomeration of elastic particles at this time is 75% when the aspect ratio (ratio of major axis to minor axis) is 1 or more and less than 2.
- an average grain of a plurality of boron nitrides (hexagonal boron nitride primary particles) 12 is obtained.
- the diameter (twice the radius r1 shown in FIG. 3) is 1 ⁇ m or more and 15 ⁇ m or less. With such a configuration, the pressure resistance of the resin composition can be further improved.
- the average particle size of the plurality of boron nitrides 12 is preferably 2 ⁇ m or more and 13 ⁇ m or less.
- the pressure resistance can be improved by 10% by approaching the peak pressure resistance of 5 ⁇ m as compared with the case where the average particle size is 1 ⁇ m or more and 15 ⁇ m or less.
- the reason why the withstand voltage peaks at 5 ⁇ m is that boron nitride aggregates and polymerizes when it is smaller than this, and dielectric breakdown is not suppressed when it is large.
- the average particle size of the plurality of boron nitrides 12 is more preferably 4 ⁇ m or more and 10 ⁇ m or less.
- the pressure resistance can be improved by 10% by further approaching the peak pressure resistance of 5 ⁇ m as compared with the case where the average particle size is 2 ⁇ m or more and 13 ⁇ m or less.
- the average aspect ratio of the plurality of boron nitrides (hexagonal boron nitride primary particles) 12 is 3 or more.
- the average aspect ratio of the plurality of boron nitrides 12 is preferably 3.5 or more.
- the area ratio of the dielectric breakdown resistant material is increased, and the pressure resistance of the resin composition can be improved by 10% as compared with the case where the average aspect ratio is 3 or more.
- the average aspect ratio of the plurality of boron nitrides 12 is more preferably 4 or more. With such a configuration, the pressure resistance of the resin composition can be improved by 10% as compared with the case where the average aspect ratio is 3.5 or more.
- the significance (effect) of limiting each numerical range will be described in detail in Examples described later (the same applies hereinafter).
- the average particle diameter of the plurality of elastic particles 13 is 0. It is 1 ⁇ m or more and 2.4 ⁇ m or less, and with such a configuration, the pressure resistance of the resin composition can be further improved.
- the average particle size of the plurality of elastic particles 13 is preferably 0.1 ⁇ m or more and 2 ⁇ m or less. With such a configuration, the maximum radius of the elastic particles becomes small, and the aggregation / precipitation of boron nitride is further inhibited.
- the pressure resistance of the resin composition can be improved by 10% as compared with the average particle size of 0.1 ⁇ m or more and 2.4 ⁇ m or less.
- the average particle size of the plurality of elastic particles 13 is more preferably 0.1 ⁇ m or more and 1 ⁇ m or less. With such a configuration, the maximum radius of the elastic particles is further reduced, the aggregation and precipitation of boron nitride are further inhibited, and the pressure resistance of the resin composition is improved so that the average particle size is 0.1 ⁇ m or more and 2.0 ⁇ m or less. It can be improved by 10% as compared with the case of.
- the resin composition 10 as a preferable configuration, as shown in an example (FIG. 13) described later, the resin composition 10 of boron nitride (hexagonal boron nitride primary particles) 12 is used.
- the weight ratio inside is 0.5% by weight or more and 30% by weight or less, and with such a configuration, the pressure resistance of the resin composition can be further improved.
- the weight ratio of boron nitride 12 in the resin composition is preferably 1% by weight or more and 20% by weight or less. With such a configuration, the pressure resistance can be improved by 10% by approaching the peak pressure resistance of 6% by weight as compared with the case where the weight ratio is 0.5% by weight or more and 30% by weight or less.
- the reason why the withstand voltage peaks when the weight ratio is 6% by weight is that boron nitride does not suppress dielectric breakdown when the weight ratio is smaller than this, and boron nitride aggregates and polymerizes when the weight ratio is larger than this.
- the weight ratio of boron nitride 12 in the resin composition 10 is more preferably 2% by weight or more and 10% by weight or less. With such a configuration, the pressure resistance can be improved by 10% by further approaching the peak pressure resistance of 6% by weight as compared with the case where the weight ratio is 1% by weight or more and 20% by weight or less.
- the resin composition of the elastic member (elastic particles) 13 is preferable.
- the weight ratio in the product 10 is 1% by weight or more and 10% by weight or less, and with such a configuration, the pressure resistance and crack resistance of the resin composition can be further improved.
- the weight ratio of the elastic member 13 in the resin composition 10 is preferably 1% by weight or more and 7% by weight or less, and with such a configuration, the weight ratio is 1% by weight or more and 10% by weight or less.
- the pressure resistance and crack resistance approach the peak of 3% by weight, and the pressure resistance and crack resistance of the resin composition can be improved by 10%.
- the reason why the withstand voltage and the crack resistance have peaks when the weight ratio is 3% by weight is that if it is smaller than this, dielectric breakdown is not suppressed, and if it is larger than this, the elastic members aggregate and polymerize.
- the weight ratio of the elastic member 13 in the resin composition is more preferably 1% by weight or more and 5% by weight or less. With such a configuration, the pressure resistance and crack resistance of the resin composition are closer to 3% by weight, which is the peak, than when the weight ratio is 1% by weight or more and 7% by weight or less, and the pressure resistance and crack resistance of the resin composition. Can be improved by 10%.
- the base polymer 11 is an epoxy resin. As described above, by using the base polymer 11 as an epoxy resin which is a thermosetting resin, the pressure resistance of the resin composition can be improved.
- the type of epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule.
- an epoxy resin having polarity is preferable from the viewpoint of heat resistance, and the main skeleton of the prepolymer of the epoxy resin is more preferably bisphenol A type.
- the boron nitride 12 constituting the resin composition 10 according to the first embodiment will be described in detail.
- the boron nitride 12 according to the first embodiment is a primary particle of atmospheric pressure phase boron nitride.
- the crystal structure of atmospheric pressure phase boron nitride is hexagonal, and has a layered structure of hexagonal network similar to graphite. Therefore, the particle shape of atmospheric pressure phase boron nitride is most stable in the form of scales, and the average aspect ratio is 2 or more.
- the elastic member (elastic particles) 13 has a core layer 16 and a shell layer 17 arranged on the outer periphery of the core layer 16, and the elasticity of the core layer 16
- the modulus and the elastic modulus of the shell layer 17 are different from each other. More specifically, the elastic modulus of the core layer 16 is higher than the elastic modulus of the shell layer 17.
- the diameter of the core layer (twice the radius r2 shown in FIG. 3) and the layer thickness of the shell layer (twice the radius difference r3 shown in FIG. 3) are both on the order of 0.1 ⁇ m.
- the constituent components of the core layer 16 are not particularly limited, but are, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and i-butyl.
- n-butyl acrylate or ethyl acrylate are n-butyl acrylate or ethyl acrylate.
- These monomers may contain monomers having two or more vinyl functional groups.
- examples thereof include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and divinylbenzene. It is preferably allyl methacrylate.
- ABS butadiene-acrylonitrile-styrene
- MVS methyl methacrylate-butadiene-styrene
- MAS methyl methacrylate-butyl acrylate-styrene
- OABS octyl acrylate-butadiene-styrene
- alkyl acrylate-butadiene-acrylonitrile-styrene examples thereof include particulate elastic materials such as siloxane (AABS), butadiene-styrene (SBR), methyl methacrylate-butyl acrylate-siloxane, and rubber modified thereto.
- the constituent components of the shell layer 17 are not particularly limited, and examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth) acrylate. Methyl methacrylate and ethyl acrylate are preferable.
- the monomer may include a monomer having two or more vinyl functional groups. Although not particularly limited, examples thereof include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and divinylbenzene. It is preferably allyl methacrylate.
- a monomer having a highly polar functional group may be introduced as a constituent component of the shell layer 17.
- highly polar functional groups include epoxy groups, hydroxyl groups, amide groups, imide groups, amine groups, imine groups, carboxylic acid groups, carboxylic acid anhydride groups and the like.
- the ratio (weight ratio) of the core layer 16 / shell layer 17 is, for example, 40/60 to 95/5, more preferably 60/40 to 85/15. If the ratio of the core layer 16 is lowered, the toughness of the resin composition 10 may be inferior, which is not preferable. On the other hand, if the ratio of the shell layer 17 is lowered, the polymer particles are less likely to be dispersed in the resin composition, and the pressure resistance may not be improved.
- the resin composition 10 according to the first embodiment contains, as additives, an acid anhydride that promotes the curing reaction of the base polymer, a radical polymerization initiator that initiates the curing reaction of the base polymer, and the like.
- an acid anhydride that promotes the curing reaction of the base polymer
- a radical polymerization initiator that initiates the curing reaction of the base polymer
- a coupling agent that enhances the bondability with other materials, a dispersant that facilitates dispersion of the additive, or the like may be added.
- Examples of the acid anhydride include phthalic anhydride, itaconic anhydride, succinic anhydride, citraconic anhydride, alkenyl anhydride, dodecenyl succinic anhydride, maleic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methyl anhydride.
- Hexahydrophthalic acid, pyromellitic anhydride, cyclopentanetetracarboxylic anhydride, benzophenonetetracarboxylic anhydride and the like can be mentioned.
- radical polymerization initiator examples include benzoin compounds and the like.
- coupling agent examples include a silane coupling agent and the like.
- dispersant examples include nonionic surfactants and the like.
- FIG. 4 is a schematic cross-sectional view showing a transformer 20 to which the resin composition 10 according to the first embodiment is applied.
- the transformer 20 As shown in FIG. 4, the transformer 20 according to the first embodiment is arranged around the lead wire (winding wire) 21, the resin composition 10 arranged around the lead wire 21, and the resin composition 10. It has an insulating paper 22 and an insulating material 23 arranged around the insulating paper 22.
- the insulating material 23 may be composed of the resin composition 10.
- a high voltage AC voltage is applied to the lead wire 21.
- the resin composition 10 according to the first embodiment is suitable for the transformer 20 having a large thermal and electrical stress because it can improve not only the pressure resistance but also the crack resistance. Can be applied to.
- FIG. 5 is a schematic cross-sectional view showing an electric motor 30 to which the resin composition 10 according to the first embodiment is applied.
- the electric motor 30 As shown in FIG. 5, the electric motor 30 according to the first embodiment has a lead wire 31 and a resin composition 10 arranged around the lead wire 31. A high voltage AC voltage is applied to the lead wire 31.
- the resin composition 10 according to the first embodiment is suitable for the electric motor 30 having a large thermal and electrical stress because it can improve not only the pressure resistance but also the crack resistance. Can be applied.
- the resin composition 10 according to the first embodiment is suitably applied to electric devices such as opening / closing devices, converters, control devices, home appliances, in-vehicle devices, and railway-mounted devices. It can be implemented, for example, as a resin that covers a part or all of an electronic control unit (ECU) or an inverter.
- the resin composition 10 according to the first embodiment can be more preferably applied to a high-power electric device (industrial device).
- Industrial equipment is used in industrial fields such as static induction equipment including transformers, electric motors, synchronous machines, switching equipment, compressors, power converters (inverters and converters), and control equipment, and does not have self-propelled means. It is a device.
- the present invention can also be applied to home appliances, in-vehicle devices, railway-mounted devices, and the like.
- the resin composition of the present invention is effective because the ECU of an automobile having a self-propelled means and the inverter for an automobile and a railway are exposed to a high temperature, and the internal chip also becomes a high temperature. It can also be used as a resin for covering control devices and inverters for lifting devices such as elevators and cranes.
- the method for producing the resin composition 10 according to the first embodiment includes a step of kneading a base polymer and an additive to produce a kneaded product ((a) kneading step) and a step of molding the kneaded product to obtain a molded product. It has a step of producing ((b) molding step) and a step of heating the molded product to produce the resin composition ((c) curing step).
- the base polymer 11 shown in FIG. 1, the boron nitride 12 as an additive, and the elastic member 13 are kneaded.
- the elastic particles constituting the elastic member 13 are based by the brown motion. It diffuses in the polymer 11 and can suppress the polymerization and aggregation of hexagonal boron nitride primary particles constituting the boron nitride 12 in the kneaded product.
- the pressure resistance of the resin composition 10 shown in FIG. 1 produced through the (b) molding step and the (c) curing step can be improved.
- the molding step (b) is any one of coating, vacuum casting, atmospheric casting, pressure casting and injection casting. Is done by. That is, since the resin composition according to the first embodiment can be molded by any molding method, the production efficiency of the resin composition can be improved.
- the base polymer 11 and the additive are kneaded in the (a) kneading step
- the base polymer 11 is subjected to the (c) curing step.
- the elastic particles constituting the elastic member 13 continue the Brownian motion until they are cured by. Therefore, in the molding step (b), whichever molding method (particularly coating) is used, it is possible to prevent the additive from separating in the molded product.
- the resin composition according to the first modification (hereinafter referred to as modification 1) is basically configured in the same manner as the resin composition according to the first embodiment, but the resin composition according to modification 1 is Further, it differs from the resin composition according to the first embodiment in that it contains styrene and / or N-phenylmalemid.
- “Styrene and / or N-phenylmalemid” means that styrene alone, N-phenylmalemid alone, or a combination thereof may be used.
- Styrene and N-phenylmalemid are substances used as catalysts for the curing reaction of the base polymer, but the present inventors have now added boron nitride and elastic members as additives to hexagonal boron nitride. We have found that the polymerization and aggregation of primary particles are further suppressed. Therefore, the resin composition according to the first modification can be further improved in high pressure resistance as compared with the resin composition 10 according to the first embodiment shown in FIG.
- the effect of suppressing the polymerization / aggregation of hexagonal boron nitride primary particles may be styrene alone or N-phenylmalemide alone, but it is more preferable to use these in combination.
- the weight ratio of styrene and / or N-phenylmalemid in the resin composition is not particularly limited, but is preferably 0.1% by weight or more and 6% by weight or less.
- a cured product of styrene and / or N-phenylmalemid is produced in the resin composition. Since these cured products have high heat resistance, the heat resistance of the resin composition can be further improved.
- modification 2 The resin composition according to the second modification (hereinafter, modification 2) is basically configured in the same manner as the resin composition according to the first embodiment, but the resin composition according to the second modification is. Further, it is different from the resin composition according to the first embodiment in that it contains cleavage mica.
- Mica is an additive that improves the pressure resistance of the resin composition.
- the rate of dielectric breakdown can be reduced by using wall-opening mica, which has a large surface area among mica, and the resistance to dielectric breakdown of the resin composition is further increased. improves. Therefore, the resin composition according to the second modification can be further improved in high pressure resistance as compared with the resin composition 10 according to the first embodiment shown in FIG.
- Cleavage mica can also be used in combination with styrene and / or N-phenylmalemid of Modification 1.
- the weight ratio of the cleavage mica in the resin composition is not particularly limited, but is preferably 1% by weight or more and 50% by weight or less (for example, 10% by weight).
- modification 3 The resin composition according to the third modification (hereinafter, modification 3) is basically configured in the same manner as the resin composition according to the first embodiment, but the resin composition according to the modification 3 is. It is different from the resin composition according to the first embodiment in that it further contains silica.
- Silica is an additive that improves the heat resistance and crack resistance of the resin composition.
- the crystalline silica added to the resin composition as an additive for imparting high thermal conductivity there are those produced by two methods, wet and dry.
- dry production has fewer OH groups and residual water on the surface, and it is possible to avoid adverse effects of water (inhibition of curing, induction of side reactions) in the production of insulating resin.
- this effect also helps to increase the thermal conductivity of the insulating resin.
- wet-produced crushed silica tends to have many OH groups exposed on its surface, and many OH groups and water are bonded by hydrogen bonds.
- Water is thermally bound at an energy of 20 kJ / mol or more per molecule, and removal of this water requires a drying step at 100 ° C. or higher for a whole day and night.
- the presence of water also has an undesired effect on the polymerization of the epoxy resin. Therefore, as an additive for improving the heat resistance and crack resistance of the resin composition, dry-produced silica is preferable to wet-produced silica.
- silica added to the resin composition not only crystalline silica but also (melted) spherical silica may be contained.
- spherical silica By using spherical silica, the coefficient of linear expansion can be reduced, the effect of reduction becomes isotropic, and the dependence of the coefficient of linear expansion depending on the production direction of the resin composition can be reduced.
- the heat resistance and the crack resistance can be further improved as compared with the resin composition 10 according to the first embodiment shown in FIG.
- Silica can also be used in combination with the styrene and / or N-phenylmalemid of the modified example 1 or the cleavage mica of the modified example 2.
- the weight ratio of silica in the resin composition is not particularly limited, but is preferably 10% by weight or more and 80% by weight or less.
- the resin composition according to the fourth modification (hereinafter, modification 4) is basically configured in the same manner as the resin composition according to the first embodiment, but the resin composition according to the modification 4 is Further, it is different from the resin composition according to the first embodiment in that it contains an elastomer.
- Elastomer is an additive that improves the crack resistance of resin compositions.
- Elastomers include non-reactive elastomers (eg, acrylonitrile-butadiene rubber (NBR), liquid rubbers such as polybutadiene and chloroprene rubber, silicone oil, silicone rubber, carboxyl or epoxy-modified crosslinked NBR, acrylic rubber, urethane rubber, heat.
- NBR non-reactive elastomers
- liquid rubbers such as polybutadiene and chloroprene rubber
- silicone oil silicone rubber
- carboxyl or epoxy-modified crosslinked NBR acrylic rubber
- urethane rubber heat.
- Plastic polyester elastomer, etc. Reactive elastomer (carboxyl-modified butadiene-acrylonitrile copolymer (CTBN), amino-modified butadiene-acrylonitrile copolymer (ATBN), NBR containing a carboxyl group in the main chain, carboxyl-modified polybutadiene, Liquid polysulfide, modified silicone urethane prepolyma, etc.).
- CBN carboxyl-modified butadiene-acrylonitrile copolymer
- ATBN amino-modified butadiene-acrylonitrile copolymer
- NBR containing a carboxyl group in the main chain
- carboxyl-modified polybutadiene Liquid polysulfide, modified silicone urethane prepolyma, etc.
- the shape of the elastomer is preferably one having an average aspect ratio of 2 or more (for example, scaly shape). By doing so, a crack growth inhibitory effect can be expected by increasing sedimentation and other number densities.
- the resin composition according to the modified example 4 can further improve the crack resistance as compared with the resin composition 10 according to the first embodiment shown in FIG.
- an epoxy resin product name EPICLON840, manufactured by DIC Corporation
- boron nitride hexagonal boron nitride primary particles were used.
- the elastic member a core-shell rubber having a core layer made of an inorganic substance and a shell layer made of a polymer was used.
- the resin composition according to the example was prepared according to the method for producing the resin composition according to the first embodiment described above. Specifically, the epoxy resin (base polymer), boron nitride, core-shell rubber (elastic member), acid anhydride, radical polymerization initiator, coupling agent, and dispersant are sufficiently stirred with a stirrer. -Kneaded to produce a kneaded product. Then, this kneaded product was molded by coating to obtain a molded product, and then heated and cured to prepare a resin composition according to an example.
- ⁇ Average particle size and average aspect ratio> an example of a method for measuring the average particle size and the average aspect ratio of boron nitride (hexagonal boron nitride primary particles) and elastic members (elastic particles) in Examples will be described.
- the cross section of the sheet-shaped resin composition was measured with an electron microscope (scanning electron microscope or transmission electron microscope) or an optical microscope, and 50 particles to be measured were arbitrarily selected from the images. Then, the major axis and the minor axis of each particle were measured.
- the average of the major axis was defined as the average particle size
- the average of the major axis / minor axis was defined as the average aspect ratio.
- the primary particles When the hexagonal boron nitride primary particles have a bent shape, the primary particles are divided into two at the bent portion, the major axis is measured for the two divided portions, and the major axis is calculated from the larger major diameter portion.
- the major axis and the minor axis to be formed were defined as the major axis and the minor axis of the primary particle.
- the aspect ratio may be calculated by averaging the particles in the entire imaging range, or by using the average value of a predetermined region in the imaging range.
- FIG. 6 is a graph showing the relationship between the particle size of the core-shell rubber and the amount of boron nitride precipitated in the resin composition according to the first embodiment (hereinafter, Example 1).
- FIG. 7 is a graph showing the relationship between the particle size of the core-shell rubber and the dielectric strength in the resin composition according to Example 1.
- Example 1 is an investigation of the effect of boron nitride precipitation and the resin composition on the dielectric strength when the particle size of the core-shell rubber is changed.
- the average particle size of boron nitride (hexagonal boron nitride primary particles) is 5 ⁇ m
- the average aspect ratio of boron nitride (hexagonal boron nitride primary particles)
- the weight ratio of boron nitride in the resin composition is set.
- the weight ratio of the core-shell rubber (elastic member) in the resin composition was 6% by weight and 3% by weight.
- boron nitride precipitation amount the epoxy resin (base polymer) is eluted in a solvent with the weight when it is assumed that all the added boron nitride is precipitated as 1 (reference). The weight of the precipitate remaining when the precipitate is removed is measured and expressed relatively (the same applies to FIG. 8).
- the vertical axis "dielectric strength" of the graph shown in FIG. 7 is a relative representation of the dielectric strength with the dielectric strength of the resin composition as 1 (reference) when the average particle size of the core-shell rubber is 3 ⁇ m. Is.
- the average particle size of the core-shell rubber is 3 ⁇ m or more, it can be seen that almost all of the added boron nitride is precipitated as a precipitate.
- the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 2.4 ⁇ m or less, the amount of boron nitride precipitated can be halved (1/2 of the total precipitation amount). Then, preferably, if the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 2 ⁇ m or less, the amount of boron nitride precipitated can be reduced to 1/4 of the total precipitated amount. More preferably, if the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 1 ⁇ m or less, the amount of boron nitride precipitated can be made substantially zero.
- the dielectric strength is improved by reducing the average particle size of the core-shell rubber.
- the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 2.4 ⁇ m or less, it can be 1.25 times or more the dielectric strength of the resin composition when the average particle size of the core-shell rubber is 3 ⁇ m. ..
- the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 2 ⁇ m or less, it is 1.4 times or more the dielectric strength of the resin composition when the average particle size of the core-shell rubber is 3 ⁇ m. be able to.
- the average particle size of the core-shell rubber is 0.1 ⁇ m or more and 1 ⁇ m or less, it is 1.5 times or more the dielectric strength of the resin composition when the average particle size of the core-shell rubber is 3 ⁇ m. Can be done.
- FIG. 8 is a graph showing the relationship between the weight ratio of the core-shell rubber and the amount of boron nitride precipitated in the resin composition according to the second embodiment (hereinafter referred to as Example 2).
- FIG. 9 is a graph showing the relationship between the weight ratio of the core-shell rubber and the dielectric strength in the resin composition according to Example 2.
- FIG. 10 is a graph showing the relationship between the weight ratio of the core-shell rubber and the fracture toughness in the resin composition according to Example 2.
- Example 2 investigated the effects on the amount of boron nitride precipitation, the dielectric strength of the resin composition, and the fracture toughness when the weight ratio of the core-shell rubber in the resin composition was changed.
- the average particle size of boron nitride (hexagonal boron nitride primary particles) is 6 ⁇ m
- the average aspect ratio of boron nitride (hexagonal boron nitride primary particles) is 6, and the weight ratio of boron nitride in the resin composition is set.
- the average particle size of 6% by weight and the core-shell rubber (elastic particles) was 1 ⁇ m.
- the vertical axis "dielectric strength" of the graph shown in FIG. 9 represents the dielectric strength relative to each other, with the dielectric strength of the resin composition when the core-shell rubber is not added (weight ratio is 0% by weight) as 1 (reference). It is a thing.
- the vertical axis "fracture toughness" of the graph shown in FIG. 10 represents the fracture toughness relatively, with the fracture toughness of the resin composition when the core-shell rubber is not added (weight ratio is 0% by weight) as 6 (reference). It is a thing.
- the weight ratio of the core-shell rubber is 1% by weight or more and 10% by weight or less, the amount of boron nitride precipitated can be halved (1/2 of the total precipitation amount). Then, preferably, if the weight ratio of the core-shell rubber is 1% by weight or more and 7% by weight or less, the amount of boron nitride precipitated can be reduced to 1/4 of the total precipitated amount. More preferably, when the weight ratio of the core-shell rubber is 1% by weight or more and 5% by weight or less, the amount of boron nitride precipitated can be made substantially zero.
- the weight ratio of the core-shell rubber is 1% by weight or more and 10% by weight or less, it can be 1.25 times or more the withstand voltage when the core-shell rubber is not added. Then, preferably, when the weight ratio of the core-shell rubber is 1% by weight or more and 7% by weight or less, it can be 1.3 times or more the withstand voltage when the core-shell rubber is not added. More preferably, when the weight ratio of the core-shell rubber is 1% by weight or more and 5% by weight or less, it can be 1.4 times or more the dielectric strength of the resin composition when the core-shell rubber is not added.
- the weight ratio of the core-shell rubber is 1% by weight or more and 10% by weight or less, it can be 1.25 times or more the fracture toughness when the core-shell rubber is not added. Then, preferably, when the weight ratio of the core-shell rubber is 1% by weight or more and 7% by weight or less, it can be 1.3 times or more the fracture toughness when the core-shell rubber is not added. More preferably, when the weight ratio of the core-shell rubber is 1% by weight or more and 5% by weight or less, it can be 1.4 times or more the fracture toughness of the resin composition when the core-shell rubber is not added.
- FIG. 11 is a graph showing the relationship between the aspect ratio of boron nitride and the dielectric strength in the resin composition according to the third embodiment (hereinafter referred to as Example 3).
- Example 3 is an investigation of the effect of the resin composition on the dielectric strength when the aspect ratio of boron nitride (hexagonal boron nitride primary particles) is changed.
- the average particle size of boron nitride (hexagonal boron nitride primary particles) was 6 ⁇ m
- the weight ratio of boron nitride in the resin composition was 6% by weight
- the average particle size of the core-shell rubber (elastic particles) was 1 ⁇ m.
- the weight ratio of the core-shell rubber (elastic member) in the resin composition was set to 3% by weight.
- the vertical axis "dielectric strength" of the graph shown in FIG. 11 is the dielectric strength of the resin composition when the average aspect ratio of boron nitride (hexagonal boron nitride primary particles) is 1, and the dielectric strength is defined as 1 (reference). It is a relative representation.
- the dielectric strength of the resin composition is improved.
- the average aspect ratio of boron nitride is 3 or more, it can be 1.1 times or more the insulation withstand voltage when the average aspect ratio of boron nitride is 1.
- the average aspect ratio of boron nitride is 3.5 or more, it can be 1.25 times or more the insulation withstand voltage when the average aspect ratio of boron nitride is 1.
- the average aspect ratio of boron nitride is 4 or more, it can be 1.4 times or more the withstand voltage when the average aspect ratio of boron nitride is 1.
- the upper limit of the average aspect ratio of boron nitride is not particularly limited, but when the average aspect ratio is 8 or more, the insulation withstand voltage of the resin composition is saturated and its improvement is gradual. It is considered to be.
- FIG. 12 is a graph showing the relationship between the particle size of boron nitride and the dielectric strength in the resin composition according to the fourth embodiment (hereinafter referred to as Example 4).
- Example 4 is an investigation of the effect of the resin composition on the dielectric strength when the particle size of boron nitride (hexagonal boron nitride primary particles) is changed.
- the average aspect ratio of boron nitride (hexagonal boron nitride primary particles) was 6
- the weight ratio of boron nitride in the resin composition was 6% by weight
- the average particle size of the core-shell rubber (elastic particles) was 1 ⁇ m.
- the weight ratio of the core-shell rubber (elastic member) in the resin composition was set to 3% by weight.
- the vertical axis "dielectric strength" of the graph shown in FIG. 12 is the dielectric strength of the resin composition when the average particle size of boron nitride (hexagonal boron nitride primary particles) is 20 ⁇ m as 1 (reference). It is a relative representation. Assuming that the average particle size of boron nitride is 20 ⁇ m, all boron nitride precipitates and precipitates regardless of the addition or absence of core-shell rubber.
- the average particle size of boron nitride when the average particle size of boron nitride (hexagonal boron nitride primary particles) is 1 ⁇ m or more and 15 ⁇ m or less, it is 1.1 compared to the withstand voltage when the average particle size of boron nitride is 20 ⁇ m. It can be doubled or more. Then, preferably, if the average particle size of boron nitride is 2 ⁇ m or more and 13 ⁇ m or less, it can be 1.25 times or more the withstand voltage when the average particle size of boron nitride is 20 ⁇ m.
- the average particle size of boron nitride is 4 ⁇ m or more and 10 ⁇ m or less, it can be 1.4 times or more the withstand voltage when the average particle size of boron nitride is 20 ⁇ m.
- FIG. 13 is a graph showing the relationship between the weight ratio of boron nitride and the dielectric strength in the resin composition according to the fifth embodiment (hereinafter referred to as Example 5).
- the vertical axis “dielectric strength” of the graph shown in FIG. 13 is set with the dielectric strength of the resin composition when boron nitride (hexagonal boron nitride primary particles) is not added (weight ratio is 0% by weight) as 1 (reference). It is a relative representation of the dielectric strength.
- the withstand voltage is 1.1 as compared with the case where boron nitride is not added. It can be doubled or more. If the weight ratio of boron nitride is preferably 1% by weight or more and 20% by weight or less, it can be 1.3 times or more the withstand voltage when boron nitride is not added. More preferably, when the weight ratio of boron nitride is 2% by weight or more and 10% by weight or less, it can be 1.4 times or more the dielectric strength of the resin composition when boron nitride is not added.
- Resin composition 11 Base polymers 12, 12a, 12b Boron nitride (hexagonal boron nitride primary particles) 13 Elastic members (elastic particles) 14 Boron 15 Nitrogen 16 Core layer 17 Shell layer 20 Transformer 21 Lead wire (winding) 22 Insulation paper 23 Insulation material 30 Motor 31 Conductor
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
電気絶縁に用いる樹脂組成物およびこれを適用した電気機器において、高耐圧化を実現する。樹脂組成物10は、ベースポリマ11と添加剤とを含む。前記添加剤は、窒化ホウ素12と弾性部材13とを含む。窒化ホウ素12は、アスペクト比が2以上である六方晶窒化ホウ素一次粒子により構成され、弾性部材13は、コア層と前記コア層の外周に配置されたシェル層とをそれぞれ有する弾性粒子により構成されている。前記コア層の弾性率は、前記シェル層の弾性率と互いに異なる。前記弾性粒子の粒径は、前記六方晶窒化ホウ素一次粒子の粒径よりも小さい。
Description
本発明は、電気絶縁に用いる樹脂組成物およびこれを適用した変圧器等の電気機器に関する。
従来、変圧器、電動機、開閉機器、変換器、制御機器、家電機器、車載機器または鉄道搭載機器等には、電気絶縁材料として樹脂組成物(絶縁樹脂)が用いられている。一般に、樹脂組成物は、熱伝導率が低いため、電気絶縁性かつ熱伝導性に優れる添加剤(フィラー)を添加することが一般的である。
例えば、特許文献1(特開2014-015540号公報)には、「(a)脂環族ジカルボン酸からなる単位と、(b)炭素数8以上のジアミンからなる単位と、(c)下記(c-1)~(c-3)からなる群より選ばれる少なくとも1種の共重合成分からなる単位と、((c-1)前記(a)脂環族ジカルボン酸以外のジカルボン酸。(c-2)前記(b)のジアミンより炭素数の少ないジアミン。(c-3)ラクタム及び/又はアミノカルボン酸。)を、含有し、かつ、結晶化ピーク温度Tpc-1と、ガラス転移温度Tg、融解ピーク温度Tpm、Tpm-1に関して、所定の要件を満たす共重合ポリアミド(A)と、ガラス繊維(B)と、ガラス繊維(B)以外の無機充填材(C)とを含有するポリアミド樹脂組成物」が開示されている(要約参照)。
特許文献1には、吸水後の剛性や高温使用下での剛性が良好な樹脂組成物を提供するために、特定の条件を満足する共重合ポリアミドと、ガラス繊維と、当該ガラス繊維以外の無機充填材とを含有する組成物について記載されている。添加によりポリアミド樹脂組成物の、結晶化ピーク温度を上昇させたり、結晶化ピークの補外開始温度と補外終了温度との差を小さくしたり、得られる成形品の球晶を微細化又はサイズの均一化させたりする効果が得られる造核剤としてタルク、窒化ホウ素、マイカ等が好ましいとされている。さらに、造核剤効果を高めるために、平均粒径が0.01~10μmが好ましいとされており、また、造核剤の含有量を、共重合ポリアミド100質量部に対して、0.001質量部以上とすることにより、ポリアミド樹脂組成物の耐熱性が良好に向上することが開示されている。
樹脂組成物の特性は、複数の材料の配合や材料の大きさによる相互作用に変化するところ、特許文献1には、造核剤の添加量は単に増加させればよいとされ、また、造核剤の含有量を、共重合ポリアミド100質量部に対して、1質量部以下とすることにより、靭性に優れるとされているが、耐圧性については考慮されていない。
すなわち、特許文献1は数十V(ボルト)かつ数A(アンペア)程度の少電力の弱電用電気機器を対象としており、産業分野ではこれらに比べて大容量の強電用電気機器に対応する絶縁樹脂組成物の特性が考慮されていない。例えば、産業分野の変圧器であれば、数十kVA(ボルトアンペア)以上の容量のものが利用されており特別高圧ではさらに大きな容量となる。すなわち、こうした強電用電気機器の絶縁樹脂部材には電気的な耐圧が求められ、かつ、絶縁樹脂部材は電気機器を覆うためその重量が大きくなるため、できるだけ薄く電気機器を覆いつつも絶縁性を高める必要があるが、この点は特許文献1において考慮されていない。
従って、電気絶縁に用いる樹脂組成物およびこれを適用した電気機器において、高耐圧化を実現することが望まれる。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態に係る樹脂組成物は、ベースポリマと添加剤とを含む樹脂組成物において、前記添加剤は、窒化ホウ素と弾性部材とを含み、前記窒化ホウ素は、アスペクト比が2以上である六方晶窒化ホウ素一次粒子により構成され、前記弾性部材は、コア層と前記コア層の外周に配置されたシェル層とを有する弾性粒子により構成され、前記コア層の弾性率と前記シェル層の弾性率とは、互いに異なり、前記弾性粒子の粒径は、前記六方晶窒化ホウ素一次粒子の粒径よりも小さい。
一実施の形態によれば、電気絶縁に用いる樹脂組成物およびこれを適用した電気機器において、高耐圧化を実現することができる。
(検討事項)
実施の形態を説明する前に、本発明者らが検討した事項について図を用いて説明する。図14は、検討例に係る樹脂組成物を構成する窒化ホウ素の重合反応を表す拡大模式図である。
実施の形態を説明する前に、本発明者らが検討した事項について図を用いて説明する。図14は、検討例に係る樹脂組成物を構成する窒化ホウ素の重合反応を表す拡大模式図である。
検討例に係る樹脂組成物は、ベースポリマと、添加剤として窒化ホウ素とを含んでいる。この点で、検討例に係る樹脂組成物は、後述の図1に示す樹脂組成物10と同様である。一方、検討例に係る樹脂組成物は、図1に示す樹脂組成物10と異なり、前記添加剤として弾性部材を含んでいない。
このような電気絶縁に用いられる樹脂組成物に電圧を加えたとき、樹脂組成物を絶縁破壊させない耐性を、耐圧性と呼ぶ。本発明者らは、この耐圧性に注目し、以下の課題を確認している。
電気機器を小型化・低コスト化するためには、例えば電気絶縁材料として使用している樹脂組成物の量(体積)を低減する必要がある。ただし、樹脂組成物の量を低減した場合には、特に耐圧性が低下するため、その分、添加剤により樹脂組成物の耐圧性を向上させることが必要である。
窒化ホウ素は、電気絶縁に用いられる樹脂組成物の添加剤として、特に耐圧性を向上させることができる。しかし、本発明者らの検討によれば、樹脂組成物の耐圧性を高めるために、単に窒化ホウ素の添加量を多くしても樹脂組成物の所定量以上の耐圧性を向上させることができない場合があることを確認した。
本発明者らはその原因を次のように分析した。図14には、窒化ホウ素の結晶構造の一部を示している。添加剤として特に好ましい窒化ホウ素は、常圧相窒化ホウ素の一次粒子である。常圧相窒化ホウ素の一次粒子は、マイカ、シリコンまたはアルミナ等の耐圧性を有する添加剤の中で電気的に安定である。常圧相窒化ホウ素の結晶構造は六方晶であり、グラファイトに類似した六角網目の層状構造をとる。そのため、常圧相窒化ホウ素の粒子形状は、鱗片状が安定な形状であり、アスペクト比が2以上となる。鱗片状とは、異方性を有する形状を指す。また、鱗片状とは、外縁が直線状の形状ではなく凹凸を有する形状を指す。鱗片状とは、フレーク状の形状である。鱗片状の物質のアスペクト比は鱗片状の形状のうちいずれかの角度の平面図でみた際の長手方向の長さと短手方向の長さとを比較した値をいう。例えば、電子顕微鏡で撮像した際に長手方向長さと短手方向の長さの比が2以上:1であれば、アスペクト比は2以上である。
ここで、「一次粒子」とは、粒子の最小構成単位である結晶体(微結晶)を意味する。また、「アスペクト比」とは、粒子の長径と短径(または厚さ)との比(=長径/短径(または厚さ))である。「平均アスペクト比」は、電子顕微鏡等で撮像した撮像範囲中の結晶体のアスペクト比を平均したアスペクト比を指す。「粒径」とは、粒子の平均長径を意味する。また、添加剤として用いる窒化ホウ素を、「六方晶窒化ホウ素一次粒子」または単に「窒化ホウ素」と呼ぶこととする。これらの定義は、以下、実施の形態においても同様である。
図14に示すように、窒化ホウ素12a,12bは、ホウ素14と窒素15とが互いに正六角形の頂点に配置された六員環構造を有している。窒化ホウ素12bは、窒化ホウ素12aのホウ素14と窒素15とを互いに入れ替えたものである。窒化ホウ素12aのホウ素14(窒素15)と窒化ホウ素12bの窒素15(ホウ素14)とは互いに逆の電荷を有しているため、窒化ホウ素12aと窒化ホウ素12bとの間には、水素結合と同程度の大きさの引力が生じる。この引力が、六方晶窒化ホウ素一次粒子同士の重合・凝集を促進する。すなわち、樹脂組成物に添加する窒化ホウ素の添加量を多くした場合には、この機構により窒化ホウ素同士が重合・凝集して窒化ホウ素(二次粒子)が生成し、樹脂組成物内に沈殿・析出することになる。その結果、沈殿・析出した窒化ホウ素に電界集中して絶縁破壊が起こり、樹脂組成物の耐圧性が向上しないと考えられる。
なお、例えば粒子形状が球状である平均アスペクト比が2未満である窒化ホウ素にあっては、粒子形状が鱗片状である平均アスペクト比が2以上の窒化ホウ素に比べて、窒化ホウ素同士の重合・凝集が起こりにくいが、電気的な安定性は高くないため、樹脂組成物の耐圧性を高めにくいため、実施は可能であるが、平均アスペクト比が2以上であるとよい。
以上より、窒化ホウ素を添加した樹脂組成物において、窒化ホウ素同士の重合・凝集を低減し、高耐圧化を実現することが望まれる。
(実施の形態1)
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。
<第1実施形態に係る樹脂組成物の主要な特徴および効果>
図1は、第1実施形態に係る樹脂組成物の断面模式図である。図2は、第1実施形態に係る樹脂組成物を構成する窒化ホウ素の拡大模式図である。図3は、第1実施形態に係る樹脂組成物を構成する弾性部材の拡大断面模式図である。
図1は、第1実施形態に係る樹脂組成物の断面模式図である。図2は、第1実施形態に係る樹脂組成物を構成する窒化ホウ素の拡大模式図である。図3は、第1実施形態に係る樹脂組成物を構成する弾性部材の拡大断面模式図である。
図1に示すように、第1実施形態に係る樹脂組成物10は、ベースポリマ11と添加剤とを含む。前記添加剤は、窒化ホウ素12と、弾性部材13とを含む。
第1実施形態に係る窒化ホウ素12は、平均アスペクト比が2以上である複数の六方晶窒化ホウ素一次粒子により構成され、図2に示すように、ホウ素14と窒素15とが互いに正六角形の頂点に配置された六員環構造を有している。以下、複数の六方晶窒化ホウ素一次粒子を六方晶窒化ホウ素一次粒子12という場合がある。
図3に示すように、第1実施形態に係る弾性部材13は、複数の弾性粒子により構成されている。以下、複数の弾性粒子を弾性粒子13という場合がある。弾性粒子13は、コア層16とコア層16の外周に配置されたシェル層17とを有する。そして、コア層16の弾性率とシェル層17の弾性率とは、互いに異なっている。
第1実施形態に係る樹脂組成物10において、複数の弾性粒子13の平均粒径は、複数の六方晶窒化ホウ素一次粒子12の平均粒径よりも小さい。
第1実施形態に係る樹脂組成物10は、以上の特徴的な構成を有することで、窒化ホウ素を添加した樹脂組成物において、窒化ホウ素同士の重合・凝集を抑制し、高耐圧化を実現することができる。以下、その理由について説明する。
今般、本発明者らは、図1に示すように、樹脂組成物10の添加剤として、窒化ホウ素12に加えて、弾性部材13を添加することによって、窒化ホウ素12の重合・凝集を抑制できることを見出した。このことは、次に示すブラウン運動理論によって説明できる。
ベースポリマ11に添加剤を混練する(練り混ぜて均一に分散させる)際において、添加剤の粒径が小さい場合には、ブラウン運動によって拡散していくと考えられる。具体的には、ブラウン運動の理論によれば、拡散係数Dは次式で与えられる。
D=kBT/6πμa ・・・(式1)
式1において、kBはボルツマン定数、Tは温度、μはベースポリマの粘性、aは粒子の直径(粒径)である。式1より、粒径aが小さいほど、拡散係数Dが大きくなることがわかる。従って、ベースポリマ11に窒化ホウ素12を添加して混練する際に、六方晶窒化ホウ素一次粒子12の平均粒径よりも小さい平均粒径を有する弾性粒子13をさらに添加すると、弾性粒子13が六方晶窒化ホウ素一次粒子12よりも激しくブラウン運動する。その結果、六方晶窒化ホウ素一次粒子12と六方晶窒化ホウ素一次粒子12との間に弾性粒子13が入り込み、前述した窒化ホウ素同士の重合・凝集反応を抑制することができる。このとき、(式1)から、弾性粒子の一秒後の到達距離は、室温での、樹脂の母材であるエポキシ樹脂と同等のサイズとなり、弾性粒子が大きく移動することがわかる。
特に、今般、本発明者らによれば、弾性粒子13の構成を、弾性率の異なるコア層16とシェル層17とのコア/シェル構造とすることによって、樹脂組成物10中に複数の弾性粒子13を効果的に分散させることができることがわかった。すなわち、弾性粒子13が樹脂組成物10中に分散することによって、窒化ホウ素12同士の重合・凝集反応をより効果的に抑制することができる。
さらには、コア層16をベースポリマ11よりも弾性率の小さい(すなわち柔軟性が高い)材料(エラストマ)により構成し、かつ、シェル層17をベースポリマ11との相溶性の高い材料により構成することによって、エラストマ成分を樹脂組成物10中に効果的に分散させることができ、その結果、樹脂組成物10の靭性を高め、耐クラック性を向上させることができる。
なお、シェル層17の成分がベンゼン環を含む場合には、窒化ホウ素の六員環との相互作用が大きくなるため、弾性粒子13が六方晶窒化ホウ素一次粒子12の周囲に配置されやすくなる。その結果、窒化ホウ素同士の重合・凝集反応をさらに効果的に抑制するとともに、六方晶窒化ホウ素一次粒子12と弾性粒子13との結びつきが強く耐熱性をさらに向上させることが可能となる。
以上より、第1実施形態に係る樹脂組成物10にあっては、窒化ホウ素12を多量に添加した場合であっても、窒化ホウ素12の重合・凝集を抑制し、高耐圧化を実現することができる。
また、図1に示すように、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、樹脂組成物10中において、樹脂組成物10中において、複数の弾性粒子13のそれぞれの間には、六方晶窒化ホウ素一次粒子12が介在している。すなわち、第1実施形態に係る窒化ホウ素12は、樹脂組成物10中において、六方晶窒化ホウ素一次粒子として存在し、窒化ホウ素の凝集体(二次粒子)としては存在しないため、樹脂組成物10の耐圧性を向上させることができる。さらに、いいかえれば、複数の弾性粒子13が高耐熱性および高熱伝導性を有する窒化ホウ素12のネットワークで結びついているため、弾性部材13の耐熱性を向上させることができる。
また、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、複数の弾性粒子13の形状は球状であり、複数の弾性粒子13の平均粒径は、複数の六方晶窒化ホウ素一次粒子12の粒径の1/10以上1/5以下である。ここで、「球状」とは、アスペクト比(長径と短径の比)が1以上2未満である。このような構造とすることで、弾性粒子13と弾性粒子13との間の相互作用が最も小さくなり、複数の弾性粒子13同士が反発して凝集しにくく、かつ、ブラウン運動によって拡散しやすい。その結果、窒化ホウ素の重合・凝集を効果的に抑制することができる。より、好ましくはアスペクト比(長径と短径の比)が1以上1.5未満であることをいう。このような構造とすることで、弾性粒子13がさらに球に近くなる。その結果、窒化ホウ素の重合・凝集を、より効果的に抑制することができる。このときの弾性粒子の凝集量は、アスペクト比(長径と短径の比)が1以上2未満の場合の75%となる。
また、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、後述の実施例(図12)に示すように、複数の窒化ホウ素(六方晶窒化ホウ素一次粒子)12の平均粒径(図3に示す半径r1の2倍)は、1μm以上15μm以下である。このような構成とすることで、樹脂組成物の耐圧性をさらに向上させることができる。また、複数の窒化ホウ素12の平均粒径は、好ましくは2μm以上13μm以下である。このような構成とすることで、平均粒径が1μm以上15μm以下の場合よりも、耐圧がピークとなる5μmに近づき、耐圧性を10%向上させることができる。5μmで耐圧がピークをもつのは、これより小さいと、窒化ホウ素同士が凝集・重合し、大きいと絶縁破壊を抑止しないためである。また、複数の窒化ホウ素12の平均粒径は、より好ましくは4μm以上10μm以下である。このような構成とすることで、平均粒径が2μm以上13μm以下の場合よりも、さらに耐圧がピークとなる5μmに近づき、耐圧性を10%向上させることができる。
そして、好ましい構成として、後述の実施例(図11)に示すように、複数の窒化ホウ素(六方晶窒化ホウ素一次粒子)12の平均アスペクト比は、3以上である。このような構成とすることで、樹脂組成物の耐圧性をさらに向上させることができる。複数の窒化ホウ素12の平均アスペクト比は、好ましくは3.5以上である。このような構成とすることで、絶縁破壊耐性の材料の面積比率が高まり、平均アスペクト比が3以上の場合よりも樹脂組成物の耐圧性を10%向上させることができる。複数の窒化ホウ素12の平均アスペクト比は、より好ましくは4以上である。このような構成とすることで、平均アスペクト比が3.5以上の場合よりも樹脂組成物の耐圧性を10%向上させることができる。各数値範囲を限定する意義(効果)については、後述の実施例にて詳述する(以下同じ)。
また、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、後述の実施例(図6および図7)に示すように、複数の弾性粒子13の平均粒径は、0.1μm以上2.4μm以下であり、このような構成とすることで、樹脂組成物の耐圧性をさらに向上させることができる。複数の弾性粒子13の平均粒径は、好ましくは0.1μm以上2μm以下であり、このような構成とすることで、弾性粒子の最大半径が小さくなり、窒化ボロンの凝集・沈殿をより阻害し、樹脂組成物の耐圧性を、平均粒径が0.1μm以上2.4μm以下に比較して10%向上させることができる。複数の弾性粒子13の平均粒径は、より好ましくは、0.1μm以上1μm以下である。このような構成とすることで、弾性粒子の最大半径がさらに小さくなり、窒化ボロンの凝集・沈殿をより阻害し、樹脂組成物の耐圧性を、平均粒径が0.1μm以上2.0μm以下の場合と比較して10%向上させることができる。
また、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、後述の実施例(図13)に示すように、窒化ホウ素(六方晶窒化ホウ素一次粒子)12の樹脂組成物10中の重量比率は、0.5重量%以上30重量%以下であり、このような構成とすることで、樹脂組成物の耐圧性をさらに向上させることができる。窒化ホウ素12の樹脂組成物中の重量比率は、好ましくは1重量%以上20重量%以下である。このような構成とすることで、重量比率が0.5重量%以上30重量%以下の場合より、耐圧がピークとなる6重量%に近づき、耐圧性を10%向上させることができる。重量比率が6重量%で耐圧がピークをもつのは、これより小さいと、窒化ホウ素が絶縁破壊を抑止せず、これより大きいと、窒化ホウ素同士が、凝集・重合するためである。窒化ホウ素12の樹脂組成物10中の重量比率は、より好ましくは2重量%以上10重量%以下である。このような構成とすることで、重量比率が1重量%以上20重量%以下の場合より、耐圧がピークとなる6重量%にさらに近づき、耐圧性を10%向上させることができる。
また、第1実施形態に係る樹脂組成物10にあっては、好ましい構成として、後述の実施例(図8、図9および図10)に示すように、弾性部材(弾性粒子)13の樹脂組成物10中の重量比率は、1重量%以上10重量%以下であり、このような構成とすることで、樹脂組成物の耐圧性および耐クラック性をさらに向上させることができる。弾性部材13の樹脂組成物10中の重量比率は、好ましくは1重量%以上7重量%以下であり、このような構成とすることで、重量比率が1重量%以上10重量%以下の場合より、耐圧性およびクラック耐性がピークとなる3重量%に近づき、樹脂組成物の耐圧性および耐クラック性を10%向上させることができる。重量比率が3重量%で耐圧およびクラック耐性がピークをもつのは、これより小さいと、絶縁破壊を抑止せず、これより大きいと、弾性部材同士が、凝集・重合するためである。弾性部材13の樹脂組成物中の重量比率は、より好ましくは1重量%以上5重量%以下である。このような構成とすることで、重量比率が1重量%以上7重量%以下の場合より、耐圧性およびクラック耐性がピークとなる3重量%にさらに近づき、樹脂組成物の耐圧性および耐クラック性を10%向上させることができる。
<ベースポリマの詳細>
以下、第1実施形態に係る樹脂組成物10を構成するベースポリマ11について詳細に説明する。
以下、第1実施形態に係る樹脂組成物10を構成するベースポリマ11について詳細に説明する。
第1実施形態に係る樹脂組成物10において、好ましい構成として、ベースポリマ11は、エポキシ樹脂である。このように、ベースポリマ11を熱硬化性樹脂であるエポキシ樹脂とすることで、樹脂組成物の耐圧性を向上させることができる。
エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、その種類は特に限定されない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物などが挙げられる。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
これらのエポキシ樹脂のなかでは、耐熱性の観点から極性を有するエポキシ樹脂が好ましく、エポキシ樹脂のプレポリマの主骨格はビスフェノールA型であることがより好ましい。
<窒化ホウ素の詳細>
第1実施形態に係る樹脂組成物10を構成する窒化ホウ素12について詳細に説明する。前述したように、第1実施形態に係る窒化ホウ素12は、常圧相窒化ホウ素の一次粒子である。常圧相窒化ホウ素の結晶構造は六方晶であり、グラファイトに類似した六角網目の層状構造をとる。そのため、常圧相窒化ホウ素の粒子形状は、鱗片状が最も安定な形状であり、平均アスペクト比が2以上となる。
第1実施形態に係る樹脂組成物10を構成する窒化ホウ素12について詳細に説明する。前述したように、第1実施形態に係る窒化ホウ素12は、常圧相窒化ホウ素の一次粒子である。常圧相窒化ホウ素の結晶構造は六方晶であり、グラファイトに類似した六角網目の層状構造をとる。そのため、常圧相窒化ホウ素の粒子形状は、鱗片状が最も安定な形状であり、平均アスペクト比が2以上となる。
<弾性部材の詳細>
以下、第1実施形態に係る樹脂組成物10を構成する弾性部材13について詳細に説明する。
以下、第1実施形態に係る樹脂組成物10を構成する弾性部材13について詳細に説明する。
前述したように、図3に示す第1実施形態に係る弾性部材(弾性粒子)13は、コア層16とコア層16の外周に配置されたシェル層17とを有し、コア層16の弾性率とシェル層17の弾性率とが互いに異なる。より具体的には、コア層16の弾性率は、シェル層17の弾性率よりも高い。コア層の直径(図3に示す半径r2の2倍)およびシェル層の層厚(図3に示す半径差r3の2倍)は、いずれも0.1μmオーダーである。
コア層16の構成成分としては、特に限定されるものではないが、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられる。好ましくはn-ブチルアクリレート、エチルアクリレートである。これらの単量体には、2個以上のビニル性官能基を持つ単量体が含まれてもよい。特に限定されるものではないが、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレートである。また、ブタジエン-アクリロニトリル-スチレン(ABS)、メチルメタクリレート-ブタジエン-スチレン(MBS)、メチルメタクリレート-ブチルアクリレート-スチレン(MAS)、オクチルアクリレート-ブタジエン-スチレン(OABS)、アルキルアクリレート-ブタジエン-アクリロニトリル-スチレン(AABS)、ブタジエン-スチレン(SBR)及びメチルメタクリレート-ブチルアクリレート-シロキサンをはじめとするシロキサン等の粒子状弾性体、又はこれらを変性したゴム等が挙げられる。
シェル層17の構成成分としては、特に限定されるものではないが、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート等が挙げられる。好ましくはメチルメタクリレート、エチルアクリレートである。単量体には、2個以上のビニル性官能基を持つ単量体が含まれてもよい。特に限定されるものではないが、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、ジビニルベンゼン等が挙げられる。好ましくはアリルメタクリレートである。ベースポリマ11の構成成分であるエポキシ樹脂との界面接着性を向上させるために、シェル層17の構成成分として、極性の高い官能基をもつ単量体を導入してもよい。極性の高い官能基の例としては、エポキシ基、水酸基、アミド基、イミド基、アミン基、イミン基、カルボン酸基、無水カルボン酸基等が挙げられる。
コア層16/シェル層17の比率(重量比)は、例えば40/60~95/5であり、より好ましくは60/40~85/15である。コア層16の比率が低下すると、樹脂組成物10の靭性が劣る場合があるため好ましくない。一方、シェル層17の比率が低下すると、樹脂組成物中で重合体粒子が分散しにくくなり、耐圧性が向上しない場合がある。
<その他>
後述の実施例に示すように、第1実施形態に係る樹脂組成物10は、添加剤として、ベースポリマの硬化反応を促進する酸無水物、ベースポリマの硬化反応を開始するラジカル重合開始剤、製品に適用する際に他の材料との接合性を高めるカップリング剤、添加剤を分散させやすくする分散剤等を添加してもよい。
後述の実施例に示すように、第1実施形態に係る樹脂組成物10は、添加剤として、ベースポリマの硬化反応を促進する酸無水物、ベースポリマの硬化反応を開始するラジカル重合開始剤、製品に適用する際に他の材料との接合性を高めるカップリング剤、添加剤を分散させやすくする分散剤等を添加してもよい。
酸無水物としては、例えば、無水フタル酸、無水イタコン酸、無水コハク酸、無水シトラコン酸、無水アルケニル酸、無水ドデセニルコハク酸、無水マレイン酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水ピロメリット酸、無水シクロペンタンテトラカルボン酸、無水ベンゾフェノンテトラカルボン酸等が挙げられる。
ラジカル重合開始剤としては、例えば、ベンゾイン系化合物等が挙げられる。カップリング剤としては、例えば、シランカップリンング剤等が挙げられる。分散剤としては、例えばノニオン系界面活性剤等が挙げられる。
<第1実施形態に係る樹脂組成物の適用例>
以下、第1実施形態に係る樹脂組成物10を適用した電気機器の例について説明する。すなわち、第1実施形態に係る樹脂組成物10が電気機器の電気絶縁を必要とする箇所に適用されている例である。
以下、第1実施形態に係る樹脂組成物10を適用した電気機器の例について説明する。すなわち、第1実施形態に係る樹脂組成物10が電気機器の電気絶縁を必要とする箇所に適用されている例である。
<適用例1>
図4は、第1実施形態に係る樹脂組成物10を適用した変圧器20を示す断面模式図である。
図4は、第1実施形態に係る樹脂組成物10を適用した変圧器20を示す断面模式図である。
図4に示すように、第1実施形態に係る変圧器20は、導線(巻線)21と、導線21の周囲に配置された樹脂組成物10と、樹脂組成物10の周囲に配置された絶縁紙22と、絶縁紙22の周囲に配置された絶縁材23とを有している。なお、絶縁材23を樹脂組成物10によって構成してもよい。この導線21には高圧の交流電圧が印加される。
このような構成を有する変圧器20にあっては、運転時の温度変化、または輸送時の温度変化によって樹脂組成物10に対して局所的に熱応力が発生する可能性がある。この点、第1実施形態に係る樹脂組成物10にあっては、耐圧性だけでなく耐クラック性も向上させることができるため、このような熱的・電気的ストレスが大きい変圧器20に好適に適用することができる。
<適用例2>
図5は、第1実施形態に係る樹脂組成物10を適用した電動機30を示す断面模式図である。
図5は、第1実施形態に係る樹脂組成物10を適用した電動機30を示す断面模式図である。
図5に示すように、第1実施形態に係る電動機30は、導線31と、導線31の周囲に配置された樹脂組成物10とを有している。この導線31には、高圧の交流電圧が印加される。
このような構成を有する電動機30にあっては、運転時の温度変化、または輸送時の温度変化によって樹脂組成物10に対して局所的に熱応力が発生する可能性がある。この点、第1実施形態に係る樹脂組成物10にあっては、耐圧性だけでなく耐クラック性も向上させることができるため、このような熱的・電気的ストレスが大きい電動機30に好適に適用することができる。
<その他の適用例>
以上で説明した適用例の他にも、第1実施形態に係る樹脂組成物10は、開閉機器、変換器、制御機器、家電機器、車載機器または鉄道搭載機器等の電気機器に好適に適用することができ、例えば電子制御ユニット(Electronic Control Unit:ECU)やインバータの一部または全部を覆う樹脂として実施できる。第1実施形態に係る樹脂組成物10は、強電用電気機器(産業機器)により好適に適用することができる。産業機器とは、変圧器を含む静止誘導機器、電動機、同期機、開閉機器、圧縮機、電力変換器(インバータやコンバータ)、制御機器のような産業分野で用いられ自走手段を有さない機器である。また、本発明は、家電機器、車載機器または鉄道搭載機器等にも実施可能である。自走手段を有する自動車のECUや自動車と鉄道向けインバータは高温に晒され、内部のチップも高温となるため本発明の樹脂組成物は有効である。また、エレベータやクレーンのような吊り上げ機器の制御機器やインバータを覆う樹脂としても実施可能である。
以上で説明した適用例の他にも、第1実施形態に係る樹脂組成物10は、開閉機器、変換器、制御機器、家電機器、車載機器または鉄道搭載機器等の電気機器に好適に適用することができ、例えば電子制御ユニット(Electronic Control Unit:ECU)やインバータの一部または全部を覆う樹脂として実施できる。第1実施形態に係る樹脂組成物10は、強電用電気機器(産業機器)により好適に適用することができる。産業機器とは、変圧器を含む静止誘導機器、電動機、同期機、開閉機器、圧縮機、電力変換器(インバータやコンバータ)、制御機器のような産業分野で用いられ自走手段を有さない機器である。また、本発明は、家電機器、車載機器または鉄道搭載機器等にも実施可能である。自走手段を有する自動車のECUや自動車と鉄道向けインバータは高温に晒され、内部のチップも高温となるため本発明の樹脂組成物は有効である。また、エレベータやクレーンのような吊り上げ機器の制御機器やインバータを覆う樹脂としても実施可能である。
<第1実施形態に係る樹脂組成物の製造方法>
以下、第1実施形態に係る樹脂組成物10の製造方法について説明する。第1実施形態に係る樹脂組成物10の製造方法は、ベースポリマと添加剤とを混練し、混練物を生成する工程((a)混練工程)と、前記混練物を成型し、成形物を生成する工程((b)成形工程)と、前記成形物を加熱し、前記樹脂組成物を生成する工程((c)硬化工程)とを有している。
以下、第1実施形態に係る樹脂組成物10の製造方法について説明する。第1実施形態に係る樹脂組成物10の製造方法は、ベースポリマと添加剤とを混練し、混練物を生成する工程((a)混練工程)と、前記混練物を成型し、成形物を生成する工程((b)成形工程)と、前記成形物を加熱し、前記樹脂組成物を生成する工程((c)硬化工程)とを有している。
(a)混練工程では、図1に示すベースポリマ11と添加剤である窒化ホウ素12および弾性部材13とを混練するが、前述したように、弾性部材13を構成する弾性粒子がブラウン運動によってベースポリマ11中を拡散し、混練物中において窒化ホウ素12を構成する六方晶窒化ホウ素一次粒子同士の重合・凝集を抑制することができる。これにより、前記(b)成形工程および前記(c)硬化工程を経て生成された図1に示す樹脂組成物10において、耐圧性を向上させることができる。
なお、第1実施形態に係る樹脂組成物の製造方法において、好ましい形態として、前記(b)成形工程は、塗布、真空注型、大気注型、加圧注型または射出注型のいずれか1つによって行われる。すなわち、第1実施形態に係る樹脂組成物は、あらゆる成形法で成形することが可能であるため、樹脂組成物の製造効率を向上させることができる。
特に、前記(b)成形工程において、塗布によってシート状の成形物を生成する場合には、従来、樹脂成分のみが表面に集まり、添加物が沈降する等によって、ベースポリマと添加物とが成形物中で分離するという問題があった。その結果、本来樹脂組成物中に分散した窒化ホウ素同士によって形成されるヒートパスが形成されず、望まれる放熱性能が達成できないという虞があった。
この点、第1実施形態に係る樹脂組成物の製造方法にあっては、前記(a)混練工程でベースポリマ11と添加剤とが混練されてから、ベースポリマ11が前記(c)硬化工程で硬化するまでの間、弾性部材13を構成する弾性粒子がブラウン運動を続ける。そのため、前記(b)成形工程において、いずれの成形法(特に塗布)を用いた場合でも、添加剤が成形物中で分離するという事態を防止することができる。
(変形例)
以下、第1実施形態に係る変形例について、説明する。
以下、第1実施形態に係る変形例について、説明する。
<変形例1>
第1変形例(以下、変形例1)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例1に係る樹脂組成物は、さらに、スチレンおよび/またはN-フェニルマレミドを含む点で、第1実施形態に係る樹脂組成物と相違している。「スチレンおよび/またはN-フェニルマレミド」とは、スチレン単独でも、N-フェニルマレミド単独でも、または、これらを併用してもよいという意味である。
第1変形例(以下、変形例1)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例1に係る樹脂組成物は、さらに、スチレンおよび/またはN-フェニルマレミドを含む点で、第1実施形態に係る樹脂組成物と相違している。「スチレンおよび/またはN-フェニルマレミド」とは、スチレン単独でも、N-フェニルマレミド単独でも、または、これらを併用してもよいという意味である。
スチレンおよびN-フェニルマレミドは、ベースポリマの硬化反応の触媒として用いられる物質であるが、本発明者らは、今般、添加剤として窒化ホウ素および弾性部材とともに添加することで、六方晶窒化ホウ素一次粒子同士の重合・凝集をさらに抑制することを見出した。そのため、変形例1に係る樹脂組成物にあっては、図1に示す第1実施形態に係る樹脂組成物10に比べて、さらに高耐圧性を向上させることができる。
なお、六方晶窒化ホウ素一次粒子同士の重合・凝集を抑制する効果としては、スチレン単独でも、N-フェニルマレミド単独でもよいが、これらを併用した方がより好ましい。スチレンおよび/またはN-フェニルマレミドの樹脂組成物中の重量比率は、特に限定されるものではないが、0.1重量%以上6重量%以下であることが好ましい。
なお、ベースポリマの硬化後には、樹脂組成物中にスチレンおよび/またはN-フェニルマレミドの硬化生成物が生成する。これらの硬化生成物は高耐熱性を有しているため、樹脂組成物の耐熱性をさらに向上させることもできる。
<変形例2>
第2変形例(以下、変形例2)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例2に係る樹脂組成物は、さらに劈開マイカを含む点で、第1実施形態に係る樹脂組成物と相違している。
第2変形例(以下、変形例2)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例2に係る樹脂組成物は、さらに劈開マイカを含む点で、第1実施形態に係る樹脂組成物と相違している。
マイカは、樹脂組成物の耐圧性を向上させる添加剤である。特に、マイカはその表面で絶縁破壊が進展するため、マイカのなかでも表面積が大きい壁開マイカを用いることで、絶縁破壊の進展速度を小さくすることができ、樹脂組成物の絶縁破壊耐性がさらに向上する。そのため、変形例2に係る樹脂組成物にあっては、図1に示す第1実施形態に係る樹脂組成物10に比べて、さらに高耐圧性を向上させることができる。
なお、劈開マイカは、変形例1のスチレンおよび/またはN-フェニルマレミドと併用することも可能である。劈開マイカの樹脂組成物中の重量比率は、特に限定されるものではないが、1重量%以上50重量%以下(例えば10重量%)であることが好ましい。
<変形例3>
第3変形例(以下、変形例3)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例3に係る樹脂組成物は、さらにシリカを含む点で、第1実施形態に係る樹脂組成物と相違している。
第3変形例(以下、変形例3)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例3に係る樹脂組成物は、さらにシリカを含む点で、第1実施形態に係る樹脂組成物と相違している。
シリカは、樹脂組成物の耐熱性およびクラック耐性を向上させる添加剤である。
高熱伝導性を付与する添加剤として樹脂組成物に添加する結晶性シリカの中には、湿式と乾式との2種の方法において製造したものが存在する。一般的に乾式製造の方が表面におけるOH基や残留水が少なく、絶縁樹脂製造における水の悪影響(硬化阻害、副反応の誘発)を避けることが可能となる。また、この効果により絶縁樹脂の熱伝導度を高めるのにも役立つ。
一方、湿式製造の破砕シリカは、その表面にOH基が多く露出する傾向があり、このOH基と水とが水素結合により多数結合する。水は1分子あたり20kJ/mol以上のエネルギーで発熱的に結合しており、この水を除去するには100℃以上で一昼夜にわたる乾燥工程を必要とする。また水の存在は、エポキシ樹脂の重合にとっては望ましくない効果を与える。そのため、樹脂組成物の耐熱性およびクラック耐性を向上させる添加剤としては、乾式製造されたシリカの方が湿式製造されたシリカよりも好ましい。
また、樹脂組成物に添加するシリカとして、結晶性シリカだけでなく、(溶融)球状シリカを含んでもよい。球状シリカとすることで、線膨張係数を低減し、低減効果が等方的となり、線膨張係数の樹脂組成物の製造方向による依存性を小さくすることができる。
そのため、変形例3に係る樹脂組成物にあっては、図1に示す第1実施形態に係る樹脂組成物10に比べて、さらに耐熱性とクラック耐性をさらに向上させることができる。
なお、シリカは、変形例1のスチレンおよび/またはN-フェニルマレミド、または、変形例2の劈開マイカと併用することも可能である。シリカの樹脂組成物中の重量比率は、特に限定されるものではないが、10重量%以上80重量%以下であることが好ましい。
<変形例4>
第4変形例(以下、変形例4)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例4に係る樹脂組成物は、さらにエラストマを含む点で、第1実施形態に係る樹脂組成物と相違している。
第4変形例(以下、変形例4)に係る樹脂組成物は、基本的には第1実施形態に係る樹脂組成物と同様に構成されているが、変形例4に係る樹脂組成物は、さらにエラストマを含む点で、第1実施形態に係る樹脂組成物と相違している。
エラストマは、樹脂組成物のクラック耐性を向上させる添加剤である。エラストマとしては、非反応性エラストマ(例えば、アクリロニトリル-ブタジエンゴム(NBR)、ポリブタジエンやクロロプレンゴム等の液状ゴム、シリコーンオイル、シリコーンゴム、カルボキシル或はエポキシ変性の架橋NBR、アクリルゴム、ウレタンゴム、熱可塑性ポリエステルエラストマ等)、反応性エラストマ(カルボキシル変性のブタジエン?アクリロニトリル共重合体(CTBN)、アミノ変性のブタジエン―アクリロニトリル共重合体(ATBN)、主鎖にカルボキシル基を含有するNBR、カルボキシル変性ポリブタジエン、液状ポリサルファイド、変性シリコーンウレタンプレポリマ等)が挙げられる。
また、エラストマの形状として、平均アスペクト比が2以上のもの(例えば鱗片状)が好ましい。こうすることで、沈降やほかの数密度を上げることによるクラック進展阻害作用が期待できる。
以上より、変形例4に係る樹脂組成物にあっては、図1に示す第1実施形態に係る樹脂組成物10に比べて、さらにクラック耐性をさらに向上させることができる。
(実施例)
以下、実施例を示して本発明を説明する。なお、以下の実施例は本発明の具体的な説明のためのものであって、本発明の範囲がこれに限定されるものではなく、特許請求の範囲に記載された発明の技術思想の範囲内において、自由に変更可能である。
以下、実施例を示して本発明を説明する。なお、以下の実施例は本発明の具体的な説明のためのものであって、本発明の範囲がこれに限定されるものではなく、特許請求の範囲に記載された発明の技術思想の範囲内において、自由に変更可能である。
<実施例の原材料>
ベースポリマの一例としては、エポキシ樹脂(製品名EPICLON840、DIC(株)社製)を用いた。窒化ホウ素としては、六方晶窒化ホウ素一次粒子を用いた。弾性部材としては、コア層が無機物からなり、シェル層がポリマからなるコアシェルゴムを用いた。
ベースポリマの一例としては、エポキシ樹脂(製品名EPICLON840、DIC(株)社製)を用いた。窒化ホウ素としては、六方晶窒化ホウ素一次粒子を用いた。弾性部材としては、コア層が無機物からなり、シェル層がポリマからなるコアシェルゴムを用いた。
<実施例の製造方法>
基本的には、前述した第1実施形態に係る樹脂組成物の製造方法に沿って、実施例に係る樹脂組成物を作製した。具体的には、エポキシ樹脂(ベースポリマ)と、窒化ホウ素と、コアシェルゴム(弾性部材)と、酸無水物と、ラジカル重合開始剤と、カップリング剤と、分散剤とを攪拌器で十分攪拌・混練し、混練物を生成した。その後、この混練物を塗布により成形し、成形物とした後に、加熱して硬化し、実施例に係る樹脂組成物を作製した。
基本的には、前述した第1実施形態に係る樹脂組成物の製造方法に沿って、実施例に係る樹脂組成物を作製した。具体的には、エポキシ樹脂(ベースポリマ)と、窒化ホウ素と、コアシェルゴム(弾性部材)と、酸無水物と、ラジカル重合開始剤と、カップリング剤と、分散剤とを攪拌器で十分攪拌・混練し、混練物を生成した。その後、この混練物を塗布により成形し、成形物とした後に、加熱して硬化し、実施例に係る樹脂組成物を作製した。
<平均粒径および平均アスペクト比>
ここで、実施例における窒化ホウ素(六方晶窒化ホウ素一次粒子)および弾性部材(弾性粒子)の平均粒径および平均アスペクト比の測定方法の一例について説明する。まず、シート状の樹脂組成物の断面を電子顕微鏡(走査電子顕微鏡または透過型電子顕微鏡)または光学顕微鏡で測定し、その画像から50個の測定対象粒子を任意に選択した。その後、各粒子の長径および短径を測定した。実施例においては、この長径の平均を平均粒径とし、長径/短径の平均を平均アスペクト比とした。なお、六方晶窒化ホウ素一次粒子が屈曲した形状を有する場合には、屈曲箇所で当該一次粒子を2つに分け、分けられた2つの部位について長径を測定し、長径の大きな方の部位から算出される長径および短径を当該一次粒子の長径および短径とした。アスペクト比の算出方法は撮像範囲全ての粒子の平均でもよく、また撮像範囲のうちの所定の領域の平均値を用いてもよい。
ここで、実施例における窒化ホウ素(六方晶窒化ホウ素一次粒子)および弾性部材(弾性粒子)の平均粒径および平均アスペクト比の測定方法の一例について説明する。まず、シート状の樹脂組成物の断面を電子顕微鏡(走査電子顕微鏡または透過型電子顕微鏡)または光学顕微鏡で測定し、その画像から50個の測定対象粒子を任意に選択した。その後、各粒子の長径および短径を測定した。実施例においては、この長径の平均を平均粒径とし、長径/短径の平均を平均アスペクト比とした。なお、六方晶窒化ホウ素一次粒子が屈曲した形状を有する場合には、屈曲箇所で当該一次粒子を2つに分け、分けられた2つの部位について長径を測定し、長径の大きな方の部位から算出される長径および短径を当該一次粒子の長径および短径とした。アスペクト比の算出方法は撮像範囲全ての粒子の平均でもよく、また撮像範囲のうちの所定の領域の平均値を用いてもよい。
<実施例1>
図6は、第1実施例(以下、実施例1)に係る樹脂組成物において、コアシェルゴムの粒径と窒化ホウ素の沈殿量との関係を表すグラフである。図7は、実施例1に係る樹脂組成物において、コアシェルゴムの粒径と絶縁耐圧との関係を表すグラフである。
図6は、第1実施例(以下、実施例1)に係る樹脂組成物において、コアシェルゴムの粒径と窒化ホウ素の沈殿量との関係を表すグラフである。図7は、実施例1に係る樹脂組成物において、コアシェルゴムの粒径と絶縁耐圧との関係を表すグラフである。
実施例1は、コアシェルゴムの粒径を変化させた場合における、窒化ホウ素の沈殿量および樹脂組成物の絶縁耐圧への影響を調べたものである。実施例1では、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を5μm、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均アスペクト比を6、窒化ホウ素の樹脂組成物中の重量比率を6重量%、コアシェルゴム(弾性部材)の樹脂組成物中の重量比率を3重量%とした。
図6に示すグラフの縦軸「窒化ホウ素の沈殿量」は、添加した窒化ホウ素が全て沈殿したと仮定したときの重量を1(基準)として、エポキシ樹脂(ベースポリマ)を溶媒に溶出させて取り除いた際に残る沈殿物の重量を測定し、相対的に表したものである(図8についても同様)。また、図7に示すグラフの縦軸「絶縁耐圧」は、コアシェルゴムの平均粒径を3μmとしたときの樹脂組成物の絶縁耐圧を1(基準)として、絶縁耐圧を相対的に表したものである。
図6に示すように、コアシェルゴムの平均粒径を3μm以上とすると、添加した窒化ホウ素がほぼ全部沈殿物として析出することがわかる。一方、コアシェルゴムの平均粒径を0.1μm以上2.4μm以下とすれば、窒化ホウ素の沈殿量を半減(全部沈殿したときの1/2)することができる。そして、好ましくは、コアシェルゴムの平均粒径を0.1μm以上2μm以下とすれば、窒化ホウ素の沈殿量を全部沈殿したときの1/4とすることができる。より好ましくは、コアシェルゴムの平均粒径を0.1μm以上1μm以下とすれば、窒化ホウ素の沈殿量をほぼ0とすることができる。
また、図7に示すように、コアシェルゴムの平均粒径を小さくしていくと、絶縁耐圧が向上していくことがわかる。コアシェルゴムの平均粒径を0.1μm以上2.4μm以下とすれば、コアシェルゴムの平均粒径を3μmとしたときの樹脂組成物の絶縁耐圧に比べて1.25倍以上とすることができる。そして、好ましくは、コアシェルゴムの平均粒径を0.1μm以上2μm以下とすれば、コアシェルゴムの平均粒径を3μmとしたときの樹脂組成物の絶縁耐圧に比べて1.4倍以上とすることができる。より好ましくは、コアシェルゴムの平均粒径を0.1μm以上1μm以下とすれば、コアシェルゴムの平均粒径を3μmとしたときの樹脂組成物の絶縁耐圧に比べて1.5倍以上とすることができる。
以上より、実施例1に係る樹脂組成物から、コアシェルゴム(弾性粒子)の平均粒径を上記範囲とすることで、窒化ホウ素の沈殿・析出を抑止できることが示された。
<実施例2>
図8は、第2実施例(以下、実施例2)に係る樹脂組成物において、コアシェルゴムの重量比率と窒化ホウ素の沈殿量との関係を表すグラフである。図9は、実施例2に係る樹脂組成物において、コアシェルゴムの重量比率と絶縁耐圧との関係を表すグラフである。図10は、実施例2に係る樹脂組成物において、コアシェルゴムの重量比率と破壊靭性との関係を表すグラフである。
図8は、第2実施例(以下、実施例2)に係る樹脂組成物において、コアシェルゴムの重量比率と窒化ホウ素の沈殿量との関係を表すグラフである。図9は、実施例2に係る樹脂組成物において、コアシェルゴムの重量比率と絶縁耐圧との関係を表すグラフである。図10は、実施例2に係る樹脂組成物において、コアシェルゴムの重量比率と破壊靭性との関係を表すグラフである。
実施例2は、コアシェルゴムの樹脂組成物中の重量比率を変化させた場合における、窒化ホウ素の沈殿量、樹脂組成物の絶縁耐圧および破壊靭性への影響を調べたものである。実施例2では、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を6μm、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均アスペクト比を6、窒化ホウ素の樹脂組成物中の重量比率を6重量%、コアシェルゴム(弾性粒子)の平均粒径を1μmとした。
図9に示すグラフの縦軸「絶縁耐圧」は、コアシェルゴムを添加しない場合(重量比率が0重量%)の樹脂組成物の絶縁耐圧を1(基準)として、絶縁耐圧を相対的に表したものである。
図10に示すグラフの縦軸「破壊靭性」は、コアシェルゴムを添加しない場合(重量比率が0重量%)の樹脂組成物の破壊靭性を6(基準)として、破壊靭性を相対的に表したものである。
図8に示すように、コアシェルゴムを添加しない場合(重量比率が0重量%)には、添加した窒化ホウ素がほぼ全部沈殿物として析出することがわかる。一方、コアシェルゴムの重量比率を1重量%以上10重量%以下とすれば、窒化ホウ素の沈殿量を半減(全部沈殿したときの1/2)することができる。そして、好ましくは、コアシェルゴムの重量比率を1重量%以上7重量%以下とすれば、窒化ホウ素の沈殿量を全部沈殿したときの1/4とすることができる。より好ましくは、コアシェルゴムの重量比率を1重量%以上5重量%以下とすれば、窒化ホウ素の沈殿量をほぼ0とすることができる。
また、図9に示すように、コアシェルゴムの重量比率を1重量%以上10重量%以下とすれば、コアシェルゴムを添加しない場合の絶縁耐圧に比べて1.25倍以上とすることができる。そして、好ましくは、コアシェルゴムの重量比率を1重量%以上7重量%以下とすれば、コアシェルゴムを添加しない場合の絶縁耐圧に比べて1.3倍以上とすることができる。より好ましくは、コアシェルゴムの重量比率を1重量%以上5重量%以下とすれば、コアシェルゴムを添加しない場合の樹脂組成物の絶縁耐圧に比べて1.4倍以上とすることができる。
また、図10に示すように、コアシェルゴムの重量比率を1重量%以上10重量%以下とすれば、コアシェルゴムを添加しない場合の破壊靭性に比べて1.25倍以上とすることができる。そして、好ましくは、コアシェルゴムの重量比率を1重量%以上7重量%以下とすれば、コアシェルゴムを添加しない場合の破壊靭性に比べて1.3倍以上とすることができる。より好ましくは、コアシェルゴムの重量比率を1重量%以上5重量%以下とすれば、コアシェルゴムを添加しない場合の樹脂組成物の破壊靭性に比べて1.4倍以上とすることができる。
以上より、実施例2に係る樹脂組成物から、コアシェルゴム(弾性部材)の重量比率を上記範囲とすることで、窒化ホウ素の沈殿・析出を抑止できることが示された。そして、実施例2に係る樹脂組成物から、コアシェルゴム(弾性部材)の添加により、耐圧性だけでなく耐クラック性も向上させることができることが示された。
<実施例3>
図11は、第3実施例(以下、実施例3)に係る樹脂組成物において、窒化ホウ素のアスペクト比と絶縁耐圧との関係を表すグラフである。
図11は、第3実施例(以下、実施例3)に係る樹脂組成物において、窒化ホウ素のアスペクト比と絶縁耐圧との関係を表すグラフである。
実施例3は、窒化ホウ素(六方晶窒化ホウ素一次粒子)のアスペクト比を変化させた場合における、樹脂組成物の絶縁耐圧への影響を調べたものである。実施例3では、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を6μm、窒化ホウ素の樹脂組成物中の重量比率を6重量%、コアシェルゴム(弾性粒子)の平均粒径を1μm、コアシェルゴム(弾性部材)の樹脂組成物中の重量比率を3重量%とした。
図11に示すグラフの縦軸「絶縁耐圧」は、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均アスペクト比が1である場合の樹脂組成物の絶縁耐圧を1(基準)として、絶縁耐圧を相対的に表したものである。
図11に示すように、窒化ホウ素の平均アスペクト比を2以上とすれば、樹脂組成物の絶縁耐圧が向上する。特に、窒化ホウ素の平均アスペクト比を3以上とすれば、窒化ホウ素の平均アスペクト比が1である場合の絶縁耐圧に比べて1.1倍以上とすることができる。そして、好ましくは、窒化ホウ素の平均アスペクト比を3.5以上とすれば、窒化ホウ素の平均アスペクト比が1である場合の絶縁耐圧に比べて1.25倍以上とすることができる。より好ましくは、窒化ホウ素の平均アスペクト比を4以上とすれば、窒化ホウ素の平均アスペクト比が1である場合の絶縁耐圧に比べて1.4倍以上とすることができる。なお、窒化ホウ素の平均アスペクト比の上限は特に限定されるものではないが、平均アスペクト比を8以上とした場合には、樹脂組成物の絶縁耐圧が飽和し、その向上は緩やかになっていくものと考えられる。
以上より、実施例3に係る樹脂組成物から、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均アスペクト比を上記範囲とすることで、窒化ホウ素の沈殿・析出を抑止できることが示された。
<実施例4>
図12は、第4実施例(以下、実施例4)に係る樹脂組成物において、窒化ホウ素の粒径と絶縁耐圧との関係を表すグラフである。
図12は、第4実施例(以下、実施例4)に係る樹脂組成物において、窒化ホウ素の粒径と絶縁耐圧との関係を表すグラフである。
実施例4は、窒化ホウ素(六方晶窒化ホウ素一次粒子)の粒径を変化させた場合における、樹脂組成物の絶縁耐圧への影響を調べたものである。実施例4では、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均アスペクト比を6、窒化ホウ素の樹脂組成物中の重量比率を6重量%、コアシェルゴム(弾性粒子)の平均粒径を1μm、コアシェルゴム(弾性部材)の樹脂組成物中の重量比率を3重量%とした。
図12に示すグラフの縦軸「絶縁耐圧」は、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を20μmとした場合における樹脂組成物の絶縁耐圧を1(基準)として、絶縁耐圧を相対的に表したものである。窒化ホウ素の平均粒径を20μmとすると、コアシェルゴムの添加の有無にかかわらず、窒化ホウ素が全て沈殿・析出する。
図12に示すように、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を1μm以上15μm以下とすれば、窒化ホウ素の平均粒径が20μmである場合の絶縁耐圧に比べて1.1倍以上とすることができる。そして、好ましくは、窒化ホウ素の平均粒径を2μm以上13μm以下とすれば、窒化ホウ素の平均粒径が20μmである場合の絶縁耐圧に比べて1.25倍以上とすることができる。より好ましくは、窒化ホウ素の平均粒径を4μm以上10μm以下とすれば、窒化ホウ素の平均粒径が20μmである場合の絶縁耐圧に比べて1.4倍以上とすることができる。
以上より、実施例4に係る樹脂組成物から、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を上記範囲とすることで、窒化ホウ素の沈殿・析出を抑止できることが示された。
<実施例5>
図13は、第5実施例(以下、実施例5)に係る樹脂組成物において、窒化ホウ素の重量比率と絶縁耐圧との関係を表すグラフである。
図13は、第5実施例(以下、実施例5)に係る樹脂組成物において、窒化ホウ素の重量比率と絶縁耐圧との関係を表すグラフである。
図13に示すグラフの縦軸「絶縁耐圧」は、窒化ホウ素(六方晶窒化ホウ素一次粒子)を添加しない場合(重量比率が0重量%)の樹脂組成物の絶縁耐圧を1(基準)として、絶縁耐圧を相対的に表したものである。
図13に示すように、窒化ホウ素(六方晶窒化ホウ素一次粒子)の重量比率を0.5重量%以上30重量%以下とすれば、窒化ホウ素を添加しない場合の絶縁耐圧に比べて1.1倍以上とすることができる。そして、好ましくは、窒化ホウ素の重量比率を1重量%以上20重量%以下とすれば、窒化ホウ素を添加しない場合の絶縁耐圧に比べて1.3倍以上とすることができる。より好ましくは、窒化ホウ素の重量比率を2重量%以上10重量%以下とすれば、窒化ホウ素を添加しない場合の樹脂組成物の絶縁耐圧に比べて1.4倍以上とすることができる。
以上より、実施例5に係る樹脂組成物から、窒化ホウ素(六方晶窒化ホウ素一次粒子)の平均粒径を上記範囲とすることで、窒化ホウ素の沈殿・析出を抑止できることが示された。
本発明は前記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
10 樹脂組成物
11 ベースポリマ
12,12a,12b 窒化ホウ素(六方晶窒化ホウ素一次粒子)
13 弾性部材(弾性粒子)
14 ホウ素
15 窒素
16 コア層
17 シェル層
20 変圧器
21 導線(巻線)
22 絶縁紙
23 絶縁材
30 電動機
31 導線
11 ベースポリマ
12,12a,12b 窒化ホウ素(六方晶窒化ホウ素一次粒子)
13 弾性部材(弾性粒子)
14 ホウ素
15 窒素
16 コア層
17 シェル層
20 変圧器
21 導線(巻線)
22 絶縁紙
23 絶縁材
30 電動機
31 導線
Claims (15)
- ベースポリマと添加剤とを含む樹脂組成物において、
前記添加剤は、窒化ホウ素と弾性部材とを含み、
前記窒化ホウ素は、アスペクト比が2以上である六方晶窒化ホウ素一次粒子により構成され、
前記弾性部材は、コア層と前記コア層の外周に配置されたシェル層とを有する弾性粒子により構成され、
前記コア層の弾性率と前記シェル層の弾性率とは、互いに異なり、
前記弾性粒子の粒径は、前記六方晶窒化ホウ素一次粒子の粒径よりも小さい、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記樹脂組成物中において、前記弾性粒子のそれぞれの間には、前記六方晶窒化ホウ素一次粒子が介在している、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記弾性粒子の形状は、球状であり、
前記弾性粒子の前記粒径は、前記六方晶窒化ホウ素一次粒子の前記粒径の1/10以上1/5以下である、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記六方晶窒化ホウ素一次粒子の前記粒径は、4μm以上10μm以下であり、
前記六方晶窒化ホウ素一次粒子の前記アスペクト比は、4以上である、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記弾性粒子の前記粒径は、0.1μm以上2μm以下である、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記窒化ホウ素の前記樹脂組成物中の重量比率は、2重量%以上10重量%以下である、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記弾性部材の前記樹脂組成物中の重量比率は、1重量%以上5重量%以下である、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記添加剤は、さらにスチレンおよび/またはN-フェニルマレミドを含む、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記添加剤は、さらに劈開マイカを含む、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記添加剤は、さらにシリカを含む、樹脂組成物。 - 請求項1に記載の樹脂組成物において、
前記ベースポリマは、エポキシ樹脂である、樹脂組成物。 - 請求項1~請求項11のいずれか1項に記載の樹脂組成物が、電気絶縁を必要とする箇所に適用されている、電気機器。
- 請求項12に記載の電気機器において、
前記電気機器は、変圧器、開閉機器、電動機、変換器、制御機器、家電機器、車載機器または鉄道搭載機器のいずれか1つである、電気機器。 - 熱硬化性樹脂であるベースポリマと添加剤とを含む樹脂組成物の製造方法であって、
前記添加剤は、窒化ホウ素と弾性部材とを含み、
前記窒化ホウ素は、アスペクト比が2以上である六方晶窒化ホウ素一次粒子により構成され、
前記弾性部材は、コア層と前記コア層の外周に配置されたシェル層とをそれぞれ有する弾性粒子により構成され、
前記コア層の弾性率と前記シェル層の弾性率とは、互いに異なり、
前記弾性粒子の粒径は、前記六方晶窒化ホウ素一次粒子の粒径よりも小さく、
前記ベースポリマと前記添加剤とを混練し、混練物を生成する(a)工程と、
前記混練物を成型し、成形物を生成する(b)工程と、
前記成形物を加熱し、前記樹脂組成物を生成する(c)工程と、
を有する、樹脂組成物の製造方法。 - 請求項14に記載の樹脂組成物の製造方法において、
前記(b)工程は、塗布、真空注型、大気注型、加圧注型または射出注型のいずれか1つによって行われる、樹脂組成物の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-147573 | 2019-08-09 | ||
JP2019147573A JP7267870B2 (ja) | 2019-08-09 | 2019-08-09 | 樹脂組成物、電気機器および樹脂組成物の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021029108A1 true WO2021029108A1 (ja) | 2021-02-18 |
Family
ID=74569599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015650 WO2021029108A1 (ja) | 2019-08-09 | 2020-04-07 | 樹脂組成物、電気機器および樹脂組成物の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7267870B2 (ja) |
WO (1) | WO2021029108A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09221573A (ja) * | 1995-12-06 | 1997-08-26 | Idemitsu Petrochem Co Ltd | メッキ成形体、メッキ成形体用樹脂組成物およびメッキ成形体の製造方法 |
JP2014156514A (ja) * | 2013-02-14 | 2014-08-28 | Ajinomoto Co Inc | 硬化性樹脂組成物 |
JP2015117324A (ja) * | 2013-12-19 | 2015-06-25 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
JP2016008280A (ja) * | 2014-06-25 | 2016-01-18 | 味の素株式会社 | 樹脂組成物 |
JP2016023290A (ja) * | 2014-07-24 | 2016-02-08 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
WO2017006893A1 (ja) * | 2015-07-06 | 2017-01-12 | 三菱瓦斯化学株式会社 | プリント配線板の製造方法、及び樹脂組成物 |
WO2018030124A1 (ja) * | 2016-08-09 | 2018-02-15 | 三菱瓦斯化学株式会社 | 表面粗化六方晶窒化ホウ素粒子及びその製造方法、並びに、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板 |
CN108264735A (zh) * | 2018-01-23 | 2018-07-10 | 河北工业大学 | 一种增韧导热绝缘的环氧树脂基复合材料的制备方法 |
JP2019048952A (ja) * | 2017-09-11 | 2019-03-28 | 味の素株式会社 | 樹脂組成物 |
JP2020045417A (ja) * | 2018-09-19 | 2020-03-26 | 株式会社日立産機システム | 電機機器 |
-
2019
- 2019-08-09 JP JP2019147573A patent/JP7267870B2/ja active Active
-
2020
- 2020-04-07 WO PCT/JP2020/015650 patent/WO2021029108A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09221573A (ja) * | 1995-12-06 | 1997-08-26 | Idemitsu Petrochem Co Ltd | メッキ成形体、メッキ成形体用樹脂組成物およびメッキ成形体の製造方法 |
JP2014156514A (ja) * | 2013-02-14 | 2014-08-28 | Ajinomoto Co Inc | 硬化性樹脂組成物 |
JP2015117324A (ja) * | 2013-12-19 | 2015-06-25 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
JP2016008280A (ja) * | 2014-06-25 | 2016-01-18 | 味の素株式会社 | 樹脂組成物 |
JP2016023290A (ja) * | 2014-07-24 | 2016-02-08 | 三菱エンジニアリングプラスチックス株式会社 | 熱伝導性ポリカーボネート樹脂組成物及び成形品 |
WO2017006893A1 (ja) * | 2015-07-06 | 2017-01-12 | 三菱瓦斯化学株式会社 | プリント配線板の製造方法、及び樹脂組成物 |
WO2018030124A1 (ja) * | 2016-08-09 | 2018-02-15 | 三菱瓦斯化学株式会社 | 表面粗化六方晶窒化ホウ素粒子及びその製造方法、並びに、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板 |
JP2019048952A (ja) * | 2017-09-11 | 2019-03-28 | 味の素株式会社 | 樹脂組成物 |
CN108264735A (zh) * | 2018-01-23 | 2018-07-10 | 河北工业大学 | 一种增韧导热绝缘的环氧树脂基复合材料的制备方法 |
JP2020045417A (ja) * | 2018-09-19 | 2020-03-26 | 株式会社日立産機システム | 電機機器 |
Also Published As
Publication number | Publication date |
---|---|
JP2021028359A (ja) | 2021-02-25 |
JP7267870B2 (ja) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI468461B (zh) | Insulating mold resins for electrical machines and high voltage electrical machines using them | |
JP5269728B2 (ja) | 高靭性高熱伝導性硬化性樹脂組成物、その硬化物及びモールド電機機器 | |
US8735469B2 (en) | Resin material and high voltage equipment using the resin material | |
JP5105740B2 (ja) | 表面改質コランダム及び樹脂組成物 | |
JP2015083663A (ja) | 電気絶縁用樹脂組成物及びその硬化物並びにこれを用いたコイル、固定子、回転機及び高電圧機器 | |
KR20210087026A (ko) | 질화붕소 나노 재료, 및 수지 조성물 | |
JP7267032B2 (ja) | フィラー充填材及びその製造方法、並びに高熱伝導絶縁材及びその製造方法 | |
TW201728665A (zh) | 熱硬化性材料以及硬化物 | |
WO2021029108A1 (ja) | 樹脂組成物、電気機器および樹脂組成物の製造方法 | |
KR101072139B1 (ko) | 고압절연용 에폭시/실리카 멀티콤포지트의 제조방법 및 이로부터 제조된 멀티콤포지트 | |
CN104364854B (zh) | 绝缘材料以及使用该绝缘材料的高电压设备 | |
JP2023155458A (ja) | ステータ、回転電機およびステータの製造方法 | |
JP2016162515A (ja) | 電気絶縁樹脂組成物及びこれを用いた電気絶縁樹脂硬化物、受変電設備 | |
JP5994023B2 (ja) | 高電圧機器用の複合絶縁樹脂材及びそれを用いた高電圧機器 | |
JP2020045417A (ja) | 電機機器 | |
JP6209403B2 (ja) | 電気絶縁樹脂とそれを用いた高電圧機器 | |
JP2020164756A (ja) | 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法 | |
WO2018181839A1 (ja) | 積層体、電子機器、積層体の製造方法 | |
JPWO2019044646A1 (ja) | 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法 | |
JP2016018827A (ja) | 発熱体支持基板および基板組立体 | |
JP2016018829A (ja) | 基板組立体 | |
JP7302300B2 (ja) | 封止樹脂組成物およびアルミニウム電解コンデンサ | |
JPH07286092A (ja) | 無機フィラー沈降防止型注型樹脂組成物及びプレミックス組成物 | |
WO2018181838A1 (ja) | 放熱部材用組成物、放熱部材、電子機器、放熱部材の製造方法 | |
WO2015121996A1 (ja) | 電気絶縁樹脂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20853287 Country of ref document: EP Kind code of ref document: A1 |