WO2021027922A1 - 触控基板、触控显示面板及触控显示装置 - Google Patents

触控基板、触控显示面板及触控显示装置 Download PDF

Info

Publication number
WO2021027922A1
WO2021027922A1 PCT/CN2020/109193 CN2020109193W WO2021027922A1 WO 2021027922 A1 WO2021027922 A1 WO 2021027922A1 CN 2020109193 W CN2020109193 W CN 2020109193W WO 2021027922 A1 WO2021027922 A1 WO 2021027922A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
grid
sub
grid electrode
same
Prior art date
Application number
PCT/CN2020/109193
Other languages
English (en)
French (fr)
Inventor
徐佳伟
董钊
范文金
李乐
李必生
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/422,100 priority Critical patent/US11347365B2/en
Publication of WO2021027922A1 publication Critical patent/WO2021027922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a touch substrate, a touch display panel and a touch display device.
  • Metal mesh touch screens have been widely used in the display field due to their advantages of low resistance and uniform capacitance characteristics.
  • a touch substrate in one aspect, includes: a substrate, a first electrode layer, a dielectric layer, and a second electrode layer stacked in sequence.
  • the touch substrate has a plurality of first electrode regions and a plurality of first auxiliary regions extending in a first direction and arranged alternately in sequence, and a plurality of second electrode regions and a plurality of second electrode regions extending in a second direction and alternately arranged in sequence.
  • the second auxiliary area The first direction intersects the second direction.
  • the first electrode layer includes a first grid electrode arranged in each first electrode area.
  • the first grid electrode includes a plurality of first sub-grid electrodes and a plurality of second sub-grid electrodes that are alternately arranged along the first direction and electrically connected in sequence.
  • Each first sub-grid electrode overlaps a second electrode area
  • each second sub-grid electrode overlaps a second auxiliary area
  • the grid density of the first sub-grid electrode is smaller than that of the first sub-grid electrode.
  • the second electrode layer includes a second grid electrode provided in each second electrode area.
  • the second grid electrode includes a plurality of third sub-grid electrodes and a plurality of fourth sub-grid electrodes alternately arranged along the second direction and electrically connected in sequence.
  • Each third sub-grid electrode overlaps a first electrode area
  • each fourth sub-grid electrode overlaps a first auxiliary area
  • the grid density of the third sub-grid electrode is smaller than that of the first auxiliary area.
  • the grid density of the four sub-grid electrodes is smaller than that of the four sub-grid electrodes.
  • the ratio between the grid density of the first sub-grid electrode and the grid density of the second sub-grid electrode is 1:2 or approximately 1:2.
  • the ratio between the grid density of the third sub-grid electrode and the grid density of the fourth sub-grid electrode is 1:2 or approximately 1:2.
  • the grid density of the first sub-grid electrode is the same or substantially the same as the grid density of the third sub-grid electrode. And/or, the grid density of the second sub-grid electrode is the same or substantially the same as the grid density of the fourth sub-grid electrode.
  • the grid electrodes included in the first electrode layer and the grid electrodes included in the second electrode layer both include: a plurality of first electrode lines extending in the third direction, and A plurality of second electrode lines extending in the fourth direction. The intersection of the plurality of first electrode lines and the plurality of second electrode lines forms a grid of the grid electrode; the third direction intersects the fourth direction.
  • the ratio between the mesh density of the first sub-mesh electrode and the mesh density of the second sub-mesh electrode is 1:2 or approximately 1:2
  • the ratio of the distance between two adjacent first electrode lines in the first sub-grid electrode to the distance between two adjacent first electrode lines in the second sub-grid electrode is 2:1 Or approximately 2:1; the distance between two adjacent second electrode lines in the first sub-grid electrode is equal to the distance between two adjacent second electrode lines in the second sub-grid electrode
  • the ratio of the spacing is 2:1 or approximately 2:1.
  • the third sub-mesh electrode The ratio between the distance between two adjacent first electrode lines in the fourth sub-grid electrode and the distance between two adjacent first electrode lines in the fourth sub-grid electrode is 2:1 or approximately 2:1;
  • the ratio of the distance between two adjacent second electrode lines in the third sub-grid electrode to the distance between two adjacent second electrode lines in the fourth sub-grid electrode is 2:1 or It is approximately 2:1.
  • the grid density of the first sub-grid electrode is the same or substantially the same as the grid density of the third sub-grid electrode
  • two adjacent first electrodes in the first sub-grid electrode The spacing between the lines is the same or approximately the same as the spacing between two adjacent first electrode lines in the third sub-grid electrode
  • two adjacent second electrode lines in the first sub-grid electrode The spacing therebetween is the same or substantially the same as the spacing between two adjacent second electrode lines in the third sub-grid electrode.
  • the grid density of the second sub-grid electrode is the same or substantially the same as the grid density of the fourth sub-grid electrode
  • two adjacent first electrodes in the second sub-grid electrode The spacing between the lines is the same or approximately the same as the spacing between two adjacent first electrode lines in the fourth sub-grid electrode
  • two adjacent second electrode lines in the second sub-grid electrode The spacing therebetween is the same or approximately the same as the spacing between two adjacent second electrode lines in the fourth sub-grid electrode.
  • the range of the distance between the projections corresponding to two adjacent first electrode lines is 100 ⁇ m to 400 ⁇ m; the distance between the projections corresponding to two adjacent second electrode lines ranges from 100 ⁇ m to 400 ⁇ m.
  • the line width of each first electrode line ranges from 3 ⁇ m to 10 ⁇ m; the line width of each second electrode line ranges from 3 ⁇ m to 10 ⁇ m.
  • the grid shape of the grid electrode included in the first electrode layer and the grid shape of the grid electrode included in the second electrode layer include: rectangle, square, and rhombus. At least one.
  • no mesh electrode is provided in a part that overlaps the second sub-mesh electrode.
  • the grid density of the orthographic projection of the first sub-grid electrode and the third sub-grid electrode on the substrate is the same as that of the second sub-grid electrode in the The grid density of the orthographic projection on the substrate is the same or approximately the same.
  • the first sub-grid electrode and the third sub-grid electrode share an orthographic pattern on the substrate, and the second sub-grid electrode is on the substrate.
  • the patterns on the orthographic projection are the same or roughly the same.
  • no grid electrode is provided in a portion overlapping with the fourth sub-grid electrode.
  • the grid density of the orthographic projection of the first sub-grid electrode and the third sub-grid electrode on the substrate is the same as that of the fourth sub-grid electrode in the The grid density of the orthographic projection on the substrate is the same or approximately the same.
  • the first sub-grid electrode and the third sub-grid electrode share an orthographic pattern on the substrate, and the fourth sub-grid electrode is on the substrate.
  • the patterns on the orthographic projection are the same or roughly the same.
  • the first auxiliary area includes a first sub auxiliary area that overlaps the second auxiliary area;
  • the second auxiliary area includes a second sub auxiliary area that overlaps the first auxiliary area. area;
  • the first electrode layer includes a third grid electrode arranged in the first sub-auxiliary region; the third grid electrode is electrically insulated from the first grid electrode.
  • the second electrode layer includes a fourth grid electrode disposed in the second sub-auxiliary region; the fourth grid electrode is electrically insulated from the second grid electrode.
  • the grid density of the orthographic projection of the first sub-grid electrode and the third sub-grid electrode on the substrate is common with the third grid electrode and the fourth grid electrode
  • the grid density of the orthographic projection on the substrate is the same or approximately the same.
  • the pattern of the third mesh electrode is the same as the pattern of the first sub-mesh electrode.
  • the pattern of the fourth grid electrode is the same as the pattern of the third sub-grid electrode.
  • the first auxiliary area includes a first sub auxiliary area that overlaps the second auxiliary area; the second auxiliary area includes a second sub auxiliary area that overlaps the first auxiliary area. area.
  • the first sub-auxiliary region or the second sub-auxiliary region is provided with a fifth grid electrode, and the grid density of the orthographic projection of the fifth grid electrode on the substrate is the same as that of the first sub-auxiliary region.
  • the grid density of the orthographic projection of the grid electrode and the third sub-grid electrode on the substrate is the same or approximately the same.
  • the fifth grid electrode is disposed in the first sub-auxiliary region
  • the fifth grid electrode is located in the first electrode layer; the fifth grid electrode is connected to the second A grid electrode is electrically insulated.
  • the fifth grid electrode is located in the second electrode layer; the fifth grid electrode is in contact with the second grid electrode.
  • the grid electrode is electrically insulated.
  • the touch display panel includes: the touch substrate as described in any of the above embodiments.
  • a touch display device in another aspect, includes the touch display panel as described in any of the above embodiments.
  • a touch substrate has a touch area and a peripheral area surrounding the touch area.
  • the touch substrate includes: a substrate, a black matrix layer, a first electrode layer, a dielectric layer, and a second electrode layer stacked in sequence. Wherein, the black matrix layer is located in the peripheral area.
  • the touch area includes a plurality of first electrode regions and a plurality of first auxiliary regions extending in a first direction and arranged alternately in sequence, and a plurality of second electrode regions and a plurality of second electrode regions extending in a second direction and alternately arranged in sequence.
  • a second auxiliary area is provided.
  • the first direction intersects the second direction.
  • the first electrode layer includes a first grid electrode arranged in each first electrode area, and a plurality of first touch leads arranged in the peripheral area, and the plurality of first touch leads are respectively connected to the The first grid electrodes of the plurality of first electrode regions are connected.
  • the second electrode layer includes a second grid electrode arranged in each second electrode area, and a plurality of second touch leads arranged in the peripheral area, and the plurality of second touch leads are respectively connected to the The second grid electrodes of the plurality of second electrode regions are connected.
  • the first grid electrode includes a plurality of first sub-grid electrodes and a plurality of second sub-grid electrodes that are alternately arranged along the first direction and electrically connected in sequence.
  • Each first sub-grid electrode overlaps a second electrode area, and each second sub-grid electrode overlaps a second auxiliary area.
  • the second grid electrode includes a plurality of third sub-grid electrodes and a plurality of fourth sub-grid electrodes alternately arranged along the second direction and electrically connected in sequence.
  • Each third sub-grid electrode overlaps a first electrode area, and each fourth sub-grid electrode overlaps a first auxiliary area.
  • the part overlapping with the fourth sub-mesh electrode is not provided with a mesh electrode, and the part overlapping with the second auxiliary region in the first auxiliary region is provided with all
  • the third grid electrode of the first electrode layer is electrically insulated from the first grid electrode.
  • the fourth grid electrode of the second electrode layer is electrically insulated from the second grid electrode.
  • the grid density of the first sub-grid electrode, the third sub-grid electrode, the third grid electrode and the fourth grid electrode are the same or substantially the same.
  • the grid density of the second sub-grid electrode and the fourth sub-grid electrode are the same or substantially the same.
  • the grid density of the orthographic projection of the first sub-grid electrode and the third sub-grid electrode on the substrate, and the third grid electrode and the fourth grid electrode are co-located on the substrate.
  • the grid density of the orthographic projection on the substrate, the grid density of the orthographic projection of the second sub-grid electrode on the substrate, and the square of the fourth sub-grid electrode on the substrate The projected grid density is the same or approximately the same.
  • FIG. 1 is a structural diagram of a touch substrate in some embodiments according to the present disclosure
  • FIG. 2 is a structural diagram of another touch substrate in some embodiments according to the present disclosure.
  • FIG. 3 is a structural diagram of still another touch substrate according to some embodiments of the present disclosure.
  • FIG. 4 is a structural diagram of a first electrode layer of a touch substrate according to some embodiments of the present disclosure
  • FIG. 5 is a structural diagram of a second electrode layer of a touch substrate according to some embodiments of the present disclosure.
  • Fig. 6 is a structural diagram of a first electrode layer and a second electrode layer of a touch substrate in some embodiments of the present disclosure
  • Fig. 7 is a structural diagram of a grid electrode according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a first electrode layer of another touch substrate according to some embodiments of the present disclosure.
  • FIG. 9 is a structural diagram of a second electrode layer of another touch substrate according to some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of another first electrode layer of a touch substrate according to some embodiments of the present disclosure.
  • FIG. 11 is a structural diagram of another second electrode layer of a touch substrate according to some embodiments of the present disclosure.
  • FIG. 12 is a structural diagram of a third electrode layer of a first touch device according to some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of a fourth electrode layer of a first touch device in some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of a fifth electrode layer of a second touch device according to some embodiments of the present disclosure.
  • Fig. 15 is a structure diagram of a sixth electrode layer of a second touch device according to some embodiments of the present disclosure.
  • FIG. 16 is a flowchart of a method for manufacturing a touch substrate according to some embodiments of the present disclosure.
  • FIG. 17 is a structural diagram of a touch display panel in some embodiments of the present disclosure.
  • FIG. 18 is a structural diagram of another touch display panel in some embodiments of the present disclosure.
  • FIG. 19 is a structural diagram of still another touch display panel in some embodiments of the present disclosure.
  • FIG. 20 is a structural diagram of a touch display device in some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • connection and its extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [the stated condition or event] is detected” or “in response to the detection of [stated condition or event]”.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviation due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the impedance of the metal mesh electrodes therein will increase, resulting in driving the metal mesh electrodes
  • the load of the driver increases, and it is easy to reduce the sensitivity of the touch.
  • the impedance of the metal grid electrode can be reduced by increasing the line width of the metal grid, but this is susceptible to the optical de-shading effect of the metal grid touch screen and the limitation of the frame, which reduces the impedance of the metal grid electrode. The effect is limited.
  • the touch substrate 100 includes a substrate 1, a first electrode layer 2, a dielectric layer 3, and a second electrode layer 4 stacked in sequence.
  • the above-mentioned substrate 1 has various structures, which can be selected and set according to actual needs.
  • the substrate 1 may be a flexible substrate.
  • the flexible substrate may be, for example, a PET (Polyethylene terephthalate, polyethylene terephthalate) substrate, a PEN (Polyethylene naphthalate two formal acid glycol ester, polyethylene naphthalate) substrate, or PI (Polyimide, polyimide) substrate, etc.
  • the substrate 1 may be a rigid substrate.
  • the rigid substrate may be, for example, a glass substrate.
  • the material of the above-mentioned dielectric layer 3 includes a variety of materials.
  • the material of the dielectric layer 3 may include a resin material with higher insulation performance.
  • the touch substrate 100 has a plurality of first electrode regions A and a plurality of first auxiliary regions B extending along the first direction X and arranged alternately in sequence; A plurality of second electrode regions C and a plurality of second auxiliary regions D extending in two directions Y and arranged alternately in sequence. That is, a first auxiliary region B is provided between every two adjacent first electrode regions A, and a first electrode region A is provided between every two adjacent first auxiliary regions B. A second auxiliary region D is arranged between the two second electrode regions C, and a second electrode region C is arranged between every two adjacent second auxiliary regions D.
  • the first direction X and the second direction Y intersect.
  • the size of the included angle between the first direction X and the second direction Y can be selected and set according to actual needs.
  • the first direction X and the second direction Y may be perpendicular to each other, that is, the angle between the two is 90°.
  • the first electrode layer 2 includes a first grid electrode 21 provided in each first electrode area A.
  • the first grid electrode 21 includes a plurality of first sub-grid electrodes 211 and a plurality of second sub-grid electrodes 212 alternately arranged along the first direction X and electrically connected in sequence. That is, a second sub-mesh electrode 212 is provided between every two adjacent first sub-mesh electrodes 211, and a second sub-mesh electrode 212 is provided between every two adjacent second sub-mesh electrodes 212.
  • the grid electrode 211 and the adjacent first sub-grid electrode 211 and the second sub-grid electrode 212 are directly electrically connected.
  • each first sub-mesh electrode 211 overlaps one second electrode region C
  • each second sub-mesh electrode 212 overlaps one second auxiliary region D.
  • the mesh density of the first sub-mesh electrode 211 is less than the mesh density of the second sub-mesh electrode 212.
  • the resistance of the second sub-grid electrode 212 can be reduced, thereby reducing the resistance of the first grid electrode 21.
  • the second electrode layer 4 includes a second grid electrode 41 provided in each second electrode region B.
  • the second grid electrode 41 includes a plurality of third sub-grid electrodes 411 and a plurality of fourth sub-grid electrodes 412 alternately arranged along the second direction Y and electrically connected in sequence. That is, a fourth sub-mesh electrode 412 is provided between every two adjacent third sub-mesh electrodes 411, and a third sub-mesh electrode 412 is provided between every two adjacent fourth sub-mesh electrodes 412.
  • the grid electrode 411 and the adjacent third sub-grid electrode 411 and the fourth sub-grid electrode 412 are directly electrically connected.
  • each third sub-mesh electrode 411 overlaps one first electrode area A
  • each fourth sub-mesh electrode 412 overlaps one first auxiliary area B.
  • the mesh density of the third sub-mesh electrode 411 is less than the mesh density of the fourth sub-mesh electrode 412.
  • the resistance of the fourth sub-grid electrode 412 can be reduced, thereby reducing the resistance of the second grid electrode 41.
  • the first sub-mesh electrode 211 with a smaller mesh density overlaps the second electrode region C
  • the third sub-mesh electrode 411 with a smaller mesh density overlaps the first electrode region A
  • the second sub-mesh electrode 212 with a larger mesh density overlaps the second auxiliary region D
  • the fourth sub-mesh electrode 412 with a larger mesh density overlaps the first auxiliary region B, which means ,
  • the first sub-mesh electrode 211 and the third sub-mesh electrode 411 overlap. This is beneficial to reduce the difference in grid density of the orthographic projection of the first electrode layer 2 and the second electrode layer 4 on the substrate 1 together, so that the touch substrate 100 has a higher anti-image effect.
  • the first grid electrode 21 included in the first electrode layer 2 is divided into a plurality of first grid electrodes alternately arranged along the first direction X and electrically connected in sequence.
  • a sub-grid electrode 211 and a plurality of second sub-grid electrodes 212 divide the second grid electrode 41 included in the second electrode layer 4 into a plurality of third grid electrodes alternately arranged along the second direction Y and electrically connected in sequence.
  • the grid density of the electrode 412 is set to be greater than the grid density of the third sub-grid electrode 411, which can effectively reduce the resistance of the first grid electrode 21 and the resistance of the second grid electrode 41. This is beneficial to improve the touch sensitivity of the touch substrate 100.
  • the first electrode layer 2 and the first electrode layer 2 can be reduced.
  • the difference in the grid density of the orthographic projection of the two electrode layers 4 on the substrate 1 makes the touch substrate 100 have a higher anti-image effect.
  • any one of the grid electrodes may include extending along the third direction R A plurality of first electrode lines T1, and a plurality of second electrode lines T2 extending along the fourth direction S.
  • the third direction R and the fourth direction S intersect, which makes the plurality of first electrode lines T1 and the plurality of second electrode lines T2 located in the same electrode layer cross each other to form a grid of grid electrodes.
  • the grid density of the grid electrode can be characterized by the arrangement period of a plurality of first electrode lines T1 parallel to each other and a plurality of second electrode lines T2 parallel to each other in the grid electrode. Wherein, the larger the arrangement period of the first electrode line T1 and the second electrode line T2, the smaller the grid density of the grid electrode.
  • the grid density of the grid electrode may be in the extension plane of the grid electrode in a direction perpendicular to the extension direction of the first electrode line T1, the first The distribution density of the electrode lines T1 and the distribution density of the second electrode lines T2 in a direction perpendicular to the extending direction of the second electrode lines T2.
  • the grid density of the grid electrode can also be characterized by other methods.
  • the mesh density of the mesh electrode can be characterized by the mesh size of the mesh electrode or the distribution density of the mesh.
  • each grid of the grid electrode is a region surrounded by two adjacent first electrode lines T1 and two adjacent second electrode lines T2 and not provided with electrode material. The larger the grid size, the smaller the grid density of the grid electrode. Or, the greater the distribution density of the grid, the greater the grid density of the grid electrode.
  • the shape of the grid includes at least one of a rectangle, a square, and a diamond.
  • the shape of the grid in the present disclosure is not limited to the three exemplified above.
  • each of the aforementioned grid electrodes may be a uniform grid electrode.
  • the spacing between any two adjacent first electrode lines T1 is the same or approximately the same, and any two adjacent second The spacing between the electrode lines T2 is the same or approximately the same.
  • the first sub-mesh electrode 211, the second sub-mesh electrode 212, the third sub-mesh electrode 411, and the fourth sub-mesh electrode 412 may all be uniform meshes.
  • Grid electrode which can improve the optical de-sharpening effect of the touch substrate 100, and facilitate the correction of the first sub-grid electrode 211, the second sub-grid electrode 212, the third sub-grid electrode 411 and the fourth sub-grid electrode 412 Design and prepare.
  • the touch substrate 100 is at least There may be multiple types of areas, such as a first area E, a second area F, a third area G, and a fourth area H.
  • the first area E is the area where the first electrode area A and the second electrode area B overlap each other, that is, the area where the first mesh electrode 21 and the second mesh electrode 41 overlap each other.
  • the overlapping range of the orthographic projection of the first electrode region A on the substrate 1 and the orthographic projection of the second electrode region B on the substrate 1 overlaps the first region E.
  • a touch capacitance is formed between the first grid electrode 21 and the second grid electrode 41, and the touch capacitance can be used as a touch sensor for the touch substrate 100 to realize touch detection.
  • the second area F is the area where the first electrode area A and the second auxiliary area D overlap each other; in other words, the orthographic projection of the first electrode area A on the substrate 1 and the orthographic projection of the second auxiliary area D on the substrate 1 The overlapped area of the projection coincides with the second area F.
  • the third area G is the area where the second electrode area C and the first auxiliary area B overlap each other; in other words, the orthographic projection of the second electrode area C on the substrate 1 and the orthographic projection of the first auxiliary area B on the substrate 1
  • the overlapped area of the projection coincides with the third area G.
  • the fourth area H is the area where the first auxiliary area B and the second auxiliary area D overlap each other; in other words, the orthographic projection of the first auxiliary area B on the substrate 1 and the orthographic projection of the second auxiliary area D on the substrate 1
  • the overlapped area of the projection overlaps with the fourth area H.
  • the first sub-mesh electrode 211 is provided in the first area E
  • the second sub-mesh electrode 212 is provided in the second area F.
  • the third sub-mesh electrode 411 is disposed in the first area E
  • the fourth sub-mesh electrode 412 is disposed in the third area G.
  • a touch capacitance is formed between the first sub-grid electrode 211 and the third sub-grid electrode 411 located in the first area E at the same time.
  • the ratio between the mesh density of the first sub-mesh electrode 211 and the mesh density of the second sub-mesh electrode 212 is 1:2 or approximately 1:2.
  • the distance between two adjacent first electrode lines T1 in the first sub-mesh electrode 211 is smaller than the distance between two adjacent first electrode lines T1 in the second sub-mesh electrode 212
  • the ratio is 2:1 or approximately 2:1.
  • the ratio of the distance between two adjacent second electrode lines T2 in the first sub-grid electrode 211 to the distance between two adjacent second electrode lines T2 in the second sub-grid electrode 212 is 2:1 Or approximately 2:1.
  • the resistance of the second sub-mesh electrode 212 can be effectively reduced, and the resistance of the first mesh electrode 21 can be reduced.
  • the ratio between the mesh density of the third sub-mesh electrode 411 and the mesh density of the fourth sub-mesh electrode 412 is 1:2 or approximately 1:2.
  • the distance between two adjacent first electrode lines T1 in the third sub-mesh electrode 411 is smaller than the distance between two adjacent first electrode lines T1 in the fourth sub-mesh electrode 412
  • the ratio is 2:1 or approximately 2:1.
  • the ratio of the distance between two adjacent second electrode lines T2 in the third sub-mesh electrode 411 to the distance between two adjacent second electrode lines T2 in the fourth sub-mesh electrode 412 is 2:1 Or approximately 2:1.
  • the resistance of the fourth sub-mesh electrode 412 can be effectively reduced, and the resistance of the second mesh electrode 41 can be reduced.
  • the mesh density of the first sub-mesh electrode 211 is the same or substantially the same as the mesh density of the third sub-mesh electrode 411.
  • the distance between two adjacent first electrode lines T1 in the first sub-mesh electrode 211 is the same as the distance between two adjacent first electrode lines T1 in the third sub-mesh electrode 411 Or roughly the same.
  • the distance between two adjacent second electrode lines T2 in the first sub-mesh electrode 211 is the same or substantially the same as the distance between two adjacent second electrode lines T2 in the third sub-mesh electrode 411.
  • the mesh density of the second sub-mesh electrode 212 is the same or approximately the same as the mesh density of the fourth sub-mesh electrode 412.
  • the distance between two adjacent first electrode lines T1 in the second sub-grid electrode 212 is the same as the distance between two adjacent first electrode lines T1 in the fourth sub-grid electrode 412 Or roughly the same.
  • the distance between two adjacent second electrode lines T2 in the second sub-grid electrode 212 is the same or substantially the same as the distance between two adjacent second electrode lines T2 in the fourth sub-grid electrode 412.
  • the grid density of the orthographic projection of the first sub-grid electrode 211 and the third sub-grid electrode 411 on the substrate 1 can be compared with that of the second sub-grid electrode 212 on the substrate 1.
  • the grid density of the orthographic projection is the same or substantially the same, and may also be the same or substantially the same as the grid density of the orthographic projection of the fourth sub-grid electrode 412 on the substrate 1. This is beneficial to improve the de-imaging effect of the touch substrate 100.
  • the distance between the orthographic projections corresponding to two adjacent first electrode lines T1 may be 100 ⁇ m.
  • the distance between the projections corresponding to two adjacent second electrode lines T2 may range from 100 ⁇ m to 400 ⁇ m.
  • the distance between the orthographic projections corresponding to two adjacent first electrode lines T1 may be 100 ⁇ m, 200 ⁇ m, 260 ⁇ m, 300 ⁇ m, 400 ⁇ m, etc., between the projections corresponding to two adjacent second electrode lines T2
  • the pitch can be 100 ⁇ m, 150 ⁇ m, 210 ⁇ m, 300 ⁇ m, or 400 ⁇ m.
  • the line width of the first electrode line T1 and the line width of the second electrode line T2 are the same or substantially the same.
  • the line width of any electrode line can be the size of the electrode line parallel to the substrate 1 and perpendicular to the extending direction of the electrode line.
  • the line width of the first electrode line T1 and the line width of the second electrode line T2 are the same or approximately the same, the uniformity of each electrode line in the first electrode layer 2 and the second electrode layer 4 can be improved, and the touch control can be improved.
  • the optical de-shading effect of the substrate 100 is not limited to be the same or approximately the same.
  • each first electrode line T1 ranges from 3 ⁇ m to 10 ⁇ m
  • the line width of each second electrode line T2 ranges from 3 ⁇ m to 10 ⁇ m.
  • each first electrode line T1 may be 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 7 ⁇ m, 9 ⁇ m, 10 ⁇ m, or the like.
  • the line width of each second electrode line T2 may be 3 ⁇ m, 4.5 ⁇ m, 5.6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, or the like.
  • the part overlapping the second sub-mesh electrode 212 is not provided with a mesh electrode, that is, the pattern of the second electrode layer 4 is not provided. Located in the second area F. In this way, the formation of parasitic capacitance between the second sub-mesh electrode 212 and the second mesh electrode 41 can be avoided, thereby reducing the impedance of the second sub-mesh electrode 212 and the impedance of the first mesh electrode 21. This is beneficial to improve the touch sensitivity of the touch substrate 100.
  • the first sub-mesh electrode 211 and the third sub-mesh electrode 411 are in common
  • the grid density of the orthographic projection on the substrate 1 is the same or approximately the same as the grid density of the orthographic projection of the second sub-grid electrode 212 on the substrate 1.
  • the grid density of the orthographic projection of the grid electrode on the substrate 1 in the first region E is the same as the grid density of the orthographic projection of the grid electrode on the substrate 1 in the second region F Or approximately the same, so that the grid electrodes in the first area E and the grid electrodes in the second area F can be uniform or relatively uniform, which is beneficial to improve the de-imaging effect of the touch substrate 100.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share the same orthographic pattern on the substrate 1 as the second sub-grid electrode 212 on the substrate 1.
  • the pattern of the orthographic projection can be the same or different.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share an orthographic pattern on the substrate 1, and the second sub-grid electrode 212 is on the substrate 1.
  • the patterns of the orthographic projection are the same or roughly the same.
  • the pattern of the grid electrode located in the first area E and the pattern of the grid electrode located in the second area F can overlap or substantially overlap, which ensures touch control.
  • the substrate 100 can obtain the same or similar optical anti-imaging effect in the first area E and the second area F, which can ensure that the entire touch substrate 100 obtains a more uniform and excellent optical anti-imaging effect.
  • the portion overlapping the fourth sub-mesh electrode 412 is not provided with mesh electrodes, that is, the pattern of the first electrode layer 2 is not provided. Located in the third area G. In this way, the formation of parasitic capacitance between the fourth sub-mesh electrode 412 and the first mesh electrode 21 can be avoided, the impedance of the fourth sub-mesh electrode 412 is reduced, and the impedance of the second mesh electrode 41 is reduced. This is beneficial to improve the touch sensitivity of the touch substrate 100.
  • the first sub-mesh electrode 211 and the third sub-mesh electrode 411 share the same
  • the grid density of the orthographic projection on the substrate 1 is the same or approximately the same as the grid density of the orthographic projection of the fourth sub-grid electrode 412 on the substrate 1.
  • the grid density of the orthographic projection of the grid electrode on the substrate 1 in the first region E is the same as the grid density of the orthographic projection of the grid electrode on the substrate 1 in the third region G Or approximately the same, so that the grid electrodes in the first area E and the grid electrodes in the third area G are uniform or relatively uniform, which is beneficial to improve the anti-image effect of the touch substrate 100.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share the same orthographic pattern on the substrate 1 as the fourth sub-grid electrode 412 on the substrate 1.
  • the pattern of the orthographic projection can be the same or different.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share an orthographic pattern on the substrate 1 and the fourth sub-grid electrode 412 is on the substrate 1
  • the pattern of the orthographic projection is the same.
  • the pattern of the grid electrode located in the first area E and the pattern of the grid electrode located in the third area G can overlap or substantially overlap, ensuring touch control
  • the substrate 100 can obtain the same or similar optical anti-image effect in the first area E and the third area G, which can ensure that the entire touch substrate 100 obtains a more uniform and excellent optical anti-image effect.
  • the ratio between the mesh density of the first sub-mesh electrode 211 and the mesh density of the second sub-mesh electrode 212 is 1:2 Or approximately 1:2, and the part overlapping the second sub-mesh electrode 212 in the second auxiliary region D is not provided with a mesh electrode;
  • the mesh density of the third sub-mesh electrode 411 is the same as that of the fourth sub-mesh electrode
  • the ratio of the grid density of 412 is 1:2 or approximately 1:2, and the overlapping part of the first auxiliary region B and the fourth sub-grid electrode 412 is not provided with a grid electrode; the first sub-grid electrode
  • the mesh density of 211 and the mesh density of the third sub-mesh electrode 411 are the same or approximately the same.
  • the grid density of the grids in each area is the same or approximately the same, so that some embodiments of the present disclosure provide
  • the touch substrate 100 achieves a good de-imaging effect.
  • the pattern of the orthographic projection of the first sub-grid electrode 211 and the third sub-grid electrode 411 on the substrate 1 is the same as the pattern of the orthographic projection of the second sub-grid electrode 212 on the substrate 1 , And is the same as the pattern of the orthographic projection of the fourth sub-grid electrode 412 on the substrate 1.
  • the patterns of the grid electrodes in the first area E, the second area F, and the third area G are the same, which avoids the pattern of the grid electrodes in each area. Differences have different requirements for optical de-imaging, which facilitates the optical de-imaging processing of the touch substrate 100 and achieves a better optical de-imaging effect.
  • the pattern of the grid electrode of the touch substrate 100 or the pattern of the grid electrode located in the first area E, the second area F, the third area G, or the fourth area H
  • the pattern refers to the pattern after the orthographic projection of the grid electrodes in the first electrode layer 2 and the second electrode layer 4 on the substrate 1 is superimposed.
  • the pattern of the grid electrode can be characterized by the distribution density of the first strip electrode T1 extending along the third direction R and the distribution density of the second strip electrode T2 extending along the fourth direction S.
  • the pattern of a grid electrode can be characterized by spacing parameters (v, w), where v is the spacing between any two adjacent first strip electrodes T1 of the grid electrode, and w is The distance between any two adjacent second strip electrodes T2 of the grid electrode. If the spacing parameter of one grid electrode is the same as the spacing parameter of the other grid electrode, the patterns of the two grid electrodes are the same.
  • the patterns of the first sub-mesh electrode 211 and the third sub-mesh electrode 411 may be the same, which can facilitate the first sub-mesh electrode 211 and the third sub-mesh electrode 211 Design and preparation of electrode 411.
  • the pattern of the second sub-grid electrode 212 may be a staggered superposition of the patterns of the two first sub-grid electrodes 211. In this way, not only can the grid density of the second sub-grid electrode 212 be guaranteed to be the first
  • the mesh density of one sub-grid electrode 211 is twice that, and the design and preparation of the second sub-grid electrode 212 can also be facilitated.
  • the pattern of the orthographic projection on the substrate 1 is the same or substantially the same as the pattern of the orthographic projection of the second sub-grid electrode 212 on the substrate 1.
  • the pattern of the fourth sub-grid electrode 412 may be a staggered superposition of the patterns of the two third sub-grid electrodes 411. In this way, not only can the mesh density of the fourth sub-grid electrode 412 be guaranteed to be the first
  • the grid density of the three sub-grid electrodes 411 is twice that, and the design and preparation of the fourth sub-grid electrode 412 can be facilitated.
  • the pattern of the orthographic projection on the substrate 1 is the same or substantially the same as the pattern of the orthographic projection of the fourth sub-grid electrode 412 on the substrate 1.
  • the two grid electrodes staggeredly overlap each other, which means that the strip electrodes extending in the same direction in the two grid electrodes are parallel to each other and do not overlap.
  • the first sub-grid electrodes 211 and the third sub-grid electrodes 411 are alternately arranged, and the first sub-grid electrode 211 extending along the third direction R
  • the orthographic projection of the shaped electrode T1 on the substrate 1 is spaced apart from the orthographic projection of the first strip-shaped electrode T1 extending along the third direction R in the third sub-grid electrode 411 on the substrate 1;
  • the orthographic projection of the second strip-shaped electrode T2 extending along the fourth direction S in the electrode 211 on the substrate 1, and the second strip-shaped electrode T2 extending along the fourth direction S in the third sub-grid electrode 411 on the substrate 1
  • the orthographic projections on 1 are spaced apart.
  • the grid electrode pattern formed by the two grid electrodes on the touch substrate 100 may be a uniform grid electrode pattern.
  • all the first strip electrodes T1 extending along the third direction R of the two grid electrodes are on the substrate 1.
  • the distance between the orthographic projections of any two adjacent first strip electrodes T1 is the same or approximately the same, and all the second strip electrodes T2 of the two grid electrodes extending along the fourth direction S
  • the distance between the orthographic projections of any two adjacent second strip electrodes T2 is the same or approximately the same. In this way, the uniformity of the overall pattern formed by the two staggered grid electrodes can be ensured, and the optical anti-shading effect of the touch substrate 100 can be improved.
  • the touch substrate 100 provided by some embodiments of the present disclosure may also be provided with grid electrodes in the fourth area H, so as to further improve the optical effect of the touch substrate 100 in different regions.
  • the grid electrodes arranged in the fourth area H can be arranged in multiple ways, which can be selected and arranged according to actual needs.
  • the first auxiliary region B includes a first sub-auxiliary region B1 overlapping with the second auxiliary region D and a first sub-auxiliary region B1 overlapping with the second electrode region C
  • the third sub auxiliary area B2, the first sub auxiliary area B1 and the third sub auxiliary area B2 are alternately arranged in sequence.
  • the second auxiliary area D includes a second sub auxiliary area D1 overlapping the first auxiliary area B and a fourth sub auxiliary area D2 overlapping the first electrode area A, the second sub auxiliary area D1 and the fourth sub auxiliary area D2 is set alternately in turn.
  • first sub-auxiliary region B1 and the second sub-auxiliary region D1 both overlap the fourth region H
  • the third sub-auxiliary region B2 overlaps the third region G
  • the fourth sub-auxiliary region D2 overlaps the second region F.
  • the first electrode layer 2 includes a third grid electrode 22 disposed in the first sub-auxiliary region B1, and the third grid electrode 22 is electrically insulated from the first grid electrode 21 . That is, no connection is formed between the third mesh electrode 22 and the first mesh electrode 21.
  • the second electrode layer 4 includes a fourth grid electrode 42 disposed in the second sub-auxiliary region D1, and the fourth grid electrode 42 is electrically insulated from the second grid electrode 41 . That is, no connection is formed between the fourth mesh electrode 42 and the second mesh electrode 41.
  • the grid density of the orthographic projection of the first sub-grid electrode 211 and the third sub-grid electrode 411 on the substrate 1 is shared with the third grid electrode 22 and the fourth grid electrode 42 on the substrate 1.
  • the grid density of the orthographic projection is the same or approximately the same.
  • the orthographic projection pattern of the first sub-grid electrode 211 and the third sub-grid electrode 411 on the substrate 1 is the same as the third grid electrode 22 and the fourth grid electrode.
  • the patterns of the orthographic projection 42 on the substrate 1 are the same.
  • the touch substrate 100 can achieve the same optical de-sharpening effect in the first area E and the fourth area H, and the first area E, the second area F, the third area G, and the fourth area H have the same effect.
  • the four regions can have the same optical de-sharpening effect, which can effectively improve the optical de-shading effect of the touch substrate 100.
  • the pattern of the third mesh electrode 22 is the same as that of the first sub-mesh electrode 211; the pattern of the fourth mesh electrode 42 is the same as that of the third sub-mesh electrode 411. In this way, the design and preparation of the first grid electrode 211, the third grid electrode 411, the third grid electrode 22, and the fourth grid electrode 42 can be facilitated.
  • the pattern of the third grid electrode 22 and the pattern of the fourth grid electrode 42 are staggered, and the two do not overlap, and the pattern of the first sub-grid electrode 211 and the third sub-network
  • the patterns of the grid electrodes 411 are arranged alternately, and the two do not overlap.
  • the patterns of the orthographic projections of the third grid electrode 22 and the fourth grid electrode 42 on the substrate 1 can be the same or substantially the same, and it can be avoided that the first sub-grid electrode 211 and the third sub-grid electrode 211 have the same or substantially the same pattern.
  • a large parasitic capacitance is formed between the electrodes 411.
  • the first auxiliary region B includes a first sub-auxiliary region overlapping with the second auxiliary region D and a first sub-auxiliary region overlapping with the second electrode region C
  • the third sub auxiliary area, the first sub auxiliary area and the third sub auxiliary area are alternately arranged in sequence.
  • the second auxiliary area D includes a second sub auxiliary area overlapping the first auxiliary area B and a fourth sub auxiliary area overlapping the first electrode area A, the second sub auxiliary area and the fourth sub auxiliary area are alternately arranged in turn .
  • first sub-auxiliary region and the second sub-auxiliary region are both overlapped with the fourth region H, the third sub-auxiliary region overlaps the third region G, and the fourth sub-auxiliary region overlaps the second region F.
  • the fifth grid electrode K is arranged in the first sub-auxiliary region or the second sub-auxiliary region.
  • the grid density of the orthographic projection of the fifth grid electrode K on the substrate 1 is the same as that of the first sub-network.
  • the grid density of the orthographic projection of the grid electrode 211 and the third sub grid electrode 411 on the substrate 1 is the same or approximately the same.
  • the touch substrate 100 can achieve the same optical de-sharpening effect in the first area E and the fourth area H, and the first area E, the second area F, the third area G, and the fourth area H have the same effect.
  • the four regions can have the same optical de-sharpening effect, which can effectively improve the optical de-shading effect of the touch substrate 100.
  • the fifth grid electrode K described above has a variety of settings, which can be selected and set according to actual needs.
  • the fifth grid electrode K when the fifth grid electrode K is disposed in the first sub-auxiliary region, the fifth grid electrode K is located in the first electrode layer 2, and the fifth grid electrode K The electrode K is electrically insulated from the first grid electrode 21. That is, no connection is formed between the fifth mesh electrode K and the first mesh electrode 21. At this time, no grid electrode is provided in the second sub-auxiliary region D1.
  • A is located in the B layer
  • the pattern corresponding to the B layer includes the pattern corresponding to A. If layer B also includes the pattern corresponding to C, the pattern corresponding to A and the pattern corresponding to C are usually set.
  • “same layer” refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask to form a layer structure through a patterning process.
  • a patterning process may include multiple exposure, development or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights Or have different thicknesses. In this way, multiple element or component patterns (for example, the first grid electrode 21 and the fifth grid electrode K) can be arranged in the same layer without increasing the number of thin film production, which is beneficial to simplify the production process of the touch substrate 100.
  • the fifth mesh electrode K is located in the second electrode layer 4, and the fifth mesh electrode K
  • the grid electrode K is electrically insulated from the second grid electrode 41. That is, no connection is formed between the fifth mesh electrode K and the second mesh electrode 41. At this time, no grid electrode is provided in the first sub-auxiliary region B1.
  • the fifth grid electrode K and the second grid electrode 41 can be prepared and formed simultaneously in a single patterning process, which is beneficial to simplify the manufacturing process of the touch substrate 100.
  • FIG. 3 is a top view of the touch substrate 100 in some examples of the present disclosure.
  • the touch substrate 100 in some examples of the present disclosure may include a touch area N and a peripheral area M surrounding the touch area N.
  • the touch area N includes a plurality of first electrode regions A and a plurality of first auxiliary regions B extending in the first direction X and arranged alternately in sequence, and a plurality of first electrode regions A extending in the second direction Y and arranged alternately in sequence.
  • the first direction X and the second direction Y intersect with the two electrode regions C and the plurality of second auxiliary regions D.
  • first electrode area A the first auxiliary area B, the second electrode area C, the second auxiliary area D, the first direction X and the second direction Y
  • the touch substrate 100 in some examples of the present disclosure may include a substrate 1, a black matrix layer 5, a first electrode layer 2, a dielectric layer 3, and a second electrode layer stacked in sequence. 4.
  • the structure of the substrate 1 can refer to the descriptions in some of the above embodiments, which will not be repeated here.
  • the black matrix layer 5 is located in the peripheral area M.
  • an insulating layer 6 is further provided between the black matrix layer 5 and the first electrode layer 2.
  • the insulating layer 6 covers the black matrix layer 5, and the surface of the insulating layer 6 away from the substrate 1 is a relatively flat surface, so that the first electrode disposed on the surface of the insulating layer 6 away from the substrate 1
  • the structure of the layer 2 is relatively flat, which prevents the grid electrode structure in the first electrode layer 2 from breaking.
  • the insulating layer 6 may be made of organic insulating materials.
  • the insulating layer 6 has a relatively high light transmittance, so as to ensure that light can pass through the substrate, the insulating layer 6, the first electrode layer 2, the dielectric layer 3, and the second side in sequence from the side of the substrate 1.
  • the electrode layer 4 is emitted later.
  • the first electrode layer 2 includes a first grid electrode 21 arranged in each first electrode area A, and a plurality of first touch leads L1 arranged in the peripheral area M,
  • the plurality of first touch leads L1 are respectively connected to the first grid electrodes 21 of the plurality of first electrode regions A.
  • the first touch lead L1 is connected to the first grid electrode 21 in a one-to-one correspondence.
  • the second electrode layer 4 includes a second mesh electrode 41 arranged in each second electrode area C, and a plurality of second touch leads L2 arranged in the peripheral area M,
  • the plurality of second touch leads L2 are respectively connected to the second grid electrodes 41 of the plurality of second electrode regions A.
  • the second touch leads L2 are connected to the second grid electrodes 41 in a one-to-one correspondence.
  • the first touch lead L1 can transmit a touch sensing signal to the first grid electrode 21, and the second touch lead L2 can transmit a touch drive signal to the second grid electrode 41.
  • the first grid electrode 21 and the second grid electrode 41 can be used to achieve the purpose of touch control.
  • each first mesh electrode 21 includes a plurality of first sub-mesh electrodes 211 and a plurality of second sub-mesh electrodes that are alternately arranged along the first direction X and electrically connected in sequence.
  • each second mesh electrode 41 includes a plurality of third sub-mesh electrodes 411 and a plurality of fourth sub-mesh electrodes 412 alternately arranged along the second direction Y and electrically connected in sequence,
  • Each third sub-grid electrode 411 (located in the first area E) overlaps a first electrode area A
  • each fourth sub-grid electrode 412 (located in the third area G) overlaps a first auxiliary area B Stacked.
  • the part that overlaps the fourth sub-mesh electrode 412 (that is, the third region G) is not provided with mesh electrodes, and the second A part of the auxiliary area B that overlaps the second auxiliary area D (that is, the fourth area H) is provided with a third grid electrode 22 belonging to the first electrode layer 2, the third grid electrode 22 and the first grid
  • the electrode 21 is electrically insulated.
  • the part that overlaps the second sub-mesh electrode 212 (that is, the second region F) is not provided with mesh electrodes, and in the second auxiliary region D
  • the portion overlapping with the first auxiliary region B (that is, the fourth region H) is provided with a fourth grid electrode 42 belonging to the second electrode layer 4, and the fourth grid electrode 42 and the second grid electrode 41 are electrically insulated .
  • the mesh density of the first sub-mesh electrode 211, the third sub-mesh electrode 411, the third mesh electrode 22, and the fourth mesh electrode 42 are the same or approximately the same, and the second sub-mesh electrode 212
  • the grid density of the fourth sub-grid electrode 412 is the same or approximately the same, the grid density of the orthographic projection of the first sub-grid electrode 211 and the third sub-grid electrode 411 on the substrate 1, and the third grid
  • the grid density of the orthographic projection on the substrate 1 is the same or approximately the same.
  • the patterns of the first sub-mesh electrode 211, the third sub-mesh electrode 411, the third mesh electrode 22, and the fourth mesh electrode 42 are the same or substantially the same.
  • the patterns of the two sub-grid electrodes 212 and the fourth sub-grid electrode 412 are the same or approximately the same.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share the same orthographic pattern on the substrate 1, and the third
  • the grid electrode 22 and the fourth grid electrode 42 share the pattern of the orthographic projection on the substrate 1, the pattern of the orthographic projection of the second sub-grid electrode 212 on the substrate 1, and the fourth sub-grid electrode 412 on the substrate.
  • the patterns of the orthographic projection on the substrate 1 are the same or almost the same.
  • the grid electrodes respectively located in the first area E, the second area F, the third area G, and the fourth area H have the same or approximately the same grid density, and even located in the first area E and the fourth area respectively.
  • the patterns of the grid electrodes in the second area F, the third area G, and the fourth area H are the same or substantially the same, which is beneficial for the touch substrate 100 to achieve a good optical effect.
  • the first grid electrode 21 and the second grid electrode 41 transmit electrical signals, and the third grid electrode is electrically insulated from the first grid electrode 21 22 and the fourth grid electrode 42 electrically insulated from the second grid electrode 41 are in a floating state, that is, electrical signals are transmitted only in the first area E, the second area F, and the third area G.
  • the formation of parasitic capacitance between the first grid electrode 21 and the second grid electrode 41 can be avoided, thereby reducing the impedance of the first grid electrode 21 and the second grid electrode 41, which is beneficial to improve the contact of the touch substrate 100. Control sensitivity.
  • the first sub-mesh electrode 211, the third sub-mesh electrode 411, the third mesh electrode 22, the fourth mesh electrode 42, and the second sub-mesh electrode 212 are uniform grid electrodes.
  • the first sub-grid electrodes 211 and the third sub-grid electrodes 411 are alternately overlapped, so that the pattern of the grid electrodes located in the first area E It is a uniform grid electrode pattern.
  • the third grid electrodes 22 and the fourth grid electrodes 42 overlap alternately, so that the pattern of the grid electrodes located in the fourth area H can be a uniform grid electrode pattern.
  • the first sub-grid electrode 211 and the third sub-grid electrode 411 share the same orthographic pattern on the substrate 1 as the third and fourth grid electrodes 22 and 42 on the substrate 1.
  • the pattern of the orthographic projection is the same or substantially the same, and the pattern of the orthographic projection of the second sub-grid electrode 212 and the fourth sub-grid electrode 412 on the substrate 1 is the same or substantially the same.
  • the touch substrate 100 of this example may further include a protective layer 7 on the side of the second electrode layer 4 away from the substrate 1.
  • the protective layer 7 can protect the second electrode layer 4.
  • some embodiments of the present disclosure also provide the following first touch device and second touch device.
  • the specific structure can be referred to the following schematic description .
  • the first touch device includes a third electrode layer I and a fourth electrode layer J stacked in sequence.
  • the first touch device has a third electrode area I1 and a third auxiliary area I2, and a fourth electrode area I3 and a fourth auxiliary area I4.
  • the third electrode layer I includes a sixth mesh electrode I5 arranged in the third electrode region I1, and a seventh mesh electrode I6, a sixth mesh electrode I5 and a seventh mesh electrode I6 arranged in the third auxiliary region I2. Electrical insulation.
  • the fourth electrode layer J includes an eighth grid electrode J1 disposed in the fourth electrode region I3, and a ninth grid electrode J2 disposed in the fourth auxiliary region I4, the eighth grid electrode J1 and the ninth grid electrode J2 Electrical insulation.
  • the patterns of the sixth grid electrode I5, the seventh grid electrode I6, the eighth grid electrode J1 and the ninth grid electrode J2 are the same.
  • the extension direction of the third electrode area I1 and the extension direction of the fourth electrode area I3 are perpendicular to each other, so that the sixth grid electrode I5 and the eighth grid electrode J1 can form a touch capacitance in the overlapping area.
  • the grid electrodes on the third electrode layer I and the grid electrodes on the fourth electrode layer J overlap each other, so that the grid electrode pattern of the first touch device is a uniform grid electrode pattern.
  • the first touch device can be used to simulate a metal mesh touch screen in related technologies.
  • the second touch device includes a fifth electrode layer P and a sixth electrode layer Q.
  • the second touch device has a third electrode area I1 and a third auxiliary area I2, and a fourth electrode area I3 and a fourth auxiliary area I4.
  • the extension direction of the third electrode region I3 is perpendicular to the extension direction of the fourth electrode region I4.
  • the fifth electrode layer P includes a tenth grid electrode P1 disposed in the third electrode region I1, and no grid electrode is disposed in the third auxiliary region I2.
  • the sixth electrode layer Q includes an eleventh mesh electrode Q1 disposed in the fourth electrode region I3, and a twelfth mesh electrode Q2 disposed in the fourth auxiliary region, the eleventh mesh electrode Q1 and the twelfth mesh electrode Q2.
  • the grid electrode Q2 is electrically insulated.
  • the eleventh grid electrode Q1 includes an eleventh sub-grid electrode Q11 arranged to overlap the third electrode region I1 and a twelfth sub-grid electrode Q12 arranged to overlap the third auxiliary region I2.
  • the patterns of the twelfth mesh electrode Q2, the tenth mesh electrode P1, the eleventh sub-mesh electrode Q11, and the sixth mesh electrode I5 are the same.
  • the pattern of the twelfth sub-grid electrode Q12 is the same as the grid electrode pattern of the first touch device at the overlap of the seventh grid electrode I6 and the eighth grid electrode J1.
  • the tenth grid electrode P1, the eleventh sub-grid electrode Q11 and the twelfth grid electrode Q2 are arranged to overlap each other, so that the grid electrode pattern of the second touch device is a uniform grid electrode pattern.
  • the second touch device is used to test the impedance of the second grid electrode 41 of the touch substrate 100 provided in the present disclosure.
  • test results of the eighth grid electrode J1 of the first touch device and the test results of the eleventh grid electrode Q1 of the second touch device are shown in Table 1.
  • the resistance value of the eleventh grid electrode Q1 of the second touch device is greatly reduced compared to the resistance value of the eighth grid electrode J1 of the first touch device, and the driving delay is reduced by 22.6 %, effectively reducing the impedance of the eleventh grid electrode Q1 of the second touch device.
  • the first grid electrode 21 and the second grid electrode 41 in the touch substrate 100 of the present disclosure adopt a design solution of varying grid density, which can effectively reduce the first grid electrode 21 and the second grid electrode.
  • the impedance of the grid electrode 41 is further beneficial to improve the touch sensitivity of the touch substrate 100.
  • Some embodiments of the present disclosure provide a method for preparing a touch substrate. As shown in Figure 16, the preparation method includes: S100-S500.
  • a photolithography process may be used to prepare and form the black matrix layer 5 described above.
  • the first electrode layer 2 may be formed by the following method: a magnetron sputtering process is used to form a first electrode material layer on the side of the black matrix layer 5 away from the substrate 1; and then a coating process A first photoresist layer is formed on the side of the first electrode material layer away from the substrate 1; then the first photoresist layer is exposed and developed to obtain a patterned first photoresist layer; The first photoresist layer is a mask, and the first electrode material layer is etched; then, the patterned first photoresist layer is removed to obtain the first electrode layer 2.
  • an insulating layer 6 is also formed on the side of the black matrix layer 5 away from the substrate 1.
  • the insulating layer 6 can be prepared by, for example, a photolithography process.
  • the first electrode layer 2 is located on the side of the insulating layer 6 away from the substrate 1. In this way, the insulating layer 6 can be used to form a gap between the black matrix layer 5 and the first electrode layer 2 to avoid affecting the normal use of the first electrode layer 2.
  • the dielectric layer 3 may be formed using a photolithography process.
  • the second electrode layer 4 may be formed by the following method: a magnetron sputtering process is used to form a second electrode material layer on the side of the dielectric layer 3 away from the substrate 1; A second photoresist layer is formed on the side of the second electrode material layer away from the substrate 1; then the second photoresist layer is exposed and developed to obtain a patterned second photoresist layer; and then the second photoresist layer is patterned The second photoresist layer is a mask, and the second electrode material layer is etched; after that, the patterned second photoresist layer is removed to obtain the second electrode layer 4.
  • the beneficial effects that can be achieved by the method for preparing the touch substrate provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the touch substrate 100 provided in some of the above embodiments, and will not be repeated here.
  • the preparation method of the touch substrate may further include the following step: after S500, a protective layer 7 is formed on the side of the second electrode layer 4 away from the substrate 1.
  • the above-mentioned protective layer 7 may be prepared by a photolithography process.
  • the touch display panel 1000 includes: the touch substrate 100 as described in any of the above embodiments.
  • the touch display panel 1000 may be an LCD (Liquid Crystal Display, liquid crystal display device) touch display panel, an OLED (Organic Light Emitting Diode, organic light emitting diode) touch display panel, and a QLED (Quantum Dot Light). Emitting Diodes, quantum dot light-emitting diodes) touch display panels or other types of touch display panels.
  • LCD Liquid Crystal Display, liquid crystal display device
  • OLED Organic Light Emitting Diode, organic light emitting diode
  • QLED Quantum Dot Light
  • touch substrate 100 in the touch display panel 1000 has the same structure and the same beneficial effects as the touch substrate 100 in any of the above-mentioned embodiments, this disclosure will not be repeated here.
  • the aforementioned touch display panel 1000 has a variety of structures, and the structure is related to the arrangement of the touch substrate 100.
  • the touch display panel 1000 as an LCD touch display panel as an example, the structure of the touch display panel 1000 is schematically described.
  • the touch display panel 1000 further includes: an array substrate 200 and a counter substrate 300 disposed opposite to each other, and a liquid crystal layer 400 disposed between the two.
  • the counter substrate 300 includes: a base substrate 301 and a polarizer 302 disposed on the side of the base substrate 301 away from the array substrate.
  • the touch substrate 100 may be disposed on the light emitting side of the touch display panel 1000, that is, the side of the counter substrate 300 away from the array substrate 200.
  • the touch display panel 1000 may be referred to as an external touch display panel.
  • the touch substrate 100 may be disposed between the base substrate 301 and the polarizer 302.
  • the touch display panel 1000 may be referred to as an on-cell touch display panel.
  • the touch substrate 100 may be disposed on the side of the array substrate 200 close to the liquid crystal layer 400.
  • the touch display panel 1000 may be referred to as an in-cell touch display panel.
  • Some embodiments of the present disclosure also provide a touch display device 2000.
  • the touch display device 2000 includes the touch display panel 1000 described in any of the above embodiments.
  • the aforementioned touch display device 2000 may also include a housing and other structures.
  • the touch display device has any one of the touch display panels described in the above touch display panel implementations, it has the same beneficial effects, which will not be repeated in this disclosure.
  • the touch display device 2000 may be a mobile phone, a tablet computer, a television, a computer screen, a digital photo frame, a navigator, etc., or other types of touch display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控基板,包括依次层叠设置的衬底、第一电极层、电介质层和第二电极层。触控基板具有第一电极区域和第一辅助区域,以及第二电极区域和第二辅助区域。第一电极层包括设置在第一电极区域的第一网格电极。第一网格电极包括第一子网格电极和第二子网格电极。第一子网格电极与第二电极区域交叠,第二子网格电极与第二辅助区域交叠,第一子网格电极的网格密度小于第二子网格电极的网格密度。第二电极层包括设置在第二电极区域的第二网格电极。第二网格电极包括第三子网格电极和第四子网格电极。第三子网格电极与第一电极区域交叠,第四子网格电极与第一辅助区域交叠,第三子网格电极的网格密度小于第四子网格电极的网格密度。

Description

触控基板、触控显示面板及触控显示装置
本申请要求于2019年08月14日提交的、申请号为201910750939.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种触控基板、触控显示面板及触控显示装置。
背景技术
金属网格(metal mesh)触摸屏因具有电阻低、电容特性均匀等优点,已在显示领域得到较为广泛的应用。
发明内容
一方面,提供一种触控基板。所述触控基板包括:依次层叠设置的衬底、第一电极层、电介质层和第二电极层。所述触控基板具有沿第一方向延伸且依次交替设置的多个第一电极区域和多个第一辅助区域,以及沿第二方向延伸且依次交替设置的多个第二电极区域和多个第二辅助区域。所述第一方向与所述第二方向相交。其中,所述第一电极层包括设置在每个第一电极区域的第一网格电极。所述第一网格电极包括沿所述第一方向交替设置且依次电连接的多个第一子网格电极和多个第二子网格电极。每个第一子网格电极与一个第二电极区域交叠,每个第二子网格电极与一个第二辅助区域交叠,所述第一子网格电极的网格密度小于所述第二子网格电极的网格密度。所述第二电极层包括设置在每个第二电极区域的第二网格电极。所述第二网格电极包括沿第二方向交替设置且依次电连接的多个第三子网格电极和多个第四子网格电极。每个第三子网格电极与一个第一电极区域交叠,每个第四子网格电极与一个第一辅助区域交叠,所述第三子网格电极的网格密度小于所述第四子网格电极的网格密度。
在一些实施例中,所述第一子网格电极的网格密度与所述第二子网格电极的网格密度之间的比例为1:2或大约为1:2。和/或,所述第三子网格电极的网格密度与所述第四子网格电极的网格密度之间的比例为1:2或大约为1:2。
在一些实施例中,所述第一子网格电极的网格密度与所述第三子网格电极的网格密度相同或大致相同。和/或,所述第二子网格电极的网格密度与所述第四子网格电极的网格密度相同或大致相同。
在一些实施例中,所述第一电极层所包括的网格电极及所述第二电极层所包括的网格电极,均包括:沿第三方向延伸的多条第一电极线,以及沿第 四方向延伸的多条第二电极线。所述多条第一电极线和所述多条第二电极线交叉形成所述网格电极的网格;所述第三方向和所述第四方向相交。
在一些实施例中,在所述第一子网格电极的网格密度与所述第二子网格电极的网格密度之间的比例为1:2或大约为1:2的情况下,所述第一子网格电极中相邻两条第一电极线之间的间距,与所述第二子网格电极中相邻两条第一电极线之间的间距的比例为2:1或大约为2:1;所述第一子网格电极中相邻两条第二电极线之间的间距,与所述第二子网格电极中相邻两条第二电极线之间的间距的比例为2:1或大约为2:1。在第三子网格电极的网格密度与所述第四子网格电极的网格密度之间的比例为1:2或大约为1:2的情况下,所述第三子网格电极中相邻两条第一电极线之间的间距,与所述第四子网格电极中相邻两条第一电极线之间的间距的比例为2:1或大约为2:1;所述第三子网格电极中相邻两条第二电极线之间的间距,与所述第四子网格电极中相邻两条第二电极线之间的间距的比例为2:1或大约为2:1。在所述第一子网格电极的网格密度与所述第三子网格电极的网格密度相同或大致相同的情况下,所述第一子网格电极中相邻两条第一电极线之间的间距,与所述第三子网格电极中相邻两条第一电极线之间的间距相同或大致相同;所述第一子网格电极中相邻两条第二电极线之间的间距,与所述第三子网格电极中相邻两条第二电极线之间的间距相同或大致相同。在所述第二子网格电极的网格密度与所述第四子网格电极的网格密度相同或大致相同的情况下,所述第二子网格电极中相邻两条第一电极线之间的间距,与所述第四子网格电极中相邻两条第一电极线之间的间距相同或大致相同;所述第二子网格电极中相邻两条第二电极线之间的间距,与所述第四子网格电极中相邻两条第二电极线之间的间距相同或大致相同。
在一些实施例中,所述第一电极层和所述第二电极层共同在所述衬底上的正投影中,相邻两条第一电极线所对应的投影之间的间距的范围为100μm~400μm;相邻两条第二电极线所对应的投影之间的间距的范围为100μm~400μm。
在一些实施例中,每条第一电极线的线宽的范围为3μm~10μm;每条第二电极线的线宽的范围为3μm~10μm。
在一些实施例中,所述第一电极层所包括的网格电极的网格形状及所述第二电极层所包括的网格电极的网格形状,均包括:矩形、正方形和菱形中的至少一种。
在一些实施例中,所述第二辅助区域中,与所述第二子网格电极交叠的 部分不设置网格电极。
在一些实施例中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第二子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
在一些实施例中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的图案,与所述第二子网格电极在所述衬底上的正投影的图案相同或大致相同。
在一些实施例中,所述第一辅助区域中,与所述第四子网格电极交叠的部分不设置网格电极。
在一些实施例中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第四子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
在一些实施例中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的图案,与所述第四子网格电极在所述衬底上的正投影的图案相同或大致相同。
在一些实施例中,所述第一辅助区域包括与所述第二辅助区域交叠的第一子辅助区域;所述第二辅助区域包括与所述第一辅助区域交叠的第二子辅助区域;
所述第一电极层包括设置在所述第一子辅助区域的第三网格电极;所述第三网格电极与所述第一网格电极电性绝缘。所述第二电极层包括设置在所述第二子辅助区域的第四网格电极;所述第四网格电极与所述第二网格电极电性绝缘。所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第三网格电极和所述第四网格电极共同在所述衬底上的正投影的网格密度相同或大致相同。
在一些实施例中,所述第三网格电极的图案与所述第一子网格电极的图案相同。所述第四网格电极的图案与所述第三子网格电极的图案相同。
在一些实施例中,所述第一辅助区域包括与所述第二辅助区域交叠的第一子辅助区域;所述第二辅助区域包括与所述第一辅助区域交叠的第二子辅助区域。所述第一子辅助区域或所述第二子辅助区域设置有第五网格电极,所述第五网格电极在所述衬底上的正投影的网格密度,与所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度相同或大致相同。其中,在所述第五网格电极设置在所述第一子辅助区域的情况下,所述第五网格电极位于所述第一电极层中;所述第五网格电极与所述第一网格 电极电性绝缘。在所述第五网格电极设置在所述第二子辅助区域的情况下,所述第五网格电极位于所述第二电极层中;所述第五网格电极与所述第二网格电极电性绝缘。
另一方面,提供一种触控显示面板。所述触控显示面板包括:如上述任一实施例所述的触控基板。
又一方面,提供一种触控显示装置。所述触控显示装置包括:如上述任一实施例所述的触控显示面板。
又一方面,提供一种触控基板。所述触控基板具有触控区域和围绕所述触控区域的外围区域。所述触控基板包括:依次层叠设置的衬底、黑矩阵层、第一电极层、电介质层和第二电极层。其中,所述黑矩阵层位于所述外围区域。所述触控区域包括沿第一方向延伸且依次交替设置的多个第一电极区域和多个第一辅助区域,以及,沿第二方向延伸且依次交替设置的多个第二电极区域和多个第二辅助区域。所述第一方向与所述第二方向相交。所述第一电极层包括设置在每个第一电极区域的第一网格电极,以及设置在所述外围区域的多条第一触控引线,所述多条第一触控引线分别与所述多个第一电极区域的第一网格电极连接。所述第二电极层包括设置在每个第二电极区域的第二网格电极,以及设置在所述外围区域的多条第二触控引线,所述多条第二触控引线分别与所述多个第二电极区域的第二网格电极连接。所述第一网格电极包括沿所述第一方向交替设置且依次电连接的多个第一子网格电极和多个第二子网格电极。每个第一子网格电极与一个第二电极区域交叠,每个第二子网格电极与一个第二辅助区域交叠。所述第二网格电极包括沿第二方向交替设置且依次电连接的多个第三子网格电极和多个第四子网格电极。每个第三子网格电极与一个第一电极区域交叠,每个第四子网格电极与一个第一辅助区域交叠。所述第一辅助区域中,与所述第四子网格电极交叠的部分不设置网格电极,且所述第一辅助区域中与所述第二辅助区域交叠的部分设置有属于所述第一电极层的第三网格电极,所述第三网格电极与所述第一网格电极电性绝缘。所述第二辅助区域中,与所述第二子网格电极交叠的部分不设置网格电极,且所述第二辅助区域中与所述第一辅助区域交叠的部分设置有属于所述第二电极层的第四网格电极,所述第四网格电极与所述第二网格电极电性绝缘。所述第一子网格电极、所述第三子网格电极、所述第三网格电极和所述第四网格电极的网格密度相同或大致相同。所述第二子网格电极和所述第四子网格电极的网格密度相同或大致相同。所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度、所述第三网 格电极和所述第四网格电极共同在所述衬底上的正投影的网格密度、所述第二子网格电极在所述衬底上的正投影的网格密度以及所述第四子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据本公开的一些实施例中的一种触控基板的结构图;
图2为根据本公开的一些实施例中的另一种触控基板的结构图;
图3为根据本公开的一些实施例中的又一种触控基板的结构图;
图4为根据本公开一些实施例中的一种触控基板的第一电极层的结构图;
图5为根据本公开一些实施例中的一种触控基板的第二电极层的结构图;
图6为根据本公开一些实施例中的一种触控基板的第一电极层和第二电极层的结构图;
图7为根据本公开一些实施例中的一种网格电极的结构图;
图8为根据本公开一些实施例中的另一种触控基板的第一电极层的结构图;
图9为根据本公开一些实施例中的另一种触控基板的第二电极层的结构图;
图10为根据本公开一些实施例中的又一种触控基板的第一电极层的结构图;
图11为根据本公开一些实施例中的又一种触控基板的第二电极层的结构图;
图12为根据本公开一些实施例中的一种第一触控器件的第三电极层的结构图;
图13为根据本公开一些实施例中的一种第一触控器件的第四电极层的结构图;
图14为根据本公开一些实施例中的一种第二触控器件的第五电极层的结构图;
图15为根据本公开一些实施例中的一种第二触控器件的第六电极层的结 构图;
图16为根据本公开一些实施例中的一种触控基板的制备方法的流程图;
图17为根据本公开一些实施例中的一种触控显示面板的结构图;
图18为根据本公开一些实施例中的另一种触控显示面板的结构图;
图19为根据本公开一些实施例中的又一种触控显示面板的结构图;
图20为根据本公开一些实施例中的一种触控显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是 “当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着金属网格触摸屏的尺寸的增加,例如金属网格触摸屏的尺寸增加至65寸或75寸等较大尺寸的情况下,其中的金属网格电极的阻抗将增加,导致驱动金属网格电极的驱动器的负载增大,容易降低触控的灵敏度。在相关技术中,可以采用增加金属网格的线宽等方式降低金属网格电极的阻抗,但是这样容易受到金属网格触摸屏的光学消影效果和边框的限制,对金属网格电极的阻抗降低效果有限。
基于此,本公开的一些实施例提供了一种触控基板100。如图1~图2所示,该触控基板100包括依次层叠设置的衬底1、第一电极层2、电介质层3和第二电极层4。
上述衬底1的结构包括多种,可以根据实际需要选择设置。
在一些示例中,衬底1可以为柔性衬底。此时,该柔性衬底例如可以为PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)衬底、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸 乙二醇酯)衬底或PI(Polyimide,聚酰亚胺)衬底等。
在另一些示例中,衬底1可以为刚性衬底。此时,该刚性衬底例如可以为玻璃衬底。
上述电介质层3的材料包括多种,示例性的,该电介质层3的材料可以包括具有较高绝缘性能的树脂材料。
在一些实施例中,如图4和图5所示,触控基板100具有沿第一方向X延伸且依次交替设置的多个第一电极区域A和多个第一辅助区域B;以及沿第二方向Y延伸且依次交替设置的多个第二电极区域C和多个第二辅助区域D。也即,每相邻的两个第一电极区域A之间设置有一个第一辅助区域B,每相邻的两个第一辅助区域B之间设置有一个第一电极区域A,每相邻的两个第二电极区域C之间设置有一个第二辅助区域D,每相邻的两个第二辅助区域D之间设置有一个第二电极区域C。
在一些示例中,第一方向X与第二方向Y相交。
此处,第一方向X和第二方向Y之间的夹角的大小可以根据实际需要选择设置。示例性的,第一方向X和第二方向Y可以相互垂直,也即两者之间的夹角为90°。
在一些实施例中,如图4所示,第一电极层2包括设置在每个第一电极区域A的第一网格电极21。该第一网格电极21包括沿第一方向X交替设置且依次电连接的多个第一子网格电极211和多个第二子网格电极212。也即,每相邻的两个第一子网格电极211之间设置有一个第二子网格电极212,每相邻的两个第二子网格电极212之间设置有一个第二子网格电极211,且相邻的第一子网格电极211和第二子网格电极212之间直接电连接。
在一些示例中,每个第一子网格电极211与一个第二电极区域C交叠,每个第二子网格电极212与一个第二辅助区域D交叠。
在一些示例中,第一子网格电极211的网格密度小于第二子网格电极212的网格密度。
通过设置第二子网格电极212的网格密度大于第一子网格电极211的网格密度,可以降低第二子网格电极212的电阻,进而降低第一网格电极21的电阻。
在一些实施例中,如图5所示,第二电极层4包括设置在每个第二电极区域B的第二网格电极41。该第二网格电极41包括沿第二方向Y交替设置且依次电连接的多个第三子网格电极411和多个第四子网格电 极412。也即,每相邻的两个第三子网格电极411之间设置有一个第四子网格电极412,每相邻的两个第四子网格电极412之间设置有一个第三子网格电极411,且相邻的第三子网格电极411和第四子网格电极412之间直接电连接。
在一些示例中,每个第三子网格电极411与一个第一电极区域A交叠,每个第四子网格电极412与一个第一辅助区域B交叠。
在一些示例中,第三子网格电极411的网格密度小于第四子网格电极412的网格密度。
通过设置第四子网格电极412的网格密度大于第三子网格电极411的网格密度,可以降低第四子网格电极412的电阻,进而降低第二网格电极41的电阻。
此外,由于具有较小网格密度的第一子网格电极211与第二电极区域C交叠,具有较小网格密度的第三子网格电极411与第一电极区域A交叠,具有较大网格密度的第二子网格电极212与第二辅助区域D交叠,具有较大网格密度的第四子网格电极412与第一辅助区域B交叠,这也就意味着,沿垂直于衬底1的方向,第一子网格电极211和第三子网格电极411交叠。这样有利于降低第一电极层2和第二电极层4共同在衬底1上的正投影的网格密度差异,使得触控基板100具有较高的消影效果。
由此,本公开的一些实施例所提供的触控基板100,通过将第一电极层2所包括的第一网格电极21划分为沿第一方向X交替设置且依次电连接的多个第一子网格电极211和多个第二子网格电极212,将第二电极层4所包括的第二网格电极41划分为沿第二方向Y交替设置且依次电连接的多个第三子网格电极411和多个第四子网格电极412,并将第二子网格电极212的网格密度设置为大于第一子网格电极211的网格密度,将第四子网格电极412的网格密度设置为大于第三子网格电极411的网格密度,可以有效降低第一网格电极21的电阻以及第二网格电极41的电阻。这样有利于提高触控基板100的触控灵敏度。
此外,通过设置第一子网格电极211、第二子网格电极212、第三子网格电极411和第四子网格电极412之间的位置关系,可以降低第一电极层2和第二电极层4共同在衬底1上的正投影的网格密度差异,使得触控基板100具有较高的消影效果。
在一些实施例中,如图7所示,第一电极层2所包括的网格电极以 及第二电极层4所包括的网格电极中,任一网格电极可以包括沿第三方向R延伸的多条第一电极线T1,以及沿第四方向S延伸的多条第二电极线T2。其中,第三方向R和第四方向S相交,这也就使得位于同一电极层中的多条第一电极线T1和多条第二电极线T2相互交叉,形成网格电极的网格。
在一些示例中,网格电极的网格密度,可以通过网格电极中相互平行的多条第一电极线T1及相互平行的多条第二电极线T2的设置周期来表征。其中,第一电极线T1及第二电极线T2的设置周期越大,则网格电极的网格密度越小。举例而言,在本公开的一种实施方式中,网格电极的网格密度,可以为在网格电极的延伸平面内,在垂直于第一电极线T1的延伸方向的方向上,第一电极线T1的分布密度,以及在垂直于第二电极线T2的延伸方向的方向上,第二电极线T2的分布密度。
当然,网格电极的网格密度,还可以通过其他方法进行表征。举例而言,在本公开的一种实施方式中,可以通过网格电极的网格尺寸或者网格的分布密度来表征网格电极的网格密度。其中,网格电极的每个网格为相邻的两条第一电极线T1以及相邻的两条第二电极线T2所围绕而成的、未设置有电极材料的区域。网格的尺寸越大,则表明网格电极的网格密度越小。或者,网格的分布密度越大,则网格电极的网格密度越大。
此处,网格的形状包括多种,可以根据实际需要选择设置。
示例性的,网格的形状包括矩形、正方形和菱形中的至少一种。
当然,本公开中网格的形状并不局限于上述所举例的三种。
在一些示例中,上述各网格电极可以为均匀的网格电极。在一个网格电极为均匀的网格电极的情况下,该网格电极中,任意相邻的两条第一电极线T1之间的间距相同或大致相同,且任意相邻的两条第二电极线T2之间的间距相同或大致相同。
可选的,如图4和图5所示,第一子网格电极211、第二子网格电极212、第三子网格电极411和第四子网格电极412均可以为均匀的网格电极,这样可以提高触控基板100的光学消影效果,且便于对第一子网格电极211、第二子网格电极212、第三子网格电极411和第四子网格电极412进行设计及制备。
下面结合附图对本公开的一些实施例所提供的触控基板100的结构进行示意性说明。
在一些实施例中,如图4~图6所示,根据第一电极区域A、第一辅助区域B、第二电极区域C和第二辅助区域D之间的位置关系,触控基板100至少可以具有多个类别的区域,例如为第一区域E、第二区域F、第三区域G和第四区域H。
此处,第一区域E为第一电极区域A和第二电极区域B相互交叠的区域,也就是第一网格电极21和第二网格电极41相互交叠的区域。换言之,第一电极区域A在衬底1上的正投影和第二电极区域B在衬底1上的正投影所重叠的范围,与第一区域E重合。在第一区域E,第一网格电极21和第二网格电极41之间形成触控电容,该触控电容可以作为触控基板100实现触控检测的触控传感器。
第二区域F为第一电极区域A和第二辅助区域D相互交叠的区域;换言之,第一电极区域A在衬底1上的正投影和第二辅助区域D在衬底1上的正投影所重叠的范围,与第二区域F重合。
第三区域G为第二电极区域C和第一辅助区域B相互交叠的区域;换言之,第二电极区域C在衬底1上的正投影和第一辅助区域B在衬底1上的正投影所重叠的范围,与第三区域G重合。
第四区域H为第一辅助区域B和第二辅助区域D相互交叠的区域;换言之,第一辅助区域B在衬底1上的正投影和第二辅助区域D在衬底1上的正投影所重叠的范围,与第四区域H重合。
此时,在第一电极层2中,第一子网格电极211设置于第一区域E,第二子网格电极212设置于第二区域F。在第二电极层4中,第三子网格电极411设置于第一区域E,第四子网格电极412设置于第三区域G。其中,同时位于第一区域E的第一子网格电极211和第三子网格电极411之间形成触控电容。
在一些实施例中,第一子网格电极211的网格密度与第二子网格电极212的网格密度之间的比例为1:2或大约为1:2。
在此情况下,第一子网格电极211中相邻两条第一电极线T1之间的间距,与第二子网格电极212中相邻两条第一电极线T1之间的间距的比例为2:1或大约为2:1。第一子网格电极211中相邻两条第二电极线T2之间的间距,与第二子网格电极212中相邻两条第二电极线T2之间的间距的比例为2:1或大约为2:1。
如此,可以有效地降低第二子网格电极212的电阻,并降低第一网格电极21的电阻。
在一些实施例中,第三子网格电极411的网格密度与第四子网格电极412的网格密度之间的比例为1:2或大约为1:2。
在此情况下,第三子网格电极411中相邻两条第一电极线T1之间的间距,与第四子网格电极412中相邻两条第一电极线T1之间的间距的比例为2:1或大约为2:1。第三子网格电极411中相邻两条第二电极线T2之间的间距,与第四子网格电极412中相邻两条第二电极线T2之间的间距的比例为2:1或大约为2:1。
如此,可以有效地降低第四子网格电极412的电阻,并降低第二网格电极41的电阻。
在一些示例中,第一子网格电极211的网格密度与第三子网格电极411的网格密度相同或大致相同。
在此情况下,第一子网格电极211中相邻两条第一电极线T1之间的间距,与第三子网格电极411中相邻两条第一电极线T1之间的间距相同或大致相同。第一子网格电极211中相邻两条第二电极线T2之间的间距,与第三子网格电极411中相邻两条第二电极线T2之间的间距相同或大致相同。
在一些示例中,第二子网格电极212的网格密度与第四子网格电极412的网格密度相同或大致相同。
在此情况下,第二子网格电极212中相邻两条第一电极线T1之间的间距,与第四子网格电极412中相邻两条第一电极线T1之间的间距相同或大致相同。第二子网格电极212中相邻两条第二电极线T2之间的间距,与第四子网格电极412中相邻两条第二电极线T2之间的间距相同或大致相同。
这也就意味着,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度,可以与第二子网格电极212在衬底1上的正投影的网格密度相同或大致相同,也可以与第四子网格电极412在衬底1上的正投影的网格密度相同或大致相同。这样有利于提高触控基板100的消影效果。
在一些示例中,第一电极层2和第二电极层4共同在衬底1上的正投影中,相邻两条第一电极线T1所对应的正投影之间的间距的范围可以为100μm~400μm,相邻两条第二电极线T2所对应的投影之间的间距的范围可以为100μm~400μm。
示例性的,如图6所示,在第一区域E内,第一网格电极21和第二网格电极41共同在衬底1上的正投影中,相邻两条第一第一电极线T1中的一条第一电极线T1属于第一网格电极21,另一条第一电极线T1属于第二网格电极41;相邻两条第二电极线T2中的一条第二电极线T2属 于第一网格电极21,另一条第二电极线T2属于第二网格电极41。
示例性的,相邻两条第一电极线T1所对应的正投影之间的间距可以为100μm、200μm、260μm、300μm或400μm等,相邻两条第二电极线T2所对应的投影之间的间距可以为100μm、150μm、210μm、300μm、或400μm等。
可选的,第一电极线T1的线宽和第二电极线T2的线宽相同或大致相同。此处,任一电极线的线宽可以为,在平行于衬底1、且垂直于该电极线的延伸方向上,电极线的尺寸。
通过将第一电极线T1的线宽和第二电极线T2的线宽设置为相同或大致相同,可以提高第一电极层2和第二电极层4中各电极线的均匀性,提高触控基板100的光学消影效果。
在一些示例中,每条第一电极线T1的线宽的范围为3μm~10μm,每条第二电极线T2的线宽的范围为3μm~10μm。
示例性的,每条第一电极线T1的线宽可以为3μm、4μm、5μm、7μm、9μm或10μm等。每条第二电极线T2的线宽可以为3μm、4.5μm、5.6μm、7μm、8μm、9μm或10μm等。
在一些实施例中,如图5所示,第二辅助区域D中,与第二子网格电极212交叠的部分不设置网格电极,也即第二电极层4所具有的图案,未位于第二区域F内。如此,可以避免在第二子网格电极212与第二网格电极41之间形成寄生电容,进而降低了第二子网格电极212的阻抗,降低了第一网格电极21的阻抗。这样有利于提高触控基板100的触控灵敏度。
在一些示例中,在第二辅助区域D中与第二子网格电极212交叠的部分不设置网格电极的情况下,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度,与第二子网格电极212在衬底1上的正投影的网格密度相同或大致相同。
也即,位于第一区域E中的网格电极在衬底1上的正投影的网格密度,与位于第二区域F中的网格电极在衬底1上的正投影的网格密度相同或大致相同,这样可以使得第一区域E中的网格电极和第二区域F中的网格电极是均匀或较为均匀的,有利于提高触控基板100的消影效果。
需要说明的是,在此情况下,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第二子网格电极212在衬底1上的正投影的图案可以相同,也可以不同。
可选的,如图6所示,第一子网格电极211和第三子网格电极411 共同在衬底1上的正投影的图案,与第二子网格电极212在衬底1上的正投影的图案相同或大致相同。
如此,本公开的一些实施例所提供的触控基板100中,位于第一区域E的网格电极的图案与位于第二区域F的网格电极的图案能够重叠或大致重叠,保证了触控基板100在第一区域E和第二区域F能够获得相同或者类似的光学消影效果,能够保证整个触控基板100获得更均匀和优异的光学消影效果。
在一些实施例中,如图4所示,第一辅助区域B中,与第四子网格电极412交叠的部分不设置网格电极,也即第一电极层2所具有的图案,未位于第三区域G内。如此,可以避免在第四子网格电极412与第一网格电极21之间形成寄生电容,降低了第四子网格电极412的阻抗,进而降低了第二网格电极41的阻抗。这样有利于提高触控基板100的触控灵敏度。
在一些示例中,在第一辅助区域B中,与第四子网格电极412交叠的部分不设置网格电极的情况下,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度,与第四子网格电极412在衬底1上的正投影的网格密度相同或大致相同。
也即,位于第一区域E中的网格电极在衬底1上的正投影的网格密度,与位于第三区域G中的网格电极在衬底1上的正投影的网格密度相同或大致相同,这样可以使得第一区域E中的网格电极和第三区域G中的网格电极是均匀或较为均匀的,有利于提高触控基板100的消影效果。
需要说明的是,在此情况下,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第四子网格电极412在衬底1上的正投影的图案可以相同,也可以不同。
可选的,如图6所示,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第四子网格电极412在衬底1上的正投影的图案相同。
如此,本公开的一些实施例所提供的触控基板100中,位于第一区域E的网格电极的图案与位于第三区域G的网格电极的图案能够重叠或大致重叠,保证了触控基板100在第一区域E和第三区域G能够获得相同或者类似的光学消影效果,能够保证整个触控基板100获得更均匀和优异的光学消影效果。
在本公开的一种实施方式中,如图4~图6所示,第一子网格电极211 的网格密度与第二子网格电极212的网格密度之间的比例为1:2或大约为1:2,且第二辅助区域D中与第二子网格电极212交叠的部分不设置网格电极;第三子网格电极411的网格密度与第四子网格电极412的网格密度之间的比例为1:2或大约为1:2,且第一辅助区域B与第四子网格电极412交叠的部分不设置网格电极;第一子网格电极211的网格密度和第三子网格电极411的网格密度相同或大致相同。如此,第一电极层2和第二电极层4共同在衬底1上的正投影中,在各个区域的网格的网格密度相同或大致相同,这样可以使得本公开的一些实施例所提供的触控基板100取得较好的消影效果。
可选的,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第二子网格电极212在衬底1上的正投影的图案相同,且与第四子网格电极412在衬底1上的正投影的图案相同。如此,本公开的一些实施例所提供的触控基板100中,在第一区域E、第二区域F和第三区域G的网格电极的图案相同,避免了各区域的网格电极的图案差异对光学消影的不同需求,便于触控基板100进行光学消影处理和取得更好的光学消影效果。
此处,需要说明的是,在本公开中,触控基板100的网格电极的图案,或者位于第一区域E、第二区域F、第三区域G或者第四区域H的网格电极的图案,指的是第一电极层2和第二电极层4中的网格电极在衬底1上的正投影叠加后的图案。其中,网格电极的图案,可以通过沿第三方向R延伸的第一条形电极T1的分布密度以及沿第四方向S延伸的第二条形电极T2的分布密度来表征。
举例而言,一个网格电极的图案可以通过间距参数(v,w)来表征,其中,v为该网格电极的任意相邻的两个第一条形电极T1之间的间距,w为该网格电极的任意相邻两个第二条形电极T2之间的间距。若一个网格电极的间距参数与另一个网格电极的间距参数相同,则这两个网格电极的图案相同。
在一些示例中,如图4和图5所示,第一子网格电极211和第三子网格电极411的图案可以相同,这样可以方便第一子网格电极211和第三子网格电极411的设计及制备。
可选的,第二子网格电极212的图案可以为两个第一子网格电极211的图案进行交错后的叠加,如此,不仅可以保证第二子网格电极212的网格密度为第一子网格电极211的网格密度的两倍,而且还可以便于第 二子网格电极212的设计及制备。不仅如此,若第一子网格电极211和第三子网格电极411在第一区域E呈交错式的交叠,则可以保证第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第二子网格电极212在衬底1上的正投影的图案相同或大致相同。
可选的,第四子网格电极412的图案可以为两个第三子网格电极411的图案进行交错后的叠加,如此,不仅可以保证第四子网格电极412的网格密度为第三子网格电极411的网格密度的两倍,而且还可以便于第四子网格电极412的设计及制备。不仅如此,若第一子网格电极211和第三子网格电极411在第一区域E呈交错式的交叠,则可以保证第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第四子网格电极412在衬底1上的正投影的图案相同或大致相同。
需要说明的是,在本公开中,两个网格电极交错式交叠,指的是两个网格电极中沿同一方向延伸的条形电极相互平行且不交叠。举例而言,在第一区域E,第一子网格电极211和第三子网格电极411交错式交叠设置,则第一子网格电极211中沿第三方向R延伸的第一条形电极T1在衬底1上的正投影,与第三子网格电极411中沿第三方向R延伸的第一条形电极T1在衬底1上的正投影相互间隔;第一子网格电极211中沿第四方向S延伸的第二条形电极T2在衬底1上的正投影,与第三子网格电极411中沿第四方向S延伸的第二条形电极T2在衬底1上的正投影相互间隔。
示例性的,在两个网格电极交错式设置的情况下,两个网格电极在触控基板100上形成的网格电极图案可以为均匀的网格电极图案。换言之,在两个网格电极在触控基板100上形成均匀的网格电极图案的情况下,两个网格电极的所有沿第三方向R延伸的第一条形电极T1在衬底1上的正投影中,任意相邻的两个第一条形电极T1的正投影之间的间距相同或大致相同,且两个网格电极的所有沿第四方向S延伸的第二条形电极T2在衬底1上的正投影中,任意相邻的两个第二条形电极T2的正投影之间的间距相同或大致相同。如此,可以确保两个交错式设置的网格电极所形成的整体图案的均匀性,提高触控基板100的光学消影效果。
本公开的一些实施例所提供的触控基板100还可以在第四区域H内设置网格电极,以便进一步改善触控基板100不同区域范围的光学效应效果。此处,设置于第四区域H的网格电极可以有多种设置方式,可以根据实际需要选择设置。
在本公开的一种实施方式中,如图4和图5所示,第一辅助区域B包括与第二辅助区域D交叠的第一子辅助区域B1以及与第二电极区域C交叠的第三子辅助区域B2,第一子辅助区域B1和第三子辅助区域B2依次交替设置。第二辅助区域D包括与第一辅助区域B交叠的第二子辅助区域D1以及与第一电极区域A交叠的第四子辅助区域D2,第二子辅助区域D1和第四子辅助区域D2依次交替设置。
其中,第一子辅助区域B1和第二子辅助区域D1在均与第四区域H重合,第三子辅助区域B2与第三区域G重合,第四子辅助区域D2与第二区域F重合。
在一些示例中,如图4所示,第一电极层2包括设置在第一子辅助区域B1的第三网格电极22,该第三网格电极22与第一网格电极21电性绝缘。也即,第三网格电极22和第一网格电极21之间未形成连接。
在一些示例中,如图5所示,第二电极层4包括设置在第二子辅助区域D1的第四网格电极42,该第四网格电极42与第二网格电极41电性绝缘。也即,第四网格电极42和第二网格电极41之间未形成连接。
其中,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度,与第三网格电极22和第四网格电极42共同在衬底1上的正投影的网格密度相同或大致相同。
这样有利于提高不同区域内网格电极分布密度的均匀性,提高触控基板100的光学消影效果。
示例性的,如图6所示,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第三网格电极22和第四网格电极42共同在衬底1上的正投影的图案相同。
这样保证了触控基板100在第一区域E和第四区域H可以取得相同的光学消影效果,进而在第一区域E、第二区域F、第三区域G和第四区域H具有相同的图案的基础上,该四个区域可以具有相同的光学消影效果,能够有效提高触控基板100的光学消影效果。
进一步地,如图6所示,第三网格电极22的图案与第一子网格电极211的图案相同;第四网格电极42的图案与第三子网格电极411的图案相同。如此,可以便于第一子网格电极211、第三子网格电极411、第三网格电极22和第四网格电极42的设计及制备。
可选的,如图6所示,第三网格电极22的图案和第四网格电极42的图案交错设置,两者不重合,且第一子网格电极211的图案和第三子 网格电极411的图案交错设置,两者不重合。这样既可以使得第三网格电极22和第四网格电极42共同在衬底1上的正投影的图案相同或大致相同,又可以避免在第一子网格电极211和第三子网格电极411之间形成较大的寄生电容。
在本公开的另一种实施方式中,如图8~图11所示,第一辅助区域B包括与第二辅助区域D交叠的第一子辅助区域以及与第二电极区域C交叠的第三子辅助区域,第一子辅助区域和第三子辅助区域依次交替设置。第二辅助区域D包括与第一辅助区域B交叠的第二子辅助区域以及与第一电极区域A交叠的第四子辅助区域,第二子辅助区域和第四子辅助区域依次交替设置。
其中,第一子辅助区域和第二子辅助区域均与第四区域H重合,第三子辅助区域与第三区域G重合,第四子辅助区域与第二区域F重合。
在一些示例中,第一子辅助区域或第二子辅助区域内设置有第五网格电极K,第五网格电极K在衬底1上的正投影的网格密度,与第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度相同或大致相同。
这样保证了触控基板100在第一区域E和第四区域H可以取得相同的光学消影效果,进而在第一区域E、第二区域F、第三区域G和第四区域H具有相同的图案的基础上,该四个区域可以具有相同的光学消影效果,能够有效提高触控基板100的光学消影效果。
上述第五网格电极K具有多种设置方式,可以根据实际需要选择设置。
可选的,如图10和图11所示,在第五网格电极K设置在第一子辅助区域的情况下,第五网格电极K位于第一电极层2中,且第五网格电极K与第一网格电极21电性绝缘。也即,第五网格电极K与第一网格电极21之间未形成连接。此时,第二子辅助区域D1中未设置网格电极。
需要说明的是,本文中,“A位于B层”中指的是,B层所对应的图案包括A所对应的图案。若B层还包括C所对应的图案,则A所对应的图案与C所对应的图案通常设置。其中,“同层”指的是,采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。这样可以通过同层设置多个元件或部件的图形(例如第一网格电极21和第五网格电极K),而不 增加薄膜制作的次数,有利于简化触控基板100的制作工艺。
可选的,如图8和图9所示,在第五网格电极K设置在第二子辅助区域D1的情况下,第五网格电极K位于第二电极层4中,且第五网格电极K与第二网格电极41电性绝缘。也即,第五网格电极K与第二网格电极41之间未形成连接。此时,第一子辅助区域B1中未设置网格电极。
这样可以在一次构图工艺中同时制备形成上述第五网格电极K和第二网格电极41,有利于简化触控基板100的制作工艺。
下面,以另一种实现方式作为示例,对本公开的一些实施例中提供的触控基板100的结构、原理和效果进行示意性说明。
图3为本公开的一些示例中的触控基板100的俯视图。根据图3可知,本公开的一些示例中的触控基板100可以包括触控区域N和围绕触控区域N的外围区域M。其中,触控区域N包括沿第一方向X延伸且依次交替设置的多个第一电极区域A和多个第一辅助区域B,以及,沿第二方向Y延伸且依次交替设置的多个第二电极区域C和多个第二辅助区域D,第一方向X与第二方向Y相交。
此处,关于第一电极区域A、第一辅助区域B、第二电极区域C、第二辅助区域D、第一方向X及第二方向Y的说明,可以参照上述一些实施例中的说明,此处不再赘述。
在一些示例中,根据图2可知,本公开的一些示例中的触控基板100可以包括依次层叠设置的衬底1、黑矩阵层5、第一电极层2、电介质层3和第二电极层4。
此处,衬底1的结构可以参照上述一些实施例中的说明,此处不再赘述。
在一些示例中,如图2所示,上述黑矩阵层5位于外围区域M。
在一些示例中,如图2所示,上述黑矩阵层5和第一电极层2之间还设置有一绝缘层6。该绝缘层6覆盖黑矩阵层5,且该绝缘层6的远离衬底1的一侧表面为较为平整的表面,这样可以使得设置在绝缘层6远离衬底1一侧表面上的第一电极层2的结构较为平整,避免出现第一电极层2中的网格电极结构断裂的情况。
示例性的,绝缘层6可以采用有机绝缘材料制备形成。其中,该绝缘层6具有较高的光线透过率,以便于确保光线能够从衬底1的一侧,依次穿过衬底、绝缘层6、第一电极层2、电介质层3以及第二电极层4之后射出。
在一些示例中,如图2所示,第一电极层2包括设置在每个第一电极区域A的第一网格电极21,以及设置在外围区域M的多条第一触控引线L1,该多条第一触控引线L1分别与多个第一电极区域A的第一网格电极21连接。示例性的,该第一触控引线L1与第一网格电极21一一对应连接。
在一些示例中,如图2所示,第二电极层4包括设置在每个第二电极区域C的第二网格电极41,以及设置在外围区域M的多条第二触控引线L2,该多条第二触控引线L2分别与多个第二电极区域A的第二网格电极41连接。示例性的,该第二触控引线L2与第二网格电极41一一对应连接。
示例性的,第一触控引线L1能够向第一网格电极21传输触摸感测信号,第二触控引线L2能够向第二网格电极41传输触摸驱动信号。通过将触摸感测信号和触摸驱动信号相配合,便可以利用第一网格电极21和第二网格电极41实现触控的目的。
在一些示例中,如图4和图6所示,每个第一网格电极21包括沿第一方向X交替设置且依次电连接的多个第一子网格电极211和多个第二子网格电极212,每个第一子网格电极211(位于第一区域E)与一个第二电极区域B交叠,每个第二子网格电极212(位于第二区域F)与一个第二辅助区域D交叠。如图5和图6所示,每个第二网格电极41包括沿第二方向Y交替设置且依次电连接的多个第三子网格电极411和多个第四子网格电极412,每个第三子网格电极411(位于第一区域E)与一个第一电极区域A交叠,每个第四子网格电极412(位于第三区域G)与一个第一辅助区域B交叠。
在一些示例中,如图4和图6所示,在第一辅助区域B中,与第四子网格电极412交叠的部分(也即第三区域G)不设置网格电极,且第一辅助区域B中与第二辅助区域D交叠的部分(也即第四区域H)设置有属于第一电极层2的第三网格电极22,第三网格电极22和第一网格电极21电性绝缘。如图5和图6所示,在第二辅助区域D中,与第二子网格电极212交叠的部分(也即第二区域F)不设置网格电极,且第二辅助区域D中与第一辅助区域B交叠的部分(也即第四区域H)设置有属于第二电极层4的第四网格电极42,第四网格电极42和第二网格电极41电性绝缘。
在一些示例中,第一子网格电极211、第三子网格电极411、第三网 格电极22和第四网格电极42的网格密度相同或大致相同,第二子网格电极212和第四子网格电极412的网格密度相同或大致相同,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的网格密度、第三网格电极22和第四网格电极42共同在衬底1上的正投影的网格密度、第二子网格电极212在衬底1上的正投影的网格密度以及第四子网格电极412在衬底1上的正投影的网格密度相同或大致相同。
示例性的,如图4~图6所示,第一子网格电极211、第三子网格电极411、第三网格电极22和第四网格电极42的图案相同或大致相同,第二子网格电极212和第四子网格电极412的图案相同或大致相同,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案、第三网格电极22和第四网格电极42共同在衬底1上的正投影的图案、第二子网格电极212在衬底1上的正投影的图案以及第四子网格电极412在衬底1上的正投影的图案相同或大致相同。
这也就意味着,分别位于第一区域E、第二区域F、第三区域G和第四区域H中的网格电极的网格密度相同或大致相同,甚至分别位于第一区域E、第二区域F、第三区域G和第四区域H中的网格电极的图案相同或大致相同,这样有利于使得触控基板100实现良好的光学效应效果。而且,在触控基板100工作的过程中,仅在第一网格电极21和第二网格电极41中传输有电信号,而与第一网格电极21电性绝缘的第三网格电极22以及与第二网格电极41电性绝缘的第四网格电极42处于悬浮状态,也即,仅在第一区域E、第二区域F和第三区域G内会传输有电信号,这样可以避免在第一网格电极21和第二网格电极41之间形成寄生电容,进而降低了第一网格电极21和第二网格电极41的阻抗,有利于提高触控基板100的触控灵敏度。
可选的,如图4和图5所示,第一子网格电极211、第三子网格电极411、第三网格电极22、第四网格电极42、第二子网格电极212和第四子网格电极412均为均匀的网格电极。
如图6所示,在触控基板100的第一区域E,第一子网格电极211和第三子网格电极411交错式交叠,可以使得位于第一区域E的网格电极的图案为均匀的网格电极图案。在触控基板100的第四区域H,第三网格电极22和第四网格电极42交错式交叠,可以使得位于第四区域H的网格电极的图案为均匀的网格电极图案。如此,第一子网格电极211和第三子网格电极411共同在衬底1上的正投影的图案,与第三网格电 极22和第四网格电极42共同在衬底1上的正投影的图案相同或大致相同,且与第二子网格电极212和第四子网格电极412共同在衬底1上的正投影的图案相同或大致相同。
这样有利于进一步确保位于第一区域E、第二区域F、第三区域G和第四区域H的网格电极的图案相同或大致相同,进一步提升触控基板100的光学消影效果。
在一些实施例中,本示例的触控基板100还可以包括位于第二电极层4远离衬底1一侧的保护层7。该保护层7能够对第二电极层4进行保护。
为了进一步验证本公开的触控基板100能够降低网格电极的阻抗,本公开的一些实施方例还提供了如下第一触控器件和第二触控器件,具体结构可以参加下面的示意性说明。
如图12和图13所示,第一触控器件包括依次层叠设置第三电极层I和第四电极层J。
其中,如图12和图13所示,第一触控器件具有第三电极区域I1和第三辅助区域I2,以及第四电极区域I3和第四辅助区域I4。
第三电极层I包括设置在第三电极区域I1的第六网格电极I5,以及设置在第三辅助区域I2的第七网格电极I6,第六网格电极I5和第七网格电极I6电性绝缘。第四电极层J包括设置在第四电极区域I3的第八网格电极J1,以及设置在第四辅助区域I4的第九网格电极J2,第八网格电极J1和第九网格电极J2电性绝缘。第六网格电极I5、第七网格电极I6、第八网格电极J1和第九网格电极J2的图案相同。
示例性的,第三电极区域I1的延伸方向与第四电极区域I3的延伸方向相互垂直,这样可以使得第六网格电极I5和第八网格电极J1在交叠区域形成触控电容。
此处,第三电极层I上的网格电极与第四电极层J上的网格电极相互交叠设置,使得第一触控器件的网格电极图案为均匀的网格电极图案。该第一触控器件可以用于模拟相关技术中的金属网格触摸屏。
如图14和图15所示,第二触控器件包括第五电极层P和第六电极层Q。
其中,如图14和图15所示,第二触控器件具有第三电极区域I1和第三辅助区域I2,以及第四电极区域I3和第四辅助区域I4。第三电极区域I3的延伸方向与第四电极区域I4的延伸方向垂直。
第五电极层P包括设置在第三电极区域I1的第十网格电极P1,且第三辅助区域I2内不设置网格电极。第六电极层Q包括设置在第四电极区域I3的第十一网格电极Q1,以及设置在第四辅助区域的第十二网格电极Q2,第十一网格电极Q1与第十二网格电极Q2电性绝缘。其中,第十一网格电极Q1包括与第三电极区域I1交叠设置的第十一子网格电极Q11以及与第三辅助区域I2交叠设置的第十二子网格电极Q12。
示例性的,第十二网格电极Q2、第十网格电极P1、第十一子网格电极Q11和第六网格电极I5的图案相同。第十二子网格电极Q12的图案,与第一触控器件在第七网格电极I6和第八网格电极J1交叠处的网格电极图案相同。其中,第十网格电极P1与第十一子网格电极Q11及第十二网格电极Q2相互交叠设置,使得第二触控器件的网格电极图案为均匀的网格电极图案。其中,第二触控器件用于测试本公开提供的触控基板100的第二网格电极41的阻抗。
对第一触控器件的第八网格电极J1的测试结果,以及对第二触控器件的第十一网格电极Q1的测试结果,如表1中所示。
表1:阻抗测试结果
Figure PCTCN2020109193-appb-000001
根据表1可知,第二触控器件的第十一网格电极Q1的电阻值相比第一触控器件的第八网格电极J1的电阻值有较大的降低,且驱动延迟降低了22.6%,有效降低第二触控器件的第十一网格电极Q1的阻抗。这样也就意味着,本公开的触控基板100中的第一网格电极21和第二网格电极41采用网格密度变化的设计方案,能够有效降低第一网格电极21和第二网格电极41的阻抗,进而有利于提高触控基板100的触控灵敏度。
本公开的一些实施例提供了一种触控基板的制备方法。如图16所示,该制备方法包括:S100~S500。
S100,提供衬底1。
S200,在衬底1的一侧形成黑矩阵层5。
示例性的,可以采用光刻工艺制备形成上述黑矩阵层5。
S300,在黑矩阵层5远离衬底1的一侧形成第一电极层2。
示例性的,在上述S300中,可以通过如下方法形成第一电极层2:采用磁控溅射工艺在黑矩阵层5远离衬底1的一侧形成第一电极材料层;然后采用涂覆工艺在第一电极材料层远离衬底1的一侧形成第一光刻胶层;然后对第一光刻胶层进行曝光、显影,得到图案化的第一光刻胶层;然后以图案化的第一光刻胶层为掩膜,对第一电极材料层进行刻蚀;之后去除图案化的第一光刻胶层,即可得到第一电极层2。
在一些示例中,在上述S300之前,还会在黑矩阵层5远离衬底1的一侧,形成绝缘层6。该绝缘层6例如可以采用光刻工艺制备形成。
此时,第一电极层2则位于绝缘层6远离衬底1的一侧。这样可以利用绝缘层6在黑矩阵层5和第一电极层2之间形成间隔,避免影响第一电极层2的正常使用。
S400,在第一电极层2远离衬底1的一侧形成电介质层3。
示例性的,可以采用光刻工艺形成电介质层3。
S500,在电介质层3远离衬底1的一侧形成第二电极层4。
示例性的,在上述S500中,可以通过如下方法形成第二电极层4:采用磁控溅射工艺在电介质层3远离衬底1的一侧形成第二电极材料层;然后采用涂覆工艺在第二电极材料层远离衬底1的一侧形成第二光刻胶层;然后对第二光刻胶层进行曝光、显影,得到图案化的第二光刻胶层;然后以图案化的第二光刻胶层为掩膜,对第二电极材料层进行刻蚀;之后去除图案化的第二光刻胶层,即可得到第二电极层4。
本公开的一些实施例所提供的触控基板的制备方法所能实现的有益效果,与上述一些实施例中所提供的触控基板100所能实现的有益效果相同,此处不再赘述。
在一些实施例中,触控基板的制备方法还可以包括如下步骤:在S500之后,在第二电极层4远离衬底1的一侧,形成保护层7。
示例性的,可以采用光刻工艺制备形成上述保护层7。
本公开的一些实施例还提供了一种触控显示面板1000。如图17~图19所示,该触控显示面板1000包括:如上述任一实施例中所描述的触控基板100。
在一些实施例中,该触控显示面板1000可以为LCD(Liquid Crystal Display,液晶显示装置)触控显示面板、OLED(Organic Light Emitting Diode,有机发光二极管)触控显示面板、QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)触控显示面板或者其他类型的触控 显示面板。
由于该触控显示面板1000中的触控基板100,具有与上述任意一种实施例中的触控基板100相同的结构以及相同的有益效果,本公开在此不再赘述。
上述触控显示面板1000的结构包括多种,其结构与触控基板100的设置方式相关。此处,以触控显示面板1000为LCD触控显示面板为例,对触控显示面板1000的结构进行示意性说明。
在一些示例中,如图17~图19所示,触控显示面板1000还包括:相对设置在的阵列基板200和对置基板300,以及设置在两者之间的液晶层400。其中,对置基板300包括:衬底基板301以及设置在衬底基板301远离阵列基板一侧的偏光片302。
示例性的,如图17示,触控基板100可以设置在触控显示面板1000的出光侧,也即对置基板300远离阵列基板200的一侧。此时,触控显示面板1000可以称为外挂式触控显示面板。
示例性的,如图18所示,触控基板100可以设置在衬底基板301和偏光片302之间。此时,触控显示面板1000可以称为外置式(On Cell)触控显示面板。
示例性的,如图19所示,触控基板100可以设置在阵列基板200靠近液晶层400的一侧。此时,触控显示面板1000可以称为嵌入式(In Cell)触控显示面板。
本公开的一些实施例还提供了一种触控显示装置2000。如图20所示,该触控显示装置2000包括上述任一实施例中所描述的触控显示面板1000。
当然,上述触控显示装置2000例如还可以包括外壳等结构。
由于该触控显示装置具有上述触控显示面板实施方式所描述的任意一种触控显示面板,因此具有相同的有益效果,本公开在此不再赘述。
在一些实施例中,触控显示装置2000可以为手机、平板电脑、电视机、电脑屏幕、数码相框、导航仪等或者其他类型的触控显示装置。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种触控基板,包括:依次层叠设置的衬底、第一电极层、电介质层和第二电极层;
    所述触控基板具有沿第一方向延伸且依次交替设置的多个第一电极区域和多个第一辅助区域,以及沿第二方向延伸且依次交替设置的多个第二电极区域和多个第二辅助区域;所述第一方向与所述第二方向相交;
    其中,所述第一电极层包括设置在每个第一电极区域的第一网格电极;所述第一网格电极包括沿所述第一方向交替设置且依次电连接的多个第一子网格电极和多个第二子网格电极;每个第一子网格电极与一个第二电极区域交叠,每个第二子网格电极与一个第二辅助区域交叠,所述第一子网格电极的网格密度小于所述第二子网格电极的网格密度;
    所述第二电极层包括设置在每个第二电极区域的第二网格电极;所述第二网格电极包括沿第二方向交替设置且依次电连接的多个第三子网格电极和多个第四子网格电极;每个第三子网格电极与一个第一电极区域交叠,每个第四子网格电极与一个第一辅助区域交叠,所述第三子网格电极的网格密度小于所述第四子网格电极的网格密度。
  2. 根据权利要求1所述的触控基板,其中,所述第一子网格电极的网格密度与所述第二子网格电极的网格密度之间的比例为1:2或大约为1:2;和/或,
    所述第三子网格电极的网格密度与所述第四子网格电极的网格密度之间的比例为1:2或大约为1:2。
  3. 根据权利要求1或2所述的触控基板,其中,所述第一子网格电极的网格密度与所述第三子网格电极的网格密度相同或大致相同;和/或,
    所述第二子网格电极的网格密度与所述第四子网格电极的网格密度相同或大致相同。
  4. 根据权利要求1~3中任一项所述的触控基板,其中,所述第一电极层所包括的网格电极及所述第二电极层所包括的网格电极,均包括:
    沿第三方向延伸的多条第一电极线,以及沿第四方向延伸的多条第二电极线;
    所述多条第一电极线和所述多条第二电极线交叉形成所述网格电极的网格;所述第三方向和所述第四方向相交。
  5. 根据权利要求4所述的触控基板,其中,在所述第一子网格电极的网格密度与所述第二子网格电极的网格密度之间的比例为1:2或大约为1:2的情 况下,
    所述第一子网格电极中相邻两条第一电极线之间的间距,与所述第二子网格电极中相邻两条第一电极线之间的间距的比例为2:1或大约为2:1;所述第一子网格电极中相邻两条第二电极线之间的间距,与所述第二子网格电极中相邻两条第二电极线之间的间距的比例为2:1或大约为2:1;
    在第三子网格电极的网格密度与所述第四子网格电极的网格密度之间的比例为1:2或大约为1:2的情况下,
    所述第三子网格电极中相邻两条第一电极线之间的间距,与所述第四子网格电极中相邻两条第一电极线之间的间距的比例为2:1或大约为2:1;所述第三子网格电极中相邻两条第二电极线之间的间距,与所述第四子网格电极中相邻两条第二电极线之间的间距的比例为2:1或大约为2:1;
    在所述第一子网格电极的网格密度与所述第三子网格电极的网格密度相同或大致相同的情况下,
    所述第一子网格电极中相邻两条第一电极线之间的间距,与所述第三子网格电极中相邻两条第一电极线之间的间距相同或大致相同;所述第一子网格电极中相邻两条第二电极线之间的间距,与所述第三子网格电极中相邻两条第二电极线之间的间距相同或大致相同;
    在所述第二子网格电极的网格密度与所述第四子网格电极的网格密度相同或大致相同的情况下,
    所述第二子网格电极中相邻两条第一电极线之间的间距,与所述第四子网格电极中相邻两条第一电极线之间的间距相同或大致相同;所述第二子网格电极中相邻两条第二电极线之间的间距,与所述第四子网格电极中相邻两条第二电极线之间的间距相同或大致相同。
  6. 根据权利要求4或5所述的触控基板,其中,所述第一电极层和所述第二电极层共同在所述衬底上的正投影中,
    相邻两条第一电极线所对应的投影之间的间距的范围为100μm~400μm;
    相邻两条第二电极线所对应的投影之间的间距的范围为100μm~400μm。
  7. 根据权利要求4~6中任一项所述的触控基板,其中,每条第一电极线的线宽的范围为3μm~10μm;每条第二电极线的线宽的范围为3μm~10μm。
  8. 根据权利要求1~7中任一项所述的触控基板,其中,所述第一电极层所包括的网格电极的网格形状及所述第二电极层所包括的网格电极的网格形状,均包括:矩形、正方形和菱形中的至少一种。
  9. 根据权利要求1~8中任一项所述的触控基板,其中,所述第二辅助区 域中,与所述第二子网格电极交叠的部分不设置网格电极。
  10. 根据权利要求9所述的触控基板,其中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第二子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
  11. 根据权利要求10所述的触控基板,其中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的图案,与所述第二子网格电极在所述衬底上的正投影的图案相同或大致相同。
  12. 根据权利要求1~11中任一项所述的触控基板,其中,所述第一辅助区域中,与所述第四子网格电极交叠的部分不设置网格电极。
  13. 根据权利要求12所述的触控基板,其中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第四子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
  14. 根据权利要求13所述的触控基板,其中,所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的图案,与所述第四子网格电极在所述衬底上的正投影的图案相同或大致相同。
  15. 根据权利要求1~14中任一项所述的触控基板,其中,所述第一辅助区域包括与所述第二辅助区域交叠的第一子辅助区域;所述第二辅助区域包括与所述第一辅助区域交叠的第二子辅助区域;
    所述第一电极层包括设置在所述第一子辅助区域的第三网格电极;所述第三网格电极与所述第一网格电极电性绝缘;
    所述第二电极层包括设置在所述第二子辅助区域的第四网格电极;所述第四网格电极与所述第二网格电极电性绝缘;
    所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度,与所述第三网格电极和所述第四网格电极共同在所述衬底上的正投影的网格密度相同或大致相同。
  16. 根据权利要求15所述的触控基板,其中,所述第三网格电极的图案与所述第一子网格电极的图案相同;
    所述第四网格电极的图案与所述第三子网格电极的图案相同。
  17. 根据权利要求1~14中任一项所述的触控基板,其中,所述第一辅助区域包括与所述第二辅助区域交叠的第一子辅助区域;所述第二辅助区域包括与所述第一辅助区域交叠的第二子辅助区域;
    所述第一子辅助区域或所述第二子辅助区域设置有第五网格电极,所述第五网格电极在所述衬底上的正投影的网格密度,与所述第一子网格电极和 所述第三子网格电极共同在所述衬底上的正投影的网格密度相同或大致相同;
    其中,在所述第五网格电极设置在所述第一子辅助区域的情况下,所述第五网格电极位于所述第一电极层中;所述第五网格电极与所述第一网格电极电性绝缘;
    在所述第五网格电极设置在所述第二子辅助区域的情况下,所述第五网格电极位于所述第二电极层中;所述第五网格电极与所述第二网格电极电性绝缘。
  18. 一种触控显示面板,包括:如权利要求1~17中任一项所述的触控基板。
  19. 一种触控显示装置,包括:如权利要求18所述的触控显示面板。
  20. 一种触控基板,具有触控区域和围绕所述触控区域的外围区域;
    所述触控基板包括:依次层叠设置的衬底、黑矩阵层、第一电极层、电介质层和第二电极层;其中,
    所述黑矩阵层位于所述外围区域;
    所述触控区域包括沿第一方向延伸且依次交替设置的多个第一电极区域和多个第一辅助区域,以及,沿第二方向延伸且依次交替设置的多个第二电极区域和多个第二辅助区域;所述第一方向与所述第二方向相交;
    所述第一电极层包括设置在每个第一电极区域的第一网格电极,以及设置在所述外围区域的多条第一触控引线,所述多条第一触控引线分别与所述多个第一电极区域的第一网格电极连接;
    所述第二电极层包括设置在每个第二电极区域的第二网格电极,以及设置在所述外围区域的多条第二触控引线,所述多条第二触控引线分别与所述多个第二电极区域的第二网格电极连接;
    所述第一网格电极包括沿所述第一方向交替设置且依次电连接的多个第一子网格电极和多个第二子网格电极;每个第一子网格电极与一个第二电极区域交叠,每个第二子网格电极与一个第二辅助区域交叠;所述第二网格电极包括沿第二方向交替设置且依次电连接的多个第三子网格电极和多个第四子网格电极;每个第三子网格电极与一个第一电极区域交叠,每个第四子网格电极与一个第一辅助区域交叠;
    所述第一辅助区域中,与所述第四子网格电极交叠的部分不设置网格电极,且所述第一辅助区域中与所述第二辅助区域交叠的部分设置有属于所述第一电极层的第三网格电极,所述第三网格电极与所述第一网格电极电性绝 缘;所述第二辅助区域中,与所述第二子网格电极交叠的部分不设置网格电极,且所述第二辅助区域中与所述第一辅助区域交叠的部分设置有属于所述第二电极层的第四网格电极,所述第四网格电极与所述第二网格电极电性绝缘;
    所述第一子网格电极、所述第三子网格电极、所述第三网格电极和所述第四网格电极的网格密度相同或大致相同;所述第二子网格电极和所述第四子网格电极的网格密度相同或大致相同;所述第一子网格电极和所述第三子网格电极共同在所述衬底上的正投影的网格密度、所述第三网格电极和所述第四网格电极共同在所述衬底上的正投影的网格密度、所述第二子网格电极在所述衬底上的正投影的网格密度以及所述第四子网格电极在所述衬底上的正投影的网格密度相同或大致相同。
PCT/CN2020/109193 2019-08-14 2020-08-14 触控基板、触控显示面板及触控显示装置 WO2021027922A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/422,100 US11347365B2 (en) 2019-08-14 2020-08-14 Touch substrate, touch display panel and touch display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910750939.2 2019-08-14
CN201910750939.2A CN110489014B (zh) 2019-08-14 2019-08-14 触控基板、触控显示面板及触控显示装置

Publications (1)

Publication Number Publication Date
WO2021027922A1 true WO2021027922A1 (zh) 2021-02-18

Family

ID=68551121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109193 WO2021027922A1 (zh) 2019-08-14 2020-08-14 触控基板、触控显示面板及触控显示装置

Country Status (3)

Country Link
US (1) US11347365B2 (zh)
CN (1) CN110489014B (zh)
WO (1) WO2021027922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115618447B (zh) * 2022-12-08 2023-03-10 中国人民解放军国防科技大学 一种三维随机六边形金属网栅结构及其设计方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489014B (zh) 2019-08-14 2021-11-19 合肥鑫晟光电科技有限公司 触控基板、触控显示面板及触控显示装置
CN113672111B (zh) * 2020-05-15 2024-04-05 京东方科技集团股份有限公司 触控基板及显示装置
CN111782082B (zh) * 2020-06-29 2024-01-23 京东方科技集团股份有限公司 一种触控基板及其制作方法、触控显示装置
US11709558B2 (en) 2020-08-07 2023-07-25 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, display apparatus, and method of fabricating display panel
KR20220037014A (ko) * 2020-09-16 2022-03-24 삼성디스플레이 주식회사 표시 장치
TWI773207B (zh) * 2020-11-06 2022-08-01 友達光電股份有限公司 觸控顯示裝置
US11620026B2 (en) 2020-11-06 2023-04-04 Au Optronics Corporation Touch apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579942A (zh) * 2013-09-10 2016-05-11 未来奈米科技股份有限公司 静电容量方式的触摸屏传感器、触摸屏面板及影像显示装置
CN106502454A (zh) * 2016-10-21 2017-03-15 昆山龙腾光电有限公司 触控显示面板及其制造方法
JP2017091018A (ja) * 2015-11-04 2017-05-25 パナソニック液晶ディスプレイ株式会社 タッチパネル及び表示装置
CN108700971A (zh) * 2016-03-10 2018-10-23 松下液晶显示器株式会社 触摸面板和显示装置
WO2019021572A1 (ja) * 2017-07-27 2019-01-31 株式会社ワコム 位置検出センサ、位置検出装置および情報処理システム
CN208888789U (zh) * 2018-10-17 2019-05-21 合肥鑫晟光电科技有限公司 一种触摸屏及显示装置
CN109976566A (zh) * 2018-03-23 2019-07-05 京东方科技集团股份有限公司 触控结构、触控基板及其制作方法、显示装置
CN110489014A (zh) * 2019-08-14 2019-11-22 合肥鑫晟光电科技有限公司 触控基板、触控显示面板及触控显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632503B (zh) * 2017-12-15 2018-08-11 友達光電股份有限公司 觸控面板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579942A (zh) * 2013-09-10 2016-05-11 未来奈米科技股份有限公司 静电容量方式的触摸屏传感器、触摸屏面板及影像显示装置
JP2017091018A (ja) * 2015-11-04 2017-05-25 パナソニック液晶ディスプレイ株式会社 タッチパネル及び表示装置
CN108700971A (zh) * 2016-03-10 2018-10-23 松下液晶显示器株式会社 触摸面板和显示装置
CN106502454A (zh) * 2016-10-21 2017-03-15 昆山龙腾光电有限公司 触控显示面板及其制造方法
WO2019021572A1 (ja) * 2017-07-27 2019-01-31 株式会社ワコム 位置検出センサ、位置検出装置および情報処理システム
CN109976566A (zh) * 2018-03-23 2019-07-05 京东方科技集团股份有限公司 触控结构、触控基板及其制作方法、显示装置
CN208888789U (zh) * 2018-10-17 2019-05-21 合肥鑫晟光电科技有限公司 一种触摸屏及显示装置
CN110489014A (zh) * 2019-08-14 2019-11-22 合肥鑫晟光电科技有限公司 触控基板、触控显示面板及触控显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115618447B (zh) * 2022-12-08 2023-03-10 中国人民解放军国防科技大学 一种三维随机六边形金属网栅结构及其设计方法

Also Published As

Publication number Publication date
CN110489014B (zh) 2021-11-19
US11347365B2 (en) 2022-05-31
US20220113838A1 (en) 2022-04-14
CN110489014A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021027922A1 (zh) 触控基板、触控显示面板及触控显示装置
US11093066B2 (en) Touch substrate and manufacturing method thereof, touch display panel and touch display apparatus
CN110321027B (zh) 具有保护的显示器用触摸传感器
JP7214642B2 (ja) タッチ基板及びその製造方法、表示パネル
US9740344B2 (en) Touch screen and manufacturing method thereof, display device
US9182844B2 (en) Touch panel, display device provided with touch panel, and method for manufacturing touch panel
TWI473147B (zh) 包括導電圖案之觸控面板
JP5827972B2 (ja) タッチセンサ一体型表示装置
CN106020562B (zh) 一种触控屏及其制作方法、外挂式触摸屏
WO2021249098A1 (zh) 显示基板及其制备方法、显示装置
US9134872B2 (en) Touch screen, color filter substrate and manufacturing method thereof
CN104881178A (zh) 一种触摸显示屏、其制作方法及显示装置
WO2014183452A1 (zh) 一种触摸屏及显示装置
WO2020001098A1 (zh) 触控面板和触控显示装置
US11023073B2 (en) Touch panel, manufacturing method thereof, and touch display device
WO2018133421A1 (zh) 彩膜基板及其制备方法、触摸屏
WO2014187104A1 (zh) 显示面板及其制造方法、显示装置
US11086460B2 (en) Touch substrate, method for manufacturing same, and touch device
US10768764B2 (en) Touch structure and manufacturing method thereof, and touch device
US20240086004A1 (en) Touch panel and touch display panel
WO2019062320A1 (zh) 阵列基板及其制备方法、显示装置
US20230168757A1 (en) Touch Panel and Preparation Method thereof, and Display Touch Apparatus
US20220276742A1 (en) Touch display panel and manufacturing method thereof, and display device
WO2018018890A1 (zh) 触控屏及其制备方法、触控显示装置
WO2019140916A1 (zh) 触控基板及其制造方法、触控显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852959

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20852959

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20852959

Country of ref document: EP

Kind code of ref document: A1