WO2021027824A1 - 一种钨基合金材料及其制备方法 - Google Patents

一种钨基合金材料及其制备方法 Download PDF

Info

Publication number
WO2021027824A1
WO2021027824A1 PCT/CN2020/108558 CN2020108558W WO2021027824A1 WO 2021027824 A1 WO2021027824 A1 WO 2021027824A1 CN 2020108558 W CN2020108558 W CN 2020108558W WO 2021027824 A1 WO2021027824 A1 WO 2021027824A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tungsten
based alloy
alloy material
preparation
Prior art date
Application number
PCT/CN2020/108558
Other languages
English (en)
French (fr)
Inventor
魏世忠
徐流杰
肖方闹
潘昆明
周玉成
李秀青
李继文
王喜然
王晓东
张程
陈冲
毛丰
熊美
张国赏
靳东亮
Original Assignee
河南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南科技大学 filed Critical 河南科技大学
Priority to US17/633,962 priority Critical patent/US20220325380A1/en
Publication of WO2021027824A1 publication Critical patent/WO2021027824A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/007Hydrostatic extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a tungsten-based alloy material and a preparation method thereof, and belongs to the technical field of tungsten-based alloy materials.
  • High-density tungsten-based alloys are alloys that use tungsten as a matrix and are added with elements such as Ni, Fe, Co, Cu, Mo, and Cr. The density is usually 17.5 to 19.0 g/cm 3 . High-density tungsten-based alloy has high density, high strength and good wear resistance and radiation absorption. These advantages make it an ideal material for many industrial applications, especially in the field of defense industry, high-density tungsten-based alloy is widely used Used to manufacture various rod-type kinetic energy armor-piercing projectile cores and missile damage unit components. However, high-density tungsten-based alloys are typical hard-to-deform materials.
  • Oxide dispersion strengthened W-Ni-Fe alloy is one of the most promising tungsten-based alloy materials. Even if the W-Ni-Fe alloy is prepared by conventional liquid phase sintering, it is compared with conventional tungsten-based alloys at high temperatures. There is still an advantage in strength because the oxide particles in the matrix act as pinning points to hinder the migration of dislocations and subgrain boundaries.
  • the Chinese invention patent with the authorized announcement number CN105441765B discloses a high-density tungsten alloy for bullets.
  • the alloy composition is as follows: tungsten 90.0-97.0%, zirconium oxide 0.1-2.0%, binder phase nickel and iron 2.0 ⁇ 9.9%, the mass ratio of nickel to iron is 3 ⁇ 4:2 ⁇ 1, and unavoidable impurities; the preparation steps of the high-density tungsten alloy for bomb use are as follows: dissolve ammonium metatungstate and zirconium nitrate in water respectively, Mix and dry the mixed solution to obtain powder.
  • the powder is calcined and reduced to obtain composite tungsten powder; take nickel powder and iron powder, mix and ball mill to obtain a nickel-iron solid solution; mix the composite tungsten powder and nickel-iron solid solution, and the mixed powder is pressed and sintered , That is, high-density tungsten alloy for bombs.
  • the high-density tungsten alloy for bombs is prepared by adding high-temperature stable phase zirconia to the tungsten alloy.
  • the zirconia dispersed phase is small and uniformly distributed in the tungsten matrix, which solves the problem of poor mechanical properties caused by uneven phase distribution.
  • the tensile strength can reach above 1250MPa.
  • the processing time is as long as 20 to 35 hours in the process of mixing composite tungsten powder and nickel-iron alloy by ball milling
  • the metal powder in the mixed powder after ball milling appears work hardening, and it is difficult to effectively form zirconium oxide particles. Grinding is not conducive to further improvement of zirconia distribution uniformity and further reduction of particle size, and the tensile strength performance of the tungsten-based alloy is limited.
  • the purpose of the present invention is to provide a method for preparing tungsten-based alloy materials, which can improve the tensile strength of high-density tungsten-based alloys.
  • the present invention also provides a tungsten-based alloy material prepared by the above-mentioned preparation method, which has higher tensile strength.
  • the technical solution adopted by the preparation method of the tungsten-based alloy material of the present invention is:
  • a preparation method of tungsten-based alloy material includes the following steps:
  • the composite powder is powder I, powder II or powder III;
  • the powder I contains tungsten, Zirconia, nickel, and iron;
  • the powder II contains tungsten, zirconia, and ferronickel solid solutions;
  • the powder III contains tungsten, zirconia, and ferronickel solid solutions containing zirconium hydride; nickel and iron in the composite powder
  • the mass ratio is 7:2 ⁇ 5;
  • the powder can be annealed after the first grinding to make the metal particles soft, and then the powder is ground again, which overcomes the problem of the conventional technology using single grinding in the late stage of mixing. It is difficult to effectively grind the zirconia particles due to particle work hardening; the grinding-annealing-grinding method is used for mixing, which reduces the size of the zirconia particles and improves the uniformity of the distribution of zirconia particles in the powder. Thus, the tensile strength and hardness of the tungsten-based alloy obtained after sintering are improved.
  • the tungsten-based alloy material prepared by the preparation method of the present invention has high strength while maintaining high plasticity. Its density reaches more than 98%, its microhardness reaches more than 445Hv, and its tensile strength reaches more than 1450MPa. The rate reaches more than 15%.
  • the grinding is a ball mill; the rotation speed of the ball mill is 200-400 rpm, and the time is 6 ⁇ 10h, the ball to material ratio is 5 ⁇ 8:1.
  • the ball-to-material ratios of the present invention are all mass ratios. If the milling time is too short, it is unfavorable to refine the composite powder particles and reduce the densification of the alloy.
  • the morphology of the tungsten powder particles is flake, and the surface area of the tungsten powder particles of flake morphology is large, which is prone to agglomeration, resulting in the powder voids remaining in the alloy billet, which is not conducive to the improvement of the strength of the compact.
  • the annealing treatment is performed at 700-1000°C for a time of 1 to 3 hours.
  • the powder I is made of tungsten, zirconium oxide, nickel, iron and zirconium hydride.
  • the ratio of the mass of tungsten, the mass of zirconia, the total mass of nickel-iron and the mass of zirconium hydride in the powder I is 93:0.066 ⁇ 0.267:6.5 ⁇ 6.9:0.033 ⁇ 0.133;
  • the powder II is made of tungsten , Zirconium oxide, ferronickel solid solution and zirconium hydride, the mass ratio of tungsten, zirconia, ferronickel solid solution and zirconium hydride in powder II is 93:0.066 ⁇ 0.267:6.5 ⁇ 6.9:0.033 ⁇ 0.133;
  • the powder III The mass ratio of tungsten, zirconium oxide, and ferronickel solid solution containing zirconium hydride is 93:0.066 ⁇ 0.267:6.533-7033, and the mass ratio of zirconium oxide to ferronickel solid solution containing zirconium hydride is 0.066 ⁇ 0.267:0.033 ⁇ 0.133.
  • the zirconium hydride in the composite powder is easy to decompose at high temperature, producing zirconium metal and N, C, O and other harmful elements distributed at the grain boundaries to form fine high-temperature refractory carbon (oxygen or nitrogen) compounds, thereby promoting the alloy grain boundaries
  • the reduction of the concentration of harmful elements, while these small and stable refractory carbon (oxygen or nitrogen) compounds hinder the growth of grains, is conducive to the improvement of the high-temperature strength, recrystallization temperature and creep resistance of tungsten-based alloys, and the recrystallization temperature Improve the effect of maintaining the deformation and strengthening of the tungsten-based alloy.
  • the method for preparing a ferronickel solid solution containing zirconium hydride in Powder III includes the following steps: mixing nickel powder, iron powder and zirconium hydride powder and then ball milling to obtain; in the method for preparing a ferronickel solid solution containing zirconium hydride
  • the speed of the ball mill is 200-350rpm, the time is 12-16h, and the ball-to-battery ratio is 5-8:1.
  • powder I is obtained by mixing iron powder, nickel powder and mixed powder as main raw materials
  • powder II is obtained by mixing ferronickel solid solution powder and mixed powder as main raw materials
  • powder III is obtained by mixing zirconium hydride The ferronickel solid solution and the mixed powder are obtained by mixing; the mixed powder used for preparing powder I, powder II, and powder III is prepared by a method including the following steps:
  • Ammonium metatungstate is formulated into precursor solution A with pH ⁇ 1, and then the precursor solution A is subjected to a hydrothermal reaction to prepare a tungsten trioxide suspension;
  • the way of adding zirconium oxide has an important influence on the mechanical properties of tungsten-based alloys.
  • the mixed powder used in the above powder I, powder II, and powder III is zirconia-doped composite tungsten powder, which is doped with liquid and liquid.
  • Method The ammonium metatungstate solution and the zirconium nitrate solution are hydrothermally reacted separately, the reaction products are fully mixed, and then calcined and reduced, so that the liquid-liquid doping and co-reduction process ensures that the zirconium oxide in the mixed powder
  • the particle size is fine and uniformly distributed in the tungsten powder, and at the same time, the size of the mixed powder particles can be distributed normally, which is beneficial to the improvement of the strength of the green compact, and thus the alloy density.
  • the preparation method of the tungsten-based alloy material further includes the hydrostatic extrusion deformation treatment and aging treatment of the tungsten-based alloy blank; the temperature of the aging treatment is 800-1100°C , The time is 7-10h.
  • the trace hydrogen entering the material will cause embrittlement or even cracking of the material under the action of internal residual stress or applied stress.
  • the obtained tungsten-based alloy blank is subjected to dehydrogenation treatment; the dehydrogenation treatment is carried out in an inert atmosphere at 1150-1300°C for 4-6 hours, and then cooled with the furnace.
  • the dehydrogenation treatment can prevent the prepared tungsten-based alloy material from exhibiting high hydrogen embrittlement during use.
  • the temperature of the liquid phase sintering is 1450 to 1550°C; and the time is 90 to 150 min.
  • the sintering temperature is too low or the sintering time is too short, the doped phase will not be wetted or poorly wetted with respect to the tungsten phase, resulting in a weaker interface between the two phases, which is likely to become a crack source.
  • the sintering temperature is too high or the sintering time is too long, the tungsten crystal grains will aggregate and grow, resulting in uneven tungsten particles in the alloy and uneven distribution of the binder phase, which tends to reduce the ductility of the alloy.
  • the technical scheme adopted by the tungsten-based alloy material of the present invention is:
  • a tungsten-based alloy material prepared by the above-mentioned preparation method of a tungsten-based alloy material.
  • the tungsten-based alloy material of the present invention is prepared by the above-mentioned preparation method of the tungsten-based alloy material.
  • the tungsten-based alloy material has high density, microhardness, tensile strength and elongation, and the density reaches more than 98%.
  • the microhardness can reach more than 445Hv
  • the tensile strength can reach more than 1450MPa
  • the elongation can reach more than 15%.
  • FIG. 1 is a scanning electron microscope image of a tungsten-based alloy material prepared by the preparation method of Example 4 of the present invention.
  • the preparation method of tungsten-based alloy material provided by the present invention includes the following steps:
  • the composite powder is powder I, powder II or powder III;
  • the powder I contains tungsten, Zirconia, nickel, and iron;
  • the powder II contains tungsten, zirconia, and ferronickel solid solutions;
  • the powder III contains tungsten, zirconia, and ferronickel solid solutions containing zirconium hydride; nickel and iron in the composite powder
  • the mass ratio is 7:2 ⁇ 5;
  • the annealing treatment is performed in a hydrogen atmosphere or an inert atmosphere containing hydrogen.
  • the sintering process can also be carried out in a hydrogen atmosphere or an inert atmosphere containing hydrogen.
  • An inert atmosphere containing hydrogen such as a mixed gas of hydrogen and argon.
  • the grinding in step 1) and step 2) is ball milling.
  • the material of the grinding ball used in the ball mill is preferably WC.
  • the particle diameter of the grinding balls used in the ball mill is preferably 3-6 mm.
  • the ball-to-material ratio in the ball milling process is 5:1-8:1, preferably 6:1.
  • the rotation speed of the ball mill in step 1) and step 2) is preferably 200-350 rpm.
  • the ball milling in step 1) and step 2) is preferably performed in a protective atmosphere.
  • the protective atmosphere is preferably argon.
  • high-purity argon with a purity of 99.99% or more can be used as the protective atmosphere to prevent the powder from being oxidized during the ball milling process.
  • the composite powder may be powder I; the powder I contains tungsten, zirconium oxide, iron and nickel.
  • the ratio of the mass of tungsten, the mass of zirconia, and the total mass of ferronickel in powder I is 93:0.066 ⁇ 0.267:6.5 ⁇ 6.9.
  • the powder I also includes zirconium hydride; the mass ratio of the zirconium hydride to tungsten is 0.033-0.133:93.
  • the mass ratio of zirconium oxide to zirconium hydride in the powder I is 1.8 to 2.2:1.
  • the composite powder may also be powder II; the powder II contains tungsten, zirconium oxide, and nickel-iron solid solution.
  • the mass ratio of tungsten, zirconium oxide and nickel-iron solid solution in the powder II is 93:0.066-0.267:6.5-6.9.
  • the powder II also includes zirconium hydride; the mass ratio of the zirconium hydride to tungsten is 0.033-0.133:93.
  • the mass ratio of zirconium oxide to zirconium hydride in the powder II is 1.8 to 2.2:1.
  • the composite powder may also be powder III; the mass ratio of tungsten, zirconia, and nickel-iron solid solution containing zirconium hydride in the powder III It is 93:0.066 ⁇ 0.267:6.533 ⁇ 7.033, and the mass ratio of zirconium hydride in the ferronickel solid solution containing zirconium hydride is 0.066 ⁇ 0.267:0.033 ⁇ 0.133. Furthermore, the mass ratio of zirconium oxide to zirconium hydride in the powder III is 1.8 to 2.2:1.
  • the preparation method of the ferronickel solid solution containing zirconium hydride in the powder III includes the following steps: mixing nickel powder, iron powder and zirconium hydride powder and then ball milling, Immediately.
  • the rotating speed of the ball mill is 200-350rpm
  • the time is 12-16h
  • the ball-to-battery ratio is 5-8:1
  • the ball-to-battery ratio is preferably 6:1
  • the ferronickel solid solution containing zirconium hydride is sub-micron.
  • the ball milling in step 1) and step 2) is preferably performed in a protective atmosphere.
  • the protective atmosphere is preferably argon.
  • high-purity argon with a purity of 99.99% or more can be used as the protective atmosphere.
  • the composite powder may be powder I; the powder I is made of iron powder, nickel powder and mixed powder as main raw materials It is obtained by mixing; in the case where powder I also includes zirconium hydride, powder I is obtained by mixing iron powder, nickel powder, zirconium hydride powder and mixed powder. In powder I, nickel and iron are in elementary forms.
  • the composite powder may also be powder II; the powder II is obtained by mixing nickel-iron solid solution powder and mixed powder as main raw materials;
  • the powder II also includes zirconium hydride, the powder II is obtained by mixing nickel iron solid solution powder, zirconium hydride powder and mixed powder.
  • nickel and iron are in solid solution form.
  • the composite powder may also be powder III; the powder III is obtained by mixing a ferronickel solid solution containing zirconium hydride with a mixed powder .
  • nickel and iron are in solid solution form.
  • the mixed powders used to prepare Powder I, Powder II, and Powder III can all be prepared by a method including the following steps:
  • Ammonium metatungstate is formulated into precursor solution A with pH ⁇ 1, and then the precursor solution A is subjected to a hydrothermal reaction to prepare a tungsten trioxide suspension;
  • the precursor solution A is obtained by dissolving ammonium metatungstate in water and adjusting pH ⁇ 1 with nitric acid.
  • the temperature of the hydrothermal reaction is 120-180°C, and the time is 12-18h.
  • the precursor liquid A undergoes hydrothermal reaction to obtain spherical tungsten trioxide particles.
  • the precursor solution B is obtained by dissolving zirconium nitrate in water and adjusting the pH to 11-13 with ammonia.
  • the temperature of the hydrothermal reaction is 120-180°C, and the time is 12-18h.
  • the precursor solution B undergoes a hydrothermal reaction to obtain a nano-scale flocculent zirconium hydroxide suspension.
  • the calcination temperature is 600 to 700° C.; the calcination time is 3 to 5 hours.
  • the reduction is a two-stage reduction; the temperature of the first-stage reduction is 700 to 770°C, and the time is 1 to 2 hours; The temperature of the stage reduction is 900 ⁇ 950°C, and the time is 2 ⁇ 4h.
  • the reduction is reduction using hydrogen.
  • the preparation method of the tungsten-based alloy material further includes subjecting the tungsten-based alloy blank to hydrostatic extrusion deformation treatment and aging treatment.
  • the working pressure of the hydrostatic extrusion deformation treatment is 950-1300 MPa, and the extrusion speed is 30-50 m/s.
  • the deformation rate of the hydrostatic extrusion deformation treatment is preferably 15 to 50%.
  • Hydrostatic extrusion is an advanced material plastic processing technology. Compared with ordinary material deformation technology, its advantage is that the material is always in good lubrication conditions and favorable three-way compressive stress during the deformation process.
  • the normal deformation processing method of oxide particle-strengthened high-density tungsten-based alloys is die forging, and the deformation is generally not more than 25% at a time.
  • the process is complicated and the cost is high.
  • the use requirements of high specific gravity tungsten-based alloy materials can be achieved through only one deformation (generally more than 50% once), and the forming accuracy is high and the production efficiency is fast.
  • the high-pressure lubricating medium can be 30# engine oil or castor oil.
  • extrusion dies of different sizes can be used to obtain extruded samples of tungsten-based alloy materials with deformations of 15%, 30%, 36%, 45%, and 50%.
  • the temperature of the aging treatment is 800-1100°C, and the time is 7-10h.
  • the prepared tungsten-based alloy blank is subjected to dehydrogenation treatment before the hydrostatic extrusion treatment.
  • the dehydrogenation treatment is carried out in an inert atmosphere at 1150-1300°C for 4-6 hours, and then cooled with the furnace.
  • the inert atmosphere is preferably an argon atmosphere.
  • the pressure used for the compression molding is 300-400 MPa, and the pressure-holding time is 30-40 min. Under this pressure, a cold compact with a higher density, a more uniform density distribution and a more uniform porosity can be obtained, which facilitates the uniform filling of the pores by the liquid phase in the subsequent liquid phase sintering process, so that it is not easy to cause component segregation.
  • the compression molding is cold isostatic pressing.
  • the temperature of the liquid phase sintering is 1450-1550°C, preferably 1480-1540°C.
  • the time for the liquid phase sintering is preferably 90-150 min, more preferably 90-135 min.
  • the material of the grinding balls used in the ball milling in the following Examples 1 to 4 is WC, the diameter of the grinding balls is 6mm, and the ball-to-battery ratio (mass ratio) is 6:1; high-purity argon gas with a purity of 99.99% is used for ball milling.
  • the prepared tungsten trioxide suspension and zirconium hydroxide suspension are uniformly mixed and filtered, and then dried to obtain a dry powder.
  • the dry powder is calcined at 600°C for 4 hours, and then the calcined product is placed in a push rod reduction furnace.
  • the dehydrogenated sintered billet undergoes turning processing and other processes to form a hydraulic extrusion billet sample, which is then placed in a hydrostatic extruder for cold extrusion deformation.
  • the working pressure of the hydrostatic extrusion treatment is 1000MPa
  • the extrusion speed is 35m/s
  • the extruded deformed alloy is subjected to aging treatment
  • the temperature of the aging treatment is 900°C
  • the time of the aging treatment is 9h.
  • the final extrusion Tungsten-based alloy material.
  • the prepared tungsten trioxide suspension and zirconium hydroxide suspension are uniformly mixed and filtered, and then dried to obtain a dry powder.
  • the dry powder is calcined at 600°C for 2 hours, and then the calcined product is placed in a push rod reduction furnace Two stages of hydrogen reduction, and then a 120-mesh screen to obtain a mixed powder; the first stage hydrogen reduction temperature is 730°C, the reduction time is 2h, the second stage hydrogen reduction temperature is 940°C, and the reduction time is 3h.
  • the dehydrogenated sintered billet undergoes turning processing and other processes to form a hydraulic extrusion billet sample, which is then placed in a hydrostatic extruder for cold extrusion deformation.
  • the working pressure of the hydrostatic extrusion treatment is 1200MPa, the extrusion speed is 40m/s, and the alloy after the extrusion deformation is aged.
  • the temperature of the aging treatment is 1100°C, and the time of the aging treatment is 7h.
  • the final extrusion Tungsten-based alloy material.
  • the prepared tungsten trioxide suspension and zirconium hydroxide suspension are uniformly mixed and filtered, and then dried to obtain a dry powder.
  • the dry powder is calcined at 600°C for 2 hours, and then the calcined product is placed in a push rod reduction furnace Two stages of hydrogen reduction, and then a 120-mesh screen to obtain a mixed powder; the first stage hydrogen reduction temperature is 740°C, the reduction time is 1h, the second stage hydrogen reduction temperature is 935°C, and the reduction time is 3h.
  • the dehydrogenated sintered billet undergoes turning processing and other processes to form a hydraulic extrusion billet sample, which is then placed in a hydrostatic extruder for cold extrusion deformation.
  • the working pressure of the hydrostatic extrusion treatment is 950MPa
  • the extrusion speed is 40m/s
  • the alloy after the extrusion deformation is subjected to aging treatment
  • the temperature of the aging treatment is 800°C
  • the time of the aging treatment is 10h.
  • the final extrusion Tungsten-based alloy material.
  • the prepared tungsten trioxide suspension and zirconium hydroxide suspension are uniformly mixed and filtered, and then dried to obtain a dry powder.
  • the dry powder is calcined at 600°C for 2 hours, and then the calcined product is placed in a push rod reduction furnace Two stages of hydrogen reduction, and then a 120-mesh screen to obtain a mixed powder; the first stage hydrogen reduction temperature is 770°C, the reduction time is 2h, the second stage hydrogen reduction temperature is 900°C, and the reduction time is 3h.
  • the dehydrogenated sintered billet is processed by turning and other processes to form a sample of the billet for hydraulic extrusion, which is then placed in a hydrostatic extruder for cold extrusion.
  • the working pressure of the hydrostatic extrusion treatment is 1300MPa
  • the extrusion speed is 50m/s
  • the alloy after the extrusion deformation is subjected to aging treatment
  • the temperature of the aging treatment is 1000°C
  • the time of the aging treatment is 8h.
  • the final extrusion Tungsten-based alloy material.
  • the scanning electron micrograph of the tungsten-based alloy material prepared by the preparation method of this embodiment is shown in Fig. 1, and it can be seen from Fig. 1 that the average crystal grain size of the tungsten-based alloy material is 30 ⁇ m.
  • step 2) the speed of the ball mill is 200 rpm and the time is 16 hours;
  • the ball-to-material ratio (mass ratio) used in the ball milling process in step 2) and step 3) is both 5:1;
  • step 3 the 93.066 kg of mixed powder prepared in step 1), the 6.9 kg of ferronickel solid solution prepared in step 2) and 0.033 kg of zirconium hydride are mixed and then ball milled for the first time;
  • step 3 the rotation speed of the second ball milling is 200 rpm and the time is 10 hours;
  • step 3 the temperature for holding in hydrogen is 1000°C, and the holding time is 1h;
  • Step 4 the temperature of the dehydrogenation treatment is 1150°C, and the time is 6h.
  • the preparation method of the tungsten-based alloy material of this embodiment differs from embodiment 5 only in: in step 2), the ball-to-material ratio of the ball mill (mass ratio 8:1), the speed of the ball mill is 350 rpm, and the time is 12 hours.
  • the preparation method of the tungsten-based alloy material in this embodiment is different from the preparation method of the tungsten-based alloy material in Example 1 in that step 2) is omitted;
  • step 3 the 93.066 kg of mixed powder, 4.1 kg of nickel powder, 2.8 kg of iron powder, and 0.033 kg of zirconium hydride prepared in step 1) are mixed and then ball milled for the first time;
  • the ball-to-material ratio (mass ratio) used in the ball milling process in step 3) is 8:1, the rotation speed of the second ball milling is 400rpm, and the time of the second ball milling is 6h;
  • step 3 the temperature for heat preservation in a hydrogen atmosphere is 700°C, and the heat preservation time is 3h;
  • Step 4 the temperature of the dehydrogenation treatment is 1300°C, and the time is 4 hours.
  • the preparation method of the tungsten-based alloy material in this embodiment is different from the preparation method of the tungsten-based alloy material in Example 7 only in that the mass of the nickel powder used is 5.36 kg, and the mass of the iron powder is 1.54 kg.
  • the tungsten-based alloy material of this embodiment is prepared by the preparation method of any tungsten-based alloy material in the foregoing embodiments 1 to 8, and will not be repeated here.
  • the preparation method of the tungsten-based alloy material of this comparative example is different from the preparation method of the tungsten-based alloy material of Example 2 only in that: this comparative example uses step 3) of Example 2 for heat preservation in a hydrogen furnace and a hydrogen furnace The step of secondary ball milling after the middle heat preservation treatment is omitted.
  • the grain size of the alloy is determined by the intercepting method
  • the alloy density is determined by the Archimedes drainage method
  • the HMAS- The C1000SZA microhardness tester measures the microhardness of the alloy.
  • the AG-I250KN precision universal material testing machine is used to measure the tensile strength of the alloy. The results are shown in Table 1 below.
  • the tensile strength of the tungsten-based alloy materials in Examples 1 to 4 is more than 1450MPa, which is about 15% higher than that of conventional tungsten alloys; the elongation is more than 15%, which is in line with the high strength, High plasticity requirements.
  • the grain size, density, microhardness and tensile strength of the tungsten-based alloy materials prepared in Examples 5-8 are basically at the same level as the tungsten-based alloy materials prepared in Examples 1-4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种钨基合金材料及其制备方法,制备方法包括:1)将含有钨和氧化锆的复合粉体研磨均匀,然后在700~1000℃进行退火处理,得到粉体A;2)将粉体A进行研磨后压制成型,然后液相烧结,得到钨基合金坯料,即得。该制备方法在首次研磨后对粉体进行退火处理可以使金属颗粒变柔软,然后再次对粉体进行研磨,克服采用单次研磨在混料后期硬化,难以对氧化锆颗粒形成有效研磨的问题,减小了氧化锆颗粒的粒径并提高了氧化锆颗粒在粉体中的分布均匀程度,从而提高了烧结后得到的钨基合金的抗拉强度和硬度。

Description

一种钨基合金材料及其制备方法 技术领域
本发明涉及一种钨基合金材料及其制备方法,属于钨基合金材料技术领域。
背景技术
高密度钨基合金是一类以钨为基体,添加有Ni、Fe、Co、Cu、Mo、Cr等元素的合金,密度通常为17.5~19.0g/cm 3。高密度钨基合金密度高、强度高并具有良好的耐磨性和辐射吸收性,这些优点使得其成为许多工业应用的理想材料,尤其是在国防工业领域中,高密度钨基合金被广泛用于制作各种杆式动能穿甲弹弹芯及导弹毁伤单元组件。然而高密度钨基合金是典型的难变形材料,常规粉末冶金液相烧结钨基合金的强度性能相对较低,严重制约了其作为弹芯使用时的穿甲性能。氧化物弥散强化的W-Ni-Fe合金是一种最有前途的钨基合金材料之一,该W-Ni-Fe合金即使采用常规液相烧结进行制备,相较于常规钨基合金在高温强度方面仍具有优势,原因在于基体中氧化物颗粒作为钉扎点阻碍位错和亚晶界的迁移。如授权公告号为CN105441765B的中国发明专利公开了一种弹用高密度钨合金,以质量百分比计,合金成分如下:钨90.0~97.0%,氧化锆0.1~2.0%,粘结相镍和铁2.0~9.9%,镍与铁的质量比为3~4:2~1,以及不可避免的杂质;该弹用高密度钨合金的制备步骤如下:分别将偏钨酸铵、硝酸锆溶于水中,混合,混合液干燥得粉末,粉末经煅烧、还原得到复合钨粉;取镍粉、铁粉,混合后球磨,得到镍铁固溶体;将复合钨粉、镍铁固溶体混合,混合粉经压制、烧结,即得弹用高密度钨合金。该弹用高密度钨合金在制备过程中在钨合金加入高温稳定相氧化锆,氧化锆弥散相细小且在钨基体中均匀分布,解决了相分布不均匀导致的力学性能差的问题,钨合金的抗拉强度可达1250MPa以上。但由于在将复合钨粉和镍铁合金以球磨的方法进行混料的过程中加工时间长达20~35h,球磨后期混合粉体中金属粉出现加工硬化的现象,难以再对氧化锆颗粒形成有效研磨,不利于氧化锆分布均匀性的进一步提高和粒径的进一步减小,制得钨基合金的抗拉强度性能提升有限。
发明内容
本发明的目的是提供一种钨基合金材料的制备方法,能够提高高密度钨基合金的抗拉强度。
本发明还提供了一种采用上述制备方法制得的钨基合金材料,具有较高的抗拉强 度。
为了实现以上目的,本发明的钨基合金材料的制备方法所采用的技术方案是:
一种钨基合金材料的制备方法,包括以下步骤:
1)将复合粉体研磨均匀,然后在700~1000℃进行退火处理,得到粉体A;所述复合粉体为粉体I、粉体II或粉体III;所述粉体I含有钨、氧化锆、镍和铁;所述粉体II含有钨、氧化锆、镍铁固溶体;所述粉体III含有钨、氧化锆、含氢化锆的镍铁固溶体;复合粉体中镍元素和铁元素的质量比为7:2~5;
2)将粉体A进行研磨后压制成型,然后液相烧结,得到钨基合金坯料。
本发明的钨基合金材料的制备方法,在首次研磨后对粉体进行退火处理可以使金属颗粒变柔软,然后再次对粉体进行研磨,克服了常规技术采用单次研磨在混料后期,金属颗粒加工硬化难以对氧化锆颗粒形成有效研磨的问题;采用研磨-退火-研磨的方法进行混料,减小了氧化锆颗粒的粒径并提高了氧化锆颗粒在粉体中的分布均匀程度,从而提高了烧结后得到的钨基合金的抗拉强度和硬度。采用本发明的制备方法制得的钨基合金材料在具有高强度的同时,也保持较高的塑性,其致密度达到98%以上,显微硬度达445Hv以上,抗拉强度达到1450MPa以上,延伸率达到15%以上。
为了进一步优化粉体A的性能,减小氧化锆的粒径,并提高各成分的分散均匀程度,步骤2)中,所述研磨为球磨;所述球磨的转速为200~400rpm,时间为6~10h,球料比为5~8:1。需要说明的是本发明的球料比均为质量比。球磨时间过短,不利复合粉体颗粒细化,降低合金的致密化。球磨时间过长,钨粉颗粒形貌呈片状,同时片状形貌钨粉颗粒表面积较大,容易产生团聚,致使粉末空隙残留于合金坯中,不利于压坯强度的提高。
为了在达到较好的退火效果的同时降低能耗,优选的,所述退火处理在700~1000℃进行保温的时间为1~3h。
为了降低晶界处N,C,O等有害元素对合金晶界强度的弱化作用,同时提高晶界的结合强度,优选的,所述粉体I由钨、氧化锆、镍、铁和氢化锆组成;所述粉体I中钨的质量、氧化锆的质量、镍铁总质量和氢化锆的质量之比为93:0.066~0.267:6.5~6.9:0.033~0.133;所述粉体II由钨、氧化锆、镍铁固溶体和氢化锆组成,粉体II中钨、氧化锆、镍铁固溶体和氢化锆的质量比为93:0.066~0.267:6.5~6.9:0.033~0.133;所述粉体III中钨、氧化锆、含氢化锆的镍铁固溶体的质量比为93:0.066~0.267:6.533~7.033,氧化锆与含氢化锆的镍铁固溶体中氢化锆的质量比为0.066~0.267:0.033~0.133。复合粉体中的氢化锆高温易分解,产生锆金属与分布在晶界处的N,C,O等有害元素形成颗粒细小的 高温难熔碳(氧或氮)化物,从而促使合金晶界处有害元素浓度的降低,同时这些细小的稳定难熔碳(氧或氮)化物阻碍晶粒长大,有利于钨基合金的高温强度、再结晶温度以及抗蠕变性能的提高,再结晶温度的提高有利于保持钨基合金变形强化的效果。
优选的,粉体III中含氢化锆的镍铁固溶体的制备方法包括以下步骤:将镍粉、铁粉和氢化锆粉混合后进行球磨,即得;含氢化锆的镍铁固溶体的制备方法中球磨的转速为200~350rpm,时间为12~16h,球料比为5~8:1。
优选的,粉体I是以铁粉、镍粉和混合粉体作为主要原料混合得到;粉体II是以镍铁固溶体粉和混合粉体作为主要原料混合得到;粉体III是将含氢化锆的镍铁固溶体与混合粉体进行混合得到;制备粉体I、粉体II、粉体III所采用的混合粉体采用包括以下步骤的方法制得:
i)制备三氧化钨悬浊液和氢氧化锆悬浊液:
a)将偏钨酸铵配制成pH≤1的前驱液A,然后将前驱液A进行水热反应,制得三氧化钨悬浊液;
b)将硝酸锆配制成pH为11~13的前驱液B,然后将前驱液B进行水热反应,制得氢氧化锆悬浊液;
ii)然后将三氧化钨悬浊液和氢氧化锆悬浊液混合均匀,去除溶剂制成粉末,然后将粉末依次进行煅烧、还原,即得。
氧化锆的添加方式对钨基合金的力学性能有重要影响,上述粉体I、粉体II、粉体III所采用的混合粉体为氧化锆掺杂复合钨粉,其以液液掺杂的方式将偏钨酸铵溶液与硝酸锆溶液分别进行水热反应,将反应生成物进行充分混合,然后进行煅烧、还原,这样液-液掺杂和共还原工艺,保证了混合粉体中氧化锆颗粒尺寸细小且均匀分布于钨粉末中,同时还能使混合粉体颗粒的尺寸呈正态分布,有利于压坯强度的提高,进而有利于提高合金密度。
为了进一步提高钨基合金材料性能,优选的,钨基合金材料的制备方法还包括将所述钨基合金坯料进静液挤压变形处理和时效处理;所述时效处理的温度为800~1100℃,时间为7~10h。
钨基合金材料的制备过程中,进入材料内的微量氢在内部残余应力或外加应力的作用下导致材料脆化甚至开裂,为了避免这种情况发生,优选的,静液挤压处理前将制得的钨基合金坯料进行脱氢处理;所述脱氢处理是在惰性气氛中于1150~1300℃保温4~6h,随炉冷却。脱氢处理可以避免制备得到的钨基合金材料在使用过程中表现出较高的氢脆性。
优选的,所述液相烧结的温度为1450~1550℃;时间为90~150min。烧结温度过低或烧结时间过短时会使得掺杂相对钨相不浸润或浸润差,导致两相界面结合较弱,易成为裂纹源。烧结温度过高或烧结时间过长时,则会产生钨晶粒的聚集长大,导致合金中钨颗粒大小不均且粘结相分布不均匀,其易使得合金的延伸性降低。
本发明的钨基合金材料采用的技术方案为:
一种上述钨基合金材料的制备方法制得的钨基合金材料。
本发明的钨基合金材料,采用上述的钨基合金材料的制备方法制得,该钨基合金材料具有较高的密度、显微硬度、抗拉强度和延伸率,致密度达到98%以上,显微硬度可达445Hv以上,抗拉强度达到1450MPa以上,延伸率达到15%以上。
附图说明
图1为本发明的实施例4的制备方法制得的钨基合金材料的扫描电镜图。
具体实施方式
本发明提供的钨基合金材料的制备方法,包括以下步骤:
1)将复合粉体研磨均匀,然后在700~1000℃进行退火处理,得到粉体A;所述复合粉体为粉体I、粉体II或粉体III;所述粉体I含有钨、氧化锆、镍和铁;所述粉体II含有钨、氧化锆、镍铁固溶体;所述粉体III含有钨、氧化锆、含氢化锆的镍铁固溶体;复合粉体中镍元素和铁元素的质量比为7:2~5;
2)将粉体A进行研磨后压制成型,然后液相烧结,得到钨基合金坯料。
为了避免退火过程中粉体被氧化,在本发明的钨基合金材料的制备方法的具体实施方式中,退火处理在氢气气氛或含氢气的惰性气氛中进行。同样为了避免烧结过程中粉体被氧化,烧结过程中也可以在氢气气氛或含氢气的惰性气氛中进行。含氢气的惰性气氛如氢气和氩气的混合气体。
在本发明的钨基合金材料的制备方法的具体实施方式中,步骤1)和步骤2)中进行研磨均为球磨。球磨采用的磨球的材质优选为WC。球磨采用的磨球的粒径优选为3~6mm。球磨过程中的球料比为5:1~8:1,优选为6:1。步骤1)、步骤2)中球磨的转速优选为200~350rpm。为了避免球磨过程中金属被氧化,步骤1)和步骤2)中的球磨优选在保护性气氛中进行。所述保护性气氛优选为氩气,如可以采用纯度99.99%以上的高纯氩气作为保护性气氛,从而防止粉末在球磨过程被氧化。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述复合粉体可以为粉体I;所述粉体I含有钨、氧化锆、铁和镍。粉体I中钨的质量、氧化锆的质量、镍铁总质 量之比为93:0.066~0.267:6.5~6.9。进一步的,粉体I还包括氢化锆;所述氢化锆与钨的质量之比为0.033~0.133:93。更进一步的,所述粉体I中氧化锆与氢化锆的质量比为1.8~2.2:1。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述复合粉体还可以为粉体II;所述粉体II含有钨、氧化锆和镍铁固溶体。所述粉体II中钨、氧化锆和镍铁固溶体的质量比为93:0.066~0.267:6.5~6.9。进一步的,粉体II还包括氢化锆;所述氢化锆与钨的质量之比为0.033~0.133:93。更进一步的,所述粉体II中氧化锆与氢化锆的质量比为1.8~2.2:1。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述复合粉体还可以为粉体III;所述粉体III中钨、氧化锆、含氢化锆的镍铁固溶体的质量比为93:0.066~0.267:6.533~7.033,氧化锆与含氢化锆的镍铁固溶体中氢化锆的质量比为0.066~0.267:0.033~0.133。更进一步的,所述粉体III中氧化锆与氢化锆的质量比为1.8~2.2:1。
在本发明的钨基合金材料的制备方法的具体实施方式中,粉体III中含氢化锆的镍铁固溶体的制备方法包括以下步骤:将镍粉、铁粉和氢化锆粉混合后进行球磨,即得。含氢化锆的镍铁固溶体的制备方法中球磨的转速为200~350rpm,时间为12~16h,球料比为5~8:1,其中球料比优选为6:1;此时球磨得到的含氢化锆的镍铁固溶体为亚微米级。
为了避免球磨过程中金属被氧化,在本发明的钨基合金材料的制备方法的具体实施方式中,步骤1)和步骤2)中的球磨优选在保护性气氛中进行。所述保护性气氛优选为氩气,如可以采用纯度99.99%以上的高纯氩气作为保护性气氛。
在本发明的制备方法的钨基合金材料的制备方法的具体实施方式中,所述复合粉体可以为粉体I;所述粉体I是以铁粉、镍粉和混合粉体作为主要原料混合得到;对于粉体I中还包括氢化锆的情况,粉体I是将铁粉、镍粉、氢化锆粉和混合粉体混合得到的。粉体I中,镍、铁为单质形态。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述复合粉体还可以为粉体II;所述粉体II是以镍铁固溶体粉和混合粉体作为主要原料混合得到;对于粉体II中还包括氢化锆的情况,粉体II是将镍铁固溶体粉、氢化锆粉和混合粉体混合得到的。粉体II中,镍、铁为固溶体形态。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述复合粉体还可以为粉体III;所述粉体III是将含氢化锆的镍铁固溶体与混合粉体进行混合得到。粉体III中,镍、铁为固溶体形态。
以上制备方法的具体实施方式中制备粉体I、粉体II、粉体III所采用的混合粉体 均可以采用包括以下步骤的方法制备:
i)制备三氧化钨悬浊液和氢氧化锆悬浊液
a)将偏钨酸铵配制成pH≤1的前驱液A,然后将前驱液A进行水热反应,制得三氧化钨悬浊液;
b)将硝酸锆配制成pH为11~13的前驱液B,然后将前驱液B进行水热反应,制得氢氧化锆悬浊液;
ii)然后将三氧化钨悬浊液和氢氧化锆悬浊液混合均匀,去除溶剂制成粉末,然后将粉末依次进行煅烧、还原,即得。
在本发明的钨基合金材料的制备方法的具体实施方式中,步骤a)中,所述前驱液A是偏钨酸铵溶于水后用硝酸调整pH≤1得到的。步骤a)中,水热反应的温度为120~180℃,时间为12~18h。前驱液A经过水热反应得到的是球形三氧化钨颗粒。
在本发明的钨基合金材料的制备方法的具体实施方式中,步骤b)中,所述前驱液B是将硝酸锆溶于水后用氨水调整pH为11~13得到的。步骤b)中,水热反应的温度为120~180℃,时间为12~18h。前驱液B经过水热反应得到纳米级絮状氢氧化锆悬浊液。
在本发明的钨基合金材料的制备方法的具体实施方式中,步骤ii)中,所述煅烧的温度为600~700℃;煅烧的时间为3~5h。
在本发明的钨基合金材料的制备方法的具体实施方式中,步骤ii)中,所述还原为两段还原;第一段还原的温度为700~770℃,时间为1~2h;第二段还原的温度为900~950℃,时间为2~4h。所述还原为采用氢气进行还原。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述钨基合金材料的制备方法,还包括将所述钨基合金坯料进静液挤压变形处理和时效处理。所述静液挤压变形处理的工作压力为950~1300MPa,挤压速度为30~50m/s。静液挤压变形处理的变形率优选为15~50%。静液挤压是一种先进的材料塑性加工工艺,和普通材料形变工艺相比,其优点是材料在变形的过程中始终处于良好的润滑条件和有利的三向压应力状态之中,这样就使得材料在常温下能够获得较大的加工率,从而获得较大的变形强化效果。这种方法特别适合于脆性材料的加工。氧化物颗粒强化高比重钨基合金通常的变形加工方法是模锻,变形量一般一次不超过25%,为了达到高比重钨基合金材料的使用性能,一般都要经过2~3次模锻,工序复杂,成本高。而经过液力挤压成形工艺仅通过一次变形(一般一次可达50%以上)就能达到高比重钨基合金材料的使用要求,且成形精度高,生产效率快。静液挤压过程中模具可以采用直线型凹模型线,控制模具角度2α=60°,高压润滑介质可以选用30# 机油或蓖麻油。在具体实施过程中可采用不同尺寸的挤压模具以得到变形量分别为15%,30%,36%,45%,50%的钨基合金材料挤压试样。所述时效处理的温度为800~1100℃,时间为7~10h。
在本发明的钨基合金材料的制备方法的具体实施方式中,静液挤压处理前将制得的钨基合金坯料进行脱氢处理。所述脱氢处理是在惰性气氛中于1150~1300℃保温4~6h,随炉冷却。所述惰性气氛优选为氩气气氛。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述压制成型采用的压力为300~400MPa,保压时间为30~40min。在该压力下可以获得密度较高、密度分布及孔隙度更加均匀的冷压坯,其在后续的液相烧结工艺中有利于液相均匀填充孔隙,从而不易造成成分偏析。优选的,所述压制成型为冷等静压。
在本发明的钨基合金材料的制备方法的具体实施方式中,所述液相烧结的温度为1450~1550℃,优选为1480~1540℃。所述液相烧结的时间优选为90~150min,进一步优选为90~135min。
以下结合具体实施方式对本发明的技术方案作进一步的说明。
以下实施例1~4中进行球磨时采用的磨球的材质为WC,磨球的直径为6mm,球料比(质量比)为6:1;球磨时采用纯度为99.99%的高纯氩气作为保护气体;水热反应前,前驱液在反应釜中的填充度均为90%。
钨基合金材料的制备方法的实施例
实施例1
本实施例的钨基合金材料的制备方法,包括以下步骤:
1)由氧化锆和钨组成的混合粉体的制备
将125.395kg的偏钨酸铵((NH 4) 6H 2W 12O 40·xH 2O,折金属W:93.00kg)溶于水中,滴加硝酸至pH为1得到前驱液A,然后将前驱液A在150℃进行水热反应,水热反应的时间为15h,水热反应结束后得到的三氧化钨悬浊液;
将0.232kg硝酸锆(折ZrO 2:0.066kg)溶于水中,然后滴加氨水至pH为12得到前驱液B,然后将前驱液B在150℃进行水热反应,水热反应的时间为15h,水热反应结束后得到氢氧化锆悬浊液;
将制得的三氧化钨悬浊液和氢氧化锆悬浊液均匀混合后进行过滤,然后干燥得到干燥粉,将干燥粉在600℃煅烧4h,再将煅烧产物放入推杆还原炉内进行两段氢气还原,然后过120目筛网,得到混合粉体;第一段氢还原温度750℃,还原时间为1h,第二段氢 还原温度930℃,还原时间3h。
2)含氢化锆的镍铁固溶体的制备:
按质量配比7:3称取4.83kg镍粉、2.07kg铁粉,同时称取0.033kg的氢化锆放入高能搅拌式球磨机中,控制球磨机转速为300rpm,球磨时间12h,制得亚微米级的含氢化锆镍铁固溶体。
3)混料
将93.066kg的混合粉体和6.933kg含氢化锆镍铁固溶体粉置于高能搅拌式球磨机中进行第一次球磨,控制转速为300rpm,球磨12h,接着将第一次球磨后的粉体置于氢气炉中在氢气气氛中于800℃保温2h,随炉冷却,然后将粉体进行第二次球磨,控制转速为300rpm,球磨8h。
4)压制、烧结成型
将第二次球磨后的粉体放入壁厚约为2mm的胶套中,然后置于350MPa超高压室内进行冷等静压,保压时间为30min,制得冷压坯料;
随后将制得的冷压坯料放入氢气保护烧结炉中,在1500℃下进行液相烧结,烧结时间为120min,制得烧结坯料,然后将烧结坯料置于氩气气氛中于1200℃保温5h进行脱氢处理。
5)静液挤压变形处理和时效处理
脱氢处理后的烧结坯料经车削加工等工序,制成液力挤压坯料试样后,放入静液挤压机中进行冷挤压变形。静液挤压处理的工作压力为1000MPa,挤压速度为35m/s,将挤压形变后的合金进行时效处理,时效处理的温度为900℃,时效处理的时间为9h,最终制得挤压态钨基合金材料。
实施例2
本实施例的钨基合金材料的制备方法,包括以下步骤:
1)由氧化锆和钨组成的混合粉体的制备
按照实施例1中三氧化钨悬浊液的制备方法制备三氧化钨悬浊液;
将0.464kg硝酸锆(折ZrO 2:0.133kg)溶于水中,然后滴加氨水至pH为12得到前驱液B,然后将前驱液B在150℃进行水热反应,水热反应的时间为15h,水热反应结束后得到氢氧化锆悬浊液;
将制得的三氧化钨悬浊液和氢氧化锆悬浊液均匀混合后进行过滤,然后干燥得到干燥粉,将干燥粉在600℃煅烧2h,再将煅烧产物放入推杆还原炉内进行两段氢气还原, 然后过120目筛网,得到混合粉体;第一段氢还原温度730℃,还原时间为2h,第二段氢还原温度940℃,还原时间3h。
2)含氢化锆的镍铁固溶体的制备
按质量配比7:3称取4.76kg镍粉、2.04kg铁粉,同时称取0.067kg的氢化锆放入高能搅拌式球磨机中,控制球磨机转速为300rpm,球磨时间12h,制得亚微米级的含氢化锆镍铁固溶体。
3)混料
将93.133kg的混合粉体和6.867kg含氢化锆镍铁固溶体粉置于高能搅拌式球磨机中进行第一次球磨,控制转速为250rpm,球磨14h,接着将第一次球磨后的粉体置于氢气炉中在氢气气氛中于800℃保温2h,随炉冷却,然后将粉体进行第二次球磨,控制转速为300rpm,球磨8h。
4)压制,烧结成型
将第二次球磨后的粉体放入壁厚约为2mm的胶套中,然后置于300MPa超高压室内进行冷等静压,保压时间为35min,制得冷压坯料;
随后将制得的冷压坯料放入氢气保护烧结炉中,在1480℃下进行液相烧结,烧结时间为135min,制得烧结坯料,然后将烧结坯料置于氩气气氛中于1200℃保温5h进行脱氢处理。
5)静液挤压变形处理和时效处理
脱氢处理后的烧结坯料经车削加工等工序,制成液力挤压坯料试样后,放入静液挤压机中进行冷挤压变形。静液挤压处理的工作压力为1200MPa,挤压速度为40m/s,将挤压形变后的合金进行时效处理,时效处理的温度为1100℃,时效处理的时间为7h,最终制得挤压态钨基合金材料。
实施例3
本实施例的钨基合金材料的制备方法,包括以下步骤:
1)由氧化锆和钨组成的混合粉体的制备
按照实施例1中三氧化钨悬浊液的制备方法制备三氧化钨悬浊液;
将0.697kg硝酸锆(折ZrO 2:0.200kg)溶于水中,然后滴加氨水至pH为12得到前驱液B,然后将前驱液B在150℃进行水热反应,水热反应的时间为15h,水热反应结束后得到氢氧化锆悬浊液;
将制得的三氧化钨悬浊液和氢氧化锆悬浊液均匀混合后进行过滤,然后干燥得到 干燥粉,将干燥粉在600℃煅烧2h,再将煅烧产物放入推杆还原炉内进行两段氢气还原,然后过120目筛网,得到混合粉体;第一段氢还原温度740℃,还原时间为1h,第二段氢还原温度935℃,还原时间3h。
2)含氢化锆的镍铁固溶体的制备
按质量配比7:3称取4.69kg镍粉、2.01kg铁粉,同时称取0.100kg的氢化锆放入高能搅拌式球磨机中,控制球磨机转速为300rpm,球磨时间12h,制得亚微米级的含氢化锆镍铁固溶体。
3)混料
将93.200kg的混合粉体和6.800kg含氢化锆镍铁固溶体粉置于高能搅拌式球磨机中进行第一次球磨,控制转速为280rpm,球磨16h,接着将第一次球磨后的粉体置于氢气炉中在氢气气氛中于800℃保温2h,随炉冷却,然后将粉体进行第二次球磨,控制转速为300rpm,球磨8h。
4)压制,烧结成型
将第二次球磨后的粉体放入壁厚约为2mm的胶套中,然后置于350MPa超高压室内进行冷等静压,保压时间为30min,制得冷压坯料;
随后将制得的冷压坯料放入氢气保护烧结炉中,在1530℃下进行液相烧结,烧结时间为95min,制得烧结坯料,然后将烧结坯料置于氩气气氛中于1200℃保温5h进行脱氢处理。
5)静液挤压变形处理和时效处理
脱氢处理后的烧结坯料经车削加工等工序,制成液力挤压坯料试样后,放入静液挤压机中进行冷挤压变形。静液挤压处理的工作压力为950MPa,挤压速度为40m/s,将挤压形变后的合金进行时效处理,时效处理的温度为800℃,时效处理的时间为10h,最终制得挤压态钨基合金材料。
实施例4
本实施例的钨基合金材料的制备方法,包括以下步骤:
1)由氧化锆和钨组成的混合粉体的制备
按照实施例1中三氧化钨悬浊液的制备方法制备三氧化钨悬浊液;
将0.929kg硝酸锆(折ZrO 2:0.267kg)溶于水中,然后滴加氨水至pH为12得到前驱液B,然后将前驱液B在150℃进行水热反应,水热反应的时间为15h,水热反应结束后得到氢氧化锆悬浊液;
将制得的三氧化钨悬浊液和氢氧化锆悬浊液均匀混合后进行过滤,然后干燥得到干燥粉,将干燥粉在600℃煅烧2h,再将煅烧产物放入推杆还原炉内进行两段氢气还原,然后过120目筛网,得到混合粉体;第一段氢还原温度770℃,还原时间为2h,第二段氢还原温度900℃,还原时间3h。
2)含氢化锆的镍铁固溶体的制备
按质量配比7:3称取4.62kg镍粉、1.98kg铁粉,同时称取0.133kg的氢化锆放入高能搅拌式球磨机中,控制球磨机转速为300rpm,球磨时间12h,制得亚微米级的含氢化锆镍铁固溶体。
3)混料
将93.267kg的混合粉体和6.733kg含氢化锆镍铁固溶体粉置于高能搅拌式球磨机中进行第一次球磨,控制转速为350rpm,球磨13h,接着将第一次球磨后的粉体置于氢气炉中在氢气气氛中于800℃保温2h,随炉冷却,然后将粉体进行第二次球磨,控制转速为300rpm,球磨8h。
4)压制,烧结成型
将第二次球磨后的粉体放入壁厚约为2mm的胶套中,然后置于400MPa超高压室内进行冷等静压,保压时间为40min,制得冷压坯料;
随后将制得的冷压坯料放入氢气保护烧结炉中,在1490℃下进行液相烧结,烧结时间为130min,制得烧结坯料,然后将烧结坯料置于氩气气氛中于1200℃保温5h进行脱氢处理。
5)静液挤压变形处理和时效处理
脱氢处理后的烧结坯料经车削加工等工序,制成液力挤压坯料试样后,放入静液挤压机中进行冷挤压变形。静液挤压处理的工作压力为1300MPa,挤压速度为50m/s,将挤压形变后的合金进行时效处理,时效处理的温度为1000℃,时效处理的时间为8h,最终制得挤压态钨基合金材料。
本实施例的制备方法制得的钨基合金材料的扫描电镜图见图1,由图1可知钨基合金材料的晶粒平均尺寸为30μm。
实施例5
本实施例的钨基合金材料的制备方法,与实施例1中钨基合金材料的制备方法的区别在于:
步骤2)中,球磨的转速为200rpm,时间为16h;
步骤2)和步骤3)中的球磨过程中采用的球料比(质量比)均为5:1;
步骤3)中将步骤1)制得的93.066kg的混合粉体、步骤2)制得的6.9kg的镍铁固溶体和0.033kg的氢化锆混合后进行第一次球磨;
步骤3)中,第二次球磨的转速为200rpm,时间为10h;
步骤3)中,在氢气中保温的温度为1000℃,保温的时间为1h;
步骤4),脱氢处理的温度为1150℃,时间为6h。
实施例6
本实施例的钨基合金材料的制备方法,与实施例5的区别仅在于:步骤2)中,球磨的球料比(质量比8:1),球磨的转速为350rpm,时间为12h。
实施例7
本实施例的钨基合金材料的制备方法,与实施例1中钨基合金材料的制备方法的区别在于:省去步骤2);
步骤3)中,将步骤1)中制得的93.066kg的混合粉体、4.1kg镍粉、2.8kg铁粉、0.033kg的氢化锆混合后进行第一次球磨;
步骤3)中的球磨过程中采用的球料比(质量比)均为8:1,第二次球磨的转速为400rpm,第二次球磨的时间为6h;
步骤3)中,在氢气气氛进行保温的温度为700℃,保温的时间为3h;
步骤4),脱氢处理的温度为1300℃,时间为4h。
实施例8
本实施例的钨基合金材料的制备方法,与实施例7中钨基合金材料的制备方法的区别仅在于:采用的镍粉的质量为5.36kg,铁粉的质量为1.54kg。
钨基合金材料的实施例
实施例9
本实施例的钨基合金材料,由上述实施例1~8中的任意一种钨基合金材料的制备方法制得,此处不再赘述。
对比例
本对比例的钨基合金材料的制备方法,与实施例2的钨基合金材料的制备方法的区别仅在于:本对比例将实施例2的步骤3)中在氢气炉中进行保温以及氢气炉中保温处理后进行二次球磨的步骤省去。
实验例
取实施例1~4及对比例的钨基合金材料的制备方法制得的钨基合金材料,采用截线法测定合金的晶粒大小,采用阿基米德排水法测定合金密度,采用HMAS-C1000SZA显微硬度计测定合金的显微硬度,同时采用AG-I250KN精密万能材料实验机测定合金的抗拉强度,结果见下表1。
表1实施例1~4及对比例制得的钨基合金材料的性能测试结果
Figure PCTCN2020108558-appb-000001
从表1可以看出,实施例1~4中钨基合金材料的抗拉强度达1450MPa以上,比常规钨合金高出15%左右;延伸率达15%以上,符合弹用材料的高强度、高塑性要求。实施例5~8中制得钨基合金材料的晶粒大小、密度、显微硬度和抗拉强度等性能基本与实施例1~4制得的钨基合金材料在同一水平。

Claims (19)

  1. 一种钨基合金材料的制备方法,其特征在于:包括以下步骤:
    1)将复合粉体研磨均匀,然后在700~1000℃进行退火处理,得到粉体A;所述复合粉体为粉体I、粉体II或粉体III;所述粉体I含有钨、氧化锆、镍和铁;所述粉体II含有钨、氧化锆、镍铁固溶体;所述粉体III含有钨、氧化锆、含氢化锆的镍铁固溶体;复合粉体中镍元素和铁元素的质量比为7:2~5;
    2)将粉体A进行研磨后压制成型,然后液相烧结,得到钨基合金坯料。
  2. 如权利要求1所述的钨基合金材料的制备方法,其特征在于:所述粉体I中钨的质量、氧化锆的质量、镍铁总质量之比为93:0.066~0.267:6.5~6.9;所述粉体II中钨、氧化锆和镍铁固溶体的质量比为93:0.066~0.267:6.5~6.9;所述粉体III中钨、氧化锆、含氢化锆的镍铁固溶体的质量比为93:0.066~0.267:6.533~7.033,氧化锆与含氢化锆的镍铁固溶体中氢化锆的质量比为0.066~0.267:0.033~0.133。
  3. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:所述粉体I由钨、氧化锆、镍、铁和氢化锆组成;所述粉体I中钨的质量、氧化锆的质量、镍铁总质量和氢化锆的质量之比为93:0.066~0.267:6.5~6.9:0.033~0.133;所述粉体II由钨、氧化锆、镍铁固溶体和氢化锆组成,粉体II中钨、氧化锆、镍铁固溶体和氢化锆的质量比为93:0.066~0.267:6.5~6.9:0.033~0.133。
  4. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:步骤2)中,所述研磨为球磨;所述球磨的转速为200~400rpm,时间为6~10h,球料比为5~8:1。
  5. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:所述退火处理在700~1000℃进行保温的时间为1~3h。
  6. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:粉体III中含氢化锆的镍铁固溶体的制备方法包括以下步骤:将镍粉、铁粉和氢化锆粉混合后进行球磨,即得;含氢化锆的镍铁固溶体的制备方法中球磨的转速为200~350rpm,时间为12~16h,球料比为5~8:1。
  7. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:粉体I是以铁粉、镍粉和混合粉体作为主要原料混合得到;粉体II是以镍铁固溶体粉和混合粉体作为主要原料混合得到;粉体III是将含氢化锆的镍铁固溶体与混合粉体进行混合得到;制备粉体I、粉体II、粉体III所采用的混合粉体采用包括以下步骤的方法制得:
    i)制备三氧化钨悬浊液和氢氧化锆悬浊液:
    a)将偏钨酸铵配制成pH≤1的前驱液A,然后将前驱液A进行水热反应,制得三氧化钨悬浊液;
    b)将硝酸锆配制成pH为11~13的前驱液B,然后将前驱液B进行水热反应,制得氢氧化锆悬浊液;
    ii)然后将三氧化钨悬浊液和氢氧化锆悬浊液混合均匀,去除溶剂制成粉末,然后将粉末依次进行煅烧、还原,即得。
  8. 如权利要求7所述的钨基合金材料的制备方法,其特征在于:步骤a)中,水热反应的温度为120~180℃,时间为12~18h。
  9. 如权利要求7所述的钨基合金材料的制备方法,其特征在于:步骤b)中,水热反应的温度为120~180℃,时间为12~18h。
  10. 如权利要求7所述的钨基合金材料的制备方法,其特征在于:步骤ii)中,所述煅烧的温度为600~700℃;煅烧的时间为3~5h。
  11. 如权利要求7所述的钨基合金材料的制备方法,其特征在于:步骤ii)中,所述还原为两段还原;第一段还原的温度为700~770℃,时间为1~2h;第二段还原的温度为900~950℃,时间为2~4h。
  12. 根据权利要求1~11中任意一项所述的钨基合金材料的制备方法,其特征在于:还包括将所述钨基合金坯料进静液挤压变形处理和时效处理;所述时效处理的温度为800~1100℃,时间为7~10h。
  13. 根据权利要求12所述的制备方法,其特征在于:静液挤压处理前将制得的钨基合金坯料进行脱氢处理;所述脱氢处理是在惰性气氛中于1150~1300℃保温4~6h,随炉冷却。
  14. 如权利要求12所述的制备方法,其特征在于:所述静液挤压变形处理的工作压力为950~1300MPa,挤压速度为30~50m/s。
  15. 如权利要求12所述的制备方法,其特征在于:所述静液挤压变形处理的变形率为15-50%。
  16. 如权利要求1所述的制备方法,其特征在于:所述压制成型采用的压力为300~400MPa,保压时间为30~40min。
  17. 根据权利要求1所述的钨基合金材料的制备方法,其特征在于:所述液相烧结的温度为1450~1550℃;时间为90~150min。
  18. 如权利要求17所述的钨基合金材料的制备方法,其特征在于:所述液相烧结的温度为1480~1540℃;时间为90~135min。
  19. 一种如权利要求1所述的钨基合金材料的制备方法制得的钨基合金材料。
PCT/CN2020/108558 2019-08-12 2020-08-12 一种钨基合金材料及其制备方法 WO2021027824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/633,962 US20220325380A1 (en) 2019-08-12 2020-08-12 Tungsten-base alloy material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910740731.2A CN110358941B (zh) 2019-08-12 2019-08-12 一种钨基合金材料及其制备方法
CN201910740731.2 2019-08-12

Publications (1)

Publication Number Publication Date
WO2021027824A1 true WO2021027824A1 (zh) 2021-02-18

Family

ID=68224382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108558 WO2021027824A1 (zh) 2019-08-12 2020-08-12 一种钨基合金材料及其制备方法

Country Status (3)

Country Link
US (1) US20220325380A1 (zh)
CN (1) CN110358941B (zh)
WO (1) WO2021027824A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649001A (zh) * 2021-07-26 2021-11-16 中南大学 一种双金属电催化反硝化电极材料及其制备方法
CN113667971A (zh) * 2021-08-25 2021-11-19 合肥工业大学 一种抗辐照双层结构钨合金纳米涂层的制备方法
CN114182218A (zh) * 2022-02-17 2022-03-15 西安欧中材料科技有限公司 一种背板绑定的铬靶及其制造方法
CN114959333A (zh) * 2022-05-31 2022-08-30 河源市凯源硬质合金股份有限公司 一种钨铜合金及其制备方法
CN115747550A (zh) * 2022-11-30 2023-03-07 西安理工大学 TiC颗粒增强高强度高耐磨钨基复合材料及制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358941B (zh) * 2019-08-12 2021-04-16 河南科技大学 一种钨基合金材料及其制备方法
CN114892059A (zh) * 2022-05-13 2022-08-12 赵克中 一种铁-锆基合金材料及其制备方法
CN115338414B (zh) * 2022-08-22 2023-12-19 西安交通大学 一种热膨胀系数可调控轻型Al-ZrW2O8材料的制备方法
CN117626084B (zh) * 2023-12-18 2024-06-18 北京北钨科技有限公司 一种复合钨电极材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696486A (en) * 1969-08-25 1972-10-10 Int Nickel Co Stainless steels by powder metallurgy
CN105385986A (zh) * 2015-11-10 2016-03-09 中南大学 一种硬度梯度变化的钨基重合金棒及其制备方法
CN105441765A (zh) * 2016-01-05 2016-03-30 河南科技大学 弹用高比重钨合金及其制备方法
CN106048360A (zh) * 2016-07-11 2016-10-26 中南大学 一种表面具有双层梯度结构的硬质合金及其制备方法
CN106801178A (zh) * 2016-12-30 2017-06-06 深圳市威勒科技股份有限公司 一种钨合金材料及其制备方法
CN107604186A (zh) * 2017-09-15 2018-01-19 江西理工大学 一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法
CN108277411A (zh) * 2018-03-27 2018-07-13 江西澳科新材料科技有限公司 纳米钨合金及其制备方法
CN108504916A (zh) * 2018-04-27 2018-09-07 华南理工大学 精密仪器用高耐磨钨合金粉末冶金材料及其制备方法
CN110358941A (zh) * 2019-08-12 2019-10-22 河南科技大学 一种钨基合金材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144401A (ja) * 1982-02-22 1983-08-27 Toshiba Corp タングステン合金の製造方法
CA2708830C (en) * 2007-12-10 2013-01-22 Hitachi Chemical Company, Ltd. Powder and method for producing the same
JP2009208125A (ja) * 2008-03-05 2009-09-17 Nippon Steel Corp 調質圧延機
CN104072124A (zh) * 2014-06-30 2014-10-01 中钢天源(马鞍山)通力磁材有限公司 一种直流变频电机用永磁铁氧体磁体的制备方法
CN105441766B (zh) * 2016-01-05 2018-01-09 河南科技大学 高比重钨合金及其制备方法
RU2619603C1 (ru) * 2016-01-18 2017-05-17 Акционерное общество "Боровичский комбинат огнеупоров" Проппант и способ получения проппанта
CN105958039B (zh) * 2016-07-12 2018-10-09 广东工业大学 一种改性镍锰酸锂正极材料的制备方法及高压锂离子电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696486A (en) * 1969-08-25 1972-10-10 Int Nickel Co Stainless steels by powder metallurgy
CN105385986A (zh) * 2015-11-10 2016-03-09 中南大学 一种硬度梯度变化的钨基重合金棒及其制备方法
CN105441765A (zh) * 2016-01-05 2016-03-30 河南科技大学 弹用高比重钨合金及其制备方法
CN106048360A (zh) * 2016-07-11 2016-10-26 中南大学 一种表面具有双层梯度结构的硬质合金及其制备方法
CN106801178A (zh) * 2016-12-30 2017-06-06 深圳市威勒科技股份有限公司 一种钨合金材料及其制备方法
CN107604186A (zh) * 2017-09-15 2018-01-19 江西理工大学 一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法
CN108277411A (zh) * 2018-03-27 2018-07-13 江西澳科新材料科技有限公司 纳米钨合金及其制备方法
CN108504916A (zh) * 2018-04-27 2018-09-07 华南理工大学 精密仪器用高耐磨钨合金粉末冶金材料及其制备方法
CN110358941A (zh) * 2019-08-12 2019-10-22 河南科技大学 一种钨基合金材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649001A (zh) * 2021-07-26 2021-11-16 中南大学 一种双金属电催化反硝化电极材料及其制备方法
CN113667971A (zh) * 2021-08-25 2021-11-19 合肥工业大学 一种抗辐照双层结构钨合金纳米涂层的制备方法
CN114182218A (zh) * 2022-02-17 2022-03-15 西安欧中材料科技有限公司 一种背板绑定的铬靶及其制造方法
CN114182218B (zh) * 2022-02-17 2022-07-01 西安欧中材料科技有限公司 一种背板绑定的铬靶及其制造方法
CN114959333A (zh) * 2022-05-31 2022-08-30 河源市凯源硬质合金股份有限公司 一种钨铜合金及其制备方法
CN114959333B (zh) * 2022-05-31 2022-11-11 河源市凯源硬质合金股份有限公司 一种钨铜合金及其制备方法
CN115747550A (zh) * 2022-11-30 2023-03-07 西安理工大学 TiC颗粒增强高强度高耐磨钨基复合材料及制备方法
CN115747550B (zh) * 2022-11-30 2024-03-15 西安理工大学 TiC颗粒增强高强度高耐磨钨基复合材料及制备方法

Also Published As

Publication number Publication date
CN110358941B (zh) 2021-04-16
US20220325380A1 (en) 2022-10-13
CN110358941A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2021027824A1 (zh) 一种钨基合金材料及其制备方法
CN108950343B (zh) 一种基于高熵合金的wc基硬质合金材料及其制备方法
CN104313380B (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN106077656B (zh) 一种制备具有纳米结构钛制品的方法
CN109306420A (zh) 一种高性能钨合金棒材及其制备方法
CN108145156B (zh) 一种高性能tzm钼合金棒材的制备方法
CN103331449B (zh) 一种超高塑性双尺度分布的超细晶/微米晶块体铁材料及其制备方法
CN104388789B (zh) 一种纳米结构钨‑碳化锆合金及其制备方法
CN114164367B (zh) 一种高强韧细晶钼合金及其制备方法
CN111621670B (zh) 一种多晶粒尺度核壳结构钛合金块体材料及其制备方法
CN109371274A (zh) 一种高性能粉末冶金tzm钼合金的制备方法
CN112846198B (zh) 一种纳米颗粒增强金属基复合材料及其制备方法
CN113737040A (zh) 一种纳米氧化钇弥散强化钼合金及其制备方法
CN111304479A (zh) 一种VCrNbMoW难熔高熵合金制备方法
CN110438384B (zh) 一种铁镍基超细晶硬质合金及其制备方法
CN110066952B (zh) 一种氧化锆增强钼合金棒材的制备方法
CN116463523B (zh) 原位自生纳米氧化物碳化物协同增韧细晶钼合金及其制备方法
CN116815139A (zh) 一种钛铌合金溅射靶材及其制备方法与应用
CN111889685A (zh) 一种提高增强体分散性和分散量的粉末冶金方法
CN106399807A (zh) 具有微纳尺度双晶粒组织的氧化物弥散强化钢制备方法
CN108315625A (zh) 穿甲弹钨合金的制备方法
CN113186437A (zh) 一种含铒的氧化物弥散强化钨基合金及其制备方法与应用
CN116334430B (zh) 基于溶胶凝胶和碳热还原的超细晶WC-Co硬质合金制备方法
CN111893405B (zh) 一种钛纤维韧化冷镦模具及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851807

Country of ref document: EP

Kind code of ref document: A1